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ABSTRACT 

Do Data Structures Matter? A Simulation Study for Testing the Validity of  

Age-Period-Cohort Models 

by 

Sun Young Jeon, Master of Science 

Utah State University, 2017 

 

Major Professor: Dr. Eric N. Reither 

Department: Sociology, Social Work & Anthropology 

 

 

For the last four decades, scholars have made significant efforts to develop 

statistical techniques to estimate the independent contributions of three temporal 

dimensions (i.e. age, period, and cohort) to population health and other outcomes. These 

efforts have been challenged by the “identification (ID) problem,” a statistical conundrum 

that occurs due to an algebraic dependence between the three temporal terms. 

Hierarchical Age-Period-Cohort (HAPC) modeling and Intrinsic Estimator (IE) methods, 

which are two of the most recent and important innovations in Age-Period-Cohort (APC) 

analysis, provide unique model specifications to address the ID problem. However, recent 

critiques have questioned the validity of these two methods in properly addressing the ID 

problem by presenting evidence that both have limitations, including potentially invalid 

estimation of age, period, and cohort effects. In this dissertation, I test the argument 

advanced by proponents of HAPC and IE methods that each of them provides unbiased 

estimation of parameter values when the data structure satisfies model assumptions. In 

Chapters 2 and 3, I conduct a series of simulation analyses to assess the validity of these 
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claims, as well as the usefulness of preliminary analyses (i.e., descriptive and model 

selection statistics) in identifying data structures that are compatible with APC models. In 

Chapter 4, I provide a step-by-step demonstration of the HAPC method to empirical data 

to study how age, period and cohort contribute to educational inequalities in health in 

United States. The results from these analyses indicate that descriptive and model 

selection statistics are useful in identifying temporal data structures prior to the 

application of HAPC and IE models, and that these methods tend to provide unbiased 

estimates when the data structures are three-dimensional. Furthermore, even when the 

data structures and corresponding “best models” were ambiguous, it was possible to 

utilize APC methods by cross-validating nested models.  

(162 pages) 
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PUBLIC ABSTRACT 

Do Data Structures Matter? A Simulation Study for Testing the Validity of  

Age-Period-Cohort Models 

Sun Young Jeon 

 

Age, period, and cohort are three temporal dimensions that can make unique 

contributions to social and epidemiological changes that occur in populations over time. 

However, while the theoretical underpinnings for each temporal dimension are well 

established, the statistical techniques to assess the distinctive contributions of age, period 

and cohort are controversial. Unless questionable assumptions are imposed on the data, 

traditional linear regression models are incapable of estimating the independent 

contribution of each temporal dimension due to the linear dependence between age, 

period and cohort (A=P-C). Two recently developed methods, Hierarchical Age-Period-

Cohort (HAPC) and Intrinsic Estimator (IE) models, enable researchers to estimate how 

all three temporal dimensions contribute to an outcome of interest without resorting to 

such assumptions. However, some simulation studies suggest that these new methods 

provide biased estimates of each temporal dimension. In this dissertation, I investigated 

whether practitioners can avoid biased results by first understanding the structure of the 

data. In Chapters 2 and 3, I examined whether visual plots of descriptive statistics and 

model selection statistics could identify various types of data structures through a series 

of simulation analyses. The results showed that preliminary data analysis is useful for 

identifying data structures that are compatible with the assumptions of HAPC and IE 

models. Moreover, when the data satisfied assumptions such as three-dimensionality and 
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slight deviations from perfect functional forms, both HAPC and IE models tended to 

provide unbiased estimates of age, period and cohort effects. In Chapter 4, I provided a 

step-by-step demonstration for applying HAPC models by investigating the unique 

contributions of age, period and cohort to educational inequalities in the health of a large 

sample of U.S. adults. This study found that age and cohort effects contribute most to 

variability in health, and also that cross-validation is a useful way to incorporate HAPC 

models when preliminary analyses do not definitively show that the data structure is three 

dimensional. 



vii 

ACKNOWLEDGMENTS 

 

Foremost, I would like to thank my major professor Dr. Eric Reither for his 

training and advising over the last seven years. Working with Dr. Reither in graduate 

school has been the luckiest event in my career. I have no doubt that my journey in 

graduate school could never have been the same without him. I also want to thank 

another major professor of mine, Dr. John R. Stevens for fully supporting the concurrent 

degree plan in Statistics, and helping me to finish my training in the department of 

Mathematics and Statistics. I am sure that I could not have accomplished some work in 

this dissertation without those wonderful experiences in statistics. Also, I would like to 

acknowledge that it has been my great honor to work with Dr. Kenneth Land, and to have 

his insightful comments and suggestions for my work on age-period-cohort models. I 

express my special gratitude to Dr. Sojung Lim for her warm advice and care, in addition 

to the wonderful opportunities to be part of her research projects. I am grateful to Dr. Erin 

Hofmann for her amazing classes in demography and comments, feedback and 

recommendations on this dissertation. Besides my committee professors, I am grateful to 

the faculty, staff, and graduate students in the Department of Sociology. 

I give my special thanks to my parents, sister Jee Young, brother-in-law 

Seunggeun, and two adorable nephews for their encouragement and support from 6,000 

miles away. Lastly, I would like to thank Pedro, who is the dearest partner of my life and 

academic journey, for his support and belief in me. 

Sun Y. Jeon 



viii 

CONTENTS 

 

Page 

ABSTRACT  ........................................................................................................................... iii 

PUBLIC ABSTRACT ............................................................................................................. v 

ACKNOWLEDGMENTS  .................................................................................................... vii 

LIST OF TABLES  ................................................................................................................. vi 

LIST OF FIGURES  .............................................................................................................. vii 

CHAPTER 

I. INTRODUCTION .............................................................................................. 1 

 

II. PRELIMINARY ANALYSES TO IDENTIFY  

            DATA STRUCTURES IN THE APPLICATION OF   

HIERARCHICAL AGE-PERIOD-COHORT MODELS ...............................  10 

 

Introduction ...................................................................................................... 10 

Methods ...........................................................................................................  19 

Results .............................................................................................................. 25 

Discussion ........................................................................................................ 35 

Tables and Figures ........................................................................................... 40 

 

III. METHODS TO EVAULATE DATA STRUCTURES  

PRIOR TO THE APPLICATION OF INTRINSIC ESTIMTAOR  

AGE-PERIOD-COHORT MODELS ..............................................................  61 

 

Introduction ...................................................................................................... 61 

Methods ............................................................................................................ 73 

Results .............................................................................................................. 77 

Discussion ........................................................................................................ 84 

Tables and Figures ........................................................................................... 89 

 

IV. ESTIMATING THE EFFECTS OF AGE, PERIOD,  

AND COHORT ON THE EDUCATIONAL GAPS IN HEALTH  

USING HIERARCHICAL AGE-PERIOD-COHORT MODELS ................. 101 

 

Introduction .................................................................................................... 101 

Methods .......................................................................................................... 111 

Results ............................................................................................................ 114 

Discussion ...................................................................................................... 122 

Tables and Figures ......................................................................................... 126 

 



ix 

 

V. CONCLUSION .............................................................................................  131 

 

REFERENCES  ................................................................................................................... 136 

CURRICULUM VITAE  ..................................................................................................... 147 



x 

LIST OF TABLES 

 

Table                               Page 

1  Description of Age, Period and Cohort Effects Simulated 

for Each Scenario ..................................................................................................  42 

 

2  DGPs for Each Scenario ......................................................................................... 43 

 

3  Model Fit Statistics for Nested APC Models Fitted 

to 50 Simulated Data in A-Set ................................................................................ 48 

 

4  Model Fit Statistics for Nested APC Models Fitted 

to 100 Simulated Data in B-Set .............................................................................. 52 

 

5  Model Fit Statistics for Nested APC Models Fitted 

to 100 Simulated Data in C-Set .............................................................................. 54 

 

6  Model Fit Statistics for Nested APC Models Fitted 

to 100 Simulated Data in D-Set .............................................................................. 58 

 

7  Model Fit Statistics for Nested APC Models Fitted 

to 100 Simulated Data in A-Set .............................................................................. 93 

 

8  Model Fit Statistics for Nested APC Models Fitted 

to 100 Simulated Data in B-Set .............................................................................. 95 

 

9  Model Fit Statistics for Nested APC Models Fitted 

to 100 Simulated Data in C-Set .............................................................................. 98 

 

10  Model Fit Statistics for Nested APC Models Fitted 

to 100 Simulated Data in D-Set ............................................................................ 100 

 

11  Sample Characteristics ......................................................................................... 126 

 

12  Goodness-of-Fit Statistics for Four Educational Groups ..................................... 128 

 

 

 

 

 

 

 

 

 

 



xi 

LIST OF FIGURES 

 

Figure                               Page 

1  The Simulation Scenarios from A-Set to D-Set ....................................................  40 

 

2  Visualized Descriptive Statistics of A-Set ............................................................. 47 

 

3  HAPC-CCREM and a Reduced Model Fitted  

to 50 Simulated Data in A-Set ................................................................................ 49 

 

4  Visualized Descriptive Statistics of B-Set ............................................................. 51 

 

5  HAPC-CCREM and a Reduced Model Fitted  

to 100 Simulated Data in B-Set .............................................................................. 53 

 

6  Visualized Descriptive Statistics of C-Set ............................................................. 54 

 

7  A Reduced Model (A and AP) Fitted to 100 Simulated Data in C-Set .................. 55 

 

8  Visualized Descriptive Statistics of D-Set ............................................................. 56 

 

9  HAPC-CCREM Fitted to 100 Simulated Data in D-Set ........................................ 59 

 

10  Visualized Simulation Scenarios of A, B, C, and D-Sets ...................................... 89 

 

11  Visualized Descriptive Statistics of Scenarios in A-Set ......................................... 91 

 

12  Estimates of the IE for 100 Simulated Data in A-Set ............................................ 93 

 

13  Visualized Descriptive Statistics of Scenarios in B-Set ......................................... 94 

 

14  Estimates of the IE for 100 Simulated Data in B-Set ............................................. 96 

 

15  Visualized Descriptive Statistics of Scenarios in C-Set ......................................... 97 

 

16  Estimates of the IE for 100 Simulated Data in C-Set ............................................. 98 

 

17  Visualized Descriptive Statistics of Scenarios in D-Set ......................................... 99 

 

18  Estimates of the IE for 100 Simulated Data in D-Set .......................................... 100 

 

19  Descriptive Statistics – Percentage of Having Poor/Fair Health 

for Four Education Groups by Age, Period, and Cohort ...................................... 127  

 

 



xii 

20  Comparing Estimates of A, AP, and APC Models 

for the Least and Most Educated Groups ............................................................. 129 

 

21  Predicted Probability of Having Fair/Poor Health  

Estimated by HAPC Models ................................................................................ 130 

 

 

 

 

 



 
 
 

 

CHAPTER I 

INTRODUCTION 

 

Since Norman Ryder’s (1965) pioneering work establishing the concept of cohort, 

studies in sociology, demography, and epidemiology have explored the differential 

influences of three temporal units on time-related changes to the phenomena of interest. 

Those three units are age, period, and birth cohort, which conceptually make distinct 

contributions to the changes that occur over time. All individuals experience a biological 

and psychological aging process that happens within an individual as time passes, and the 

term age effects refers to the influence of such processes on the phenomena of interest. 

Apart from individual aging, society at the macro level—wherein the individuals reside—

is transformed over time by societal, cultural, and epidemiological changes. The term 

period effects indicate impacts of such temporal variations of the society on the outcome 

of its interests, which are made evenly and simultaneously to all members at all ages. 

Lastly, as individuals make “fresh” contacts with emerging facets of society at different 

ages, the impacts may differ across generations who experience these new realities at 

different stages of the life course. The impacts caused by the distinct experiences of the 

contemporary society depending on age-at-exposure are defined as cohort effects, and 

they influence the phenomena of interest over individuals’ life courses.  

This work is a significant conceptual advancement in the understanding of 

temporal dimensions and their contributions to time-related changes. Unfortunately, it has 

not been accompanied by robust measurement techniques because independent effects of 
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age, period, and cohort are hard to operationalize in the traditional regression model 

setting. This is the case because the concepts of the three terms are algebraically 

dependent on their definitions. That is, birth year, which determines the membership of 

the birth cohort (C), is defined by subtracting the age (A) from the period (P) in which the 

data were taken (C=P-A). Due to this perfect collinearity, a model including all three 

terms is not estimable. To further illustrate, suppose that a researcher specifies a linear 

regression model that estimates the independent effects of age, period, and cohort on the 

outcome of interest as follows:  

 

Y = α +  𝛽1𝐴𝑔𝑒 + 𝛽2𝑃𝑒𝑟𝑖𝑜𝑑 +  𝛽3𝐶𝑜ℎ𝑜𝑟𝑡 +  𝜀,   (1) 

 

where Y is the outcome variable, α is the intercept; β1, β2, and β3 are the partial slopes of 

age, period, and cohort; and ε is the random error term (Mason et al. 1973). As it is, Eq 

(1) cannot be used to estimate the coefficients α, β1, β2, β3, and ε. The perfect collinearity 

between the three regressors in the model causes the design matrix (X) of Eq (1) to be 

singular with one less-than-full column rank (Kupper et al. 1985). Consequently, the 

ordinary least squares (OLS) estimator, which is identical to the maximum likelihood 

(MLE) estimator with the normally distributed error terms in this model setting, does not 

exist. As a result, Eq (1) has infinite numbers of coefficient sets and cannot identify 

which of them correspond to the true age, period, and cohort effects. This is called the 

identification (ID) problem, which is a well-known conundrum in the age-period-cohort 

(APC) analysis. 
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For decades, APC analysis, which encompasses systematic studies that attempt to 

measure the independent contributions of age, period, and cohort to temporal changes in 

a wide range of outcomes, has mainly been developed to determine how to address this 

intractable methodological issue. Two conventional solutions to this problem in the 

regression framework are 1) constraint-setting approaches (Fienberg and Mason 1979, 

Mason and Fienberg 1985); and 2) nonlinear parametric transformations (Yang 2008b). 

The former imposes one additional constraint, which is usually an equality constraint that 

supposes adjacent age, period, or cohort groups have equal-size effects (i.e., βn= βn+1). By 

doing this, the design matrix X is enforced to be non-singular, and the OLS/MLE 

estimator of the linear regression can be obtained. The latter uses continuous age, period, 

or cohort terms and specifies polynomial patterns for one or more of the three dimensions 

(Yang 2008b). This allows at least one of the age, period, and cohort terms to have a 

nonlinear relationship to the others, breaks the perfect algebraic dependence between the 

three terms, and yields a model that is just-identified. 

These two approaches make the model estimable. However, both approaches have 

one critical limitation in common. They need a priori knowledge to guide selection of the 

“correct” constraint or polynomial function in order to estimate the true effects of age, 

period, and cohort. Unfortunately, such knowledge (sometimes referred to as “strong 

theories”) is often not available or sufficiently solid (Reither et al. 2015b). When this is 

the case, the model still cannot be identified, or an arbitrary constraint or functional form 

may be selected. As a previous study showed, the estimates of age, period, and cohort 

effects can be highly sensitive to the selection of the constraint or the functional form 

(Yang, Fu and Land 2004), meaning a researcher should always be aware that these 
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approaches carry the risk of obtaining biased estimates. In real-world research, there is no 

way to assess whether the imposed constraint or functional form is the right one.  

Consequently, APC scholars have searched for another statistical approach that 

can identify the set of true age, period, and cohort effects without requiring a priori 

knowledge. Such specification of a model should solely rely on the model setting and the 

data to obtain the model estimator. Then, the model will have very little room for bias, 

which is caused by the arbitrary selection of constraint or functional form. In the past 

decade, a new class of such methodologies in APC research has emerged, providing 

innovative strategies for addressing the ID problem. Two of the most important APC 

innovations are Hierarchical APC (HAPC) modeling and Intrinsic Estimator (IE) 

methods (Yang and Land 2006, Yang 2008a, Yang and Land 2013a). Applied to repeated 

cross-sectional survey data and tabular rate data, respectively, these two methods provide 

unique model specifications that address the ID problem. Unlike the conventional 

approaches to the ID problem, both methods identify the single set of age, period, and 

cohort effects without relying on any external information. With this desirable feature, 

both are endorsed by some scholars as non-arbitrary methods of defining the unique and 

true set of age, period, and cohort effects.  

Since their development, these two methods have been widely used in studies for 

understanding the distinct contributions of age, period, and cohort on important social, 

political, and epidemiological issues. However, recent critiques have presented evidence 

that both models have limitations, including potentially invalid estimation of age, period, 

and cohort effects (Bell and Jones 2013, Bell and Jones 2014b, Held and Riebler 2013, 

Luo 2013a). In these critiques, the authors simulated APC data and showed that the 
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estimates of the HAPC and IE methods did not match the true age, period, and cohort 

effects that generated the outcome data. By interpreting these results as consequences of 

the ID problem that was not resolved by those two methods, the critiques questioned the 

validity of the HAPC and IE methods as well as the findings of the previously published 

studies that had employed either of those methods. Further, the authors recommended 

that researchers stop using the methods.  

Proponents of innovative APC methodologies have interpreted results of these 

simulation studies with skepticism. In rejoinders to the critiques, they argue that it was 

premature to say that the HAPC and IE methods failed to address the ID problem, 

because results obtained in the simulation studies might have been caused by an incorrect 

application of the models. The “wrong” application here includes simulating unrealistic 

data that violate important model assumptions, a lack of understanding of the simulated 

data, and application of the HAPC and IE to datasets that are not ideal candidates for the 

full three-dimensional APC model. The proponents of new APC methods have further 

argued that scholars must avoid mechanical application of APC models, because there is 

no such universal method in APC analysis that will work in every instance.  

According to Yang and Land (2013a), key to avoiding the misuse of the APC 

model is understanding the data structure and finding the best nested fit or the full APC 

model for the given data structure. Here, “data structure” is used to represent how much 

the effects of the age, period, and cohort independently contribute to the changes of Y 

over time. When the contribution of a term is negligible, the data structure is reduced for 

that term. In such a case, a reduced model rather than the full three-dimensional model, 

such as HAPC or IE, should be applied. Applying the model with more variables than 
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necessary is statistically inadvisable because inference with such a model may cause poor 

precision and identification of effects (Burnham and Anderson 2004). Similarly, applying 

a reduced model to fully three-dimensional data, wherein all three terms’ contributions 

are significant, may lead to biased estimates (Burnham and Anderson 2004). Therefore, it 

is essential to carefully select a final model that can strike a balance between over- and 

under-fitting, to obtain unbiased estimates. When conducted along with those preliminary 

analyses, Yang and Land (2013a) argue that HAPC and IE are reliable estimators.  

How, then, do we know the data structure (i.e., how much A, P, and C each 

contribute to changes in Y over time) prior to estimating an APC accounting model such 

as HAPC or IE? Yang and Land (2013a) propose a three-step procedure, providing a 

systematic method for understanding the data structure and applying the best-fitting 

model. It can be conducted as follows: Step 1 involves conducting descriptive analysis 

and visualizing the patterns of temporal variations to gain some qualitative understanding 

of the data; Step 2 involves fitting the nested models of age (A), period (P), and cohort 

(C) effects (i.e., A, P, C, AP, PC, AC, and APC), and comparing the goodness of fits by 

using measures such as Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC). These two steps can help a researcher to better understand the structure 

of the given data and learn the best analytic model by which to gain unbiased results. 

Then, only for the cases for which Steps 1 and 2 suggest that the full three-dimensional 

APC model is a better fit than the other reduced models for the given data, the analysis 

moves on to Step 3: applying the HAPC or IE to estimate the effects of A, P, and C. With 

data for which a reduced model fits better than the full three-dimensional model, a 

researcher should not move on to Step 3. However, Yang and Land (2013a) argue that as 
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a result of ignoring this important procedure and lacking an understanding of the 

structure of the simulated datasets, the critics have made crucial errors in applying the 

full three-dimensional model to the data, which better fits a reduced model. In their 

rejoinders, Yang and Land (2013b) demonstrate that when applying a reduced model 

suggested by the preliminary step, the true effects of age, period, and cohort were well-

captured by the simulation.   

On the other hand, the critics still express doubt about these efforts. They are 

skeptical about the possibility of understanding the true data structure by using 

descriptive and model-fit statistics (Bell and Jones 2015). The critics argue that no 

statistical model can lend much help in understanding the true data structure, because the 

confounding by the linearity between the three dimensions is completed during the data-

generating process (DGP). Then, at the stage of statistical model application, the data 

with different structures already appear identical due to the completed confounding, and 

no statistical model can yield different results when applied to identical data. The critics 

go on to say that the most we can understand from the preliminary stages of the three-step 

procedure is whether there exists significant nonlinear variation in each of the three 

dimensions, and moreover, when any linear trend is present in a data structure, the 

preliminary analysis cannot reveal much about the true data structure.  

The debate on the HAPC and IE has not been settled. The proponents and critics 

hold fundamentally different understandings of APC data and the ID problem, and those 

different perspectives lead to diverging interpretations of simulation results. 

Consequently, scholars in these opposing camps routinely reach conflicting conclusions 

on the validity of the models. This dissertation aims to provide clarification to the 
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ongoing debates on the HAPC and IE. Chapters 2 and 3 start by reviewing different 

perspectives and interpretations of the ID problem and APC data in the contexts of HAPC 

and IE, and move on to test the validity of the HAPC and IE along with the suggested 

three-step procedure through sets of simulation analysis. To simulate plausible data 

structures, some temporal trends are borrowed from previously published studies on 

obesity (Reither, Hauser and Yang 2009) and suicide mortality in South Korea (Jeon, 

Reither and Masters 2016). Combining the empirically well-known age trends with 

possible patterns of period and cohort effects in multiple scenarios, I simulate a variety of 

realistic data structures in the first two chapters. Then, following the three-step procedure, 

the HAPC (Chapter 2) and the IE (Chapter 3) are applied to the simulated datasets. 

Through this focus, Chapters 2 and 3 of this dissertation aim to answer the two following 

questions: 

1. Does the three-step procedure suggested by Yang and Land (2013a) detect the 

true data structure and inform users of whether to use or not use the HAPC or 

IE across a variety of datasets? 

 

2. Do the HAPC or IE capture the true data structures when they do not violate 

model assumptions?  

 

In Chapter 4, I will demonstrate the step-by-step application of the HAPC in empirical 

research using existing data. To be specific, I will employ the National Health Interview 

Survey (NHIS) with the goal of understanding age, period, and cohort effects on 

disparities in self-rated health across levels of educational attainment in the U.S. 

Following the three-step procedure, this chapter will demonstrate how a researcher can 

conduct APC analysis with enough caution to valid estimates of all three temporal 

dimensions. The procedure will include conducting the preliminary analysis, applying the 

HAPC, interpreting the results, and comparing the results to those of other extant studies. 
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Furthermore, this chapter is intended to provide an understanding of how real data could 

be different from simulated APC data that have been widely used in debates about 

innovative methodologies. By learning more about real APC data structures, the third 

chapter will add to insights provided in earlier chapters regarding guidelines for 

simulation analysis and empirical model application, which can contribute to further 

refinement of APC methodologies in the future.
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CHAPTER II 

 

PRELIMINARY ANALYSES TO IDENTIFY DATA STRUCTURES IN THE 

APPLICATION OF HIERARCHICAL AGE-PERIOD-COHORT MODELS 

 

 

Introduction 

Two Understandings of the Identification Problem 

The heart of the identification (ID) problem in age-period-cohort (APC) analysis 

is that “If age, period and cohort are treated as continuous variables, then it will be 

impossible to estimate all parameters in a model (of the linear regression form) (Mason, 

Mason et al. 1973, p 243).” This problem occurs due to a unique property of APC data: 

the three temporal dimensions are defined in an algebraically linear relationship (A=P-C). 

Because of this linear dependency, the design matrix of a linear regression model that 

includes all three temporal terms as regressors is singular with one less than full column 

rank. The estimator of the linear regression, (XTX)-1XTY, cannot be obtained, as the term 

(XTX)-1 does not exist for the singular design matrix. Therefore, this regression model has 

an infinite number of coefficient sets and cannot identify which one of them corresponds 

to the true effects of age, period, and cohort. Most scholars agree on this description of 

the ID problem (Bell and Jones 2014b, Kupper et al. 1985, Yang and Land 2013a). 

However, scholars have different perspectives when it comes to the possibility of 

addressing the ID problem. That is primarily because scholars have different 

understandings about the nature of the ID problem itself. One group of scholars 

exclusively focuses on the linear dependency between the three temporal terms when 
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studying the ID problem and the structure of APC data (Bell and Jones 2014a, Bell and 

Jones 2014b). Of course, there is no doubt that the linear dependency is a fundamental 

property of the ID problem. This dependency indeed exists in all APC data as long as the 

three temporal terms are defined in the linear relationship. In other words, the ID problem 

is inherent to the APC data, not a statistical model applied to the APC data after 

confounding between the effects of the three terms is completed. 

To better understand this argument, suppose that the following data structure is 

simulated: 

                      Y = (1*Age) + (1*Period) + (1*Cohort)                              (4) 

Using the linear relationship between age, period, and cohort (A=P-C), Eq (4) can 

be converted into the two following equations: 

Y = 2*Age + 2*Cohort                                             (5) 

Y = 2*Period                                                      (6) 

When researchers have APC data, it means they have the left hand side of the equation 

(i.e., some outcome variable, Y). The goal of APC analysis is to estimate the coefficients 

on the right side of the equations by applying the model. However, the three 

aforementioned equations will produce identical data even though the coefficients of age, 

period, and cohort on the right hand sides of Eq (4) are not the same as those of Eq (5) 

and Eq (6). The problem is that a statistical model cannot distinguish between the 

differences on the right hand sides of Eq (4) – (6) when only the left side is given as APC 

data. In other words, there is no statistical model that can yield distinguishing results 

when applied to the same data. According to this understanding, advancement or 
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modification of the statistical model does not aid in solving the ID problem since it is an 

intractable feature of the data. 

These scholars argue that the only possibility for identifying a single set of 

coefficients is to find a correct constraint by relying on a solid theory (Bell and Jones 

2013). It is not an ultimate solution for the ID problem, but it does produce unique 

estimates for the coefficient set in the regression model. Imposing a constraint creates a 

modification to the design matrix X and forces it to be non-singular with full rank. Then 

the term (XTX)-1 exists and the coefficient vector can be obtained. Although this approach 

may be useful for estimating the true age, period, and cohort effects, the usage is limited 

to circumstances in which the solid theory exists. When the theory is not available or 

sufficiently solid, there is a possibility of obtaining biased outcomes by choosing the 

wrong constraint (Yang, Fu and Land 2004). 

A second group of scholars understands the ID problem from a different 

perspective. They point out that not one but rather two conditions must be simultaneously 

met to induce the ID problem: the three temporal effects are (1) linearly related to each 

other (A=P-C), and (2) linearly related to the outcome of interest (Y=A+P+C) (Mason et 

al. 1973). The first group of scholars focuses exclusively on the first condition, assuming 

that it is sufficient to induce the ID problem. The second group of scholars argues that 

this is not a complete understanding of the ID problem. These scholars argue that while 

there is no doubt that the linear dependency between A, P, and C is inherent to all APC 

data, this special property of APC data is only one facet of the ID problem. Indeed, these 

scholars point out that the first condition becomes problematic because it causes a 

singular design matrix in the linear regression (i.e., the form of linear models, which 
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assume the additivity of the independent variables and treat them as fixed effects that are 

independent from each other), and the (XTX)-1 term for the estimator (XTX)-1XTY cannot 

be obtained. In other words, if we can specify a model wherein the estimator no longer 

needs the (XTX)-1 term, it may be possible to determine an estimable model specification, 

even though the linearity between age, period, and cohort still exists in the APC data. 

Therefore, for these scholars, the ID problem is a model-specific matter, rather than a 

data-specific one. For example, mixed-models use a different estimator, (XTVX)-1XTV-

1Y, where V=ZGZT+R, Z contains the predictors of random effects (i.e., intercept and 

slope), G is a covariance matrix for random effects, and R is a covariance matrix for error 

terms. In this type of model, even though the linearity between A, P, and C remains, the 

estimator no longer requires the (XTX)-1 term found in a simple linear model. 

 

What is the Hierarchical APC Model? 

The Hierarchical APC (HAPC) model was developed by scholars who understand 

the ID problem as a model-specific matter (Yang and Land 2006, Yang and Land 2008). 

The model is specifically intended for repeated cross-sectional survey data. Unlike 

classical tabular rate data presented in the form of an age-by-period matrix, repeated 

cross-sectional survey data provide a more flexible APC data structure. Whereas a single 

observation consists of each element of the age-by-period matrix in the tabulated rate 

data, multiple observations belong to each element of the period-cohort matrix in the 

repeated cross-sectional data. In this structure, the temporal widths of time periods and 

birth cohorts are not required to be equal to the temporal width of age, and this allows 

flexibilities on the exact algebraic relationship between the three temporal terms (Reither 
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et al. 2015b). Taking advantage of this flexibility, the HAPC has two additional 

properties in model specification for addressing the second condition of the ID problem: 

(1) a multi-level setting in which three effects are not assumed to be linear and additive at 

the same level, and (2) an addition of an age-squared term that estimates a nonlinear 

function for age and does not assume a linearly additive relationship between the three 

temporal terms and Y. The model specification of the HAPC cross-classified random 

effects modeling (CCREM) is as follows: 

 

Level 1: Yijk = β0jk + β1Ageijk + β2Age2
ijk + eijk with eijk ~ N(0, σ2)               (7) 

Level 2:  β0jk = γ0 + u0j + v0k  with u0j~N(0, τu), v0k ~ N(0, τv)                     (8) 

 

β0jk is an intercept term, β1 and β2 are fixed regression slopes, and eijk is the random 

individual effect, which is assumed to be normally distributed with mean 0 and variance 

σ2. The intercept term β0jk in level 1 is differentiated in Level 2 where γ0 is the grand 

mean of the outcome variable across all individuals; u0j is the period effect for period j 

averaged over all birth cohorts, which is assumed to follow the normal distribution with 

mean 0 and variance τu; and v0k is the cohort effect for cohort k averaged over all periods, 

which is assumed to follow the normal distribution with mean 0 and variance τv. 

According to this model specification, the three effects are not assumed to be 

additive or linear at the same level. Age is treated as a fixed effect at the individual level, 

and period and cohorts as random effects that pertain to entire groups of individuals. This 

allows the level 1 intercept to randomly vary by period and cohort. This multilevel setting 

is also a conceptually elegant alternative to the conventional linear additive model. The 
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model specifies that secular changes and cohort membership influence the lives of 

individuals through “level 2” contextual effects. The fixed effect of age at level 1 can 

reflect biological and social aging processes and their effects on the outcome of interest 

over an individual’s life course. The random effect of period at level 2 can represent the 

influences of historical events, demographic or epidemiological transitions, public health 

interventions, and new technologies on all individuals in the entire population. The 

random effect of cohort at level 2 can reflect a unique experience of historical or social 

events at a certain life stage, shared by individuals belonging to the cohort (Reither, 

Hauser and Yang 2009).  

Most importantly, this model identifies a unique set of age, period, and cohort 

effects without relying on any external information. With these conceptual justifications 

and statistical advantages, the HAPC has been widely used to study issues such as 

temporal trends in happiness (Yang 2008b), obesity (Reither et al. 2015b), religious 

service attendance (Schwadel 2010), cannabis use prevalence (Piontek et al. 2012), and 

voter turnout volatility (Dassonneville 2013). 

 

Why Do HAPC Models Sometimes Fail? 

Despite these purported advantages, recent critiques emphasize that estimates 

from HAPC models do not match the true effects of A, P, and C in data generated 

through various simulation exercises. Through responses to those critiques and a series of 

rejoinders, the following has been alleged: 

• The HAPC model only works if there are no linear trends in period and cohort 

(Bell and Jones 2014a). 

• The HAPC model fails if there is no period effect (Bell and Jones 2014a). 
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• The HAPC model fails when descriptive plots of age and cohort effects are mirror 

images of each other (Reither et al. 2015a). 

 

 

Depending on the understanding of the ID problem, the interpretation of these results 

differs. Scholars who believe that the ID problem is data-specific argue that the results 

are evidence that the HAPC framework fails to address the ID problem. According to 

them, the conversion of the data structures of Eq (4) into Eq (5) and Eq (6) is still valid 

even with the introduction of the quadratic age term. As a result, even though the HAPC 

model identifies a single set of coefficients, it may nevertheless select an arbitrary set of 

estimates rather than the true set of age, period, and cohort effects. 

Proponents of HAPC modeling disagree with this interpretation. For example, 

Reither et al. (2015a) point out that although the conversion between the data structures is 

algebraically correct, this holds only with respect to the expected values (population 

means) of the HAPC model. Thus, the left side of Eq (4) – Eq (6) should be modified to 

be E(Y), where E(*) is the expectation operator. The HAPC model specifies a level-1 

equation for Y, for individuals in a repeated cross-sectional research design where the 

level-1 equation is a stochastic equation (e.g., a logistic probability function or with an 

error term that is specified as being distributed according to some probability distribution 

[e.g., normal]). Then, the exact algebraic identity at the individual respondent level has, 

practically speaking, a probability of zero. In other words, the way that the critics 

interpret the results is erroneous, but that is not the reason why the HAPC has failed in 

their simulation analysis. 
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Why, then, does the model fail sometimes? Proponents of the model first 

highlight that it is not surprising that the HAPC fails in some situations. Yang and Land 

(2013b) state: 

….in all cases, APC analysis should be approached with great caution and 

awareness of its many pitfalls. There will never be such a “final” or “universal” 

solution within the confines of conventional linear models that necessarily beget 

the ID problem (pg. 1971). 

 

According to these proponents, the critics of HAPC models engineered failure into their 

simulation procedures by violating key model assumptions—and subsequently applying 

HAPC models to data for which they were never designed. Just like any other statistical 

model, HAPC models are based on statistical assumptions that should be met to make the 

model specifications valid. For instance, the structure of the data should be three-

dimensional, in which all the three temporal terms have obvious contributions to the 

outcome variable over time (Yang and Land 2013b). When the given data turns out to 

have a reduced structure (i.e., at least one of the temporal dimensions has essentially no 

contribution to the outcome of interest), the HAPC model may not work, producing 

biased results. In addition, none of the three temporal terms should not have perfect 

functional forms. Given the nature of the APC data, this can cause one dimension to be 

expressed as a functional form of another dimension, and confounding between 

dimensions may occur (Yang and Land 2013b). In such cases, the HAPC model may not 

work, failing to differentiate the confounded effects. This is highly improbable in “real 

world” data structures, but it has been overlooked in previous simulation procedures.  

However, when a proper procedure is followed to ensure that application of a 

three-dimensional model is appropriate, the HAPC can be a reliable estimator for the true 

A, P, and C effects. Yang and Land (2013b) suggest that understanding the structure of 
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the data and checking the key assumptions, by conducting descriptive analysis and 

obtaining model-fit statistics, is essential prior to the implementation of APC models. By 

ignoring these important preliminary steps, simulation analyses in the critiques 

mistakenly applied three-dimensional HAPC models to data that cannot support this. 

Reither et al. (2015b) showed that these preliminary steps could have helped 

understanding the data structure in the critiques and avoiding the misuse of the HAPC 

model.  

 

What Should Be Studied From Here? 

In summary, scholars agree that the HAPC model is not a magic bullet that can 

always yield unbiased estimates for repeated cross-sectional data. However, they disagree 

on whether the potential failure of HAPC models can be predicted by understanding the 

data structure. Whereas one group of scholars believes it is impossible to understand the 

true structure of APC data with any statistical method, the other group recommends that 

practitioners follow a simple process to gather a qualitative and quantitative 

understanding of the data structure, which will help determine if the given data are 

suitable for HAPC modeling. When the data satisfy basic assumptions, HAPC models 

can provide valid and reliable estimates of the true age, period, and cohort effects.  

To add evidence to this debate, I simulate various APC data structures and test the 

validity of HAPC models along with the suggested method for understanding the data 

structure. The aim of this study is two-fold. First, I will test the validity of the descriptive 

and model-fit statistics as preliminary steps to prevent the misapplication of the HAPC 

models by identifying data structures that violate model assumptions. Some of the 
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simulated data in this study are designed to violate APC model assumptions by having 

essentially no period or/and cohort effects, or by having linear trends of period and cohort 

effects at the same time. Such data structures should be distinguishable through the 

preliminary steps, enabling researchers to avoid biased estimates that can occur when 

full-three dimensional models are used inappropriately. Second, this study will examine 

if HAPC models provide valid and reliable estimates when the preliminary steps suggest 

that the data structure is three-dimensional. Some of simulated data in this study are 

clearly three-dimensional and do not violate important model assumptions. In such cases, 

preliminary steps should ascertain the three-dimensional structure, and the estimates of 

HAPC models should match the true effects that generated the data. By conducting this 

analysis, this chapter will attempt to answer the following two questions. 

• Are the descriptive and model-fit statistics reliable methods for understanding the 

true data structure in APC analysis? 

• When the data is eligible for the HAPC according to the descriptive and model-fit 

statistics, does the HAPC capture the true age, period, and cohort effects? 

 
Methods 

 

Simulation Design  

 

The first step in this study is to develop data generating processes (DGPs) that 

simulate repeated cross-sectional data on obesity among U.S. adults belonging to 

different ages, periods of observation and birth cohorts. Altogether, thirteen different 

DGPs were created to produce a range of APC patterns. Some of these patterns are 

intended to produce large and clearly distinct age, period and cohort effects – situations 

where HAPC models are expected to capture the true APC patterns in the DGP. Other 
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patterns are intended to produce less distinct effects or to violate important model 

assumptions – situations where HAPC models might reasonably be expected to “fail.” 

Descriptions of all thirteen scenarios are presented in Table 1. 

The A and B-sets in Table 1 each include three scenarios in which the data 

structures begin as obviously three dimensional and are gradually shifted toward two 

dimensional models, as either cohort effects (A-set) or period effects (B-set) are 

diminished. For the three scenarios in the A-set, there were three different degrees of 

cohort effects, holding the age and period patterns constant. The coefficients for age and 

period effects used in the DGP are borrowed from Reither, Hauser and Yang (2009), 

which used HAPC models to estimate the contribution of age, period and cohort effects 

to the predicted probabilities of obesity among U.S. adults. The age pattern has a 

quadratic functional form peaking around the age of 60 (Table 2), and the period trend 

increases in a monotonic fashion (Figure 1-(a), Table 2). Variations in the cohort effects 

are also derived from the results presented in Reither, Hauser and Yang (2009). In this 

study, the magnitude of cohort effects varied substantially across race-sex subgroups, but 

the pattern was generally similar. This general pattern of cohort effects was a left-skewed 

V-shape, with the size of the V larger in some groups than others. The scenario in A-1 

displays a similar but more obvious V-pattern of cohort effects than the one found by 

Reither, Hauser and Yang (2009) for any subgroup. Scenario A-2 used the exact cohort 

coefficients found by Reither, Hauser and Yang (2009) in the overall sample, and A-3 

used a similar but less obvious pattern of cohort effects, which roughly follows the flatter 

pattern detected among non-black males.  
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For the B-set, another three scenarios are tested, for which the dimensions of the 

data structure vary by period effects, holding the age and cohort patterns constant. The 

pattern of age effects is borrowed from a critique of HAPC models (Bell and Jones 

2014b), which also has a quadratic functional form that peaks in the late 70s (Table 1). 

The pattern of cohort effects is set to be the same as that in A-1, which is the most 

obvious left-skewed V-shape (Figure 1-(b)). Then, holding these conditions for the age 

and cohort effects constant, three different degrees of the period pattern were established 

(Figure 1-(b)). Scenario B-1 has the most obvious monotonically increasing period trend, 

with the coefficients spanning a wide range. In B-2, other settings stay the same, but the 

period pattern is set to be less obviously increasing. Lastly, B-3 has essentially no period 

effects, which is the exact same pattern of period effects that Bell and Jones (2014b) 

simulated in their critique of the HAPC model; it is only re-parameterized to make the 

sum of the coefficients equals to zero. In this critique, Bell and Jones skipped preliminary 

analyses recommended by Yang and Land (2013a), concluding that an HAPC model 

failed to detect the true data structure. I will examine whether conducting preliminary 

analyses might have helped Bell and Jones understand the true data structure, thus 

avoiding the sort of misapplication of HAPC models that Yang and Land warn against.  

In the C-set, the same procedure is repeated for an even more reduced data 

structure. The C-set contains only one scenario, in which both period and cohort effects 

are almost negligible. Thus, the data structure is essentially one-dimensional. The age 

pattern is the same as that used in the B-set. The period pattern is the same as that in B-3, 

and the cohort pattern is the same as that in A-1, which are the least obvious period and 

cohort patterns in the A and B-sets, respectively, with a very low level of variation 
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allowed. I will examine whether the descriptive and model-fit statistics are useful for 

understanding the data structure when it is one-dimensional, and if they can aid in 

selecting the age-only model in particular for this specific data structure in the C-set. 

Lastly, six scenarios were designed in the D-set to test what occurs when two of 

the three temporal dimensions display near-linear trends. One critique by Bell and Jones 

(2015) was that the preliminary analysis would not be useful for detecting the true data 

structure when near-linear trends are present in the data structure. To test this critique, I 

set a near-linear increasing trend for the period effects and allowed for substantial 

variation in the slope and direction of the near-linear trend for the cohort effects. The 

coefficients for age are the ones used in the B and C-sets. When both period and cohort 

effects display linear patterns, one can express the other in a functional form. This is 

likely to cause serious confounding between period and cohort effects and make it 

challenging to detect the true data structure in the preliminary analysis. For example, 

when the period has a linearly increasing trend and the linear cohort trend is obviously 

decreasing (i.e., D-6), the data is truly three-dimensional, as all of the three temporal 

dimensions make clear contributions to the outcome of interest. However, the offset 

between the two dimensions due to confounding may occur, and the descriptive and 

model-fit statistics may recognize the data structure as one-dimensional data in which 

only age effects are present. To provide clarification on this concern, I investigate how 

the descriptive and model-fit statistics react to such data structures.  

All the period and cohort patterns shown in the scenarios are simulated in the 

DGPs as near linear (or polynomial) functional forms. Reither et al. (2015b) pointed out 

an important error in a previous critique (Bell and Jones 2014b), which was failing to 
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permit some deviation from perfect functional forms. Because perfect functional forms 

generate data structures that make the APC model specification invalid (Yang and Land 

2013b) and are highly improbable in any data created by actual social and historical 

phenomena, I avoided random effects aligned on exact functional forms, and allowed 

enough deviations to make the data structures realistic.  

 

Simulation Procedure 

To start, I use Stata 13 to simulate data following the DGPs presented in the 

previous section. For each scenario in the A-set, I simulate 50 datasets containing one 

million observations, which is a similar sample size to that used in Reither, Hauser and 

Yang (2009). For such a large sample size, little variance in the descriptive statistics (i.e. 

prevalence) and the model estimates across the simulated datasets are expected. 

Therefore, I simulated only 50 datasets, which is half the number of the datasets 

generated in a previous HAPC simulation study (Reither et al. 2015a). For each scenario 

in the B, C, and D-sets, 100 datasets containing 50,000 observations are simulated. The 

sample size is set to be relatively larger than what was used (i.e. 20,000 or 30,000) in 

previous critiques of HAPC models and rejoinders to those critiques (Bell and Jones 

2014a, Bell and Jones 2014b, Reither et al. 2015a, Reither et al. 2015b). I expect the 

larger sample size to provide more consistent results across simulated datasets compared 

to previous studies, and also provides a more robust rationale to decide the best fitting 

model when goodness-of-model fit statistics suggest different models. Considering this 

sample size is relatively smaller than the one used in the A-set, I simulated twice as many 

datasets in the B, C, and D-sets than in the A-set for encompassing wider ranges of 
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variances in estimates across datasets, which is also consistent with the number of dataset 

simulated in the previous study (Reither et al. 2015a).  

Each simulated dataset has a continuous term for age ranging from 18 to 92 and 

27 periods of observation ranging from 1976 to 2002. For each observation, I randomly 

assign age and period within these ranges. Then, birth year is calculated by subtracting 

age from period, which generates 18 5-year birth cohorts ranging from 1890 to 1980. 

Finally, age is centered at 25 to reduce the association between age and age-centered 

terms (Reither, Hauser and Yang 2009). 

 

Three-step Procedure  

The three-step procedure suggested by Yang and Land (2013) is applied to the 

simulated data using R 3.2.2. In Step 1, I create descriptive plots of obesity prevalence 

across all three temporal dimensions to gather an initial impression of variability across 

age groups, periods of observation and birth cohorts. The prevalence of obesity is 

calculated by dividing the frequency of Y=1 (obese) by the total frequency in each age, 

period and cohort group. To ease the interpretation, these proportions are converted into 

percentages, and median percentages are estimated across all 50 datasets in A-set and 100 

data sets in B and C-sets. In Step 2, goodness-of-fit statistics, Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC), are calculated for the 7 nested 

models (i.e. A, P, C, AP, AC, PC, APC) for each dataset, and the best fitting model is 

tallied across all simulated datasets for each scenario. In their critique on the three step 

procedure of the HAPC application, Bell and Jones (2015) point out that “different model 

fit statistics give different answers (p. 332)”. The inconsistency between AIC and BIC is 
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not surprising, and it is often observed in empirical research settings. This is mainly 

because those two methods penalize the number of parameters included in the model 

using different weights. AIC uses 2 as the weight by which to penalize the number of 

parameters, while BIC uses the logged sample size, which is usually heavier than 2. Note 

that the sample sizes in this study are set to be as big as one million and 50,000.  In such 

cases, the difference in the number of parameter between the nested and the full models is 

amplified by the logged sample size (i.e., ln(1,000,000)=13.8, ln(5,000)=10.82), which 

has a pronounced influence on BIC. Due to this significant penalty, BIC tends to favor 

reduced models using fewer parameters with large sample sizes, which can lead to the 

omission of temporal dimensions that are present in the data structure and potentially 

important from a substantive point of view. For this reason, I will rely more on the AIC 

than the BIC in this study when those two model fit statistics are not consistent. However, 

I still present the BIC along with the AIC to show how those two criteria may differ with 

respect to identifying the best fitting model in the context of large sample sizes. In Step 3, 

the HAPC is applied only when all three dimensions appear to be active in the results 

from the descriptive analysis and goodness-of-fit tests. To evaluate the validity of the 

HAPC, the coefficients of age, period and cohort effects are estimated and compared to 

the true data structure that is used to generate the simulated dataset. 

 

Results 

A-Set 

Figure 2 presents results of the descriptive analysis for the scenarios in the A-set, 

which includes substantial variability in cohort effects but holds age and period effects 
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constant. First, the descriptive plots by age and period maintain highly similar patterns 

regardless of the variation in the cohort effects. For all three scenarios, the descriptive age 

plots are concave, facing downward, with very similar curvatures and peaks ranging from 

50 to 60. The pattern of the period plots is a monotonic increase displaying similar rate 

ranges for all three scenarios. The differences between the scenarios are revealed by the 

descriptive statistics on cohort, especially with respect to cohorts born after 1960. For all 

three scenarios, the prevalence increases from the earliest cohorts to the cohorts born in 

the 1930s, and then fall off until the cohort born in the 1960s. Then, for A-1 and A-2, 

which have more obvious cohort patterns than A-3, the prevalence climb thereafter. Of 

those two, the climb is steeper in A-1, which has an even more obvious cohort pattern. 

On the other hand, in A-3, which has essentially no cohort trend, the prevalence keeps 

decreasing after the birth cohort born in 1960, but at a gentler pace than the decreasing 

trend of earlier cohorts born between 1930 and 1960. 

Note that descriptive statistics do not perfectly disentangle the effects of the three 

temporal terms. The prevalence of obesity by age, period, and cohort is a raw statistic, 

which does not control for the other terms’ influence. In APC studies, descriptive plots 

for age and cohort are often nearly mirror images of each other, because people in the 

later age groups consist of earlier birth cohorts. Because of this property, we can learn 

one important thing if we compare descriptive age and cohort plots: If they have 

obviously different shapes, it is likely that age and cohort make unique contributions to 

the outcome of interest. Looking at the results of the A-set, the descriptive plots for those 

two terms are not close to mirror images. This implies that both age and cohort 

dimensions are creating their own patterns, so a model that includes both temporal 
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dimensions could be selected. On the other hand, as the cohort effects become less 

obvious from A-1 to A-3, the shape of the cohort plot begins to approach that of the age 

plot. When such thing is observed, either of those dimensions is likely to be inactive in 

the true data structure.  

As all three dimensions in the A-set scenarios clearly have their own patterns, it is 

reasonable for a researcher to guess here that the data is fully three-dimensional. The 

model-fit statistics can add clarification to this guess. Table 3 presents how many 

simulated datasets out of 50 make the best fit for each of the seven nested APC models, 

when the model fits are estimated by AIC and BIC. For A-1, all 50 simulated datasets 

make the best fit with the fully three-dimensional model, according to AIC and BIC. 

Interpreted along with the descriptive statistics, this is strong evidence that A-1’s data 

structure is three-dimensional. Therefore, the analysis can move on to the last step of the 

three-step procedure, applying the HAPC model to the data.  

For A-2, which has a less obvious cohort pattern than A-1, the AIC points toward 

the full three-dimensional structure for all 50 datasets. However, BIC points toward the 

AP model for all 50 datasets. The difference in the goodness-of-fit between the AP and 

APC models may be smaller in A-2 than in A-1, and the penalty on the number of 

parameters that the BIC imposes is too heavy in that it makes the AP model preferable to 

the APC model. Considering the very large sample size, I rely more on the AIC than the 

BIC. In summary, it is a reasonable guess here that the data structure of A-2 is three-

dimensional based on the AIC along with the descriptive plots.  

For A-3, in which the pattern of the cohort effects was the least obvious in the A 

set, AIC still finds that 45 out of 50 datasets are three-dimensional, while 5 are two-
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dimensional with active A and P dimensions. As the true data structure has very small 

cohort effects, it seems that the random variation imposed during the DGP produces the 

10% of the simulated dataset that has further reduced structures than the rest. From the 

results, we can learn that the data structure is on the border between the three- and two-

dimensions. Since the AIC points toward the three-dimensional model for the majority of 

the simulated datasets, I attempt to move on to Step 3 and applied the HAPC to the 50 

datasets in A-3.  

The results of the HAPC estimates in comparison with the true DGPs are 

presented in Figure 3. Overall, the HAPC models detect the true data structure quite well. 

The HAPC models catch the age trend accurately, and they also perform very well with 

the true period and cohort trends. Although the latest periods and earliest cohorts in A-1 

tend to have wider ranges of coefficients, the patterns in the DGPs are well captured by 

the HAPC estimates. In particular, even for A-3 where the cohort effects are the least 

obvious, the HAPC successfully estimates the DGP of all three dimensions.  

What if the given data is one of those five, for which the AIC suggested AP 

instead of the three-dimensional model in A-3? Could the AP model still estimate the true 

age, period and cohort effects? To test that, I applied hierarchical AP models for those 

five data sets, and the results are presented in Figure 3 (part d). These “HAP” models 

tend to underestimate the age effects, especially for those in the middle ages, but the 

overall patterns matches that of the true data structure. The period effects are perfectly 

captured by the HAP model. Based on this result, a researcher would conclude that the 

data has quadratic age effects, monotonically increasing period effects, and no significant 

cohort effects. In other words, the conclusion drawn by using the AP model is not 
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substantively different from that made by using the APC model, and these conclusions 

well reflect the true data structure. Also, this result confirms that a researcher can use 

whichever model the AIC suggests.  

 

B-Set 

With the B-set, I imposed variations on the period effects while holding age and 

cohort effects constant. As with the A-set, the descriptive period plots well reflect the 

DGP in the B-set (Figure 4). The increase in obesity prevalence is most obvious for B-1, 

less obvious for B-2, and almost flat for B-3, corresponding to pattern in each scenario. 

Descriptive plots of age and cohort are not heavily affected by variation in period effects. 

Obesity prevalence among cohorts born after 1960 shows some differences across the 

three scenarios, but the overall pattern of age and cohort effects does not change.  

It is worth comparing B-1 with A-1. Those two scenarios have a very similar 

DGP: quadratic age effects, monotonically increasing period trends, and left-skewed V-

shaped cohort effects. However, the patterns of age and cohort plots are very different. 

The age and cohort plots in B-1 are close to mirror images of each other, while those in 

A-1 are not. The only major difference between the two scenarios is the age coefficients. 

Note that the coefficient for the age term used in DGP for A-1 was smaller (i.e., 0.059) 

than the one used for B-1 (i.e., 0.1). That means the relative contribution of the cohort 

effects to the age effects may be smaller in B-1 than in A-1. This implies that as either 

age or cohort effects overpower the other, the descriptive plots of age and cohort may 

become closer to mirror images. This occurs because the dominant dimension of those 

two effects primarily drives the changes to the prevalence. Consequently, in APC data 
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where age and cohort have an inverse relationship (i.e., the older people consist of the 

earlier cohorts, and the younger people consist of the later cohorts), the prevalence of the 

minor dimension of those two factors is not largely different from a mirror image of the 

major dimension.  

For B-1, researchers may think that the actual data structure is two-dimensional 

(i.e., AP or CP here), as descriptive plots of two dimensions are close to mirror images. 

Otherwise, they may think that it is still three-dimensional because the descriptive cohort 

plot has a flattening right tale, which the age plot does not have. In such an ambiguous 

situation, a researcher should obtain supplementary information from the model-fit 

statistics to gain a clearer idea of the data structure before applying any model.  

The model-fit statistics calculated for the scenarios in the B-set are presented in 

Table 4. Although both AIC and BIC are calculated for the scenarios in the B-set, I would 

rely more on AIC, considering that 50,000 is still quite a large sample size and may 

create too heavy of a penalty for the number of parameters. For B-1, in which the pattern 

of the period was the most obvious in the B-set, the AIC shows that all of the 100 

datasets are three-dimensional as expected. For B-2, which has a less obvious pattern of 

period effect than B-1 does, the AIC still suggests that all of the 100 datasets are three-

dimensional. Lastly, for B-3, which has almost no contribution from period, the AIC 

swings between AC and APC models. The AIC points toward the AC model for 78 of 

100 datasets, while 22 are still considered to have the full APC structure. This is good 

evidence that the data structure is on the border between the full and a reduced 

dimensions, and a reduced model (i.e. AC) could be considered for some of the datasets. 

Based on the descriptive and model-fit statistics, it is a reasonable choice for a researcher 
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to move on to apply the HAPC to B-1 and B-2. For B-3, the decision is not very simple. 

If a given data is one of those 78 datasets, for which the AIC suggested AC, a researcher 

is likely to choose a reduced model (i.e., AC), and this decision also makes sense with the 

descriptive plots. However, if a given data is one of those 22 datasets, for which the AIC 

suggested the full three-dimensional model (i.e., HAPC), there is a conflict between the 

results of the descriptive and model-fit statistics. In such a case, it is not recommended to 

move on to Step 3 because the data is likely to be on the border line of the two structures, 

and there is no guarantee that the HAPC can provide unbiased estimates.  

The results of the HAPC models are presented in Figure 5. For B-1 and B-2, 

HAPC models capture the DGP for most of the age, period, and cohort groups. While 

these models tend to slightly underestimate the DGP for later ages, later periods, and 

earliest cohorts, these discrepancies are very small. For B-3, the AC model works quite 

well. Although the model slightly underestimates the age effects over all the ages, the 

pattern of the effects are very well captured. Estimates for the cohorts are very close to 

the DGP, except for the first four cohorts wherein the model slightly underestimates the 

DGP.  

 

C-Set 

The scenario of C-1 has an obvious age pattern and minimal period and cohort 

patterns. This data structure is essentially one-dimensional. The descriptive plot 

accurately reflects the temporal patterns of obesity prevalence embedded within the DGP 

(Figure 6). An important finding is that the descriptive period plots tend to reflect the true 

DGP of the period effects, not becoming seriously confounded by age and cohort effects 
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across all of the scenarios in the A, B, and C-sets. In addition, the descriptive plots of age 

and cohort are almost perfect mirror images of each other in the B and C-sets. As noted in 

B-1, when one of those two dimensions overpowers the other, the descriptive plots are 

likely to be mirror images. As the C-1 DGP is dominated by age with almost no cohort 

effects, it is not surprising that those mirror images between age and cohort show up in 

the descriptive plots. At this point, a researcher may suspect that the data are one-

dimensional, but cannot be certain whether age or cohort dominates the data structure. At 

that stage, a researcher can move onto Step 2: obtaining the model-fit statistics.  

According to the AIC, 65 of 100 datasets fit the best with the A model, implying 

that those datasets are essentially one-dimensional. Eight and 27 fit best with the AC and 

AP models, respectively. It is unclear why the AIC detects C and P dimensions, but it 

seems likely that it stems from deviations assigned to random effects during the DGP. In 

any case, a researcher should not apply the HAPC here, but rather should consider 

selecting a reduced model. As suggested for the majority of cases, when the A model is 

applied to all the 100 dataset, the model captures the true trend of age very well (Figure 

7). Also when the AP model is fitted to those particular 27 dataset as the AIC suggested, 

the AC model captures the true pattern of age effects quite closely, and the results 

correctly detect that the data has almost no period effects. In other words, whichever 

model is applied, the conclusion on the contribution of age, period and cohort would not 

significantly change, as far as it is the model suggested by the AIC.  
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D-Set 

Figure 8 shows the visualized descriptive statistics of the six scenarios in the D-

set. They have linear patterns of cohort effects with different slopes and directions, as 

well as constant age and period patterns. When the period and cohort have linear patterns 

in the same positive direction (D-1 to D-3), the descriptive period plots pick up the 

pattern of the true coefficients quite well. The variations to the cohort effects are shown 

by the changes in the descriptive cohort plots. As the slope of the linear trend of the 

cohort coefficients becomes flatter from D-1 to D-3 and the relative contribution of 

cohort becomes less than that of age, the descriptive plots of age and cohorts become 

closer to mirror images of each other.  

When period and cohort have linear patterns in opposite directions (D-4 to D-6), 

descriptive statistics of all three dimensions are affected by the variation of the cohort 

effects. First, the descriptive period pattern becomes flatter as the negative cohort effects 

have larger slopes. This is different from what was observed with the scenarios in the A, 

B, and C-sets. In the A, B, and C-sets, the period plots pick up the true pattern of the 

coefficients very well, without being greatly affected by variation of the cohort effects. 

However, these last three scenarios in the D-set show that the descriptive period pattern 

can be confounded by the other terms under certain conditions. As the cohort effects have 

obvious negative linear patterns that may offset the positive linear patterns of period 

effects, the period plot becomes closer to a flat line even though the true period effects 

still have an obvious increasing trend. In addition, as the cohort effects have negative 

patterns that are offset by the effects of period, the descriptive cohort pattern remains 

similar to the mirror images of age patterns. As a result, descriptive plots look similar 
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with those in which there are no obvious cohort effects although dominant age effects are 

present. At this point, a researcher may conclude that the data are one-dimensional, 

although it is actually three-dimensional, with period and cohort effects in opposite 

directions offsetting each other.  

Do the model-fit statistics help identify the true data structure, which the 

descriptive statistics do not capture here? The answer is no. For the first five scenarios 

(i.e. D-1 to D-5), the AIC suggests using AP and AC models, rather than the full three-

dimensional model. In other words, the AIC tends to detect only one of those two linear 

dimensions active, and is incapable of distinguishing between the two linear dimensions. 

This is especially true for D-6, in which the cohort has the most obvious decreasing trend 

and the AIC suggests using the single-factor A model in most cases. These results show 

that confounding occurs when two dimensions exhibit clear linear patterns, and the AIC 

does not help for distinguishing those different data structures after the DGP is 

completed.  

Two important things can be learned from D-set. First, when the descriptive plots 

of all the three dimensions have distinct patterns, which are not a perfect mirror image of 

another dimension’s plot or flat line (i.e. D-1, D-2, and D-3), a researcher may guess that 

the given data is three-dimensional, as learned in A-set. However if model selection 

statistics suggest a reduced model over the three dimensional-model, which does not 

match to the results of the descriptive analysis, s/he can suspect that some of the three 

dimensions may have been seriously confounded due to their linear trends. The HAPC 

modeling approach should never be applied in this case. For example, from D-1, D-2, and 

D-3, period and cohort have linear effects in the same direction, and they are not 
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offsetting each other. However, the confounding between these two dimensions may still 

occur and HAPC models fail to capture the true data structures although the data are 

three-dimensional as shown in Figure 9. In other words, to ensure that the given data 

structure is three-dimensional, both descriptive and model fit statistics should indicate so. 

Second, when the descriptive plots and the model fit statistics point to the same model, 

and when it is a reduced model such as D-4 and D-5 for which the AIC suggests the AP 

model, and D-6 for which the AIC suggests the A model, researchers should not 

mechanically conclude that the data really has a reduced structure. A researcher should 

always be aware that certain three-dimensional data in which two linear dimensions are 

confounded could look like reduced–structural data from the descriptive and model 

selection statistic. 

 

Discussion 

The first goal of this study is to test the validity of the descriptive and model fit 

statistics for identifying data structures that violate the assumptions of the HAPC model, 

and are not suitable for the HAPC analysis. For example, Yang and Land (2013a) argued 

that data that has a reduced structure is not applicable to the HAPC models. In this study, 

I tested how the descriptive and model fit statistics react to reductions in the dimensions 

of the data derived from little contribution of one or two dimensions. The results from A, 

B, and C-sets show that those two statistics are very useful and effective tools to 

understand the true data structure, unless more than one of the three dimensions have 

linear effects at the same time.  
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In particular, the descriptive period plots reflect the trend of the true period effects 

very well across the scenarios in the first three sets, and this was an important clue that 

assisted in deciding whether the period is an active dimension in the given data. When it 

comes to age and cohort trends, comparing the patterns of their descriptive plots was 

important. When descriptive plots of age and period have dissimilar shapes, it is likely 

that each dimension has obvious and nonlinear effects.  When they are close to mirror 

images of each other, it is likely that only one of those two dimensions has a major 

contribution to the outcome variable.  

By obtaining general idea on the data structure from the descriptive plots, a 

researcher should be able to narrow down the probable structures of the given data. At 

this stage, checking those data structures with the model-fit statistics could give further 

clarification. When the data structure was on the border between different dimensions 

due to very little effects of one or two dimensions (i.e. A-3, B-3, and C-1), the AIC 

tended to swing between several different nested models. In this case, the results from 

several scenarios in this chapter (i.e. A-3, B-3, and C-1) confirmed that selecting the best 

model to apply among them did not significantly change the conclusion that a researcher 

would make on the contributions of the three temporal dimensions.  

In particular, the results of C-set showed how one-dimensional data turned out in 

the results of descriptive and model fit statistics. By observing the descriptive period plot 

which appears to be a flat line, and the age and cohort plots which are exact mirror 

images of each other, a researcher should be quite sure that the model is actually very 

close to single dimensional. The AIC clarified which of the dimensions is active and 

suggested the best fitting model to apply. When reduced models suggested by the AIC 
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(i.e. A and AP) were applied to the simulated dataset, both models nicely captured the 

true structure. As the period effects are very minor and the AP model can estimate them 

correctly, the conclusion on each dimension’s contribution does not change by the 

selection between A and AP models. However, a researcher should never apply the full-

three dimensional model in this case since none of the descriptive and model fit statistics 

showed evidence of the three-dimensional structure. 

The second goal of this study is to test whether HAPC models provide unbiased 

estimates of age, period and cohort effects when preliminary steps indicate that all three 

dimensions are present in the data. That means, when the data has obvious contribution of 

all three dimensions and no confounding by having the exact linear dimensions, the 

preliminary analysis should be able to detect that such data is eligible for the HAPC 

models, and the model estimate should capture the true DGP. The results of A-1, A-2, B-

1, and B-2 confirm that when both descriptive and model-fit statistics clearly suggest the 

three-dimensional model, the HAPC is a very useful estimator for obtaining true age, 

period and cohort effects. For the vast majority of the simulated datasets in those 

scenarios, both the descriptive plots and the AIC distinctly indicated that all three 

dimensions were active. For those data, the HAPC performed great, and most of the 

DGPs are captured closely by the estimates for the simulated data sets.  

The results of B-set particularly highlight the importance of using descriptive and 

model fit statistics together. The descriptive age and period plots of the scenarios in B-set 

were somewhat close to the mirror images of each other, but not perfectly matched due to 

the small variations on the right tale of the cohort plots caused by the later birth cohorts. 

In this case, a researcher may not be sure if both dimensions are active. The AIC 
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provided supplementary information necessary in such a situation for confirming the 

active dimensions. For B-1 and B-2, the AIC pointed at the full-factor APC model, 

indicating that all the three dimensions are active. The HAPC performed great for those 

two scenarios. For B-3, the AIC suggested AC and APC models, which represent that 

period may be an inactive dimension for some of the simulated data sets. As the period 

descriptive plot look flat supporting this guess, it is not recommended to apply the HAPC 

in this case. Instead, when AC model was applied, the estimates of age and cohort effects 

match up with the true structures. While A, B, and C-sets clarify the scope of the 

application of the HAPC using the three-step procedure, the results of D-set revealed a 

limitation of the current application procedure of the HAPC.  According to the results, 

when more than one dimension have linear effects at the same time, confounding 

between those two dimensions’ effects may occur. In particular, when those linear effects 

have opposite directions, an offset between those two effects should be expected. 

Consequently, the results of the preliminary analysis look similar to those of reduced-

dimensional data even though the data is actually three-dimensional. Although the current 

procedure is not capable of distinguishing those two different data structures, 

practitioners should be aware that in either case the HAPC model should not be applied. 

If applied, the HAPC model will fail to estimate the true age, period and cohort effects.  

Overall, the results of Chapter 2 support Yang and Land (2013) argument that the 

HAPC is still a reliable estimator when used with enough understanding on the data 

structure. When both the descriptive and model fit statistics point to the three-

dimensional model for the given data, the HAPC successfully captures the DGP. If either 

or both the descriptive and model fit statistics point to the reduced model, a conclusion on 
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the data structure should be deferred, and the HAPC should never be applied. Using the 

current procedure of the APC application, it is hard for a researcher to know whether the 

data really has the reduced structure, or the data is actually three-dimensional but looks 

like reduced-dimensional from the preliminary analysis due to the confounding between 

two or three linear dimensions. For either, it is meaningless to attempt to apply the HAPC 

in this situation because the preliminary steps do not suggest the full three-dimensional 

models, and the HAPC is destined to fail. 

 The simulated data by Bell and Jones (2014b) had such structures. For example, 

they simulated dataset that has reduced dimensions (i.e. no period trend) or dataset that 

may look like reduced dimensional from the preliminary analysis due to the confounding 

between dimensions (i.e. correlated age and period trends). If they conducted the 

preliminary analysis with these dataset, the results would have suggested a reduced 

model rather than the three-dimensional model (Reither et al. 2015a, Reither et al. 2015b). 

The relevant procedure at this stage would be to defer the conclusion on the data structure, 

rather than arbitrarily assuming the data is three-dimensional and moving on to the 

application of the HAPC.  

Lastly, according to the results of this chapter, one of the arguments of Bell and 

Jones (2014a) that the HAPC fails when period and cohort have linear trends is true. 

However, this should not be used as evidence to say that the HAPC fails to address the ID 

problem, because the HAPC does perform great in some situations, and those situations 

can be predicted by the preliminary analysis. Researchers still can fully take advantage of 

reliable estimates of the HAPC in their empirical studies as far as results of the 

preliminary analysis indicate that the given data is three-dimensional.  
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Tables and Figures 

 

(a) A-Set  

 
(b) B-Set 

 
 

(c) C-Set 

     
 

Figure 1.  The Simulation Scenarios from A-Set to D-Set 
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(d) D-Set 

                          
 

 

Figure 1 (cont’d).  The Simulation Scenarios from A-Set to D-Set 
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Table 1. Description of Age, Period and Cohort Effects Simulated for Each Scenario  

Set Scenario Age Effects Period Effects Cohort Effects 

A A-1 Quadratic Linear increase 

(very obvious) 

V-shape 

(very obvious) 

A-2 Quadratic Linear Increase 

(very obvious) 

V-shape 

(less obvious) 

A-3 Quadratic Linear increase 

(very obvious) 

V-shape 

(not obvious, 

essentially no 

trend) 

B B-1 Quadratic Increase 

(very obvious) 

V-shape 

(very obvious) 

B-2 Quadratic Increase 

(less obvious) 

V-shape 

(very obvious) 

B-3 Quadratic Not obvious, essentially 

no trend. 

(Coefficients from Bell 

and Jones 2015) 

V-shape 

(very obvious) 

C C-1 Quadratic Essentially no trend Essentially no 

trend 

D D-1 Quadratic Linear Increase Linear Increase 

(Steepest Slope) 

D-2 Quadratic Linear Increase Linear Increase 

(Less Steep 

Slope) 

D-3 Quadratic Linear Increase Linear Increase 

(Least Steep 

Slope) 

D-4 Quadratic Linear Increase Linear Decrease 

(Least Steep 

Slope) 

D-5 Quadratic Linear Increase Linear Decrease 

(Less Steep 

Slope) 

D-6 Quadratic Linear Increase Linear Decrease 

(Steepest Slope) 
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Table 2. DGPs for Each Scenario 

 

(1) A-Set 

A-1 Logit[Pr(Y=1)] =-1.9876 + (.0589*Age)+(-.001*Age2)+(-.5243*P1)+(-.4740*P2)+(-

.4430*P3)+(-.4228 *P4)+(-.3767*P5)+(-.3618*P6)+(-.3492*P7)+(-.3143*P8)+(-

.2747*P9)+(-.2143*P10)+(-.1685*P11)+(-.1346*P12)+(-.1174*P13)+(-.0544*P14)+(-

.0390*P15)+(.0292*P16)+(.0992*P17)+(.1720*P18)+(.2118*P19)+(.2559*P20)+(.2989*

P21)+(.4103*P22)+(.4625*P23)+(.5291*P24)+(.5549*P25)+(.6053*P26)+(.6400*P27)+(

.2827*C1)+(.2255*C2)+(.1501*C3)+(.1003*C4)+(.0216*C5)+(-.0270*C6)+(-

.0623*C7)+(-.0889*C8)+(-.1365*C9)+(-.1833*C10)+(-.2234*C11)+(-.2613*C12)+(-

.3122*C13)+(-.3192*C14)+(-

.0314*C15)+(.1881*C16)+(.3484*C17)+(.3288*C18)+Uc+Up, 

Uc~N(0, .01), Up~N(0, .01) 

A-2 Logit[Pr(Y=1)] =-1.9876 + (.0589*Age)+(-.001*Age2)+(-.5243*P1)+(-.4740*P2)+(-

.4430*P3)+(-.4228 *P4)+(-.3767*P5)+(-.3618*P6)+(-.3492*P7)+(-.3143*P8)+(-

.2747*P9)+(-.2143*P10)+(-.1685*P11)+(-.1346*P12)+(-.1174*P13)+(-.0544*P14)+(-

.0390*P15)+(.0292*P16)+(.0992*P17)+(.1720*P18)+(.2118*P19)+(.2559*P20)+(.2989*

P21)+(.4103*P22)+(.4625*P23)+(.5291*P24)+(.5549*P25)+(.6053*P26)+(.6400*P27)+(

.1127*C1)+(.0855*C2)+(.0401*C3)+(-.0203*C4)+(-.0284*C5)+(-.0470*C6)+(-

.0523*C7)+(-.0489*C8)+(-.0665*C9)+(-.0833*C10)+(-.0934*C11)+(-.1013*C12)+(-

.1222*C13)+(-

.0992*C14)+(.0386*C15)+(.1381*C16)+(.1784*C17)+(.1288*C18)+Uc+Up, 

 Uc~N(0, .01), Up~N(0, .01) 

A-3 -1.9876 + (.0589*Age)+(-.001*Age2)+(-.5243*P1)+(-.4740*P2)+(-.4430*P3)+(-.4228 

*P4)+(-.3767*P5)+(-.3618*P6)+(-.3492*P7)+(-.3143*P8)+(-.2747*P9)+(-.2143*P10)+(-

.1685*P11)+(-.1346*P12)+(-.1174*P13)+(-.0544*P14)+(-

.0390*P15)+(.0292*P16)+(.0992*P17)+(.1720*P18)+(.2118*P19)+(.2559*P20)+(.2989*

P21)+(.4103*P22)+(.4625*P23)+(.5291*P24)+(.5549*P25)+(.6053*P26)+(.6400*P27)+(

.0355*C1)+(.0283*C2)+(.0029*C3)+(.0031*C4)+(-.0156*C5)+(-.0242*C6)+(-

.0195*C7)+(-.0061*C8)+(-.0137*C9)+(-.0205*C10)+(-.0206*C11)+(-.0185*C12)+(-

.0294*C13)+(-.0264*C14)+(.0114*C15)+(.0509*C16)+(.0512*C17)+(.0116*C18) 

+Uc+Up, 

Uc~N(0, .01), Up~N(0, .01) 
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Table 2 (cont’d). DGPs for Each Scenario 

 

(2) B-Set 

B-1 Logit[Pr(Y=1)] =-2 + (.1*Age)+(-

.001*Age2)+(.0174*P1)+(.0326*P2)+(.0426*P3)+(.0426*P4)+(.0226*P5)+(-

.0274*P6)+(-.0274*P7)+(-.0474*P8)+(-.0474*P9)+(-.0474*P10)+(-.0474*P11)+(-

.0474*P12)+(-.0574*P13)+(-.0474*P14)+(-.0474*P15)+(-.0174*P16)+(.0026*P17)+(-

.0226*P18)+(-.0174*P19)+(-.0174*P20)+(.0026*P21)+(-

.0174*P22)+(.0226*P23)+(.0526*P24)+(.0826*P25)+(.1026*P26)+(.1026*P27)+(.2827*

C1)+(.2255*C2)+(.1501*C3)+(.1003*C4)+(.0216*C5)+(-.0270*C6)+(-.0623*C7)+(-

.0889*C8)+(-.1365*C9)+(-.1833*C10)+(-.2234*C11)+(-.2613*C12)+(-.3122*C13)+(-

.3192*C14)+(-.0314*C15)+(.1881*C16)+(.3484*C17)+(.3288*C18)+Uc+Up, 

Uc~N(0, .01), Up~N(0, .01) 

B-2 Logit[Pr(Y=1)] =-2 + (.1*Age)+(-.001*Age2)+(-.1875*P1)+(-.2298*P2)+(-.1836*P3)+(-

.1038*P4)+(-.1639*P5)+(-.1959*P6)+(-.1812*P7)+(-.1444*P8)+(-.1669*P9)+(-

.2023*P10)+(-.1707*P11)+(-.1425*P12)+(-.1666*P13)+(-.1662*P14)+(-.0759*P15)+(-

.0572*P16)+(-.0606*P17)+(-

.0438*P18)+(.0914*P19)+(.0839*P20)+(.2022*P21)+(.2406*P22)+(.2198*P23)+(.3449*

P24)+(.4171*P25)+(.5009*P26)+(.5422*P27)+(.2827*C1)+(.2255*C2)+(.1501*C3)+(.10

03*C4)+(.0216*C5)+(-.0270*C6)+(-.0623*C7)+(-.0889*C8)+(-.1365*C9)+(-

.1833*C10)+(-.2234*C11)+(-.2613*C12)+(-.3122*C13)+(-.3192*C14)+(-

.0314*C15)+(.1881*C16)+(.3484*C17)+(.3288*C18)+Uc+Up,  

Uc~N(0, .01), Up~N(0, .01) 

B-3 Logit[Pr(Y=1)] =-2 + (.1*Age)+(-.001*Age2)+(-.2713*P1)+(-.3188*P2)+(-.2828*P3)+(-

.3391*P4)+(-.3063*P5)+(-.3373*P6)+(-.3193*P7)+(-.3312*P8)+(-.2775*P9)+(-

.2779*P10)+(-.2619*P11)+(-.2137*P12)+(-.2085*P13)+(-.1764*P14)+(-.1160*P15)+(-

.0796*P16)+(-

.0500*P17)+(.0317*P18)+(.0800*P19)+(.1525*P20)+(.2558*P21)+(.3628*P22)+(.4393*

P23)+(.5390*P24)+(.6664*P25)+(.7656*P26)+(.8742*P27)+(.2827*C1)+(.2255*C2)+(.1

501*C3)+(.1003*C4)+(.0216*C5)+(-.0270*C6)+(-.0623*C7)+(-.0889*C8)+(-

.1365*C9)+(-.1833*C10)+(-.2234*C11)+(-.2613*C12)+(-.3122*C13)+(-.3192*C14)+(-

.0314*C15)+(.1881*C16)+(.3484*C17)+(.3288*C18)+Uc+Up,  

Uc~N(0, .01), Up~N(0, .01) 

 

(3) C-Set 
C-1 Logit[Pr(Y=1)] =-2 + (.1*Age)+(-.001*Age2)+(-

.0174*P1)+(.0326*P2)+(.0426*P3)+(.0426*P4)+(.0226*P5)+(-.0274*P6)+(-

.0274*P7)+(-.0474*P8)+(-.0474*P9)+(-.0474*P10)+(-.0474*P11)+(-.0474*P12)+(-

.0574*P13)+(-.0474*P14)+(-.0474*P15)+(-.0174*P16)+(.0026*P17)+(-.0226*P18)+(-

.0174*P19)+(-.0174*P20)+(.0026*P21)+(-

.0174*P22)+(.0226*P23)+(.0526*P24)+(.0826*P25)+(.1026*P26)+(.1026*P27)+(.0355*

C1)+(.0283*C2)+(.0029*C3)+(.0031*C4)+(-.0156*C5)+(-.0242*C6)+(-.0195*C7)+(-

.0061*C8)+(-.0137*C9)+(-.0205*C10)+(-.0206*C11)+(-.0185*C12)+(-.0294*C13)+(-

.0264*C14)+(.0114*C15)+(.0509*C16)+(.0512*C17)+(.0116*C18) +Uc+Up, 
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Table 2 (cont’d). DGPs for Each Scenario 

 

(4) D-Set 
D-1 Logit[Pr(Y=1)] =-1.9876 + (.0589*Age)+(-.001*Age2)+ (-0.2567*P1)+(-0.2403*P2)+(-

0.2332*P3)+(-0.2176*P4)+(-0.1771*P5)+(-0.1535*P6)+(-.1396*P7)+(-.1183*P8)+(-

.0904*P9)+(-.0808*P10)+(-.0539*P11)+(-.0438*P12)+(-

.0232*P13)+(0.0073*P14)+(0.022*P15)+(.0342*P16)+(.0466*P17)+(.0796*P18)+(.1019

*P19)+(.1244*P20)+(.1475*P21)+(.1676*P22)+(.1767*P23)+(.1937*P24)+(.2234*P25)+

(.2432*P26)+(.26*P27) +( -0.6734*C1)+(-0.6051*C2)+(-0.5293*C3)+(-0.4544*C4)+(-

0.3521*C5)+(-0.2886*C6)+(-0.1710*C7)+(-0.1033*C8)+(-

0.0380*C9)+(0.0359*C10)+(0.1040*C11)+(0.2115*C12)+(0.2909*C13)+(0.3635*C14)+

(0.4271*C15)+(0.5040*C16)+(0.6070*C17)+(0.6714*C18) 

D-2 Logit[Pr(Y=1)] =-1.9876 + (.0589*Age)+(-.001*Age2) + (-0.2567*P1)+(-0.2403*P2)+(-

0.2332*P3)+(-0.2176*P4)+(-0.1771*P5)+(-0.1535*P6)+(-.1396*P7)+(-.1183*P8)+(-

.0904*P9)+(-.0808*P10)+(-.0539*P11)+(-.0438*P12)+(-

.0232*P13)+(0.0073*P14)+(0.022*P15)+(.0342*P16)+(.0466*P17)+(.0796*P18)+(.1019

*P19)+(.1244*P20)+(.1475*P21)+(.1676*P22)+(.1767*P23)+(.1937*P24)+(.2234*P25)+

(.2432*P26)+(.26*P27)+(-0.2820*C1)+(-0.2750*C2)+(-0.2225*C3)+(-0.2079*C4)+(-

0.1633 *C5)+(-0.1339*C6)+(-0.0771*C7)+(-0.0638*C8)+(-

0.0155*C9)+(0.0128*C10)+(0.0471*C11)+(0.0960*C12)+(0.1228*C13)+(0.1771*C14)+

(0.1884*C15)+(0.2350*C16)+(0.2715*C17)+(0.2903*C18) 

D-3 Logit[Pr(Y=1)] =-1.9876 + (.0589*Age)+(-.001*Age2) + (-0.2567*P1)+(-0.2403*P2)+(-

0.2332*P3)+(-0.2176*P4)+(-0.1771*P5)+(-0.1535*P6)+(-.1396*P7)+(-.1183*P8)+(-

.0904*P9)+(-.0808*P10)+(-.0539*P11)+(-.0438*P12)+(-

.0232*P13)+(0.0073*P14)+(0.022*P15)+(.0342*P16)+(.0466*P17)+(.0796*P18)+(.1019

*P19)+(.1244*P20)+(.1475*P21)+(.1676*P22)+(.1767*P23)+(.1937*P24)+(.2234*P25)+

(.2432*P26)+(.26*P27)+(-0.0803*C1)+(-0.0988*C2)+(-0.0707*C3)+(-0.0716*C4)+(-

0.0614*C5)+(-0.0420 *C6)+( -0.0390*C7)+(-

0.0270*C8)+(0.0005*C9)+(0.0229*C10)+(0.0170*C11)+(0.0530*C12)+(0.0356*C13)+(

0.0468*C14)+(0.0525*C15)+(0.0763*C16)+(0.0771*C17)+(0.1089*C18) 

D-4 Logit[Pr(Y=1)] =-1.9876 + (.0589*Age)+(-.001*Age2) + (-0.2567*P1)+(-0.2403*P2)+(-

0.2332*P3)+(-0.2176*P4)+(-0.1771*P5)+(-0.1535*P6)+(-.1396*P7)+(-.1183*P8)+(-

.0904*P9)+(-.0808*P10)+(-.0539*P11)+(-.0438*P12)+(-

.0232*P13)+(0.0073*P14)+(0.022*P15)+(.0342*P16)+(.0466*P17)+(.0796*P18)+(.1019

*P19)+(.1244*P20)+(.1475*P21)+(.1676*P22)+(.1767*P23)+(.1937*P24)+(.2234*P25)+

(.2432*P26)+(.26*P27)+(0.0803*C1)+(0.0988*C2)+(0.0707*C3)+(0.0716*C4)+(0.0614*

C5)+(0.0420 *C6)+(0.0390*C7)+(0.0270*C8)+(-0.0005*C9)+(-0.0229*C10)+(-

0.0170*C11)+(-0.0530*C12)+(-0.0356*C13)+(-0.0468*C14)+(-0.0525*C15)+(-

0.0763*C16)+(-0.0771*C17)+(-0.1089*C18) 

D-5 Logit[Pr(Y=1)] =-1.9876 + (.0589*Age)+(-.001*Age2) + (-0.2567*P1)+(-0.2403*P2)+(-

0.2332*P3)+(-0.2176*P4)+(-0.1771*P5)+(-0.1535*P6)+(-.1396*P7)+(-.1183*P8)+(-

.0904*P9)+(-.0808*P10)+(-.0539*P11)+(-.0438*P12)+(-

.0232*P13)+(0.0073*P14)+(0.022*P15)+(.0342*P16)+(.0466*P17)+(.0796*P18)+(.1019

*P19)+(.1244*P20)+(.1475*P21)+(.1676*P22)+(.1767*P23)+(.1937*P24)+(.2234*P25)+

(.2432*P26)+(.26*P27)+(0.2820*C1)+(0.2750*C2)+(0.2225*C3)+(0.2079*C4)+(0.1633 

*C5)+(0.1339*C6)+(0.0771*C7)+(0.0638*C8)+(0.0155*C9)+(-0.0128*C10)+(-

0.0471*C11)+(-0.0960*C12)+(-0.1228*C13)+(-0.1771*C14)+(-0.1884*C15)+(-

0.2350*C16)+(-0.2715*C17)+(-0.2903*C18) 
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Table 2 (cont’d). DGPs for Each Scenario 

 
D-6 Logit[Pr(Y=1)] =-1.9876 + (.0589*Age)+(-.001*Age2)+ (-0.2567*P1)+(-0.2403*P2)+(-

0.2332*P3)+(-0.2176*P4)+(-0.1771*P5)+(-0.1535*P6)+(-.1396*P7)+(-.1183*P8)+(-

.0904*P9)+(-.0808*P10)+(-.0539*P11)+(-.0438*P12)+(-

.0232*P13)+(0.0073*P14)+(0.022*P15)+(.0342*P16)+(.0466*P17)+(.0796*P18)+(.1019

*P19)+(.1244*P20)+(.1475*P21)+(.1676*P22)+(.1767*P23)+(.1937*P24)+(.2234*P25)+

(.2432*P26)+(.26*P27) 

+(0.6734*C1)+(0.6051*C2)+(0.5293*C3)+(0.4544*C4)+(0.3521*C5)+(0.2886*C6)+(0.1

710*C7)+(0.1033*C8)+(0.0380*C9)+(-0.0359*C10)+(-0.1040*C11)+(-0.2115*C12)+(-

0.2909*C13)+(-0.3635*C14)+(-0.4271*C15)+(-0.5040*C16)+(-0.6070*C17)+(-

0.6714*C18) 
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Figure 2. Visualized Descriptive Statistics of A-Set  

*Each solid line represents the descriptive statistics from each simulated dataset, and the 

bold line represents the median of the 50 simulated dataset.

 

(a) A-1 

 
(b) A-2 

     
(c) A-3 
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Table 3. Model Fit Statistics for Nested APC Models Fitted to 50 Simulated Data in A-

Set 

 

 

 

  A P C A+C A+P P+C APC 

A-1 AIC 0 0 0 0 0 0 50 

BIC 0 0 0 0 0 0 50 

A-2 AIC 0 0 0 0 0 0 50 

BIC 0 0 0 0 50 0 0 

A-3 AIC 0 0 0 0 5 0 45 

BIC 0 0 0 0 50 0 0 

 DF 3 27 18 29 20 44 46 

 N 1million 1million 1million 1million 1million 1million 1million 
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(a) A-1, HAPC 

 
(b) A-2, HAPC 

 
(c) A-3, HAPC 

 
 

Figure 3. HAPC-CCREM and a Reduced Model Fitted to 50 Simulated Data in A-Set  

*Each solid line in the figure represents the estimate of the HAPC for each simulated 

dataset.
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(d) A-3, AP 

 
 

Figure 3 (cont’d). HAPC-CCREM and a Reduced Model Fitted to 50 Simulated Data in 

A-Set  
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(a) B-1 

 
(b) B-2 

 
(c) B-3 

 
 

Figure 4. Visualized Descriptive Statistics of B-Set  

*Each solid line represents the descriptive statistics from each simulated dataset, and the 

bold line represents the median of the 50 simulated dataset. 
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Table 4. Model Fit Statistics For Nested APC Models Fitted to 100 Simulated Data in B-

Set 

  A P C A+C A+P P+C APC 

B-1 AIC 0 0 0 0 0 0 100 

BIC 0 0 0 8 92 0 0 

B-2 AIC 0 0 0 0 0 0 100 

BIC 0 0 0 99 1 0 0 

B-3 AIC 0 0 0 78 0 0 22 

BIC 99 0 0 1 0 0 0 

 DF 3 27 18 29 20 44 46 

N 50,000 50,000 50,000 50,000 50,000 50,000 50,000 
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Figure 5. HAPC-CCREM and a Reduced Model Fitted to 100 Simulated Data in B-Set 

 

 

 

 

 

(a) B-1, HAPC 

 
(b) B-2, HAPC  

 
(c) B-3, AC 
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Figure 6. Visualized Descriptive Statistics of C-Set 

 

 

Table 5. Model Fit Statistics for Nested APC Models Fitted to 100 Simulated Data in C-

Set 

  A P C A+C A+P P+C APC 

C-1 
AIC 65 0 0 8 27 0 0 

BIC 100 0 0 0 0 0 0 

 
DF 3 27 18 29 20 44 46 

N 50,000 50,000 50,000 50,000 50,000 50,000 50,000 
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(a) C-1, A 

 
(b) C-1, AP 

 
 

 

Figure 7. A Reduced Model (A and AP) Fitted to 100 Simulated Data in C-Set 
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(a) D-1  

 
(b) D-2 

 
(c) D-3 

 
 

 

Figure 8.  Visualized Descriptive Statistics of D-Set 
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(d) D-4 

 
(e) D-5 

 
(f) D-6 

 
 

Figure 8 (cont’d).  Visualized Descriptive Statistics of D-Set 
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Table 6. Model fit Statistics for Nested APC Models Fitted to 100 Simulated Data in D-

Set 

  A P C A+C A+P P+C APC 

D-1 
AIC 0 0 0 73 27 0 0 

BIC 0 0 0 100 0 0 0 

D-2 
AIC 0 0 0 68 32 0 0 

BIC 0 0 0 100 0 0 0 

D-3 
AIC 0 0 0 74 26 0 0 

BIC 8 0 0 92 0 0 0 

D-4 
AIC 0 0 0 71 29 0 0 

BIC 96 0 0 4 0 0 0 

D-5 
AIC 0 0 0 74 26 0 0 

BIC 100 0 0 0 0 0 0 

D-6 
AIC 84 0 0 15 0 0 1 

BIC 100 0 0 0 0 0 0 

 
DF 3 27 18 29 20 44 46 

N 50,000 50,000 50,000 50,000 50,000 50,000 50,000 
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(a) D-1, HAPC 

 

   
(b) D-2, HAPC 

 

   
(c) D-3, HAPC 

 

 
 

 

 

Figure 9. HAPC-CCREM Fitted to 100 Simulated Data in D-Set 
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(d) D-4 HAPC 

 

 
 

(e) D-5 HAPC 

   
(f) D-6 HAPC 

     

 
 

 

Figure 9 (cont’d). HAPC-CCREM Fitted to 100 Simulated Data in D-Set 
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CHAPTER III 

METHODS TO EVAULATE DATA STRUCTURES PRIOR TO THE APPLICATION 

OF INTRINSIC ESTIMTAOR AGE-PERIOD-COHORT MODELS 

 
 

Introduction 

 

The ID Problem Explained in Matrix Form 

Conventional age-period-cohort data are presented in a two-way table. The rows 

of this table represent age groups and the columns represents periods of observation. 

Each cell of the table contains age-specific rates for a particular time period. In this 

layout, the diagonals refer to birth cohorts, as they indicate the rates for those who were 

born in the same years and, therefore, age together. When such tabular-rate data has a 

different age groups and p different periods of observation, a+p-1 birth cohorts are 

defined.  

Compared to data from repeated cross-sectional surveys, as described in Chapter 

2 on HAPC analysis, tabular-rate data are much more restricted in structure. That is 

because the temporal widths of time periods and birth cohorts are always enforced to be 

equal to the temporal width of age, and only a single observation (e.g., a mortality rate) 

exists in each cell. Consequently, the approach employed in HAPC analysis, which takes 

advantage of a flexible data structure to help address the ID problem, does not work for 

conventional tabular-rate APC data.  

For tabular-rate APC data, the APC accounting model is expressed in a linear 

regression form (Mason et al. 1973): 
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𝐷𝑖𝑗

𝑃𝑖𝑗
= 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + 𝜀𝑖𝑗     (1)1 

where Dij denotes the number of events (i.e., suicide deaths in all of the following 

exercises) observed for the i-th age group at the j-th observation period for i=1,…,a and 

j=1,…,p; Pij denotes the size of the estimated population in the ij-th group exposed to risk 

of death, and therefore the left side of the equation refers to the rate of death observed for 

the ij-th group; 𝜇 denotes the intercept; αi is the age effect in the i-th age group; βj is the 

period effect in the j-th observation period; γk is the cohort effect on the k-th diagonal 

where k=a-i+j; 𝜀𝑖𝑗 is a random error term which is assumed to have the expected value of 

0 (Kupper et al. 1985, Yang, Fu and Land 2004). 

When the count of events follows the Poisson distribution, it is conventional to 

convert Eq (1) into a log-linear form by taking a log-link function. Such a model can be 

written as follows (Yang and Land 2013a): 

log(𝐸𝑖𝑗) = log(𝑃𝑖𝑗) + 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘    (2) 

where log(Eij) denotes the logged number of events (e.g., deaths) expected in the i-th age 

group at the j-th observation period for i=1,…,a and j=1,…,p; log(Pij) denotes the logged 

term of the size of the population exposed to the risk of death in the ij-th group; it also 

serves as adjustment for the log-linear model. In this model, the coefficients on the right 

side are treated as fixed-effects, which means that the age effect (𝛼𝑖) is constant for the i-

th row, the period effect (𝛽𝑗) is constant for the j-th column, and the cohort effect (𝛾𝑘) is 

constant for the k-th diagonal in the tabular-rate data layout. Therefore, after 

                                                        
1 The left-hand side of this equation is technically known as occurrence/exposure rates (For more details, 

see Land, Kenneth C., Yang Yang and Yi Zeng. 2005. "Mathematical Demography." Pp. 659–717 in 

Handbook of Population: Springer.). Note that occurrence/exposure rates are universal and tends to be so 

taken for granted in demography that it is called “demographic rates”.  
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reparamaterizing the variables to deal with over-parameterization as follows, the model 

can be seen as a standard two-way ANOVA model (Yang, Fu and Land 2004):  

   ∑ 𝛼𝑖
𝑎
𝑖=1 = ∑ 𝛽𝑗

𝑝
𝑗=1 = ∑ 𝛾𝑘 = 0𝑎+𝑝−1

𝑘=1                                    (3) 

This centering of the reparametrization does not yield any distortion in the 

patterns of estimated coefficients (Kupper et al. 1983, Kupper et al. 1985), but it 

expresses the coefficients in term of a deviation from the mean. After this 

reparametrization, equation (1) can be re-expressed in the matrix form: 

      𝑌 = 𝑋𝑏 + 𝜀                                                    (4) 

where 𝐘 is the vector with a length of ap, whose components are age-period specific 

suicide mortality rates; 𝐗 is the regression design matrix with a dimension of ap by 

2(a+p)-3; 𝐛 is a parameter vector with a length of 2(a+p)-3 that can be written as {1; 

α1,.. αa-1; β1,…, βp-1; γ1,…, γa+p-2}; and 𝜺 denotes a vector of random errors with a  

distribution centered on zero and a length of ap. Note that the equation (3) works as a 

restriction so that the last terms of age, period, and cohort parameters are excluded from 

the analysis as reference categories and estimated not by the regression model but by:  

𝛼𝑎 = − ∑ 𝛼𝑖
𝑎−1
𝑖=1 ;  𝛽𝑝 = − ∑ 𝛽𝑗

𝑝−1
𝑗=1 ;   𝛾𝑎+𝑝−1 = − ∑ 𝛾𝑘

𝑎+𝑝−2
𝑘=1                   (5) 

As described in the previous chapter, solving Eq (4) by using the ordinary least 

square (OLS), or maximum likelihood (MLE), method incurs the ID problem due to the 

exact linear relationship (age=period-cohort). The exact algebraic equality yields a 

singular design matrix with less than one full column rank, and a unique parameter vector 

𝒃̂ = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀 cannot be identified as (𝑿𝑻𝑿)−𝟏 does not exist. As it is, there exist 

infinite different sets of 𝒃̂. 
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To understand more details on how the singular design matrix incurs the problem 

during the parameter estimation, it is worth looking more into the right side of Eq (4). 

When the design matrix X is less than full column rank, the design matrix has the 

following property:  

𝑋𝑏0 = 0     (6) 

Eq (6) indicates that there exists a non-zero vector b0 such that the product of the 

design matrix and the vector is 0. Here, b0 is the null eigenvector—corresponding to an 

eigenvalue of zero—that represents the null space of the design matrix X. The elements 

of b0 are: 

b0= (0; α1,.., α a-1; β1,.., β p-1; γ1,…, γ a+p-2)
T   (7) 

where  

𝛼𝑖 = 𝑖 −
𝑎+1

2
, 𝛽𝑗 = −𝑗 +

𝑝+1

2
, 𝛾𝑘 = 𝑘 −

𝑎+𝑝

2
   (8) 

(Kupper et al. 1985). 

Then, how is the b0 derived? b0 is obtained when b in Eq (4) is decomposed into 

two components, which represent non-null and null spaces of the design matrix X as 

follows: 

b = b1 + s b0       (9) 

where b1 is the projection of b on the non-null space of X, b0 is the projection of b on the 

null space of X, and s is an arbitrary scalar. In order to understand the ID problem in 

matrix form, the fact that s can be any scalar is key. According to Eq (9), the age, period, 

and cohort effects, which are the elements of b, change as s has a different value. 

However, a different value of s does not cause any change to Y, as shown in the 

following equation.   
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Y = Xb + e = X(b1+sb0) = Xb1 + s Xb0    (10) 

The term sXb0 is zero because Xb0 is zero from Eq (6). That means Y is decided solely by 

Xb1 and not affected by sXb0. In other words, for the same Y, we can have an infinite 

number of different values for s, and consequently an infinite number of different sets of 

age, period, and cohort effects (i.e., b). Note that Y represents the data—that is, the 

information given to researchers. When a statistical model is applied to Y, it is impossible 

to identify which b out of those infinitely different bs is the true one. This is the ID 

problem in the APC analysis shown in matrix form.  

The conventional approach to address the ID problem is imposing an additional 

constraint (Mason et al. 1973). This approach, called Constrained Generalized Linear 

Models (CGLIM), assumes that adjacent age, period, or cohort categories have equal 

effects on the outcome. This assumption makes the design matrix X non-singular and Eq 

(6) no longer valid. Then, a unique b can be identified from Eq (4). Unfortunately, in 

spite of deriving an estimable model, one critical limitation of this method is that the 

approach needs a strong priori assumption to select a theoretically valid constraint. When 

such an assumption is not available, the approach should not be applied as the estimates 

of the model could be very sensitive to the selection of the constraint. In a real-world 

research setting, there is no way to confirm if the obtained coefficients from the imposed 

constraints correspond to the true effects of age, period, and cohort. Therefore, a 

researcher runs the risk of believing that the biased estimates derived from a “wrong” 

constraint are true. 
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What is The Intrinsic Estimator (IE)?  

Due to this limitation of the conventional approach, researchers have sought 

another statistical technique to address the ID problem that is not dependent upon the 

availability of external information. As one of those efforts, the intrinsic estimator (IE) 

model was developed by Fu (2000) and Yang, Fu and Land (2004). Starting from Eq (9), 

the model focuses on b1 as a projection of unconstrained b on the non-null subspace of X. 

The essential feature of the IE is to regress the outcome of interest only in the non-null 

subspace by removing the null space—in other words, removing the eigenvector b0 by 

setting s equal to zero. Note that s can be an arbitrary scalar in Eq (9), but b0 is not. 

Rather, b0 is fixed by the design matrix X, and both X and b0 are independent from Y but 

determined by the number of age and period categories (i.e., a and p). Setting s equal to 

zero is also algebraically equivalent to: 

bTb0=0      (11) 

That means that the projection of unconstrained b on the null subspace of X is zero.  

The implementation of the IE borrows from the principal component analysis 

(PCA) technique. Where eigenvectors and eigenvalues of (XTX) are V=[v1, v2,..,v2(a+p)-4] 

[2] and Λ={λ1,  λ2,.., λ2(a+p)-4} respectively, X∙V yields a new design matrix in the PC 

space. Note that the transferring procedure itself does not resolve the ID problem of the 

APC model. When transferring X to the PC space, the IE uniquely addresses the 

identification problem by reducing the dimension of the analysis to one less dimension by 

excluding the null eigenvector (b0) from V. Since the PC formed by the eigenvector 

                                                        
[2] The dimension of original design matrix X is ap by 2(a+p)-3. Here for transferring to PC space, the 

column of the intercept term is excluded, so that the dimension of X becomes ap by 2(a+p)-4, from which 

(XTX) has 2(a+p)-4 of eigenvectors and eigenvalues. 
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corresponding to the zero eigenvalue accounts for no variance[3], there is no loss of any 

explanatory power derived from this exclusion. Then the new design matrix U in the non-

null subspace is:  

U = X∙V’                (12) 

where V’ has a dimension of 2(a+p)-4 by 2(a+p)-5, free from the null eigenvector; U, the 

new design matrix in the PC space, has a dimension of ap by 2(a+p)-5, which does not 

incur the identification problem in the PC regression. Then, IE regresses the outcome of 

interest on 2(a+p)-5 PCs and returns 2(a+p)-5 coefficients. Since these coefficients are 

not interpretable by A, P, and C terms, the estimates are re-transferred from the PC space 

to the original space, and this re-transferred vector contains the coefficients for age, 

period, and cohort effects. Here the dimension of the vector is recovered from 2(a+p)-5 

to 2(a+p)-4 by filling an element corresponding to the null eigenvector with zero.  

According to the IE developers, this algorithm of the IE has some advantageous 

properties (Yang, Fu and Land 2004). First, IE is an unbiased estimator in its finite time-

period, which does not depend on a priori assumptions, but rather only on the number of 

age (a) and period (p) categories. Therefore, even when relevant theory is not available or 

strong enough to guarantee a selection of the “true” constraint, the model is estimable. 

Second, the IE has a smaller variance than the CGLIM. Therefore, even in unusual 

situation where the “true” constraint can be selected based on strong a priori theory, the 

IE and CGLIM will have close estimates in such instances, but the IE is still preferable 

because it a more efficient estimator than CGLIM (Yang, Fu and Land 2004). In addition, 

                                                        
[3] The proportion of variance that any single principal component accounts for is 

𝜆𝑖

∑ 𝜆𝑖
 . Consequently, the 

PC derived from an eigenvalue of zero accounts for no variance Dunteman, George H. 1989. "Principal 

Component Analysis. Quantitative Applications in the Social Sciences Series (Vol. 69)." Thousand Oaks, 

CA: Sage Publications.. 
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although the entire algorithm of the IE is borrowed from the ideas of principal component 

analysis, the re-transferring from the principal component space to the original space at 

the last step eases the interpretation of the coefficients using usual age, period, and cohort 

terms. Due to these desirable properties, some scholars have endorsed the IE method as a 

non-arbitrary way to constrain the model and identify a unique set of APC estimates (Fu, 

Land and Yang 2011).  

 

Why Does the IE Sometimes Fail? – Critiques of the IE 

Despite these potential advantages, recently published critiques have claimed that 

the IE is no less arbitrary than other APC methods because it has the tendency to yield 

biased estimates of age, period, and cohort effects (Luo 2013a, Luo 2013b). According to 

these scholars, the IE can fail because it does not properly address the ID problem. 

 One critique argues that IE estimates can change substantially through different 

categorizations of age and period groups (Luo 2013a). Although the null eigenvector b0 is 

not affected by Y, it is influenced by the numbers of age and period categories (i.e., a and 

p). Then the “linear” constraint derived from Eq (11) changes accordingly. Consequently, 

the data structure that satisfies the new constraint also changes, ultimately altering the IE 

estimates of age, period, and cohort effects. Unfortunately, there is no way to verify that a 

particular categorization of age and period effects will accurately reflect the truth. 

Although this argument is not logically wrong, it is worth noting that dependence of APC 

estimates of the coefficients on the categorization of age and period groups is true for all 

approaches of estimation, not necessarily a unique issue of the IE estimates.  
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Another critique focuses on that the IE uses the last groups of age, period, and 

cohort as reference categories by default. When other reference categories are used, the 

estimated pattern of age, period, and cohort effects can rotate. Sometimes this rotation is 

significant enough to flip the entire pattern of the effects (Held and Riebler 2013). Also 

by default, the IE uses an ANOVA-type effect coding (“sum-to-zero” coding) scheme. 

When a dummy-coding scheme is used instead, it can significantly alter the estimates of 

age, period, and cohort effects (Luo et al. 2014). A rejoinder to this criticism can be 

found in Land et al. (2016).  

The critique of Luo (2013) states that Eq (11) still imposes an arbitrary constraint 

on the data—and the estimates from an IE analysis will be biased when the data do not 

satisfy this constraint. She argues that a researcher can never be sure that the estimates 

are true age, period and cohort effects since in an empirical research setting, it is 

impossible to confirm that the given data meets this constraint. This critique that IE 

yields biased estimates is supported by the results from a simulation analysis. Simulated 

data in  Luo (2013a) are normally distributed where the mean of the response can be 

expressed as 10 + kaagei + kpperiodj + kccohortij, and the standard deviation of the error 

term is 0.1. Using different values of ka, kp, and kc, three sets of data are simulated to test 

the validity of the IE estimates. Among the three scenarios tested in these simulations, 

only the case that satisfies “IE’s linear constraint (b∙b0 = ka-kp+6kc= 0, where a=3, p=3)” 

produces unbiased estimates of APC coefficients. The other two scenarios, which do not 

meet the IE’s constraint, lead to APC estimates that are largely biased.  

Note that the data structure and the IE’s linear constraint in this critique are 

derived from a single assumption—that the age, period and cohort effects follow linear 
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trends. Using different ka, kp, and kc indicates using different slopes, but exact linear 

increases for all three terms. That is, the age coefficients are assumed to lie on a single 

linear line, and so do the period and cohort coefficients. The linear constraint of the IE is 

also derived upon this assumption so that the parameter vector b can be expressed as  

b = (𝜇, 𝑖𝑎, 𝑖𝑎 + 𝑘𝑎, 𝑖𝑝, 𝑖𝑝 + 𝑘𝑝, 𝑖𝑐, 𝑖𝑐 + 𝑘𝑐 , 𝑖𝑐 + 2𝑘𝑐 , 𝑖𝑐 + 3𝑘𝑐)𝑇, 

where ia, ip, and ic are the intercepts for the age, period, and cohort effects.  

In their response to this critique, Yang and Land (2013b) highlight the importance 

of understanding data structure in the application of the IE. This is a similar argument 

with the one that was brought up during the debate on the HAPC in Chapter 2. The 

reason why the IE produces biased estimates is not because of some inherent flaw, but 

rather because the IE is applied to a data structure that is not suitable for a fully three-

dimensional analysis. Yang and Land (2013b) pointed out that the data structure 

simulated in Luo (2013a) is highly improbable—and one where a three-dimensional 

model should not be applied. That is because, with the assumption of the “exact linear 

trend” of age, period, and cohort effects, one temporal dimension has a perfect correlation 

with the others and can be expressed as a functional form of the other dimensions. 

However, this is not a valid assumption because APC accounting models, including the 

IE, assume that all three dimensions independently contribute to the outcome variable. 

Yang and Land (2013b) argue that:  

If these model selection tests indicate that one or two of the three temporal 

dimensions of the APC model are sufficiently collinear with the other dimensions that 

they do not contribute significantly to the outcome variable, then the analyst should not 

specify the full three-way APC model but rather a reduced model with one or two of the 

temporal variables. (pg. 8) 

 



71 

To avoid such misapplication, Yang and Land (2013b) recommend that future 

researchers follow the three-step procedure outlined in Chapter 2 to make sure that the 

given data is eligible for the IE.  

Despite this clarification, critics remain skeptical about the usefulness of 

preliminary analyses (i.e., obtaining descriptive and model fit statistics) as a tool for 

understanding the structure of tabular-rate APC data. Luo (2013b) states: 

 

It is unclear how and why a model fit statistics, a piece of internal information 

derived from the data set itself, can be used as an external criterion to assure appropriate 

applications of IE. Moreover, even for data sets that meet Yang and Land’s criterion for 

“full-blown APC models,” IE estimates are not reliable or valid. (pg. 1986) 

 

Which of these statements is true? In this debate, it is an important to test if the 

suggested preliminary analysis can be a useful tool for checking the data structure before 

estimating IE models. If preliminary steps can tell us whether the data structure is eligible 

for a three-dimensional IE model—and if the IE successfully estimates the true age, 

period, and cohort effects from such data—then the IE can be a very useful research tool. 

However, if preliminary steps do not provide enough evidence on the eligibility of the 

given dataset for the IE model, then researchers will risk obtaining biased estimates of the 

age, period, and cohort effects from the IE.  

 

Research Goal of This Chapter 

No previous studies have focused on the validity of the preliminary analysis 

suggested by Yang and Land (2013b) as a tool for understanding the structure of 

conventional tabular-rate APC data. Chapter 3 of this dissertation first evaluates the 

performance of step 1 (visual plots of descriptive statistics) and step 2 (model fit 
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statistics) of the three-step procedure as tools to understand a data structure that is two-

dimensional as a result of exact linear trends in two dimensions. According to Yang and 

Land’s argument (2013), such a data structure is not suitable for the IE, and the first two 

steps should provide enough evidence for researchers to avoid the application of a three-

dimensional model. Next, I simulate additional data sets with some deviations imposed 

on either or both of the linear trends, which make the data structure more plausible. I 

observe how step 1 and 2 react to those changes.  

 In the real world, data structures can also be reduced by having one or more 

temporal dimensions that contribute little to the outcome variable. In additional 

simulation analyses, I test if the descriptive and model-fit statistics can properly detect 

the structure of data when a temporal dimension makes essentially no contribution to the 

outcome variable. From there, I gradually alter the structure of the data to become 

increasingly three-dimensional by imposing more obvious and distinct trends for each 

temporal dimension, and see if the preliminary steps can detect these incremental changes 

in the data structure.  

Finally, to test Luo (2013b)’s argument that “even for data sets that meet Yang 

and Land’s criterion for “full-blown APC models, IE estimates are not reliable or valid 

(p.1986)”, I introduce scenarios where the simulated data have very distinct three-

dimensional structures. To verify if the three-step procedure is valid for IE models, I first 

examine if the preliminary steps accurately detect the three-dimensional data structures, 

and then whether application of IE models produces unbiased estimates of the “true” age, 

period and cohort effects.  

 



73 

Methods 

Simulation Design 

In this chapter, thirteen different scenarios were tested in four sets. The outcome 

variable in all instances is the rate of suicide mortality; temporal dimensions are 

borrowed from Jeon, Reither and Masters (2016) for certain scenarios to enhance the 

plausibility of the data generating process (DGP).  Each of the four sets was designed to 

reflect a unique situation that can occur with respect to each temporal dimensions in the 

data. The descriptions of the scenarios in each set are presented in Table 7. 

The first set (hereafter referred to as “A-set”) tests Yang and Land’s argument 

(2013) that preliminary analyses are capable of detecting a reduced data structure when 

two of the three dimensions have exact linear trends. As the authors noted, one temporal 

dimension can be written as a function of the other dimension due to the high correlation 

in such a scenario. I will test if the descriptive and model fit statistics detect such 

properties of the data structure, and if so, I will give evidence that the three-dimensional 

model should not be applied. Across all scenarios in the A-set, I hold cohort effects 

constant but introduce variations to the age and period trends. To create a plausible data 

structure rather than arbitrarily assigning an unrealistic one, I borrow cohort trends in 

suicide mortality rates in South Korea, previously reported by Jeon, Reither and Masters 

(2016). Next I simulate data in scenario A-1 with age and period trends that are both 

exactly linear. Thus, those two dimensions are perfectly correlated and one can be written 

in a functional form of the other. Scenario A-2 retains these features but introduces small 

deviations in the linear trends for age and period effects. In this setting, those two 

dimensions still have a perfect correlation, but the trends are no longer exactly linear due 
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to the given deviations. A-3 introduces additional deviation in the period trend but 

maintains an exactly linear functional form for the age trend. A-4 is the opposite of A-3; 

it introduces deviation in the age trend but constrains the period trend to be exactly linear. 

In A-3 and A-4 the correlation is not perfect but still as high as r=0.95.  

The B-set tests how alteration of the age effects impacts the temporal 

dimensionality of the data structure. In these simulations, I hold period and cohort trends 

constant and assign different degrees of curvature to the age trend. The period trend is set 

to be the same as the one used in A-2 (i.e., near-linear), and the cohort trend is the same 

as the one used in the A-set. The shape of the age pattern is similar to the one found in 

Jeon et al. (2016) for suicide mortality in South Korea. I retain the general shape of age 

effects in these models, but alter the curvature of age effects to become increasingly 

obvious across models: B-1 shows the least obvious trend, B-2 a modest trend, and B-3 

has the most obvious trend.   

The C-set tests how altering period trends affects data dimensionality, holding age 

and cohort trends at a constant. The age trend is held the same as the one used in B-3 

(i.e., the most obvious trend), and the cohort trend is retained from the A and B-sets. 

Period trends are near-linear in the C-set, but they have a different slope in each scenario. 

The period trend in C-1 is least obvious, followed by a modest period trend in C-2, and a 

relatively steep period trend in C-3, which has the most obvious trends for all three 

dimensions in all the scenarios tested in this chapter. 

Finally, the D-set tests how changes to cohort effects impact the data structure, 

holding age and period trends constant. The age trend is retained from the C-set, and the 

period trend is borrowed from C-3 (i.e., the most obvious trend). All three scenarios in 
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the D-set have similar shapes of cohort trends, but the curvatures are different. In D-1, the 

cohort trend is very modest, or almost flat. D-2 has a more obvious cohort trend than D-1, 

but it is still moderate. D-3 has the most obvious cohort trend. Note that D-3 is essentially 

the same scenario as C-3 but presented one more time in the D-set for comparison with 

the other two scenarios in the D-set.  

 

Simulation Procedure 

To start, I use Stata 13 to simulate data that reflect the aforementioned age, period 

and cohort trends. For each scenario in all four sets, I simulate 100 datasets containing 

50,000 observations. Each dataset has ten age groups, ten periods of observation, and 

nineteen birth cohorts. For each dataset, I randomly assign a continuous term for age 

ranging from 10 to 59. Then I divide the ages into ten 5-year age groups. In the same 

way, I randomly assign a continuous term for periods of observation ranging from 1965 

to 2015. Then I divide the years into ten 5-year period groups. By subtracting the 

continuous age term from the continuous period term, I derive birth years ranging 1906 to 

2005. Then I break the birth years into nineteen 5-year birth cohorts. Using these age, 

period, and cohort groups and data generating processes (DGPs) that follow the temporal 

trends for each scenario (Figure 10), I create the outcome variable. The random error 

term is set to follow the normal distribution with the mean of zero and a variance of 2.  

 

Three-step Procedure 

I applied the three-step procedure suggested by Yang and Land (2013) to each 

simulated dataset using R 3.2.2. In Step 1, I conduct a descriptive analysis by obtaining 
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the rate of the outcome variable (suicide mortality) for each age group, period of 

observation, and birth cohort. The suicide mortality rate for each age group is calculated 

by averaging across all periods and birth cohorts; similarly, period rates are calculated by 

averaging across all ages and birth cohorts, and cohort rates are calculated by averaging 

across all age groups and periods. To ease interpretation, rates are converted into the 

number of suicide deaths per 100,000 person-years lived. The median estimates of the 

rate across 100 data sets are also calculated. In Step 2, the goodness-of-fit statistics 

discussed in Chapter 2 (AIC and BIC) are calculated for the 7 nested models (i.e., A, P, 

C, AP, AC, PC, APC) for each dataset, and the best fitting model is tallied across all 100 

simulated datasets.  

The results from the descriptive analysis and goodness-of-fit tests will be checked 

against the DGP to understand if preliminary analyses can (1) detect the true 

dimensionality of the data structure and (2) appropriately suggest the model that correctly 

matches the true DGP. In cases where the full three-dimensional model is suggested, the 

analysis moves on to Step 3: applying the IE to estimate age, period and cohort effects. 

As one of the recent critiques argued, IE estimates can significantly change or rotate 

when different reference categories are employed. Therefore, I estimate two sets of 

coefficients to see the degree of variability or rotation in the estimates—one that uses the 

final age, period, and cohort groups as reference categories, and another that the first age, 

period, and cohort groups as reference categories instead. Consequently, for the 100 

datasets in each scenario, 200 sets of coefficients are obtained. To understand if changing 

reference categories produces meaningfully different results, I will present separate 

median estimates from those sets.  
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Results 

 

A-Set 

Figure 11 presents the descriptive statistics for each scenario in the A-set. Some 

scenarios in the A-set reflect the fact that the DGP imposes an exact linear trend on age 

and/or period dimensions. Again, this is an unrealistic assumption that is not observed in 

real-world APC data because the probability that the effects of a temporal dimension lie 

on an exact linear line is extremely improbable. While age, period, and cohort processes 

that generate the outcome can take on any form (O’Brien 2013), it is not plausible to 

expect that they should ever precisely follow a mathematical function. 

The cohort trend is held constant across all four scenarios in the A-set. The 

descriptive cohort plots reflect the shape of the original DGP well, showing very little 

change across scenarios. When some deviations are applied to the age and/or period 

trend, the descriptive plots of those two terms reflect this. In A-1, in which age and 

period have perfect linear trends, the descriptive age and period plots also look linear. 

The age plot has a slightly steeper slope than the period plot, although those two terms 

have the same slope in the DGP. When both age and period are given deviations from the 

exact linear pattern but the two dimensions still have a perfect correlation by being given 

the exact same deviations in A-2, the descriptive plots of both dimensions reflect those 

deviations. However, the patterns of the plots were not perfectly identical. When a 

deviation is introduced to the linear trend for age in A-3 or period in A-4, the descriptive 

plots also successfully pick up the change. Although the correlation between the two 

dimensions is high, the dimension upon which the deviation was imposed reflects this the 
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most (i.e., period in A-3, and age in A-4) while the other dimension remains with a nearly 

linear descriptive plot.  

Overall, the descriptive plots in the A-set reflect the modification imposed on the 

DGP very well. By looking at the descriptive plots, a researcher might reasonably guess 

that all the dimensions make contributions to the outcome variable, as no descriptive plot 

is really flat. However, this alone is not sufficient evidence to warrant the application of 

an IE model to these data. That is because age and period plots have quite similar 

monotonic increasing patterns and there is a possibility of confounding between these 

two dimensions. If that is the case, the data may not be fully three-dimensional, and the 

IE may not be the best option for these data. At this stage, the model fit statistics can give 

some supplementary information to aid in appropriate model selection.  

As shown in Table 7, there is some inconsistency in the “best” models, as 

suggested by AIC and BIC across the different scenarios. Considering that the sample 

size is as large as 50,000 in this study, I will rely primarily on the AIC for choosing the 

best fitting model when there are contradictions between model selection statistics. (For a 

more detailed rationale on this point, please see Chapter 2). For scenario A-1, the AIC 

fails to distinguish between the perfectly linear and identical patterns of age and period 

effects. The AIC considers only one of those two dimensions active, suggesting reduced-

dimension models, especially AC and PC models. Not one of the 100 simulated datasets 

was suitable for a complete three-dimensional model. In such cases, the IE should not be 

applied. 

In scenarios A-3 and A-4, either age or period effects are allowed to deviate 

slightly from a perfectly linear functional form—but at least one dimension is still 
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constrained to fit this mathematical function. In these scenarios, the vast majority of the 

100 datasets are still not suitable for three-dimensional models. The age or period 

dimension that is forced into an exactly linear trend is generally considered inactive by 

the AIC. In A-3, where deviations were introduced for period effects but age effects 

remain exactly linear, the AIC for 96% of the simulated datasets detects that period is an 

active dimension, but age is not. Similarly, in A-4, where age has some deviations while 

period is exactly linear, the AIC for 94% of the simulated datasets finds that the age is an 

active dimension, but period is not.  

Only for scenario A-2, where both age and period deviate from a perfect 

functional form, does the AIC indicate that the data are eligible for a three-dimensional 

model. As both the descriptive plots and model selection statistics suggest that all three 

dimensions are active in scenario A-2, the analysis can proceed to Step 3—applying the 

IE model. According to the results (Figure 12), IE performs well, capturing the true age 

and period trends. The IE estimates for the youngest and oldest cohorts are slightly 

biased, leading to rotation in the patterning of cohort effects relative to the true trends 

shown by the DGP. However, contrary to the concerns expressed by Held and Reibler 

(2013), the degree of rotation is not sufficient to lead to an incorrect substantive 

interpretation of the cohort patterns.  

 

B-Set 

Figure 13 presents visualized descriptive statistics for the three scenarios in the B-

set. Scenarios in the B-set were set to have constant patterns of period and cohort effects, 

with variations imposed on the age effects. As expected, age plots have apparent 
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differences across the scenarios. As the DGP introduces increasingly obvious age patterns 

from B-1 through B-3, the descriptive age plots accordingly have more obvious 

curvatures across these three scenarios. The descriptive period plots stay the same across 

all three scenarios, being impacted very little by variations in the age pattern. Although 

cohort effects were not altered, descriptive cohort plots nevertheless show slight changes 

across the scenarios. For B-3, where the age pattern was set to be the most obvious 

among the three scenarios, the descriptive cohort plot has an apparent decreasing trend, 

and the bump between the 1930 and the 1950 cohorts is more evident than the ones in B-

1 and B-2. The more obvious age pattern in B-3 causes the older age groups to have 

much higher suicide rates than younger age groups, which in turn leads to higher suicide 

rates among earlier cohorts that consist of older people. Because of this inverse 

relationship between age and cohort (i.e., younger people make up later cohorts, older 

people make up earlier cohorts), descriptive age and cohort plots are partly intertwined. 

Because the descriptive plots for B-1 through B-3 show distinct patterns for each 

temporal dimension, it seems likely that each dimension makes a unique contribution to 

suicide mortality. Therefore, a researcher might reasonably speculate that all scenarios in 

the B-set are suitable for a three-dimensional analysis. The model fit statistics for the B-

set (Table 8) support such speculation. As expected, the AIC statistic points to a full, 

three-dimensional model for all 100 datasets in all three scenarios in the B-set. 

Importantly, the results of B-1 indicate that the AIC is sufficiently sensitive to detect 

relatively modest age effects in scenarios where period and cohort effects are active.  

Based on these results, the IE is applied to all three scenarios (Figure 14). As 

shown, the large sample size (N=50,000) used in the simulation yields small variations to 
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the estimates of the APC effects across the data sets. However, the IE performs very well, 

especially for capturing the true age and period effects. Although the IE tends to slightly 

underestimate the effects of the earliest cohorts and overestimate the effects of the latest 

cohorts, the degree of inaccuracy is trivial and the point intervals mostly catch the true 

DGP in all three scenarios. 

 

C-Set 

In the C-set, the age and cohort patterns are held constant while variation is 

imposed on the period pattern. The descriptive age and period plots reflect the DGPs in 

the three scenarios quite well (Figure 15). The age plots retain their shape, and the period 

plots detect changes assigned to the DGP across scenarios C-1 through C-3. However, 

although the cohort DGP was constant across scenarios, the descriptive cohort plots are 

affected by variation in the period effects. For scenario C-1, the cohort pattern exhibits a 

decreasing trend, with a couple of “bumps” for the 1945-49 and 1975-79 cohorts. 

Scenario C-2 has a quite similar pattern, but the cohort trends before 1930-34 and 

between 1950 and 1969 are flat rather than decreasing. Finally, scenario C-3 shows an 

overall increasing trend with similar bumps, with the exception of the latest two cohorts 

where there is a steep drop. 

Based on the obvious and distinctive patterns of these descriptive plots, a 

researcher is likely to guess that age and cohort are active dimensions in all three 

scenarios. The key to estimating the data structure in the C-set is whether the 

monotonically increasing period effects are sufficiently obvious enough to warrant 

modeling this dimension. With the help of model-fit statistics, a clearer picture begins to 
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emerge (Table 9). In scenarios C-1 and C-2, the AIC suggests a reduced AC model for 

some of the 100 simulated datasets, as the period effects have less obvious trends. For C-

1, the AIC suggests a reduced model (i.e., AC) for almost half of the simulated datasets. 

The other half in C-1 turned out to have the best fit with the full, three-dimensional 

model. For C-2, in which the period pattern is more obvious than C-1, 88 out of 100 

simulated datasets appear to have the three-dimensional structure. The other 12 datasets 

have the best fit with the AC model. AIC suggest the full, three-dimensional model for all 

100 datasets in C-3. This is not surprising, as all three temporal dimensions exhibited 

obvious patterns through the descriptive statistics.  

As AIC suggests the three-dimensional model to 88 out of 100 datasets in C-2, I 

applied the IE to those 88 datasets (Figure 16(a)). The IE captured the less obvious trend 

of period effects well. The patterns of age and cohort effects in the DGP were also 

accurately estimated by the IE, with slight rotation of effects noted in the cohort 

dimension.  

Based on the preliminary steps, all 100 datasets are eligible for estimation of an 

IE model in scenario C-3 (Figure 16(b)). Overall, the IE does a good job catching the 

temporal dimensions embedded in the data structure, although biases for the youngest 

and oldest cohorts cause more noticeable rotation in cohort effects than in scenario C-2. 

The IE captures the age DGP quite well overall, despite slight overestimation at the later 

ages. The true pattern of period effects is also accurately estimated by the IE, with minor 

overestimations for the earliest periods and underestimations for the latest periods. 
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D-Set 

Finally, the scenarios in the D-set have fixed age and period trends with varied 

cohort patterns. Consistent with this DGP, the descriptive plots for age and period effects 

are unaffected by changes imposed on the cohort trend, showing little difference across 

the scenarios (Figure 17). The only easily noticeable difference is the cohort pattern for 

D-3, which has much sharper peaks than the cohort plots for D-1 or D-2.  

One thing worth noting in the D-set is that when the cohort has essentially no 

trend (i.e., D-1), the descriptive cohort plots may nevertheless appear to have a distinctive 

pattern. This is quite different from what was observed with age and period descriptive 

plots in the B and C-sets. The true patterns of age and period effects were accurately 

reflected in their descriptive plots and not substantially distorted by changes in the other 

dimensions. However, descriptive plots for the cohort dimension are strongly impacted 

by variations introduced for the other dimensions. As a result, the descriptive plot in D-1 

gives the appearance that cohorts independently contribute to suicide mortality, even 

though the DGP for cohort effects is actually flat. If a researcher were to consider the 

cohort as an active dimension, exclusively relying on the descriptive statistics, this would 

lead to an erroneous methodological decision in which a model were selected that 

includes the cohort as an active dimension. To avoid such a mistake, the model-fit 

statistics must always be given consideration as well. 

The AIC statistic shows that cohort is not an active temporal dimension 99 of the 

100 simulated datasets, indicating that the AP model best fits these data for D-1. As the 

cohort trend has increasingly obvious patterns in D-2 and D-3, the AIC suggests that the 
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three-dimensional model is best for 94 out of 100 simulated datasets in D-2 and all 100 

simulated datasets in D-3. 

Following the three-step procedure, the analysis can proceed to Step 3 for 

scenario D-3. As noted before, D-3 is the same scenario as C-3; those IE results are not 

reiterated here. As the AIC suggests the three-dimensional model for 94 datasets out of 

100 in D-2, the IE is applied to those 94 datasets. As presented in Figure 18, the IE 

captures the true age and period effects very well. The estimates for the cohort effects are 

slightly rotated compared to the DGP. However, considering the data in D-2 has an age- 

and period-dominant structure, this minor rotation has minimal influence the overall 

conclusions about the contributions of these temporal dimensions to suicide mortality.   

 
Discussion 

 

In her recent critique of the IE, Luo (2013a) simulated age, period, and cohort 

effects on exact linear lines. In their response to this critique, Yang and Land (2013b) 

emphasized that this simulation design violates a key modeling assumption—namely that 

three-factor APC models are not estimable when all three temporal factors have exact, 

linear relationships with the outcome. Aside from being highly improbable and therefore 

unrealistic, the problem with such a scenario is that one temporal dimension can be 

expressed as an exact, linear function of the other two. Yang and Land go on to argue that 

such a clear violation of the modeling assumptions is detectable by conducting 

preliminary analyses. Note that if exact linear functional forms are not assumed, the 

“linear constraint” that Luo (2013a) derived does not hold true. 

Although a data structure with two or more exact linear temporal trends is 

extremely unlikely in any data structure generated by real social phenomena, I 
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nevertheless examined the claim that misapplication of the IE to such data could be 

prevented by conducting preliminary analyses. Overall, the results of the A-set support 

Yang and Land (2013b)’s argument. In all four scenarios that comprise the A-set, age and 

period dimensions have either near or exact linear effects at the same time. When at least 

one dimension has an exact linear effect (i.e., A-1, A-3, and A-4) and one has a near 

linear effect, the descriptive statistics reflect this fact quite well, and the AIC suggests 

reduced models. This result implies that when confounding between two linear 

dimensions occurs during the DGP, the resulting data will have fewer than three 

dimensions. In such cases, three-dimensional IE models are not capable of disentangling 

the effects of those confounded dimensions. Therefore, the IE should never be applied to 

such data. Because preliminary analyses provide important clues about the presence of 

confounding, it is essential to conduct these analyses to prevent misapplication of a three-

dimensional model. 

However, when the data structure becomes more plausible by allowing some 

deviations from the exact linear trends for age and period effects (i.e., scenario A-2), the 

results of preliminary analyses correctly pointed to a full, three-dimensional data 

structure. When applied to such data, the IE performs very well. Based on these findings 

from the A-set, we now know three important features of preliminary analyses and the IE 

itself: First, imposing unrealistic functional forms during the DGP will lead to data 

structures that violate model assumptions, rendering such exercises meaningless with 

respect to the performance of the IE or any other APC model. Second, the preliminary 

steps outlined by Yang and Land (2013b) can indeed help detect data structures that are 

ineligible for three-factor APC models, such as the IE. Third, when preliminary analyses 
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point to a more realistic data structure with variability across all three temporal 

dimensions, the IE performs well.  

In the B, C, and D-sets, I tested how well the descriptive and model selection 

statistics detected changes in the dimensionality of the data. In all three sets, I introduced 

changes to age, period, and cohort effects that induce a reduction in the data structure. 

Then, I observed how the descriptive and model fit statistics react to those changes and 

whether they reflect the true data structures well. The descriptive plots in sets B-D 

accurately reflected changes to the age and period patterns across different scenarios. 

However, the descriptive plots for cohort effects were not as straightforward to interpret 

and could at times be misleading. For example, plots of cohort effects were sensitive to 

changes in the age patterns (B-set) and period patterns (C-set). Conversely, descriptive 

period and age plots did not change substantially in response to changes in cohort 

patterns. Moreover, even though descriptive cohort plots responded to cohort variation in 

the DGP (D-set), they do not resemble the DGP as with age and period plots. Instead, 

cohort plots have distinct shapes that appear to be sensitive to all three temporal 

dimensions. Even where the cohort DGP is nonexistent (D-1), the descriptive plots do not 

look flat or indistinct. In summary, descriptive plots for tabular-rate APC data provide a 

good indication about the structure of age and period dimensions, but cohort patterns are 

difficult to discern from descriptive plots only. Therefore, it is imperative that researchers 

use model selection statistics along with descriptive plots to help determine whether all 

three dimensions are making unique contributions to an outcome. 

Model selection statistics—most notably the AIC in my analyses—provide 

additional evidence to help researchers adjudicate between different possible data 
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structures. When I modified a data structure to become two-dimensional or on the border 

between two and three dimensions, the AIC tended to swing between two different 

models. However, in cases where the AIC pointed to a three-dimensional model, the IE 

performed quite well. Even in the cases where a particular temporal dimension had few 

obvious effects, the IE successfully captured the true data structure as long as the AIC 

indicated that this dimension is active.  

By integrating the results, I answer the two research questions of this chapter as 

follows: First, can the two preliminary steps detect the true data structures? The answer is 

yes. However, when two or more dimensions are perfectly correlated by having the same 

functional form, a three-dimensional dataset may appear to be reduced-dimensional due 

to the confounding between those dimensions during the DGP. In this case, as the model-

selection statistics would not point to three active dimensions, a researcher should never 

apply the IE. If applied, the IE is likely to produce biased estimates of the true 

coefficients. Second, when the preliminary steps suggest the data are three-dimensional, 

does the IE perform well? The answer to this question is also yes. For plausible data 

structures, the preliminary steps are useful tools to understand the active dimensions. 

When the descriptive and the model-fit statistics verify that the given data is suitable for 

the three-dimensional models, the IE captures the DGP well.  

In summary, my analyses provide little evidence that that the IE is an arbitrary 

estimator that researchers should avoid. The reason why the IE failed in the critique 

offered by Luo (2013a) is that she applied it to data that are not eligible for this model. 

The simulated data are three-dimensional in Luo’s study, but not suitable for the IE 

because perfectly linear effects of more than two dimensions lead to confounding 
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between them. This is a highly unrealistic assumption that induces the data to look and 

act like reduced-dimensional data at the completion of the DGP. Such data are not in the 

scope of the application of the IE, and researchers can avoid such misapplications of the 

IE by conducting preliminary analyses, as suggested by Yang and Land (2013b). 
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Tables and Figures 

 

 

(a) A-Set 

 
 

(b) B-Set 

 

 
 

(c) C-Set 

 
 

Figure 10. Visualized Simulation Scenarios of A, B, C, and D-Sets 
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(d) D-Set 

 

 
 

 

Figure 10 (cont’d). Visualized Simulation Scenarios of A, B, C, and D-Sets 
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(a) A-1 

 
(b) A-2 

 
(c) A-3 

 
 

Figure 11. Visualized Descriptive Statistics of Scenarios in A-Set
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(d) A-4 

 
 

Figure 11 (cont’d). Visualized Descriptive Statistics of Scenarios in A-Set
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Table 7. Model Fit Statistics for Nested APC Models Fitted to 100 Simulated Data in A-

Set 

 
  A P C A+C A+P P+C APC 

A-1 AIC 0 0 0 52 0 48 0 

BIC 0 0 0 52 0 48 0 

A-2 AIC 0 0 0 0 0 0 100 

BIC 0 0 0 49 0 35 16 

A-3 AIC 0 0 0 0 0 96 4 

BIC 0 0 0 0 0 100 0 

A-4 AIC 0 0 0 94 0 6 0 

BIC 0 0 0 100 0 0 0 

 DF 10 10 19 28 19 28 36 

 N 50,000 50,000 50,000 50,000 50,000 50,000 50,000 

 

 

 

 

(a) A-2, IE 

 
 

Figure 12. Estimates of the IE for 100 Simulated Data in A-Set
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(a) B-1 

 
 

(b) B-2  

 
(c) B-3 

  
 

 

Figure 13. Visualized Descriptive Statistics of Scenarios in B-Set 
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Table 8. Model Fit Statistics for Nested APC Models Fitted to 100 Simulated Data B-Set 

 

  A P C A+C A+P P+C APC 

B-1 AIC 0 0 0 0 0 0 100 

BIC 0 0 0 71 0 0 29 

B-2 AIC 0 0 0 0 0 0 100 

BIC 0 0 0 71 0 0 29 

B-3 AIC 0 0 0 0 0 0 100 

BIC 0 0 0 71 0 0 29 

 DF 10 10 19 28 19 28 36 

 N 50,000 50,000 50,000 50,000 50,000 50,000 50,000 
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(a) B-1, IE 

 
  

(b) B-2, IE 

  
(c) B-3, IE 

 
 

Figure 14. Estimates of the IE for 100 Simulated Data in B-Set 
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(a) C-1  

 
(b) C-2  

 
(c) C-3 

 
 

Figure 15. Visualized Descriptive Statistics of Scenarios in C-Set 
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Table 9. Model Fit Statistics for Nested APC Models Fitted to 100 Simulated Data in C-

Set 

 

 

 

 

 

(a) C-2, 88 Simulated Dataset, IE 

 
 

       (b) C-3, 100 Simulated Dataset, IE 

 
 

Figure 16. Estimates of the IE for Simulated Data in C-Set 

  A P C A+C A+P P+C APC 

C-1 AIC 0 0 0 49 0 0 51 

BIC 0 0 0 100 0 0 0 

C-2 AIC 0 0 0 12 0 0 88 

BIC 0 0 0 100 0 0 0 

C-3 AIC 0 0 0 0 0 0 100 

BIC 0 0 0 98 0 0 2 

 DF 10 10 19 28 19 28 36 

 N 50,000 50,000 50,000 50,000 50,000 50,000 50,000 
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(a) D-1 

 
(b) D-2 

 
(c) D-3 

 
 

 

Figure 17. Visualized Descriptive Statistics of Scenarios in D-Set 
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Table 10. Model-Fit Statistics for Nested APC Models Fitted to 100 Simulated Data in D-

Set 

 

 

 

 

(a) D-2, 94 Simulated Datasets, IE 

 

 
 

 

Figure 18. Estimates of the IE for Simulated Data in D-Set 

 

 

 

  A P C A+C A+P P+C APC 

D-1 AIC 0 0 0 0 99 0 1 

BIC 0 0 0 0 100 0 0 

D-2 AIC 0 0 0 0 6 0 94 

BIC 0 0 0 100 0 0 0 

D-3 AIC 0 0 0 0 0 0 100 

BIC 0 0 0 98 0 0 2 

 DF 10 10 19 28 19 28 36 

 N 50,000 50,000 50,000 50,000 50,000 50,000 50,000 
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CHAPTER IV 

ESTIMATING THE EFFECTS OF AGE, PERIOD, AND COHORT ON THE 

EDUCATIONAL GAPS IN HEALTH USING HIERARCHICAL AGE-PERIOD-

COHORT MODELS  

 

Introduction 

All human beings experience biological aging. It accompanies health deterioration 

after a certain age during adulthood. The accumulation of damage at the molecular- and 

cell- level that occurs within an individual over time causes a loss of ability to restore 

homeostasis, organ failures, and eventually elevated risks of diseases and death. 

Gompertz demonstrated that human morbidity and mortality rates exponentially increase 

throughout adulthood beyond the age of 30 (Fries 1983, Fries 2002, Manton 1982). While 

there have been significant reductions in age-specific morbidity and mortality rates over 

the last century, health deterioration accompanied by individuals’ aging still remains an 

irreversible and intractable process (Kannisto et al. 1994).  

Although no one can avoid gradual health decline as a consequence of biological 

aging, the rate of health deterioration differs from person to person. This difference is 

caused by a complex combination of life events, genes, health behaviors, environments, 

and other unknown determinants. In particular, social epidemiologists have studied the 

socio-economic predictors that differentiate the rate of health deterioration. Education is 

one of those predictors, which significantly affects the pace of health deterioration, 

according to previous studies (Conti and Heckman 2010, Cutler and Lleras-Muney 2006). 

Less educated people tend to experience faster health deterioration than more educated 

people over the life course. As a result, people with higher educational attainment are 
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likely to show better health outcomes when measured by their self-rated health, 

morbidity, mortality, and mental well-being than less educated people at the same age 

(Feldman et al. 1989, Kaplan et al. 1987, Winkleby et al. 1992). 

There are several different explanations for this inverse association between 

education and the rate of health deterioration. Human capital theory argues that more 

schooling produces more human capital, which is necessary to maintain one’s health, 

including cognitive skills, rational and complex strategies of thinking, self-directedness 

and self-confidence (Becker 1994). The credential model highlights the importance of 

educational degrees in hiring decisions. Higher education calls for better jobs with higher 

income, which eventually leads to the procurement of quality health care and a healthy 

diet (Collins 1979). 

When the rates of deterioration differ by the level of education (i.e., the 

deterioration rate is higher in less educated people and lower for more educated people), 

the consequence is a widening health gap across different educational groups as people 

age. Some scholars apply “Cumulative Advantage Theory (CAT)” to understand the 

relationship between education and health disparities over the life course (Mirowsky and 

Ross 2005, Ross and Wu 1996). According to this theory, effective abilities, healthy 

habits, and nurturing environments, which are obtained by education in early adulthood, 

lead to health advantages in later life stages. Conversely, early disadvantages such as 

economic hardship and chronic stressors cause health deterioration in the future 

(Mirowsky and Ross 2005). This theoretical approach attributes the widening health 

inequality by education over the life course to accumulated benefits and difficulties with 

aging.  
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Meanwhile, some recent studies have found evidence that another temporal 

dimension—birth cohort membership—is also an important factor that contributes to the 

diverging health gap by education (Lauderdale 2001, Lynch 2003). These studies have 

shown that the effects of education on health are larger among recent birth cohorts than 

among earlier cohorts (Lauderdale 2001, Lynch 2003).  Findings of these studies may 

contrast with CAT. For instance, according to the CAT, the cumulative gaps of 

advantages and disadvantages are maximized among older people. However, the cohort 

studies show that older people experience the least severe inequality, because they are 

comprised of the earliest cohorts. These opposite trends of age and cohort highlight the 

importance of taking into account of the independent trajectories of the temporal terms 

for studying educational inequality in health (Lynch 2003). Failing to separate the 

independent trajectories by age and cohort may cause an appearance of converging health 

inequality over time, which is a false representation of what is really happening as a 

result of the obscured effects of age and birth cohort.  

When attempting to estimate inequalities in health trajectories across an extensive 

range of birth cohorts and age groups, data limitations can impose some difficulties. For 

example, to include a wide range of birth cohorts in a statistical model, a researcher needs 

access to data that cover relatively long periods of observation. That is because age and 

cohort terms are defined in a linear relationship with period (birth year = period-age), and 

therefore with short time periods, only a limited number of birth cohorts can be defined. 

For instance, a single cross-section of data cannot differentiate age groups from birth 

cohorts, and it is impossible to separate the effects of age and birth cohorts on health 

trajectories in such data setting.    
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Using data from repeated cross-sectional surveys covering longer time periods 

provides one solution to this problem. However, there is another issue with this approach: 

now the data cover more periods, and another temporal dimension (i.e., secular changes 

over time) may confound the contributions of age and cohort to changes in health. Then, 

a researcher should also take into account the independent contribution of secular 

changes when understanding health trajectories over the life course (i.e., age) and across 

birth cohorts. In traditional regression-based approaches, a statistical analysis of these 

three temporal dimensions presents difficulties associated with the perfect linear 

relationship between the three terms, as discussed in Chapter 2 and Chapter 3.   

The newly emerging age-period-cohort approach for repeated cross-sectional 

survey data can be a good solution in this context. Using a hierarchical age-period-cohort 

(HAPC) model, a researcher can extend the ranges of periods and cohorts by including 

multiple waves of data, permitting separate estimates for different ages, periods of 

observation, and birth cohorts. In this study, I attempt to estimate the unique 

contributions of the three time dimensions to health inequalities by education using the 

cross-classified random-effects models (CCREMs) of the HAPC approach. 

As suggested by Yang and Land (2013a) and Chapter 2 of this dissertation, the 

HAPC models can provide valid results if they are preceded by preliminary analyses that 

evaluate the data structure. In this chapter, I follow the three-step procedure of the HAPC 

model recommended by Yang and Land (2013a), which includes a descriptive analysis 

using graphics (Step 1) and an examination of model selection statistics across nested 

models to understand the structure of given data (Step 2). Then, I apply the model that is 

the best match to the data structure (Step 3).  
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Through this process, I will achieve the following aims: First, from the 

perspective of social epidemiology, I will estimate how educational inequalities in health 

vary across age groups, periods of observation, and birth cohorts. Second, by examining 

the Cumulative Advantage Theory and recent findings from cohort-based studies, I will 

determine which theoretical perspective is upheld in a nationally-representative data 

source. In addition, from a methodological perspective, I provide guidelines for future 

studies that employ the HAPC approach. Given recent debates on the validity of the 

HAPC, it is important that researchers understand how to avoid misapplications through 

preliminary analyses (Yang and Land 2013a). 

 

Socioeconomic Status, Education, and Health Gradient 

The literature in social epidemiology has thoroughly documented that SES is a 

powerful and consistent predictor of health (Adler et al. 1994, Feinstein 1993, Winkleby 

et al. 1992). SES is a complex concept that can be measured by a spectrum of variables, 

including occupation, income, and education. Researchers have found that each of those 

widely used indicators represents a unique aspect of one’s status in the social structure 

and, therefore, has a unique implication for health (Adler et al. 1994, Shavers 2007). For 

example, occupation is a measure for working environments (e.g., physical hazards and 

psychological stressors) which can predict health risks that an individual is exposed to. 

Income can be a proxy for access to material goods, including quality food and better 

housing options that can influence one’s health. Education may reflect lifestyle and 

health behaviors that lead to variations in health risks; it may also represent self-efficacy 

when coping with illnesses (Shavers 2007), 
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 Among the SES indicators, education is the most commonly used measure of SES 

in sociological and epidemiological studies (Adler et al. 1994, Shavers 2007). Since 

education is often completed during the early stages of life, it becomes a preceding 

condition to other aspects of the SES for most people that also provides initial placement 

within the social stratification system. Once an individual is located in the hierarchical 

social structure, it significantly affects his/her occupational opportunities and income 

potential. In that sense, education has not only a direct influence on health because it 

changes lifestyles and behaviors, but also an indirect influence on health by playing a 

critical role in determining other aspects of SES (Moore and Hayward 1990). 

 Importantly, scholars argue that education influences health throughout 

adulthood, even though the process of educational attainment is usually completed 

relatively early in life (Ross and Wu 1996, Shavers 2007). Some evidence indicates that 

health gaps across educational groups do not converge with age, but rather widen across 

the life course (Mirowsky and Ross 2005). Mirowsky and Ross (2005) emphasize that 

education transforms a person by putting his/her life on a particular track early in life that 

is difficult to alter in later years. The advantages that better education afford are therefore 

not temporary, but persistently embedded in one’s lifestyle, social support system, health 

behaviors (such as diet, smoking, and drinking), and access to quality health care. In the 

long term, the difference that those factors produce is cumulative and causes more 

divergences in physiological and psychological functions. 

 As advantages accumulate over time for the well-educated, so do disadvantages 

for the less fortunate. Lower tiers of the social stratification system embody lower-status 

occupations and lower earnings, which may harm health by limiting access to quality 
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health care, exposing to dangerous and stressful work environments, and deterring from 

purchasing healthy food or treating illness (Dupre 2008, Ferraro and Kelley-Moore 

2003). In addition, such life conditions may result in chronic stress, which can cause 

deteriorated immune system, promote diseases, and increase mortality in a long-term 

(McEwen and Seeman 1999). According to McEwen (1998), the disadvantages in health 

due to lower educational attainment are minor when people are young, because people 

are likely to be healthy during their early life stage. However, when stressors increase and 

coping mechanisms are lacking over the long term, the body’s adaptive system may break 

down, which ultimately leads to a significantly elevated risk of having diseases in later 

life stages.  

 

Estimating Three Temporal Effects to Explain Health Inequality 

This explanation of the widening health gap by accumulated advantage and 

disadvantage is based upon Cumulative Advantage Theory (CAT). The concept of CAT 

was originally proposed in Robert Merton’s work on differentials in academic careers 

(Merton 1968). It explains that a difference in early-career performance grows over time, 

and causes cumulative career advantage by attracting exponential resources and increased 

reputation. Here, the accumulation occurs through a temporal process that widens the 

gaps. The amount of time spent in an academic career is what determines the amount of 

accumulation and the consequent performance gap between individuals.  

 Applied to health inequalities over the life course, the time unit that determines 

the amount of accumulation is the time since birth, i.e., the individual’s biological age. 

Most studies include age as the time unit (Ross and Wu 1995, Ross and Wu 1996). 
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However, recent studies have shown that birth cohorts—another temporal dimension—

also has significant implications for health gaps over the life course (Lynch 2003). These 

findings suggest that it is important to study the independent contributions of both 

temporal terms to understand differences in health over the life course. Lynch (2003) 

demonstrated the importance of considering cohort effects along with age effects, 

showing that the patterns of age and cohort effects might suppress each other when either 

was not considered. Because education has undergone enormous changes over the latest 

few decades, different cohorts may have experienced different contents of education, 

which may have changed the association between education and health. Lynch highlights 

that ignoring either age or cohort terms in studies of health inequalities over the life 

course may result in completely different conclusions. He shows that the effects of 

education on health grow stronger with age, and that this pattern has become stronger 

across cohorts. This important finding could not have been observed if the author had not 

taken into account both age and cohort effects. 

 Although following individual cohorts over time is one way to control for 

differentiated cohort effects on health, the drawback is that longitudinal data generally 

cover a short follow-up period (Kitagawa and Hauser 1973) and only very few cohorts. 

Consequently, it is hard to track changes throughout adulthood or to compare various 

cohorts to each other. Using repeated cross-sectional data is an alternative strategy 

because they typically contain information from young adults to elderly people in each 

wave of data collection; this introduces the option of estimating both age and cohort 

trajectories while also controlling for the influence of secular changes on health over long 

periods of observation. If the contribution of secular changes (i.e., period effects) to 
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health is ignored, the model may produce biased estimates due to potentially confounded 

effects of age and cohort, and it will also fail to examine how health inequalities have 

changed over time. If there was, for instance, a public health intervention implemented at 

a certain point in time, the effectiveness of the intervention can be revealed by estimating 

period effects. Therefore, it is essential for a researcher to employ a statistical approach 

such as HAPC, which can disentangle the effects of the three different time dimensions 

for accurately evaluating the temporal changes in health inequality.  

 

Research Goal of This Chapter 

 Once a researcher successfully estimates the independent contribution of age, 

period, and cohort, the results can be used to shed more light on some important temporal 

aspects of educational inequality in health. First, trajectories of age effects over life-

course can provide a clear understanding on whether health inequality is a process of 

unbounded growth. There have been diverging arguments on this issue. Some scholars 

(Beckett 2000, House et al. 1994) argue that health advantages tend to diminish after a 

critical age because of social programs for the elderly and the elimination of unhealthy 

people by premature deaths. Other scholars argue that the accumulation lasts until the end 

of the life course with no convergence in the health gap (DiPrete and Eirich 2006). Aware 

of these different theoretical perspectives, I will test if the health gap widens without 

bound by estimating predicted probabilities using the HAPC model. If the CAT holds 

true, educational disparities in health should be relatively narrow during early life stages 

and subsequently widen with age, reaching a maximum at the latest life stage. If the 
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growth of health is a bounded process, the results on age effects will also identify when 

during a life course the influence of the cumulative advantage is maximized.  

Second, a comparison of predicted probabilities in different educational groups by 

period will provide an understanding on whether the health inequality between 

educational levels has changed over the last two decades. Lastly, based on the results on 

cohort effects, it is possible to examine Lynch (2003)’s argument that the recent finding 

that the later cohorts are more likely to suffer from the educational inequality in health 

for the latest cohorts. If the finding does not hold true for the most recent cohort, the 

results of this study will help detect the birth cohorts who suffer the most and the least 

from health inequality by education. 

 In addition, the results of this study can help us understand what level of 

education most significantly reduces the risk of reporting poor health over the life course. 

Most prior studies have focused on the health effects of education and treated education 

as a continuous variable measured by the years of education attained (Mirowsky and 

Ross 2005, Ross and Wu 1996). Although the results of such analytic approach will show 

how much health can be improved by additional years of education, they do not tell us 

which level of educational attainment (e.g., high school or college education) is most 

important with regard to slowing the rate of health decline. 

 This study uses up-to-date data. Elo and Preston (1996) analyzed the National 

Longitudinal Mortality Survey (1979-1981) to investigate the relationship between health 

and education. In addition, Kramarow, Pastor and Gorina (2000) examined educational 

differences in health a decade later for older adults using 1987-1994 data. This study 

utilizes nationally-representative data from 1994 to 2014. Using more recent data enables 
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me to update the understanding on the educational inequality in health for the latest 

periods and also for more recent birth cohorts.  

 

Methods 

Data and Measures 

I use data from the National Health Interview Survey (NHIS), an annual cross-

sectional survey conducted since 1956. In this study, I include the timeframe 1997 to 

2014 to update findings from previous studies. The sample in this study includes only 

adult individuals whose ages are between 28 and 85. The youngest age is set at 28 to 

accommodate the assumption that respondents have attained their highest level of 

education. This setting yields 18 single-year periods of observation and 58 continuous 

age groups. Subtracting age from period, I obtain individuals’ birth year, which ranges 

from 1912 to 1986. Following practices recommended elsewhere (Kupper et al. 1985, 

Preston, Heuveline and Guillot 2000, Yang and Land 2013b), I divide individual birth 

years into 15 separate 5-year birth cohorts (i.e., 1912-1916, 1917-1921,..., 1982-1986). 

I focus on four levels of educational attainment: (1) no high school degree, (2) 

high school degree, General Educational Development (GED), or equivalent, (3) some 

college or associate’s degree, and (4) bachelor’s degree or more. Individuals who 

answered “don’t know” or refused to respond to the question about educational 

attainment are excluded from the analysis.  

For the outcome variable to measure health status, I use self-rated health, which in 

NHIS is asked by the question, “Would you say your health in general is excellent, very 

good, good, fair, or poor?” Although individuals with different education levels may 
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assess their health differently in the frame of the 5-level self-rated health scale (Dowd 

and Zajacova 2007), “poor” self-rated health in particular is a reliable predictor of 

subsequent mortality across social classes (Burström and Fredlund 2001). To minimize 

the influence of subjective health rating across education levels and bolster the reliability 

of this measure, I collapse this 5-level Likert scale into two categories. Health status 

equal to “poor” or “fair” is coded as 1, while health status better than “fair” is coded as 0 

(McGee et al. 1999). Individuals who answered “don’t know” or refused to respond to the 

question were excluded from the analysis.  

 All statistical models in this chapter include gender, marital status, and 

race/ethnicity as covariates because these variables have critical effects on health 

(Annandale and Hunt 2000, Krieger et al. 2003, Umberson 1992). Missing data for 

independent and control variables ranges from 0% (gender) to 2.8% (education). After 

applying listwise deletion, the final sample includes 186,406 (18.9%) people with no high 

school degree, 288,328 (29.18%) people who have a high school, GED, or equivalent 

degree, 259,282 (26.24%) people who have some college or an associate’s degree, and 

254,200 (25.72%) people who have a bachelor’s or higher degree. The data are stratified 

by education level and APC models are applied separately to each of those four stratified 

datasets.  

 

Statistical Analysis 

For each of the datasets stratified by educational level, I adopt the three-step 

approach to apply HAPC models. For the descriptive analysis at Step 1, I will graph the 

prevalence of “fair or poor” health conditions by age, period, and cohort group to acquire 



113 

 

an initial understanding of the data structure. At Step 2, I will fit seven nested model (i.e. 

A, P, C, AP, AC, PC, and APC) and compare the goodness-of-fit statistics (AIC and BIC) 

for gaining an understanding of the data structure and the best statistical model for the 

given data. Then, only for the cases where all three dimensions are operative, I will 

proceed with Step 3 of the analysis. At Step 3, I will employ the HAPC approach and 

specify cross-classified random effects models (CCREM) to estimate age, period, and 

cohort effects on having “fair or poor” health. If Step 2 suggests a reduced model rather 

than the full three-dimensional model, then I will estimate the reduced model instead. In 

all models, I include gender, race, and marital status as potential covariates (Centers for 

Disease Control 2008, Goldman, Korenman and Weinstein 1995, Jackson et al. 2006, 

Lillard and Panis 1996). Such a model specification may be written as follows: 

 

Level 1: Yijk = β0jk + β1Ageijk + β2Age2
ijk + β3Femaleijk + β4Marriedijk + β5Blackijk 

+ β6Hispanicijk + β7Othersijk +eijk  

       with eijk ~ N(0, σ2) 

Level 2:  β0jk = γ0 + u0j + v0k   

with u0j~N(0, τu), v0k ~ N(0, τv), 

 

where Yijk represents whether the ith individual for i = 1,…,njk has “fair or poor” health 

status in the j-th period for j=1,…,J and the kth birth cohort for k=1,…,K; β1 and β2 are 

fixed regression slopes for age and age-squared. Age is centered at the grand mean to 

reduce the association between age and age-squared terms (Reither et al. 2009); β3, β4, 

and β5 are fixed regression slopes for gender, race, and marital status, respectively; eijk is 
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the random individual effect that is normally distributed with mean 0 and variance σ2. At 

level 2, where γ0 is the grand mean (i.e., proportion) of the “fair or poor” health of all 

individuals, u0j is the period effect for period j averaged over all birth cohorts, which is 

assumed to follow a normal distribution with mean 0 and variance τu, and v0j is the cohort 

effect for cohort k averaged over all periods, which is assumed to follow a normal 

distribution with mean 0 and variance τv (Yang and Land 2013). 

 

Results 

Sample Characteristics 

Descriptive characteristics of the final sample are presented in Table 11. The 

percentage with health status equal or worse than “fair” is highest among people who 

have no high school degree. The percentages are lower for more educated groups, and the 

lowest for the most educated group. The percentage for the people who have a bachelor’s 

or higher degree is as low as 5.56%.  

Age has an inverse relationship with educational attainment. The mean age is 

lowest among those who have the highest educational attainment, and the highest among 

those who have the lowest educational attainment. Across the educational levels, the 

percentage of females was slightly higher in the sample than that of males. The majority 

of respondents in the sample are married, and the percentage of married people is higher 

among more educated people. In terms of race and ethnicity, whites are the majority in 

the total sample, while Hispanics are the majority in the lowest educated group. The 

combination of percentages for racial/ethnicity and educational attainment shows that 

more than 40% of Hispanics in this sample had no high school degree. For non-Hispanic 
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blacks and whites, the corresponding percentages are 21% and 12%, respectively. On the 

other hand, almost 60% of whites and 46.7% of non-Hispanic blacks in the sample had 

some college or a higher level of educational attainment.  

 

Descriptive Statistics 

To begin with the three-step procedure, I calculated the percentages of people 

who have fair or poor health status by age, period, and birth cohort for each educational 

group (Figure 19). First of all, it is obvious from the bar charts that the more educated 

people are, the healthier they are. Across all three temporal dimensions, people without a 

high school diploma have the highest prevalence of fair or poor health.  As educational 

levels increase, the prevalence of fair or poor health declines across all three temporal 

dimensions. For people with a bachelor’s or a graduate-level degree, the prevalence of 

fair or poor health is lower than other educational groups across all ages, periods of 

observation and birth cohorts.  

The age-specific prevalence of fair/poor health changes at different rates across 

educational groups. For people who did not complete high school, the percentage 

reporting fair/poor health increases sharply with age, from below 10% during the late 

twenties to above 40% in the late fifties. Then it slightly drops during their sixties and 

stays around 40% thereafter. Compared to this pattern, the prevalence of fair/poor health 

among people with either a high school diploma or some college increases at a modest 

pace, reaching about 25% and 20% by the late fifties, respectively. The percentages 

slightly drop from their late fifties to their late sixties and increase again thereafter. The 

prevalence of fair/poor health among people at the highest educational level does not 
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show a similar bump during their late fifties. Instead, fair/poor health increases with age 

at a moderate pace until the late fifties and then rises more rapidly starting in the sixties. 

In this group, fair/poor health reaches a maximum of about 20% in the eighties. This 

prevalence of suboptimal health is similar to that observed among the no-high-school 

group in their early forties, the high-school-graduated group in their mid-fifties, and the 

some-college group in their sixties.  

The percentages by periods are quite stable in all four educational groups. High-

school-graduated and some-college groups show moderate increases across periods, 

although the total increase from 1997 to 2014 is only in the 3~5% range. The prevalence 

of fair/poor health over all periods of observation was around 30% among people who 

did not graduate high school, 13~18% among people who graduated high school, 

10~12% among people with some college, and 5~6% among people with a bachelor’s or 

higher degree. This indicates that the prevalence of fair/poor health is consistently 5-6 

times higher across time periods for the lowest educational group compared to the highest 

educational group. In fact, simply graduating from high school cuts the prevalence of 

fair/poor health roughly in half.  

The percentages across birth cohorts are essentially inverse patterns of the 

percentages by age. The earliest birth cohorts, which consist of elderly people in this 

sample, have the highest prevalence of fair/poor health, while the latest birth cohorts, 

which consist of the youngest people in the sample, have the lowest prevalence. The 

percentages among the oldest 7 cohorts in the no-high-school group stay as high as 40% 

and then dramatically drop for the 1947-1951 birth cohort. For the rest of the educational 

groups, the first couple of birth cohorts have the highest prevalence of fair/poor health, 
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followed by much lower percentages in subsequent birth cohorts. The decreasing pace is 

the most dramatic in the highest educational group.  

From the descriptive plots, it is possible to make some initial educated guesses 

about the temporal structures of the four stratified datasets. First, for deciding if the 

period is an active dimension or not, the descriptive period plot is very useful because, as 

shown in Chapter 2, the descriptive period plot tended to reflect the actual period effects 

quite well. Therefore, my initial guess is that modest period effects exist for the high-

school-graduated and some-college groups. For groups without a high school education 

or with at least a bachelor’s degree, the period plots do not show any clear increasing or 

decreasing trend, so seems likely that period is either an inactive dimension or makes 

only a minor contribution to the outcome variable. However, at this point, it is premature 

to eliminate the possibility that period effects exist because they may be conflated with 

another temporal dimension, as shown in the D-set in Chapter 2. If period and another 

dimension have linear effects at the same time, the true period effects may be obscured in 

the descriptive plot. If this is the case, it may be found by model fit statistics, which, in 

such a situation, tends to point toward a reduced temporal structure due to confounding 

between those two dimensions.  

 Next, I surmised whether age and cohort dimensions are active by comparing 

their descriptive plots. As noted, the patterns of the plots for those two dimensions are 

close to mirror images of each other across all educational groups. This gives the 

impression that either age or cohort is dominant, and the other dimension is likely to have 

only a modest contribution to the outcome variable. Note that the weaker temporal 

dimension can still contribute independently to the outcome in some cases. Given the 
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information from the descriptive statistics, it is a reasonable guess that the high-school-

graduated and some-college groups have a reduced temporal structure (i.e., AP or CP) or 

will be on the border between the reduced model and the three-dimensional model. The 

group that did not graduate from high school and the group with at least a bachelor’s 

degree are likely to have a two-dimensional structure (i.e., AC) or even a single-

dimensional structure (i.e., A) due to the very small period trend revealed in descriptive 

statistics. To make a clearer decision on the data structure, more information is required 

from the model fit statistics.  

 

Model Fit Statistics 

 Model-fit statistics were estimated by AIC and BIC (Table 12). The AIC suggests 

the three-dimensional model for all four educational groups while the BIC suggests 

reduced models as a better fit. Because the sample sizes in all educational groups are 

larger than 50,000, which was the sample size used in the B, C, and D-sets in Chapter 2, 

the AIC’s suggestion is more reliable than the BIC’s. Based on the inferences obtained 

from the descriptive and model fit statistics, the groups having graduated high school and 

those having some college are likely to have structures in which either age or cohort has a 

dominant effect (the other making a minor but statistically significant contribution) and 

period effects increase modestly over this timeframe. Therefore, I move on to Step 3: 

application of HAPC models for these two groups. 

 For the groups that graduated high school or have a bachelor’s degree or more, 

the models require careful validation. There are several temporal data structures that 

could yield nearly identical age and cohort plots. First, as in scenario D-6 from Chapter 2, 
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it is possible that period and cohort have linear effects in opposite directions and 

therefore offset one another. An interesting feature about such a scenario is that the 

model fit statistics also tend to point toward a reduced model. However, this is not the 

case here, because the model fit statistics suggest the three-dimensional model. Second, 

similar to scenarios B-3 and C-1 from Chapter 2, one or two dimensions have very little 

effect, pushing the data structure to the borderline of different dimensions. In this case, 

although those dimensions make only minor contributions, they are nevertheless 

detectible in some cases as active dimensions by model fit statistics. Just like the results 

of scenario B-3, the AIC can recognize the minor dimension as active with sufficient 

statistical power, and the three-dimensional HAPC model can successfully capture the 

true temporal effects.  

Thus, in this case, it seems reasonable to estimate full HAPC models for groups 

without a high school degree and with at least a bachelor’s degree. However, to confirm 

the validity of the estimates from HAPC models, I will cross-validate the results with 

estimates from reduced models. If the data structure is on the borderline between two and 

three dimensions, estimates from the reduced and three-dimensional models should not 

be substantially different. In this study, I estimate two additional models (i.e. A and AC) 

for these educational groups to cross-validate the results. 

 

Model Validation 

Figure 20 shows the results estimated by A, AC, and HAPC models for the least 

and the most educated groups. The estimates are very close. Although the A model does 

not have estimates for period and cohort effects and the AC model does not have 
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estimates for period effects, it does not strongly affect the conclusion since the cross-

validation of models confirms that period and cohort have very little effect on the self-

reported health of these two groups. Based on this confirmation, I will use the estimates 

of the HAPC for all four educational groups to understand the health gaps between them. 

 

HAPC Models 

Figure 20 represents the predicted probabilities of having fair/poor health by age, 

period, and cohort for the four educational groups, as estimated by HAPC models2. 

Overall, educational attainment has an inverse association with the predicted probabilities 

of having fair/poor health by age, period, and cohort. The more educated people are, the 

less likely their health condition is to be fair/poor. Graduating from high school makes a 

crucial difference for health, substantially reducing the probability of having fair/poor 

health across all three temporal dimensions. The probabilities of fair/poor health also 

drop slightly from the high-school-graduated group to the some-college group for all 

three temporal dimensions. From there, the probabilities decline once again for people 

who have bachelor’s degrees or higher.  

The predicted probabilities of fair/poor health increase with age (Figure 21-a), 

which is not surprising. However, the rate of increase differs by educational group. The 

least educated group experiences a very steep increase in the probability of fair/poor 

health relatively early in life (i.e., 30s~50s) and reaches the highest probability during 

their 70s. For those who graduated high school or have some college, the probabilities 

increase with age, but at a slower pace than the least educated group. The pace of health 

                                                        
2 I also estimated the weighted HAPC models using survey weights provided by NHIS and compared the 

results to those of unweighted HAPC models. There are only minor differences between these two sets of 

estimates; therefore, in the manuscript I present only the results of unweighted models. 



121 

 

decline is even slower among the most educated group. The most distinctive 

characteristic of the most educated group is the modest increase in suboptimal health 

during their early years (i.e., 30s~50s) and the steeper increase at later ages (i.e., 

60s~80s). People in this group do not experience a decline in poor health probabilities 

after their seventies, which likely means that selection by premature death is less 

prevalent in this group compared to the other educational groups.  

Educational disparities in health clearly widen from early adulthood to retirement, 

before narrowing at later ages—again, likely due to mortality selection in the less-

educated groups. Unfortunately, these results show that health begins to deteriorate 

relatively early in the life course among the least educated. As a result of these uneven 

rates of health deterioration, the health gap between the most and the least educated 

group increases steadily until the mid-60s. The health gaps between the most educated 

group and the high school or some college groups also reaches a maximum during the 

mid-60s, but these gaps are relatively narrow.  

The predicted probabilities of reporting fair/poor health by period (Figure 21-b) 

for all four educational groups are quite stable over the survey years included in this 

study. None of the educational groups experienced dramatic improvement or 

deterioration in their health status. In other words, the health gaps between these 

educational groups have not changed in a meaningful way over the last 20 years.  

Figure 21-c shows the trajectories for predicted probabilities of fair/poor health 

across birth cohorts. Health disparities between the three most highly educated groups are 

considerably less for cohorts born in the 1930s than cohorts born earlier in the 20th 

century. As the probabilities of fair/poor health for those who have a high school or 
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equivalent diploma or some college education increase after the 1940 birth cohort, the 

gaps between these groups and the least educated group narrow slightly. In the meantime, 

the gaps between the highest educated group and the other groups become wider as the 

probability of the highest educated group is quite stable across all birth cohorts. This 

result supports the argument that the upper class in the U.S. has been separating from the 

rest of society. Reeves (2015) points out that the advantages of education, income, and 

lifestyle for the upper class have become more concentrated in recent years. The 

widening gap between the highest educated group and the other groups shown in Figure 

21-c indicates that the “pulling away” of the upper class from the other classes began to 

occur for cohorts born in the 1940s, and that this separation has included self-assessments 

of health.  

 

Discussion 

As discussed in the Results section, findings of this chapter support the 

Cumulative Advantage Theory that educational inequities in health widen over the life 

course (Aneshensel, Frerichs and Huba 1984, Ross and Wu 1995). The predicted 

probability of poor health changes much more dramatically by age than by period or birth 

cohort. In addition, the results show that change in educational health disparities over the 

life-course is a bounded process. The health gaps are greatest when people are in their 

mid-sixties, followed by a gradual decline. There are two plausible explanations for this 

partial health convergence in the latest stages of life: First, people who have poor health 

are disproportionately included in lower educational groups. Unfortunately, many of 

these individuals die relatively early in life, leaving behind a “healthy remnant” of people 
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in the lower educational groups at later life stages. As relatively healthy individuals who 

are disproportionately included in highly educated groups inevitably begin to face a 

biological ceiling after their seventies, the probability of poor health in these groups 

rapidly increases, leading to a narrowing of educational health disparities. Second, social 

programs such as Medicare and Social Security become operative after age 65, which 

may limit advantages in income and health care enjoyed by the most educated groups 

across most of the adult life course, thereby reducing health inequalities during the later 

stages of life (Willson, Shuey and Elder 2007). 

When comparing the predicted probabilities of poor health across birth cohorts, 

the gaps between the highest educated group and the second/third highest educated 

groups declined for people who were born between 1917 and 1932, but then it began to 

widen after that. The health gap between highest and lowest educated groups did not 

significantly widen or narrow across birth cohorts. These findings suggest that the 

argument that recent cohorts tend to suffer more from educational inequality in terms of 

health outcomes (Lynch 2003) may be applicable to the health gaps between those with 

college degrees or more and those with high school degrees or some college education. 

Previous studies show that the contents of education in the U.S. has changed 

tremendously over the last few decades, which could portend changes to the association 

between education and health. It is therefore plausible that high school graduates today 

possess more health knowledge than those with high school degrees from previous 

decades. Some scholars have argued that these significant renovations in the educational 

system are likely to be reflected in changing associations between education and health 

across birth cohorts (Manton, Stallard and Corder 1997). The distribution of education 
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has also changed over time, with the current period containing the largest number of 

people who have a college degree in our nation’s history (Ryan and Bauman 2016).  

Although recent cohorts are living in a society where the average education level 

is more elevated, and more knowledge about health is provided at the same level of 

education, the results of this study show that the health gap between highest and lowest 

educated groups has not significantly improved across birth cohorts. This finding provide 

supporting evidence for the idea of “academic inflation” which implies that elevated 

educational levels of a society does not necessarily mean better quality or amount of 

knowledge (Collins 2002). Rather, academic credentials seem to have become more 

critical for placing individuals in the social stratification system—and those credentials 

therefore play a major role in producing inequalities in occupation, income, and, 

furthermore, in health (Collins 2002, Hesseln and Jackson 2000). 

 In addition, my study findings show that educational disparities in health have 

not changed substantially over the period of observation spanning 1997 to 2014. Rather, 

the health gap between people who have bachelor’s degree or more and people who have 

not experienced college has widened modestly. During the observational period for the 

data used in this study, the costs of health care have increased rapidly, which may have 

contributed to this slight widening in health disparities by education. However, at the 

same time, social programs such as the Affordable Care Act have been implemented and 

may have had countervailing effects on health inequalities, resulting in negligible period 

effects observed.   

From a methodological perspective, this chapter showed how to apply HAPC 

models through a three-step process. To avoid the misuse of APC models, one should 
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always start by understanding the relevant theories and data structures first, before 

mechanically applying the three dimensional model (Yang and Land 2013a). This 

preliminary step is essential for finding the best fitting model for the given data. It is also 

worth noting that the results of descriptive plots and model fit statistics should be 

carefully interpreted and weighed against each other. When those two procedures do not 

converge on a single best model, it is possible that the data structure is on the border 

between a reduced and the full, three-dimensional model. In this case, applying both 

models and cross-validating the results is another helpful method to avoid the 

misapplication of three-dimensional models. 
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Tables and Figures 

 

Table 11. Sample Characteristics 

 
Total NH HS SC BC 

Health 

       Fair/Poor 15.59 29.06 15.98 11.76 5.56 

  Good/Very Good/Excellent 84.41 70.94 84.02 88.24 94.44 

Education 

       No high school  18.86 100 N/A N/A N/A 

  Graduated from high school 29.18 N/A 100 N/A N/A 

  Some college 26.24 N/A N/A 100 N/A 

  Bachelor’s degree or more 25.72 N/A N/A N/A 100 

Age 50.61 53.77 51.45 48.76 48.45 

 

(15.05) (16.77) (15.19) (14.17) (13.86) 

Gender 

       Male 46.79 46.89 46.3 44.42 49.56 

  Female 53.21 53.11 53.7 55.58 50.44 

Marital Status 

       Married 63.81 57.09 62.76 63.49 71.9 

  Unmarried 36.19 42.91 37.24 36.51 28.1 

Race/Ethnicity 

       White 61.06 37.53 65.78 67.53 73.41 

  Hispanic 19.95 43.65 15.37 13.13 7.65 

  NH Black 13.17 14.55 14.53 14.67 8.92 

  Others 5.82 4.26 4.31 4.67 10.02 

N 988,216 186,406 288,328 259,282 254,200 
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(a) No High School (NH) 

 
(b) Graduated from High School (HS) 

 
(c) Some College (SC) 

 
(d) Bachelor’s Degree or More  (BC) 

  
Figure 19. Descriptive Statistics – Percentage of Having Poor/Fair Health for Four 

Education Groups by Age, Period, and Cohort 
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Table 12. Goodness-of-Fit Statistics for Four Educational Groups 

 NH HS SC BC 

N 186,406 288,328 259,282 254,200 

Data Structure 

designated by AIC 
APC APC APC APC 

Data Structure 

designated by BIC 
AC AC AC A 
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(a) No High School 

 
 

(b) Bachelor’s Degree or More 

 

 
 

Figure 20. Comparing Estimates of A, AP, and APC Models for the Least and Most 

Educated Groups 
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(a) Age 

 
 

(b) Period 

 
 

(c) Cohort 

 
 

 

Figure 21. Predicted Probability of Having Fair/Poor Health Estimated by HAPC Models 
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CHAPTER V 

CONCLUSION 

 

To develop a statistical model, sometimes it is inevitable to make tentative 

assumptions first and derive the model from there. Once the model is built upon the 

assumptions, the results of the model are conditional upon the assumptions being 

satisfied. Therefore, during an empirical application of such a statistical model, complete 

and accurate specification of the assumptions is imperative (Poole and O'Farrell 1971). 

Typically, it can be done by applying some preliminary statistical analysis to better 

understand the given data and variables of interest. Without such procedures, a researcher 

should not expect that the results approximate what really happens. Furthermore, bias and 

inconsistency emanating from statistical models that violate key assumptions cannot be 

used as evidence to prove that a statistical method is invalid. 

The developers of the HAPC and the IE approaches to APC modeling have 

emphasized that those techniques are designed for data with three active temporal 

dimensions. However, in their critiques on the HAPC and the IE, Bell and Jones as well 

as Luo did not pay much attention to the assumptions of the models that they were 

examining. Instead, these critics derived data structures by using their own assumptions, 

which often posed clear violations of APC methods. For example, they arbitrarily created 

data structures that have exact linear trends in two or more dimensions (Luo 2013a) or 

that derive the pattern of one temporal dimension from the pattern of another (Bell and 

Jones 2015). As a result of these clear violations, they “discovered” that HAPC and IE 
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models tend to fail. However, since the data structures generated in these studies do not 

satisfy the assumptions of HAPC and IE models, the authors cannot expect the models to 

accurately estimate the true age, period and cohort coefficients. Therefore, results from 

these studies should not be used as evidence that the models generally fail. Rather, the 

results should be used to highlight the importance of checking that the data satisfy the 

assumptions of HAPC and IE models prior to the application of these methods.  

  Testing APC model assumptions requires a robust set of procedures, but there has 

been a debate on the validity of such techniques. Yang and Land (2013) suggested the 

three-step application procedure, which uses descriptive (Step 1) and model fit statistics 

(Step 2) to understand the data structure and check model assumptions. However, critics 

(Bell and Jones 2014b, Bell and Jones 2015, Luo 2013a) of APC models have argued that 

no statistical technique could be useful for checking the assumptions of APC models 

because the identification problem makes statistical techniques ineffective for examining 

the real data structure and the model assumptions. In Chapter 2 and 3 of this dissertation, 

I attempted to examine the validity of descriptive and model-fit statistics when used to 

check the model assumptions, as no study so far has specifically focused on the 

preliminary steps of APC analysis. In particular, different from the arbitrary (i.e. “the 

cohort trends based on the period trend”, Bell and Jones 2015, p.332) and unrealistic (i.e. 

“age, period, and cohort each have effects on the outcome variable that show an (exact) 

linear trend”, Luo 2013, p.1953) data structures generated by critics, I attempted to 

simulate realistic data by borrowing patterns from the effects of empirical studies. The 

findings showed that graphing and model selection statistics were useful in identifying 

the temporal data structures prior to application of HAPC and IE models. 
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In Chapter 4, I used the lessons from the previous two chapters to estimate HAPC 

models with actual data. From the descriptive and model-fit statistics, I ascertained that 

the four stratified data sets had temporal structures that bordered between reduced and 

full three-dimensional models, and identified a handful of plausible matches. By adding 

cross-validation to my analysis, I demonstrated that it is possible to utilize APC methods 

even when the data structures and corresponding “best models” are ambiguous. The 

substantive results from Chapter 4 contribute to a better understanding of the 

disentangled effects of age, period, and cohort on educational inequalities in health. 

These health gaps between different educational groups increase steadily with age until 

people are in their 60s, at which time they begin to narrow. Neither secular changes over 

the past two decades nor differences across birth cohorts appear to play a major role in 

shaping self-rated health in the United States.  

While the findings in this dissertation show that the three-step procedure is a valid 

approach, I also found some room for improvement when choosing the statistical tools to 

check model assumptions. More studies are needed to shed further light on the 

interpretation of descriptive and model-fit statistics, as the results are not always clear 

enough to adjudicate between different possible temporal data structures. For example, 

when interpreting the descriptive plots of age, period, and cohort, there is neither a 

numerical criterion of curvature of slopes that signifies an active dimension, nor is there a 

way to identify sufficient divergence between age and cohort plots. Although the 

descriptive plots did provide a helpful preliminary overview of the data structure—

particularly for age and period effects—it is nevertheless challenging to determine which 

model to use when data structures border between two different dimensions.  
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 In addition, we may need to develop more specific guidelines on how to use AIC 

and BIC when they are not consistent with each other. Previous literature (Yang and 

Land 2013a) on APC modeling indicates that “we can use AIC or BIC for understanding 

the data structure,” but no guidelines are given for prioritizing AIC or BIC when different 

models are suggested. In this dissertation, the sample sizes were quite large, so I relied 

more on AIC than BIC. However, when the condition is not so obvious, the inconsistency 

between the fit statistics can cause uncertainty about the selection of the best model. 

Future studies may want to investigate which criterion is more reliable for different 

sample sizes, number of parameters, and other variations in the model and data. 

Furthermore, studies on the AIC and BIC reveal that those two statistics are 

actually based on very different philosophies, and, therefore, the “best models” 

designated by AIC and BIC are best in different ways (Burnham and Anderson 2004, 

Kuha 2004). The AIC is built on Kullback-Leibler’s concept of information loss, while 

BIC is based on Bayes factors (Burnham and Anderson 2004, Kuha 2004). When the two 

criteria suggest different models for any given APC data set, it may be necessary to 

confirm which one suggests the best model for the specific case study—i.e., one that is 

conceptually close to the data structure being investigated. 

Despite these methodological limitations, it is worth reiterating that those two 

new approaches are a great methodological advancement in age-period-cohort analyses. 

When Norman Ryder (1965) initially came up with the concept of cohort, it was not 

accompanied by a methodological approach to empirically estimate cohort effects. As a 

result of methodologists’ efforts for 10 years thereafter, Mason et al. (1973) proposed a 

method to estimate APC models by imposing an equality constraint, which can be 
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derived from external theories. Since then scholars have made even more progress in 

devising more robust statistical methods. After 30 years of debate and methodological 

innovation, it is now possible to estimate the APC effects for some data sets without any 

external information.  

The main message that I would like to deliver in this dissertation is that while 

critiques of APC analyses (or any statistical method) can have value, discrepancies 

between our expectation or hypothesis and the results do not imply that the approach 

should be discarded or that the efforts to develop the idea is a “futile” quest. As Box 

(1976) highlights in his famous article Science and Statistics, “the good scientist must 

have the flexibility and courage to seek out, recognize, and exploit such errors. (p. 791)” I 

am sure that future developments in APC modeling will stem from productive exchanges 

between relevant critiques and rejoinders, not deliberate efforts to play with model 

assumptions in such a way that essentially guarantees the “discovery” that APC models 

fail under such conditions. 
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