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ABSTRACT

Database Auto Awesome: Enhancing Database-Centric Web Applications through

Informed Code Generation

by

Jonathan Adams, Master of Science

Utah State University, 2017

Major Professor: Curtis Dyreson, Ph.D.
Department: Computer Science

Database Auto Awesome is an approach to enhancing in-situ, web-based, relational

database applications through informed code generation. It is inspired by Google’s Auto

Awesome tool, which provides automatic enhancements for photos. Database Auto Awe-

some aims to automatically or semi-automatically improve an application by generating

an enhanced set of forms and scripts to query and manage data, interfaces to other tools,

content management system integration, and database mediation and migration scripts.

This thesis focuses on creating an enhanced set of forms and scripts through informed

code generation. Database Auto Awesome allows application administrators who are not

experts in software development or computer science to enhance an application through

creating new or modified forms, form validation scripts, and database interface functions.

It becomes informed by gathering data from the existing application, including forms and

their processing functions, database tables and columns, and database column data types

and content restrictions. Using this information, several valuable enhancements can be

made to the application with very little input from the administrator. First, forms can

be enriched with new form validation scripts, complete with user friendly error messaging.

These validation scripts are generated using the data types of the data targeted by the form
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fields and unique or foreign key constraints that exist on the same targeted data. Second,

new database manipulation scripts can be generated targeting specific tasks and data within

the database. Third, new forms can be generated, consisting of the user interface, validation

scripts, and database manipulation scripts, making a completely functioning form to expand

or improve the functionality of the application.

These enhancements are directed by an administrator specifying what they would like

to have generated, in terms of functionality. The other requisite information to build these

functioning code blocks is based entirely on the information gathered by the tool and does

not require the input of a software developer. Using these techniques, Database Auto

Awesome provides a viable solution for semi-automatically generating enhancements to an

existing web application.

(57 pages)
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PUBLIC ABSTRACT

Database Auto Awesome: Enhancing Database-Centric Web Applications through

Informed Code Generation

Jonathan Adams

Database Auto Awesome is an approach to enhancing web applications comprised of

forms used to interact with stored information. It was inspired by Google’s Auto Awesome

tool, which provides automatic enhancements for photos. Database Auto Awesome aims to

automatically or semi-automatically provide improvements to an application by expanding

the functionality of the application and improving the existing code.

This thesis describes a tool that gathers information from the application and provides

details on how the parts of the application work together. This information provides the

details necessary to generate new portions of an application.

These enhancements are directed by the web application administrator through speci-

fying what they would like to have generated, in terms of functionality. Once the adminis-

trator has provided this direction, the new application code is generated and put in updated

or new files. Using this approach, Database Auto Awesome provides a viable solution for

semi-automatically generating enhancements to an existing web application.
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CHAPTER 1

INTRODUCTION

1.1 Database Auto Awesome

At the heart of many scientific pursuits is the gathering and cataloging of data. Modern

technologies allow this data to be stored in online databases, allowing for greater ease

of access and collaboration. Examples of these applications are the in-situ, web-based,

relational database applications for bioinformatics and biodiversity data. We will call such

an application a DBApp. A DBApp is a collection of web forms and processing scripts to

manage and query data stored in a relational database; typically, in a three-tier architecture

(client, web server, and database server). Example DBApps include Symbiota, Specify, and

Genbank.

As a canonical DBApp, consider the Symbiota [1] project. Symbiota is a software

platform for creating voucher-based biodiversity information portals and communities. The

biodiversity data is stored in a MySQL database with 146 tables. Symbiota is written in

HTML, PHP, and JavaScript, and consists of over 150,000 lines of code spanning over 500

files. That includes approximately 400 PHP classes and over 3,500 PHP methods (functions

or procedures). The PHP classes are interrelated as depicted in Figure 1.1. Each class is

listed around the outside of the circle. An edge connects a class that calls (invokes a method)

in another class.

Software metrics can be used to estimate the complexity of software and the difficulty

of extending it, maintaining it, and fixing bugs [2]. The software metrics for Symbiota were

computed using PhpMetrics [3]. Symbiota scores poorly on several metrics. For example,

Figure 1.2 depicts its cyclomatic complexity (number of paths through the code). Large

circles are classes with high complexity, which impairs maintainability and code correctness.

A summary evaluation of Symbiota’s software metrics relative to a representative av-

erage of other PHP projects evaluated by PhpMetrics is shown in Figure 1.3 where the
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Figure 1.1: A graph of class relationships. Classes are listed around the circle. An edge
between a pair of classes indicates that a method in one class calls a method in another.

metrics related to a topic (e.g., development) are plotted on a radiograph. This radiograph

shows that Symbiota scores low in all areas, including maintainability and accessibility for

new developers.

One reason why DBApps may have poor software metrics is that their functionality

is highly integrated. In Symbiota, a single PHP file may combine code for the user in-

terface, database queries and updates, and other processing functionality. To change the

user-interface, for example to create a responsive design adapted to a mobile platform or in-
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Figure 1.2: Symbiota’s cyclomatic complexity. Each circle is a file whose size represents its
cyclomatic complexity.

ternationalize the interface (e.g., change the language in the forms from English to Arabic),

reprogramming of hundreds of files might be needed.

A second reason is that DBApps often have long development lifetimes and grow over

time from a small core with just a few database tables, forms, and scripts, into projects

that have dozens of tables and hundreds of scripts. As new functionality is needed, it is

added to the existing application, increasing the complexity of the code.

A DBApp is usually set up and run by people or organizations who did not develop or

maintain the software. We will refer to these people as DBApp administrators, or simply

administrators. DBApp administrators may wish to modify, improve, or extend some as-
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Figure 1.3: A radiograph summarizing Symbiota’s software metrics.

pects of the software to better suit their needs. In many cases the people most interested

in running a DBApp are experts in their own fields, rather than in computer science or

software development.

This difference in expertise, compounded by the low maintainability and accessibility

for new developers, creates the need for software tools that will enable the administrators

to make use of the database applications, without having to become experts in software

development as well.

It is usually too costly to redesign and reprogram DBApps. What we need are cheap,

effective ways to transform existing applications to suit the current needs of users and ad-

ministrators. Programming efforts to maintain and extend DBApps will remain important.

The success of many open source software projects shows the power and cost effectiveness of

cultivating contributors to an open source DBApp project. We propose adapting Google’s

Auto Awesome philosophy to applications like DBApps.

Auto Awesome is a Google application that automatically enhances photos uploaded to

Google+ Photos. They are enhanced by adding special effects and by combining photos to

create animations and panoramas. For instance, a picture of a dog in snow may be enhanced

with a falling snow effect, or combined with other photos of the dog to create an animated
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scene. Auto awesome also creates slide shows with music and can geo-locate (non-gps

tagged) photos via photo matching. These enhancements are completely automatic. The

only human input is to decide whether to keep or discard the enhanced photos. Not every

photo is enhanced, only some within a collection are chosen for enhancement.

Approaches that automatically improve a project can help to lower the cost of improv-

ing DBApps. These tools would include a range of software to perform fully automated

or semi-automated modifications and extensions, code error identification, and refactoring

opportunity identification. There are many areas in which an Auto Awesome approach

could produce enhancements to a DBApp, such as:

1. an enhanced set of forms and scripts to query and manage the data,

2. interfaces to other tools (e.g., data mining with Weka or search with Sphinx),

3. content management system integration (e.g., Wordpress plugins), and

4. database mediation and migration scripts.

In all cases a system implementer would be allowed to choose which enhancements to

keep and use. For this work, we focus on producing enhancements in regards to the forms

and scripts for querying and managing data and on the benefits of informed code generation

on the extensibility and maintainability of DBApps. Since our tool takes inspiration from

Google’s Auto Awesome, we call it Database Auto Awesome, or DBAA.
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CHAPTER 2

RELATED WORK

2.1 Taxonomy

There is work currently being done in many areas related to tools for improving the

quality of existing software. The papers surveyed here all have elements related to the

work of automating the improvement of software. See Figure 2.1 for the full taxonomy

breakdown. Within the work of automating the improvement of software, there are two

areas that are focused on, database usability and application usability.

The improvement of database usability involves using and modifying both the schema

and the data within the database. Usability can be improved through better methods for

retrieving data, and for managing the data. The data can also be used to inform automatic

improvements in other areas. Usability can also be improved through refactoring the schema

to create a better one, extending it to support a wider range of data, or by migrating it to

a different database management system.

To improve the usability of the application, a tool may target the overall performance

of the application, or it may offer ways to modify it through its underlying code. These

modifications may consist of generating new code, refactoring existing code, or offering

better user interfaces.

2.2 Database Usability

The existing database data, schema, and methods for accessing data may not provide

the experience the DBApp administrator desires when deploying one of these database ap-

plications. This could be due to the database not having a location to store some attributes

the administrator wants to store. It could be that the database does not return all data

they would expect to be returned for a query. It could be one of many other possible issues,
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and there have been many attempts to use the underlying data and database schema to

improve database applications.

2.2.1 Data

A database application’s existing data can guide improvements to the application.

Retrieval

In many cases, an invalid query is not identified until the user has finished building

their query through whatever user interface the application provides, and then attempts

to execute that query. To determine query validity, Nandi and Jagadish [4] evaluate the

schema to build a reachability index. This index is a matrix containing Boolean values

relating the database elements as descendants of one another. As a query is built by the

user, the attributes being searched for can be checked against this matrix to determine if

the query will be valid. This approach aids in giving immediate feedback to the user, and

helps them form a query that will be valid and return the correct data.

Data Evaluation and Management

Using the existing data, we can understand the nature of relationships in the data

and use that information for improving the overall user experience or helping the DBApp

administrator make desired changes to the system. Some databases may be populated

with tuples that are incomplete because they include null values in attributes used in a

query. These tuples will be left out of query results when searching on those attributes.

Wolf et al. [5] propose a system, QPIAD, for predicting these missing values. This process

allows tuples to be returned as possibly relevant results to these queries, even if it contains

null values for attributes used in the query. This is accomplished by mining the attribute

correlations, and using the existing database data to build classifiers which can predict the

missing values based on other data in the tuple.

To determine possible values for missing ones in a tuple, the QPIAD system needs

to understand the relationship between the database attributes. The type of relationship
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focused on here is functional dependencies. An example of a functional dependency would

be that, given the model of a car, we should be able to determine its make. Functional

dependencies are not common enough in most data sets, so they describe approximate

functional dependencies, which are functional dependencies that hold true for all but a

small fraction of the data. Once these have been identified, classifiers can be built to

predict the probability of a given attribute value based on the other given attributes.

Similar to these approximate functional dependencies, Ilyas et al. [6] analyze the schema

to find what they call soft functional dependencies. These soft functional dependencies

identify the relationships between attributes where the value of a given attribute determines

the dependent attribute with a high probability, not a certainty. These dependencies are

scored and given a strength rating, with the highest rated dependencies stored for later use,

while discarding the low rated dependencies to improve overall performance in making use

of them.

Jayapandian and Jagadish [7] describe a system that reads and analyzes the design of

the database schema and the data contained within, to calculate a set of metrics that they

have outlined as representing the relationships within the data. These metrics include and

are based on characteristics such as cardinality, convergence, participation ratio, querya-

bility, and attribute necessity. Together, these metrics help identify which parts of the

database are most likely to be queried, and when queried, which attributes are generally

used together.

2.2.2 Schema

The schema describes the structure or organization of the data, which may need to

have changes or improvements made to it, to fit the DBApp administrator’s needs. They

may need it to be converted to work with a different database management system (DBMS),

extended to store new data attributes, or refactored to improve usability and performance.

Migration

Given requirements from a DBApp administrator or their institution, a DBMS other
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than the one in use by the application, may be needed. The schema being used will need

to be converted into a schema compatible with the new DBMS. Similarly, all data will need

to be imported from the existing DBMS. Fortunately, many DBMS providers have tools

that will guide someone through the migration of a database from a competitor’s DBMS

to their own. For example, Microsoft provides the SQL Server Migration Assistant [8] for

migrating from Access, DB2, MySQL, Oracle, or Sybase ASE to Microsoft’s SQL Server.

This is done in several steps including connecting to both the old and new DBMS, mapping

the old database schema to a new schema, and then converting the data and importing into

the new system.

Extension

An et al. [9] allow for a database schema to be extended automatically, as a DBApp

administrator needs. This is done in response to a web form being created that needs to

store or access data that is not currently found in the database schema. It determines what

database fields are being used by the form and identifies form fields that relate to data not

currently found in the database schema. It will then connect forms to existing database

fields or extend the database as needed to accommodate the design of the forms. This will

allow the administrator to approach the creation of new web forms as the most important

aspect of usability, and to perform such tasks without the requisite background knowledge

of how to modify a database schema.

Refactoring

A key element of these applications is the software-to-database interactions. To ensure

good database usability we need to evaluate the quality of our database design. Vial [10]

discusses many of the challenges of analyzing and improving a database schema, as well as

techniques they found valuable in performing database refactoring. One of the key points

made was the value of automating much of the work. They have created and put into use

a tool, called Refactor, to analyze a relational database and to aid in common database

refactoring tasks. This tool uses design guidelines built by experts, and compares those
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guidelines to the schema, in order to identify the proper refactoring that needs to be done.

In their work, partially automated refactoring helped create consistent results even by team

members who were not experts in the types of changes being made.

2.3 Application Usability

On the other side of the DBApp, we have the application that will be used to interact

with the underlying database. These systems are often built from the viewpoint of a small

group of people who are responsible for developing the software. People from other organi-

zations may have needs that differ somewhat in how the application is used. Key aspects

that may need changes are the user interface, the quality and structure of underlying code,

and the performance of the system. These all have a significant impact on the usability of

the database application.

2.3.1 Application Modification

Work to help a DBApp administrator improve the application needs to address several

parts of the overall application. It must address the user interface, which usually comes in

the form of a set of web forms. It must address the ability to refactor the underlying code

that may not be directly observed by the user or administrator. It must also address the

opportunity to generate new code to meet needs, which are not being met by the application

as it was originally designed.

User Interface

In an effort to make database systems more usable, Jagadish et al. [11] have identified

several usability pain points. They observe that an application must be simple enough that

a novice user can effectively accomplish their tasks, while allowing expert users the flexibility

to perform more advanced tasks. Part of their work was creating and testing alternatives to

standard web forms. Traditional web forms can be replaced with search engine style keyword

searches, natural language query processing, code based query building, and guided query

building graphical user interfaces. They found that depending on the needs of the users,
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distinct types of interfaces had various benefits. They also found that the variations between

results of the interfaces caused confusion and concerns in users that did not understand why

the differences occurred.

An alternative user interface for querying a large database system is proposed by Nandi

and Jagadish [4], which allows a user to be guided through building a query using a single

text box. The text box dynamically displays data attributes that can be used to target data,

as well as suggested values to use as matches to data for a given attribute. The system

allows you to query the database based on many different criteria, without requiring unique

web forms built for each type of query. This results in a very minimalistic, yet powerful

interface. On the other hand, this requires the user to have at least a basic understanding

of what data is found in the database and how it is organized so they can begin to type the

correct keywords to find the desired search terms.

The issue of form and database usability can be approached from the other end, by

starting with the design of the web forms. As mentioned in regard to schema extensions,

An et al. [9] take the approach of allowing a user to build a web form or set of web forms

first and then their system connects the forms to the database. Using information observed

about the database schema, it determines which database fields are being used by the form

and identifies the form fields that relate to data that is not currently found in the database

schema. It will then connect forms to existing database fields or extend the database schema

as needed to accommodate the design of the forms. This will allow the designers to approach

the design of the web forms as the most important aspect of usability, and to adjust the

entire database application to match those needs.

Code Refactoring

Beyond the usability of the interface there are other pain points related to a DBApp

administrator modifying, extending, or customizing the application. In a traditional devel-

opment procedure, the person making these types of changes must be familiar with much

or all of the application and the database. The usability of a database application, from

the viewpoint of one of these novice administrators, is determined by how effectively they
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are able to make the needed changes to the application. In the case of those with very little

software development experience, even the most well structured and well written code bases

will not be easily modifiable. A very important factor of database usability is having tools

to aid in modifying, improving, and expanding on the code base.

In order to make these types of modifications, the first key step is identifying oppor-

tunities to refactor the code and improve the application. As Cedrim [12] discusses, the

finding of refactoring opportunities is usually performed by experienced software developers

who can use their intuition to spot code that needs improvement. A less experienced admin-

istrator of a database application will not have the necessary experience and knowledge to

make proper informed decisions about refactoring the code. To automate the identification

of such opportunities, they propose a system to make use of machine learning models that

have been trained using identified and classified refactorings. Based on this past data, they

hope to be able to identify and classify new opportunities that match similar code patterns.

Sharma [13] takes a different approach to identify refactoring opportunities specific

to the extract-method class of refactoring. This type of refactoring involves pulling an

existing section of code out into a separate method, without altering the overall behavior of

the code segment. This is done to reduce complexity of segments of code. They accomplish

this by generating graphs covering the way the code is executed and determining the data

dependencies of each segment of code. Using this data, they can identify code that is a

good opportunity to extract into a separate method, without disrupting the function of

that code.

Xin et al. [14] have created a tool, called MEET DB2, that will analyze the code in

order to understand what actions are performed on the database by the code. Its goal

is to identify areas that will require modification if the underlying DBMS is changed to a

different DBMS. It works by parsing and analyzing the application’s code. It then considers

the capabilities and functionality of the new DBMS while determining what functionality is

used by the code. If the code uses certain functionality that is not compatible with the new

DBMS, it attempts to estimate the work required to make that portion of code compatible.
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It will compile potential problems and provide a report. For example, it will detail how

many lines of code will need to be modified to make your application compatible, where

those lines of code are found, and what problems were found in the code. This can greatly

aid in identifying the challenges associated with migration.

Code Generation

One task an administrator may have is the creation of new forms used to access or

modify the data. As mentioned in discussing data evaluation above, Jayapandian and Ja-

gadish [7] proposed a solution to automatically identify the important relationships in a

database. Using this information, they can propose a set of forms that will cover most

queries that are likely to be performed on the data. That set of forms can then be automat-

ically generated. Given that these forms should cover the predicted set of necessary queries,

this may result in all the forms necessary to use the database. This approach has the benefit

of being fully automated and requiring no understanding of the existing database schema

or its data. The automatic nature of the system, however, may not produce forms that

match all the specific requirements the administrator has.

2.3.2 Performance

An administrator may find that the database application they are setting up does not

perform well enough for their needs. This could be performance in either speed of executing

queries or storage space usage.

Zisman and Kramer [15] propose a system to improve performance in systems made

up of many autonomous databases. Their system aims to accomplish this by removing the

number of databases searched to discover information, as well as to remove the need for

centralized systems to direct the searches, which can result in performance bottlenecks. This

is accomplished by analyzing the contents of each database and building data structures

that help identify the locations of various types of data. Using that, they can recursively

search the various databases, and get to the requested information quicker.

Ilyas et al. [6] use the stored soft functional dependencies, discussed above in relation
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to data analysis, to provide statistics on the underlying data. This data is used to help

query optimizers produce faster queries. This is done by helping identify the selectivity

of these relationships. This automatic process of determining the relevant information,

would allow an administrator to improve the performance of the queries performed by the

application, without digging into all of the details of the database. Without an automated

tool like this, the improvements would require the assistance of someone trained in database

administration.
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CHAPTER 3

DATABASE AUTO AWESOME

3.1 DBApp Enhancement

Extending the functionality or improving the quality of a DBApp requires the modi-

fication of many different components of the application. Symbiota is structured as a web

front end made up of HTML and JavaScript, with PHP and a MySQL database on the

back end. Extending functionality by adding a new form for accessing the data would re-

quire building a new form in HTML, creating new validation and form processing scripts in

JavaScript, and creating the PHP code to interact with the database. Similarly, updating

the form validation scripts to be more robust or to have better error messaging could require

modifying HTML, JavaScript, and PHP code.

There are many possible reasons why someone would want to extend or modify the

capabilities of a DBApp. There may be a need for users to access data that cannot be

retrieved due to the lack of a form. Changes may be made to the underlying data structure

that require new or updated forms. An administrator may want to build a custom set of

forms that presents a small subsection of the overall DBApp to simplify the user experience.

To make these enhancements to Symbiota, for example, requires an understanding of

how data is stored in a relational database and how data is modified or retrieved. Ad-

ditionally, experience with writing HTML, JavaScript, and PHP is required, along with

an understanding of how all three work together. This skill requirement creates a bar-

rier to modifying the application and means that a DBApp administrator, who wishes to

make changes to the application, must either become a software developer, spend money

on developers to make the desired changes, or request the features from the open source

community and hope someone delivers. These are not always feasible options depending on

the administrator, their budget, and the nature of the desired changes.
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Informed code generation is the practice of creating, extending, updating, or replacing

code based on information available to the system. The requisite information can come from

existing code, the data stored in the database, the structure of the database, a template of

what is being created, or user input. When developing a software application, developers

intuitively use much of the same information to determine how new code should be written

and structured. In the case of DBAA, the goal is to mimic the work done by a software

developer, while requiring little-to-no input from one.

3.2 DBAA Tool

The DBAA tool uses informed code generation to enhance the forms and database

interactions of a DBApp. This enhancement comes through the generation of new form

validation scripts and error messaging, the generation of new database connector scripts

for accessing or modifying the stored data, the identification of existing broken forms that

may be trying to access portions of the database that no longer exits, and the generation

of completely new forms that are fully complete, from front end to back.

3.3 Preprocessing

In order to perform the informed code generation and enhancements, DBAA must

first gather information about the application. The potentially relevant information is

all gathered up front, to provide a very responsive application through the enhancement

process.

The primary source of information that DBAA uses is the database schema, which

contains all the details about the data being stored. For example, in Symbiota the taxa

table, stores taxonomical information. The schema shows that the table contains the name

and rank of each taxon. Additionally, it shows that the name of the taxon is stored as a

character string and can be, at most, 250 characters long. It also states that each entry

in that field must be unique. The rank is stored as a number with a max value of 65,535.

It also shows foreign key constraints, that is, which database fields reference other fields,

restricting data modification.
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The other source of information DBAA analyzes is the application code. The code is

parsed and DBAA stores key features of the code, such as where the forms are found, which

script the form is submitted to for processing, where form validation scripts are stored,

and what database queries are performed as a result of the form being submitted. Using

this information, DBAA connects form fields to the database fields they relate to. Though

there is often a one-to-one correspondence, e.g., a taxa name input box is connected to a

taxa.sciname field, the correspondence can be many-to-many.

The diagram in Figure 3.1 shows how the information from the application is broken

down and analyzed. The code files and database schema are processed and key elements

are identified, as shown in the diagram.

As an example of how the data can be stored, a class diagram from DBAA is shown

in Figure 3.2. All data is collected in the DBAppData class with the database schema and

code information broken into their respective components.

To process this information, the user needs to provide connection information for how

to access the database, and the location of the DBApp code files as shown in Figure 3.3.

This information is stored as an encrypted user setting for future uses of the application.

Once DBAA has this information, it can process the DBApp to gather all relevant data.

3.4 Generate Database Connectors

A DBApp’s usefulness centers around being able to access or update data. To make

beneficial enhancements to the application, DBAA needs to be capable of generating code

to allow for these data interactions. To generate any interaction with the database, the

tool needs to know how the DBApp communicates with the database. In DBAA, the

configuration menu has a section where the user can provide the necessary information.

The tool allows the user to provide a list of files that must be included in the PHP

database connector to function properly. It asks for the code required to build the database

connection object, including separate configurations for read only and write access type

connections. The settings needed for Symbiota are given as an example in Figure 3.3.



19

Code Files

PHP Files
JavaScript

Files

PHP

Classes

PHP

Scripts

HTML

Forms

JavaScript

Functions

PHP

Functions
Form Fields

Calls to

JavaScript

Database

Schema

Field Data

Types

Field

Restrictions

Foreign Key

Constraints

Figure 3.1: Information gathered during preprocessing.

Symbiota uses the MySQLi class to communicate with the MySQL database. It also uses a

connection factory class to generate or retrieve the proper connection object.

The connectors are generated from a template set of building blocks. An example of

these blocks is shown in the context of a generated insert connector in Figure 3.4. First the

information provided in the configuration menu is used to include the requisite files and to

create the connection object. From there the SQL statement or statements are built for the
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Figure 3.2: Class diagram of the analyzed code and database information.

tables being used. Then the query processing code is generated for binding the submitted

values, executing the SQL statement, and handling the results.

To properly generate the value binding code, DBAA needs to know the data type of

each column the query interacts with. When the form input data is bound to the SQL

statement, a data type needs to be specified for each item. The data types needed for

the binding function of the MySQLi class do not match the data types of the database.

To resolve the difference, DBAA simply retrieves the data type for each column from the

schema, then uses that type to look up the matching type to use when binding the values.

There are four classes of connectors that can be generated by the tool.

1. Insert data into a table

2. Check if specific data values currently exist in a table

3. Retrieve data from one or more tables

4. Delete data from a table

The simplest interaction type is inserting data into the database. To build this type of

connector, the tool needs to know which database table and which columns in that table
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Figure 3.3: Database connection settings for Symbiota.

the data goes in. The connector will take the appropriate values, attempt to insert them

into the database, and then return a Boolean to indicate whether it succeeded.

The most common interactions found in Symbiota are the two data retrieval types.

The interaction to check if data values currently exist in the table is typically used to check

if data being inserted into the table will meet constraints on the values, like uniqueness or

a foreign key constraint. The information required to generate this type of connector is the

table and columns to check against and what type of value comparison to do. Typically, this

type of interaction is based on the equality operator, to ensure that the submitted values

exactly match existing values. However, if the need arises, any standard SQL comparator

can be used. The connector will return true or false to indicate whether the provided values

match any existing values in the database.

The other data retrieval operation is used to retrieve a set of data matching a set

of input values. This connector is a bit more complicated to generate, depending on the

desired use, than the previous two. If a single table is desired, the tool needs to know the

table to access, the columns to return values from, the columns to compare against, and the
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comparator type to use in each comparison. Using this, the tool can generate the necessary

SQL SELECT statement to fetch the matching results, along with the necessary PHP to

execute that statement and process the results.

If values from more than one table are needed, more information is required. The tool

needs all items listed in the previous paragraph, but for each table accessed. It also needs

the description of how to connect the tables. Currently, the DBAA tool only supports inner

joins. For each join, the tool needs to know which two tables to perform the join on, and

<?php

include_once(’..\..\config\symbini.php’);

include_once(’..\..\config\dbconnection.php’);

$conn = MySQLiConnectionFactory::getCon("write");

// Get all expected values from the passed Array. Values not found will

be set as NULL, which may affect SQL query results.

$RankId = array_key_exists(’taxa_RankId’, $_REQUEST)?

$conn->real_escape_string($_REQUEST[’taxa_RankId’]):NULL;

$SciName = array_key_exists(’taxa_SciName’, $_REQUEST)?

$conn->real_escape_string($_REQUEST[’taxa_SciName’]):NULL;

$UnitName1 = array_key_exists(’taxa_UnitName1’, $_REQUEST)?

$conn->real_escape_string($_REQUEST[’taxa_UnitName1’]):NULL;

$stmt = $conn->prepare(’INSERT INTO taxa (RankId, SciName, UnitName1)

VALUES (?, ?, ?)’);

if( !is_null($stmt) && $stmt!=false &&

$stmt->bind_param("iss", $RankId, $SciName, $UnitName1) &&

$stmt->execute())

{ echo ’true’; }

else

{ echo ’false’; }

$stmt->close();

$conn->close();

?>

Initialize
DB

Communication

Get Form
Values

Create
SQL

Statement

Process
SQL

Statement

Figure 3.4: Generated blocks of a DBAA insert connector.
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which columns to join on. The complete set of tables must form a single chain of joined

tables. Provided with this extra information, the tool can generate a more complex SQL

SELECT statement to fetch the matching results from the combined columns of all joined

tables. A successful query will return the fetched results as JavaScript Object Notation

(JSON) data, while a failed query will return an error message.

The most complicated connector to generate is the delete data from a table connector.

Performing a delete operation on a single MySQL table is simple, but a table does not exist

in a vacuum. A table may be referenced by other tables through foreign key constraints. To

ensure the integrity of the data, a delete operation cannot be performed on any data that is

currently referenced by a matching value in another table. In a sense, these restrictions pin

the data so it cannot be deleted or modified, until all references are modified to no longer

refer to those values. If DBAA attempts to perform the delete operation without resolving

those constraints, the database will return an error and no change will be made.

Some of these constraints will be configured with an automatic response to an attempt

to change the referenced values. The responses that will automatically free up the data

are the cascade delete, cascade null, and set null responses. Cascade delete will delete all

rows containing values that reference another table’s value that will be deleted. Similarly,

cascade null will set to null any value that references another table’s value that will be set

to null. Set null will set the referencing value to null if the referenced value is deleted or set

to null.

If all foreign key constraints that reference the target table have one of these options

set, the connector does not need to manually handle any other table and can simply perform

the deletion. This is not always the case, however. In all other cases, the tables must be

handled manually.

To determine what must be handled manually, DBAA refers to the database schema

information it gathered. That information contains every foreign key constraint. From this

information, DBAA builds a graph with tables as the nodes, or vertices, and foreign key

constraints as the paths, or edges. The graph is a directed graph to preserve the direction
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of the constraints. The graph typically takes the form of a tree with all edges pointing from

the leaf nodes upward, toward the target table, but the graph could have cycles.

The graph is built starting from the table the user wishes to perform a deletion on.

Then, the tool traces each foreign key constraint that may be triggered by the deletion

back to the referencing tables. Then, from those tables it traces all foreign key constraints

that may be triggered. It continues in that manner until completing a graph of all possibly

affected tables.

Traversing this graph, DBAA determines which constraints will be resolved automat-

ically, and which must be resolved manually. This is based on what type of operation

triggered the constraint, the field characteristics, and the constraints action for that type of

event. If the source of the constraint is not a nullable field, then it needs to delete the full

conflicting tuple. If the source of the constraint is nullable, then it defaults to just setting

that attribute to null. The user can override that option to always delete the tuples, if

desired.

Then, using this graph DBAA generates a series of database operations. First, it finds

the tuples that will be deleted by the initial delete operation. Then, it finds any tuples that

will be modified in other tables as a result and will trigger other manually handled foreign

key constraints. For each table that has referencing tables, it gathers all tuples that will be

affected.

Using the lists of affected tuples, DBAA can start at the bottom, performing the deletes

and updates accordingly and moving back upward, until it performs the users desired delete

action as the final operation. This way all foreign key conflicts will be resolved without losing

referential integrity.

A simplified example of the procedure for processing the delete operation is shown in

Figure 3.5. Here, the connector starts at the target table, the one the delete operation will

be performed on, and finds the tuples that will be affected by the delete operation. Then

it goes down one step, to the middle layer, and uses that tuple data to determine which

tuples will need to be modified in the middle layer. Using this information, it can go to the
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Figure 3.5: Processing order of data gathering and modification for delete connector.

bottom layer. It doesn’t need to store data for this layer, but it will use the tuples from the

middle layer to modify (delete or set null) the data in the bottom layer tables.

Then, it goes back up and modifies the data in the middle layer that it previously

found. It can now modify or remove it because the bottom layer has been modified and no

longer points to that data. Then, it can move up to the original target. At this point the

lower tables will no longer be referencing the tuples it originally intended to delete, so it

can perform that deletion.

Alone, these connectors will not be of much use to an administrator that is looking to

enhance the application, but they will be used in other portions of the DBAA tool. For

developers that are manually making enhancements, generating these connectors would save

them the work of manually writing those connector scripts. DBAA provides an interface

for generating these standalone connectors. The user can select the type of connector, set

the applicable options, and the tool will generate a new file containing the connector, ready
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to use.

As an example from the DBAA implementation, Figure 3.6 shows an interface for

generating the connectors. In this case, a delete connector is being generated. At the top

left, the user can select the type of connector to create and the comparison class to use. In

the left column, the user can select the database table to delete from. The middle column

contains a list of all columns in that table. Here, the user selects which columns should be

used in the operation to determine which rows to delete. For each column, the user can

choose the type of comparator to use. The default comparator is equality, but the user can

select from many others including less than, greater than, or like.

The right column contains the generated code, which is constantly updated to match

the settings the user has selected in the other columns. This column also has a tab which

shows a list of all foreign key constraints which may be triggered by the delete operation.

This is shown in Figure 3.7. All of these settings are configured to defaults that will function

with no input from the user. If the user wishes to change the behavior for reacting to a

foreign key constraint, they can do so here.

Figure 3.6: Options for configuring a delete connector and the code generated.
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3.5 Generate Form Validation

To have a quality user interface, web forms must check the validity of the data entered

by a user into a form. Checking the data is necessary to prevent errors when accessing the

database. Checking the data before it reaches the database also allows the form to provide

more meaningful feedback to the user about the problems found in their input. If it were

to merely return the error given by the database when violating a foreign key constraint,

the error would be something like the following.

ERROR 1452 (23000): Cannot add or update a child: a foreign key constraint

fails (’namesinc’_’employee’, CONSTRAINT ’employee-ibfk_1 ’FOREIGN KEY

(’Dept_ID’) REFERENCES ’DEPARTMENTS’ (’DEPT_ID’))

As a contrasting example, it could check the constraint as part of the validation and return

the following message.

Values not found: The provided employee department ID must be a valid

department ID

Figure 3.7: Foreign key constraints that must be handled manually by the delete connector.
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DBAA provides two ways of adding form validation to a form: as part of the new form

generation process, which will be discussed later, and independently to existing forms. Dur-

ing the preprocessing stage, DBAA identifies all forms found in the DBApp. By identifying

the code used to submit the form, it also traces the series of function calls made and finds

all SQL statements performed as a result of that form being submitted. It then attempts

to match the individual form fields to columns in the database by connecting the columns

and tables used in the SQL statements to the submitted field ids used to form the SQL

statements.

Using the database columns used by the form DBAA can again refer to the information

it gathered and identify which form validators are applicable to the form, based on data

types, nullability, unique constraints, and foreign key constraints. With this information,

it provides a user interface where the user can select an existing form from a list, and be

presented with a list of all applicable form validators that can be added to the form. In

the interface, DBAA shows the form’s existing HTML and JavaScript code. It also adds

in the validator code to match what the revised version would look like and highlights the

changes in red. That way the user has an immediate preview of all changes that will occur

from the addition of the selected validators.

For any of the script validators, DBAA adds an HTML tag to the form where the

validator can place an error message if the input fails validation. This gives the validators

a way to provide cleaner and more relevant error messages.

There are three main types of input validation that typically occur in a form: HTML

restriction attributes, single field on change scripts, and form submission scripts. HTML

restriction attributes are attributes included in the input tag of the form that impose a

restriction on what can be entered in that field. The primary attribute used is the maxlength

attribute, which allows you to specify the maximum number of characters that can be

entered into the field. HTML 5 added some additional attributes, like min and max, which

allow you to set the minimum and maximum values of a number entered into the field; and

pattern, which allows you to set a regular expression that the value in the field must match.



29

Single field on change scripts are validation scripts that are called when the value in

a field has been changed. Since a script is being called, the validation can be anything a

script can check. In DBAA, this type of script is primarily used as a data type validation

script. To perform a data type validation, it evaluates the value the user has entered to

see if it meets the definition of the data type for that field from the database schema. For

number values, it can check that the numbers are valid integers or non-integers as required

by the schema, and that the value falls within the accepted range. For string data types, it

can check that the value is no longer than what is allowed by the schema.

Form submission scripts are validation scripts that are executed when a user submits

the form, and check one or more field. This validation is the last that happens before the

form input values are sent to the back end to be used in database operations. DBAA uses

this type of form validation to check three conditions. In all cases, if a failure is detected,

an appropriate error message is shown, and the form submission does not proceed.

First, DBAA uses the form submission script to check that required fields are not

empty. This validation takes the values of all required fields and checks if any of them are

null, or empty. All fields marked as required must have a value provided, or the entire check

is considered failed.

Second, DBAA uses the form submission script to check that fields that must be unique

are actually unique. Using the database schema information, DBAA can identify fields or

groups of fields that must have all unique entries within the table. On submitting the form,

it takes the values entered in these fields and sends them to a database connector that

checks for the existence of those same values in the table. If the connector returns true, it

knows that the field values are not unique and cannot be used for that operation, so the

check is considered failed.

Third, DBAA uses the form submission script to check foreign key constraints on values

that are being inserted into the table. This is similar to the uniqueness check. In this case,

it checks for the existence of those values in a table other than the one it is inserting into and

if the response is true, it knows that the values being referenced exist and it can properly
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insert these values into the table. If they are not found, then it knows that it cannot insert

the values into the table and the check is considered failed.

Each of the three main types of validators is implemented as a class. Each validator

is a subclass to its type class. Each validator class is responsible for providing the code

necessary for it to function. Additional validators can be added by creating new subclasses

and providing the necessary code generation function and the code for identifying when

each check type is applicable. DBAA compiles a list of all applicable validators and when

it is time to generate the code, it gets the code from each instance of each class for those

validators that were selected by the user. As necessary, such as in the case of the uniqueness

or foreign key validators, DBAA also generates the requisite database connector, using the

database connector generator.

To update the validation scripts of an existing form, DBAA provides a simple UI as

shown in Figure 3.8. On the left side is a list of all existing forms that DBAA found in the

DBApp. The user selects the form to enhance from that list. Then in the center, there are

tabs to show the HTML code of the form and the JavaScript functions called by the form.

The existing code will be shown in black and the pending updates will be shown in red. On

Figure 3.8: Update form validation UI.
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the right side there are lists of the validators that can be added to the form. After selecting

the form, the user selects which validators to add and clicks the save button. By default,

DBAA will save a backup of each file being modified.

3.6 Identify Forms With Invalid Database Field References

As part of enhancing the set of forms in the DBApp, it is important to identify cases

where an existing form is broken so that a new form can be built to replace it. For the

purposes of DBAA, the focus is on the information gathered during the preprocessing stage

to help identify those forms. In DBAA, a form is considered broken, if, as a result of the

form being used anywhere down the line of called code, an SQL column or table is referenced

that does not actually exist.

This will not identify forms which are broken due to bugs in the HTML, JavaScript, or

PHP, but provides meaningful feedback that is directly related to DBAA’s goal of enhancing

a set of forms. To identify which forms are broken, it looks at all PHP functions that get

called as a result of a given form being submitted. Due to the normal flow control, these

functions are not guaranteed to be called in practice, since the run time data affects which

functions are called. So, this is just the collection of all functions that could possibly be

called, given the correct conditions. If any of the functions found in that collection contain

SQL statements that make references to tables or columns that do not exist in the database

schema, the form resulting in the function call is marked as being potentially broken.

DBAA provides a list of forms that it has identified as potentially broken, as shown

in Figure 3.9. To use this tool, the user clicks the button to scan for broken forms. The

left column populates with forms that may be broken. When a form is selected, the center

column populates with a list of table and column pairs that are referenced, but don’t exist

in the database schema. Selecting one of these shows the location of the broken form file

and the PHP file that contains the erroneous SQL statement.

In the case of Symbiota, the SQL statements are often built by concatenating together a

large number of string literals and variables. In some cases, even the tables being accessed

by the query are just set at run time from a variable. Different portions of SQL are
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Figure 3.9: Potentially broken forms shown in DBAA UI.

often concatenated depending on runtime values of variables. Some portions of the SQL

are fetched from functions other than the one building the SQL statement. All of this

variability in how a statement is built at run time makes it very difficult to ensure that all

invalid table and column references are properly identified. In its current state, DBAA does

produce some false positives and likely does not identify all potentially broken forms.

The benefit of identifying forms that may be broken, is that the administrator can then

use the DBAA form generator to create a new form to replace the functionality the original

was intended to provide. Directly regenerating the form would provide the easiest solution,

from a user’s point of view, but there are significant barriers to doing so.

The largest barrier stems from the form fields pointing to non-existent database columns.

Without any information about what data that field was intended to interact with, it is

impossible to know if that data still exists in the database in any form, or how to proceed

to rectify the problem. The tool cannot know if the correct solution is to merely remove

those fields, to extend the database schema to include the missing columns, or to point the

form fields at an alternative set of columns. Automatically taking any action could result in

erroneous behavior of the DBApp. So, it is left to the administrators to build new working



33

forms, within the confines of the data that is known to exist.

3.7 Generate New Forms

Creating new forms is a core activity when building, updating, or expanding the func-

tionality of a DBApp. When working on an existing DBApp, it will already contain forms

and those forms may be similar in function to what the user wants to create. It will also

have a relational database with which the forms interact. These existing portions of the

application provide a solid foundation to expand on by generating new forms.

An administrator may find that they need to create new forms to suit the needs of

their organization. The ability to use existing information to generate new forms is based

on bringing together the parts of the DBAA tool that have been built so far. Generating

forms uses the gathered schema and form information, the database connector generator,

the form validator generator, and adds in the form generation and connects everything

together.

A complete form consists of several parts, as shown in Figure 3.10: an HTML input

form, JavaScript form validation and form processing scripts, and the back end PHP code

to execute the operation on the database and provide the desired results.

The information the DBAA tool has gathered is everything that is required, from a

technical standpoint, to generate the forms. All that remains are the user’s specifications

for what the form should be.

In the DBAA implementation, the form generation proceeds through several steps,

walking the user through each portion.

HTML JavaScript PHP Database

Figure 3.10: Sections of a DBAA generated form.



34

3.7.1 Select form type and target data

The first step is to define what type of interaction the user intends to have with the

database, and to specify which data they intend to interact with. In DBAA, the options for

interaction type are defined as insert, select, and delete. These three interactions cover the

majority of interactions found in Symbiota and establish a large base set of functionalities

that can be added or enhanced.

Once the interaction type is specified, the user is provided with a list of the database

tables, as shown in Figure 3.11. Selecting a table populates a list of database columns that

exist in that table. Due to the nature of such operations, insert and delete operations work

on a single table, while select can operate on multiple.

DBAA displays each column with several characteristics of the column stated next to

it: whether the field is nullable, whether it auto-increments on insert, whether it is part of

a unique key, etc. This allows the user to be immediately informed about the selections

they are making. This aids in ensuring all relevant columns are selected, without having to

manually refer to the schema to check column properties.

The list of columns allows the user to select which columns they would like the form to

Figure 3.11: Form type, table, and column selection.
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interact with directly. In the case of an insert form, this is the list of columns the form will

gather values for. In the cases of select and delete forms, these columns are the columns

used as comparisons with existing data to find matching tuples in the data.

For the select and delete types of form, there is also an option to perform an all or

any type comparison. In an all comparison, if all provided values match a given tuple it is

included as part of the target data. This is specified in the SQL statement by using AND

operators between each comparison. In an any comparison, if any provided value matches

that column in the tuple, it is included as part of the target data. This is specified in the

SQL statement by using OR operators between each comparison.

To further aid the user, when building an insert form, values must be provided for all

columns that are non-nullable, and do not have a default value designated. So, any column

in the selected table that falls into that criteria is marked as required and must be included

in the form. This is to prevent the building of forms that will never work.

3.7.2 Form layout

From there, the user is provided with a visual mockup of what the form will look like.

This is simply done by generating the HTML required for the form, and displaying it in

an embedded web browser panel. The generated version updates immediately as the user

makes any changes to the layout configuration. An example of this preview is shown in the

left side of Figure 3.12. On the right, there are options to configure the form.

The user can customize the order, look, and type of fields. They can provide the visible

labels for the fields, as well as a title for the form. For each field, a selection is offered, to

create a new field from scratch, or to copy one from another table that interacts with the

same DB field.

This information is available from the initially gathered information, and allows users

to use a given existing form as a starting point for building their new form. In cases where

an administrator wants to provide a custom version of an existing form in order to simplify it

or expand its functionality, or to build a version of a broken form using database fields that



36

Figure 3.12: Example form preview during form layout step.

actually exist, they can pull the existing field formatting and settings in, without having to

configure it themselves.

3.7.3 Configuration

The next step varies based on the type of form being built. For an insert form, this step

is skipped all together. For a delete form, the user is presented with the list of comparisons

that will be made and the comparator to be used with each field. The user can select from

any valid SQL comparator, including LIKE, and set it individually for each field. When

generating the SQL statement, the chosen comparator will be inserted into that comparison

and function as expected. All the comparators default to the equality comparator. If this

is correct for the intended purpose of the form, no changes need to be made.

For a select form, the same comparator selector is shown, but there are two additional

sections, like those in Figure 3.13. First, the user can select which columns from the tables

selected in the first step should be used as the output columns of the select statement. This

allows the user to determine exactly which results they want to view from the table. They

can also set the visible name to use for the column when displaying the results.
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Figure 3.13: Options for configuring a select type form.

Second, if more than one table is being used, the user can customize the table joins to

produce their desired output in the middle section of the DBAA UI. The user can order the

tables and then specify which columns to join on, to form a chain of joins for all included

tables. This allows DBAA to know how to generate the database connector used to fetch

the results.

3.7.4 Validation

At this step, DBAA pulls in all the same data used in the standalone validation gen-

erator. It generates a list of the applicable form validation types for this form, as shown in

Figure 3.14. The user can select all, none, or some of the checks, as desired.

The list of selected form validators will be fed to the form generation tool and the

code for the validators will be generated right in line with the rest of the code. This allows

DBAA to seamlessly add or remove the validators as the user chooses.

3.7.5 Generation

Upon reaching the last step, the user is presented with the generated HTML, JavaScript,
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Figure 3.14: New form validation options.

and PHP code needed for this form, as shown in the left side of Figure 3.15. It is shown

here primarily to demonstrate that it has completed the task of code generation. For a

more advanced user, this may be beneficial for them to be able to verify the code is what

they desired, before finalizing the code generation.

Here, the user chooses where they want the code to be generated and clicks the generate

button. All necessary files will be generated and saved, ready for use or further integration

into the system. There will be a minimum of three files generated: the HTML form file, the

JavaScript form processing and validation file, and the PHP file for performing the desired

database interaction. Additional PHP files will be generated for each form validator that

requires one.

The code generation proceeds one file at a time. For each file, it calls on the appropriate

generation tool, and passes to it the relevant existing system information and the parameters

chosen by the user.

Every portion of this process is supported and informed by the data that has been

gathered from the existing project. Without it, the tool would not be able to generate a

complete working form. The amount of information that is required from the user is not
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Figure 3.15: Generated form code and file save locations.

zero, but it takes very little knowledge and work to generate complete forms compared to

doing it manually.

Various types of information are fed into each portion of the code generation process,

as shown in Figure 3.16. By bringing this information into the process, DBAA can generate

completely new or enhanced ways of interacting with the DBApp with minimal guidance

from the administrator.
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HTML
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Manipulation

JavaScript
Validation

PHP
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Figure 3.16: Data sources that inform each portion of code generation.
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CHAPTER 4

RESULTS

Informed code generation improves the maintainability and extensibility of an applica-

tion by reducing the knowledge and time required to make modifications to the application.

DBAA demonstrates this improvement by providing the tools required by a user to make

changes with little effort or knowledge.

4.1 Reduced Knowledge Required

Symbiota is a complex application and one that is hard for new developers to modify.

It uses many different languages and technologies. Because DBAA generates all the code

needed to perform modifications to the application, the user does not need to have a working

knowledge of these technologies. This stands in contrast to traditional development where

the person making changes needs to be capable of writing and interpreting code in all

technologies used by the application.

In Figure 4.1 the knowledge required in traditional development and the knowledge

required to use DBAA are compared. DBAA removes the requirement to know PHP, the

most used technology in Symbiota. It also reduces the SQL knowledge required to a basic

understanding of how data is stored in tables and columns and of how comparators are used

in SQL statements. This allows the user to target the data they would like to interact with.

The user does need to understand how to build SQL statements.

A basic understanding of HTML will aid in formatting and organizing the forms being

generated. Some understanding of JavaScript will aid in identifying desired form validation

scripts when updating an existing form’s validation. No other knowledge is required to

operate DBAA.

DBAA does not completely remove the need for an understanding of software devel-

opment technologies, but it significantly reduces that barrier when compared to traditional

development.
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Figure 4.1: Knowledge required to perform DBApp modifications in various areas with or
without DBAA.

4.2 Reduced Development Time

The tasks performed by DBAA reduce the development time by generating code that

would otherwise be written manually. In the example of generating an entirely new form,

a user spends a small amount of time filling out a form of options and then DBAA will
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immediately generate hundreds of lines of code covering PHP, JavaScript, HTML, and

SQL. Whether the user is a novice or an experienced developer, this results in a significant

reduction in development time compared to writing those hundreds of lines of code manually.

4.3 Improved Accessibility

By reducing the required knowledge and development time to modify a DBApp, DBAA

makes it easier for any potential DBApp administrator and their team to modify the ap-

plication. By lowering these barriers, a greater number of organizations will have sufficient

resources to deploy and maintain applications like Symbiota and benefit from the work done

to create them.

4.4 Challenges

The initial development effort of a system for generating and updating forms will likely

outweigh what would be required for making an administrator’s desired changes to the

application. For DBAA to be truly beneficial, it must be developed and deployed in a

way that will allow it to benefit many different administrators. In the case of a DBApp

like Symbiota, such a tool could be built specifically for that application and distributed

alongside the application itself. This would spread the development effort across all installed

instances of the DBApp, allowing all administrators to benefit.

Generating code requires targeting a specific set of languages, frameworks, and tech-

nologies when building the tools. This is another reason why the best approach for creating

such a tool may be to build it upfront and release it alongside an open source project.

Alternatively, if it were to be built with true modularity in mind and set up as an open

source project, a tool like this could be grown to include many combinations of languages,

frameworks, and technologies.

The quality of generated code is tied to the person or persons who built the tool. Poor

design of the tools will result in inferior quality code being generated by each person using

the tool. On the other hand, a well-built tool means that high quality code will be generated

for each person using the tool. The key to providing real benefit is to have the code output
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designed by developers who are experts in the types of code being generated. This allows

all administrators to generate code that matches the quality of an expert developer, even

if they do it themselves or can only afford to hire a novice developer. This is similar to

the findings by Vial [10] in their work to automate schema refactoring. Using their tools, a

novice developer could make changes that fit the standards set by their more experienced

developers.

In all aspects of building an automated system, like DBAA, there is an act of balancing

automation and flexibility. The greater degree of automation, the less flexibility there is

for the user to get what they want out of the tool. It becomes necessary to search for a

balance that does not require more out of the users than they are capable of, while also

not restricting the functionality of the tool to the point where it is no longer substantially

useful.

For example, in DBAA, the user can specify which comparators to use for each field of

the form. This may be outside the scope of a user’s knowledge before using the tool, but

removing the option would severely limit the variety of functionality one can get out of the

generated forms.

4.5 Future Work

As mentioned in the introduction, there are other areas wherein a DBApp could be

automatically or semi-automatically enhanced: creating interfaces to other tools, content

management system integration, and database mediation and migration scripts. Work in

these areas could yield additional enhancements for reducing the skills required to build

unique applications from an existing application.

Taking the informed code generation technique and applying it to companies that build

large scale, or a large quantity of, web applications could find benefits in providing tools for

developers to automate tasks like form generation. If an organization uses the same set of

frameworks and tools for building many forms for a single project, or many similar projects,

it could allow the organization to build custom sets of web forms for their customers in a

fraction of the time as traditional manual development.
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Research into building a more generalized framework that could allow for the inter-

operation of many different languages and frameworks should be explored. Developing a

general-purpose form building tool that could work with any project’s framework and back

end would save a very large amount of collective development time by reducing how many

times developers build nearly identical pieces of code.
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CHAPTER 5

CONCLUSION

The skill required to modify or extend a given web application is directly related to

how maintainable that application is. Whatever tools reduce the skill required will also

improve the maintainability and extensibility of that web application.

In this test implementation, DBAA, we have put into practice informed code generation

which allows us to directly extend and modify parts of a web application. It is not as fully

automated as Google’s Auto Awesome tool is for photos, but it lowers the level of knowledge

and skill required to extend or modify the Symbiota application. It enables users without

complete knowledge of web application development and the tools used in Symbiota to

create new forms and improve validation on existing forms as they see fit. There is immense

potential for informed code generation tools to improve the customizability and extensibility

of a compatible web application and warrants continued research into these techniques as

applied to enhancing existing web applications.
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