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ABSTRACT

A Stochastic Model for Water-Vegetation Systems

and the Effect of Decreasing Precipitation

on Semi-Arid Environments

by

Shannon A. Dixon, Master of Science

Utah State University, 2017

Major Professor: Luis F. Gordillo, Ph.D.
Department: Mathematics & Statistics

Current climate change trends are affecting the magnitude and recurrence of extreme

weather events. In particular, several semi-arid regions around the planet are confronting

more intense and prolonged lack of precipitation, slowly transforming these regions into

deserts. In this thesis we present a stochastic (meso-scale) model for vegetation-precipitation

interactions for semi-arid landscapes. Extensive simulations with the model suggest that

persistence in current trends of precipitation decline in semi-arid landscapes may expedite

desertification processes by up to several decades.

(61 pages)
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PUBLIC ABSTRACT

A Stochastic Model for Water-Vegetation Systems

and the Effect of Decreasing Precipitation

on Semi-Arid Environments

Shannon A. Dixon

Current climate change trends are affecting the magnitude and recurrence of extreme

weather events. In particular, several semi-arid regions around the planet are confronting

more intense and prolonged lack of precipitation, slowly transforming these regions into

deserts. Many mathematical models have been developed for purposes of analyzing vegetation-

water interactions, particularly in semi-arid landscapes. Most models are based on the aver-

age behavior of the system as a whole, and how it is influenced by external changes. These

models may be termed “macro-scale” models. Other models have concerned themselves

with the interactions between individuals, in this case the interactions between individual

plants and the available water. These models may be termed “micro-scale” models. In this

thesis we present a model for vegetation-precipitation interactions which is intermediate

between these two types of models. This “meso-scale” model, also known as a stochastic

model, has the advantage of incorporating the behavior of the system as a whole, while still

retaining the “noise” (or internal influences) from the individual interactions. Extensive sim-

ulations with this model suggest that persistence in current trends of precipitation decline

in semi-arid landscapes may expedite desertification processes by up to several decades.
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CHAPTER 1

INTRODUCTION

1.1 Background

Large regions in the Western United States, Africa, and other parts of the world,

are classified as arid or semi-arid environments, characterized in part by their limited and

variable pulses of precipitation [6]. Availability of water plays a dominant role in arid and

semi-arid regions, which are expected to receive an average of 10 to 30 inches of precipitation

annually (≈ 254− 508 kg H2O m-2year-1).

Various methods are used for classifying regions as arid, semi-arid, hyper-arid, desert,

etc. A defining characteristic of drylands is lack of precipitation. However, lack of rainfall

alone is insufficient for defining boundaries between environments. Comparison of different

areas which receive the same amount of annual rainfall reveal a wide variety of vegetation,

from grasses and shrublands to heavily forested environments. Thus, water balance (the

balance between available water and evapotranspiration) is commonly used for determining

aridity of a region [19]. We assume a semi-arid environment has a pronounced dry season,

with rainfall concentrated during certain times of the year. The model we will derive

provides for both water supply and evaporation, though for simplicity it does not distinguish

between sources of water.

According to Sheffield and Wood [23], the 1970s marked a switch to drying trends in

soil moisture globally, and particularly in the northern latitudes. Though there are many

indirect factors of drought, temperature and particularly precipitation are the primary

driving factors. Higher temperatures lead to increases in evapotranspiration and decreased

soil moisture. Temperatures are expected to increase, while precipitation is expected to

fluctuate according to region. However, in many regions, temperature and precipitation

are negatively correlated, leading to predictions of greater occurrence of drought. Overall,
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climate change is predicted to increase the intensity and frequency of droughts globally [23].

In particular, average precipitation in the Southwestern United states and other regions

of similar climate is predicted to change dramatically in response to global warming [6]. As

of August 2016, abnormally dry to moderate drought conditions were observed in large

portions of the Western United States, with regions that range between severe to extreme

drought occurring in the northern areas, and severe to exceptional drought extending from

California into Nevada [20].

The decline in precipitation combined with overall higher temperatures puts indigenous

species of plants and animals in semi-arid environments under unusual stress and the parallel

habitat loss might pose a threat to local biodiversity [15]. Management strategies should

focus on these areas.

Under these circumstances, predicting possible responses of vegetation biomass in semi-

arid landscapes to long term changes in precipitation is of profound importance in creating

management strategies. Understanding how precipitation affects vegetation in arid and

semi-arid environments can aid in designing adaptation and conservation policies to solve

environmental problems caused by climate change and land use. [6, 10].

Predicting these responses ultimately depends on interpreting how individuals and

populations respond to precipitation [6]. Estimation of the expected time of transition from

a vegetative state to bare-soil, as a conceivable measure of those responses, presents several

difficulties due to the enormous complexities associated with water-vegetation systems.

However, results from simulations of simplified mathematical models could offer a hint on

the relationship with the parameters that might drive the decline.

Extensive mathematical modeling and analysis of semi-arid water-vegetation systems

has emerged in the last few years, especially since the appearance of Klausmeier’s determin-

istic model for striped vegetation patterns based on competition for water in [13]. Further

developments have focused on vegetation pattern formation models which include additional

variables such as surface water, soil moisture, species competition, and plant density, etc.,

see for instance [18,24–26].
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The effects of random fluctuations on several environmental models have also been

vastly studied [21] as the cause of (dis)appearing characteristics in deterministic models, a

phenomenon known as noise-induced transitions, [12]. More recently, the effects of noise on

dryland ecosystems that are usually described by deterministic models showing bistability

has been largely studied [18, 21]. Results have emphasized the possibility of noise-induced

creation of vegetation patterns, as well as the complete disappearance of vegetated states.

For example, Meron and Gilad [18] explain that desertification, the (often) irreversible

transition from a vegetated to a bare-soil state, is an example of a naturally occurring

phenomena known as hysteresis. In this case, the vegetated state lost to drought is not

easily recovered once precipitation levels return to normal, because the bare-soil state is

stable. An excess of rainfall is thus necessary to restore the vegetation.

Following the ideas in [14,16,17], we begin with a microscopic individual-based model

(IBM) that incorporates the interactions occurring in a highly idealized water-vegetation

system. The model involves only water and vegetation biomass interactions, with individ-

uals living in an environment of limited capacity. When this capacity, or “system size”,

increases without bound, the reaction part of Klausmeier’s deterministic system emerges

(the macroscopic model). We then derive an intermediate mesoscale stochastic model which

lies between the individual-based microscale model and that of Klausmeier’s deterministic

model. Using his estimated parameters for vegetation and precipitation in semi-arid land-

scapes, and data for state precipitation anomalies in California as baseline, we estimate

the mean times for a system to reach the bare-soil “desert” state in a range of realistic

precipitation anomalies (departures from long term mean), under the assumption that the

precipitation distribution trends do not change in time. With these results we finally quan-

tify, for this simplified model, the dependence between changes in precipitation anomalies

and mean time to reach the bare-soil state.

We conclude this chapter with an overview of the Klausmeier model for vegetation-

water systems. Drawing on his work, and using his estimates for various parameter values,

we derive the mesoscale model in Chapter 2. Chapter 3 details the simulations produced
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by the model and Chapter 4 contains our conclusions and suggestions for further study.

1.2 Klausmeier’s Model for Vegetation Patterns

C.A. Klausmeier introduced in [13] a deterministic model that produces spatial patterns

with the same characteristics of those observed in semiarid vegetation systems. In his model,

vegetation growth and water supply are related through the following system of partial

differential equations

∂TW = A︸︷︷︸
water supply

− LW︸︷︷︸
water evaporation

− RG(W )F (P )P︸ ︷︷ ︸
water consumed by plants

+ V ∂XW︸ ︷︷ ︸
water advection

∂TP = JRG(W )F (P )P︸ ︷︷ ︸
biomass increase

− MP︸︷︷︸
vegetation death

+ D∆P︸ ︷︷ ︸
vegetation diffusion

,

where W and P represent water and plant biomass densities respectively. The model is

set up in a two-dimensional domain with no boundaries. In the original paper Klausmeier

simplified the model by taking G(W ) = W and F (P ) = P , which results in the equations

∂TW = A− LW −RWP 2 + V
∂W

∂X

∂TP = JRWP 2 −MP +D

(
∂2

∂X2
+

∂2

∂Y 2

)
P .

To reduce the number of parameters, the model can be nondimensionalized by rescaling

as follows:

w = JW
R

1
2

L
1
2

p = P
R

1
2

L
1
2

m̂ =
M

L
a = J

AR
1
2

L
3
2

v =
V

L
1
2D

1
2

t = LT x = X
L

1
2

D
1
2

y = Y
L

1
2

D
1
2

.

These rescalings are from [13], though I have used different notation. Note that rescaling

the model without including the spatial terms results in the same variables as scaling with

the spatial terms (see Appendix A). Thus the dimensionless system is reduced to a system

with only three parameters: a which regulates water input, m̂ which refers to vegetation
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loss, and v which controls the velocity of the water as it flows downhill:

∂w

∂t
= a− w − wp2 + v

∂w

∂x
∂p

∂t
= wp2 − m̂p+

∂2p

∂x2
+
∂2p

∂y2
.

(1.1)

The consideration of advection and diffusion in the model creates an instability that

generates a pattern of stripes. In contrast with Turing instability, the determining eigenvalue

has negative imaginary part, [22].

1.2.1 Equilibria

Notice that when p = 0, w = a. Thus the point (a, 0) is an equilibrium point. Lin-

earization of the system at this point shows that (a, 0) is a stable spiral. This makes sense

intuitively, since p = 0 corresponds to the state where there is no vegetation. Thus, this

equilibrium always exists and is stable.

To find the other equilibria we examine the nullclines. When dp
dt = 0, p = m̂

w .

When dw
dt = 0, p =

√
a
w − 1. Setting these two p values equal to each other gives w =

a+
√
a2−4m̂2

2 and w = a−
√
a2−4m̂2

2 . Thus we have two equilibria at the points (w∗1, p
∗
1) =

(a+
√
a2−4m̂2

2 , 2m̂
a+
√
a2−4m̂2

) and (w∗2, p
∗
2) = (a−

√
a2−4m̂2

2 , 2m̂
a−
√
a2−4m̂2

), so long as a > 2m̂. The

nullclines indicate one of these is stable while the other is unstable (see Figure 1.1). The

linearization of these points shows that the latter is stable. Evaluating the Jacobian of this

system at the point (w∗2, p
∗
2):

J =

 −1− p2 −2wp

p2 2wp− m̂


(p∗2,w∗

2)

=

 −1− 2m̂2

a2−a
√
a2−4m̂2−2m̂2

−2m̂

2m̂2

a2−a
√
a2−4m̂2−2m̂2

m̂

 ,
yields a determinant which is positive and a trace which is negative for a > 2m̂:

Det = −m̂+
2m̂3

a2 − a
√
a2 − 4m̂2 − 2m̂2

T = m̂− 1− 2m̂

a2 − a
√
a2 − 4m̂2 − 2m̂2

.
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p

w´ = a-w-w*p²

p´ = w*p²-m*p

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

w

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Nodal sink at (0.10697, 4.2067)

Saddle point at
(1.893, 0.23771)

p

w´ = a-w-w*p²

p´ = w*p²-m*p

0

0.5

1

1.5

2

2.5

3

3.5

4

w

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Bifurcation at (0.5, 1)

Fig. 1.1: Nullclines and equilibrium points (top) of Klausmeier’s non-spatial model with
parameter values a = 2,m = 0.45. The bifurcation point at a = 2m is shown in the bottom
chart. Parameter values a = 1,m = 0.5.
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Fig. 1.2: Stability of a two-dimensional fixed point based on the determinant and trace of
the Jacobian matrix.

Thus it is easy to see that (w∗2, p
∗
2) is a stable steady state. (See Figure 1.2.)
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CHAPTER 2

THEORETICAL FRAMEWORK

The so called mesoscale description for a system is an intermediate approximation that

emerges between the individual probabilistic model (microscopic IBM description) and the

equations for the mean-field (macroscopic description). At the mesoscale approximation

the state variables are assumed continuous but the effects of random fluctuations are not

lost. In other words, the equations include mean field terms and terms which express

random fluctuations around the mean. We derive the mesoscale description of our model

by first building the IBM. Along the way we will also make contact with the macroscopic

description.

2.1 The Individual-Based Model

We follow the “patch model” introduced by McKane in [16] to write an individual-based

model (IBM) that incorporates the main events observed in a vegetation-water system as

described by Klausmeier. A patch may be thought of as a small spatial region within which

individual elements can interact. We first consider a patch which is small enough that

there are no spatial effects; all individuals have the same chance of interacting with each

other. For our purposes we assume a patch which has finite capacity, say N , containing the

following three elements.

B: vegetation biomass unit

W : water volume unit

E: empty location

Notice that we consider an empty location as an “element”. This corresponds with an

empty space in a spatial model; however, in a spatial model we would need to define how
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each of the individuals (including empty spaces) interact with each other. In this non-

spatial version, however, we assume that there is complete mixing, that is, that any two

individuals randomly chosen from the patch have as much chance of interacting as any other

two random individuals from the patch.

2.1.1 Plant Biomass and Water Dynamics

The dynamics of plant biomass and water interactions are driven by events involving

one or two individuals:

B
d−→ E

E
s−→W

W
v−→ E

BW
b−→ BB

WB
b−→ BB

(2.1)

These interactions describe (in order): (i) vegetation biomass loss, (ii) incoming water, (iii)

water evaporation, (iv and v) increase in vegetation biomass through water absorption. The

corresponding rates at which the interactions occur are given by d, s, v, and b, respectively.

The events are assumed to be independent and without memory: they are not influenced

by any previous states of the system.

Let us assume that initially there are n elements of type B, m elements of type W

and N −n−m elements of type E. Then the probability of randomly choosing the various

combinations from the patch are:

probability of drawing B = n
N

probability of drawing W = m
N

probability of drawing E = N−n−m
N

probability of drawing BW = 2 n
N

m
N−1 .
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We multiply the last combination by a factor of 2 because the choices BW and WB are

the same. We can now use these results to determine the transition rates for each event in

equations (2.1).

2.1.2 Probability Transition Rates

The transition probability from a state with n plant (B) individuals and m water (W )

individuals, that is, from a state (n,m) to (n′,m′) individuals, in one unit time step, is

denoted by T (n′,m′|n,m). Notice that it is only possible for transitions from n ± 1 and

m±1 to take place during each time step. Since we only list the transitions that are involved

in the interaction, the only nonzero probability rates in our model are characterized by:

T (n+ 1,m− 1|n,m) = 2b
n

N

m

N − 1

T (n− 1,m|n,m) = d
n

N

T (n,m+ 1|n,m) = s
N − n−m

N

T (n,m− 1|n,m) = v
m

N
.

(2.2)

2.1.3 The Kolmogorov Equation

The probability of having n,m individuals in the patch at time t is given by the

probability density function P (n,m, t). This probability changes with time, and the rate

of change of this function with respect to time is simply the sum of the transitions into

the state with n,m individuals minus the sum of the transitions out of the state with

n,m individuals. Thus we can write the following differential equation, also known as the
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Kolmogorov equation:

dP (n,m, t)

dt
= T (n,m|n− 1,m+ 1)P (n− 1,m+ 1, t) + T (n,m|n+ 1,m)P (n+ 1,m, t)

+T (n,m|n,m+ 1)P (n,m+ 1, t) + T (n,m|n,m− 1)P (n,m− 1, t)

− [T (n+ 1,m− 1|n,m) + T (n− 1,m|n,m) + T (n,m− 1|n,m)

+ T (n,m+ 1|n,m)]P (n,m, t) .

(2.3)

The boundary values n,m = 0 and n,m = N (the smallest and largest number of ele-

ments in the patch, respectively) imply the following transition probabilities at the bound-

aries:

T (−1,m|0,m) = 0

T (n,−1|n, 0) = 0

T (N + 1,m|N,m) = 0

T (n,N + 1|n,N) = 0 .

The following transitions are also zero according to our equations (2.2) for the transition

rates:

T (0,m| − 1,m) = 0

T (n, 0|n,−1) = 0

T (N,m|N + 1,m) = 0

T (n,N |n,N + 1) = 0 .

Thus, given an initial condition P (n,m, 0), equation 2.3 completely describes the evo-

lution in time of the state of the system. This is the microscopic model description of the

system.
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2.2 The Mean-Field Equations

We can write the expression for the rate of change of the average value over the system,

d〈n〉
dt (angled brackets denote the average value) by multiplying dP (n,m,t)

dt by n and summing

over m and n. Note that none of the transition probabilities involving changes only in m

will enter into the equation for d〈n〉
dt , and vice versa. Thus:

d

dt

N∑
n,m=0

nP (n,m, t) =
N∑

n,m=0

n [T (n,m|n− 1,m+ 1)P (n− 1,m+ 1, t)

+ T (n,m|n+ 1,m)P (n+ 1,m, t)

+ T (n,m|n,m+ 1)P (n,m+ 1, t)

+ T (n,m|n,m− 1)P (n,m+ 1, t)

− T (n+ 1,m− 1|n,m)P (n,m, t)

− T (n− 1,m|n,m)P (n,m, t)

− T (n,m− 1|n,m)P (n,m, t)

− T (n,m+ 1|n,m)P (n,m, t)] .

By shifting the variable in two of the sums on n and m by ±1, and by shifting m by −2 in

the first sum,we obtain:

d 〈n〉
dt

=
N∑
m=0

N∑
n=0

(n+ 1)T (n+ 1,m− 1|n,m)P (n,m, t)

+ (n− 1)T (n− 1,m|n,m)P (n,m, t)

+ nT (n,m− 1|n,m)P (n,m, t)

+ nT (n,m+ 1|n,m)P (n,m, t)

− nT (n+ 1,m− 1|n,m)P (n,m, t)

− nT (n− 1,m|n,m)P (n,m, t)

− nT (n,m− 1|n,m)P (n,m, t)

− nT (n,m+ 1|n,m)P (n,m, t) ,
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which reduces to:

d 〈n〉
dt

=
N∑

n,m=0

[T (n+ 1,m− 1|n,m)− T (n− 1,m|n,m)]P (n,m, t) .

Sustituting expressions for the transition rates (2.2) gives:

d 〈n〉
dt

= 2b
〈n〉
N

〈m〉
N − 1

− d〈n〉
N

. (2.4)

Similarly,

d

dt

N∑
n,m=0

mP (n,m, t) =
N∑

n,m=0

m [T (n,m|n− 1,m+ 1)P (n− 1,m+ 1, t)

+ T (n,m|n+ 1,m)P (n+ 1,m, t)

+ T (n,m|n,m+ 1)P (n,m+ 1, t)

+ T (n,m|n,m− 1)P (n,m+ 1, t)

− T (n+ 1,m− 1|n,m)P (n,m, t)

− T (n− 1,m|n,m)P (n,m, t)

− T (n,m− 1|n,m)P (n,m, t)

− T (n,m+ 1|n,m)P (n,m, t)]

=

N∑
n=0

N∑
m=0

(m− 1)T (n+ 1,m− 1|n,m)P (n,m, t)

+mT (n− 1,m|n,m)P (n,m, t)

+ (m− 1)T (n,m− 1|n,m)P (n,m, t)

+ (m+ 1)T (n,m+ 1|n,m)P (n,m, t)

−mT (n+ 1,m− 1|n,m)P (n,m, t)

−mT (n− 1,m|n,m)P (n,m, t)

−mT (n,m− 1|n,m)P (n,m, t)

−mT (n,m+ 1|n,m)P (n,m, t) ,
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reduces to:

d 〈m〉
dt

=
N∑

n,m=0

(−1)T (n+ 1,m− 1|n,m)P (n,m, t)

+ (−1)T (n,m− 1|n,m)P (n,m, t)

+ T (n,m+ 1|n,m)P (n,m, t)

=

N∑
n,m=0

[T (n,m+ 1|n,m)− T (n,m− 1|n,m)− T (n+ 1,m− 1|n,m)]P (n,m, t) .

Substituting the transition probabilities we have:

d 〈m〉
dt

= s
〈N − n−m〉

N
− v 〈m〉

N
− 2b

〈n〉
N

〈m〉
N − 1

. (2.5)

Assuming that N is relatively much larger than 〈n〉 and 〈m〉 , i.e. 〈N−n−m〉N is close to one,

suggests the approximation

d 〈m〉
dt

= s− v 〈m〉
N
− 2b

〈n〉
N

〈m〉
N − 1

. (2.6)

We remark at this point that water infiltration in the soil is improved by the presence

of vegetation; as a consequence, the process of water absorption by plants becomes more

efficient [18]. This fact is incorporated into the model by assuming that such improvement

is proportional to the vegetation density actually present. In our model, this is equivalent to

modifying the transition rate for water absorption and the subsequent increase in vegetation

as follows,

BW
bn/N−−−→ BB, WB

bn/N−−−→ BB .

This in turn affects the first transition rate in (2.2), which now becomes

T (n+ 1,m− 1|n,m) = 2b
n2

N2

m

N − 1
.
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When this transition rate is substituted into the equation for d 〈n〉 /dt, it produces

d 〈n〉
dt

= 2b

〈
n2
〉

N2

〈m〉
N − 1

− d〈n〉
N

(2.7)

instead of equation (2.4). A similar change happens in equation (2.6):

d 〈m〉
dt

= s− v 〈m〉
N
− 2b

〈
n2
〉

N2

〈m〉
N − 1

. (2.8)

Thus, going back to the differential equations for 〈n〉 and 〈m〉, we see that Klausmeier’s

(non-spatial) model is recovered:

d 〈n〉
dt

= b̃
〈
n2
〉
〈m〉 − d̃ 〈n〉

d 〈m〉
dt

= s− ṽ 〈m〉 − b̃
〈
n2
〉
〈m〉 ,

(2.9)

where b̃ = 2b/N2(N −1), d̃ = d/N , and ṽ = v/N . Equations (2.9) constitute the mean field

equations for our stochastic water-vegetation system.

2.3 The Continuous Model

Dividing equations (2.7) and (2.5) by N and taking the limit allows us to replace
〈
n2
〉

with 〈n〉2. Defining φn = 〈n〉 /N and φm = 〈m〉 /N we obtain

dφn
dt

= b̃φ2
nφm − d̃φn

dφm
dt

= s̃(1− φn − φm)− ṽφm − b̃φ2
nφm ,

(2.10)

where now b̃ = 2b/(N − 1), d̃ = d/N , s̃ = s/N , and ṽ = v/N . Notice that here φn(t) is the

density of vegetation biomass in the given region, thus equations (2.10) are the mean field

equations for the density of our stochastic water-vegetation system. Again, the assumption

that N is relatively much larger than 〈n〉 and 〈m〉, means that the quantity (1−φn−φm) ≈ 1

which yields the equation

dφm
dt

= s̃− ṽφm − b̃φ2
nφm . (2.11)
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Thus we see that the non-spatial part of Klausmeier’s model is recovered.

2.3.1 Numerical Simulations

The IBM can be simulated using a numerical scheme [5] to produce a time series for the

number of individuals (vegetation or water), with statistics determined by the probability

density function Kolmogorov equation. To do so, we must first determine the transition

rates for the stochastic model by identifying the corresponding coefficients in the mean-field

approximation (2.9) with those in Klausmeier’s nondimensional, nonspatial model (1.1).

Accordingly,

b̃ = 1 → b =
N2(N − 1)

2

d̃ = m̂ → d = m̂N

ṽ = 1 → v = N

s = a .

Substituting these rates into the transition probabilities yields

T (n+ 1,m− 1|n,m) = 2b
n

N

m

N − 1
= n2m

T (n− 1,m|n,m) = d
n

N
= m̂n

T (n,m+ 1|n,m) = s
N − n−m

N
= a

T (n,m− 1|n,m) = v
m

N
= m.

(2.12)

The results of our simulation are given in Figure 2.1, where we have plotted one stochas-

tic model solution against the mean-field solution. Notice that the stochastic solution fluc-

tuates around the mean-field solution but follows its average behavior over time. These

fluctuations represent the intrinsic noise due to the interactions between individuals, rather

than external noise such as from the environment. Notice that in the macroscopic descrip-

tion this intrinsic noise is lost. It is for this reason we wish to develop a mesoscale, or

intermediate description, in order to retain the stochastic effects caused by the discreteness
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Fig. 2.1: Solution of one stochastic simulation (red, results for vegetation only presented)
with the corresponding mean-field dynamics (black dash-dot), plotted against Klaus-
meier’s model (dotted blue line). The equilibrium for Klausmeier’s system is (p∗, w∗) =
(19.9499, 0.0501). Parameter values: a = 1, m̂ = 0.05 and N = 500.

of the individual interactions, as well as the deterministic behavior of the macroscopic level

of the system.

2.4 The Mesoscale Approximation

To find the mesoscale model we follow the ideas and notation used in [17], first writing

the associated Fokker-Planck (forward Kolmogorov) equation for the stochastic model in

section 2.1.3, and then deriving the corresponding stochastic differential equation. We de-

note with fi the model transition rates in the limit, fi(φ) = limN→∞ Ti(Nφ+νi|Nφ), where

the index i has been assigned to the transition rate T according to the enumeration made

in section 2.2. The vector νi provides the changes associated with each of the transitions,

see Table 2.1.
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Table 2.1: Transition rates and associated changes.

index i 1 2 3 4

fi b̃φ2
nφm d̃φn s̃(1− φn − φm) ṽφm

νni 1 -1 0 0

νmi -1 0 1 -1

For ease in notation let us write φ = (φn, φm). Then the associated Fokker-Planck

equation reads

∂P (φ, τ)

∂τ
= −

[
∂

∂φn
(An(φ)P (φ, τ)) +

∂

∂φm
(Am(φ)P (φ, τ))

]
+

1

2N

[
∂2

∂φ2
n

(Bnn(φ)P (φ, τ)) + 2
∂2

∂φn∂φm
(Bnm(φ)P (φ, τ))

+
∂2

∂φ2
m

(Bmm(φ)P (φ, τ))

]
,

(2.13)

where

An(φ) = b̃φ2
nφm − d̃φn

Am(φ) = S(1− φn − φm)− b̃φ2
nφm − ṽφm

Bnn(φ) = b̃φ2
nφm + d̃φn

Bnm(φ) = Bmn(φ) = −b̃φ2
nφm

Bmm(φ) = b̃φ2
nφm + S(1− φn − φm) + ṽφm

and where time has been rescaled to τ = t/N . If we denote B with the symmetric matrix

B =

 Bnn Bnm

Bmn Bmm
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then the associated stochastic differential equations system associated with the Fokker-

Planck equation above is given by

dφn = An(φ)dτ +
1√
N
gnn(φ)dW1,

dφm = Am(φ)dτ +
1√
N

[gmn(φ)dW1 + gmm(φ)dW2] ,

(2.14)

where the g’s are the function elements in the matrix decomposition of B as the product

ggT , with

g =

gnn 0

gmn gmm


=


√
b̃φ2

nφm + d̃φn 0

−b̃φ2
nφm/

√
b̃φ2

nφm + d̃φn

√
b̃φ2

nφm + S(1− φn − φm) + ṽφm − (b̃φ2
nφm)2

b̃φ2
nφm+d̃φn

 .
The procedure of going from a Fokker-Planck equation like (2.13) to the stochastic system

in equations (2.14) can be found, for instance, in [8].
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CHAPTER 3

SIMULATIONS

We use the stochastic differential equations (2.14) to numerically simulate the water-

vegetation system and obtain averages of the expected time of absorption into the bare-soil

state, subject to negative average precipitation anomalies, [11].

First, we identify the parameters of the non-dimensional deterministic (non-spatial)

model in Klausmeier’s paper [13] with the mean field system obtained above (An(φ) and

Am(φ)). We find that S = AR
1
2J/L

3
2 and d̃ = M/L. The meaning and realistic values for

these parameters are listed in Table 3.1. Thus, for instance, Klausmeier’s parameter ranges

for trees are S = 0.077 to 0.23 and d̃ = 0.045, and for grass they are S = 0.94 to 2.81 and

d̃ = 0.45. Also, the corresponding value for b̃ and ṽ in both cases is one. Regarding the

average evaporation rate, we follow Klausmeier in assuming that the equilibrium of water

(in his deterministic model) is at w∗ = 75 kg H2O m-2, and then computing the associated

evaporation rate given the averaged annual precipitation, [13]. For example, with A = 300

kg H2O m-2year-1 the evaporation rate is L = A/w∗ = 4 year-1.

Table 3.1: Parameters for semi-arid landscapes, [13].

R uptake rate of water 1.5 (trees) or 100 (grass) kg H2O m-2year-1 (kg dry mass)-2

J yield of plant biomass 0.002 (trees) or 0.003 (grass) kg dry mass (kg H2O)-1

M mortality rate 0.18 (trees) or 1.8 (grass) year-1

A precipitation 250-750 kg H2O m-2year-1

L evaporation rate 4 year-1

Second, public records in precipitation anomalies (changes in long term average) suggest

a trend of negative values in specific geographic locations. In the state of California, for

example, the state average of the anomalies for the past 16 years is ≈ −2.07 inches year-1

(-52.58 kg H2O m-2year-1) (see Figure 3.1). Although there is a lot of variability across

the state, we use this value only for illustration purposes, and similarly assume that this
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Fig. 3.1: State averages of precipitation anomalies for 2000-2016 in California (inches year-1).
The averaged anomaly (difference from long term average) during that period is ≈ −2.07
inches year-1 (−52.48 kg H2O m-2year-1). The precipitation increase expected from El
Niño for the winter 2015-2016 was scarcely above the long term state average. Data/image
provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at
http://www.esrl.noaa.gov/psd.

negative deviation from the precipitation average is steady in time.

The results from the simulations are shown in Figure 3.2, portraying a rough linear

relation between the time to absorption into the bare-soil state and the anomalies in pre-

cipitation in the range selected. The simulations were run using parameters for trees and

grass, with system capacity N = 500.

We are interested in identifying how negative changes in precipitation affect the time

to desertification. In other words, how sensitive is the average time to absorption into

the bare-soil state to small perturbations in precipitation? In order to do this we define

the (dimensionless) sensitivity index S0 as the ratio S0 = (∆T/T )/(∆P/P ), where T is

the average time to absorption, P is the average annual precipitation, and ∆T and ∆P

represent the absolute change in T and P , respectively (see for instance [2, 3]). Direct

computation from the averaged results gives S0 ≈ 2. Similar results were obtained with

http://www.esrl.noaa.gov/psd
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(a) Trees (b) Grass

(c)

Fig. 3.2: Examples of how average time to absorption into the bare-soil state might be
affected by a reduction in average annual precipitation. Parameters for trees were used in
panel (a) and for grass in panel (b). The average of negative anomalies similar to that
observed for the last years in California is around ≈ 50 kg H20 m-2year-1. The model
suggests that the sensitivity index S0 ≈ 2, that is, relative changes in the mean time to
absorption are roughly twice the relative changes in average annual precipitation. For the
simulations, N = 500 and the initial conditions were φ(0) = (0.1, 0.1) (squares), φ(0) =
(0.5, 0.5) (circles), and φ(0) = (0.9, 0.1) (triangles). Each time average was obtained from
50, 000 simulations. Simulations using N = 104 (see Figure D.1 in Appendix D) gave
the same approximate value of S0. Panel (c) shows the histograms corresponding to the
simulated times of absorption with an average annual precipitation of 210 (left/blue) and
250 (right/red) kg H20 m-2year-1 for grass. The simulations used the same system capacity,
N = 500, and initial conditions φ(0) = (0.5, 0.5).
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Table 3.2: Sensitivity Index values S0 = (∆T/T )/(∆P/P ) for N = 500 and N = 104

for grass with initial conditions φ0 = (0.1, 0.1) and for trees with initial conditions φ0 =
(0.5, 0.5).

Grass Trees

∆P N = 500 N = 104 N = 500 N = 104

250− 240 1.9619 2.0307 2.05 2.046

240− 230 2.0316 2.0267 2.0105 2.0026

230− 220 2.0144 2.0138 2.0537 2.0101

220− 210 1.9966 1.9997 1.9927 2.0217

210− 200 2.0169 2.0371 2.0422 1.9926

200− 190 1.9591 1.9982 2.0129 2.0111

the larger system capacity N = 104 (see Table 3.2). This implies, for example, that a 2%

decrease in precipitation will result in a 4% decrease in the time to desertification.
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CHAPTER 4

SUMMARY AND CONCLUSIONS

We have derived a system of stochastic differential equations that describe the dy-

namics of an idealized water-vegetation system. The model is intermediate between an

individual-based and the deterministic model (Klausmeier’s reaction part). With realistic

parameter values for vegetation and precipitation for semi-arid landscapes, and current data

on drought trends in California as example, we computed average times for the transition

from a vegetated state to bare-soil (see Figures 3.2 and D.1). For a fixed system capacity

(N = 500) the simulations for trees and grass suggest that the sensitivity of the time to

absorption into the bare-soil state to change in the annual precipitation is roughly similar

and approximately equal to 2. Repeating the simulations, first for different initial conditions

and then for a larger capacity (N = 104), provided the same approximate relation.

The model suggests that a 4% decrease in precipitation will result in the time to

desertification being shortened by roughly 8%. For example, a decrease of 0.4 inches of

precipitation (10 kg H2O m-2year-1) might reduce time to absorption into the bare-soil

state by more than 25 years for the case of trees, and nearly 5 years in the case of grass (see

Figure 3.2). In other words, current trends of desertification could be significantly boosted

if the patterns of decreasing precipitation anomalies are maintained. However, looking at

the basic transition mechanisms considered here to derive the equations, it is clear that

the model should be used with care to draw any conclusions on specific vegetation-water

systems. Our model ignored the spatial dynamics of these systems, and simulations using

a spatial mesoscale model (see Appendix C) may provide further insight into semi-arid

environments and how they respond to changes in precipitation.

We remark that extended droughts may resemble desertification, but the return of

seasonal precipitation events may recover the vegetation (see for instance [1, 10], where

desertification was limited to localized areas). This suggests that the inclusion of patterns
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(a) (b)

Fig. 4.1: Time to absorption as a function of the system capacity N . Panel (a) shows time
to absorption for two different precipitation values: A = 250 (dashes) and A = 200 (dot-
dashes). The sensitivity of the time to absorption from the annual precipitation computed
forN = 10000 was the same as whenN = 500, that is, S0 ≈ 2. AsN increases, both times to
extinction also increase, but they decrease dramatically as N gets smaller. Panel (b) shows
the difference between the curves in the contiguous plot. Although the difference increases,
the sensitivity of the time to absorption from the annual precipitation is apparently similar
in relatively large systems.

of localized precipitation anomalies would provide more reliable results for extinction times.

For relatively small systems we notice that the times for absorption into the bare-soil state

may be reduced dramatically (see Figure 4.1).

Further work should also include long term variations of other climate related param-

eters. For instance, it has been documented that higher temperatures increase evapotran-

spiration rates [4]. In particular, increments in evaporation rates have been observed over

most of the United States, with the exception of the Southeast, Northeast and the Great

Lake regions, [9]. These increments depend on the location and vary up to 2% every ten

years.
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Appendix A

Rescaling Klausmeier’s Non-spatial Model

In this appendix we present a rescaling of Klausmeier’s non-spatial model. Initially,

we ignored the spatial terms in Klausmeier’s nondimensionalized equations. The question

arose, however, whether rescaling the original equations (with spatial terms included) would

result in the same nondimensionalized equations as rescaling the original equations without

including their spatial terms. We found that the nondimensionalized equations are the same

in either case.

Let t = T
tc
, w = W

wc
and p = P

pc
. Then T = tct,W = wcw and P = pcp. Substituting

these values into Klausmeier’s model without the spatial terms, as shown below,

dW

dT
= A− LW −RWP 2 (A.1)

dP

dT
= RJWP 2 −MP (A.2)

gives:

dw

dt
=

tc
wc
A− tcLw −

p2
c

tc
Rwp2 (A.3)

dp

dt
= tcwcpcRJwp

2 − tcMp . (A.4)

Set tc = L−1, pc =
√
L√
R

, and wc =
√
L

J
√
R

. Then

dw

dt
= A
√
RJL−3/2 − w − wp2 (A.5)

dp

dt
= wp2 − M

L
p . (A.6)
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Now, let a, which controls water input, equal A
√
RJL−3/2 and m, which controls plant

mortality, equal ML−1. Then the equations become

dw

dt
= a− w − wp2 (A.7)

dp

dt
= wp2 −mp . (A.8)

Thus it is easy to see that these are the same equations as Klausmeier’s nondimension-

alized model when the spatial terms are ignored.
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Appendix B

Analysis of the Mean-field Model

Following is the annalysis of the non-spatial stochastic model we derived in Chapter 2:

dφm
dt

= s̃(1− φn − φm)− ṽφm − b̃φ2
nφm (B.1)

dφn
dt

= b̃φ2
nφm − d̃φn . (B.2)

To find the equilibrium points, we examine the nullclines. Notice that when we set dφm
dt = 0,

then either φn = 0 or bφnφm − d = 0. However, φn = 0 is the trivial case, which is of no

interest. (In this case, φm = s
s+v and ( s

s+v , 0) is the trivial equilibrium point.) Solving the

second factor for φn yields

φn =
d

bφm
. (B.3)

Now we set dφm
dt equal to 0 and solve for φn:

dφm
dt

= s(1− φn − φm)− vφm − bφ2
nφm = 0

s− sφn − sφm − vφm − bφ2
n = 0

sφn + bφ2
nφm = −vφm − sφm + s

(bφm)φ2
n + sφn = s− φm(v + s)

(bφm)φ2
n + sφn − [s− φm(v + s)] = 0 .

The left-hand side is quadratic in φn, and thus we have

φn =
−s±

√
s2 + 4(bφm)[s− φm(v + s)]

2bφm
. (B.4)
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Next we set B.3 equal to B.4 and solve for φm, as follows.

d

bφm
=
−s±

√
s2 + 4(bφm)[s− φm(v + s)]

2bφm

2d = −s±
√
s2 + 4(bφm)[s− φm(v + s)]

2d+ s = ±
√
s2 + 4(bφm)[s− φm(v + s)]

(2d+ s)2 = s2 + 4(bφm)[s− φm(v + s)]

4d2 + 4ds = 4bsφm − 4bvφ2
m − 4bsφ2

m

(4d2 + 4ds) = (4bs)φm − φ2
m(4bv + 4bs)

0 = (4bv + 4bs)φ2
m − (4bs)φm + (4d2 + 4ds)

But this is quadratic in φm, so we have

φm =
4bs±

√
16b2s2 − 4(4bv + 4bs)(4d2 + 4ds)

2(4bv + 4bs)

=
4bs±

√
16b2s2 − 64(bv + bs)(d2 + ds)

8(bv + bs)

=
bs±

√
b2s2 − 4(bv + bs)(d2 + ds)

2(bv + bs)
.

Thus there are two equilibrium points at

φm =
bs+

√
b2s2 − 4bd(v + s)(d+ s)

2b(v + s)
(B.5)

and

φm =
bs−

√
b2s2 − 4bd(v + s)(d+ s)

2b(v + s)
. (B.6)

Examining the nullclines (see figure B.1 we see that B.6 identifies the stable equilib-

rium point (
bs−
√
b2s2−4bd(v+s)(d+s)

2b(v+s) , 2d(v+s)

bs−
√
b2s2−4bd(v+s)(d+s)

), which is in agreement with the

continuous (mean field) model.



33

phin

phim´ = s*(1-phin-phim)-b*phim*phin²-v*phim

phin´ = b*phim*phin²-d*phin

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

phim

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Nodal sink at (0.12635, 0.79145)

Saddle point at (0.58794, 0.17009)

Fig. B.1: Nullclines and equilibrium points of stochastic model with parameter values s =
2.5, d = 0.12, b = 1 and v = 1.

For these parameter values, the Jacobian of the stable equilibrium is

 −4.1264 −2.7

0.6264 0.1


and the eigenvalues and eigenvectors are:

−0.34756 (0.58136,−0.81365)

−3.6788 (−0.98654, 0.16353) .

The Jacobian of the saddle point is

 −3.5289 −2.7

0.028929 0.1

 and the eigenvalues and eigenvec-

tors are:

0.078347 (0.59922,−0.80058)

−3.5073, (−0.99997, 0.0080195) .
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Appendix C

Future Work: The Stochastic Model with Space

In this appendix we derive an individual based model which includes space, thus veg-

etation diffusion and water advection are accounted for. We then use this to derive the

mean-field and mesoscale equations, which may be used in future work.

C.1 Vegetation Diffusion

Consider now a planar lattice where each element is a patch within which the non-

spatial dynamics described in the last Section holds. By selecting randomly two patches,

say i and j, there are nine possibilities of further randomly choosing one individual from

each. For describing vegetation movement we are only interested in the pairs {B,E}. Two

migration events between the selected patches are then possible

BiEj
θ−→ EiBj , EiBj

θ−→ BiEj , (C.1)

with associated rate θ. We must also account for vegetation growth or death as before, with

the following events and their associated rates and probabilities:

• BiWi
bn/N−−−→WiBi = 1

Ω
n2
i

N2
mi
N−1

• WiBi
bn/N−−−→ BiWi = 1

Ω
mi
N−1

n2
i

N2

• Bi
d−→ Ei = 1

Ω
ni
N ,

where Ω is the number of patches in the lattice.

Let ni and nj denote the number of biomass units in the patches and z the number of

neighbors of a patch. The transition probabilities for the vegetation migration events are

• T (...ni − 1...nj + 1...|...ni...nj ...) = θ
zΩ

ni
N
N−mj−nj

N

• T (...ni + 1...nj − 1...|...ni...nj ...) = θ
zΩ

nj

N
N−mi−ni

N
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and the remaining transition probabilities are

• T (...ni + 1,mi...|...ni,mi...) = 2b
Ω
n2
i

N2
mi
N−1

• T (...ni − 1,mi...|...ni,mi...) = d
Ω
ni
N .

The associated Kolmogorov equation, which now includes spatial transitions, is then:

dP (−→n ,−→m, t)
dt

=
∑
i

∑
j∈i

[T (...ni, nj ...|...ni − 1, nj + 1...)P (...ni − 1, nj + 1..., t)

− T (...ni + 1, nj − 1...|...ni, nj ...)P (...ni, nj ..., t)

+ T (...ni, nj ...|...ni + 1, nj − 1...)P (...ni + 1, nj − 1..., t)

− T (...ni − 1, nj + 1...|...ni, nj ...)P (...ni, nj ..., t)

+ T (...ni,mi...|...ni − 1,mi...)P (...ni − 1,mi..., t)

− T (...ni + 1,mi...|...ni,mi...)P (...ni,mi..., t)

+ T (...ni,mi...|...ni + 1,mi...)P (...ni + 1,mi..., t)

− T (...ni − 1,mi...|...ni,mi...)P (...ni,mi..., t)]

± water transition probabilities .

Here the transition probabilities have been paired together for easier simplification. Note

that as before, none of the transition probabilities including changes only in m are involved

in the equation for d〈n〉
dt .

We find the rate equation for vegetation by substituting the master equation into:

d 〈nk〉
dt

=
∑
−→n

∑
−→m

nk
P (−→n ,−→m, t)

dt

to obtain:

d 〈ni〉
dt

=
∑
−→n

∑
−→m

{[∑
i

∑
j∈i

(ni + 1)T (...ni + 1, nj − 1...|...ni, nj ...)

− niT (...ni + 1, nj − 1...|...ni, nj ...)
]
P (...ni, nj ..., t)
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+

[∑
i

∑
j∈i

(ni − 1)T (...ni − 1, nj + 1...|...ni, nj ...)

− niT (...ni − 1, nj + 1...|...ni, nj ...)
]
P (...ni, nj ..., t)

+

[∑
i

(ni + 1)T (...ni + 1,mi...|...ni,mi...)

− niT (...ni + 1,mi...|...ni,mi...)

]
P (...ni,mi..., t)

+

[∑
i

(ni − 1)T (...ni − 1,mi...|...ni,mi...)

− niT (...ni − 1,mi...|...ni,mi...)

]
P (...ni,mi..., t)

}
,

which reduces to:

d 〈ni〉
dt

=
∑
−→n

∑
−→m

{[∑
i

∑
j∈i

T (...ni + 1, nj − 1...|...ni, nj ...)
]
P (...ni, nj ..., t)

−
[∑

i

∑
j∈i

T (...ni − 1, nj + 1...|...ni, nj ...)
]
P (...ni, nj ..., t)

+

[∑
i

T (...ni + 1,mi...|...ni,mi...)

]
P (...ni,mi..., t)

+

[∑
i

−T (...ni − 1,mi...|...ni,mi...)

]
P (...ni,mi..., t)

}
.

Recognizing expected values and substituting in the values for the transition rates

yields

d 〈ni〉
dt

=
∑
j∈i

θ

zΩ

〈nj〉
N

(N − 〈ni〉 − 〈mi〉)
N

−
∑
j∈i

θ

zΩ

〈ni〉
N

(N − 〈nj〉 − 〈mj〉)
N

+
2b

Ω

(
〈ni〉
N

)2 〈mi〉
N − 1

− d

Ω

〈ni〉
N

.

Now let b̃ = 2b
N−1 , d̃ = d

N , rescale time to let τ = t
Ω and then divide by N . Then,

d 〈ni〉
dτ

=
θ

zN

∑
j∈i

〈nj〉
N

(N − 〈ni〉 − 〈mi〉)
N

− 〈ni〉
N

(N − 〈nj〉 − 〈mj〉)
N

+ ...
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...+ b̃

(
〈ni〉
N

)2 〈mi〉
N
− d̃〈ni〉

N

=
θ

zN

∑
j∈i

〈nj〉
N

(
1− 〈ni〉

N
− 〈mi〉

N

)
− ni
N

(
1− 〈nj〉

N
− 〈mj〉

N

)
+ b̃

(
〈ni〉
N

)2 〈mi〉
N
− d̃〈ni〉

N

=
θ

zN

∑
j∈i

(φj − φiφj − φjψi)− (φi − φiφj − φiψj)

+ b̃φ2
iψi − d̃φi ,

where φi = 〈ni〉
N , φj =

〈nj〉
N , ψi = 〈mi〉

N and ψj =
〈mj〉
N .

This simplifies to

d 〈ni〉
dτ

=
θ

zN

∑
j∈i

(φj − φi − φjψi + φiψj)

+ b̃φ2
iψi − d̃φi (C.2)

=
θ

N

1

z

∑
j∈i

(φj − φi) +
1

z

∑
j∈i

(φiψj − φjψi)

+ b̃φ2
iψi − d̃φi (C.3)

=
θ

N

∆φi +
1

z

∑
j∈i

(φiψj − φjψi)

+ b̃φ2
iψi − d̃φi , (C.4)

where ∆ is the lattice Laplacian ∆φi = 1
z

∑
j∈i

(fj−fi), and
∑

j∈i represents the sum over the

neighboring patches j. Noticing that φiψj−φjψi = φi(ψj−ψi)−ψi(φj−φi), the expression

in brackets can be rewritten as

φi∆ψi − ψi∆φi .

The appearance of this cross-diffusion term is a consequence of the nature of the reactions

(C.1), i.e. the requirement of space available where the individual is moving, [14]. If we

assume that the capacity of each patch is much larger than the number of individuals, the

cross-diffusion term is negligible and the mean-field equation for the biomass is approxi-

mated by

d 〈ni〉
dt

=
θ

ΩN
∆ 〈ni〉+ b̃ 〈ni〉2 〈mi〉 − d̃ 〈ni〉 . (C.5)
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Letting lattice spacing tend to zero, i.e. carrying the problem into continuous space, gives

∂t 〈n〉 = D∆ 〈n〉+ b̃ 〈n〉2 〈m〉 − d̃ 〈n〉 , (C.6)

where D = θ/ΩN .

C.2 Water Advection

Another consequence of assuming a large capacity in each patch is that we can allow

the unidirectional movement of water, which in our context has deterministic behavior and

is produced by a small landscape gradient. Let us assume that the movement is made along

the X axis. That the water moves with velocity ν means that at each time step h = ε/ν,

where ε is the lattice spacing, a transition of the type

WiEj → EiWj

is produced between the patches i and j, with the former being to the right of the latter

and assuming that there is at least one element W in the i patch. Thus, the relation

〈mj〉 − 〈mi〉
h

= ν
〈mj〉 − 〈mi〉

ε

relating the relative changes due to advective movement leads to

∂t 〈m〉 = ν∂x 〈m〉

when ε tends to zero. Therefore, the mean field equation, i.e. total rate at which changes

in water volume are produced, is given by combining the spatial and non-spatial effects

(equation (8)),

∂t 〈m〉 = ν∂x 〈m〉+ s̃− b̃ 〈n〉2 〈m〉 − ṽ 〈m〉 . (C.7)

For large N , equations (11) and (12) constitute an approximation of Klausmeier’s model

from the stochastic model.
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Recalling that 〈n〉 = Nφn and 〈m〉 = Nφm, equations (11) and (12) can be written as

∂tφn = D∆φn + b̃N2φ2
nφm − d̃φn, (C.8)

∂tφm = ν∂xφm + S − b̃N2φ2
nφm − ṽφm , (C.9)

where S = s̃/N and b̃ = 2b/(N − 1) again.

C.3 Mesoscale Equations

If i represents the spatial index then the mesoscale equations for the ith patch in the

lattice come from (13) and (14) as

dφni
dt

= D∆∗φni +D (φni∆
∗φmi − φmi∆∗φni) + b̃φ2

niφmi − d̃φni , (C.10)

where D = θ/ΩN , b̃ = 2b/(N − 1) and d̃ = d/N , and

dφmi
dt

= ν̃ (φmj − φmi) + S(1− (φni + φmi))− b̃φ2
niφmi − ṽφmi , (C.11)

where ν̃ = νN/ε, S = s̃/N , ṽ = v/N and the neighbor patch j is where water comes from.

Similarly to the non-spatial case, we obtain the expressions

Ani(φi) = D∆∗φni +D (φni∆
∗φmi − φmi∆∗φni) + b̃φ2

niφmi − d̃φni,

Ami(φi) = ν̃ (φmj − φmi) + S(1− (φni + φmi))− b̃φ2
niφmi − ṽφmi,

Bi
nn(φi) = D∆∗φni +D (φni∆

∗φmi − φmi∆∗φni) + b̃φ2
nφm + d̃φn,

Bi
nm(φi) = −b̃φ2

nφm,

Bi
mm(φi) = ν̃ (φmj − φmi) + b̃φ2

nφm + S(1− φn − φm) + ṽφm .
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Appendix D

Additional Simulation Results

D.1 Simulation Results with N = 104.

(a) Trees (N = 104) (b) Grass (N = 104)

Fig. D.1: Average time to extinction plotted against average annual precipitation with
N = 104 and initial conditions φ(0) = (0.1, 0.1) (squares), φ(0) = (0.5, 0.5) (circles), and
φ(0) = (0.9, 0.1) (triangles). Each time average was obtained from 50, 000 simulations.
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Appendix E

MatLab Code

This appendix contains the codes used to create figures and tables in the thesis as

explained in each of the following subsections.

E.1 Code for Figure 2.1

The following MatLab code creates Figure 2.1.

1 % Plots a stochastic simulation , a mean -field solution and

klausmeier 's
2 % model solution all on one graph.

3
4 clear all;

5
6 %% Stochastic Simulation

7 %===========================% PARAMETERS AND VARIABLES

8 a=1; % precipitation (rescaled)

9 m=0.05; % veggie death rate (rescaled)

10 N=500; % patch capacity

11 T=1000; % time

12
13 p=1; % veggies

14 q=1; % water units

15 %===========================%

16
17 t=0;

18 figure;

19 hold on;

20 i=1;

21
22 while (p>0 && q>=0 && t<=T);

23
24 %===========================% TRANSITION RATES

25 TR1=p^2*q; %(p,q)-->(p+1,q-1)

26 TR2=m*p; %(p,q)-->(p-1,q)

27 TR3=a; %(p,q)-->(p,q+1)

28 TR4=q; %(p,q)-->(p,q-1)

29
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30 TR=TR1+TR2+TR3+TR4; % total rate of events

31
32 Tpoints(i)=t;

33 P(i)=p;

34
35 t=t+exprnd (1/TR);

36
37 r=rand;

38 if r<TR1/TR;

39 p=p+1; q=q-1;

40 elseif and(TR1/TR <=r,r<(TR1+TR2)/TR);

41 p=p-1;

42 elseif and((TR1+TR2)/TR <=r,r<(TR1+TR2+TR3)/TR);

43 q=q+1;

44 else and((TR1+TR2+TR3)/TR <=r,r<1);

45 q=q-1;

46 end

47
48 if q<0

49 q=0;

50 end

51
52 if p==0;

53 T=t;

54 break;

55 end

56
57 i=i+1;

58
59 end

60
61 plot(Tpoints ,P,'r')%,t,q,'b')
62
63 axis ([0 T 0 40]);

64 root1=a/(2*m)+sqrt((a/(2*m))^2-1)

65 root2=a/(2*m)-sqrt((a/(2*m))^2-1)

66
67 %% Klausmeier 's solution without space in blue dots

68 % ode45 (function name , vector of time span , initial

conditions which is a vector for more than one variable)

69
70 [t,dx]= ode45(@klauss ,[0 1000] ,[1 1]);

71
72 plot(t,dx(:,1),'b:')
73
74 xlabel('time (rescaled)')
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75 ylabel('<n>')
76 hold on

77
78 %% Our Mean -field Model in black dash -dots

79
80 % ode45 (function name , vector of time span , initial

conditions which is a vector for more than one variable)

81
82 [t,dx]= ode45(@klaus ,[0 1000] ,[1 1]);

83
84 plot(t,dx(:,1),'k-.')
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E.2 Code(s) for Figures 3.2 and D.1

This first code runs 50, 000 simulations of the mesoscale model, computing the extinc-

tion times and returning the mean. It simulates real data and creates the histogram found

in Figure 3.2.

1 % TimetoDesert.m

2 % Euler -Maruyama method for solving stochastic differential

equations

3 % SDE is dphin=An dt + (1/ sqrtN)*(gnn*dW1)

4 % and dphim=Am dt + (1/ sqrtN)*(gmn*dW1+gmm*dw2)

5 % where An=b*phin ^2*phim -d*phin and

6 % Am=S(1-phin -phim)-b*phin ^2*phim -v*phim

7 % gnn=some function ,and gnm=some function ,

8 % phin (0)=phin0 =? VARIES

9
10 % Discretized Brownian path over [0 ,500] has dt =500/2^(11) ,

which is approx 0.2441

11 % Euler -Maruyama uses timestep R*dt

12
13 clear all

14
15 K=500; % patch size --the number of

individuals in the patch , or thecapacity of the patch

16 % Klausmeier Parameters for Grass

17 A = 250; % annual precipitation

18 RR = 100; % water uptake by plants

19 LL = A/75; % evaporation rate

20 J = 0.003; % yield of plant biomass

21 M = 1.8; % mortality rate

22
23 % Klausmeier Parameters for Trees

24 % A = 200; % annual precipitation

25 % RR = 1.5; % water uptake by plants

26 % LL = A/75; % evaporation rate

27 % J = 0.002; % yield of plant biomass

28 % M = 0.18; % mortality rate

29
30 AVT = []; % empty matrix to hold the time to

extinction for each trial k.

31 T=500; N=2^11; dt=T/N; % T is the final time; N is the

number of intervals; dt is the change in time or length of

the intervals

32 % Note here that we are working in

terms of
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33 % Tau=t/K, or time divided by the

system size ,

34 % thus we need to scale by a factor

of K, and

35 % choose N accordingly , to keep the

step size

36 % small. Our choice of N=2^11

yields

37 % comparable calculations to this

scaling.

38 R=1; Dt=R*dt; L=N/R; % L EM steps of size Dt=R*dt

39
40 B=J*sqrt(RR)/LL ^(3/2); % part of parameter a (S)--controls

water input

41 d=M/LL; % parameter m--measures plant losses (d tilde)

42 b=1; % constants b tilde , v tilde and S(s)

43 v=1;

44 s=A*B;

45
46
47 for k=1:50000;

48
49 %randn('state ',1); % Sets the state for repeatable

experiments

50 dW1=sqrt(dt)*randn(1,N); % Brownian increments for dW1

51 W1=cumsum(dW1); % discretized Brownian path

52
53 %randn('state ',50);
54 dW2=sqrt(dt)*randn(1,N); % Brownian increments for dW2

55 W2=cumsum(dW2);

56
57 phinEM=zeros(1,L); % preallocating vectors of length L for

phin/phim for E-M method

58 phimEM=zeros(1,L);

59
60 % INITIAL CONDITIONS

61 phin0 =0.1; % initial plant density <n>/K; must be <1.

62 phim0 =0.1; % initial water density

63
64 phinEM (1)=phin0; % The first entry of the vectors are

the initial conditions

65 phimEM (1)=phim0;

66
67 phintemp=phin0; % a temporary holding for the values

generated

68 phimtemp=phim0;
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69
70 for j=1:L

71
72 Winc1=sum(dW1(R*(j-1)+1:R*j));

73 Winc2=sum(dW2(R*(j-1)+1:R*j));

74
75 gnn=sqrt(b*phintemp ^2* phimtemp+d*phintemp);

76 gnm=0;

77 gmn=-1*(b*phintemp ^2* phimtemp)/(sqrt(b*phintemp ^2* phimtemp

+d*phintemp));

78 gmm=sqrt(b*phintemp ^2* phimtemp+s*(1-phintemp -phimtemp)+v*

phimtemp -(b*phintemp ^2* phimtemp)^2/(b*phintemp ^2*

phimtemp+d*phintemp));

79
80 phintemp=phintemp+Dt*(b*phintemp ^2* phimtemp -d*phintemp)

+(1/ sqrt(K))*(gnn*Winc1);

81
82 phimtemp=phimtemp+Dt*(s*(1-phintemp -phimtemp)-b*phintemp

^2* phimtemp -v*phimtemp)+(1/ sqrt(K))*(gmn*Winc1+gmm*

Winc2);

83
84 if phimtemp <0

85 phimtemp =0;

86 end

87
88 % If phintemp <=0, then the vegetation is gone , thus the

time to extinction is on the next time step (j+1), call

this ExT

89 if phintemp <=0

90 ExT = j+1;

91 phinEM(j+1) =0;

92 phin = phinEM (1: ExT);

93 phim = phimEM (1: ExT);

94 AVT(end+1) = ExT*Dt*LL; % This ExT becomes the Last

entry in our time vector after we scale the time

back to normal time by multiplying by LL (what we

scaled time by originally)

95 break;

96 end

97
98 phinEM(j+1)=phintemp;

99 phimEM(j+1)=phimtemp;

100
101 ExT = L;

102 end

103
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104 if ExT==L

105 ExT=L+1;

106 phin = phinEM;

107 phim = phimEM;

108 end

109 end

110
111 %dlmwrite('A190.txt ',AVT '); % Copies the data from AVT

into a data file

112 figure (1)

113 % Creates a histogram of the values in AVT , the times to

extinction for each trial run k.

114 histogram(AVT ,'Normalization ','probability ');
115
116 xlabel('Average Time to Absorption (in years) for Grass ','

FontSize ' ,11)
117 ylabel('Probability ','FontSize ' ,11)
118 legend('210 kg H_20 m^-2year^-1','250 kg H_20 m^-2year^-1')
119 MEAN=mean(AVT) % Returns the mean time to extinction

120 STD=std(AVT) % Returns the standard deviation of the

times to extinction

121 hold on

122
123 %figure (2);

124 % Creates a plot of the density of veg and water vs. time

125 %plot(LL*[0:Dt:(ExT -1)*Dt],phin ,'r');
126 %hold on

127 %plot(LL*[0:Dt:(ExT -1)*Dt],phim ,'b');
128 %xlabel('time (years)','FontSize ',12);
129 %ylabel('<n>','FontSize ',16,'Rotation ',0,'HorizontalAlignment

','right ');
130 %grid on
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The following code uses the data created by the previous code to create Figures 3.2

and D.1.

1 % TimeToDesertGraphs.m

2 % Creates graphs which plot the average time to bare -soil

against average

3 % annual precipitation.

4
5 clear all;

6
7 % For N=500...

8
9 % TREES

10 TS =[189.5016 209.9826 231.5614 254.6912 278.4560 303.6373

329.6891;

11 272.0442 302.4873 335.0714 368.4437 404.5689 441.5589

481.0018;

12 291.5214 323.5984 358.2973 395.7213 433.4615 473.5001

515.7965];

13
14 figure (1) % Trees Plot

15 plot ([190:10:250] , TS(1,:),'Color ','b','Marker ','s','
MarkerFaceColor ','b')

16 hold on

17 plot ([190:10:250] , TS(1,:),'k-');
18 hold on

19 plot ([190:10:250] , TS(2,:),'Color ','r','Marker ','o','
MarkerFaceColor ','r')

20 hold on

21 plot ([190:10:250] , TS(2,:),'k-');
22 hold on

23 plot ([190:10:250] , TS(3,:),'Color ' ,[0 .4 0],'Marker ','^','
MarkerFaceColor ' ,[0 .6 0]);

24 hold on

25 plot ([190:10:250] , TS(3,:),'k-')
26 axis ([180 260 150 550]);

27 hold on

28 xlabel('Average Annual Precipitation (kg H_20 m^-1year^-1)','
FontSize ' ,11);

29 ylabel('Average Time to Absorption (years)','FontSize ' ,11);
30 grid on

31 %title('Trees , N=500 ')
32
33 % GRASS [(0.1 ,0.1); (0.5 ,0.5); (0.9 ,0.1)]

34 GS =[18.0396 19.9986 22.1234 24.3316 26.6672 29.1333 31.6143;
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35 24.4041 27.1582 30.0628 33.1678 36.4355 39.8458 43.3761;

36 26.3933 29.3614 32.5986 35.9455 39.4672 43.1419 47.0066];

37
38 figure (2) % Grass Plot

39 plot ([190:10:250] , GS(1,:),'Color ','b','Marker ','s','
MarkerFaceColor ','b')

40 hold on

41 plot ([190:10:250] , GS(1,:),'k-');
42 hold on

43 plot ([190:10:250] , GS(2,:),'Color ','r','Marker ','o','
MarkerFaceColor ','r')

44 hold on

45 plot ([190:10:250] , GS(2,:),'k-');
46 hold on

47 plot ([190:10:250] , GS(3,:),'Color ' ,[0 .4 0],'Marker ','^','
MarkerFaceColor ' ,[0 .6 0]);

48 hold on

49 plot ([190:10:250] , GS(3,:),'k-')
50 axis ([180 260 15 50])

51 hold on

52 %plot(LL*[0:Dt:(ExT -1)*Dt],phim ,'b');
53 xlabel('Average Annual Precipitation (kg H_20 m^-1year^-1)','

FontSize ' ,11);
54 ylabel('Average Time to Absorption (years)','FontSize ' ,11);
55 grid on

56 %title('Grass , N=500 ')
57
58 %% For N=10000...

59
60 % TREES

61 TS =[295.1249 327.5406 360.9405 396.9971 434.0354 473.2195

513.3676;

62 378.3396 420.6367 464.7322 511.7594 560.7676 611.8188

666.3537;

63 397.8612 441.8719 488.7622 537.9516 589.0216 643.7465

700.6334];

64
65 figure (3) % Trees Plot

66 plot ([190:10:250] , TS(1,:),'Color ','b','Marker ','s','
MarkerFaceColor ','b')

67 hold on

68 plot ([190:10:250] , TS(1,:),'k-');
69 hold on

70 plot ([190:10:250] , TS(2,:),'Color ','r','Marker ','o','
MarkerFaceColor ','r')

71 hold on
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72 plot ([190:10:250] , TS(2,:),'k-');
73 hold on

74 plot ([190:10:250] , TS(3,:),'Color ' ,[0 .4 0],'Marker ','^','
MarkerFaceColor ' ,[0 .6 0]);

75 hold on

76 plot ([190:10:250] , TS(3,:),'k-')
77 axis ([180 260 250 750]);

78 hold on

79 xlabel('Average Annual Precipitation (kg H_20 m^-1year^-1)','
FontSize ' ,11);

80 ylabel('Average Time to Absorption (years)','FontSize ' ,11);
81 grid on

82 %title('Trees , N=10^4 ')
83
84 % GRASS [(0.1 ,0.1); (0.5 ,0.5); (0.9 ,0.1)]

85 GS =[27.7312 30.8093 34.1190 37.5303 41.1317 44.9257 48.8976;

86 34.1675 38.0533 42.1251 46.4505 51.0166 55.7105 60.7363;

87 36.1142 40.2441 44.6512 49.2560 54.0398 59.0741 64.3077];

88
89 figure (4) % Grass Plot

90 plot ([190:10:250] , GS(1,:),'Color ','b','Marker ','s','
MarkerFaceColor ','b')

91 hold on

92 plot ([190:10:250] , GS(1,:),'k-');
93 hold on

94 plot ([190:10:250] , GS(2,:),'Color ','r','Marker ','o','
MarkerFaceColor ','r')

95 hold on

96 plot ([190:10:250] , GS(2,:),'k-');
97 hold on

98 plot ([190:10:250] , GS(3,:),'Color ' ,[0 .4 0],'Marker ','^','
MarkerFaceColor ' ,[0 .6 0]);

99 hold on

100 plot ([190:10:250] , GS(3,:),'k-')
101 axis ([180 260 25 70])

102 hold on

103 %plot(LL*[0:Dt:(ExT -1)*Dt],phim ,'b');
104 xlabel('Average Annual Precipitation (kg H_20 m^-1year^-1)','

FontSize ' ,11);
105 ylabel('Average Time to Absorption (years)','FontSize ' ,11);
106 grid on

107 %title('Grass , N=10^4 ')
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E.3 Code for Figure 4.1

The following code creates the plots found in Figure 4.1.

1 % TimeToDesertAgainstSystemCapacityGraph.m

2 % Figure (1) creates a plot of time to absorption as a function

of the system capacity.

3 % Figure (2) is a plot of the difference between the curves in

Figure (1).

4 % Matrix A holds values for time to absorption for Trees (with

Initial

5 % Conditions (0.1, 0.1) and precipitation of 250 kg H_20 m^-2

year^-1

6 % for the system capacities listed in Matrix D (which are all

x10^4). Matrix B

7 % holds values with precipitation of 200 kg H_20 m^-2year^-1.

8 % N=500.

9 A=[1.6276 329.2826 372.0593 415.5715 429.1128 470.2861

496.4436 513.7356 527.1162 538.8384 548.0776 556.0340

563.9478 570.8132];

10
11 B=[1.3021 209.9534 237.2587 264.6408 273.5786 300.6575

316.0146 327.4661 336.0344 343.2827 349.3036 354.9180

359.1834 363.0663];

12
13 C=A-B;

14
15 D=[0 .05 .1 .2 .25 .5 .75 1 1.25 1.5 1.75 2 2.25 2.5];

16
17 figure (1)

18 plot(D(1,2:end),A(1,2:end),'k--')
19 hold on

20 plot(D(1,2:end),B(1,2:end),'k-.');
21 xlabel('N x10^4','

FontSize ' ,11,'HorizontalAlignment ','left ');
22 ylabel('Years ','FontSize ' ,11);
23 grid on

24
25 figure (2) % Plots the difference

26 plot(D(1,2:end),C(1,2:end),'k-')
27 xlabel('N x10^4','

FontSize ' ,11,'HorizontalAlignment ','left ');
28 ylabel('Years ','FontSize ' ,11);
29 grid on
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