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Foraging behavior has recently become a popular area of research 

with which ethologists, behavioral ecologists, and experimental 

psychologists converge their traditionally separate disciplines into a 

more multidisciplinary framework. Ethologists and behavioral 

ecologists usually study foraging as it occurs in the natural 

environment or the "field," while experimental psychologists contrive 

laboratory simulations of foraging and make the assumption, sometimes 

incorrectly, that generalization occurs across settings, situations, 

and species. Scientific advances are now beginning to occur in the 

ability of laboratory researchers to better simulate foraging as it 

occurs in the field. Field researchers are also becoming more willing 

to accept these findings as important. The purpose of this 

dissertation was to use a laboratory analogue of foraging behavior to 

examine the effects of prey vulnerability, density, and prey-patch 

replenishment on the number of prey rejections and switches between 



patches. This analogue may have more biological validity than 

previous simulations in the operant laboratory by simulating 

conditions of replenishing and depleting patches under adjusting 

(progressive and regressive) random-ratio schedules of reinforcement. 

Three experiments were conducted. The first examined the effects 

of response-cost on acceptability of prey items offered. Results 

indicated that as the cost of obtaining one prey item increased while 

the cost of another was held constant, subjects consistently pursued 

the lower-cost prey and rejected higher-cost prey at increasing 

probability ratios of 1:3, 1:10, and 1:15. The second experiment 

covaried response cost (vulnerability) with the probability of 

encounter (density) for two prey types and evaluated their effects on 

the acceptability of prey. This experiment showed that when the 

density of the low-cost prey increased (p = .66), the subjects were 

more selective. Subjects were less selective when the density of the 

low-cost prey decreased (p = .33). In the third experiment, prey­

patches were replenished at reinforcer-determined (regressive random 

ratio) baseline rates and compared to several fixed-time schedules of 

patch replenishment. Results of Experiment III indicated no major 

differences in patch use behaviors (number of switches between 

patches). The validity and utility of this simulation was discussed 

as a useful model for the experimental analysis of foraging behavior. 

(128 pages) 

ix 



CHAPTER I 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

One definition of foraging is ~to wander or rove in search of 

food or other provisions~ (Menzel & Wyers, 1981). Not only does this 

definition imply random movement (which is not supported by current 

research), but it fails to account for the foraging behavior of the 

caddisfly (Macronema transversum) or the black widow spider 

(Lactrodecus mactans), which are 11sit and wait 11 predators (Type I; 

Schoener, 1969). The above definition would be more appropriate for 

an active (Type II) forager, such as a coyote (Canis latrans), which 

moves widely throughout a home range in search of food and other 

resources. Perhaps the definition would be applicable to a wider 

variety of species if it read to actively search or passively await 

(in a patch) food and other provisions (such as shelter). Foraging 

behavior has been broken into a chain of discrete behavioral links, 

typically consisting of search, detection, pursuit, capture, killing, 

and consuming prey (Cheney, 1979). Each of these stages can be 

behaviorally defined, depending on the organism in question, and 

viewed for analysis as a heterogeneous chain of operant behaviors. 

Figure 1 displays the natural foraging episode described by Cheney 

(1979). This flow chart suggests that one component of foraging 

(e.g., search) is reinforced by another component (e .g., detection), 

which sets the occasion (is a discriminative stimulus) for a third 

(e.g., pursuit), and so on. The cycle then repeats when the animal 

begins searching again (for unknown reasons, food deprivation probably 

being a major factor). Several authors have used similar 



~~~~--- SEARCH ·~ • L DETECTION (S r 3) 
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......___. PURSUIT 
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......___. CONSUME 

l LOWER DEPRIVATION 

I 

Figure 1. The natural foraging episode in terms of setting events, 

discriminative stimuli (SD), and reinforcers (SR; from Cheney, 1979, 

with permission). 
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classification systems to describe foraging behavior (e.g., Abarca, 

Fantino, & Ito, 1985; Collier, 1977, 1983; Collier & Rovee-Collier, 

1981; Krebs, 1973). The advantage to breaking this foraging episode 

into separate three-term contingencies is that each can be 

individually manipulated for analysis. 
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Because there is such variety in the methods used to study 

foraging, it is no surprise that foraging behavior has become a 

multidisciplinary endeavor among behavioral ecologists, ethologists, 

socio biologists, evolutionary biologists, and more recently, 

experimental psychologists (Lea, 1987). Foraging is also an excellent 

area for field and laboratory researchers to combine their 

assumptions, methods, and predictions to create a more integrated and 

inclusive approach to understanding behavior occurring in these 

environments. Collaboration among these traditionally separate 

disciplines should advance the study of foraging, as studies in the 

field will lend validity to laboratory studies and vice versa (Lea, 

1981). 

The validity of laboratory analogues of foraging and the outcomes 

they produce can only be measured in terms of how a particular 

analogue relates to observations in the field and other models 

developed both in the field and the laboratory. Analogue research on 

foraging requires the investigator to have (a) some basic knowledge of 

the subject 1 s natural foraging behavior (e.g., how and what the 

forager eats), and (b) internally and externally valid experiments 

(e.g., appropriate schedules of reinforcement used to simulate prey 

and patch dynamics, such as variable-ratio (VR) or random-ratio (RR) 
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versus variable-interval (VI) schedules). Although any type of 

laboratory analogue research has unavoidable limitations in 

generalizing to 11real life 11 situations (in foraging, lack of 

interspecies competition, risk of predation, etc.), most experts agree 

that many of the contingencies faced by food-deprived laboratory 

animals share important characteristics with animals foraging in the 

wild (Baum, 1982a, 1982b, 1983; Collier & Rovee-Collier, 1981; 

Epstein, 1984b; Fantino & Abarca, 1985; Lea, 1981; Pulliam, 1981; 

Skinner, 1953, 1961). Considering the earlier definition, the 

environment in which an animal forages is not always of major 

importance--it is the relationship between the environment and food 

gathering behavior that behaviorists or 11praxists 11 (defined as "the 

study of behavior; 11 Epstein, 1984a, p. 101; Skinner, 1938) consider 

their subject matter. As a result, additional laboratory analogues of 

foraging have been called for by field and laboratory researchers 

alike (Baum, 1983; Fantino, 1985; Kamil, 1983; Krebs, 1978; Lea, 1981; 

Shettleworth, 1984, 1987; Staddon, 1980). As a result of this 

interest in laboratory research related to foraging, it is fast 

becoming one of the most widely studied areas in behavioral ecology 

and experimental psychology. The 1980s have seen the development of 

texts dealing specifically with foraging behavior (Commons, Kacelnick, 

& Shettleworth, 1987; Kamil, Krebs, & Pulliam, 1987; Kamil & Sergeant, 

1981; Stephens & Krebs, 1986). 

The central issue in current research is whether behaviors 

exhibited by animals in the wild are controlled by the same mechanisms 

(principles of behavior, such as positive reinforcement, extinction, 
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etc.) as those in the operant laboratory (Lea, 1981, 1982; Schoener, 

1987). If such principles occur in the natural environment, then 

operant conditioning research may reveal some variables which control 

foraging in the field, while field research will help validate the 

behavioral principles observed in the laboratory. Most important, the 

analysis of such behavior can, and will, progress if researchers in 

the field and in the laboratory are willing to collaborate on methods 

of conducting research, posing questions of interest, and further 

developing experimentally and biologically valid simulation 

procedures. A great deal of interdisciplinary progress has been made 

in recent years, but more research is needed to extend this progress. 

Experimental psychologists have had difficulty simulating a 

dynamic foraging episode (i.e., one with a changing environment) in 

the laboratory , but have developed sophisticated quantitative 

procedures for predicting choice behavior of animals working for food 

under a given set of constraints (e.g., schedules of reinforcement). 

Unfortunately, some of the constraints imposed by laboratory research 

have lacked external validity. For example, the delay-reduction 

hypothesis (e.g., Fantino & Abarca, 1985) and the ubiquitous matching 

law (Herrnstein, 1970, 1974) are powerful principles for predicting 

choice behavior under variable-interval (VI) schedules of 

reinforcement. However, VI schedules are not commonly observed in the 

natural environment, so field investigators view research using such 

schedules as somewhat limited. Models of choice have been developed 

with an extensive literature base in psychology, but the models 

themselves have been the focus of study, rather than foraging, per se. 



More work needs to be done in expanding such models to account for 

relevant foraging behavior in the wild. For example, schedules 

simulating search need to account for features of replenishment and 

depletion in the wild. Additionally, patches would be better 

simulated by spatially separated operanda, each with its own food 

source. 

6 

In summary, the problems with current foraging research center 

around (a) the lack of methodological integration among researchers in 

different disciplines and between those working in the field and the 

operant laboratory; (b) much research has been conducted with regard 

to specific theories or models in behavioral ecology and psychology, 

but have failed to conduct a basic experimental analysis of foraging 

(Sidman, 1960); and (c) many operant analogues of foraging have used 

schedule-dependent models of choice, and thus have limited generality 

to foraging in the natural environment. 

Most studies of foraging have manipulated some aspect of a 

forager's prey or patch distribution and observed the resulting 

behavioral changes (e.g., Kamil & Sergeant, 1981). The experiments 

reported in this dissertation are of that sort. The objectives of the 

present research were to determine (a) how cost (i.e., prey 

vulnerability) affects the forager's decision to pursue or reject two 

prey types, (b) how the density of high- or lost-cost prey types 

covary· with vulnerability, and (c) whether simulating prey 

replenishment based on the number of prey (reinforcers) taken per 

patch approximates prey replenishment based only on time. Three 

experiments were conducted to fulfill these objectives and determine 
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how prey vulnerability, density, and patch replenishment affect the 

forager's choice. 

A procedure is described for studying foraging behavior in the 

operant laboratory that has been refined at Utah State University over 

the past 10 years (Bonem & Cheney, 1985; Cheney, 1979; Cheney, Bonem, 

& Bonem, 1985; Cheney, Bonem, & Nittrouer, 1982; Cheney, Dewulf, & 

Bonem, 1986; Cheney & Shamaly, 1983; DeWulf, Bonem, & Cheney, 1986). 

This procedure simulates independent variables such as prey 

vulnerability (cost), prey density (probability of encounter), and 

replenishment and depletion of patches under adjusting random ratio 

(RR) schedules of reinforcement. For some foragers, these schedules 

are similar to one which replenishes and depletes patches in the wild. 

Baum (1983) has stated: 

Search provides food neither on a variable-interval nor 
a variable-ratio schedule, but some combination of the two. 
Search is like a variable-ratio schedule that increases as a 
function of amount eaten (i.e., depletes) and decreases as a 
function of time (i.e., replenishes) ... To my knowledge, no 
one has studied such adjusting variable-ratio schedules. 
(p. 268) 

By studying foraging behavior as a heterogeneous chain of operant 

behaviors and examining interactions (there is not always perfect 

agreement about the specific components which constitute the foraging 

chain or where the divisions of it lie), we will learn more about the 

variables which control an animal's choice to pursue or reject prey 

items encountered, as well as the decision rules used by foragers in a 

patchy environment (one in which prey are found in clumps rather than 

randomly distributed). The study of foraging as an example of choice 

behavior has also been discussed in terms of economics (Hursh, 1980, 
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1984; Rachlin, Battalio, Kagel, & Green, 1981; Rapport, 1981; Tullock, 

1971), self-control (Fantino, 1981; Rachlin & Green, 1972; Snyderman, 

1983, 1987), welfare (Timberlake, 1984), and cultural anthropology 

(see Schoener, 1987 for a brief discussion). 

Optimal Foraging Ecology 

Optimal foraging theory is an ecological theory that explains 

foraging as an evolutionary phenomena facilitated by natural selection 

that tends to make animals efficient foragers (Charnov, 1976a, 1976b; 

Emlen, 1966; Houston, 1987; Krebs, Houston, & Charnov, 1981; Krebs, 

Stephens, & Sutherland, 1983; MacArthur & Pianka, 1966; Pulliam, 1976; 

Pyke, Pulliam, & Charnov, 1977; Pyke, 1978b, 1978c, 1981a; Stephens & 

Krebs, 1986). The popularity of optimal foraging theory over the past 

20 years is partly a result of its ability to predict and it's 

apparent relationship to behavioral economics, evolutionary theory, 

and psychological models of choice. 

Optimal foraging theory began with two papers published in the 

same issue of the American Naturalist, one dealing with diet theory 

(Emlen, 1966) and the other dealing with both diet theory and use of a 

patchy environment (MacArthur & Pianka, 1966). These authors were not 

the first theorists in the area of foraging, but it is nonetheless 

doubtful that either realized how their theoretical models would 

expand the field of behavioral ecology, an effect that Schoener (1987) 

suggests is only now beginning to be fully realized (but cf. Gray, 

1987). 

MacArthur and Pianka (1966) were the first foraging theorists to 

suggest a distinction between foraging for prey (prey choice 



9 

strategies) and foraging for patches (patch use strategies), although 

they also pointed out that prey and patch choice strategies were quite 

similar as well. Specific quantitative models developed to account 

for the optimal number and types of prey to include in the diet are 

known as 11optimal diet models" (e.g., Emlen, 1966; Emlen & Emlen, 

1975; Goss-Custard, 1977a, 1977b; Krebs, Erichsen, Webber, & Charnov, 

1977; Krebs, 1978; Werner & Hall, 1974). Models related to the use of 

a patchy environment are commonly known as 11patch use models" (e.g., 

Charnov, 1976b; Krebs, 1978; Krebs, Ryan, & Charnov, 1974; MacArthur & 

Pianka, 1966). Each of these models quantitatively specifies the 

optimal foraging strategy in terms of some currency, such as energy 

gain (E) relative to some cost, such as time required to handle the 

prey (h), yielding the ratio E/h (commonly known as the 

"profitability" of a prey item). The models differ in the decisions 

that are analyzed--what to include in the diet or how long to forage 

in a patch before leaving. 

There has been a great deal of interest in testing optimal 

foraging models, largely because if one can meet the assumptions of 

the model, it can be tested from a variety of approaches (e.g., 

Hanson, 1987; Mellgren, Misasi, & Brown, 1984). The predictions of 

optimal foraging models are tested by comparing the actual behavior of 

the forager to the quantitatively optimal behavior calculated under 

similar, but hypothetical circumstances; hence its relation to 

microeconomic theory and the concepts of utility, income, price, and 

elasticity and substitutability of demand (Crawford, 1986; Hursh, 

1980 I 1984) , 
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The early optimal foraging models assumed variables such as 

energy gain, handling time, and travel time held constant values. 

Early models also assumed energy gain was a continuous event. Optimal 

foraging models which were developed later ("second generation 

models") were stochastic (they had random variation, which accounted 

for changing environments), rather than deterministic, and they 

assumed energy intake to be a discrete, rather than continuous, event 

(Iwasa, Higashi, & Yammamura, 1981; Schoener, 1987). 

In the current foraging literature, there is general disagreement 

as to whether optimal foraging models can be scientifically tested. 

Kacelnick (1987) suggests that those who are opposed to optimality 

theory argue that (a) it is untestable and therefore unsuitable as a 

scientific endeavor (Gray, 1987; Ollason, 1980), or (b) it is testable 

but unsupported (Herrnstein, 1982; Mazur, 1981; Vaughan, 1982). Those 

in support of optimal foraging theory suggest that (a) it is testable 

and generally supported by the data (Pyke et al., 1977; Rachlin, 

1978), or (b) that it is not testable , but nevertheless an important 

tool to use in posing and answering research questions (Krebs, 1978; 

Pyke et al., 1977). The question is still widely debated, but it is 

interesting that experts in the field agree about practically nothing 

concerning optimal foraging theory (see Skinner, 1987 for a similar 

discussion concerning recent developments in psychology). 

Operant Laboratory Investigations of 
Choice and Foraging 

Psychologists studying foraging consider it in terms of setting 

events, behavioral consequences, and how foraging places constraints 
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on reinforcement (Baum, 1982b, 1983; discussions on the relationship 

between operant behavior and evolution can be found in Fantino & 

Logan, 1979; Lea, 1982; Shettleworth, 1974; Skinner, 1966, 1975, 1984; 

Stadden, 1983, 1987). Choice has been studied extensively in the 

operant laboratory in T-mazes, shuttle boxes, and operant chambers 

requiring various response topographies, such as running down an 

alley, pressing a lever or treadle, and pecking a key. Such 

investigations often study generic choice between two alternatives, 

each under a different schedule of reinforcement (e.g., Bhatt & 

Wasserman, 1987; Davison & Temple, 1974; MacEwen, 1972). These 

schedules of reinforcement are viewed as being analogous to the 

components within the foraging chain (Cheney, 1979; Lea, 1979; Zeiler, 

1987). 

Behavioral ecologists may be better suited to study foraging in 

the field, while operant psychologists further develop laboratory 

techniques for studying foraging in the laboratory (Fantino & Logan, 

1979; Ferster & Skinner, 1957; Honig, 1966; Honig & Stadden, 1977; 

Killeen, Smith, & Hanson, 1981; Lea, 1979; Skinner, 1938). For 

example, operant technology demonstrating concept formation in the 

pigeon (Herrnstein & Loveland, 1964) has been used as a referent by 

which behavioral ecologists have studied cryptic (camouflaged) prey 

detection (e.g., Krebs, Stephens, & Sutherland, 1983; Pietrewicz & 

Kamil, 1981). 

The schedule used most often to study choice in the operant 

laboratory has been the concurrent-chains procedure (e.g., Autor, 

1960; Baum, 1974b; Fantino, 1969; Fantino & Abarca, 1985; Fantino & 
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Logan, 1979; Findley, 1958; Herrnstein, 1964; Rachlin, 1967; Reynolds, 

1963; Squires & Fantino, 1971). In this procedure, a subject is 

provided access to two spatially separated, simultaneously available 

(concurrent) response alternatives (these are viewed most commonly as 

two distinct patches or 11places to work11
). The program on each 

alternative is a two-component chain. 

In a chain schedule, a response in the presence of one 

discriminative stimulus produces a second (different) stimulus. When 

the response requirement for the second stimulus has been completed 

(again on the same or different schedules), it results in 

unconditioned reinforcement. Generally speaking, the chain is similar 

to that of foraging behavior in the wild, although potentially slower. 

Traditionally, only two operanda have been used to study choice 

behavior in the operant laboratory. However, some studies have been 

expanded to include three-alternative choice procedures (Fantino, 

Abarca, & Dunn, 1987). 

In a typical foraging simulation, the concurrently available 

response alternatives serve as prey patches, while the two components 

of the chain schedule represent search and handling time, 

respectively. Completion of the initial link (search) schedule 

requirement produces the terminal link stimulus (the animal 11detects 11 

a prey item), which, once completed, results in a simulated kill and 

assumed consumption. Once the terminal link has been completed, the 

concurrent initial links are once again available. Most simulations 

of foraging have required some type of response cost for the animal to 

move from one alternative to the other (travel-cost), such as a third 
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key under a different schedule of reinforcement (e.g., DeWulf et al., 

1986) or a hurdle the animal must cross (e.g., Baum, 1981). 

The concurrent chains procedure allows the subject to engage in 

one of two simultaneously available response alternatives programmed 

under identical or different schedules in the initial and/or terminal 

links of the chain. This has important parallels with naturally 

occurring foraging when viewed as a heterogeneous chain of operant 

behaviors. For example, each component of the chain has a discrete 

discriminative stimulus, response requirement, and behavioral outcome. 

The naturally occurring foraging episode can be reduced to a number of 

such three-term contingencies, as depicted in Figure 1. 

Quantitative descriptions of choice such as the delay reduction 

hypothesis (Fantino, 1977) and the ubiquitous matching law 

(Herrnstein, 1970, 1974) have been developed to predict and explain 

choice behavior. The delay reduction hypothesis states that 11the 

strength of a conditioned reinforcer is a function of the reduction in 

time to primary reinforcement, correlated with the onset of that 

stimulus 11 (Fantino, 1981, p. 169). Presented in its most simple 

quantitative form, the delay reduction hypothesis quantitatively 

predicts the following: 

Reinforcing strength of Stimulus A= f T - t (a) 
T 

Where t(a) is the temporal interval between the onset of Stimulus 

A and primary reinforcement, Tis the total time between reinforcer 

presentations, and the function, f, is assumed to be monotonically 

increasing and continuous (Fantino & Abarca, 1985). The delay 

reduction hypothesis predicts that the animal will consistently choose 
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the alternative associated with a greater reduction in time to primary 

reinforcement. Therefore, the animal should always pursue prey items 

that are quickly captured and consumed, regardless of their E/h ratio 

or density. This hypothesis has somewhat limited generality when 

applied to specialized aspects of foraging, such as central place 

foraging. 

Support for the delay reduction hypothesis has come from numerous 

studies conducted in the operant laboratory (e.g., Abarca & Fantino, 

1982; Fantino, 1969; Fantino & Abarca, 1985; Fantino, Abarca, & Ito, 

1987). For example, Abarca and Fantino (1982) studied pigeons 

responding under concurrent chain schedules of reinforcement with 

fixed-interval (FI) initial links and variable-interval (VI) terminal 

links (such schedules are rare in nature). The size of the intervals 

in each of the schedules was varied, and subjects consistently chose 

the schedule with the greatest reduction in time to primary 

reinforcement, also providing support for optimal foraging theory 

(although predictions diverge in other choice tests, such as those 

where the delay reduction hypothesis predicts choice of the 

alternative associated with a greater reduction of time to primary 

reinforcement and optimal foraging theory predicts choice of the 

alternative yielding the greatest gain in terms of E/h). 

The delay reduction hypothesis provides a model of conditioned 

reinforcement that can be tested from a variety of approaches (e.g., 

studies of reinforcement schedules, foraging, and self-control), 

although it has some potential limitations to naturally occurring 

foraging behavior (for a comprehensive review see Fantino, 1981). 
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Data from studies supporting the delay reduction hypothesis generally 

also support the matching law, which suggests that responses are 

distributed in proportion to the density of reinforcement available in 

each of the choice alternatives. Herrnstein (1974) conducted a study 

where pigeons responded under concurrent variable-interval (VI) 

schedules of reinforcement. The interval following 4-second access to 

grain was then varied. Results indicated that the subjects closely 

matched their responses to the reinforcement density in each of the 

choice alternatives. This general result has been supported in a 

number of subsequent studies (Baum, 1974a; Herrnstein & Loveland, 

1964; Houston, 1986; Ito & Fantino, 1986; Rachlin, 1978, 1982). 

The matching law states that the relative frequency of responses 

to a choice alternative is proportional to the relative density of 

reinforcement on that alternative (not to be confused with maximizing 

predicted by optimal foraging theory). The matching equation can be 

stated quantitatively as follows: 

Pl = Rl 
Pl + P2 + ••• Pn Rl + R2 + ••• Rn 

Where P is the number of responses, R is the number of reinforcers, 

and numeric variables refer to the respective choice possibilities 

(Herrnstein, 1974). No formal quantitative tests of the optimal diet 

model, delay reduction hypothesis, or matching law were conducted. 

The primary purpose of this investigation was to further examine an 

operant model of choice as it specifically relates to activities in 

the pursuit component of the foraging episode. Furthermore, the 

present investigation expands the scope of earlier models developed in 
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the operant laboratory by testing a specific method of simulating prey 

patch replenishment and depletion. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Theories of Prey Choice 

The classic question in optimal foraging theory is what the 

forager should include in the diet. MacArthur and Pianka (1966) and 

Emlen (1966) developed the first published quantitative accounts of 

what have come to be known as "optimal diet models." Several similar 

models were quick to follow (Emlen, 1968; Rapport, 1971; Schoener, 

1969; Tullock, 1971). MacArthur and Pianka (1966) developed a graphic 

model pertaining to both choice of prey and choice of patches (it has 

been ca 11 ed the 11f undamenta l theorem of optima 1 foraging theory, 11 by 

Charnov (see Schoener, 1987, p. 10). The optimality theory 

promulgated by these early authors suggests that while foraging, an 

activity should be engaged in as long as the momentary gain in E/h 

exceeds that of competing activities. The model specifically 

addresses the variables that lead to greater specialization in the 

diet. Variables examined include (a) increased overall prey density, 

(b) increased search cost, (c) specialization of predator handling 

behavior, and (d) prey which are difficult to capture. The model 

predicts that prey should be ranked according to their E/h ratios, 

such that as overall prey density increases, the diet should become 

more specialized (it should shrink). 

Optimal f_oraging theory in general, and optimal diet models in 

particular, make certain assumptions about the animals' foraging 

ecology. The three major assumptions outlined by Stephens and Krebs 

(1986) are: 



1. Decision Assumptions. These depend on what is being 

analyzed. For example, one can study prey choice by offering 
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(a) identical prey with unequal handling times or (b) prey of 

different sizes. Two common decision variables analyzed in the study 

of patch choice are: (a) residence time and (b) giving-up time. 

Residence time (RT) is the interval which elapses between entering and 

leaving a patch, while giving-up time (GUT) refers to the interval 

between the last prey capture and leaving the patch . 

2. Currency Assumptions. These variables include average long­

term rate maximization, short-term maximization of E/h, energy 

maximization, handling time reduction, nutrients obtained, or any 

other currency the forager may maximize. 

3. Constraint Assumptions. These are typically events which 

limit a forager's ability to obtain food, such as information about 

the environment, mating, sleeping, prey densities, day-night cycles, 

and independent search and handling times. If these and certain other 

assumptions are satisfied, then the optimal diet model predicts the 

following with regard to maximizing the diet: 

A. The predator will rank all potential items according to 

their E/h ratios (from highest to lowest) such that 

increasing density of a higher ranked prey item will lead to 

greater specialization in the diet. 

B. Prey choice is independent of the density of lower ranked 

prey items and depends only on the density of more 

profitable types. 



C. The animal should either always pursue or always reject a 

prey item regardless of the relative density of that prey 

type (commonly known as the zero-one rule, all or none 

selection, or partial preferences). 
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Several studies have sought to test optimality models. Many 

authors have developed models that relax certain assumptions of 

traditional optimal diet models. Most of these stochastic models were 

developed to account for optimality predictions based on changed 

decision, currency, and/or constraint assumptions, and hence, make 

different predictions concerning optimal foraging behavior (Green, 

1987; Kacelnick, Krebs, & Ens, 1987; Stephens & Krebs, 1986). 

For example, Pulliam (1974) developed a stochastic optimization 

model (one which has random variation) that predicted the diet for 

active foragers feeding on stationary prey. This particular model 

makes different assumptions about prey density, specifically that the 

density of prey is variable rather than constant. Thus, it makes 

different predictions about what the forager should include in the 

diet. The model assumes that the predator knows the density, energy 

yield, and distribution of prey (complete information) and predicts 

the optimal diet, search time, and optimal time to capture a prey item 

in a changing environment. The conclusions of the model are similar 

to the traditional optimal diet models in predicting the diet of the 

forager with clumped (patchy) and randomly distributed prey. 

Some theorists have developed optimal diet models to account for 

the changed assumption of nutritional intake rather than maximization 

of E/h as the currency to be maximized (Pulliam, 1975; Rapport, 1971). 
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These models, unlike traditional optimal diet models, predict partial 

preferences. When the currency to be maximized is not E/h, the 

predictions of the model change. In a review by Schoener (1987), none 

of the 44 studies testing the prediction of partial preferences 

supported it. Foragers do display partial preferences, and sampling 

of prey may be one of several possible explanations (Lima, 1984; 

Shettleworth, Krebs, Stephens, & Gibbon, 1988). The second generation 

models have thus adjusted the model to account for the data, but seem 

to be moving in the right direction by formulating models to account 

for different assumptions, such as changed foraging constraints (e.g., 

Lucas, 1983, 1987). 

McNair (1979) presents a generalized version of the optimal diet 

model that relaxes some of the traditional assumptions. First, he 

relaxes the prediction that prey choice depends only on the density of 

the more profitable type. He presents a model which suggests that the 

last prey type encountered influences whether or not that prey type 

will be included in the diet. McNair's model takes into account the 

''training effects 0 of prey detectability, probability of capture, and 

experience in handling prey. The model also relaxes the assumption of 

prey density remaining constant as did Pulliam (1974) and Rapport 

(1971) in their stochastic models of optimal diet. This particular 

model suggests that prey are not necessarily ranked according to their 

E/h ratios, and that training effects alter the probability of 

pursuing prey upon the next encounter. Gray (1987) suggests that 

second generation models are a great improvement over traditional 

models, but still make obvious predictions about the diet. 
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Additionally, he argues that if such models are constantly refined to 

account for the data, they can never be disproved and are thus 

inappropriate as a scientific source of endeavor. 

Another variation of the optimal diet model has been developed to 

account for changed time constraints. This model also allows for 

partial selection of prey because of the relaxed assumption of time 

spent in a foraging bout. The model put forth by Lucas (1987) 

suggests that as time dedicated to a foraging bout decreases, the diet 

should expand to include even low-ranking prey, thus violating 

prediction that foragers should ignore unprofitable prey regardless of 

their density. Lucas (1987) also discusses the model as it relates to 

the principle of lost opportunity (the effort of pursuing a low­

ranking prey also results in a decreased chance to detect potentially 

more profitable types). 

Charnov (1976a) presents yet another model of diet choice based 

on size selection of prey. Unlike the traditional decision assumption 

of energetic efficiency, Charnov's model predicts the diet of the 

mantid (Hierodula crassa) taking into account variables related to 

risk of predation (pursuit distance), rate of food moving through the 

gut, and prey density (the data analyzed come from a study by Holling, 

1959, cited by Charnov, 1976a). The mantid's viewed large and small 

mealworms in random order moving along a conveyor belt. Results 

indicated that mantid's consistently chose large over small worms, 

suggesting that large worms were possibly more salient (detectable) 

than small worms. Predictions of the model were compared to Holling's 

data and fit reasonably well. Charnov wisely concludes that 



maximization of E/h is only one of many potential variables that may 

play a role in prey choice. 

Empirical Studies of Prey Choice 
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Field studies. The studies reviewed in this section are semi­

naturalist field studies, most of which were conducted outdoors under 

surprisingly well-controlled conditions. Field studies of prey choice 

are much less common than comparable simulations in the operant 

laboratory. This may partially be a result of the inherent 

difficulties involved with constant observing, monitoring, and control 

of several aspects of prey and patch dynamics in the natural 

environment. 

Goss-Custard (1977a) conducted a study in estuaries of 300-500 

meters to determine if the wading bird redshank (Tringa tetanus) would 

select polychaete worms (Neiris diversicolor or Nephthys homberg) that 

maximized E/h. The density of large and small worms was varied at 

several ranges to determine whether prey density affects diet choice. 

Results of this study suggest (a) that large worms were preferred to 

small ones, {b) smaller worms were taken more quickly if their density 

was greater, and (c) the combination of prey items that provided the 

greatest E/h were chosen most frequently. The results support 

predictions of the optimal diet model in terms of (a) selection of 

prey by their energy yield and (b) the diet becoming more specialized 

as the density _of large, but not small, prey was increased. The 

results failed to support the prediction that foragers should not 

display partial selection. Probably the most significant finding of 

this study was that prey choice was independent of the density of 



small (less preferred) worms, but depended only on the density of 

large worms. 
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In a similar study, Goss-Custard (1977b) studied the choice of 

prey distributed over four patches: small prey (too small to be 

identified through the observation telescope, but consisting of 

Corophium volutator, Cyathura carinata, Hydrobia ulvae, and smaller­

sized other types), polychaete worms (Nereis diversicolor), crabs 

(Carcinus maenas), and bivalve moluscs (Macoma balthica and 

Scrobicularia plana). This study differed from Goss-Custard (1977a) 

in that choice among prey of various types was examined, rather than 

choice among sizes of prey belonging to the same taxonomy. The 

results suggest that the redshank preferred the unidentifiable small 

prey, thus not maximizing E/h. The results are also inconsistent with 

Goss-Custard (1977a) where the redshank preferred large to small 

worms. In at least two of the patches where the temperature was 

lower, the redshank selected the polychaete worms (possibly because 

they were easier to detect), suggesting that detectability may be 

important in determining prey choice, or they may have selected the 

worms because of nutrient requirements. 

Davies (1977a) studied the choice of insects by 12 (six pair) 

flycatchers (Muscicapa striata) in a large garden and yard. The exact 

type of prey items consumed by the flycatcher was unknown, but the 

droppings of each subject were analyzed to determine their contents 

(by examining undigested whole wings of various distinct types of 

(insects). Size of prey was determined by correlating the wing size 

with the probable body size. Results suggested that at least five 



factors affected the choice of prey by the flycatchers: (1) prey 

density and type of prey eaten by adults versus nestlings, 
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(2) selection of large prey based on size and type, (3) distance of 

prey from the central place and prey activity, (4) nutrient 

constraints, and (5) selection of prey by male flycatchers for both 

adult birds during mating season when the females remained in the nest 

to incubate the eggs. 

The results support the prediction that the birds maximize E/h in 

foraging both for patches and prey within the patches. Support for 

this prediction originates from data suggesting that: (a) the 

flycatchers foraged for larger prey near the ground when it was more 

profitable to do so; (b) the birds decreased the size of their diet 

when the density of large prey increased; (c) the adult flycatchers 

selected different prey for nestlings to eat relative to their own 

(adult) diet; and (d) when foraging near the ground, the birds 

switched patches when it was generally more profitable to do so. 

Additional results suggested that energy is not always the 

currency to be maximized, as the second generation models suggest. 

First, the flycatchers selected prey that were rich in calcium during 

the mating season (ostensibly to increase the strength of the 

eggshell) . Secondly, the strategy for maximizing short-term gain is 

different than that of long-term gain (e.g., fending off predators). 

Finally, the animal must engage in alternative behaviors such as 

minimizing risk of predation, as well as maximizing E/h and assuring 

continuation of the species. 
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Davies (1977b) tested a more specific version of the optimal diet 

model by studying the behavior of pied wagtails (Motacilla alba 

yarelli) and yellow wagtails (M. flava flavissima) feeding on insects 

in groups over water pools, and individually over dung pats in a 

meadow. The study specifically examined how risk of predation and 

number of wagtails present affected the wagtail's decision as to what 

to eat and where to forage. Examination of the wagtails' droppings 

provided information about the diet. Results suggested that the diet 

changed only when the density of the higher ranking prey was varied, 

and that as the density of higher ranking prey decreased, the wagtails 

consumed more of the lower ranking prey, presumably to maintain a 

constant rate of energy intake. 

Additional results suggest that wagtails forage both in flocks 

and individually, switching many times between the two alternatives. 

In some cases, persistent switching resulted in maximizing E/h, but in 

others, it did not. This may have been due to compensation between 

other competing behaviors such as mating and risk. Switching between 

dung pats and water pools was qualitatively consistent with 

predictions from the optimal diet model, but no quantitative test of 

the model was provided. Results were generally consistent with those 

confirmed by Goss-Custard (1977a), but again failed to support the 

prediction of no partial preferences. 

Another study lending support to the prediction that animals 

maximize E/h was Sutherland (1982). The study examined oystercatchers 

(Haematopus ostralegus) feeding on various sizes of cockles 

(Cerastoderma edule). Eleven large patches (100 meters square) and 
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one smaller patch were sampled for an estimate of density between five 

cockle size types. Shells were collected to determine if the cockles 

foraged on the larger cockles so as to maximize E/h. The results 

suggest that maximizing E/h is not the only behavior important in 

maximizing foraging efficiency. A large cockle was taken whenever it 

was encountered, but a disproportionate number of smaller sized 

cockles were also taken. This result is consistent with a number of 

others that examined optimal diets (e.g., Goss-Custard, 1977a; Davies, 

1977a) and suggests, as others do, that partial preferences may be due 

to sampling of prey or incorrectly assuming that the forager possesses 

complete information about the environment. 

Campbell (1987) conducted a field investigation on the diet of 

small, medium, and large sea stars (Asterias forbesi) feeding on three 

sizes of blue mussels (Mytilus edulis). The experiments were designed 

to test whether the sea stars selected prey that were larger than the 

mean energy yield for the patch (maximized E/h). Results indicated 

that the mean size of the mussels selected by the sea stars was 35.98 

mm, compared to a patch mean of 31.86. Small sea stars selected prey 

with an average size of 33.11, medium= 39.82, and large= 42.08, 

suggesting that prey size selection was correlated with predator size, 

but predators did not maximize E/h in all size classes. The study 

also suggested that in lieu of E/h, developmental stages of the 

predator may have been a contributing factor. 

Laboratory studies. As stated at the outset, laboratory studies 

of prey choice are much more common in the literature than field 

studies of prey or patch choice. Several studies provide tests of the 
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optimal diet model (e.g., Mellgren et al., 1984), while others are 

strictly laboratory studies on reinforcement schedules, relating to 

optimal foraging theory in a more or less indirect way (e.g., Fantino 

& Abarca, 1985). 

Erichsen, Krebs, and Houston (1980) provided a test of the 

optimal diet model in a laboratory study with captive great tits. 

Subjects were presented with two types of prey (cryptic or camouflaged 

and noncryptic) passing along on a conveyor belt in front of the home 

cage. Prey items were two different sizes of mealworms, with the 

larger and more profitable being the cryptic (less salient) prey. The 

results supported the prediction that the animals would choose the 

prey yielding the greatest energy gain , but failed to support the 

prediction that a forager should never specialize on lower ranking 

prey types . This specific study , however, states that the animal 

should specialize on lower ranking prey at certain values, as the data 

suggest (also supported by Lucas, 1983, 1987). This study, like 

others, failed to support the prediction that there should be no 

partial selection. 

A classic laboratory test of the optimal diet model was conducted 

by Werner and Hall (1974). These investigators presented bluegill 

sunfish (Lepomis macrochirus) with four size classes of Daphnia magna 

in small wading pools (aquaria) and examined the stomach contents of 

the fi~h after a foraging bout. The study quantitatively tested a 

version of the · optimal diet model that predicts that the forager 

should include a greater variety of prey types in the diet when 

absolute prey density is low (generalist), and to be selective among 
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prey when absolute density is high {specialist). The results were 

compared to predictions of the model, but no quantitative agreement 

was obtained. The study supports the notion of selecting energy-rich 

prey, and that diet choice depends on the density of large, but not 

small, prey. The results again failed to support predictions related 

to partial preferences. 

Zach and Falls (1978) examined prey choice in captive ovenbirds 

(Seiurus aurocappillus) foraging for various sizes and types of prey. 

Prey consisted of 12 various types of insects including beetles, ants, 

and spiders. Results indicated that the ovenbirds chose large, novel 

prey types, fed almost entirely on one specific type, and exhibited 

partial preference. Although no quantitative test was performed, the 

study qualitatively supported predictions related to choice of the 

most profitable prey specialization on more profitable prey when 

absolute density increased, and partial preferences when absolute 

density of prey was low. 

Krebs et al. (1977) presented five captive great tits sitting on 

a perch with profitable (large) and unprofitable (small) mealworms 

along a moving conveyor belt under a fixed-time (FT) schedule. In 

conditions where density of both prey types was low, the tits were not 

selective between them (i.e., they were generalists). When density 

was high for both prey types, the tits became more selective, choosing 

to ignore the less profitable prey and to pursue only more profitable 

items. This choice, however, was not due to the density of the less 

profitable type, but depended only on the density of the more 

profitable type (i.e., if the density of the more profitable prey was 
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decreased, the model predicts that the birds would be less selective, 

and as the density increased, more selective). This study, like 

others (e.g., Sutherland, 1982), found that animals do not exclude 

less profitable prey as abruptly as the optimal diet would predict, 

but the model suggests that perhaps periodic sampling of prey may be 

responsible for the gradual exclusion of less profitable prey 

observed. 

Some of the most challenging data to the optimal diet model to 

date was conducted by Emlen and Emlen (1975). This study tested 

predictions of the optimal diet model in 40 male laboratory mice (four 

experimental groups). Subjects were presented with natural and 

treated sorghum seeds (the treatment substantially reduces size and 

the caloric value of the seed). Each of the mice was offered one of 

the two seeds while data was collected on the amount and type of seed 

eaten per unit time. Results in terms of the optimal diet model 

failed to account for the data without modification. The authors 

suggest that deviations from optimality predictions could be an 

artifact of (a) the constraint that the mice could not choose specific 

i tems or discriminate among different types of seeds, (b) there is 

error in calculating the optimal diet under such circumstances, or 

(c) the mice are not foraging optimally. 

Peden and Rohe (1984) provided a study of prey choice in the 

operant laboratory with pigeons (Columba livia) to determine if 

subjects would choose prey types so as to minimize the number of key 

pecks (handling time) per food item delivered. Pigeons were 

maintained at either . BO% or 100% free-feed weight and worked under 
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chained schedules of reinforcement that simulated search, procurement, 

and handling. During baseline conditions, pecks on the left and 

center key had no consequence, while each peck (FR 1) to the right key 

resulted in food delivery. In contingency sessions, the birds 

responded under a three-component chain simulating a search component 

where 3, 9, or 15 pecks on the left key (initial link) led to the 

illumination of the center key (detection or encounter). The terminal 

link schedule was either low cost (3 pecks) or a high cost (21 pecks), 

with a probability of .05 for either terminal link occurring. The 

procurement component required the bird to peck the left key once to 

reject prey items offered or to complete the response requirement on 

the center key, leading to illumination of the right key whereby one 

peck would produce food (handling). Results suggested that the birds 

consistently procured low cost prey and consistently rejected high 

cost prey when the search cost was low, but not high (the birds became 

generalist only as absolute density of prey decreased; see Collier, 

1977, for similar results). 

Lea (1979) conducted an operant investigation of foraging using 

pigeons responding under chained fixed-interval (FI) schedules of 

reinforcement. Completion of the initial link was consequated with 

access to the terminal choice state. In the terminal link, either a 

red or green key signalled prey detection. The bird could then 

(a) reject prey offered by pecking the white key (three times), 

(b) stop responding altogether (this also constituted rejection), or 

(c) continue pecking the colored key on the FI terminal link schedule. 

Completion of the terminal link led to primary reinforcement. The FI 



schedule requirement was manipulated in both links of the chained 

schedule, as well as the duration of feeding time and post-reward 

detention. 
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Results suggested that the pigeons behaved 11optimally 11 in some 

instances and suboptimally in others. Results consistent with the 

optimal diet model related to maximizing E/h and foraging more 

selectively as prey density increased, but failed to support the 

prediction of partial preferences. Results further suggest that these 

subjects failed to reject schedules when the initial link cost was 

greater than the handling cost for the less preferred prey types. 

This does not support predictions of the optimal diet model or the 

delay reduction hypothesis. Lea (1979) suggests that the failures of 

optimality may reflect that animals may be efficient but not always 

optimal foragers. 

A study by Shettleworth (1985) was designed to determine if 

pigeons in a shuttlebox would choose food items with the greatest E/h. 

The birds were presented with several small or one large prey 

simultaneously. Optimal foraging theory would predict that the bird 

should select the prey which maximizes E/h, but the birds consistently 

chose to pursue several smaller prey rather than one large one, even 

when such a choice did not maximize E/h. The results are inconsistent 

with optimal foraging theory, but support the delay reduction 

hypothesis, which suggests that the animal will choose the food type 

associated with the smallest delay in time to primary reinforcement. 

Moreover, it could also be that pursuing several smaller prey (leading 



to additional conditioned reinforcement) may be preferable under 

certain circumstances (such as increased time in a foraging bout). 

Theories of Patch Choice 
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A second question to which optimal foraging theory and other 

psychological theories have been applied is that of patch choice. 

Early studies were generally restricted to predicting patch RT, but 

more recent theoretical and empirical work has expanded on the 

question of patch choice to include GUTs, which are the intervals of 

time that elapse between the last prey capture and leaving a patch 

(Cheney et al., 1985; Krebs et al., 1974; Smith & Dawkins, 1971 

provide examples of empirical work; and Iwasa et al., 1981 or McNair, 

1982, 1983 give theoretical explanations). 

Optimal foraging theory predicts that an animal will abandon one 

food patch (switch) in search of another when the average rate of 

capture falls to a level equal to or below the average rate of energy 

intake in alternative patches. This is not to be confused with 

switching used to refer to a change from one prey species to another 

as it is used in behavioral ecology. This prediction is commonly 

known as the Marginal Value Theorem (MVT; see Charnov, 1976b; Krebs et 

al., 1974), the "moving-on threshold" (Stephens & Krebs, 1986), or the 

"marginal capture rate" (Cowie, 1977), and has been supported in a 

number of studies examining patch RT (e.g., Krebs, 1978; Krebs et al., 

1974) and extended to predict optimal GUTs in others (McNair, 1982, 

1983). The GUT concept is actually older than the MVT, although much 

research has focused on the MVT and used to make predictions about 

GUT, for which it is ill-suited (McNair, 1982, 1983). 
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The MVT suggests that animals change (or switch) patches because 

of depression (Charnov, Orians, & Hyatt, 1976). As foraging time 

increases in one patch, the more depressed it becomes of food, and the 

forager must eventually move on to more successful hunting grounds so 

as to maintain a steady rate of energy intake. In other words, energy 

intake decreases as a function of time spent in any given patch. 

Patch depression differs from depletion in that the latter implies a 

decrease in the instantaneous rate of energy intake from a patch 

(Charnov, 1976b). That is, patches can deplete without becoming void 

of prey altogether; see the "sudden death 11 situation described by Dow 

and Lea (1987). 

The general patch model outlined by Stephens and Krebs (1986) 

assumes that: 

1. The decision variable to be analyzed is patch residence time 

rather than GUTs. 

2. The currency assumption is long-term average rate 

maximization. 

3. Constraint assumptions are that (a) search and handling time 

are independent events, (b) patch encounter is sequential rather than 

simultaneous, (c) prey density decreases as a function of time spent 

in a patch, and (d) the forager has complete information concerning 

prey and patches. 

Some important general points about the patch model are also 

summarized by Stephens and Krebs (1986). One concerns the fact that 

the model solves for the encounter-contingent policy (the predator 

decides beforehand whether to accept or reject prey and patches upon 
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encounter) but does not solve for foragers that acquire and use 

information about patches while foraging in them. Also, the model 

applies only to patches which depress, and the MVT only to patch RTs, 

not GUTs. Charnov's (1976b) model assumes that (a) the animal spends 

time in patches and traveling between them, (b) prey is distributed 

randomly in patches, and (c) the forager controls where it forages and 

when to leave any given patch. 

Another possible explanation for patch switching is that the 

animals come to 11expect'' a fixed number of prey from a patch and move 

on to a new patch once that amount has been obtained (Gibb, 1958). 

This notion has been called 11hunting by expectation, 11 (HBE) but recent 

studies suggest that this possibility has not been widely supported. 

Some authors point out, however, that the major study refuting the HBE 

hypothesis (Krebs et al., 1974) did not actually test which strategy 

the animal used to switch food patches (see Gray, 1987, or Pulliam, 

1981, for an extensive discussion). It appears that there is not wide 

agreement concerning scientific tests between the MVT and GUTs or 

between the MVT and HBE hypothesis. 

Iwasa et al. (1981) compared several alternative explanations 

("decision rules 11
) for optimal patch switching and concluded that such 

behavior may be determined by the spatial distribution of prey within 

a patch. They suggest that there may be as many as three strategies a 

forager uses when choosing to switch patches: (1) A fixed amount of 

time has elapsed, (2) a fixed number of prey have been captured, or 

(3) the interval between successive food captures has exceeded a fixed 



amount of time. These predictions combine the aspects of patch RT, 

GUTs, the MVT, and HBE hypothesis. 
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Other variables that have been shown to affect patch switching 

include increased travel cost (Baum, 1981, 1982b; Cheney et al., 1982; 

Cowie, 1977; Mellgren et al., 1984) and increased risk of predation 

(Caraco & Lima, 1987; Cerri & Fraser, 1983; Charnov, 1976a) and 

distance from the central place (see Ford, 1983, or Kacelnick & 

Cuthill, 1987). 

Empirical Studies of Patch Choice 

Field studies. Most field studies of patch choice have studied 

avian predators foraging on small prey. Krebs et al. (1974) published 

one of the first empirical studies of patch choice in the field. This 

study examined optimal patch RT in black-capped chickadees (Parus 

atricappillus) foraging for hidden mealworms in artificial pinecones. 

Their results supported predictions of the MVT, but results were less 

clear-cut regarding Gibb's (1958) HBE hypothesis. The chickadees 

failed to respond as though they had learned to expect a fixed amount 

of mealworms from each of the pinecones, but allocated a variable 

amount of time to each pinecone and abandoned a patch after a 

relatively fixed GUT (said to be inversely related to the average rate 

of capture in the patch). 

Similarly, Cowie (1977) conducted a study with great tits (Parus 

major) foraging in a 4.6m x 3.7m aviary for mealworms hidden in 

sawdust that contained five artificial trees with patches made of 

drainpipes (6.5 cm in diameter). The purpose of the study was to 

examine optimal foraging predictions in regard to patch choice as it 
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specifically related to manipulations in travel time. One major 

problem for this study is that the author treated travel time as the 

time required to pry a cardboard lid off of the drainpipes (patches). 

Although the results suggested that the tits foraged in accord with 

optimal foraging predictions, one must be cautious in assuming that 

this was an adequate test of the optimal diet model. 

In another field study, Pyke (1978a) conducted a study of patch 

use in broad-tailed Hummingbirds (Selasphorus platycercus) and Rufous 

Hummingbirds (S. rufus) foraging on nectar producing plants. 

Hummingbirds were studied in areas 50m x 30m, while data was collected 

on the number of flowers visited, time spent at each, total number of 

flowers available, and travel time between flowers. Results indicated 

that there was good agreement between predictions of a stochastic 

version of the MVT and the data (i.e., the birds did abandon a patch 

when the feeding rate fell to a level equal to or less than that of 

alternative patches in the forager's habitat). 

Using a different approach, Pyke (1981b) studied the foraging 

mode of a single male Eastern spinebill (Acanthorhynchus tenvirostris) 

presented with four different patches of floral arrangements. The 

purpose of the study was to examine the foraging mode of hovering or 

perching as it relates to optimal foraging theory. The results were 

applied to a hoverer (the American hummingbird) and a percher (the 

Australian honeyeater). While hovering results in a greater variety 

of patches to choose from, it also requires far more cost in terms of 

energy expenditure than a comparable amount of perching. Results 
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suggested that each of the modes result in greater maximization of E/h 

for each of the two foraging modes. 

Smith and Dawkins (1971) studied great tits foraging in an indoor 

aviary with an experimental area measuring 4.6 x 3.7 x 2.0 meters. 

The patches consisted of food pots of different prey densities covered 

with aluminum foil lids. Observers used automated keyboards to record 

data pertaining to patch entry, patch exit time, searches (removes lid 

from pot), and detection of prey (mealworms hidden in the pots). The 

results indicated that the birds did not forage in accord with optimal 

foraging theory. That is, they did not spend the short amount of time 

available for foraging strictly in patches with the greatest 

densities, but foraged first in the patches with the most prey, and 

allocated the remaining time to patches with moderate prey densities. 

A similar approach was used by Smith and Sweatman (1974) in a 

laboratory investigation of patch choice using titmice as subjects. 

The titmice were given access to several patches of different prey 

densities, as did the tits studied by Smith and Dawkins (1971). The 

subjects were allowed to forage only for a short time, so the optimal 

strategy would be to forage only in patches of greatest density. 

Results indicated that the birds did not forage only in patches of 

greatest density, but they allocated more time to the richest patch 

and a smaller amount of time to patches of lesser quality. When the 

patch with the greatest density of prey was changed, the birds found 

it relatively quickly if the patch was previously rich, and slower if 

they were placed in patches with a previous history of low density. 

They argue that the results may suggest that the titmice may have been 
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optimizing long-term average rate maximization by foraging in a manner 

consistent with a changing environment. The authors further suggest 

patch sampling and the spatial distribution of food must be examined 

more closely in future work dealing with foraging behavior in changing 

environments. 

Laboratory studies. Operant laboratory investigations of patch 

choice have focused on patch RT and GUT as a function of travel cost 

and the size of the schedules during search and handling components. 

Studies in this literature suggest that GUT (as defined by behavioral 

ecologists) corresponds to operant investigations of switching (or 

changing over) between two choice alternatives. Patch choice has thus 

been studied using independent variables related to travel cost. 

Semi-naturalistic studies of patch choice in the laboratory have also 

been conducted to better simulate patch choice in natural 

environments, but are not as numerous as comparable operant 

investigations of choice. 

Csaszar, Johnson, White, and Collier (1986) required rats to work 

for food on four separate levers in an operant chamber (one bar for 

search, two for procurement, and one for rejecting prey). The size of 

the schedule on each of the levers was not varied; rather a changeover 

delay (COD) was imposed contingent upon a prey rejection. The 

interval of time for the COD was varied. The authors predicted that 

an increase in the time until the next search component would function 

similar to an increase in travel cost. In other words, as the 

interval of time between prey capture and allowing the animal to 

engage in search (COD) increased, the breadth of diet would increase, 
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as it would if the cost of obtaining the same prey item had been 

increased. Results suggested that the birds responded to the COD as 

if it were a cost, and increases in the COD resulted in fewer switches 

between patches. As the COD decreased, more switches were evident. 

Mellgren (1982) allowed rats to forage for food in a large room 

containing nine patches. Each patch consisted of a large sand-filled 

box containing buried food pellets. The study provided a test of 

optimal foraging predictions by noting the contents of each food patch 

and allowing only one subject to forage at a time. The amount of food 

available in each of the patches (density) served as the primary 

independent measure, and the food percent taken from each patch was 

then compared to 11optimal 11 behavior under similar conditions. 

Subjects proceeded through four phases. Phase I consisted of 

nine 12-hour sessions with a constant number of food pellets available 

in each patch. The second phase consisted of nine 12-hour sessions, 

but had variable numbers of food in each patch. Phase III was a 

series of fifteen 1-hour sessions with varying numbers of prey, and 

Condition IV consisted of nine 1-hour sessions with food amount being 

rotated in each patch. Sand was periodically intermixed to assure 

scent marking effects were controlled. Dependent measures were the 

number of pellets consumed, number of droppings, and evidence of urine 

for each patch. 

Results indicated that subjects completely depleted most of the 

patches during Conditions I and II (12-hour sessions) and quickly 

located the nine food patches. Statistical analysis was used to 

determine the correlation between prey density and patch use. For two 
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of the subjects, coefficients were -.41 and +.66, respectively, for 

the average over the first five sessions in Condition III, while 

averages over the final five sessions of Phase III were +.35 and +.71. 

For Condition IV, the density of prey in each patch was varied, and 

coefficients were +.85 and +.18, respectively. 

This suggests that subjects overused low-density patches and 

underused high-density patches, which is not in accord with optimal 

foraging predictions regarding energy maximization. The rats did, 

however, sample all of the patches quite thoroughly but were too 

conservative in that they usually preferred some patches over others, 

even if the choice did not result in energy maximization. The authors 

suggest that learning where food is located and attributes of the food 

itself (i.e., complete information) may be independent functions in 

determining patch choice. 

Baum (1981) studied travel cost with pigeons foraging in operant 

chambers. Each side key served as a patch, and an opaque partition 

was placed in the center of the chamber so that physical travel was 

required between the patches. Its length was increased during 

experimental conditions from 111 to 811
• During baseline conditions, 

the partition was not present. Group 1 had to travel around a l-8 11 

partition in experimental conditions, while for Group 2, the maximum 

length was 411
• Group 1 subjects also had to climb over a hurdle of 

heights ranging from 1.7511 to 3.2511
• During the first 15 experimental 

conditions, the VI schedule was randomly varied between the two keys 

such that the subject had to obtain reinforcers on both side keys (a 

forced changeover procedure). The density of reinforcement {prey) was 
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also varied across keys and conditions ranging from .25 to .75. VI 

schedules in three conditions were independent such that no changeover 

was required to switch patches, while the forced changeover was 

implemented in another. Group 1 subjects worked under a VI-41 sec. 

schedule and Group 2 a VI-20 sec. schedule. Sessions lasted until 50 

reinforcers had been delivered. 

Means across the last five sessions of each condition generally 

indicated that as partition length increased (and the hurdle was added 

for subjects in Group 1), the number of switches between patches 

decreased. Data is also presented regarding changeover durations and 

time spent on each of the keys. Partition lengths of up to 411 had 

little impact on changeover duration, but almost doubled when the 

partition was lengthened to 811 for Group 1 and the hurdle added for 

Group 2. After stability was obtained on changeover time, the 

schedules were varied producing underuse of profitable and overuse of 

unprofitable patches. Baum further suggests that overmatching may be 

the rule in the natural environment and that switching may be the 

result of the reinforcing consequences in each of the patches. 

Furthermore, the value of occasionally switching to less profitable 

patches, perhaps to sample patch quality, would be used to update 

information concerning various patches. 

Dow and Lea (1987) conducted a study on choice between patch 

types (different key colors under adjusting random ratio schedules). 

One of the patches depleted based on reinforcers obtained, another was 

nondepleting, and a third had a constant number available, but once 



depleted, offered no additional food (called "sudden death"). The 

subjects allocated more time to (a) nondepleting patches, 
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(b) replenishing rather than nonreplenishing patches, and (c) gradual 

depletion over sudden death. Moreover, GUTs were found to be longer 

in nondepleting patches and shorter in replenishing patches. Another 

interesting result is that it refutes predictions of the MVT, because 

as density in the patches increased, the GUTs also increased. The MVT 

would predict shorter GUTs with increased density. 

Timberlake (1984) studied rats working in 24-hour sessions with 

two daily feeding opportunities. In the first feeding bout, the rats 

worked under a progressive ratio schedule. In the second opportunity 

(1-23 hours later), a fixed amount of food was freely available. In 

this study, patch choice relates to the decision to remain in a patch 

that depletes rapidly or switch to a more profitable one (i.e., the 

time horizon between work and food). Results suggested that the rats 

worked in depleting patches even when rich food patches always 

followed. Futhermore, intervals over 1 hour did not appear to affect 

current responding; thus, temporal limits were imposed upon animals 

foraging over long periods. 

Timberlake, Gawley, and Lucas (1987) expanded on the previous 

study and further examined the forager's ability to compare patches 

across various temporal gaps (the "time horizon" or "memory window"). 

Results confirmed those obtained by Timberlake (1984) in that rats 

continued to work in depleting patches even when access to a rich 

patch always followed the depletion condition. The rat's "time 

horizon" was no longer than 16 minutes. Intervals longer than 16 
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minutes resulted in the rat overworking a depleting patch rather than 

waiting for a profitable patch. This study was also different from 

the first in that a physical barrier was added to the chamber to 

create two separate patches. 

Timberlake (1984) failed to consider the possibility that the 

rats did anticipate the future rich patch but still continued working 

in the nondepleting condition. For intervals up to 32 and 64 minutes, 

the rats continued to work when the response cost per pellet was 20 

times that of the rich patch. This study supports the view that 

animals have a relatively short time horizon with respect to 

temporally separated patch types. The results also point out the fact 

that optimality models need to further consider temporal gaps between 

guaranteed food now versus potential food later. The results provide 

support for the delay reduction hypothesis, suggesting that animals 

prefer food associated with a greater reduction time to eating, but 

refute the theory when temporal gaps of 16 minutes or less are 

involved. Future work will provide more conclusive data on the role 

of temporal factors in foraging and choice in animals and humans. 

Hanson and Green (1984) studied choice between two patches of 

different types. Pigeons were provided two response keys of which 

only the left key was initially available (the search key). Responses 

to the left search key produced access to the terminal component of 

the chain (the handling key under a variable-ratio [VR] schedule). 

The subject could then reject the red or green colored keys (or patch 

types) offered or continue responding on the handling key. The red 

key was placed under a VR-2, while the green key was under a VR-20 



schedule. Subjects were granted the option of rejecting any of the 

patch types offered and resume searching for other patches. 
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In the first experiment, the density of prey between patches were 

equal at .50, while the VR schedule was manipulated across 

experimental conditions. In this case, there should be indifference 

between the two patches. In the second experiment, the search cost 

was held at VR-20, while the density of the patches was varied . 

Experiment III manipulated search cost and more profitable patch 

density, while Experiment IV manipulated less profitable patch 

density. Results generally indicated that at low search value 

parameters, birds accepted profitable prey and rejected unprofitable 

prey. At high search costs, subjects accepted more of the less 

profitable prey. When search cost was constant but density was 

manipulated, subjects always accepted less profitable patches at .90 

density. Only selected profitable prey at a probability of .50 did 

both for intermediate probabilities. When only the density of the 

more profitable type was varied as search cost was held constant , 

birds again accepted all prey at densities and rejected less 

profitable prey at low densities. Results support many optimality 

predictions, but only qualitatively. 

Cheney et al. (1982) used a laboratory model of foraging to 

examine the effects of travel cost on GUTs. Pigeons responded under 

concurrent adjusting variable ratio schedules of reinforcement. The 

purpose of the study was to specify some variables which contribute to 

patch switching in an experimental apparatus containing two patches 

and a fixed number of prey. The cost of switching was then 
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manipulated differentially to determine how this variable affected 

switching frequency. Subjects were first allowed to switch patches 

freely with replenishing and depleting patches identical to those 

described in forthcoming experiments. Center key switching responses 

were under fixed-interval or fixed-time schedules beginning after the 

first center key peck. Switching schedules ranged from FR 1-50, 

VR 5-50, FT 10-40 sec., and FI 10-40 sec. Each session lasted until 

40 reinforcers had been dispensed or 30 minutes passed, whichever 

occurred first. 

Results showed that the subjects averaged 71.5 switches between 

patches when no cost was required. The average number of reinforcers 

over the last five sess ions of each condition revealed that as the 

travel cost schedule increased (in response requirement or time), the 

subjects switched in a decreasing fashion for both interval and ratio 

schedule types . Variables that were shown to affect absolute 

frequency of patch switching included both the cost of obtaining prey 

.and the cost of switching between patches. 

Summary 

Which prey to include in the diet and which patches to exploit 

are two major questions that have been addressed in foraging research 

over the past 20 years. Early theories of prey choice (e.g., Emlen, 

1966; MacArthur & Pianka, 1966; Royama, 1970; Schoener, 1969) and what 

later came to be known as optimal diet models were deterministic in 

that they assumed certain variables (such as search cost, energy gain, 

handling time, and travel time), held constant values. These 

variables were subsequently quantified to predict and explain foraging 
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behavior. Early models also assumed that energy gain was a continuous 

rather than a discrete event (long- versus short-termed average rate 

maximization), and thus held true only for relatively high rates of 

energy intake. Later optimal diet models relaxed some of the 

traditional assumptions in an attempt to account for changing 

(stochastic) foraging environments. They also assumed that energy 

intake is not always the currency to be maximized, and that it was a 

discrete rather than continuous event (see Charnov, 1976a; Green, 

1987; Iwasa et al., 1981; Kacelnick et al., 1987; McNair, 1979; 

Mellgren & Brown, 1987; Pulliam, 1974). 

Semi-naturalistic field studies of prey choice have qualitatively 

supported many of the predictions promulgated by the optimal diet 

model, but have generally failed to support the model quantitatively. 

The most widely supported prediction is that predators choose prey 

that maximize E/h (Cambell, 1987; Davies, 1977a; Goss-Custard, 1977a, 

1977b; Sutherland, 1982). Several studies have supported the 

prediction that prey choice is determined by the density of the more 

profitable prey and not the density of less profitable types (Davies, 

1977b; Goss-Custard, 1977a; Hanson & Green, 1984; Krebs et al., 1977). 

Very little, if any, work in the field supports the prediction that 

diets should be all or none (that less profitable prey always be 

ignored regardless of density), or the prediction that partial 

prefer ·ences should not be observed (Goss-Custard, 1977a). 

Studies of prey choice in the operant laboratory are more common 

than field studies and have sought to directly test optimal foraging 

models, or have been conducted to examine psychological theories of 
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choice, such as the delay reduction hypothesis or the matching law 

(e.g., Fantino & Abarca, 1985; Herrnstein, 1970, 1974). Results of 

laboratory studies confirm many findings from the field; for example, 

that foragers maximize E/h (Erichsen et al., 1980; Lea, 1979; Peden & 

Rohe, 1984) and that prey choice depends only on the density of more 

profitable types (e.g., Krebs et al., 1974; Werner & Hall, 1974). 

Laboratory findings have failed to support predictions suggesting 

there should not be partial preferences (e.g., Emlen & Emlen, 1975; 

Zach & Falls, 1978). 

Theories of patch use have been concerned with both patch 

residence time (RT) and patch giving-up time (GUT). Whereas RT is the 

interval between patch entry and patch exit, GUT is the interval of 

time between the last prey capture and patch exit. The Marginal Value 

Theorem (MVT) is a model of patch RT which predicts the optimal 

forager will abandon a food patch when the average rate of prey 

capture falls to a level equal to or below the average rate in 

alternative patches (Charnov, 1976b). The MVT has also been extended 

to account for optimal GUTs, although others argue that it is an 

inappropriate application (McNair, 1982, 1983). 

Empirical studies of patch choice in the field have generally 

supported the MVT (Cowie, 1977; Krebs et al., 1974; Pyke, 1978a), 

although others would suggest that these were not valid tests (Gray, 

1987). An early test by Krebs et al. (1974) used chickadees foraging 

for mealworms in artificial pinecones (the pinecones were the 

patches). Their results indicated that the chickadees abandoned a 

patch after a relatively fixed GUT; the value of which approximated 
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the point at which it would be more prosperous to switch patches. 

Other studies of patch use in semi-natural settings have functionally 

related travel cost to choice of patches (i.e., as travel cost 

increases, switches between patches decrease) (Cowie, 1977; Pyke, 

1978a). Patch choice has also involved manipulating the density of 

prey in two or more patches and determining the time allocated to each 

(Smith & Dawkins, 1971; Smith & Sweatman, 1974). The methods used to 

study patch choice are numerous, but most have, again, qualitatively 

but not quantitatively supported the predictions espoused by optimal 

patch-use models. 

Laboratory studies of patch choice have used similar approaches, 

but under more controlled circumstances. For example, many of the 

studies using travel cost as the independent variable have used 

switches between patches as the dependent measure (e.g., Baum, 1982b; 

Cheney et al., 1982, 1985), but have also dealt extensively with patch 

RT and GUT. Experimental psychologists suggest that field 

investigations of RT and GUT are similar to operant studies of 

switching between two concurrent alternatives (usually schedules of 

reinforcement) by using a changeover delay or some other response 

requirement (e.g., pecks to a center key). Most laboratory studies 

have manipulated costs of obtaining prey and/or the density of prey 

available in two or more patches (Hanson & Green, 1984; Mellgren, 

1982; Mellgren et al., 1984). Recently, studies of patch choice have 

expanded to incorporate replenishing and depleting cycles of prey 

within patches (Baum, 1987; Dow & Lea, 1987; Timberlake, 1984; 

Timberlake et al., 1987) and three-alternative choice (Fantino et al., 
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1987). Future research will determine the ultimate utility of 

laboratory approaches to studying foraging behavior, as operant 

investigators are gaining more understanding of foraging as it occurs 

in the wild. 



Subjects 

CHAPTER III 

GENERAL METHOD 
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Twelve adult common pigeons (Columba livia) of unknown gender 

served in three experiments (four in each). Each subject was run six 

or seven sessions per week and maintained at approximately 80% free­

feed weight for the duration of the studies. Subjects were food 

deprived at least 23 hours prior to each experimental session and 

housed in individual cages with continuous access to water. 

Supplemental feeding was delivered in the home cage approximately 30 

minutes after the termination of that daily session. Purina racing 

checkers were used in the experimental chamber and for supplemental 

feeding. 

Apparatus. A single, three-key, dual hopper Colbourn operant 

chamber was used as the experimental apparatus for all subjects and 

experiments. The chamber was enclosed in a sound and light attenuated 

box with an exhaust fan located on the back wall. The fan operated 

during all training and experimental sessions to both lower the 

temperature in the chamber and filter out extraneous noise. The 

chamber interior (28.5 x 29.0 x 24.0 cm) contained a houselight, three 

response keys, and two apertures for the delivery of food. The 

houselight (GE 1820 bulb operated at 25v de) was located 28 cm above 

the chamber floor and 10 cm from the front and back sides of the 

chamber. Response keys were located 18.5 cm above the chamber floor 

and 8 cm apart. A response force (key peck) of approximately 5N (1 mm 

in distance) was required to close a microswitch and record a 



response. Each of the side keys was illuminated by a white, red, or 

green lamp (Industrial Electronics Engineers In-Line Digital Display 

Unit with Kodak Wratten filters) and the center key only by a white 

lamp. All response keys were inoperative during food presentations. 
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Food delivery consisted of 3-sec. access to checkers in one of 

the two 5.8 x 5.8 cm food apertures located directly below each side 

key and 3.75 cm above the chamber floor. A white hopper light (GE 

1820 bulb) operated with each food presentation. Manipulation of the 

program was controlled by (a) a Commodore 64 microcomputer, (b) a 

G-link interface connected to the game port of the Commodore computer, 

and (c) an "intelligent'' interface which runs on 28v de and has a Z-80 

central processing unit that runs at 4 MHz and controls communication 

between the Commodore computer, G-link interface, and the experimental 

chamber. The interface was also connected to essential 

electromechanical modules via parallel port (Crossman, Stephenson, & 

Lynch, 1980) and a 1541 Commodore disk drive. Critical experimental 

data was transcribed daily from the display monitor to preprinted data 

sheets. 

Procedure 

The general procedure is presented as a flow chart in Figure 2. 

When the subject's body weight was equal to or below 90% free-feeding 

weight, the following set of procedures were implemented. 

Training. Four specific training procedures were presented to 

each experimental subject prior to formal baseline sessions. First, 

subjects were placed in the chamber individually with 5 g of checkers 

accessible in each of the two food apertures (aperture training). The 
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seconds, beginning with the left side at the start of the session. 

One response to the illuminated key lead to a 3-second hopper 

operation. If the subject failed to respond within 6 seconds, the 

illuminated key was inoperative, and the opposite key illuminated for 

6 seconds and continued in this manner until the session terminated 

(after 20 responses or 60 minutes, whichever occurred first). If the 

subject emitted 20 or more responses during this procedure, the 

subject advanced to a simplified version of the foraging program (see 

below). If the subject failed to meet the FR 1 training criterion, it 

was terminated from the experiment and a new subject was obtained. 

Finally, subjects were exposed to a simplified version of the 

foraging program. In this procedure, the subject was required to 

respond only once on the center key to switch sides (patches) or 

return to the initial link, white key (rejection), and only once to 

gain access to reinforcement at the onset of the terminal link of the 

schedule. Figure 3 converts the series of three term contingencies 

displayed in Figure 1 into an experimental flow chart to aid in the 

design of the simulation schedule. Figure 4 further depicts the 

foraging schedule as a concurrent (simultaneously available) chain 

(dual component), adjusting probability schedule of reinforcement. 

The schedule adjusted only in the initial link of the chain to 

simulate replenishment and depletion of food from the prey patches. 

Ai this program simulated an actual foraging environment, each 

side key served as a prey patch (to simulate spatially separated 

places to work and eat). The center key served to simulate travel 

cost between patches only during the initial link and required 10 



Figure 3. The foraging episode represented as a flow chart. lhe 

subject first selects a patch, searches in the patch, and upon 

detection, either accepts, rejects, and continues foraging in the same 

patch or switches to the alternate patch. If the subject accepts the 

terminal link (prey) offered, the schedule terminates in a kil l 

(reinforcement). The su~ject can then again resume searching 'n the 

same patch or travel to the alternate patch 
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Figure 4. The foraging episode represented as a concurrent chain 

schedule of reinforcement. The subject begins by selecting a patch. 

Once the patch has been selected, the subject begins searching (white 

key). After the RR X schedule in the search phase is completed (the 

initial link), the key color changes to either red or green (the 

terminal link). At this-point, the subject can either accept or 

reject the schedule offered. If the subject accepts the schedule, it 

will terminate in food reinforcement. If rejected, the animal can 

resume search or switch to the other patch. 
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responses (FR 10) for a switch to the alternate patch. The center key 

also served as a prey rejection key when the terminal component was in 

effect on either side key, allowing the animal to peck the center key 

once to return the side key to the initial link (search) component 

(rejecting a prey item), but was never paired with primary 

reinforcement. 

On each white side key, the initial component was a concurrent 

chain adjusting probability (random ratio) schedule. Random ratio 

schedules require each response to have an equal probability of 

resulting in reinforcement. The adjusting schedule increased by a· 

factor of 5 each time the subject re-entered a patch after food 

presentation. For example, the first time the subject 11worked a 

patch," the initial link is an RR 5 schedule. After a reinforcer had 

been delivered, the requirements advanced to RR 10, and so on, 

increasing as prey items were depleted from the patch. Concurrently, 

as the subject obtained prey on one side, prey were replenished on the 

opposite side by the RR schedule decreasing by a factor of 5 each time 

a reinforcer was obtained in the opposite patch, until replenishment 

reached RR 5 (i.e., foraging in one patch produced decreasing prey 

density in that patch , while density increased in the unexploited 

patch). 

A red or green key color following the initial (white) link 

signalled that the terminal (colored) component was in effect. The 

change from a white key color to a colored key was the reinforcer for 

searching and considered equivalent to prey detection in this model of 

foraging. The travel center key was available to the subject at all 
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times, with the exception of the first patch choice and directly after 

a switch between patches. Ten responses to the illuminated center 

white key allowed the subject to switch patches. When either terminal 

component was in effect, however, a single key peck to the center 

white key returned the subject to the initial link on that same side. 

A response of this type is termed a "terminal link prey rejection," 

and may occur when one terminal link is higher in cost than the 

alternative schedule. The terminal link consisted of one of two 

possible RR schedules, each associated with a different key color (red 

or green) and/or cost. This procedure more closely approximates an 

actual foraging episode because of the replenishing and depleting 

action during the search component contingent upon the animal working 

and the number of prey obtained from each patch. 



Purpose 

CHAPTER IV 

EXPERIMENT I: PREY CHOICE AS A 

FUNCTION OF VULNERABILITY 
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The purpose of this study was to functionally relate terminal 

link (prey) rejections in the concurrent chain schedule to the size of 

the random ratio schedule in each terminal link. A functional 

relation describes the external conditions of which behavior is a 

function (i.e., a cause and effect relationship; Skinner, 1953). In 

ethological terms, the cost of obtaining one prey type was greater 

than the cost of obtaining another, but energy gain was equal for 

both. The question becomes, when the animal is randomly presented 

with both, will it consistently reject the high-cost prey and instead 

pursue the low-cost prey? The purpose was to determine how 

vulnerability (cost) relates to the forager 1 s choice to pursue or 

reject prey. 

Subjects and Apparatus 

Four wild trapped adult common pigeons (Columba livia) of unknown 

age and gender served. The apparatus is described above in the 

General Method section. 

Procedure 

A single-subject reversal design (Sidman, 1960) was used to 

determine the effects of terminal link ratio size on prey rejections. 

Baseline. All subjects were initially exposed to 20 sessions of 

baseline. In this condition, initial search links replenished and 
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depleted according to the adjusting random ratio schedule beginning at 

RR 5. Terminal link pursuit schedules were equal (RR 20). The 

probability of either of the two colored terminal links occurring was 

.50. This condition represented a situation where there was no 

advantage to rejecting prey items offered or to work one patch more 

frequently than the other. 

Experimental conditions. Table 1 summarizes the order of 

conditions for each subject. In the first experimental manipulation 

(B), the size of the random ratio schedules in the terminal links were 

manipulated differentially, with opposite key colors associated with 

high- and low-cost prey items. For two subjects, the size of the 

ratio in the red terminal link was 60 and 20 for the green terminal 

link (R = 60/G = 20). Relative ratio size was the same for the second 

set of subjects only with opposite key colors . In the second 

manipulation (C), the relative difference between ratios was greater 

for all subjects (R = 10/G = 100 and G = 100/R = 10). In the f inal 

manipulation (D), the relative size of the ratio was even greater 

(i .e., R = 10/G =150). The criterion used to determine stability was 

no new high or low values in the number of terminal link rejections 

for five consecutive sessions, with at least 10 sessions occurring in 

each condition. This stability criterion is commonly used to study 

steady-state operant behavior (e.g., Cheney et al., 1985; Mazur, 

1974). 

Results 

The total number of prey rejections for each subject and session 

are shown in Figures 5 and 6. Baseline conditions are shown in panels 
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Table 1 

Terminal Link Ratio Requirements for Each Subject in Experiment I 

Under all Experimental Conditions 

Condition 

A (1:1) B (3:1) C (10:1) D (15:1) 

Subject 

1 20R/20G 60R/20G lOR/lOOG 150R/10G 

2 20R/20G 20R/60G lOOR/lOG 10R/150G 

3 20R/20G 60R/20G lOR/lOOG 150R/ lOG 

4 20R/20G 20R/60G lOOR/lOG 10R/150G 



Figure 5. Number of prey rejections as a function of ratio size for 

red (R) and green (G) key colors in the terminal link of the 

concurrent chain schedule for Subjects 1 and 2 in Experiment I. 

Baseline conditions are displayed in panels marked A, while 

experimental manipulations with increasing cost differentials are 

displayed in panels mark~d B, C, and D. 
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m,arked A. Experimental manipulations with incremental terminal link 

sc hedule differences are shown in panels marked B, C, and D. 

Performance in terms of rejecting high-cost terminal links was 

apparent. When the relative response requirements were greater, the 

birds frequently rejected the high-cost terminal link requirement and 

re turned to the initial link schedule to resume searching. 

Performance in all cases generally recovered during baseline 

conditions (i.e., the birds did not reject prey items encountered and 

return to the initial link search component). 

As relative differences between size of the RR schedule on the 

terminal side keys increased, the probability of a rejection also 

increased. More specifically, rejections during the leaner random 

ratio component increased as the relative differences between ratio 

sizes in the two schedules increased. When the response requirement 

was increased threefold on one side key (e.g., G = 20/R = 60), 

subjects rejected at higher rates than that evident in the baseline 

condition. However, when the response requirement was increased 

tenfold for one terminal link, a substantial increase in rejections 

occurred (i.e., the birds rejected the RR 100 schedule and returned to 

the initial search state). In the third manipulation (D), the colors 

were reversed once again (i.e., the green key was correlated with a RR 

150 schedule and the red key a RR 10 schedule). Rejections on the 

opposite key color occurred at an even higher rate than that during 

the B condition. 

Table 2 summarizes the mean number of rejections over the last 

five sessions of each experimental condition, the mean number of 
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Table 2 

Mean Number of Initial and Terminal Link Responses, Terminal Link 

Rejections, and Switches Between Patches Over the Last Five Sessions 

of Each Experimental Condition in Experiment I. Medians are Presented 

for Rejections and Switches 

Initial Terminal 
Subject 1 Link Link Mean Median Mean Median 

Responses Responses Rejections Rejections Switches Switches 

A (20R:20G) 1009 836 0 0 6.4 8 

B (60R:20G) 1122 1537 2.4 1 6.8 6 

A (20R:20G) 967 811 0.2 0 6.6 5 

c ( lOR: lOOG) 1374 1499 17.0 20 10.2 12 

A (20R:20G) 1123 833 0.6 0 7.0 7 

D (!SOR: lOG) 1666 464 35.8 37 9.4 7 

A (20R:20G) 918 788 7.2 2 8.4 4 

Subject 2 

A (20R:20G) 1258 790 0.2 1 4.6 4 

B (20R:60G) 1104 1568 10.4 18 6.6 6 

A (20R:20G) 832 646 0.2 0 9.0 7 

C (1 OOR : 1 OG) 2119 956 19.4 21 4.3 5 

A (20R:20G) 1428 841 0.4 1 6.0 5 

D (lOR: 150G) 1794 453 39.2 52 11.8 13 

A (20R:20G) 891 739 1.2 0 6.8 8 

(table continues) 
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Table 2 cont. 

Initial Terminal 
Subject 1 Link Link Mean Median Mean Median 

Responses Responses Rejections Rejections Switches Switches 

A (20R:20G) 1013 760 0.8 2 7.2 7 

B (60R:20G) 1150 1554 3.4 3 5.2 6 

A (20R:20G) 1033 828 0.2 1 8.2 10 

C (lOR: lOOG) 1740 1454 14.4 13 5.2 6 

A (20R:20G) 1249 792 0 0 6.6 5 -

D (150R: lOG) 1998 578 37.4 38 10.2 7 

A (20R:20G) 935 726 0.6 0 8.0 8 

Subject 4 

A (20R:20G) 925 847 0.6 1 8.2 10 

B (20R:60G) 1170 1291 20.2 21 8.2 6 

A (20R:20G) 1008 791 1.0 1 6.6 6 

c (lOOR: lOG) 1607 626 31.6 35 8.4 9 

A (20R:20G) 1016 705 2.0 1 7.0 7 

D (10R:150G) 1449 559 37.2 31 9.8 9 

A (20R:20G) 897 744 4.2 7 6.6 5 
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initial and terminal link responses, switches between patches, and 

medians for both prey rejections and patch switches. For three of the 

four subjects, the mean number of initial link responses increased 

across experimental conditions and remained stable over all baseline 

conditions. For the other subject, the mean number of initial link 

(search) responses were higher for the B condition than the C 

condition, but only slightly. The mean number of terminal link 

(pursuit) responses decreased across experimental conditions for all 

subjects and again remained generally stable over baseline conditions. 

The mean and median number of terminal link (prey) rejections also· 

increased across conditions and remained low across baseline 

conditions for three of the four subjects, while the differences for 

the fourth were again minimal. Finally, switches between patches 

remained generally stable, with slight variability across subjects and 

conditions. This variability, however, was not predictable within or 

across subjects or conditions. Figure 7 depicts the mean number of 

rejections over the last five sessions of each condition and shows the 

incremental frequency of prey rejections as the relative differences 

between the two terminal links increased. Means for the incremental 

B, C, and D conditions are also shown in Table 2. 

Discussion 

Experiment I provided an experimental analysis of the pursuit 

component of the foraging chain by simulating two prey types 

possessing different costs, but equal pay-offs, and examining the 

resulting change in prey choice. Specifically, as the size of the 

terminal link random ratio schedule increased for one prey item, the 
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-

with increasing cost differentials are labelled B (1:3), C (1:10), and 

D (1:15). 
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subjects consistently rejected those prey items and opted to return to 

the initial link schedule and resume searching for other prey items. 

This finding is interesting in that the subject responded to a 

stimulus which was never paired with unconditioned reinforcement, 

rather than one which had. This result is consistent with the notion 

that search behavior may be reinforcing in and of itself. Results 

showed that as the relative size of the ratios for two prey types 

increased, the probability of rejecting high cost prey also increased. 

That is, pigeons consistently pursued low-cost prey items but rejected 

high-cost prey. This general result has been supported in a numbef of 

studies using different subjects and procedures (e.g., Collier, 1977; 

Hanson & Green, 1984; Lea, 1979; Peden & Rohe, 1984). 

The results of this study suggest that animals foraging for food 

will consistently pursue prey items that are associated with the 

fewest key pecks required for primary reinforcement. In addition, 

switching between patches occurred at a much more stable rate than 

rejections. Subjects would switch patches even when prey costs were 

equal, and few, if any, rejections were emitted (see Table 2). This 

suggests that the adjusting RR search schedule (simulating 

replenishment and depletion) was contacting the subject's behavior and 

influencing performance. Costs associated with colored red and green 

terminal links appeared interchangeable, and no order effects were 

apparent. Baseline performance generally recovered between and after 

experimental manipulations, thus accentuating control by the 

independent variable. 
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CHAPTER V 

EXPERIMENT II: THE EFFECTS OF PREY VULNERABILITY 

AND DENSITY ON CHOICE 
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The purpose of this experiment was to systematically expand on 

Experiment I by covarying the relative size of the random ratio 

schedule (pursuit cost) and the probability of encountering either of 

the two terminal link schedules (prey density). Thus, Experiment II 

posed the question, how does the density variable within the 

vulnerability and replenishment and depletion variables affect the 

forager's choice to pursue or reject prey? The data obtained from 

this study can be subsequently compared to results from Experiment I 

to determine if and how density and prey vulnerability affect choice. 

Subjects and Apparatus 

Four wi ld trapped adult pigeons (Columba livia) of unknown age 

and gender served. All other factors concerning housing, deprivation, 

and the experimental apparatus were identical to those described in 

the General Method section. 

Procedure 

An ABACA reversal design (Sidman, 1960) was used to assess the 

combined effects of prey vulnerability and density on prey choice. 

Baseline. Baseline conditions were identical to those described 

in Experiment I in which the terminal link schedules were equal 

(RR 20), and there was no advantage to rejecting any of the prey items 

offered. That is, each color (red or green) had an equal probability 
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of occurrence, and terminal link pursuit costs were identical. The 

initial link random ratio (search) schedule on both side keys depleted 

(increased in cost) and replenished (decreased in cost) as reinforcers 

correlated with either color were taken. 

Experimental conditions. Table 3 shows the order of conditions 

for each subject in Experiment II. For Subjects 5 and 6, the first 

experimental condition (B) represented a high probability of the high­

cost component occurring for the red terminal link and a low 

probability of occurrence for the low-cost green terminal link 

(R = 40/G = 20; p(R) = .67/p(G) = .33). That is, on the average, the 

high-cost component (red) occurred 67% of the time, and the low-cost 

(green) component occurred 33% of the time. In Condition C, the 

probabilities (densities) were reversed to create a situation with a 

high probability of low-cost prey and low probability of high-cost 

prey. For Subjects 7 and 8, the manipulations were identical in 

Conditions Band C, but the size of the terminal link schedules was 

relatively greater (1:3). 

Table 3 also indicates the sequence of conditions for each 

subject in Experiment II. Baseline (A) conditions were run between 

each and after the final (C) manipulation. The stability criterion 

(Mazur, 1974) for advancement through conditions was that no new high 

or low values occurred in the number of prey rejections across the 

last five sessions of each condition, with at least 10 sessions 

required for each. 

Results 

Results appear in Figures 8, 9, and 10. Figures 8 and 9 display 
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Table 3 

Terminal Link Ratio Requirements (Cost) and Probabilities (Density) 

for Each Subject and Experimental Condition in Experiment II 

Subject 

5 

6 

7 

8 

A 

Cost Prob. 

20R/20G .5R/.5G 

20R/20G .5R/.5G 

20R/20G .5R/.5G 

20R/20G .5R/.5G 

lcondition A: Baseline 

Conditionsl 

B 

Cost Prob. 

40R/20G .67R/.33G 

40R/20G .67R/.33G 

20R/60G .67R/.33G 

20R/60G .67R/.33G 

Condition B: High-Cost/High-Probability, N=2, 1:2 

High Cost/Low-Probability, N=2, 1:3 

Condition C: High-Cost/Low-Probability, N=2, 1:2 

High-Cost/High-Probability, N=2, 1:3 

c 

Cost Prob. 

40R/20G .33R/.67G 

40R/20G .33R/.67G 

20R/60G .33R/.67G 

20R/60G .33R/.67G 



Figure 8. Number of terminal link (prey) rejections as a functon of 

ratio size and probability of encounter (density) for Subjects ! and 6 

in Experiment II. Terminal link key colors are represented by f (red) 

and G (green). Numeric values represent the average size of thf ratio 

schedule in the terminal link. The probability (p) of each terninal 

link occurring is also srrown for each condition 
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Figure 9. Number of terminal link {prey) rejections as a function o= 

ratio size and probability of encounter (density) for Subjects 7 and 8 

in Experiment II. Terminal link key colors are represented by R (red) 

and G (green). Numeric values represent the average size of the rat io 

schedule in the terminal link. The probability {p) of each terminal 

link occurring is also srrown for each condition. 
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the total number of terminal link prey rejections for each subject and 

session in Experiment II as both cost and density were varied. For 

Subjects 5 and 6, the initial baseline condition resulted in 

relatively few prey rejections, averaging 0.6 and 0.0 over the last 

five sessions, respectively. Condition B showed no significant 

changes in the average number of prey rejections, averaging 0.8 and 

0.4 for Subjects 5 and 6, respectively. Condition C also failed to 

show any major changes in the average number of prey rejections (0.0 

for both subjects). The remaining baseline conditions also displayed 

indifference between prey. 

Subjects 7 and 8 did not reject any terminal link schedules over 

the last five sessions of the first baseline condition. In Condi tion 

B, however, there was an average of 3.0 rejections for Subject 7 and 

24.6 for Subject 8. These figures decreased when the probabilities 

were reversed (Condition C) to an average of 0.8 and 7.0 for Subjects 

7 and 8, respectively. Performance recovered during subsequent 

baseline sessions for three of the four subjects, and rejections 

emitted by the fourth subject were previously high-cost/low­

probability prey. 

Figure 10 displays the mean number of prey rejections across the 

last five sessions of each condition. For Subjects 5 and 6, very few 

rejections were emitted across all baseline and experimental 

conditions when the differential was 1:2. For Subjects 7 and 8, the 

average number of rejections was relatively greater, as was the 

differences between the RR schedules in the terminal link (1:3). 

Terminal link rejections that occurred for Subjects 7 and 8 through 
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experimental conditions were the low-probability/high-cost terminal 

links. Rejections for Subject 8 during the B condition was 

significantly higher (24.6) than comparable data from Subject 7 (3.0) 

under the same experimental conditions. Additionally, performance did 

not fully recover during the second or third baseline condition for 

Subject 8. 

Table 4 presents additional data on the mean number of initial 

and terminal link responses, prey rejections, and switches between 

patches, as well as medians for both rejections and switches. Initial 

link search responses were generally stable across all subjects under 

baseline conditions , averaging 748, 945, 959, and 822 for Subjects 

5-8, respectively. Terminal link responses during baseline were also 

highly stable across subjects, averaging 790, 823, 867, and 807 for 

Subject 5, 6, 7, and 8, respectively. Rate of prey rejections during 

baseline are low for all subjects, and switches between patches also 

occurred at stable rates throughout all baseline conditions, averaging 

11.5 , 9.3, 6.8, and 11.3 for Subjects 5-8, respectively. 

The number of initial link responses over the first experimental 

condition was highly stable across subjects, averaging 1020, 1011 for 

Subjects 5 and 6 and 999 and 1478 for Subjects 7 and 8. Initial link 

responses in the C condition were also stable across subjects, 

averaging 786 and 757 for Subjects 5 and 6 and 760 and 817 for 

Subjects 7 and 8, respectively. Terminal link responses were also 

extremely stable over baseline conditions, averaging 790, 823, 867, 

and 807, but somewhat less stable over the B condition (1413, 1486, 

2103, and 1492) and C condition (1066, 1013, 1427, and 1126). Prey 
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Table 4 

Mean Number of Initial and Terminal Link Responses, Prey Rejections 

and Switches Between Patches Over the Last Five Sessions of Each 

Condition in Experiment I I. Medians are Presented for Rejections and 

Switches. 

Initial Terminal 
Link Link Prey Median 

Respon- Respon- Rejec- Rejec- Median 
ses ses tions tions Switches Switches 

55 

A 20R (.5):20G(.5) 734 797 0.6 0 13.4 15· 
8 40R (.67):20G(.33) 1020 1413 0.8 0 9.0 9 
A 20R (.5):20G(.5) 702 811 0.0 0 14.2 13 
C 40R ( .33) :20G( .67) 786 1066 o.o 0 8.0 9 
A 20R ( . 5) : 20G ( . 5) 809 763 a.a 0 7.0 7 

56 

A 20R (. 5): 20G (. 5) 1006 824 0.0 0 12.0 11 
B 40R (.67):20G(.33) 1011 1486 0.4 0 11.0 14 
A 20R ( . 5 ) : 20G ( . 5 ) 857 838 0.2 0 7 .8 7 
C 40R ( . 3 3 ) : 20G ( . 6 7) 757 1013 0.0 0 8.0 10 
A 20R (.5):20G(.5) 972 806 a.a 0 8.0 10 

57 

A 20R (.5):20G(.5) 980 881 0.0 0 6.125 13 
8 20R (.67):60G(.33) 999 2103 3.0 1 11. 6 12 
A 20R ( . 5) : 20G ( . 5) 985 839 0.0 0 8.2 7 
C 20R (.33):60G(.67) 760 1427 0.8 0 9.4 9 
A 20R (.5):20G(.5) 913 882 0.2 0 6.2 7 

SB 

A 20R (.5):20G(.5) 843 873 o.o 0 13.0 14 
8 20R (.67):60G(.33) 1478 1492 24.6 18 15.6 18 
A 20R (.5):20G(.5) 625 810 1.2 0 13.0 10 
C 20R ( . 3 3) : 60G ( • 6 7) 817 1126 7.0 5 11.6 13 
A 20R (.5):20G(.5) 997 738 4.6 2 8.0 8 
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rejections over both experimental conditions were infrequent for 

Subjects 5 and 6 when the terminal link differential was 1:2 and more 

frequent for Subjects 7 and 8 when the differential was 1:3, although 

rate of rejection was significantly higher for Subject 8 relative to 

Subject 7. Finally, the number of switches between patches occurred 

at high rates for all subjects, averaging 11.7, 9.3, 9.0, and 10.7 for 

baseline, 9.0, 11.0, 11.6, and 15.6 for Condition B, and 8.0, 8.0, 

9.4, and 11.6 for Condition C. 

Discussion 

The results for Subject 5 and 6 suggest that at RR terminal link 

values of 40 and 20, the birds accepted most higher-cost schedules 

when it was beneficial to do so (Condition B), but did not reject 

high-cost (RR 40) schedules even when it would have been more 

profitable (Condition C). This result suggests that differentials of 

1:2 (low values) are not great enough for pigeons to reject higher­

cost prey and return to searching for lower-cost prey. For Subjects 7 

and 8, terminal link prey rejections generally did occur at 

differentials of 1:3 when it was profitable to do so (rejecting high­

cost/low-probability prey; Condition B) and occurred at lower rates 

when high-cost prey had a higher probability of being encountered 

(Condition C). 

The average number of prey rejections over the last five sessions 

of each condition (Figure 10) may be somewhat misleading at first 

look, but actually approximates appropriate behavior in all conditions 

except the last five sessions of the B condition and the entire C 

condition for Subject 7. For Subjects 5 and 6, all prey items should 
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have been taken in Condition B, because the higher-cost prey had a 

probability of .67 of occurring. Yet the differences between the size 

of the terminal link schedules was not great enough for the bird to 

pursue this option. Some rejections would be expected in Condition C, 

but did not occur, suggesting that the terminal link schedule 

differentials were not great enough. 

For Subjects 7 and 8, however, prey rejections should have been 

evident at approximately the rate displayed by Subject 8 rather than 

Subject 7 in both the Band C conditions. These subjects should have 

rejected all high-cost/low-probability prey at an average of about ·20 

per session . Interestingly, Subject 7 actually averaged nearly 10 

rejections over all sessions of Condition Band emitted 30 rejections 

during one session. The data indicate that over the last five 

sessions, Subject 7 averaged only three rejections per session and 

averaged an extremely high (2103) number of terminal link pursuit 

responses in Condition B. Why this subject opted to accept high­

cost/low-probability prey only toward the end of the condition needs 

to be examined more closely. It may have been simply a function of 

the animal oversampling less preferable prey items or possibly a 

result of the animal foraging in a generally efficient but not optimal 

(when defined by maximization of E/h) manner. For Condition C, it 

would have been more profitable for Subject 7 to reject high-cost/low­

proba~ility prey, but again, relative ratios may not have been great 

enough for the subject to specialize on low-cost/low-probability prey. 

An extension of this analysis would use pellets rather than chow in 

order to control the magnitude of reinforcement during each condition. 
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Further analysis suggests that initial link search and terminal 

' ink pursuit responses varied predictably with the size of the random 

ratio in the terminal component. That is, as pursuit cost increased, 

:erminal link pursuit responses also increased, and as prey rejections 

·ncreased, the number of initial link search responses also increased. 

Additional comparisons suggest that the average number of initial and 

·erminal link responses did not vary significantly across subjects in 

the baseline or experimental conditions, except for the unexplained 

behavior of Subject 7 described above. The number of switches between 

patches occurred at high but stable rates, again suggesting the 

·nitial link-adjusting replenishment and depletion schedule was 

contacting the subject's behavior and influencing performance. 

Easeline performance generally recovered during reversals, except for 

, small number of rejections emitted by Subject 8 in the final 

taseline condition. Why pigeons continued to reject prey for several 

5essions when the costs were equal may again be a result of the bird 

raving the immediate history of rejecting the preceding high-cost 

component rather than occasionally sampling prey and determining 

relative cost. Furthermore, costs associated with colored terminal 

components appeared interchangeable, and no order effects were 

apparent, accentuating control by the independent variables. 

Other studies examining the effects of prey density have obtained 

similar results (e.g., Dow & Lea, 1987; Goss-Custard, 1977b; Krebs et 

al., 1974, 1977; Lea, 1979; Mellgren, 1982; Mellgren et al., 1984; 

Werner & Hall, 1974; Zach & Falls, 1978). Future research examining 

prey density and costs should consider time spent in a foraging bout 
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as a potential variable influencing prey choice. One would expect 

that as the time available for foraging decreases, prey items would be 

added to the diet (Lucas, 1983, 1987). Future studies should consider 

a wider range of density parameters (such as .50 - .90) to more fully 

determine the precise point at which foragers change from being 

generalist to specialist feeders, and vice versa. Additionally, the 

use of pellets rather than chow would afford the experimenter the 

opportunity to collect data on reinforcer magnitude across patches and 

conditions . 



Purpose 

CHAPTER VI 

EXPERIMENT III: METHODS OF 

PATCH REPLENISHMENT 
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Experiment III was designed to investigate how different rates of 

prey patch replenishment affect the subject's behavior regarding patch 

use. In Experiments I and II, when patches were not being exploited, 

they were replenished according to the number of prey (reinforcers) 

obtained in the exploited patch. That is, each reinforcer delivered 

on one side key increased the search schedule on that side by a factor 

of 5 (depleted) and decreased the search schedule requirement on the 

opposite side key by a factor of 5 (replenished). Experiment III 

posed the question, How will a fixed-time (FT) or temporally yoked 

schedule (approximately equal to the rate in the preceding baseline) 

of prey replenishment compare to a rate determined by the number of 

prey taken per patch? Examining different methods of patch 

replenishment will help determine the effect this variable may have on 

foraging behavior. Perhaps laboratory researchers, given the results 

of this manipulation, will design more biologically valid analogues of 

foraging by simulating the dynamic replenishment and depletion of prey 

from patches. 

Subjects and Apparatus 

Four wild-trapped adult common pigeons (Columba livia) of unknown 

age and gender served. Deprivation, housing, and the experimental 

apparatus were identical to those described in Experiments I and II. 
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Procedure 

An ABACAD single-subject reversal design (Sidman, 1960) was used 

to determine how various methods of patch replenishment affect patch 

use behavior. Three parameters were chosen based on preliminary 

studies of the upper and lower rates of replenishment under the 

baseline procedure (Cheney et al., 1986): FT-15 sec., FT-60 sec., and 

FT schedule yoked to the average rate in the preceding baseline. 

Additionally, session times were equal across all preceding baseline 

and temporal rates of replenishment. To determine the mean temporal 

rate of replenishment in the FT yoking procedure, the mean session 

time over the last five sessions of each baseline was divided by the 

total number of replenishments obtained over those last five sessions. 

That is: 

~ Session Time (in seconds)=~ Rate of replenishment 
~ Number of replenishments 

This provided a mean rate of baseline replenishment, and the same 

number of replenishments were then calculated to occur under the FT­

yoked schedule with the same mean session time. 

Baseline. Baseline sessions were identical to those described in 

Experiments I and II. The initial link search component was under the 

traditional adjusting RR (replenishing and depleting) schedule, while 

each terminal link schedule size was equal (RR 20), and there was no 

advantage to rejecting prey. 

Experimental conditions. The primary independent variable was 

the rate of patch replenishment, either FT-15 sec., FT-60 sec., FT­

yoked, or the baseline (reinforcer determined) method. The primary 
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dependent measure was the number of switches between patches (center 

key responses during the initial link on either side). Other 

dependent measures included number of prey taken per session and 

condition, number of initial (search) and terminal (pursuit) link 

responses across the last five sessions of each condition, and prey 

rejections. The following conditions were conducted for all subjects 

in mixed order: Baseline, FT-15 sec., FT-60 sec., and the FT-yoked 

procedure. Baseline conditions were run at the beginning and between 

all experimental conditions. All FT schedule conditions had session 

times that were equal to the immediately preceding baseline condition. 

The stability criterion was no new high or low values in patch 

switches over the last five sessions of each condition (Mazur, 1974), 

with a minimum of 10 sessions per condition. Table 5 indicates the 

sequential order of conditions for all subjects. 

Results 

The total number of patch switches for all subjects across all 

baseline and temporal replenishment schedules are presented in 

Figures 11 and 12. Relevant comparisons include (a) those across all 

identical baseline and temporal rates of replenishment for each 

subject, and (b) those between temporal schedules yoked to the rate in 

the preceding baseline condition with equal session times. Results 

displayed in Figures 11 and 12 show that switching varied very little, 

with no major differences across sessions and conditions for all 

subjects. The average number of patch switches over baseline sessions 

ranged from a low of 5.6 to a high of 15.2, and averaged 12.8 for 

Subject 9; 6.9 for Subject 10; 8.5 for Subject 11; and 8.8 for 
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Table 5 

Sequence of Patch Replenishment Schedules for all Subjects in 

Experiment III. Baseline Conditions (A) Refer to Replenishment as a 

Reinforcer Determined (RD) Rate, While Various Temporal Rates of 

Replenishment (B, C, and D conditions) are also Shown 

Subject 

9 

10 

11 

12 

A 

RO 

RO 

RD 

RD 

B 

FT-Y(RD) 

FT-15s 

FT-Y(RD) 

FT-60s 

Conditions 

c 

FT-15s 

FT-60s 

FT-60s 

FT-15s 

D 

FT-60s 

FT-Y(RD) 

FT-15s 

FT-Y(RD) 



Figure 11. Number of patch switches for Subjects 9 and 10 in 

Experiment III. Baseline conditions are labelled A, and various FT 

replenishment schedules are shown. 
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Figure 12. Number of patch switches for Subjects 11 and 12 in 

Experiment III. Baseline conditions are labelled A, and various FT 

replenishment schedules are shown. 
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Subject 12. The mean number of switches between patches during the 

baseline conditions preceding the FT-15 sec. condition were 11.8, 8.6, 

7.8, and 6.4 for Subjects 9, 10, 11, and 12, respectively. FT-15 sec. 

averages (with equal session times) were 10.4, 5.4, 7.2, and 7.4 

(differences of 1.4, 2.8, 0.5, and 1.0, respectively). The mean 

number of switches over the baseline conditions preceding the FT-60 

sec. rate were 11.4, 6.6, 7.6, and 9.4, compared to averages of 6.0, 

5.4, 9.4, and 5.8 in the FT-60 sec. temporal rate. The average number 

of patch switches in baseline conditions preceding the FT-yoked 

condition were 15.2, 5.6, 10.0, and 10.6 compared to yoked-temporal 

averages of 8.8, 6.0, 11.4, and 10.2. Table 6 presents the mean and 

median number of patch switches over the last five sessions of each 

experimental condition, as well as the average number initial and 

terminal link responses, mean number of reinforcers earned, prey 

rejections, and mean session time. 

The number of initial link (search) responses varied slightly 

over baseline conditions, averaging 762, 874, 928, and 773 for 

Subjects 9-12, respectively. Initial link responses during the FT-15 

sec. condition averaged 787 across all subjects, 1047 for the FT-60 

sec. replenishment rate, and 794 for the FT-yoked condition. Terminal 

link (pursuit) responses during baseline averaged 816 for Subject 9, 

821 for Subject 10, 880 for Subject 11, and 773 for Subject 12. 

Subjects averaged 802 terminal link responses over the FT-15 sec. 

condition, 712 for the FT-60 sec. condition, and 810 for the FT-yoked 

procedure. In general, the results indicate that the number of 

initial link search and terminal link pursuit responses covaried with 



Table 6 

Mean Number of Initial and Terminal Link Responses. Reinforcers, 

Terminal Link Rejections. Switches Between Patches. and Mean Session 

Time Over the Last Five Sessions of Each Condition in Experiment III 

Initial Terminal 
Link Link Mean 

90 

Respon- Respon- Rein- Rejec- Session 
ses ses force rs tions Switches Time 

59 
A (Baseline) 806 837 40.0 1.0 15.2 16:06 
B (FT-Y) 853 917 42.0 0.0 8.8 16:06 
A (Baseline) 782 866 40.0 0.2 11.8 14:47 
C (FT-15s) 759 888 42.6 0.0 10.4 14:47 
A (Baseline) 697 746 40.0 0.0 11. 4 13:01 
0 (FT-60s) 868 683 32.0 0.0 6.0 13:01 

510 
A (Baseline) 933 840 40.0 0.0 8.6 12: 10 
B (FT-15s) 840 644 34.2 0.0 5.4 12:10 
A (Baseline) 912 791 40.0 0.0 6.6 12:52 
C (FT-60s) 1250 632 31.4 0.0 5.4 12:52 
A (Baseline) 776 831 40.0 0.0 5.6 12:23 
0 ( FT -Y)) 917 724 38.0 0.0 6.0 12:23 

511 
A (Baseline) 800 911 40.0 1.0 10.0 18:54 
B (FT-Y) 753 781 43.0 0.6 11.4 18:54 
A (Baseline) 1076 795 40.0 0.0 7.6 22:26 
C (FT-60s) 1131 892 45.2 0.0 9.4 22:26 
A (Baseline) 907 935 40.0 1.2 7.8 21:29 
D (FT-15s) 852 855 41.6 0.0 7.2 21:29 

512 
A (Baseline) 835 766 40.0 0.0 9.4 14:25 
B (FT-60s) 938 640 32.2 0.0 5.8 14:25 
A (Baseline) 764 807 40.0 0.4 6.4 15:13 
C (FT-15s) 698 819 37.8 0.0 7.4 15: 13 
A (Baseline) 721 809 40.0 0.0 10.6 14:04 
D (FT-Y)) 652 817 41.0 0.2 10.2 14:04 



higher and lower replenishment rates, but were not significantly 

different across subjects. 
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Figure 13 presents the mean number of patch switches over the 

last five sessions of each condition. The mean number of switches 

between patches across baseline (A) conditions varied slightly across, 

but not within, subjects. The number of patch switches also varied 

across subjects and conditions, but not within baseline and temporal 

rates of replenishment with equal session times. Figure 14 shows that 

the average number of reinforcers (prey) obtained during all baseline 

sessions was always 40 and averaged 39.05 for the FT-15 sec. 

condition, 35.2 for the FT-60 sec. condition, and 41 for the FT-yoked 

condition across all subjects. Prey rejections did occur at low 

rates, even when there was no advantage to doing so, but never 

averaged more than 1.2 over the last five sessions of any condition 

for any subject. 

Discussion 

Many types of patches in the wild are depleted according to the 

number of prey taken from the patch and replenished based only on time 

(Baum, 1983). The purpose of this study was to determine if patches 

replenished according to the number of prey (reinforcers) taken from 

alternative patches differed highly from various temporal rates of 

patch replenishment. Temporal rates of patch replenishment were 

15 sec., 60 sec., or based on an FT procedure yoked to the individual 

subjects baseline rate. These parameters were chosen because of the 

upper and lower limits observed during the baseline reinforcer 

determined replenishment procedure. The yoking procedure was chosen 
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o make the two methods as equal as possible while still replenishing 

patches in temporal fashion. 

The results showed that there were no major differences within 

subjects in number of switches between patches across preceding 

baseline and subsequent temporal rates of replenishment with equal 

session times. For three of the four subjects, more reinforcers were 

earned in faster replenishing patches (e.g., 15 sec.) and less were 

earned in slower replenishing patches (e.g., 60 sec.), suggesting that 

the rate at which patches replenish can be an important variable to 

consider when studying patch use behavior. 

The goal of behavior analytic studies of foraging is said to be 

simplicity and completeness (e.g., Collier & Rovee-Collier, 1981; Lea, 

1981). Experiment III appears to make a unique contribution towards 

achieving this goal, as little empirical work in the laboratory has 

investigated methods of patch replenishment. Recent reports (e.g., 

Baum, 1987; Stephens & Krebs, 1986) have begun to pay closer attention 

to aspects of depletion and replenishment, as laboratory researchers 

strive toward achieving increased biological validity in their 

studies. Results of Experiment III suggest that a valid method of 

replenishing and depleting prey from patches can be accomplished in 

the operant laboratory using both reinforcer-determined and temporal 

schedules. This would not be the case if major differences were 

observed under the two replenishment conditions. Future work in this 

area may, for example, examine other methods of simulating depletion 

and replenishment of patches as they are thought to occur in the wild, 

and to examine the precise point at which animals switch patches 



altogether. Psychologists studying adjusting (progressive and 

regressive) random ratio schedules under the concurrent chains 

procedure are beginning to make significant advances in better 

simulating features of replenishment and depletion in the laboratory 

(Baum, 1983, 1987). 

95 
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CHAPTER VII 

GENERAL DISCUSSION AND CONCLUSIONS 

The results of these experiments extend and support many earlier 

investigations of foraging both in the field and in the laboratory. 

The results of Experiment I indicated that as the relativ e cost of 

obtaining one of two prey items increased, the probability of the 

subject rejecting that prey also increased. This result showed that 

pigeon subjects were sensitive to this independent variable and that 

they tended to pursue only low-cost prey. This result supports 

several field- (e.g., Cambell, 1987; Davies, 1977a; Goss-Custard, 

1977a, 1977b; Sutherland, 1982) and laboratory-based (e.g., Lea, 1979; 

Hanson & Green, 1984; Krebs et al., 1977; Peden & Rohe, 1984; 

Shettleworth, 1985) investigations. 

The results of Experiment II showed that as the cost of obtaining 

prey increased together with density, the probability of rejecting 

prey remained stable. In other words, when high-cost prey were 

relatively abundant, three of the four subjects generally pursued 

these rather than rejecting and returning to search for less costly 

and less-probable prey, as was evident in Experiment I. Although OFT 

would predict that the animal should never specialize on (less­

preferred) prey, the results of this study suggest otherwise, as do 

Erichsen et al. (1980), Lucas (1983, 1987), and other second 

generation OFT models. 

Experiment III was designed to test the prediction that a valid 

method of replenishing patches in laboratory analogues of foraging is 

to decrease the search cost (initial link) in a patch not being 
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exploited, as prey are taken from other patches. Patches in the wild 

are generally thought to replenish based solely on time (Baum, 1983, 

1987). Little empirical work has been conducted on this aspect of 

foraging in the field or in the laboratory, although recent studies 

suggest that this trend is beginning to change (Baum, 1987; Dow & Lea, 

1987). 

Perhaps more importantly, these experiments suggest that several 

aspects of foraging in the wild can be simulated simply, extensively, 

and under well-controlled conditions in operant simulations. There 

are numerous advantages to using an operant laboratory approach over 

field work. First, the experiments are conducted under well­

controlled circumstances, which set the occasion for clear 

establishment of functional relations among specific independent and 

dependent variables. Second, independent and dependent measures can 

be specified alone or in combination, and shown to control several 

aspects of prey and patch choice. Third, operant analogues of 

foraging are virtually unlimited in terms of allowing flexibility and 

potentially interesting independent (e.g., manipulation of search 

cost, handling cost, travel cost, density of one or more prey types, 

reinforcer duration, and time allocation, to name but a few) and 

dependent variables (the most common being prey choice based on size 

or capture cost and patch choice based on RT or GUT). Finally, 

opera~t simulations of foraging can facilitate interdisciplinary 

interaction among field and laboratory researchers from such 

disciplines as psychology, behavioral ecology, ethology, and others. 

Researchers in these disciplines have shared common interests in the 
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past, but have also disagreed about many issues (e.g., Kamil, 1983). 

The study of foraging has and will continue to flourish if researchers 

continue to use convergent methodologies and communicate freely. 

The laboratory simulation is also an excellent method of testing 

ecological models of prey and patch selection (i.e., the optimal diet 

models, the marginal value theorem, etc.) and psychological models of 

choice among and constraints on alternative sources of reinforcement 

and time allocation. Optimal foraging theory makes several rather 

specific predictions regarding prey and patch choice. Laboratory 

results both confirm and refute many of the predictions promulgated by 

optimal foraging theory. Several more predictions are supported 

qualitatively than they are quantitatively, suggesting that animals do 

not forage in a quantitatively optimal manner, only efficiently. 

Future simulations of foraging conducted in the operant 

laboratory should consider four factors of foraging which will be of 

vital importance in generalizing to naturally occurring foraging 

situations. These include: (a) patches simulated as separate places 

to work and obtain food (spatially separated operanda), (b) concurrent 

chained schedules with adjusting random ratio initial link schedules 

and fixed random ratio terminal link schedules to simulate 

replenishing and depleting patches and relative costs of prey, 

(c) travel between patches requiring some cost and a period of 

nonreinforcement, and (d) the use of pellets rather than chow to allow 

measurement of energy gain across patches and experimental conditions. 

Operant researchers meeting these criteria will not only have 

increased external validity to naturally occurring foraging behavior, 



99 

but will likely be met with enthusiasm and support from researchers in 

other disciplines. 
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