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ABSTRACT 
 

Foraging Ecology of Mountain Lions in the Sierra National Forest, California 
 
 

by 
 
 

Bradley C. Nichols, Master of Science 

Utah State University, 2017 

Major Professor: Eric M. Gese 
Department: Wildland Resources  

 Studies of predator-prey and predator-predator interactions are needed to provide 

information for decision-making processes in land management agencies. Mountain lions 

(Puma concolor) are opportunistic carnivores that prey on a wide variety of species. In 

the Sierra National Forest, CA, they have not been studied since 1987 and their current 

interactions with their prey and other predators are unknown. Forest managers in this 

region are concerned with declines of fishers (Pekania pennanti) and studies have shown 

intraguild predation to be a leading cause of fisher mortality in this area. Managers are 

interested in learning more about mountain lion predation patterns with regard to prey 

preference, but also how lions traverse and use the landscape and how anthropogenic 

activities may be increasing lion predation risk on fishers. 

 Using GPS radio-collar technology, we examined mountain lion kill rates and 

prey composition at 250 kill sites. We found mule deer (Odocoileus hemionus) to be their 

main source of prey (81%) with gray foxes (Urocyon cinereoargenteus) comprising 

13.2% of prey composition. We did not detect any fisher predation during our 2-year 
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study; however, during our study, the Kings River Fisher Project experienced extremely 

low juvenile fisher survival.  

 To gain a better understanding of seasonal resource selection by mountain lions, 

we developed resource selection functions (RSF) while they were moving through the 

landscape and when killing prey.  We developed RSF models for all data across the study 

area, as well as, for a subset of data encompassing an area where LiDAR (Light 

Detection and Ranging) data had been collected. Within the LiDAR study area, we 

digitized unmapped roads and skid trails using a Bare Earth data set. We found mountain 

lion ‘moving’ locations showed selection for close proximity to streams during summer 

months and selection for ruggedness and steeper slopes during both summer and winter. 

With 3 of the 4 RSF models at kill sites showing high risk of predation within close 

proximity to either digitized roads/skid trails or mapped roads, we recommend managers 

map all anthropogenically created linear landscape features and consider restoring these 

linear features to pre-treatment landscape conditions following timber harvest.  

 
(125 pages) 
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PUBLIC ABSTRACT 

Foraging Ecology of Mountain Lions in the Sierra National Forest, California 

Bradley C. Nichols 

 We conducted this research to gain insight into mountain lion (Puma concolor) 

prey composition in the Sierra National Forest of California. Managers in the region are 

concerned with both causes of declines and inability to increase fisher (Pekania pennanti) 

populations. Research has shown that mountain lions are a threat to fishers due to direct 

predation of this forest specialist. We radio-collared 5 adult mountain lions in order to 

determine prey composition and kill rates. As expected, mountain lions selected primarily 

for mule deer (Odocoileus hemionus). However we did detect other prey such as gray 

foxes (Urocyon cinereoargenteus), coyotes (Canis latrans), one black bear (Ursus 

americana), one ringtail (Bassariscus astutus), and several squirrels.  

 Mountain lions are elusive, apex predators that rely on dense cover for stalking, 

ambushing, and caching prey. Our interest was to gain an understanding of landscape 

attributes selected for by mountain lions within the full study area and a subset of the 

study area where LiDAR (Light Detection and Ranging) data had been collected at both 

point clusters where we detected prey remains, as well as, non-cluster (moving) locations. 

We were interested in landscape attributes not only where lions successfully made a kill, 

but also where they were moving through the landscape. Based on kill sites where we 

detected evidence of a carcass drag (>95% were <50 m in length), we created zones of 

predation risk within the full study area and the LiDAR study area. We used the same 
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50m buffer around moving locations as well. We then developed resource selection 

function models for locations during two behavioral states: moving and killing, for winter 

and summer months. We found that zones of predation risk were mainly characterized by 

close proximity to mapped roads in the full study area and digitized roads and skid trails 

within the LiDAR study area. Moving locations were mainly associated with terrain 

variables such as ruggedness and slope along with close proximity to streams during 

summer months. Since we lack LiDAR data for most of the study area, we can assume 

that there is a high density of unmapped roads and skid trails. We recommend managers 

map any linear feature that has been anthropogenically created for future management 

actions. With respect to fisher populations, we recommend replanting skid trails and 

roads that increase habitat fragmentation which further puts fishers at risk of predation by 

mountain lions. 
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CHAPTER 1 
 

INTRODUCTION 

Predators are essential components of ecosystems due to their ability to regulate 

food webs (Terborgh and Estes 2010) and their capacity to shift amongst prey species in 

response to prey abundance, an important mechanism in maintaining ecosystem stability 

(McCann and Rooney 2005, Holt and Barfield 2009, Terborgh and Estes 2010). The loss 

of apex predators can affect trophic cascades (Paine 1980) resulting in decreased levels of 

biodiversity and can indirectly affect vegetation communities (Terborgh and Estes 2010). 

Therefore, large carnivores are often considered indicators of ecosystem integrity 

(Eisenberg 1980, Noss 1995, Noss et al. 1996). 

Since many landscapes containing large carnivores have been modified by human 

activities, the continued presence of large carnivores on the landscape may indicate a 

relatively unbroken food web that has maintained a high potential for ecological integrity 

(Noss et al. 1996). In North America, the distribution of apex predators like mountain 

lions (Puma concolor) have been drastically reduced due to human exploitation (Young 

and Goldman 1946, Nowak 1974, Sweanor et al. 2000). While the current worldwide 

distribution of mountain lions remains one of the largest of any terrestrial mammal, its 

overall geographic range has been reduced by >50% (Young and Goldman 1946, Nowak 

1974, Logan and Sweanor 2000, Reith 2010). Since mammalian carnivores such as 

mountain lions, occupy large home ranges, are low density, and are predisposed to 

persecution by humans, they are thought to be particularly susceptible to local extinction 
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in fragmented landscapes (Noss et al. 1996, Woodroffe and Ginsberg 1998, Crooks 

2002).  

In the Sierra National Forest in central California, the mountain lion population 

has not been studied for several decades (Neal et al. 1987). Mountain lion habitat varies 

widely and is generally a function of prey abundance and ambush cover provided by 

various vegetation types and topography (Seidensticker et al. 1973, Reith 2010). Lions 

frequently use edges and ecotones (Belden et al. 1988, Laing 1988, Williams et al. 1995, 

Holmes and Laundre 2006) which provide stalking cover to approach prey at close range. 

Laundre and Hernandez (2003) found 72% of kills by lions in their study area were along 

edges compared to open patches or in forested areas. Mountain lion predation on 

ungulates is a function of landscape attributes (Husseman et al. 2003, Laundre and 

Hernandez 2003, Blake and Gese 2016) with dense vegetation providing low visibility 

for prey species and/or rugged topography providing increased ambush hunting 

opportunities (Blake and Gese 2016). 

Within the Sierra National Forest, the Pacific fisher (Pekania pennanti) has 

become a species of increasing concern due to its isolation from other fisher populations. 

Ongoing research initiated in 2007 by the U.S. Forest Service Pacific Southwest Research 

Station prompted the U.S. Fish and Wildlife Service to propose listing the west coast 

population of fishers as threatened under the Endangered Species Act. The regional fisher 

population is highly fragmented and has been unable to expand despite decades of 

protection (Zielinski et al. 2006, Spencer et al. 2008). Zielinski et al. (2005) suggested 

that forest specialists (i.e., fishers and American martens, Martes americana) 
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distributions have changed more than forest generalists (e.g., mountain lions) due to the 

combination of loss of mature forest habitat, latent effects of commercial trapping, and 

increased residential development. Both mountain lions and fishers are native carnivores 

to the Sierra National Forest in California. Recent research has shown the fisher is often 

subject to predation by mountain lions (Sweitzer et al. 2015, 2016). Currently, intraguild 

predation upon fishers is poorly understood, but could have population-level effects, 

particularly within this sensitive western population of fishers (Wengert et al. 2014, 

Sweitzer et al. 2016).  

During the 9 years of the Kings River Fisher Project (KRFP), researchers 

documented predation as the leading cause of fisher mortality (Gabriel et al. 2015). 

Moreover, in the southern portion of the research study near Shaver Lake, California, 

mountain lions have been the main predator of fishers accounting for 36% of all mortality 

causes and 50% of mortalities due to predation with bobcats (Lynx rufus) being the 

secondary predator (Craig Thompson, personal communication). Other documented 

causes of fisher mortality within the KRFP study area are rodenticide toxicosis from 

illegal marijuana grows, disease (mainly canine distemper), and vehicle strikes; however, 

the combination of all other mortality caused do not equal the amount of mortality caused 

by predation (Sweitzer et al. 2015). In California, mule deer (Odocoileous hemionus) 

comprise the largest percentage of mountain lion diets (Allen et al.  2015, Villepique et 

al. 2011, Smith et al. 2016). However, known lion depredation events of fishers in the 

study area, as well as research documenting mountain lions to be opportunistic hunters 

preying on a variety of species (Smith et al. 2016), prompted the need to gain insight into 
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the foraging patterns and resource selection of mountain lions in the Kings River study 

area. With regards to predation patterns, we were particularly interested in determining 

kill rate intervals, prey composition, and time spent at kills. Because black bears (Ursus 

americanus) are very numerous on the study area, we also examined the influence of 

kleptoparasitism (i.e., theft of a kill made by a mountain lion) by black bears (Elbroch et 

al. 2015) on kill rates of mountain lions. We also investigated patterns of resource 

selection among mountain lions to determine the influence of behavioral state (moving, 

killing), season (summer, winter), and sex (male, female) on landscape use in the Sierra 

National Forest. 

 In chapter 2, we examined lion kill rate intervals based on sex, season, and 

individual status (i.e., adult female, adult female with kitten, and adult male). We also 

examined the influence of kleptoparasitism by black bears in the summer months (April 

15 – November 15 in our system) to determine if kill intervals changed following a lion 

being subplanted from its kill by a black bear. We also examined the time spent at kills, 

or handling time, based on the same variables used in the kill interval analysis. 

In chapter 3, we investigated resource selection by mountain lions in the study 

area by determining the influence of landscape characteristics locations while they are 

moving through the landscape and while occupying kill sites. We examined the area 

around the cache site using 50-m buffers that would contain the cache and kill sites. We 

developed resource selection functions (RSF; Manly et al. 2002) to determine the relative 

probability of kill site selection based on certain landscape characteristics such as 

distance-to-roads, slope, elevation, ruggedness, aspect, and vegetation class (Blake and 
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Gese 2016). Although there was an extended drought in the area during the study, we did 

still consider the distance to streams as a variable mainly because prey of lions use 

riparian areas. Additionally, ravines may provide ambush cover for lions. Lastly, we 

analyzed a subset of locations with prey remains that fell within LiDAR coverage in the 

research area. The LiDAR data allowed us to digitize roads and skid trails that were 

previously unmapped allowing us to examine whether lions are using these 

anthropogenically introduced linear features not only for travel, but also for ambush sites. 
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CHAPTER 2 
 

KILL RATES AND PREDATION PATTERNS OF MOUNTAIN LIONS IN THE  
 

SIERRA NATIONAL FOREST, CALIFORINIA 
 

ABSTRACT 

Mountain lions (Puma concolor) can affect prey populations and may play an 

important role in both regulation of trophic cascades and maintenance of biodiversity 

amongst flora and fauna. The fisher (Pekania pennanti) has been a species of special 

concern in the western United States due to decreasing numbers and isolated populations. 

Within the Sierra National Forest, California, researchers have documented interspecific 

killing of fishers by mountain lions prompting a need to understand the foraging patterns 

of mountain lions in this area. Therefore, we captured, GPS-collared, and monitored 5 

adult mountain lions and documented prey composition, inter-kill intervals, and time 

spent at kills with respect to season and prey size in the Sierra National Forest, 

California, from April 2014 to August 2016. We determined prey composition of lion 

kills as the percent frequency of total prey selected with regard to season (winter, 

summer) and sex (female, male), as well as, categorized mule deer (Odocoileus 

hemionus) selection with respect to deer sex and age classes among different classes of 

lion status (adult female with kittens, adult female, and adult male). We found mule deer 

comprised the highest percentage of lion kills (81%), with gray foxes (Urocyon 

cinereoargenteus) being the next highest prey item (13%). We did not detect any fisher 

remains at lion kill sites during the 2-year study. While we were only able to radio-collar 
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one adult male, he exhibited shorter inter-kill intervals at fawn kills (deer <5-months-old) 

compared to adult females without kittens, yet he had similar kill intervals compared to 

adult females without kittens when killing adult deer (>10-months-old) during summer. 

We found no difference in kill rates between adult females with or without kittens when 

preying on fawns or adult deer. The adult male spent less time at carcasses compared to 

solitary adult females, and adult females with kittens demonstrated much shorter carcass 

handling times than adult females without kittens. We found an increase in mean carcass 

handling times for solitary adult females during winter. Lastly, we found no evidence to 

suggest that kleptoparasitism by black bears affected kill rates or handling times of 

mountain lions in the study area. Mountain lions of the study area mainly killed mule 

deer and gray foxes, while predation on fishers appeared to be a rare event. However, we 

acknowledge that acquiring locations every 2-hours may limit detection of fisher remains, 

but a mesocarnivore of equal body size (i.e., gray foxes) were readily detected at lion kill 

sites. 

 
INTRODUCTION 

Carnivores can significantly affect many prey populations and play an important 

role in the regulation of trophic cascades (Paine 1980) and maintaining biodiversity of 

both flora and fauna (Miller et al. 2001). In a system with top-down regulation with one 

or more apex predators, herbivore biomass intake is assumed to be regulated by 

carnivores (Hairston et al. 1960, Fretwell 1977, 1987; Oksanen et al. 1981, Oksanen and 

Oksanen 2000, Miller et al. 2001) implying strong interactions between the three trophic 



12 
 

 

levels: plants, herbivores, and carnivores (Miller et al. 2001). Although mid-sized 

carnivores or mesocarnivores do not invoke the fear or respect of large apex predators, 

they can play an important role in community structure and even fill ecological roles such 

as dispersers of seeds (Roemer et al. 2009). Even in a ‘natural’ system that is undisturbed 

from human-induced changes on the landscape, predators still must travel and hunt under 

risk of detection and predation by other predators (Polis et al. 1989, Rosenheim 2004, 

Thompson and Gese 2007). However, on a modified landscape, such as a national forest 

that is highly fragmented and disturbed by logging, extensive road networks, and 

silvicultural treatments, decreased habitat integrity due to habitat alterations and the 

subsequent effects on predator-prey interactions and predator-predator interactions is not 

fully understood.  

Due to the cryptic nature of mountain lions (Puma concolor) and their mostly 

nocturnal hunting strategy, actually observing predation and documenting prey 

composition is virtually impossible (Blake and Gese 2016). However, with the advent of 

global positioning system (GPS) radio-collar technology (Anderson and Lindzey 2003) 

researchers have been able to develop a better understanding of lion predation patterns 

and habitat utilization. Mountain lions generally prey on a variety of animals including 

other predator species such as coyotes (Canis latrans) and bobcats (Lynx rufus), however, 

native ungulates comprise the majority of prey biomass they consume and it is unlikely 

that a lion population is sustainable in the absence of ungulates (CMGWG 2005).  

The portion of the Sierra National Forest in California encompassing our study 

area is a single-ungulate system made up of the North Kings Migratory Deer Herd 
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(Odocoileus hemionus californicus) herd (Evans et al. 1976, Neal et al. 1987). We 

assumed mule deer would comprise the largest percentage of mountain lion diets similar 

to other studies. Smith et al. (2016) found mule deer made up 79% of lion kills in the 

Santa Cruz Mountains, California. Similarly, Blake and Gese (2016) in the Pryor 

Mountains in Montana and Wyoming reported 71% of lion kills were mule deer. There is 

ample data to show that mountain lions make their living utilizing ungulates, but data is 

lacking in the Sierra National Forest in relation to cougar diets, kill rates, and handling 

time. Furthermore, interspecific killing and intraguild predation (IGP) (Polis et al. 1989) 

are common themes in predator communities. Data from the Kings River Fisher Project 

(KRFP) near Shaver Lake, California, showed that interspecific predation upon fishers 

(Pekania pennanti), mainly by mountain lions and bobcats (Wengert et al. 2014, Gabriel 

et al. 2015), could have population level effects on this sensitive forest specialist 

(Wengert et al. 2014, Sweitzer et al. 2016). We assumed if lions were killing fishers, 

there would be a high likelihood they would also depredate other mesocarnivores 

including coyotes, bobcats, gray foxes (Urocyon cinereoargenteus), ringtails 

(Bassariscus astutus), martens (Martes americana), black bears (Ursus americanus), and 

opossums (Didelphis virginianus).  

Therefore, our objective was to determine predation patterns and prey 

composition for mountain lions in the Kings River study area, Sierra National Forest, 

California. Specifically we documented 1) kill rate intervals of lions in relation to sex and 

breeding status of the lions, season, and prey size; 2) prey composition of lion kills; 3) 

time spent at kills in relation to prey size; and 4) the influence of kleptoparasitism by 
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black bears on kill rates and handling times of mountain lions. We predicted mule deer 

would comprise the largest percentage of lion kills in our study area, with occasional 

predation on mesocarnivores (Allen et al. 2015). We predicted kill intervals would be 

shorter in the summer due to the availability of fawns (Knopff et al. 2010), black bear 

scavenging or kleptoparasitism of kills, and higher temperatures which would spoil meat 

faster and increase invertebrate decomposition (Bischoff-Mattson and Mattson 2009, 

Ruth and Murphy 2010, Krofel et al. 2012, Allen et al. 2014). We also predicted female 

lions with kittens would have shorter kill intervals and shorter handling times regardless 

of season than nonbreeding females or males. Since mule deer are the only ungulate 

present, we predicted male lions might kill more large bucks than lone females or females 

with kittens. 

 
STUDY AREA 

 

 We focused our study on the current Kings River Fisher Project (KRFP) study 

area in the Sierra National Forest near Shaver Lake, California (Fig. 2.1). Based on our 

radio-collared lion locations, the minimum elevation of the study site was 289 m and the 

maximum elevation was 3,237 (which lions used during summer months). The total study 

area encompassed 1,336 km². The study site climate was Mediterranean with cool, wet 

winters and warm, dry summers (Sweitzer et al. 2015). Most precipitation occurred 

between late November and early March including rain and snow and, on average, 

persisted with snow accumulation into April, but can last into mid-May (Sweitzer et al. 

2015). The study area was a mix of public and private lands and included public 

recreation, hunting, cattle grazing, sightseeing, prescription forest treatments and timber 
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harvest. The primary tree species were incense cedar (Calocedrus decurrens), white fir 

(Abies concolor), ponderosa pine (Pinus ponderosa), sugar pine (Pinus lambertiana), 

California black oak (Quercus kelloggii), mountain dogwood (Cornus nuttallii), and 

white alder (Alnus rhombifolia). Giant sequoia (Sequoiadendron giganteum) was present 

but restricted to remnant populations in a few areas. Shrubs in the area included willow 

(Salix spp.), whiteleaf manzanita (Arctostaphylos viscida), greenleaf manzanita 

Arctostaphylos patula), mountain misery (Chamaebatia foliolosa), blue elderberry 

(Sambucus mexicana), bush chinquapin (Chrysolepis sempervirens), mountain 

whitethorn (Ceanothus cordulatus), Sierra gooseberry (Ribes roezlii), and hoary 

coffeeberry (Rhamnus tomentella cuspidata) (Sweitzer et al. 2015). The topography 

ranged from large, open, flat meadows to steep, rugged canyons with a mixture of dense 

brush and granite. 

 
METHODS 

 

Mountain Lion Capture 

 Experienced researchers approved by California Department of Fish and Wildlife 

(CDFW) using an approved capture and handling protocol, captured mountain lions. 

Initial capture efforts of lions in the Kings River Study Area (KRSA) demonstrated 

higher success capturing lions with box traps (Shuler 1992) by using roadkill deer 

carcasses wired to a tree monitored with motion detection cameras, as opposed to using a 

houndsman to detect and tree lions, although we implemented both methods. We checked 

carcasses with cameras every morning for lion activity. If a lion had visited the carcass, 

we then wired the carcass inside a 2 x 3 m cage trap equipped with a trap transmitter that 



16 
 

 

would emit a signal when the trap door closed. Once a trap was set, a technician sat 

within range of the trap transmitter and monitored it until the lion returned. Captured 

lions were anesthetized with a mixture of tileamine hydrochloride and zolazepam 

hydrochloride, then affixed with a GPS collar (SirTrack Iridium, Havelock North, New 

Zealand), measured, weighed, sexed, aged and biological samples and measurements 

collected. We programmed the GPS-collars to collect a location every 2 hours. Collars 

had a built-in drop-off mechanism powered by a separate battery and were set to drop-off 

after 18 months. 

 
GPS Locations and Cluster Site Investigation 

 The GPS-collars transmitted locations to the satellite whenever the collar had 

clear satellite coverage. We then downloaded our locations from the SirTrack website 

and we converted them into the Universal Transverse Mercator (UTM) grid system using 

ArcGIS 10.2. Not all locations transmitted successfully likely due to the rugged terrain 

over much of the study area. We did not use any cluster locations within 48 hours of a 

capture event.  

Beier et al. (1995) found mountain lions typically fed on large mammal carcasses 

for several days and kills are often made <1 hour of arriving at a kill site. Therefore, with 

GPS collars collecting locations every 2 hours, we were able to determine when a lion 

localized at a site. We followed Anderson and Lindzey’s (2003) protocol to define a 

cluster in which they designated a cluster as ≥2 locations <200-m apart during a 

consecutive 16-hour period. However, due to our low incidence of kills at clusters 

containing only 2-3 locations (7.7%), we redefined a cluster as having ≥4 locations 
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occurring sequentially within the centroid of a 100-m buffer (Blake and Gese 2016). 

Since we were still interested in locating remains of smaller prey items such as neonate 

mule deer during summer months and mesocarnivores, we did continue to search as many 

≥2 and ≥3 point clusters as logistically possible. We visited these clusters and, if we did 

not find a kill immediately, searched a circle at least 100 m in diameter centered on the 

mean UTMs of the GPS locations of the cluster. We searched in concentric circles 

approximately 5–10 m apart depending upon visibility, with the goal of visually 

examining all of the ground within the search area. We note that on several occasions, 

dogs assisted in the cluster searches, which appeared to increase our ability to detect prey 

remains, or lion scat at kill sites. When we found prey remains, we recorded species, age, 

and sex. When sex or species could not be determined by physical characteristics, bones 

or hair samples were collected and sent to the National Wildlife Research Center (Fort 

Collins, CO) for analysis of DNA using a polymerase chain reaction (Yamamoto et al. 

2002). 

Based on age, we divided mule deer into 3 different age classes: <5-months-old, 

5-10-months-old, and >10-months-old. We also divided prey items into 3 size classes: 

small prey (≤ 20 kg) which included mesocarnivores (i.e., gray fox, ringtail, coyote) and 

squirrels and mule deer fawns (0-5 months old); medium prey (20 – 40 kg) including 5 to 

10-month-old mule deer, and large prey (≥40 kg) which included mule deer >10-months-

old and one black bear. If black bear sign of similar age to the cluster was detected (i.e., 

bear scat), we classified that cluster as possibly kleptoparasitized by a black bear (Blake 

and Gese 2016). 
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Composition of Mountain Lion Kills 

 We determined prey composition of lion kills as the proportion of total prey 

selected with regard to season (winter versus summer months) and sex (Blake and Gese 

2016). We also categorized selection of mule deer by lions with respect to deer sex and 

age classes with regard to lion status (i.e., adult female with kittens, adult female, and 

adult male). 

 
Kill Rate Interval 

 For kill rate analysis, we designated a kill interval as the time between the first 

GPS location at a confirmed kill site cluster and the first GPS location at the next cluster 

containing prey remains. We used kill intervals where GPS-collars collected locations at 

a ≥45% acquisition rate of nocturnal locations (Knopff et al. 2009). If, for logistical 

reasons, we were unable to visit a cluster that was ≥4 points, we eliminated that kill 

interval from our analysis; there were instances where we were unable to visit a cluster 

due to treacherous terrain, private property, or illegal marijuana growers. Additionally, 

during the winter we delayed visiting some possible kill clusters to the spring due to 

heavy snowfall obscuring any prey remains. This may have reduced our ability of finding 

remains due to the number of scavengers in the study area. We did not include instances 

where lions scavenged on our bait carcasses. We used a Cox Proportional Hazard 

Analysis (CPH) to determine if there were any significant differences in average kill rates 

among individual lions with regard to sex and season and used the cox.zph tool in R 

Studio to test the data for proportionality (all P-values were >0.05). Merrill et al. 2010 

used the CPH model as measure of the relative assessment of covariate effects on the kill 
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event with respect to time. For example, they found that more the likelihood of making 

the next kill increased as the amount of time increased after the previous kill. Whittington 

et al. (2011) and Decesare et al. (2014) also used the CPH model as a ‘time to event’ 

analysis as opposed to a survival analysis which CPH is most often applied. As we were 

also interested in the effects of kleptoparasitism by black bears at lion kills, we again 

used CPH to test for significant differences in the inter-kill interval at kill sites with and 

without signs of kleptoparasitism by black bears. 

 
Time Spent at the Carcass 

 To determine the amount of time a lion spent at a kill site (i.e., handling time) “we 

subtracted the time of the last nocturnal location at a kill cluster from the first nocturnal 

location at the same cluster” (Blake and Gese 2016). We removed clusters when another 

lion was also at the cluster either scavenging, feeding simultaneously, or if it was a 

mating event as well as a kill. We used Cox Proportional Hazard (CPH) analysis to 

examine the influence of lion status, season, prey size, and signs of kleptoparasitism by 

black bears on the time a lion spent at the carcass. The CPH model incorporates time as a 

factor and allows us to assess covariate effects on the hazard (kill event) while assuming 

that the hazard ratio (time to event or kill in our case) is constant across all individuals 

(Merrill et al. 2010).  

 
RESULTS 

 We captured and monitored 4 adult female mountain lions (≥2 years of age) and 1 

adult male. We also radio-collared a sub-adult female, however her GPS-collar never 
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acquired locations and we never detected her in the study area after she left the bait 

station where she was captured. We also collared one of our adult female’s ~8-month-old 

cub, but he slipped his collar after only one week. We monitored the GPS-collared lions 

for 130 to 731 days (̅247.5 ± 331.7 = ݔ SD) for a total of 1,659 lion-days. Our capture 

effort totaled 147 days. The majority of effort involved monitoring bait stations daily 

during December-early April while black bears were hibernating. Of these 147 days, 

houndsmen assisted us in attempting to locate and capture lions on 35 days. Due to the 

rough terrain and extremely dense shrub cover, bait stations combined with cage traps 

proved most effective. We focused our capture efforts to a 185-km² area overlapping the 

KRFP study area, which covered 14% of the eventual study area as determined by the 

home ranges of the 5 GPS-collared lions. We note that based on photos from the remote 

cameras, we did not capture all adult, resident individuals in the study area. 

We acquired between 1,259 and 6,729 locations per lion (̅2,260.6 ± 3,136.8 = ݔ 

SD) for a total of 15,684 locations. The overall GPS-collar acquisition rate was 73.9% 

and the individual acquisition rate ranged from 63.9% to 80.0% (Table 2.1). We 

identified a total of 665 clusters containing ≥4 locations of which we visited 631 (95%) 

and documented 250 kills. We found mule deer remains at 202 (81%) of the 250 kill sites 

with 56 (22%) kill sites indicating signs of kleptoparasitism by black bears. We did not 

consider kleptoparasitism at sites containing a deer fawn (≤5-months-old) as Allen et al. 

(2014) reported kleptoparasitism by black bears only affected handling times of lions 

when deer were ≥1 year old. We only found signs of bear scavenging at kills containing 

deer remains. We also identified 457 clusters consisting of 2-3 locations; we visited and 
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searched 362 (79.4%) clusters, but found prey remains at only 28 (7.7%) of the 362 

clusters. 

 
Composition of Lion Kills 

 Of the 250 clusters where we found prey remains (this includes the 2-3 point 

locations with remains), mule deer made up the majority of prey killed (81%) (Table 2.2). 

Gray foxes were the only other species comprising a large portion of lion kills (13.2%). 

Other prey species we documented were coyotes, one black bear estimated at 1.5 years 

old and killed by the adult male, ringtail (Bassariscus astutus), gray squirrels (Sciurus 

griseus), and Douglas squirrels (Tamiasciurus douglasii) (Table 2.2). Male lions 

generally killed more large prey than females (Table 2.3). We documented radio-collared 

fishers being killed by lions in our study area (Sweitzer et al. 2015), which prompted this 

study; however, we did not detect any fisher remains at any of the lion kill sites 

investigated. While the 2-hour acquisition interval for the GPS-collars could be 

considered biased against finding remains of smaller prey, such as fishers, we did find 

many gray fox remains at lion kill sites which are similar in body size (fishers: 2 to 6 kg, 

gray foxes: 3.5 to 7 kg). Again, using GPS cluster-site investigation allows for inter-kill 

interval and prey handling time analysis; however, we cannot say whether other smaller 

animals make up a larger percentage of lion diets without an intensive scat collection 

analysis.  

 We attempted to search clusters soon after downloading the data, but if we were 

unable to determine sex from the remains, we collected hair or bone samples and tested 

for sex identification via genetic methods. Of 200 samples, only 75 samples amplified 
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providing sex ID; low success was likely due to DNA degradation. Sex and age of mule 

deer killed by lions varied among female and male lions (Table 2.4). Among known 

female mule deer (n = 26) killed by adult female lions, 10 (38.5%) were fawns (<5-

months-old), none were between 5-10-months-old, 8 (30.8%) were >10 months old, and 

8 (30.8%) were of unknown age. Of 28 known male mule deer, female lions killed 12 

(42.9%) male deer <5-months-old, 2 (7.1%) between 5-10-months-old, 9 (32.1%) >10-

months-old, and 5 (17.6%) of unknown age. Again, since we only radio-collared one 

adult male during the study, he accounted for killing no female mule deer between 0-10-

months-old, 1 doe >10-months-old, and 1 doe of unknown age. Of the three male mule 

deer he killed, 1 was 0-5-months-old, none were between 5-10-months-old, and 2 were 

>10-months-old. Of the 8 does and 9 bucks >10-months-old killed by female lions, 6 

does and 6 bucks were ≥4-years-old, respectively. Of the 3 deer >10-months-old that the 

male lion killed, all were ≥4-years-old. 

 
Mountain Lion Kill Rates 

Upon removing lion kill sites where we were unable to determine age of the deer 

and, in turn, unable to assign to a size class, we retained 188 inter-kill intervals for 

analysis (Table 2.5). The inter-kill interval among all lion statuses (adult male, adult 

female, adult female with kitten) for all prey species averaged 1 kill every 5.52 ± 0.30 

days (SE) (Table 2.6). As expected, kill intervals were shorter and there was a difference 

in kill intervals following predation on coyotes (P = 0.013) and gray foxes (P = 0.02) in 

contrast to adult deer (>10-months-old). We did not find any evidence that 

kleptoparasitism by black bears affected kill intervals. The inter-kill interval when a kill 
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site cluster showed evidence of bear scavenging averaged 5.33 ± 0.28 days, while 

intervals among kill sites with no evidence of bear scavenging averaged 5.85 ± 0.40 days. 

At fawn kills, we found the adult male exhibited shorter inter-kill intervals (2.06 ± 0.38 

days; P <0.001) when compared to adult females without kittens (6.45 ± 1.16 days). 

When killing adult deer in the summer, the one male exhibited longer kill intervals (5.12 

± 0.81 days; P = 0.043) compared to adult females without kittens (4.68 ± 0.51 days). 

Lastly, we found no significant difference in kill rates on fawns or adult deer between 

adult females with or without kittens. 

  
Time Spent at the Carcass 

We analyzed a total of 223 lion kills in which we had a measure of time the lion 

spent at the carcass (Table 2.7). We found a significant difference (P < 0.0001) among 

seasons and lion statuses for the amount of time a lion spent at a carcass. Relative to 

solitary adult females, there were significant differences in overall handling times for 

both adult males (P <0.001) and adult females with kittens (P = 0.0005). We found adult 

females spent more time (41.09 ± 4.21 hours) at kills than both adult males (28.53 ± 3.81 

hours) and adult females with kittens (24.21 ± 2.62 hours). As expected, adult females 

(15.61 ± 3.54 hours), adult males (11.17 ± 1.77 hours), and adult females with kittens 

(10.78 ± 1.46 hours) all spent less time at small and medium-sized prey items as 

compared to large prey items. We found adult males displayed shorter handling times of 

adult deer and juvenile deer during summer months relative to adult females killing adult 

deer and juvenile deer in the summer (Table 2.9). Adult females mean handling time at 

kills containing large prey items (adult deer >10-months-old) during summer months was 
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54.94 ± 8.19 hours and 14.45 ± 2.63 hours at small and medium prey items. The adult 

male and adult females with kittens mean handling times of large prey (adult deer >10-

months-old and 1 black bear) during the summer were 32.80 ± 3.75 hours and 31.57 ± 

3.55 hours, respectively (all P-values < 0.05). Handling times of the adult male for small 

and medium prey during the summer was 11.17 ± 1.77 hours, and adult females with 

kittens had handling times averaging 10.78 ± 1.46 hours (Table 2.10). We found 

kleptoparasitism by black bears did not affect handling time (P = 0.399) even though 

there was a weak correlation demonstrating shorter handling times (r = -0.158) when 

bears scavenged the carcass (Table 2.8).   

 
DISCUSSION 

 

Studies show that mountain lions may prey on a variety of animals including 

other predators, such as coyotes and bobcats. However, ungulates comprise the majority 

of prey biomass they consume (Hornocker 1970, Atwood et al. 2007, Cooley et al. 2008, 

Knopff et al. 2010) and it is unlikely that a mountain lion population would be 

sustainable in the absence of ungulates (CMGWG 2005). Mountain lions on our study 

area showed they mainly killed mule deer (81% of all kills) consistent with other studies 

(Ackerman et al. 1984, Anderson and Lindzey 2003, Blake and Gese 2016), as well as 

some predation on mesocarnivores (17% of all kills). While we did not find evidence at 

any kill site of a radio-collared lion scavenging another lion kill, remote cameras did 

photograph a non-collared lion scavenging on a kill made by a radio-collared lion. 

Oftentimes, we only found deer hair, legs, or bone fragments at a kill site, therefore 

determining whether the event was a kill as opposed to scavenging was not always 
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definitive. The literature also shows that lions will sometimes usurp other lion kills 

(Koehler and Hornocker 1991). 

Combining all lion social classes, deer age classes, and seasons, we found an 

overall predation rate of one deer killed every 7.26 days per lion or lion family group. 

Inter-kill intervals were approximately 5.5 days for adult females with kittens and around 

5.3 days for solitary adult females. The mean inter-kill interval for adult females killing 

all prey species during the summer was just under 5 days compared to >6 days during 

winter months. These inter-kill intervals were slightly lower than other studies reporting 

kill intervals ranging from 5.4 – 15.2 days (Anderson and Lindzey 2003, Knopff et al. 

2010, Ruth et al. 2010, Blake and Gese 2016). Our results were consistent with the 

differential prey use hypothesis in which the sexual dimorphism of cougars leads to 

females usually preying on smaller prey than males presumably because males are more 

capable of subduing larger prey (Ross and Jalkotzy 1996, Anderson and Lindzey 2003, 

White et al. 2011). The male cougar on our study exhibited longer inter-kill intervals after 

killing an adult deer and shorter inter-kill intervals when killing fawns as compared to 

adult female lions. We found no difference in the inter-kill interval between adult females 

with or without kittens after killing an adult deer, which was not consistent with other 

studies that generally found the energetic requirements of family groups were higher 

(Laundre 2005, Blake and Gese 2016). However, we could not definitively determine 

how long kittens stayed with their mother or how long they may have survived. 

We found 17% of mountain lion kills in our study area consisted of other smaller 

predators, the majority of which were gray foxes (n = 33). One adult female lion, 
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estimated to be >8 years old, accounted for 21 of the 33 gray foxes killed. During the last 

48 days her GPS-collar was active, this older female lion switched to killing 

mesocarnivores, killing 9 gray foxes, 1 coyote, and only 1 deer during this 48-day period, 

suggesting her health may have been compromised. Blake and Gese (2016) noted an 

adult male mountain lion prey-switching from ungulates to smaller prey items such as 

beavers (Castor canadensis) due to eventually losing a front paw after being caught in a 

foot-hold trap. 

As expected, the one radio-collared adult male in our study spent less time at 

carcasses compared to solitary adult females (Mattson et al. 2007, Blake and Gese 2016). 

Due to energetic requirements of adult females with kittens, the time spent at a carcass 

for a family group was much shorter compared to solitary adult females during summer 

months. We did not have data for females with kittens during winter months due to either 

radio-collar failure or kitten dispersal. While not tested statistically, we did find an 

increase in mean handling times for solitary adult females during winter. Shorter 

handling times in the summer was consistent with Knopff et al. (2010) suggestion that 

spoilage and scavenging played a role in decreased prey handling times for lions during 

the summer. As expected, we also found shorter handling times for smaller prey items, 

which was consistent with other studies documenting shorter handling times and 

increased kill rates when lions depredate small prey as compared to large prey (e.g., 

Blake and Gese 2016). 

We found that kleptoparasitism by black bears did not significantly affect kill 

rates and handling times of mountain lions on our study area. Blake and Gese (2016) 
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similarly found no influence of kleptoparasitism of black bears on kill rates of lions in 

Montana. In contrast, Allen et al. (2014) found a significant relationship between lion 

handling times and black bear detection rates of lion kills. While we found seasonal 

variation in kill rates (higher rates during summer months), we did not detect significant 

effects of lion kill detection by black bears even though we did find that black bears 

detected many lion kills (n = 61). Without an estimate of lion density and deer 

abundance, we are unable to determine why bear kleptoparasitism did not affect lion kill 

rates on our study area; perhaps deer density is low causing mountain lions to attempt to 

continue feeding even after usurpation by black bears. 

The original impetus for the study was the finding that mountain lions were 

killing radio-collared fishers (Wengert et al. 2014, Gabriel et al. 2015). Overall, 23 radio-

collared fishers were the result of mountain lion predation; 3 more were listed as felid 

predation (could not distinguish between mountain lion and bobcat); and still many others 

are awaiting necropsy. During the 2-year predation study with 5 GPS-collared lions, we 

did not find any fisher remains at any of the 250 kill sites. There are many possible 

explanations for not finding any fisher as prey. The 2-hour interval between acquisition 

times for the GPS locations may have been too long to have fisher remains persist in the 

environment, or the remains were consumed within a 2-hour period. However, we did 

find the remains of 33 gray foxes at lion kill sites. Fishers (2 to 6 kg body mass) and gray 

foxes (3 to 7 kg body mass) are similar in body size. Therefore, it may be more plausible 

that while lion predation on fishers could have a large effect on the growth rate of a small 

population of fishers (Sweitzer et al. 2016), it may in fact be a very rare event in the life 
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of a mountain lion. Alternatively, the previous predation events may have been due to 

prey specialization by a certain lion (Knopff et al. 2010). During the 2-year lion study, 

only 1 radio-collared fisher was confirmed to have been depredated by a mountain lion 

(R. Green, unpublished data). Studies have found individual lions specializing on certain 

prey species (Ross et al. 1997, Logan and Sweanor 2001, Elbroch and Wittmer 2013, 

Blake and Gese 2016). 

 
MANAGEMENT IMPLICATIONS 

 

Studies show that mountain lion prey on a variety of animals including other 

predators, but mainly survive killing native ungulates. Our prey composition of lion kills 

was consistent with these other studies. In the absence of knowledge regarding the size 

and demography of the North Kings Migratory Deer Herd, we are unable to understand 

the effects of lion predation on this deer herd. However, as this is a single ungulate 

system and our results show that lions sustain themselves on mule deer (81% of kills 

were deer), future research examining vital rates and cause specific mortality within this 

mule deer population would help managers better understand this predator-prey system. 

We found the majority of mule deer killed by lions occurred when deer were either <5-

months-old or >10-months-old, with few kills occurring when deer were 5-10-months-

old. Whether this reflects actual herd composition is unknown. Our data also showed 27 

of the 33 instances of gray fox predation by mountain lions occurring during the winter. 

Perhaps if recruitment of mule deer fawns is low in this system, lions are switching to 

other sources of prey, such as gray foxes and other mesocarnivores, to sustain themselves 

during the winter. Lastly, we note that while capture, deployment of radio-collars, and 
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GPS cluster searches can be effective in documenting predation patterns of mountain 

lions, there are limitations. The GPS-collars we affixed to lions were $4,000 per collar 

and battery life was at times questionable, which affected sample sizes of lions and kill 

sites clusters. Augmenting our searches of potential kill sites with dogs seemed, at least 

anecdotally, to increase our ability to find prey remains. Future predation studies may 

find detection dogs a useful tool for finding prey remains more efficiently. 
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TABLES AND FIGURES 

Table 2.1. Social class, capture date, monitoring duration, number of GPS 
locations and acquisition rates, number of kills and kill rates of GPS-collared 
mountain lions, Sierra National Forest, California, 2014-2016.  
 

 
 

 

  

Cougar Social Capture Days Number of Acquisition Number of Number of kill Kill Rates 

ID Class Date Monitored GPS Locations Rate Kills Intervals Used days ± SD

PF01 AFK/AF 4/16/2014 731 6729 69.85% 105 91 6.22 (±4.48)

PF02 AF 4/18/2014 130 1259 77.28% 8 3 8.03 (±5.17)

PF04 AFK/AF 4/6/2015 396 3915 78.62% 75 66 4.83 (±3.61)

PF05 AF 3/23/2016 143 1504 80.00% 20 12 5.21 (±5.44)

PM03 AM 5/13/2015 258 2277 64.00% 42 30 4.68 (±2.74)
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Table 2.2. Number of prey items killed (% of kills) by individual mountain lions in the 
Sierra National Forest, California, 2014-2016. 

  

 
   

Prey Species PF01 PF02 PF04 PF05 PM03 Total

Mule deer >10-months-old 47 (44.8) 4 (50.0) 35 (46.7) 8 (40.0) 23 (54.8) 117 (47.0)
Mule deer 5-10-months-old 3 (3.8) 0 5 (6.7) 0 0 8 (3.2)
Mule deer 0-5-months-old 27 (25.7) 2 (25.0) 13 (17.3) 7 (35.0) 8 (19.0) 57 (22.9)
Deer of unknown age 5 (4.8) 2 (25.0) 8 (10.7) 2 (10.0) 3 (7.1) 20 (8.0)
Grey fox 21 (20.0) 0 9 (12.0) 1 (5.0) 2 (4.8) 33 (13.2)
Coyote 2 (1.9) 0 3 (4.0) 0 3 (7.1) 8 (3.2)
Black bear 0 0 0 0 1 (2.4) 1 (0.4)
Ringtail 0 0 0 1 (5.0) 0 1 (0.4)
Gray squirrel 0 0 2 (2.7) 1 (5.0) 0 3 (1.2)
Douglass squirrel 0 0 0 0 2 (4.8) 2 (0.8)

Totals 105 8 75 20 42 250
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Table 2.3. Size class of prey killed by female and male mountain lions in the Sierra 
National Forest, California, 2014-2016. We did not include deer when we were unable to 
obtain an estimate of age (n = 21). 

   
            

 
Female mountain 

lions 
Male mountain 

lions 
Prey size class n %   n % 

  
Large 102 53.7 24 61.5 
Medium/small 88 46.3 15 38.6 
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Table 2.4. Sex and age class of mule deer killed by female and male mountain lions, 
Sierra National Forest, California, 2014-2016. 
 

  
        Female lions          Male lions 
Sex-age class of mule 
deer n %   n % 
Female   
     <5-months-old 10 38.5 0 0.0 
     5-10-months-old 0 0.0 0 0.0 
     >10-months-old 8 30.8 1 50.0 
     Unknown age 8 30.8 1 50.0 
Total 26 100.1 2 100 

  
Male   
     <5-months-old 12 42.9 1 0.3 
     5-10-months-old 2 7.1 0 0.0 
     >10-months-old 9 32.1 2 0.7 
     Unknown age 5 17.9 0 0.0 
Total 28 100.0 3 1.0 
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Table 2.5. Number of kill intervals used relative to lion status and season, Sierra National 
Forest, California, 2014-2016. 
 
        

 
Lion status Summer Winter Total 

 
Adult female 52 40 92 
Adult female with kittens 63 0 63 
Adult male 29 4 33 

 
Total 144 44 188 
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Table 2.6. Mean inter-kill intervals (days ± SD) for mountain lions among seasons and 
status, Sierra National Forest, California, 2014-2016.  
 

 

   

Adult females 
with kittens

Summer Winter All seasons Summer Winter All seasons Summer

Mean ± SD 4.68 ± 3.64 6.09 ± 4.83 5.33 ± 4.27 5.12 ± 4.33 5.95 ± 4.91 5.25 ± 4.35 5.77 ± 3.78
# of kill intervals 52 45 97 29 5 34 69

Adult females without kittens Adult males
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Table 2.7. Number of handling time intervals used for 3 classes of mountain lion social 
status during summer and winter, Sierra National Forest, California, 2014-2016. 
 
         
  
Lion status Summer Winter Total  
  
Adult female without kittens 63 52 115  
Adult female with kitten 69 1 70  
Adult male 32 6 38  
  
Total 164 59 223  
         
  

 

  



43 
 

 

Table 2.8. Handling time differences and significance relative to adult females killing 
adult and juvenile deer during summer months, Sierra National Forest, California, 2014-
2016.  
 
          

 coef exp(coef)  Pr (> |z| )
Lion status and status of deer killed         

  
Adult female with kittens -0.244 0.783  0.333
Adult male -0.318 0.728  0.043
Juvenile deer 0.006 1.006  0.934
Adult female with kittens and juvenile 
deer 0.066 1.068  0.824
Adult male and juvenile deer 0.063 1.877  <0.001
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Table 2.9. Average time spent at a carcass (hours ± SD) by mountains lions relative to 
prey, season, and kleptoparasitism by black bears, Sierra National Forest, California, 
2014-2016. 
 

 PF01 PF02 PF04 PF05 PM03 
            
   
Grey fox, coyote, deer  
<6-months-old 

13.4 ± 
12.7 

11.0 ± 
4.2 12.8 ± 9.2 7.0 ± 3.7 

16.8 ± 
14.7 

Deer >6 months old 
(summer) 

42.0 ± 
36.6 

57.0 ± 
18.1 

35.31 ± 
19.3 

38.0 ± 
17.9 

32.2 ± 
16.1 

Deer >6 months old 
(winter) 

102.9 ± 
62.3 N/A 

54.63 ± 
41.50 N/A 

67.6 ± 
44.5 

   

Bear scavenged 
29.4 ± 
20.5 

37.3 ± 
45.7 

36.88 ± 
27.0 

33.5 ± 
14.3 

42.4 ± 
14.4 

Not bear scavenged 
75.3 ± 
58.9 

49.9 ± 
24.6 

50.05 ± 
37.0 

42.5 ± 
22.3 

36.6 ± 
32.0 
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Table 2.10. Mean handling time (hours ± SD) relative to mountain lion status and prey 
size during the summer and winter, Sierra National Forest, California, 2014-2016. 
 

 

  

Prey size
     Lion status N Mean ± SD N Mean ± SD

Small and medium prey
     Adult female 31 14.5 ± 14.7 28 16.8 ± 23.5
     Adult female with kittens 27 10.8 ± 7.6 0 N/A
     Adult male 12 11.2 ± 6.1 2 18.0

Large prey 
     Adult female 32 54.9 ± 46.4 18 96.4 ± 49.3
     Adult female with kittens 42 31.6 ± 23.0 0 N/A
     Adult male 20 32.8 ± 16.8 3 32.7 ± 25.4

Summer Winter
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Figure 2.1. The 338-km² Kings River Fisher Project study area and the 1336-km² 
mountain lion study area encompassing all home ranges of radio-collared mountain lions, 
Sierra National Forest, California, 2014-2016. 
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CHAPTER 3 

RESOURCE SELECTION BY MOUNTAIN LIONS IN THE SIERRA NATIONAL  
 

FOREST, CALIFORNIA: INFLUENCE OF BEHAVIORAL STATE AND SEASON 
 

ABSTRACT 

 Decreasing fisher (Pekania pennanti) populations in the southern Sierra Nevada 

in California have been of increasing concern to land managers. In the Sierra National 

Forest of California, research has shown mountain lions (Puma concolor) to be a main 

predator of fishers. In order to document landscape characteristics selected by mountain 

lions, we affixed GPS radio-collars to 5 adult, resident lions between April 2014 - August 

2016. We examined resource selection at two behavioral states: locations where predation 

occurred (killing) versus non-cluster locations (moving). We examined resource selection 

using a broad-scale analysis covering the entire study area, and a subset of the study area 

where LiDAR data had been collected allowing for a more detailed map of roads and skid 

trails within the area. In both the full and LiDAR study areas, we buffered each used 

location (moving, killing) with a 50-m buffer which was based on >95% of carcass drags 

documented being ≤ 50 m. We generated 25 available points for every kill and moving 

location with the available location constrained to the mean distances between locations; 

we similarly buffered all available locations. We documented prey remains at 250 kill 

sites within the full study area, and a subset of 104 kill sites within the LiDAR study area. 

We developed resource selection functions (RSFs) for summer and winter seasons for the 

kill sites and moving locations in both study areas for a total of 8 RSF models. Our top 
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models during summer and winter within the full study area for moving locations showed 

selection for ruggedness and slope variables in a quadratic form, with a threshold at 

which lions began to select against these variables. In addition, top models included 

selection for higher elevation in comparison to available points; and selection for east 

aspects. Our top predation model for summer months within the full study area showed 

selection against steeper slopes. During winter, mountain lions selected for close 

proximity to roads. With respect to the moving locations within the LiDAR study area, 

lions showed selection for close proximity to streams, selection for north and south 

aspects, and selection against higher elevations. Our top model for moving locations 

during winter months within the LiDAR study area showed selection for north, south, and 

west aspects and selection for lower elevations. With respect to moving locations during 

both winter and summer months within the LiDAR study area, the quadratic slope and 

ruggedness variables were both in the top model which was the same top model for 

moving locations within the full study area. However, due to terrain variable data 

limitations, the regression plots displayed a U-shaped parabola suggesting that lions 

selected for flatter slopes and vertical slopes which does not make biological sense. After 

plotting this data, we found a limitation within the dataset due to the LiDAR data being 

collected in flatter regions of the study area slated for forest treatments. The top predation 

models within the LiDAR study area showed strong selection for close proximity to roads 

and skid trails, as well as, selection for close proximity to streams during both winter and 

summer. Lions selected against higher elevations during winter months, while selecting 

for higher elevations during the summer. To reduce predation pressure upon fishers by 
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mountains lions, we recommend removing linear features post-timber harvest by 

replanting them to alleviate forest fragmentation, as well as, mapping all roads and skid 

trails. 

 
INTRODUCTION 

 Apart from humans, mountain lions (Puma concolor) display one of the broadest 

geographic distributions of terrestrial mammals, utilize areas ranging from sea level to 

4,500 m above sea level (Logan and Sweanor 2001, CMGWG 2005), and occupy a range 

of vegetation types from coniferous and deciduous forests to mountains and desert 

canyons (Hansen 1992, CMGWG 2005). However, while mountain lions are considered 

to be forest generalists and populations have demonstrated an ability to persist in a wide 

range of terrain types and climes, ever-expanding human populations have led to 

conversion of land to agriculture, rural residential development, and habitat 

fragmentation. These landscape changes have in turn, decreased mountain lion habitat 

quantity, as well as winter range for ungulates (Mansfield 1986, Beier 1995, UDWR 

1999, Logan and Sweanor 2001, Maehr and Cox 1995, Pearlstine et al. 1995, Pierce and 

Bleich 2003, CMGWG 2005, Reith 2010). Moreover, these anthropogenic landscape 

alterations and fragmentation have reduced overall mountain lion geographic range by at 

least 50% in the western hemisphere (Young and Goldman 1946, Nowak 1974, Logan 

and Sweanor 2000, Reith 2010). Due to ongoing increases in human populations, 

activities, and the potential effects on mountain lions, it is essential to understand 
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important habitat characteristics to manage and conserve the species (CMGWG 2005, 

Reith 2010). 

Along with a reduction in mountain lion distribution in the western hemisphere, 

other carnivores such as fishers (Pekania pennanti) in California, Oregon, and 

Washington, which are more sensitive to habitat disturbance, have seen declines in their 

numbers as well (Lewis et al. 2012, Sweitzer et al. 2015, 2016). Fishers and mountain 

lions are both native carnivores to the Sierra National Forest in California and the fisher 

is often subject to intraguild predation by mountain lions (C. Thompson, personal 

communication). Currently, why lions exhibit intraguild predation upon fishers is poorly 

understood, this level of predation could have population-level effects, particularly on 

this sensitive western population of fishers (Wengert et al. 2014). As with lion predation 

on fishers in the Sierra National Forest, other studies in North America have also shown 

lions to kill a variety of prey species. While mountain lion diets can consist of a variety of 

small mammals and birds, as well as, livestock, mesocarnivores, and domestic pets 

(Villepique et al. 2011), the majority of their diet is native ungulates (CMGWG 2005). 

Additionally, research has shown that individual mountain lions can specialize on certain 

prey (Elbroch and Wittmer 2013, Allen et al. 2015) which could have significant 

implications on a rare species (Wittmer et al. 2014, Allen et al. 2015). Furthermore, the 

portion of the Sierra National Forest in California encompassing our study area is a 

single-ungulate system made up of the North Kings Migratory Deer Herd (Odocoileus 

hemionus californicus) herd (Evans et al. 1976, Neal et al. 1987). Previous research has 

shown mountain lions prey switched in systems consisting of multiple ungulate species 
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when the availability of one ungulate species increased (CMGWG 2005). However, in an 

ungulate system containing only mule deer, it is possible that predation upon fishers and 

other mesocarnivores and small mammals could increase due to seasonal changes in the 

distribution of mule deer. 

Zielinski et al. (2005) suggested that forest specialists (i.e. fishers and American 

martens, Martes americana) distributions have changed more than forest generalists, such 

as mountain lions, due to the combination of loss of mature forest habitat, latent effects of 

commercial trapping, and increased residential development. Laundre and Hernandez 

(2003) found 72% of lion kills in their study occurred along edges compared to open 

patches or in forested areas. This combination of edge-utilization by mountain lions in 

contrast to contiguous, old-growth forest-utilization by fishers suggest that anthropogenic 

landscape activities might not only be directly affecting fisher habitat, but indirectly 

benefitting mountain lion hunting success through fragmentation which creates travel 

corridors and edge habitat/ambush habitat for mountain lions, combined with early 

successional browse for mule deer. Moreover, fishers are a cryptic species (Proulx and 

Aubry 2014) and the addition of extensive road and skid trail networks that fragment 

contiguous forest likely create ‘gauntlet’ areas for fishers due to patches of forest that 

have been opened by logging or other silvicultural practices.  

Land managers have an interest in conserving existing fisher habitat as well as, 

learning what anthropogenic activities and treatments may have negative ramifications 

for fishers. The combination of the ongoing fisher research by KRFP and our overlapping 

research into resource selection and landscape use by mountain lions could provide 
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managers with the data they need to better understand and conserve fisher populations in 

the region. Thus, the first objective of our study was to examine resource selection of 

mountain lions in the Sierra National Forest. Due to shifts in elevation of their main prey, 

mule deer, during summer and winter, we determined seasonal resource selection. 

Because the behavioral state of the animal can also influence how mountain lions use the 

landscape, we examined resource selection for two behavioral states: killing versus 

moving. For winter and summer, we examined the influence of landscape variables 

including distance to streams, distance to mapped roads, ruggedness, slope, aspect, 

elevation, and majority vegetation type using the resource selection function (Manly et al. 

2002) framework.  

Our second objective was to examine a subset of the study area using LiDAR 

(Light Detection and Ranging) technology, which allowed mapping of roads and skid 

trails that conventional road mapping layers did not record. We used a subset of the data 

since the LiDAR coverage encompassed <50% of where prey remains were found in the 

study area. We ran an identical RSF as mentioned above, but in this analysis, we included 

distance to digitized roads and skid trails to determine if low use roads and skid trails 

may not only facilitate travel, but that it may also provide early successional browse and 

travel routes for mule deer, as well as, stalking and ambush cover for mountain lions. We 

hypothesized vegetation type would not be a significant influence on resource selection 

(Busch 1996, Woodruff 2006), but that mountain lions would select for dense vegetation 

cover. In addition, we expected lions to select for close proximity to low-use roads and 

skid trails, rugged terrain year-round, lower elevations during the winter to coincide with 
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a seasonally migratory deer herd, and close proximity to streams; not just for water, but 

for concealment due to topographic features, as well as, riparian browse and cover for 

mule deer. 

 
STUDY AREA 

 We focused our study on the current Kings River Fisher Project (KRFP) study 

area in the Sierra National Forest near Shaver Lake, California (Fig. 3.1). Based on 

locations from the radio-collared mountain lions, the minimum elevation of the study site 

was 289 m and the maximum elevation was 3,237 m, which the lions used during 

summer months. The total study area encompassed 1,336 km². The study site climate was 

Mediterranean with cool, wet winters and warm, dry summers (Sweitzer et al. 2015). 

Most precipitation occurred between late November and early March including rain and 

snow and, on average, persisted with snow accumulation into April, but can last into mid-

May (Sweitzer et al. 2015). The study area was a mix of public and private lands and 

included public recreation, hunting, cattle grazing, sightseeing, prescription forest 

treatments, and timber harvest.  

The primary tree species were incense cedar (Calocedrus decurrens), white fir 

(Abies concolor), ponderosa pine (Pinus ponderosa), sugar pine (Pinus lambertiana), 

California black oak (Quercus kelloggii), mountain dogwood (Cornus nuttallii), and 

white alder (Alnus rhombifolia). Giant sequoia (Sequoiadendron giganteum) was present 

but restricted to remnant populations in a few areas. Shrubs in the area included willow 

(Salix spp.), whiteleaf manzanita (Arctostaphylos viscida), greenleaf manzanita 
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Arctostaphylos patula), mountain misery (Chamaebatia foliolosa), blue elderberry 

(Sambucus mexicana), bush chinquapin (Chrysolepis sempervirens), mountain 

whitethorn (Ceanothus cordulatus), Sierra gooseberry (Ribes roezlii), and hoary 

coffeeberry (Rhamnus tomentella cuspidata) (Sweitzer et al. 2015). The topography 

ranged from large, open, flat meadows to steep, rugged canyons with a mixture of dense 

brush and granite. 

 
METHODS 

Capture and GPS Locations 

 Experienced researchers approved by California Department of Fish and Wildlife 

(CDFW) using an approved capture and handling protocol, captured mountain lions. 

Initial capture efforts of lions in the Kings River Study Area (KRSA) demonstrated 

higher success capturing lions with box traps (Shuler 1992) by using roadkill deer 

carcasses wired to a tree monitored with motion detection cameras, as opposed to using a 

houndsman to detect and tree lions, although we implemented both methods. We checked 

carcasses with remote cameras every morning for lion activity. If a lion had visited the 

carcass, we then wired the carcass inside a 2 x 3 m cage trap equipped with a trap 

transmitter that would emit a signal when the trap door closed. Once a trap was set, a 

technician sat within range of the trap transmitter and monitored it until the lion returned. 

Captured lions were anesthetized with a mixture of tileamine hydrochloride and 

zolazepam hydrochloride, then affixed with a GPS collar (SirTrack Iridium, Havelock 

North, New Zealand), measured, weighed, sexed, aged and biological samples and 
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measurements collected. We programmed the GPS-collars to collect a location every 2 

hours. Collars had a built-in drop-off mechanism powered by a separate battery and were 

set to drop-off after 18 months. The GPS-collars transmitted locations to the satellite 

whenever the collar had clear satellite coverage. We then downloaded our locations from 

the SirTrack website and converted them into the Universal Transverse Mercator (UTM) 

grid system using ArcGIS 10.2. Not all locations transmitted successfully likely due to 

the rugged terrain over much of the study area. We did not use any cluster locations 

within 48 hours of a capture event. 

 Beier et al. (1995) found mountain lions typically fed on large mammal carcasses 

for several days and kills are often made <1 hour of arriving at a kill site. Therefore, with 

GPS collars collecting locations every 2 hours, we were able to determine when a lion 

localized at a site. We followed Anderson and Lindzey’s (2003) protocol to define a 

cluster in which they designated a cluster as ≥2 locations <200-m apart during a 

consecutive 16-hour period. However, due to our low incidence of kills at clusters 

containing only 2-3 locations (7.7%), we redefined a cluster as having ≥4 locations 

occurring sequentially within the centroid of a 100-m buffer (Blake and Gese 2016). 

Since we were still interested in locating remains of smaller prey items such as neonate 

mule deer during summer months and mesocarnivores, we did continue to search as many 

≥2 and ≥3 point clusters as logistically possible. We visited these clusters and, if we did 

not find a kill immediately, searched a circle at least 100 m in diameter centered on the 

mean UTMs of the GPS locations of the cluster. We searched in concentric circles 

approximately 5–10 m apart depending upon visibility, with the goal of visually 
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examining all of the ground within the search area. We note that on several occasions, 

dogs assisted in the cluster searches, which appeared to increase our ability to detect prey 

remains, or lion scat at kill sites. 

 
Resource Selection Functions for Two Behavioral States 

 To analyze the influence of behavioral state (kill site versus moving locations), 

we developed resource selection functions (RSF; Manly et al. 2002) for the entire study 

area and (Fig. 3.1), and within a subset of the research area where LiDAR data was 

available (Fig. 3.2). For clarity, the ‘moving locations’ were single points not involved 

with a cluster, as defined above, while ‘killing locations’ were points associated with a 

kill site. We generated a buffer around each kill site location based upon the distance a 

carcass was dragged from known kill sites (Blake and Gese 2016). Of the 250 kill sites 

with prey remains, we found evidence of a carcass being dragged at 57 kill sites; the 

average drag distance was 14.6 m with 54 (95%) of 57 drag distances being <50 m. 

Therefore, we chose 50-m as our buffer radius for all used and available kill site 

locations. We also applied this buffer to all used and available moving locations. 

 To determine the ‘available’ locations for comparison to the ‘used’ locations in 

the RSF framework, we first created minimum convex polygons (MCP’s) to estimate the 

home ranges of the radio-collared mountain lions using ArcMap 10.3.1. We chose MCP’s 

over kernel density estimators to alleviate ‘islands’ in the home ranges that appeared 

when creating home ranges using either 95% or 98% kernel density home ranges. Next, 

we calculated the mean distance between sequential kill sites and used this distance to 

calculate the extent of the ‘available’ locations for comparison to the ‘used’ kill site 
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locations (Table 3.1). For the moving locations, the extent of the available locations were 

constrained to the average distance traveled between consecutive moving locations (i.e., 

every 2-hours). Constrained within the range of these average distances traveled between 

kill sites and moving locations, we then randomly determined 25 ‘available’ locations for 

each ‘used’ location (Northrup et al. 2013) with the further constraint that the available 

locations were within the boundaries of each lion’s home range. We did not use a case-

control study framework (Keating and Cherry 2004) due to the distances traveled were 

large and the extent of available locations overlapped among all the used locations. The 

available locations were then similarly buffered by 50-m for comparison to the used 

locations. 

 
Landscape Covariates for the Entire Study Area 

 We were interested in how landscape variables influence resource selection. The 

variables we examined included distance to roads, distance to streams, elevation, slope, 

aspect, vegetation type, and ruggedness. We used ArcMap 10.3.1 (Environmental 

Systems Research Institute, Inc., Redlands, CA) to analyze all spatial data. We 

downloaded road layers from the U.S. Forest Service Pacific Southwestern Region 

website (https://www.fs.usda.gov/main/r5/ landmanagement/gis; downloaded 17 January 

2017). We obtained stream data from 

https://www.wildlife.ca.gov/Data/GIS/Clearinghouse; downloaded 17 January 2017. We 

used 30-m resolution Digital Elevation Models (DEM; 

https://viewer.nationalmap.gov/basic/) to derive terrain data including slope, aspect, 

elevation, and ruggedness. To calculate a ruggedness index from the DEM, we used a 
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Relative Topographic Position index (RTP) (http://gis4geomorphology.com/roughness-

topographic-position/). 

(MeanDEM – minDEM) / (maxDEM – minDEM)  

Using a loop in R Studio (RStudio Team [2015] RStudio: Integrated Development for R. 

RStudio, Inc., Boston, MA URL http://www.rstudio.com/), we reclassified aspect from a 

continuous variable (degrees 0 – 360) to a categorical variable, then binned it to the four 

cardinal directions: north (≥315 to <45), east (≥45 to <135), south (≥135 to <225), and 

west (≥225 to <315). We calculated the Euclidean distances to the nearest streams and 

roads using Analyst > Proximity > Near Tool in ArcMap. We then standardized distance 

to roads, distance to digitized skid trails and roads, distance to streams, and elevation, 

slope, and ruggedness covariates due to Eigenvalue and convergence errors when running 

initial models in R Studio:  

(covariate - mean(covariate))/standard deviation(covariate) 

We created a layer of ‘Vegetation Type’ by downloading and rescaling vegetation type 

into 4 categories: ‘Conifer’, ‘Hardwood’, ‘Other’, ‘Shrub’ (See Appendix A) using 

Landfire data (https://landfire.cr.usgs.gov/; downloaded 17 January 2017 (Appendix A). 

We also determined the ‘Majority Vegetation Type’ as the vegetation class that had the 

highest proportion within the buffered location. We reprojected all layers in ArcMap into 

NAD83 Zone 11N, and clipped them to the study area boundary. For the covariates of 

slope, aspect, elevation, and ruggedness, we used the mean value of these terrain 

variables within each 50 m buffer. 
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Landscape Covariates for the LiDAR Subset Area 

 For the subset of data contained within the boundary of the LiDAR imaged area, 

we used all the landscape variables mentioned previously for the ‘Entire Study Area’ and 

added another layer containing low-use roads and skid trails. We digitized these roads 

and skid trails using the Bare Earth LiDAR data (Figs. 3.3, 3.4, 3.5). We generated 10 

random points within the LiDAR area and using the analyst tool ‘Near’, we then ground-

truthed 10 digitized roads to confirm the existence of these features: 9 of the 10 sites were 

skid trails and 1 site was an unmapped, low-use, dirt road.  

For the LiDAR area analysis, we clipped the mountain lion home ranges by the 

LiDAR study area boundaries. We used the same methods for developing RSF models 

for the LiDAR data set as for the entire study area data; however, we generated new 

‘available’ locations that fell within the boundaries of the LiDAR imaged area. We 

generated 25 available points within those clipped buffers, then created 50 m buffers 

around all used and available locations within the clipped home range/LiDAR boundary 

so as to not include terrain, road distance, or stream distance data that fell outside of those 

boundaries. 

 
Model Development 

 We compared landscape covariates with respect to ‘used’ kill sites and moving 

locations to the randomly generated ‘available’ locations. Use of RSF’s are ideal for 

exploring binary data (i.e., used versus available) as they operate within a logistic 

regression framework (Blake 2014). We used Generalized Linear Mixed Models 

(GLMM) with the individual animal (Puma_ID) as a random effect. GLMM’s are useful 
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in that they allow for modeling of data, that does not have a normal distribution, and can 

still flexibly accommodating covariates of different distributions (McCulloch and 

Neuhaus 2005). Since the GPS collars were set to collect a location at 2-hour  intervals, 

our assumption was that GPS points not associated with clusters indicated the mountain 

lion was either traveling or hunting (i.e., moving). While they could have been napping 

between the 2-hour locations, our assumption was that if a lion was not associated with a 

point cluster, then they were classed as moving. The goal of the non-cluster (moving) 

analysis was to develop an understanding of resource selection with respect to preferred 

landscape characteristics while lions were moving through their home range. In total, we 

constructed 8 different RSF models with respect to season (summer = Apr 15 – Nov 15; 

winter = Nov 16 – Apr 14), kill site versus moving locations, and the full study area and 

the smaller subset LiDAR study area (Fig. 3.2). The LiDAR data was flown to 

encompass areas within the study area where forest treatments were to be conducted. 

Again, the main objective of the LiDAR subset data was to digitize roads and skid trails 

that were unmapped with the assumption that mountain lions may be utilizing these low-

use roads and skid trails that have since turned into wildlife trails for travel and ambush 

sites for prey. This was necessary to determine the distances to and possible use of 

anthropogenically created linear features by mountain lions. 

We used a Pearson statistic (Gloyne and Clevenger 2001) to test for multi-

collinearity among terrain variables (slope, aspect, elevation, and ruggedness) since 

terrain variables such as slope and ruggedness are often highly correlated. For other 

variables (distance to stream, distance to mapped roads), we used a Variance Inflation 
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Factor (VIF) to assess collinearity in the models. A VIF of >2.5 may indicate variable 

collinearity (Allison 1999, Reith, 2010); therefore, we removed any variable that was 

collinear and excluded it from model consideration (Reith 2010). While there is 

disagreement and pros and cons about whether to use Akaike’s Information Criterion 

(AIC) or Bayesian Information Criterion (BIC) (e.g., Weakliem 1999, Burnham and 

Anderson 2004), for our purposes, we ranked models using BIC because it was more 

appropriate for our dataset due to small sample sizes. When sample size is small (n = 

5Lions) in comparison to the number of parameters (n = 7Full Study Area, n = 8Lidar Study Area), 

AIC may not be accurate (Sugiura 1978, Abascal et al. 2005) and BIC is considered a 

more appropriate approach (Schwarz 1978, Abascal et al. 2005).  

 
RESULTS 

 

Capture and GPS Locations 

 We captured and monitored 4 adult female mountain lions (≥2 years of age) and 1 

adult male. We also radio-collared a sub-adult female, however her GPS-collar never 

acquired locations and we never detected her in the study area after she was captured. We 

also radio-collared an 8-month-old cub of one of our adult females, but he slipped his 

collar after only one week. We monitored the GPS-collared lions for 130 to 731 days (̅ݔ = 

331.7 ± 247.5 SD) for a total of 1,659 lion-days. Our capture effort totaled 147 days. The 

majority of effort involved monitoring bait stations daily during December-early April 

while black bears were hibernating. Of these 147 days, houndsmen assisted us in 

attempting to locate and capture lions on 35 days. Due to the rough terrain and extremely 

dense shrub cover, bait stations combined with cage traps proved most effective. We 
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focused our capture efforts to a 185-km² area overlapping the KRFP study area (Fig. 3.1), 

which covered 14% of the eventual study area as determined by the home ranges of the 5 

GPS-collared lions. We note that based on photos from the remote cameras, we did not 

capture all adult, resident individuals in the study area. 

We documented 250 kill sites (see Chapter 2 for prey composition) of which we 

found 57 known instances of carcasses being dragged from kill sites to cache sites. Of the 

57, >95% of the drag distances were ≤50 m. The mean drag distance was 14.56 ± 14.11 

m (SD). After buffering the moving and kill site locations, the number of ‘used’ and 

‘available’ locations for the RSF models varied by season and study area (entire study 

area versus LiDAR subset; Fig. 3.2).  

 
Resource Selection by Mountain Lions while Moving  

 Using the dataset set from the entire study area, the top-performing model for 

resource selection while mountain lions were moving through the landscape during the 

summer included the variables of ruggedness, ruggedness2, slope, slope2, aspects of 

north, south, and west, plus elevation (Table 3.3). The relationship of ruggedness and 

slope indicated that the lions selected for increasing ruggedness and slope up to a 

threshold, after which they selected against terrain that was too rugged and very steep 

slopes. The model also showed significant selection against northern and western facing 

aspects, and selection for eastern aspect, which was the intercept. Lions also selected for 

higher elevations during the summer. 

 Using the dataset from the entire study area, the top-performing model for 

resource selection while mountain lions were moving through the landscape during the 
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winter was similar to the summer model and included ruggedness, ruggedness2, slope, 

slope2, aspects of north, south, and west, plus elevation (Table 3.3). Again, same as 

during the summer, lions selected for increasing ruggedness and slope up to a threshold, 

then selected against slope and ruggedness.  Lions during winter months also selected for 

higher elevations with respect to available locations, as well as, selected for eastern 

aspects. 

 Restricting our analysis to the subset of data within the LiDAR study area, we 

found the top-performing model for resource selection while lions moved through the 

landscape during the summer showed the same variables as the model using the entire 

study area, plus the addition of distance to a stream (Table 3.4). During the summer, lions 

preferred locations closer to a stream. The quadratic terms for slope and ruggedness were 

included in this model, similarly to the model for the entire study area. During winter, the 

top-performing model for resource selection included the same variables as the model 

using the entire study area, but lions now showed preference for northern, southern, and 

western aspects with respect to eastern aspects. 

 
Resource Selection by Mountain Lions when Killing Prey 

 Using the dataset set from the entire study area, the top-performing model for 

resource selection while mountain lions were killing prey during the summer showed 

selection against steeper slopes (Table 3.3).  The top-performing model during the winter 

showed selection for being within close proximity to the nearest road (Table 3.3). 

Restricting our analysis to the subset of data within the LiDAR study area, we 

found two top-performing models for resource selection when lions killed prey during the 
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summer (Table 3.4); these two models accounted for 70.5% of the BIC model weight. 

The top model contained the variables of distance to nearest road and distance to nearest 

stream, and showed strong selection for lion kill sites to be in close proximity to roads 

and skid trails, and in close proximity to streams. The second model contained the 

variables of distance to nearest road and elevation, and showed strong selection for kill 

sites being in close proximity to roads and skid trails, plus kill sites being at higher 

elevations compared to available locations. Similar to the models for the summer, we 

found two top-performing models for resource selection when lions killed prey during the 

winter (Table 3.4); these two models accounted for 84.7% of the BIC model weight. The 

first model contained the variables of distance to the nearest road and elevation, with lion 

kill sites being within close proximity to roads and skid trails, and kill sites being at lower 

elevations compared to available locations within the LiDAR study area. The second top 

model contained the variables of distance to nearest road or skid trail, and distance to 

nearest stream with strong selection again lion kill sites being within close proximity to 

roads and skid trails, as well as, kill sites being closer to streams. 

 

DISCUSSION 

 Our study on resource selection of mountain lions in the Sierra National Forest in 

central California focused on a lion population that had not been studied for >25 years 

(Neal et al. 1987) and was initiated due to the high amount of intraguild predation upon 

fishers (Sweitzer et al. 2015, 2016). While we did have a small sample size of radio-

collared mountain lions (4 females, 1 male) in the study area, we do feel that we acquired 
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a representative perspective of landscape use by the collared mountain lions in the study 

area through examination of 250 kill sites and >8,300 moving locations. Examining 

resource selection with a subset of these kill sites and moving locations within the 

LiDAR imaged area also provided insight into lion space use in an area heavily bisected 

by old roads and skid trails that general GIS layers or ‘road maps’ did not provide. 

Within the full study area using only the currently mapped roads, we found that close 

proximity to roads was the top model for lion resource selection when killing prey during 

the winter months. Our results also indicated strong selection for close proximity to 

digitized roads and skid trails within the LiDAR subset study area when making kills 

during summer and winter. Due to the sensitivity of the fisher population in this region, 

this fragmented network of roads could subject fishers to increased predation risk.  

 

Resource Selection by Mountain Lions while Moving 

 During both the summer and winter, the top-performing models of resource 

selection while mountain lions were moving through the entire study area showed 

selection for landscape variables including a quadratic function of ruggedness and slope 

indicating the lions selected for increasing slope and ruggedness up to a threshold, then 

selected against these variables. They also showed a preference for eastern aspects and 

higher elevations when compared to available locations. Using the subset of data in the 

LiDAR study area, our results for moving locations during the summer and winter were 

similar to the top models from the entire study area with two exceptions. The first 

exception demonstrated lions selecting against the threshold for ruggedness and slope 
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variables. After plotting the used locations, we found data limitations to be the cause. As 

previously mentioned, the LiDAR was done in a small section of the overall mountain 

lion study area and focused on flatter regions concentrated around forest treatments. This 

biased the data in a manner that did not coincide with the results from the full, unbiased 

study area. The second exception was that lions in the LiDAR study area showed 

selection against higher elevations in comparison to available locations. These results 

intuitively make sense if we assume that when a mountain lion is not either sleeping or at 

a kill site (i.e., at a cluster not associated with prey remains), then they are likely moving 

through the landscape selecting for rugged and steeper terrain that provides ambush 

terrain. As with other large felid species (e.g., Karanth and Sunquist 2000), mountain 

lions are ambush predators that select for landscape features such as dense brush and 

rugged terrain to facilitate stalking and increase predation success (Holmes and Laundre 

2006, Atwood et al. 2009, Kunkel et al. 2013, Blake and Gese 2016). Moreover, 

mountain lions evolved for short bursts of speed and rely on remaining undetected until 

within a close distance while ambushing prey (Hornocker 1970). Young and Goldman 

(1946), Wilson (1984), and Holmes and Laundre (2006) reported the probability of a 

mountain lion making a successful kill was unlikely if the ambush attempt was initiated 

at a distance >25 m from their prey (Blake and Gese 2016). 

 Relative to elevation, our findings are congruent with Neal et al. (1987). During 

our study, we found that the mean elevation used by the radio-collared lions during the 

summer and winter was 1,799 m and 1,352 m, respectively, suggesting they shifted their 

home ranges from summer to winter to coincide with the elevation shift during migration 
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by the North Kings deer herd. Even the distribution of kill sites by lions showed shifts 

from higher elevations in the summer to lower elevations in winter (Fig. 3.6). While 

similar to our results, Neal et al. (1987) showed two distinct patterns of space use by 

mountain lions: some lions remained at lower elevations year round, while others shifted 

seasonally with respect to elevation (summer: 1600 – 2000 m, winter: 1000 – 1400 m); 

they concluded the lions were also matching the migration pattern of the North Kings 

deer herd. We did not capture and radio-collar any individuals that remained at lower 

elevations year-round; rather, they all demonstrated seasonal home range shifts from 

lower elevations in winter to higher elevations in summer. 

 
Resource Selection by Mountain Lions while Killing Prey 

 Using the dataset covering the entire study area, we found the top-performing 

model for resource selection at kill sites during summer included slope and the quadratic 

for slope. Selecting against less steep slopes during the summer at kill sites indicated 

lions preferred a flat location (Fig. 3.7) that possibly provided forest debris and 

vegetative cover in which to safely feed and cache their kill. The top model for kill sites 

during the winter for the entire study area showed selection for being within close 

proximity to roads in the study area. It is important to mention that the main paved roads 

(Highway 168, Dinkey Creek Road, McKinley Grove Road, and Peterson Mill Road) 

received high traffic use during the summer. During winter, with exception of Highway 

168 and Dinkey Creek road, the rest of the roads in the study area were usually covered 

with snow most of the winter and behind locked entrance gates, which decreased 

anthropogenic road use during the winter, with the exception of a few snowmobilers. 
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Thus, during the winter, lions used these main roads more frequently and kill sites were 

in close proximity to these roads.  

We re-emphasize that the main objective for examining resource selection within 

the LiDAR imaged area was to determine whether mountain lion kill sites was influenced 

by the network of old roads and skid trails that were not mapped in the conventional 

‘road layers’. Using the subset of data contained within the LiDAR imaged area, the 

resource selection models showed that kill sites for mountain lions during the summer 

and winter contained the same three landscape variables: distance to the nearest road, 

distance to the nearest stream, and elevation. As we predicted, kill sites within the 

LiDAR study area showed strong selection for close proximity to roads and skid trails in 

the top models during summer and winter months. These anthropogenically created linear 

landscape features were characterized by early successional browse and these old roads 

and skid trails have turned into wildlife trails for mule deer and, in turn, high selection by 

mountain lions. Consistent with the idea of mountain lions being a forest generalist, 

studies have shown they tend to avoid major highways, but will tolerate dirt roads and 

trails in habitat that is less human-dominated (Van Dyke et al. 1986, Laing 1988, Jalktozy 

et al. 1999, Fecske et al. 2003). Beier (1995) and Dickson et al. (2005) demonstrated that 

unpaved roads and trails may facilitate lion movement through thick vegetation. Lions 

have also been known to cache prey and even daybed near campgrounds and heavily used 

trails (Ruth 1991, Beier 1995, Jalkotzy et al. 1999, Sweanor et al. 2008, Reith 2010). 

Wallmo et al. (1972) conducted a study where they created strips of forest which 

alternated between clear-cut strips and uncut strips. Fifteen years after these logging 
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events, they recorded mule deer obtained 63.3% of their forage from these cut strips and 

9.3% along logging roads, while 27.4% of their forage was obtained from the uncut 

strips. On a study in northern Utah, Collins and Urness (1983) found mule deer preferred 

clear-cut lodgepole pine and aspen forest, and that clear-cutting greatly increased mule 

deer and elk grazing use. Reynolds (1966a, 1966b) found deer and elk in Arizona to 

utilize logged areas adjacent to uncut timber which is synonymous with the fragmentation 

caused by roads and skid trails and adjacent uncut forest in our study area (Scotter 1980). 

Since LiDAR was done in only a small section of the study area to monitor prescription 

forest treatments, we assume there is a high density of unmapped roads and skid trails 

within the entire study area and these anthropogenically-created linear landscape features 

influence the movement and resource selection of both predator and prey.  

 
MANAGEMENT IMPLICATIONS 

The primary impetus for our study on resource selection was the finding that 

mountain lions were killing radio-collared fishers (Wengert et al. 2014, Gabriel et al. 

2015). During the 2-year predation study, we did not find any fisher remains at any of the 

250 kill sites made by our radio-collared lions (Chapter 2). Another study (Blake and 

Gese 2016) found while most lions preferred mule deer, there can be individuals that 

specialize killing another species (e.g., bighorn sheep). It is possible that we did not 

radio-collar an individual lion that had learned to specialize on fishers. However, our 

study overlapped with the continuing KRFP research which involved an intensive fisher 
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trapping and monitoring effort, and they only documented one instance of lion predation 

on a radio-collared fisher during our study.  

Our data showed that mountain lions in the Sierra National Forest preferred 

certain landscape characteristics such as ruggedness, slope and elevation while moving 

through the landscape (Figs. 3.8 and 3.9). From a management perspective, little can be 

done to modify these landscape attributes to reduce predation risk from mountain lions. 

However, 3 of the 4 models for resource selection by lions when killing prey 

demonstrated a high probability of kills being within close proximity to roads and skid 

trails (Figs. 3.10 and 3.11). Research has demonstrated that logging and other forest 

habitat practices that modify forest structure have led to the decrease in fisher populations 

and overall habitat extent (Lewis et al. 2012, Sweitzer et al. 2015, 2016). While a fisher is 

not much of a meal for a mountain lion, we believe that mountain lions are not actively 

targeting fishers as prey items (Chapter 2) but moreover, lions are opportunistic hunters 

and are likely killing fishers that wander across their path or attempt to scavenge from a 

lion kill. However, even this low level of intraguild predation could have population level 

effects on fishers (Wengert et al. 2014). The fisher population in the Sierra National 

Forest is facing many obstacles to population expansion including predation, habitat loss 

and fragmentation, vehicle strikes, and toxicants used by illegal marijuana farmers 

(Sweitzer et al. 2015). To reduce predation risk on fishers, we recommend that skid trails 

and roads that were cut through the forest for timber harvest and fire management could 

be replanted to reduce ambush cover for lions. These linear features add to ‘edge’ habitat 

for mule deer, which is subsequently attractive to lions, and may even serve as ‘gauntlets’ 
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for fishers to travel through exposing them to predation by mountain lions. Historically, it 

is possible that mountains lions depredated upon fishers only occasionally. However, 

they likely encountered each other very rarely and there were no ‘gauntlet-type areas’ 

created by roads and skid trails. Moreover, fire return intervals in California have 

changed dramatically since European settlement. Historically, fire return intervals were 

shorter resulting in less intensive and severe fires that burned over larger expanses 

(Sugihara et al. 2006). Furthermore, fire does not create linear features that would funnel 

wildlife in the manner that roads and skid trails seem to in our study area. Lastly, 

extensive skid trail networks directly affect vegetation communities and can result in a 

shift away from interior forest species, which are less light tolerant and lower in nutrients 

as compared to ruderal and oftentimes noxious or invasive species (Zenner and Berger 

2008). This shift in forest composition could contribute to a loss of fisher habitat since 

current timber practices within the study area do not incorporate replanting of tree 

species.   
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TABLES AND FIGURES 

Table 3.1. Mean distances (m) traveled by mountain lions between kill sites and moving 
locations during the summer and winter, Sierra National Forest, California, 2014-2016. 
 
 
     

    
Summe

r 
Winte

r 
Mountain 
Lion ID   Kill site Moving Kill site Moving 
PF01   5246 693 4800  612 
PF02   6920 462 N/A  N/A 
PF04   5038 607 4504  753 
PF05   4568 736 N/A  523 

PM03   
10,53

0 1321 8,633  823 
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Table 3.2. Total used and available locations for kill sites and moving locations of 
mountain lions in the full study area and the subset LiDAR area during summer and 
winter, Sierra National Forest, California, 2014-2016. 
 
 

    Used Available

Kill sites 
  Full Study Area 
     Summer 187 4675
     Winter 63 1575
     Total 250 6250

 
  Lidar Area      
     Summer 62 1550
     Winter 42 1050
     Total 104  2600

 
Moving locations 

  Full Study Area  
    Summer 5719 142974
    Winter 2583 64575
    Total 8302 207550

 
  Lidar Area    
    Summer 1869 46725
    Winter 1058 26450
    Total 2927  73175
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Table 3.3. Coefficients, standard errors (SE), and P-values for the top-performing 
resource selection models for mountain lions while moving and killing for the dataset 
covering the entire study area during the summer and winter, Sierra National Forest, 
California, 2014-2016. 
 
 
    
Season        
    
Behavioral 
state 

BIC model 
weight (%) 

Landscape 
variable Coefficients SE P   

Summer    
    Moving 97.6 Ruggedness 0.194 0.079 0.013
  Ruggedness2 -0.154 0.032 <0.001
  Slope 0.233 0.017 <0.001
  Slope2 -0.183 0.012 <0.001
  Aspect_North -0.814 0.053 <0.001
  Aspect_South -0.020 0.037 0.591
  Aspect_West -0.128 0.038 <0.001
  Elevation 0.312 0.018 <0.001
   
    Kill sites 85.9 Slope -0.341 0.094 <0.001
  Slope2 -0.177 0.086 0.039
Winter   
    Moving 97.8 Ruggedness 0.389 0.124 <0.001

  Ruggedness2 -0.005 0.068 0.002

  Slope 0.141 0.255 0.939
  Slope2 -0.154 0.020 <0.001
  Aspect_North -0.857 0.082 <0.001
  Aspect_South -0.001 0.056 0.987
  Aspect_West -0.168 0.059 0.004
  Elevation 0.142 0.025 <0.001
    

    Kill sites 63.1 
Distance to 
mapped road -0.520 0.196 0.008
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Table 3.4. Coefficients, standard errors (SE), and P-values for the top-performing 
resource selection models for mountain lions while moving and killing for the subset of 
data covering the LiDAR study area during the summer and winter, Sierra National 
Forest, California, 2014-2016. 
 
 
    
 Season        
    
Behavioral 
state 

BIC model 
weight (%) Landscape variable Coefficients SE P   

Summer     
    Moving 72.8 Distance to stream -0.053 0.026 0.042

  Ruggedness 0.144 0.152 0.034

  Ruggedness² 0.249 0.075 <0.001
  Slope -0.363 0.025 <0.001

  Slope² 0.139 0.017 <0.001
  Aspect_North 2.412 0.095 <0.001
  Aspect_South 0.209 0.107 0.050
  Aspect_West -0.136 0.113 0.229

  Elevation -0.433 0.022 <0.001
    
    Kill    
    sites 39.9 

Distance to 
digitized road -2.769 0.585 <0.001

  Distance to stream -0.311 0.157 0.048

 30.6 
Distance to 
digitized road -2.748 0.581 <0.001

  Elevation 0.299 0.149 0.045
   
Winter     
    Moving 94.7 Ruggedness  0.372 0.186  0.046

  Ruggedness²  0.420 0.099  <0.001
  Slope -0.349 0.032  <0.001

  Slope²  0.163 0.026  <0.001
  Aspect_North  1.439 0.128  <0.001
  Aspect_South  0.326 0.143  0.023
  Aspect_West  0.499 0.145  <0.001
  Elevation -0.251 0.029  <0.001
   
    Kill  
    sites 56.9 

Distance to 
digitized road -4.373 1.044 <0.001

  Elevation -0.447 0.206 0.029

 27.8 
Distance to 
digitized road -4.418 1.069 <0.001

  Distance to stream -0.33 0.187 0.077
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Figure 3.1. The 1336-km² study area encompassing all home ranges of radio-collared 
mountain lions, Sierra National Forest, California, 2014-2016. 
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Figure 3.2. The 1336-km² full study area and the 238-km² LiDAR study area 
encompassing all home ranges of radio-collared mountain lions, Sierra National Forest, 
California, 2014-2016. 

 

  



86 
 

 

 

Figure 3.3. Map of study area with stream shapefile overlaying the LiDAR Bare Earth 
raster layer without mapped roads or digitized roads and skid trails, Sierra National 
Forest, California. The purpose is to illustrate the contrast between existing roads, skid 
trails, and roadless areas.   
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Figure 3.4. Map of study area with streams and mapped roads shapefiles overlaying the 
LiDAR Bare Earth raster layer illuminating existing unmapped roads and skid trails, 
Sierra National Forest, California. 
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Figure 3.5. Map of study area showing streams, mapped roads, and digitized roads and 
skid trails shapefiles overlaying the LiDAR Bare Earth raster layer, Sierra National 
Forest, California.   
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Figure 3.6. Influence of elevation on mountain lion kill sites during the summer and 
winter, Sierra National Forest, California, 2014-2016 
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Figure 3.7. Influence of slope on mountain lion kill sites during the summer and winter, 
Sierra National Forest, California, 2014-2016. 
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Figure 3.8. Map of resource selection by mountain lions while moving during the 
summer within the full study area, Sierra National Forest, California, 2014-2016. The top 
model showed selection a variety of terrain variables. The winter map consisted of the 
same top model. 
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Figure 3.9. Map of resource selection for the quadratic of slope by mountain lions at kill 
sites during the summer within the full study area, Sierra National Forest, California, 
2014-2016.  
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Figure 3.10. Map of resource selection for close proximity to roads by mountain lions at 
kill sites during the winter within the full study area, Sierra National Forest, California, 
2014-2016. 
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Figure 3.11. Map of resource selection for close proximity to digitized roads and skid 
trails by mountain lions at kill sites during the summer within the subset LiDAR study 
area, Sierra National Forest, California, 2014-2016.  The top model for winter months 
showed selection for close proximity to digitized roads and skid trails as well. 
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CHAPTER 4 

CONCLUSIONS 

 Our research increased our understanding of the foraging ecology of mountain 

lions (Puma concolor) by examining prey composition, kill rates, and landscape use in 

the Sierra National Forest of California. Moreover, knowledge of resource selection by 

mountain lions may assist in ongoing efforts to mitigate intraguild predation upon fishers 

(Pekania pennanti) by lions. Based on the research conducted by the Kings River Fisher 

Project (KRFP), we were aware that mountain lions killed fishers (Sweitzer et al. 2015). 

We predicted that mule deer (Odocoileus hemionus) would comprise the largest 

percentage of lion kills, but we did not expect to document gray foxes (Urocyon 

cinereoargenteus) making up 13% of overall prey composition (Chapter 2). Though we 

did not detect any predation upon fishers at kill sites of our radio-collared lions, we point 

out that we did not have all lions in the research area radio-collared as evidenced by 

photos of non-collared lions from the remote camera surveys. Prior research has shown 

that certain individual mountain lions can become specialists on a particular prey species 

(Ross et al. 1997, Logan and Sweanor 2001, Blake and Gese 2016). Therefore, it is 

possible there was an individual lion that had specialized on killing fishers in the earlier 

years of the KRFP research. It is also important to mention that there was extremely low 

fisher juvenile (kit) survival in the study area during our study between 2014-2016, which 

could explain our not detecting fisher remains at mountain lion GPS clusters (R. Green, 

personal communication). Of equal importance is the knowledge that the ecosystem on 

the Sierra National Forest is a single-ungulate system comprised of mule deer, and 
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therefore, it is possible that during winter, fishers will be at a greater risk of predation by 

mountain lions due to a lack of fawns or another ungulate species to supplement lion 

diets. Knopff et al. (2010) found that subadult lions killed the highest percentage of non-

ungulate prey which also suggests that fishers may be at a higher risk of predation when 

subadult lions are present.  

Consistent with Laundre (2005), we found adult females spent more time at kills 

than both adult males and adult females with kittens. We found adult males displayed 

shorter handling times of adult deer and juvenile deer during summer months relative to 

adult females killing adult deer and juvenile deer in the summer. We found 

kleptoparasitism by black bears did not affect handling time even though there was a 

weak correlation demonstrating shorter handling times when bears scavenged the carcass. 

In contrast, Allen et al. (2014) found a significant relationship between lion handling 

times and black bear detection rates of lion kills. We did notice seasonal variation in kill 

rates (i.e., higher rates during summer months) but did not detect significant effects of 

lion kill detection by black bears even though we found that black bears detected many 

lion kills. Without an estimate of lion density and deer abundance, however, we are 

unable to determine why bear kleptoparasitism did not affect lion kill rates on our study 

area; perhaps deer density is low and mountain lions in our study area are more likely to 

attempt to continue feeding after black bear detection of their kill. 

 Similar to other studies, we found mountain lions in the study area selected for 

certain landscape attributes at kill sites and while moving. During the summer and winter, 

lions selected for rugged terrain and slope up to a threshold where they began selecting 
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against these variables, as well as, higher elevations as compared to random locations. 

Regarding kill sites, lions selected for less steep slopes during the summer. However, 

during winter months in the full study area, as well as during the summer and winter in 

the LiDAR area, lions showed strong selection for close proximity to roads (entire study 

area) and close proximity to the old roads and skid trails (LiDAR study area). From a 

management perspective, not much can be done with respect to landscape factors such as 

slope, elevation, aspect, and ruggedness to mitigate fisher predation by mountain lions. 

Attempts to replant temporary skid trails and old roads to alleviate habitat fragmentation 

and reduce ambush habitat for lions may be of benefit to fisher survival, but this effect 

remains untested. 
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Figure continues 

Appendix A. Vegetation Landfire data reclassification for the Sierra National Forest, 
California. 
 
   
              
Vegetation 
Reclassified 

Landfire Vegetation 
Class Categories 

Landfire Vegetation 
Classification  

              
   

Other Agricultural 
Agricultural-
Orchard  

 Agricultural 
Agricultural-
Vineyard  

 Agricultural 
Agricultural-Bush fruit and 
berries  

 Agricultural 
Agricultural-Row Crop-Close 
Grown Crop 

 Agricultural 
Agricultural-Row 
Crop  

 Agricultural 
Agricultural-Close Grown 
Crop  

 Agricultural 
Agricultural-Fallow/Idle 
Cropland  

 Agricultural 
Agricultural-Pasture and 
Hayland  

 Agricultural Agricultural-Wheat  

 Agricultural 
Agricultual-
Aquaculture  

 Agricultural 
Agriculture-Pasture and 
Hay  

 Agricultural 
Agriculture-Cultivated Crops and Irrigated 
Agriculture 

 Barren Barren         

 Developed 
Developed-Upland 
Deciduous Forest  

 Developed 
Developed-Upland 
Evergreen Forest  

 Developed 
Developed-Upland Mixed 
Forest  

 
 Developed 

Developed-Upland 
Herbaceous  

 Developed 
Developed-Upland 
Shrubland  

 Developed Developed-General  
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Figure continues 

 Developed 
Developed-Open 
Space  

 Developed 
Developed-Low 
Intensity  

 Developed 
Developed-Medium 
Intensity  

 Developed 
Developed-High 
Intensity  

 
Developed-High 
Intensity 

Developed-High 
Intensity  

 
Developed-Low 
Intensity 

Developed-Low 
Intensity  

 
Developed-Medium 
Intensity 

Developed-Medium 
Intensity  

 Developed-Roads Developed-Roads       

 Exotic Herbaceous 
Introduced Annual 
Grassland  

 Exotic Herbaceous 
Introduced Perennial Grassland and 
Forbland 

 Exotic Herbaceous 
Introduced Annual and Biennial 
Forbland 

 Exotic Herbaceous 
Introduced Herbaceous Wetland 
Vegetation 

 Exotic Tree-Shrub 
Introduced Riparian 
Vegetation  

 Exotic Tree-Shrub 
Introduced Wetland 
Vegetation  

 Exotic Tree-Shrub 
Introduced Upland 
Vegetation-Treed     

 Grassland 
Alpine Dwarf-Shrubland, Fell-field 
and Meadow 

 Grassland 
Dry 
Tundra  

 Grassland Grassland  

 Grassland 
Grassland and 
Steppe  

 Grassland Mixedgrass Prairie  

 Grassland 
Sand 
Prairie  

 Grassland Shortgrass Prairie  
 Grassland Tallgrass Prairie  

 Grassland 
Atlantic Dunes and 
Grasslands  
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Figure continues 

 Grassland 
Black Oak Woodland and 
Savanna  

 Grassland Inland Marshes and Prairies  

 Grassland 
Prairies and 
Barrens  

 Grassland 
Introduced Perennial Grassland and 
Forbland 

 Grassland 
Transitional Herbacous 
Vegetation  

 Grassland 
Modified-Managed Prairie 
Grassland  

 Grassland Beach Meadow  
 Grassland Boreal Grassland  
 Grassland Dune Grassland  

 Grassland 
Herbaceous 
Meadow  

 Grassland 
Hawai'i Dry 
Grassland  

 Grassland 
Hawai'i Mesic 
Grassland       

 Non-vegetated 
Open 
Water  

 Non-vegetated Snow-Ice  
 Non-vegetated Barren  

 Non-vegetated 
Bedrock, Scree, 
and Talus       

 Open Water 
Open 
Water         

 
Quarries-Strip Mines-
Gravel Pits 

Quarries-Strip Mines-
Gravel Pits     

 Riparian 
Pacific Coastal 
Marsh  

 Riparian 
Red Alder Forest and 
Woodland  

 Riparian 
Western Riparian Woodland and 
Shrubland 

 Riparian 
Western Herbaceous 
Wetland  

 Riparian 
Spruce-Fir Forest and 
Woodland  

 Riparian 
Western Red-cedar-Western 
Hemlock Forest 

 Riparian 
Depressional 
Wetland  
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Figure continues 

 Riparian 
Atlantic Coastal 
Marsh  

 Riparian 
Eastern Floodplain 
Forests  

 Riparian 
Eastern Small Stream 
Riparian Forests  

 Riparian Inland Marshes and Prairies  
 Riparian Jack Pine Forest  
 Riparian Mangrove  
 Riparian Peatland Forests  

 Riparian 
Atlantic Swamp 
Forests  

 Riparian 
Introduced Woody Wetland 
Vegetation  

 Riparian 
Introduced Herbaceous Wetland 
Vegetation 

 Riparian 
Freshwater Aquatic 
Bed  

 Riparian Freshwater Marsh  

 Riparian 
Riparian Stringer Forest 
and Shrubland  

 Riparian 
Shrub and Herbaceous Floodplain 
Wetland 

 Riparian 
Shrub and Herbaceous 
Peatlands  

 Riparian Tidal Flat  

 Riparian 
Tidal 
Marsh  

 Riparian Wet Meadow  

 Riparian 
Pacific Islands Scrub 
Forest/Shrub  

 Riparian 
Pacific Islands 
Swamp/Marsh  

 Riparian 
Caribbean 
Shrub/Herbaceous Wetland  

 Riparian Caribbean Mangrove Forest  

 Riparian 
Caribbean Forested 
Wetland  

 Riparian 
Caribbean Forested 
Wetland     

 Snow-Ice Snow-Ice         
  Sparsely Vegetated Sparse Vegetation       
Conifer Conifer Chaparral  
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Figure continues 

 Conifer 
Conifer-Oak Forest and 
Woodland  

 Conifer 
Douglas-fir Forest and 
Woodland  

 Conifer 
Douglas-fir-Western Hemlock 
Forest and Woodland 

 Conifer 
Juniper Woodland and 
Savanna  

 Conifer 
Limber Pine 
Woodland  

 Conifer 
Lodgepole Pine Forest and 
Woodland  

 Conifer 
Douglas-fir-Ponderosa Pine-Lodgepole Pine 
Forest and Woodland 

 Conifer 
California Mixed Evergreen Forest 
and Woodland 

 Conifer 
Mountain Hemlock Forest and 
Woodland 

 Conifer 
Mountain Mahogany Woodland and 
Shrubland 

 Conifer 
Pinyon-Juniper 
Woodland  

 Conifer 
Ponderosa Pine Forest, Woodland 
and Savanna 

 Conifer 
Red Fir Forest and 
Woodland  

 Conifer 
Redwood Forest and 
Woodland  

 Conifer Sitka Spruce Forest  

 Conifer 
Spruce-Fir Forest and 
Woodland  

 Conifer 
Subalpine Woodland and 
Parkland  

 Conifer 
Western Hemlock-Silver 
Fir Forest  

 Conifer 
Douglas-fir-Grand Fir-White Fir Forest and 
Woodland 

 Conifer 
Western Larch Forest and 
Woodland  

 Conifer 
Western Red-cedar-Western 
Hemlock Forest 

 Conifer 
Red Pine-White Pine Forest and 
Woodland 

 Conifer Jack Pine Forest  
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Figure continues 

 Conifer 
Longleaf Pine 
Woodland  

 Conifer Peatland Forests  
 Conifer Pine Flatwoods  

 Conifer 
Pine-Hemlock-Hardwood 
Forest  

 Conifer 
Pitch Pine 
Woodlands  

 Conifer 
Shortleaf Pine 
Woodland  

 Conifer 
Spruce-Fir-Hardwood 
Forest  

 Conifer 
Virginia Pine 
Forest  

 Conifer 
Loblolly Pine Forest and 
Woodland  

 Conifer 
Loblolly Pine-Slash Pine Forest and 
Woodland 

 Conifer 
Transitional Forest 
Vegetation  

 Conifer 
Managed Tree 
Plantation  

 Conifer 
Black Spruce Forest and 
Woodland  

 Conifer 
Western Hemlock-Yellow-
cedar Forest  

 Conifer 
White Spruce Forest and 
Woodland  

 Conifer 
White Spruce Forest and 
Woodland  

 Conifer-Hardwood 
Aspen-Mixed Conifer Forest and 
Woodland 

 Conifer-Hardwood 
Conifer-Oak Forest and 
Woodland  

 Conifer-Hardwood 
Chestnut Oak-Virginia Pine Forest 
and Woodland 

 Conifer-Hardwood 
Red Pine-White Pine Forest and 
Woodland 

 Conifer-Hardwood Glades and Barrens  
 Conifer-Hardwood Jack Pine Forest  
 Conifer-Hardwood Pine Flatwoods  

 Conifer-Hardwood 
Pine-Hemlock-Hardwood 
Forest  
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Figure continues 

 Conifer-Hardwood 
Shortleaf Pine-Oak Forest and 
Woodland 

 Conifer-Hardwood 
Spruce-Fir-Hardwood 
Forest  

 Conifer-Hardwood 
Juniper-
Oak  

 Conifer-Hardwood Ruderal Forest  

  Conifer-Hardwood 
White Spruce-Hardwood Forest and 
Woodland   

Hardwood Hardwood 
Aspen Forest, Woodland, 
and Parkland  

 Hardwood 
Bigtooth Maple 
Woodland  

 Hardwood 
Conifer-Oak Forest and 
Woodland  

 Hardwood 
Western Oak Woodland 
and Savanna  

 Hardwood 
Red Alder Forest and 
Woodland  

 Hardwood Aspen-Birch Forest  

 Hardwood 
Beech-Maple-Basswood 
Forest  

 Hardwood Texas Live Oak  
 Hardwood Cypress  

 Hardwood 
Coastal Plain Oak 
Forest  

 Hardwood 
Bur Oak Woodland and 
Savanna  

 Hardwood 
White Oak-Red Oak-Hickory 
Forest and Woodland 

 Hardwood 
Chestnut Oak Forest and 
Woodland  

 Hardwood 
Post Oak Woodland and 
Savanna  

 Hardwood 
Black Oak Woodland and 
Savanna  

 Hardwood 
Chestnut Oak-Virginia Pine Forest 
and Woodland 

 Hardwood 
Red Pine-White Pine Forest and 
Woodland 

 Hardwood 
White Oak-Beech Forest and 
Woodland 

 Hardwood Hammocks  
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Figure continues 

 Hardwood 
Hardwood 
Flatwoods  

 Hardwood Jack Pine Forest  
 Hardwood Maritime Forest  

 Hardwood 
Sweetgum-Water Oak 
Forest  

 Hardwood 
Montane Oak 
Forest  

 Hardwood 
Yellow Birch-Sugar Maple 
Forest  

 Hardwood 
Pine-Hemlock-Hardwood 
Forest  

 Hardwood 
Spruce-Fir-Hardwood 
Forest  

 Hardwood 
Introduced Upland 
Vegetation-Treed  

 Hardwood 
Managed Tree 
Plantation  

 Hardwood 
Balsam Poplar-Aspen 
Woodland  

 Hardwood Birch-Aspen Forest  

 Hardwood 
Birch-Cottonwood-Poplar 
Forest  

 Hardwood 
Dry Aspen-Steppe 
Bluff  

 Hardwood 
Floodplain Forest and 
Shrubland  

 Hardwood Hawai'i Rainforest  
 Hardwood Hawai'i Dry Forest  

 Hardwood 
Hawai'i Mesic 
Forest  

 Hardwood 
Pacific Islands Limestone 
Forest  

 Hardwood 
Pacific Islands Littoral/Strand 
Vegetation 

 Hardwood 
Pacific Islands Lowland 
Forest  

 Hardwood 
Pacific Islands Mangrove 
Forest  

 Hardwood Pacific Islands Palm Forest  

 Hardwood 
Pacific Islands Ravine 
Forest  

 Hardwood 
Pacific Islands 
Savannah  
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Figure continues 

 Hardwood 
Pacific Islands Upland 
Forest  

 Hardwood 
Caribbean Deciduous 
Forest  

 Hardwood 
Caribbean Mixed Evergreen 
Deciduous Forest 

 Hardwood 
Caribbean Mixed Evergreen 
Deciduous Forest 

 Hardwood Caribbean Evergreen Forest  
 Hardwood Caribbean Evergreen Forest  
 Hardwood Caribbean Evergreen Forest  
 Hardwood Caribbean Evergreen Forest  

  Hardwood-Conifer 
Chestnut Oak-Virginia Pine Forest 
and Woodland   

Shrubland Shrubland 
Aspen Forest, Woodland, 
and Parkland  

 Shrubland 
Big Sagebrush Shrubland 
and Steppe  

 Shrubland 
Blackbrush 
Shrubland  

 Shrubland Chaparral  

 Shrubland 
Pacific Coastal 
Scrub  

 Shrubland Creosotebush Desert Scrub  

 Shrubland 
Deciduous 
Shrubland  

 Shrubland Desert Scrub  

 Shrubland 
Grassland and 
Steppe  

 Shrubland 
Greasewood 
Shrubland  

 Shrubland 
Low Sagebrush Shrubland 
and Steppe  

 Shrubland 
Mesquite Woodland and 
Scrub  

 Shrubland 
Mountain Mahogany Woodland and 
Shrubland 

 Shrubland Salt Desert Scrub  
 Shrubland Sand Shrubland  

 Shrubland 
Succulent Desert 
Scrub  

 Shrubland Tallgrass Prairie  
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 Shrubland 
Alpine-Subalpine 
Barrens  

 Shrubland Great Lakes Alvar  

 Shrubland 
Heathland and 
Grassland  

 Shrubland Jack Pine Forest  
 Shrubland Pocosin  

 Shrubland 
Southern Scrub 
Oak  

 Shrubland 
Introduced Upland 
Vegetation-Shrub  

 Shrubland 
Transitional Shrub 
Vegetation  

 Shrubland Alder Shrubland  
 Shrubland Avalanche Slope Shrubland  
 Shrubland Dwarf Shrubland  

 Shrubland 
Periglacial Woodland and 
Shrubland  

 Shrubland Shrub Swamp  
 Shrubland Shrub Tundra  
 Shrubland Sparse Shrub and Fell-field  
 Shrubland Sparse Tundra  

 Shrubland 
Spruce-Lichen 
Woodland  

 Shrubland Tussock Tundra  
 Shrubland Willow Shrubland  

 Shrubland 
Hawai'i Dry 
Shrubland  

  Shrubland 
Hawai'i Mesic 
Shrubland       
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