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ABSTRACT 
 
 

Identifying the Underlying Components of Delay Discounting Using  
 

Latent Factor Modeling 
 
 

by 
 
 

W. Brady DeHart 
 
 

Major Professor: Amy L. Odum, Ph.D. 
Department: Psychology 
 
 
 Delay-discounting procedures measure the decrease in the value of an outcome as 

the delay to the receipt of that outcome increases. The degree to which individuals 

discount delayed outcomes is said to be an underlying mechanism of many problematic 

behaviors including drug abuse, gambling, and risky sexual behaviors. Greater 

discounting is positively correlated with engagement in these behaviors. From this 

perspective, delay discounting is a general process that leads to maladaptive behaviors 

and has been suggested to have trait-like qualities. However, evidence suggests that delay 

discounting is also the aggregate product of separate psychological processes. Common 

quantitative models do not describe these processes. Latent factor modeling may allow 

for the identification of the individual components that sum to delay discounting. 

Chapters 2 and 3 present findings that demonstrate that framing of the delay or outcome 

unit can change delay discounting and encourage a further understanding of the 

underlying components of delay discounting. Chapter 4 describes the results of an 



iv 
 
experiment that seeks to identify the psychological processes of delay discounting to 

better understand how it can be changed. The results of Chapter 4 do not demonstrate that 

the previously proposed components of marginal utility and cardinal utility account for 

how delayed outcomes are discounted. Nonlinear time perception; however, does appear 

to account for a portion of how delayed outcomes are discounted. The results of Chapter 

4 also provide further evidence for delay discounting as a trait. Chapter 5 provides a 

general discussion of the three papers. 

(197 pages) 
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PUBLIC ABSTRACT 
 
 

Identifying the Underlying Components of Delay Discounting Using  
 

Latent Factor Modeling 
 
 

W. Brady DeHart 
 
 

 Many problematic behaviors can be conceptualized as choosing a smaller, 

immediate outcome over a larger, delayed outcome. For example, drug abuse involves 

choosing between the immediate euphoric effects of the drug and the delayed health and 

legal consequences of drug abuse. Individuals that consistently choose the smaller 

outcome are said to behavior “impulsively.” The goal of this dissertation was to 

understand how to change impulsive choice. Chapters 2 and 3 successfully demonstrate 

that impulsive choice can be altered by reframing how the choice is presented. For 

example, framing a delayed outcome using a specific date instead of a duration of time 

(e.g., 1 year) reduced impulsive choice. However, these findings do not explain why 

impulsive choice changed. The goal of Chapter 4 was to identify the underlying processes 

that result in impulsive choice with the hopes that by understanding these processes, 

impulsive choice can be reduced. Latent factor modeling was used to understand the role 

if three proposed processes in impulsive choice: marginal utility, cardinal utility, and 

nonlinear time perception. The results of the latent factor model indicated that nonlinear 

time perception does relate to how delayed outcomes are valued but not marginal utility 

and cardinal utility.  

  



vi 
 

ACKNOWLEDGMENTS 

 
 First and foremost, I must thank my wife, Paola. I am not sure that when we got 

married 9 years ago, she knew that she was signing up for 9 years of school and the 

income that a decade of school entails. She has been my endless source of support and 

strength and I would not be here today if it was not for her. I am grateful to my children, 

Emma and William, for their ability to brighten my day and motivate me to be better. I 

also want to thank my parents, who despite not always understanding my quirks, hobbies, 

and interests, encouraged me to pursue my passion in science. 

 I must also thank my advisor, Amy Odum. I often joke that she is the only advisor 

in all of Psychology who would tolerate a married student with two children and the 

“unique” complications and schedule that entails. She has been exceptionally supportive 

in both my personal and academic lives. Because of her, I am a better scientist and 

human. I also want to thank Scott Bates (or blame?), who exposed me to the world of 

psychological science, which changed the course of my life forever. I am also grateful to 

all the others who have modeled for me what a successful career in psychological science 

is. Thank you to my committee members Tim Slocum, Michael Twohig, Greg Madden, 

and especially Christian Geiser, who was so gracious in guiding me through my analyses. 

 Finally, I want to thank my lab mates and friends Jon Friedel, Casey Frye, Annie 

Galizio, and Jeremy Haynes. I am grateful for their friendship, support, and proof-

reading. 

W. Brady DeHart 

  



vii 
 

CONTENTS 
 

 
Page 

 
ABSTRACT ...................................................................................................................  iii 
 
PUBLIC ABSTRACT ...................................................................................................  v 
 
ACKNOWLEDGMENTS .............................................................................................  vi 
 
LIST OF TABLES .........................................................................................................  ix 
 
LIST OF FIGURES .......................................................................................................  xi 
 
CHAPTER 
 
 1. INTRODUCTION ..........................................................................................  1 
 
  References .......................................................................................................  3 
 
 2. THE EFFECTS OF THE FRAMING OF TIME ON DELAY  
  DISCOUNTING .............................................................................................  7 
 
  Introduction .....................................................................................................  7 
  Method ............................................................................................................  13 
  Results .............................................................................................................  18 
  Discussion .......................................................................................................  23 
  References .......................................................................................................  30 
 
 3. A FISTFUL OF QUARTERS: THE EFFECTS OF OUTCOME UNIT  
  FRAMING ON DELAY DISCOUNTING ....................................................  35 
 
  Introduction .....................................................................................................  35 
  Experiment 1 ...................................................................................................  41 
  Experiment 2 ...................................................................................................  54 
  General Discussion .........................................................................................  58 
  References .......................................................................................................  64 
 
 4. A LATENT DISCOUNTING MODEL: STRUCTURAL EQUATION 
  MODELING ANALYSES OF DELAY DISCOUNTING ............................  70 
 
  Introduction .....................................................................................................  70 
  Method ............................................................................................................  86 



viii 
 

Page 
 

  Results .............................................................................................................  98 
  Discussion .......................................................................................................  122 
  References .......................................................................................................  133 
  Appendices for Chapter 4 ...............................................................................  144 
 
 5. GENERAL DISCUSSION .............................................................................  165 
 
  References .......................................................................................................  168 
 
APPENDICES ...............................................................................................................  170 
 
 Appendix A: Permission to Reprint Chapter 2 ..........................................  171 
 Appendix B: Permissions to Reprint Chapter 3 ........................................  173 
 
CURRICULUM VITAE ................................................................................................  177 
  



ix 
 

LIST OF TABLES 
 
 
Table Page 
 
 2-1. Equation 2-1 (Exponential) vs. Equation 2-2 (Hyperbolic) vs. Equation 2-3  
  (Hyperboloid) Model Fits to Group Median Indifference Points ......................  19 
 
 2-2. Median of Equation 2-1 (Exponential), Equation 2-2 (Hyperbolic), and  
  Equation 2-3 (Hyperboloid) Model Fits to Individual Indifference Points .......  19 
 
 3-1. Experiment 1: Equation 3-1 (Hyperbolic) vs. Equation 3-2 (Hyperboloid)  
  Model Fits to Group Median Indifference Points ..............................................  46 
 
 3-2. Experiment 1: Median Fit Values of Equation 3-1 (Hyperbolic), and  
  Equation 3-2 (Hyperboloid) Model Fits to Individual Indifference Points .......  48 
 
 3-3. Generalized Estimating Equation Results ..........................................................  49 
 
 3-4. Correlation Matrix .............................................................................................  51 
 
 3-5. Experiment 2: Equation 3-1 (Hyperbolic) vs. Equation 3-2 (Hyperboloid)  
  Model Fits to Group Median Indifference Points ..............................................  56 
 
 3-6. Experiment 2: Median Fit Values of Equation 1 (Hyperbolic), and  
  Equation 2 (Hyperboloid) Model Fits to Individual Indifference Points ...........  57 
 
 4-1. Discounting Tasks for the Three Outcomes .......................................................  87 
 
 4-2. Marginal Utility Fits to Group Median Values of Subjective Happiness ..........  98 
 
 4-3. Median Marginal Utility Fit Values to Individual Values of Subjective  
  Happiness ...........................................................................................................  99 
 
 4-4. Median Demand Curve Fit Values to Individual Consumption Amounts .........  100 
 
 4-5. Equation 4-1 (Hyperbolic) and Equation 4-2 (Hyperboloid) Model Fits to  
  Group Median Indifference Points .....................................................................  102 
 
 4-6. Median Equation 4-1 (Hyperbolic) and Equation 4-2 (Hyperboloid) Model  
  Fit Values to Indifference Points from Individual Participants .........................  104 
 
 4-7. Median Equation 4-2 (Hyperboloid) Model Fit Values to Long, Short, and  
  Combined Indifference Points from Individual Participants .............................  107 



x 
 
Table Page 
 
 4-8. Proportion of Individual Delay Discounting Results that Fail a Criterion  
  for Identifying Nonsystematic Data ...................................................................  108 
 
 4-9. Generalized Estimating Equation Results ..........................................................  110 
 
 4-10. Outcome Descriptive Statistics ..........................................................................  112 
 
 4-11. Final Bi-Factor Model Results ...........................................................................  119 
 
 4-1a. Discounting Tasks ..............................................................................................  147 
 
 4-2a. Equation 4-1 (Hyperbolic) and Equation 4-3 (Hyperboloid) Model Fits to  
  Group Median Indifference Points .....................................................................  149 
 
 4-3a. Delay Discounting Descriptive Statistics...........................................................  151 
 
 4-4a. Model 4 Factor Loadings ...................................................................................  154 
 
 4-1d. Reverse Bi-Factor Model Results ......................................................................  162 
 
 
 
 
  



xi 
 

LIST OF FIGURES 
 
 
Figure Page 
 
 2-1. Discounting functions and AUC comparison for specific dates and  
  calendar unit framing .........................................................................................  21 
 
 2-2. Discounting functions and AUC comparison for days and calendar unit  
  framing ...............................................................................................................  22 
 
 3-1. Discounting functions for clear and fuzzy framed outcomes ............................  47 
 
 3-2. Graphic depiction of generalized estimating equation results ...........................  50 
 
 3-3. Discounting functions and AUC comparison of 50 dollars and 200 quarters ...  57 
 
 4-1. Pilot structural equation modeling results..........................................................  85 
 
 4-2. Marginal utility model fits .................................................................................  99 
 
 4-3. Cardinal utility model fits ..................................................................................  100 
 
 4-4. Subjective time perspective model fit ................................................................  101 
 
 4-5. Delay discounting model fits to median group indifference points ...................  103 
 
 4-6. Delay discounting of different outcomes with long and short delay  
  distributions........................................................................................................  105 
 
 4-7. Delay discounting of different outcomes with omnibus model fit ....................  106 
 
 4-8. Pairwise comparisons of AUCord values for each outcome .............................  110 
 
 4-9. Pearson correlations of all outcomes .................................................................  111 
 
 4-10. Single discounting factor model ........................................................................  113 
 
 4-11. Structural model .................................................................................................  117 
 
 4-12. Regression model ...............................................................................................  118 
 
 4-1a. Delay discounting model fits to group median indifference points ...................  149 
 



xii 
 
Figure Page 
 
 4-2a. Bivariate correlation matrix between all outcomes ...........................................  150 
 
 4-3a. Model 4 model structure ....................................................................................  153 
 
 4-1c. Discounting of food for long- and short-delay distributions .............................  158 
 
 
 

 
 

 
 
 

 
 



 

CHAPTER 1 

INTRODUCTION 
 
 

 Delay discounting is the process by which an outcome loses value as the delay to 

its receipt increases. Organisms are frequently faced with inter-temporal choices in which 

they must choose between a small but immediate outcome and a large but delayed 

outcome. Individuals that consistently choose the smaller, immediate outcome are said to 

choose “impulsively” (Ainslie, 1974). Delay-discounting tasks are one measure of 

impulsive choice and aim to identify a point of subjective indifference between a small, 

immediate outcome and a larger, delayed outcome. Importantly, impulsive choice, as 

measured by delay discounting, is strongly related to a variety of maladaptive behaviors 

including cigarette smoking (Bickel, Odum, & Madden, 1999; Mitchell, 1999), cocaine 

(Coffey, Gudleski, Saladin, & Brady, 2003; Heil, Johnson, Higgins, & Bickel, 2006), and 

heroin (Madden, Petry, Badger, & Bickel, 1997) abuse; gambling (Petry, 2001; Reynolds, 

2006), risky sexual activity (Herrmann, Johnson, & Johnson, 2015; Reimers, Maylor, 

Stewart, & Chater, 2009), obesity (Fields, Sabet, Peal, & Reynolds, 2011; Fields, Sabet, 

& Reynolds, 2013), and even seatbelt use (Daugherty & Brase, 2010).  

 Delay discounting has strong trait-like tendencies (Odum, 2011) and is consistent 

across time without intervention (Kirby, 2009). How an individual discounts one 

outcome is strongly related to how they discount other outcomes (Friedel, DeHart, 

Madden, & Odum, 2014). These within-individual consistencies, as well as the strong 

correlation of delay discounting with maladaptive behaviors, have led some to posit that 

delay discounting is a general process that underlies impulsive choice (Bickel, 
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Jarmolowicz, Mueller, Koffarnus, & Gatchalian, 2012; Bickel, Koffarnus, Moody, & 

Wilson, 2014).  

 However, there is also a growing body of evidence that indicates that despite its 

consistencies, delay discounting can be changed (Koffarnus, Jarmolowicz, Mueller, & 

Bickel, 2013). One such manipulation is differentially framing the delay or unit of the 

outcome. DeHart and Odum (2015) found that framing the delay to the larger outcome in 

specific dates (compared to calendar units of weeks and months) reduced delay 

discounting and that framing the delay in units of days (e.g., 9,000 days; compared to 

calendar units of weeks and months) increased discounting. Additionally, DeHart, 

Friedel, Frye, Galizio, and Odum (2017) found that framing the outcomes in fuzzy (e.g., 

less concrete) units increased delay discounting (e.g., 10 servings of peanuts compared to 

50 peanuts). What remains unclear is why these manipulations alter delay discounting. 

Current models of delay discounting do not provide a clear explanation for understanding 

these findings. 

Evidence exists to suggest that delay discounting is the aggregate result of various 

psychological processes. For example, time perception (Baumann & Odum, 2012; 

Zauberman, Kim, Malkoc, & Bettman, 2008), working memory capacity (Wesley & 

Bickel, 2014), general intelligence (Shamosh et al., 2008), and number fluency (e.g., 

numeracy; Peters et al., 2006) have all been found to relate to delay discounting and 

provide an explanation as to why delayed outcomes lose value hyperbolically. However, 

most theoretical models only weakly incorporate reductive psychological processes, if at 

all (e.g., Killeen, 2015; Mazur, 1987; Rachlin, 2006). These psychological processes may 
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explain why certain interventions such as framing alter delay discounting. 

 The purpose of this dissertation is to better understand delay discounting by 

changing it through intervention and identifying its underlying components through 

statistical modeling. Chapter 2 presents the results of DeHart and Odum (2015) in which 

delayed outcomes were framed in specific dates, days, and calendar units. Chapter 3 

presents the results of DeHart et al. (2017) in which the unit of the outcome was framed 

in clear and “fuzzy” units. Chapter 4 presents the results of a structural equation model 

analysis that explores three possible underlying processes of delay discounting: marginal 

utility, cardinal utility, and nonlinear time perception. Finally, Chapter 5 integrates the 

results of Chapters 2-4 and suggests future directions for investigating the underlying 

processes of delay discounting.  
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CHAPTER 2  
 

THE EFFECTS OF THE FRAMING OF TIME ON DELAY DISCOUNTING1 
 
 

Introduction 
 
 

Impulsivity is a multifaceted construct denoting several forms of potentially 

maladaptive behavior (Green & Myerson, 2013; Stahl et al., 2013). Commonly studied 

forms include the inability to refrain from a prepotent response (behavioral inhibition), 

lapses of attention, and the diminished ability of delayed consequences to influence 

behavior (de Wit, 2008). Insensitivity to delayed consequences is encompassed by delay 

discounting, which is the decrease in the present value of temporally remote outcomes 

(Mazur, 1987). If someone chooses a smaller sooner reward over a larger but more 

delayed reward, this behavior is termed impulsive; whereas, if someone forgoes a smaller 

sooner reward to receive a larger later reward, this behavior is termed self-controlled 

(Logue, 1988). For example, someone may forgo a dessert with tonight’s dinner to 

achieve better health in the long term.  

The degree to which delayed rewards are discounted is associated with the 

acquisition and maintenance of maladaptive behaviors. For example, substance abuse is 

consistently linked to steep delay discounting (de Wit, 2008). Better understanding the 

mechanisms of substance abuse is important because of its high economic and societal 

costs. In the U.S., the total annual economic cost of tobacco use alone is over $190 billion 

                                                 
1 Chapter 2 of this dissertation was adapted from DeHart, W. B., & Odum, A. L. (2015). The effects of the 
framing of time on delay discounting. Journal of the Experimental Analysis of Behavior, 103, 10-21. (See 
Appendix A for permission letter.) 
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(Centers for Disease Control and Prevention [CDC], 2005). Problematic users of alcohol 

(e.g., Petry, 2001), cigarettes (e.g., Bickel, Odum, & Madden, 1999; Mitchell, 1999), 

cocaine (e.g., Heil, Johnson, Higgins, & Bickel, 2006), heroin (e.g., Madden, Petry, 

Badger, & Bickel, 1997), and methamphetamine (e.g., Hoffman et al., 2006) discount 

delayed outcomes more steeply than control participants who do not use these substances. 

In addition to substance abuse, steep delay discounting is also related to problematic 

gambling behaviors (e.g., Petry, 2001; Reynolds, 2006), obesity (e.g., Fields, Sabet, & 

Reynolds, 2013; Hendrickson & Rasmussen, 2013), and a variety of unhealthy behaviors, 

such as sedentary activity patterns and lack of safety belt use in automobiles (e.g., 

Daugherty & Brase, 2010). 

Because steep delay discounting is related to socially significant behaviors, the 

development of techniques to reduce the degree of discounting could be helpful. For 

example, Bickel, Yi, Landes, Hill, and Baxter (2011) provided working memory training 

to people with stimulant abuse because working memory capacity is related to how 

steeply delayed rewards are discounted (Wesley & Bickel, 2014). Although the Bickel et 

al. intervention did not increase working memory capacity, the participants discounted 

delayed money less steeply at the end of training compared to a group that received sham 

training. In contrast, Renda, Stein, and Madden (2015) provided training intended to 

increase working memory ability in rats, but this training had no effect on delay 

discounting.  

An alternative approach was taken by Morrison, Madden, Odum, Friedel, and 

Twohig (2014) who provided brief training in Acceptance and Commitment Therapy 
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(ACT) to college undergraduates who presented at baseline with steeper than average 

delay discounting. During the brief ACT exposure, the therapist worked to increase the 

student’s tolerance for distressing and uncomfortable events and psychological 

experiences. Relative to a waitlist control group, the ACT group demonstrated more 

shallow delay discounting. These and other recent examples (e.g., Black & Rosen, 2011; 

Hendrickson & Rasmussen, 2013) provide promising evidence that delay discounting, 

despite being generally consistent within an individual (i.e., across commodities and 

time; Odum, 2011a), can be decreased by therapeutic means. These methods, however, 

are time and resource intensive, making their implementation limited.  

Another means by which to influence delay discounting, the one investigated 

here, is the manner in which delay-discounting decisions are framed. Framing refers to 

the context in which a decision is presented (Tversky & Kahneman, 1981). This 

technique is of particular interest because it can be readily and immediately implemented. 

In a large meta-analysis, Kühberger (1998) demonstrated that framing has moderate 

influences on decision-making (mean d = 0.33). Specifically, Kühberger identified 

several aspects such as reference points, outcome salience, and response mode that affect 

choice. For example, in studies that change the reference point of a decision, participants 

are often confronted with identical outcomes that are framed as gains or losses. When the 

outcome is framed as a gain, participants are more likely to choose that outcome than 

when the outcome is framed as a loss, despite the outcomes being otherwise identical.  

Tversky and Kahneman’s (1981) disease outbreak scenario provides a well-

known example of the effects of changing the reference point of a decision. Participants 
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are assigned to either a gain or a loss scenario in which they must choose between two 

outcomes: one certain and one probabilistic. In the gain scenario, the certain outcome is 

to save 200 out of 600 lives; in the loss scenario, the certain outcome is to lose 400 out of 

600 lives (the uncertain outcome is held constant across these scenarios). Despite the fact 

that the certain outcomes are functionally equivalent (200 people will live and 400 will 

die) the certain outcome is more frequently selected in the gain than in the loss scenario.  

In delay discounting, framing outcomes as gains or losses affects decision making 

as well. For example, in a phenomenon known as gain-loss asymmetry or the sign effect, 

delayed gains are generally discounted more steeply than delayed losses (e.g., Baker, 

Johnson, & Bickel, 2003; Ohmura, Takahashi, & Kitamura, 2005; Tanaka, Yamada, 

Yoneda, & Ohtake, 2014). Another framing manipulation, Read, Frederick, Orsel, and 

Rahman (2005) found that framing the delay to the larger-later reward as a specific date 

(e.g., January 28, 2018) resulted in less steep discounting than framing the delay in 

calendar unit form (e.g., 3 years). This finding held true for a variety of delay durations, 

outcome amounts, and with hypothetical and real rewards. Similar results have been 

found in other studies (Klapproth, 2012; LeBoeuf, 2006).  

One surprising finding from the Read et al. (2005) study was that when delayed 

rewards were framed as specific dates, point estimates of the rate of discounting appeared 

linear, indicative of exponential discounting. In exponential discounting (Samuelson, 

1937), the present value of an outcome decreases by the same proportion per unit time. 

This finding was unexpected, because many studies examining delay discounting have 

found instead that discounting is hyperbolic: the present value of an outcome decreases 
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proportional to the delay (Ainslie, 1992). Specifically, reward value decreases by an 

increasingly smaller proportion as delay increases (e.g., Bickel et al., 1999; Myerson & 

Green, 1995; Rachlin, Raineri, & Cross, 1991). Due to the nature of the procedure they 

used and the range of the indifference points obtained, Read et al. were not able to fit a 

theoretical model to their data to ascertain whether the present value of the delayed 

rewards was best described by an exponential or hyperbolic function.  

Therefore, one of the main goals of the present study was to determine the best-

fitting model for discounting when delays are described as specific dates. The theoretical 

model that best describes the discounting process is important, because different models 

can make different predictions about behavior (see Mazur, 2006; Odum, 2011a). For 

example, due to the deeply bowed shape of the hyperbolic curve relating present value to 

delay, hyperbolic discounting readily predicts the phenomenon of preference reversal. In 

this difficult behavior pattern, people may initially prefer a larger later reward, but as the 

time to obtaining the rewards draws nearer, switch their preference (“defect”) to the 

smaller sooner outcome. This phenomenon is familiar to people with addiction problems, 

for example, in which someone may quit taking a drug in hopes of achieving better 

health, only to relapse to drug use to gain a short-term high. 

In this paper, we will evaluate three models to determine which provides the best 

description of the discounting process when delays are framed as specific dates. Equation 

2-1 is an exponential model (Samuelson, 1937):  

      ܸ ൌ      (2-1)ି݁ܣ

In this model, V is the present (discounted) value of a delayed outcome, A is the amount 
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of that future outcome, D is the delay to the outcome, and k quantifies the degree to 

which the delayed outcome loses value as a function of delay. The mathematical constant 

e is approximately equal to 2.718 and is the base of the natural logarithm. Equation 2-2 is 

a hyperbolic model (Mazur, 1987):  

     ܸ ൌ 	 

ሺଵାୈሻ
     (2-2) 

where the parameters are as in Equation 2-1. Equation 2-2 has been found to provide a 

better fit to data from nonhuman as well as human participants in delay discounting 

experiments (e.g., Bickel et al., 1999; Madden, Begotka, Raiff, & Kastern, 2003; Mazur, 

1987; see also Odum, 2011a). We evaluated the fit of a third model as well, which for 

data from human participants often provides a better account than Equation 2-2 (e.g., 

McKerchar et al., 2009; Myerson & Green, 1995). Equation 2-3 is a hyperboloid model 

represented as  

     ܸ ൌ 	 

ሺଵାୈሻೞ
     (2-3) 

with the addition of s as a scalar of delay and/or amount. If s is 1.0, Equation 2-3 reduces 

to Equation 2-2. 

In addition to determining which theoretical model provided the best fit for 

discounting data when delays were framed as specific dates, we also sought to explore 

the generality of the framing effect. Framing time as a specific date, as opposed to 

calendar units, has been shown to reduce delay discounting. Could framing time 

differently than calendar units also increase the degree of delay discounting? To 

investigate the generalizability of the delay framing effect, we also compared the degree 

of discounting when delays were framed as a single short-duration calendar unit (days) 
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vs. when they were framed in the typical way, as different calendar units (days, weeks, 

months, and years) depending on the delay duration. Thus, this study had two novel 

goals: (1) determine the effect of a new method of framing delays and (2) determine the 

best fit theoretical model when delays to rewards are framed in three different ways: in 

calendar units, as specific dates, and in days. Based on prior results obtained with a 

different procedure (Read et al., 2005), we predicted that when time was framed as a 

specific date, participants would discount less than when time was framed in calendar 

units (days, weeks, months, and years). Because of the novelty of the manipulation, we 

did not have a specific prediction for the degree of discounting obtained when the delay 

was framed in units of days as opposed to calendar units (days, weeks, months, and 

years). Finally, based on prior results (e.g., Myerson & Green, 1995; Rachlin et al., 

1991), we predicted that the hyperbolic-type models (Equations 2-2 and 2-3) would 

provide a superior fit to the indifference points than the exponential model (Equation 2-

1).  

 
Method 

 
 

Participants 

Seventy-six undergraduate students (31 males, 45 females; mean age 21 years) 

took part in this experiment. Participants were recruited from a variety of introductory 

courses at Utah State University (USU) through classroom announcements and an online 

registration system. All students received course/laboratory credit or extra credit for 

participation. Of the 76 participants, 41 students (17 males, 24 females) were randomly 
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assigned to the specific date condition and 35 students (14 males, 21 females) were 

randomly assigned to the days condition.  

 
Procedure 
 
 Participants completed the experiment at a desk with a touch-screen computer in a 

private office. Each task in the experiment was programed using E-Prime computing 

software. All participants completed an informed consent document that was approved by 

the USU Institutional Review Board. Each session lasted approximately 1 hour. During 

the experimental session, participants also completed two unrelated delay-discounting 

tasks for food (data not presented here).  

 Participants completed two titrating delay-discounting tasks for hypothetical 

money. In one task, delays were described using calendar units (days, weeks, months, and 

years) and in the other task delays were framed as either specific dates or days, depending 

on the condition to which the participant was assigned. The order of the two tasks 

(calendar and dates/days) was random. Participants were not assigned to both the specific 

dates and days tasks to avoid the possibility of carryover effects. Each task began with 

instructions adapted from to those found in Odum, Baumann, and Rimington (2006), 

which read: 

The following choices are hypothetical, and you will not receive the actual 
outcomes. There are no “right” or “wrong” answers. Please just pick the choice 
that you prefer. Please note that the choices will switch sides randomly across 
questions. Please give special attention to the units of time as well as the amount 
that you are being asked about.  
 
The delay discounting tasks determined the present value of the delayed outcome 

($100) at a variety of delays. The procedure for all three delays was the same; only the 
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manner in which time was framed differed. Each delay began with the following 

question: “Would you prefer $50 now or $100 in (delay)?” The position (left and right 

sides of the screen) of the immediate and delayed options was assigned randomly for 

each trial. The participant chose between the immediate and the delayed amounts using 

the touchscreen monitor. After each choice, the immediate amount was adjusted per Du, 

Green, and Myerson (2002). On the first question, the immediate amount was increased 

(if the delayed amount was chosen) or decreased (if the immediate amount was chosen) 

by $25. On the subsequent questions, the immediate amount was adjusted by 50% of the 

proceeding adjustment. The tenth question completed each delay presentation and the 

amount of the small immediate option on that trial was used as the indifference point for 

analysis. The indifference point represents the present value of the delayed amount at that 

delay.  

In the calendar unit delay-discounting task, each participant made choices 

between smaller-sooner and larger-later rewards at six delays completed in the following 

order: 1 week, 2 weeks, 1 month, 6 months, 5 years, and 25 years (cf., Rachlin et al., 

1991). In the specific date delay-discounting task, participants experienced the same 

delays framed as specific dates. For example, if the participant completed the task on 

January 1, 2014, they would see the following six delays: January 8, 2014; January 15, 

2014; January 31, 2014; June 30, 2014; December 31, 2018; December 26, 2038, in that 

order. For the day’s delay-discounting task, each participant experienced the same delays, 

but described in terms of days: 1 day, 7 days, 14 days, 30 days, 180 days, 1.825 days and 

9,125 days, in that order. The 1-day delay was added because a preliminary study of 
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discounting in the calendar-unit and days tasks revealed substantial differences at the 

shortest delay (1 week). Therefore, to allow us to more fully characterize the discounting 

curves, we added the 1-day delay to the calendar-unit and days tasks in the days’ 

condition.  

 
Data Analysis 

 The three models of delay discounting (Equations 2-1, 2-2, and 2-3) were fit to 

the median group indifference points for each tasks using nonlinear regression (Graphpad 

Prism®). To compare these models of delay discounting we used the Akaike Information 

Criterion (AIC), which determines the relative quality of two models by comparing 

goodness of fit in light of parsimony (i.e., complexity). Models are compared in pairs, 

and a positive score indicates that the second of the two equations is preferred. Inferential 

statistical analyses were not conducted with the k parameter from Equation 2-3 because 

in the Myerson and Green (1995) model, the value of the k parameter interacts with the s 

parameter. Therefore, an independent interpretation of k is not appropriate.  

Prior to fitting the models to the median indifference points, we applied the 

Johnson and Bickel (2008) criteria for identifying nonsystematic discounting. The first 

criterion is if an indifference point increases by more than 20% of the first indifference 

point. The second criterion is if the final indifference point is not less than 90% of the 

first indifference point. Data sets meeting either or both criteria were excluded. We only 

applied the criteria to data from the calendar unit task. If a participant’s data met the 

exclusion criteria for the calendar unit task, all data from that participant were excluded 

from analysis. We did not exclude data from the specific dates and days tasks for non-
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systematic discounting because we did not want to limit our ability to detect different 

patterns of discounting for these experimental tasks. In practice, however, removing all 

data from participants with nonsystematic data for the calendar unit task removed 

nonsystematic data for the experimental tasks as well, because participants with 

nonsystematic data for one task had nonsystematic data for the other task. Data from 4 

and 9 participants were removed from the final analysis for specific date and days 

conditions, respectively. Comparisons of age and gender variables did not identify 

differences between participants whose data were removed for non-systematic 

discounting and those whose data remained.  

 To quantify the degree of delay discounting we calculated Area Under the Curve 

(AUC; Myerson, Green, & Warusawitharana, 2001). AUC is the sum of the area between 

each indifference point: x2 - x1[(y1+y2)/2]. The values x1 and x2 are the delays and y1 and 

y2 are the indifference points for those delays. AUC can range between 0 and 1, with 

lower AUC indicating greater delay discounting. Differences in AUC between tasks in 

each condition were analyzed using the Wilcoxon Matched-Pairs Signed Rank Test, 

which is a non-parametric statistic to analyze within-subject differences with two data 

points (essentially a non-parametric paired t test). For across condition comparisons (e.g., 

comparison of the AUC from the specific date and days condition), the Mann Whitney U 

(essentially a nonparametric independent samples t test) was used. These tests were 

chosen because AUC was not normally distributed for time framed as days (W = 0.87, p 

< .01) and time framed in the calendar unit form in the days’ condition (W = 0.92, p < 

0.05) or time framed in the calendar unit form in the specific date condition (W = 0.92, p 
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< .05). AUC was normally distributed for time framed as specific dates (W = 0.99, p = 

0.92).  

 
Results 

 
 

Model Fits 

The three models of delay discounting were fit to the median indifference points 

for each task using nonlinear regression. We used a two-stage analysis to determine the 

best fitting model overall. First, the fit of the exponential model (Equation 2-1) was 

compared to the fit of the hyperbolic model (Equation 2-2). The Akaike Information 

Criteria (AIC) and R2 both favored the hyperbolic model (Table 2-1). Across the tasks, 

the median R2 for the exponential model was 0.86, whereas for the hyperbolic model the 

median R2 across the tasks was 0.94. Next, the hyperbolic (Equation 2-2) and hyperboloid 

(Equation 2-3) model fits were compared using AIC and R2 values. Both measures 

favored the hyperboloid model (Table 2-1). The hyperboloid model provided an excellent 

fit to the median indifference points (median R2 across tasks = 0.99) and the improvement 

in fit exceeded the loss of parsimony of the extra free parameter in the hyperboloid model 

as compared to the hyperbolic model as assessed by the AIC. 

To further evaluate the appropriateness of the hyperboloid model, the three 

equations were fit to the indifference points for individual participants for each task. 

Table 2-2 displays the median values of the individual fits for the k and s parameters as 

well as the median R2 values for each task. Equation 2-3 provided the best description of  
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Table 2-1 

Equation 2-1 (Exponential) vs. Equation 2-2 (Hyperbolic) vs. Equation 2-3 
(Hyperboloid) Model Fits to Group Median Indifference Points 
 

  R2 
─────────────────────── 

  

Condition Task Exponential 
Mazur 
(1987) 

Myerson and 
Green (1995) 

AIC Difference 
equation 1 vs. 2 

AIC difference 
equation 2 vs. 3 

Specific date       

 Specific date 0.81 0.93 0.99 5.99 7.74 

 Calendar 0.91 0.97 0.99 6.57 9.43 

Days       

 Days 0.85 0.92 0.98 4.14 2.03 

 Calendar 0.86 0.95 0.99 7.03 17.66 
Note. Comparison of Equation 2-1 (exponential), Equation 2-2 (hyperbolic) and Equation 2-3 (hyperboloid) model fits 
to group median indifference points. R2 and AIC values favor Equation 3. 

 

Table 2-2 
 
Median of Equation 2-1 (Exponential), Equation 2-2 (Hyperbolic), and Equation 2-3 
(Hyperboloid) Model Fits to Individual Indifference Points 
 

 
 

Free parameters 
─────────   Wilcoxon 

signed rank test Equation Condition k s R2 AIC difference 
Exponential       
 Specific date 0.01  0.87   
 Calendar 0.02  0.86   

 Days 0.04  0.74   
 Calendar 0.01  0.79   
Mazur (1987)       
 Specific date 0.01  0.89 1.79  
 Calendar 0.03  0.91 2.54  

 Days 0.16  0.79 1.87  
 Calendar 0.02  0.83 2.82  
Myerson and Green (1995)       
 Specific date 0.01 0.73 0.95 4.38 -424.0* 
 Calendar 0.03 0.76 0.96 5.27 -432.0** 

 Days 0.13 0.66 0.97 1.93 -224.0* 
 Calendar 0.007 0.59 0.97 0.25 -256.0* 

Note. Equation 2-1 (exponential), Equation 2-2 (hyperbolic), and Equation 2-3 (hyperboloid) were fit to the 
indifference points for each participant. Median values of the individual fits are reported. All three equations have a k 
parameter. Only the Myerson and Green model includes the additional s parameter. AIC was used to compare Equation 
2-1 to Equation 2-2 and Equation 2-2 to Equation 2-3. The Wilcoxon Signed Rank Test values report the comparison of 
the s parameter of the Myerson and Green (1995) model to the specific value of 1.  

*p < .05, **p < .01. 
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the individual participant data. The median R2 for Equation 2-3 ranged from 0.95 to 0.97. 

We also determined whether the value of the exponent, s, was different from 1.0 using 

Wilcoxon Signed Ranks tests. For each task, the s parameter was significantly different 

from 1.0, indicating that this parameter is important in accounting for the variance in 

indifference points from individual participants (Table 2-2). Therefore, multiple forms of 

evidence indicate that the hyperboloid model (Equation 2-3) provided the best fit to the 

data for each task.  

 
Specific Date Condition 

For both the specific date and calendar unit discounting tasks, the present value of 

money decreased as the delay increased (Figure 2-1, top panel). The median indifference 

points decreased less when the delays were framed as specific dates than when the delays 

were framed in calendar unit of time. The hyperboloid model (Equation 2-3) provided a 

good fit to the individual and group median indifference points (see Tables 2-1 and 2-2).  

To provide a summary measure of the steepness of discounting, Figure 2-1 

(bottom panel) also presents the AUC obtained in the specific date task and the AUC 

obtained in the calendar unit task. The AUC was significantly greater in the specific date 

task (median = 0.51) as compared to the AUC in the calendar unit task (median = 0.34; W 

= -351.00, p < .05). This finding shows that framing time as a specific date, rather than in 

calendar units of time (days, weeks, etc.), resulted in less delay discounting. Finally, 

AUC for the specific-date and calendar-unit tasks were significantly and moderately 

positively correlated (Spearman Rho r = 0.54, p < .001).  
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Figure 2-1. Discounting functions and AUC comparison for specific dates and calendar 
unit framing. Top panel: Temporal discounting functions when delays were expressed as 
specific dates (open circles) and calendar units (filled circles). Points show median 
indifference points for $100 as a function of delay. Lines show the best-fitting 
discounting functions generated by the hyperboloid model (Equation 2-3). Bottom panel: 
Median and interquartile ranges for the AUC of individual participants for the specific 
date and calendar units’ delay discounting.  

 

Days Condition 

Figure 2-2 (top panel) shows that for both the calendar units and days units 

discounting tasks, the present value of the money decreased as the delay increased, with 

median indifference points decreasing more steeply when the delays were framed as 

days. The hyperboloid model (Equation 2-3) provided a good fit to the individual and 

group  
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Figure 2-2. Discounting functions and AUC comparison for days and calendar unit 
framing. Top panel: Temporal discounting functions when delays were expressed as days 
(open circles) and calendar units (filled circles). Points show median indifference points 
for $100 as a function of delay. Lines show the best-fitting discounting functions 
generated by the hyperboloid model (Equation 2-3). Bottom panel: Median and 
interquartile ranges for the AUC of individual participants for the days and calendar 
units’ delay discounting.  
 

 
median indifference points (see Tables 2-1 and 2-2). Figure 2-2 (bottom panel) compares 

the median AUC values (and interquartile ranges) obtained in the days and calendar-

units’ tasks. The AUC was significantly less in the days’ task (median = 0.22) as 

compared to the AUC in the calendar units’ task (median = 0.40; W = 171.00, p < .001). 

Thus, delays degraded present value more when delays were framed as days than when 

delays were framed in calendar units. The AUC values obtained in the days and calendar-

units tasks were significantly and strongly positively correlated within individuals 

(Spearman Rho r = 0.75, p < .001). 
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Comparisons Across Conditions 

We also compared AUC value obtained in the calendar-units task across the 

specific-date and days conditions. These results should be interpreted with caution 

because the number of indifference points differed across conditions (six for the specific 

date condition and seven for the days’ condition). Despite these procedural differences, 

AUC did not significantly differ between groups (U = 412.00, p = 0.66). Also, we 

compared AUC values obtained in the specific date and days tasks (an across-participants 

comparison). AUC was significantly different between groups (U = 237.00, p < .01) with 

participants discounting less when time was framed as specific dates than when time was 

framed as days.  

 
Discussion 

 
 

 There were three main findings in the present experiment. First, how time is 

framed had clear effects on the degree of delay discounting. When time was framed as a 

specific date, participants discounted less steeply than they did when time was framed in 

calendar units (weeks, months, years). Conversely, when time was framed in days, 

participants discounted more steeply than they did when time was framed in calendar 

units. Second, the form of the discounting function when delays were framed as specific 

dates was not exponential, as had been suggested by (Read et al., 2005). Instead, the 

discounting functions were more hyperbolic than exponential, and more hyperboloid 

model than the hyperbolic. Finally, the degree of discounting in the calendar task was 

significantly positively correlated with the degree of discounting for both the specific 
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date and days tasks. Below we discuss each of these findings in turn.  

Results of the specific dates condition replicates previous findings that framing 

delays as specific dates results in less discounting than when time is framed in the 

calendar units (LeBoeuf, 2006; Read et al., 2005). This finding was demonstrated using 

both hyperboloid model fits and AUC. Additionally, this finding held when we examined 

discounting using an adjusting procedure that obtained indifference points at a wide range 

of delays (Du et al., 2002), expanding the generality of this effect to a different delay 

discounting procedure than has been used previously.  

The hyperboloid model (Equation 2-3) provided a better fit to the indifference 

point data from all of the tasks than either the exponential (Samuelson, 1937; Equation 2-

1) or hyperbolic (Equation 2-2) models. This finding is in contrast to that of Read et al. 

(2005), who found that point estimates of the rate of discounting showed a linear, rather 

than hyperbolic, decrease with increases in delay when delays were framed as specific 

dates. They suggested it was possible that the manner in which specific dates were 

framed could change not only the degree of delay discounting but also the form of the 

discount function (hyperbolic vs. exponential). Read and colleagues did not use the same 

procedure for generating indifference points, nor did they use as wide of a range of 

delays, as we did in the present study. Specifically, we used shorter delays, which 

comprise a range over which the functions may differ substantially. These procedural 

differences may have allowed us to more fully characterize the discount function. Thus, 

changing the delay frame, while changing how steeply delayed outcomes are discounted, 

does not appear to change the discounting process per se. Changes in discounting 
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produced by delay framing would seem to be changes in the degree of discounting, not 

the kind of discounting. 

 We also found that not only did the hyperbolic (Equation 2-2) provide a better fit 

to the indifference points than the exponential model (Equation 2-1), a newer hyperboloid 

model (Equation 2-3) provided a superior fit than the hyperbolic model did. The data 

from discounting with different delay frames support those from a variety of studies (see 

McKerchar et al., 2009) showing that at least for human data, the hyperboloid provides a 

better description of the indifference points from delay discounting procedures. The 

superiority of the fit of the hyperboloid model exceeded that obtained by just adding an 

additional free parameter, because the AIC penalizes models for the added complexity 

inherent with more parameters. Instead, the hyperboloid model appears to capture 

meaningful variability in the form of the discount function generated by nonlinear effects 

of amount and/or time. At shorter delays, the indifference points decrease more steeply 

than predicted by the simple hyperbola, and at longer delays, the indifference points 

decrease less steeply than the simple hyperbola (see Odum et al., 2006). In conclusion, 

while the framing of time did alter the degree to which delayed outcomes were 

discounted, the manner in which delays were framed did not change which model 

provided the best description of the form of the discount function.  

 Importantly, we have generalized the effect of altering how delays are framed to 

include framing delays in solely units of days (e.g., 1,825). Framing time in units of days 

was found to have the opposite effect of framing time as specific dates. The time framed 

as days’ task resulted in greater discounting compared to the calendar method of framing 
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time in units of days, weeks, months and years.  

 A number of explanations exist for why framing time differently affects delay 

discounting. First, participants may have discounted delays framed in units of days more 

steeply because the high number of days may have been so large that the participants 

simply stopped attending to the delayed option. The opposite may be true for the specific 

date condition: framing time as a specific date may have increased how intently the 

participant attended to the delayed outcome.  

There is evidence that changing attending to delayed outcomes changes the 

degree of discounting. For example, in the “explicit zero” effect (Radu, Yi, Bickel, Gross, 

& McClure, 2011) the default or null outcomes are stated directly. Rather than “a little 

now vs. a lot later,” for example, choices are described as “a little now and nothing later 

vs. nothing now and a lot later.” This form of framing reduces the degree of delay 

discounting, an outcome that Radu et al. attributed to enhanced attending to future 

outcomes.  

 An alternative, and not necessarily mutually exclusive possibility, is that when a 

delay is presented as a larger number (e.g., 1,825 days), the delay is perceived to be 

longer than when it is framed as a smaller number (e.g., 5 years). That is to say, despite 

the two methods describing the same objective time, they may not represent the same 

subjective time. People who perceive time as passing more quickly (i.e., overestimate the 

passage of time) show steeper discounting of money than people who perceive time as 

passing more slowly (Baumann & Odum, 2012). Therefore, in the present experiment, if 

framing delays in terms of days makes the delays appear longer, that could result in 
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steeper discounting.  

An additional explanation is that how time is framed may affect the valuation of 

delayed rewards. Specific neural structures such as the orbitofrontal cortex that allow an 

organism to experience the value of delayed rewards (Bar, 2009) have been shown to be 

involved in delay discounting processes (Torregrossa, Quinn, & Taylor, 2008). The 

orbitofrontal cortex is thought to be involved in the encoding of the quality, quantity, 

probability, and timing of a delayed reward (Windmann et al., 2006). Windmann et al. 

found that how outcomes are framed affects the extent to which this neural mechanism is 

engaged in the decision-making task. Using the Iowa gambling task, they found that 

different areas of the orbitofrontal cortex were activated depending on the perceived risk 

of the task. When greater risk was involved, the medial orbitofrontal cortex showed 

greater activation. When less risk was involved, the lateral orbitofrontal cortex showed 

greater activation. Patak and Reynolds (2007) found that delay discounting might also 

involve an assessment of risk. They asked participants about the likelihood that they 

would actually receive the delayed outcome. The longer the delay, the less was the 

perceived chance of actually receiving the delayed outcome. When delays are framed as 

specific dates, the outcome may be perceived as more certain and when time is framed in 

days, the outcome may be perceived as less certain. Therefore, how time is framed may 

differentially activate the neuroanatomical areas involved in valuation, resulting in 

different perceived levels of outcome risk.  

 Future research should focus on expanding the generality of the effects of framing 

time on delay discounting. For example, how does delay framing affect discounting of 
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larger amounts (e.g., $10,000)? Would delay-framing effects generalize to nonmonetary 

outcomes (e.g., food), or to smaller units of time (e.g., 1 week vs. 0.019 years)? Delay 

framing may prove useful in applied and clinical settings. For example, when setting 

goals for abstinence, giving a specific date as a goal instead of a period of time may be a 

more effective strategy. Therefore, a goal for abstinence framed as “through January 31, 

2014” may be more effective than a goal of “at least 30 days.” Framing the outcome 

more effectively may increase the present value of the delayed reward, therefore 

increasing the likelihood of obtaining that goal. Finally, future research should 

investigate the mechanism of the delay framing effect.  

 There are at least two potential limitations of the present study. First, we used 

hypothetical outcomes instead of real rewards. Perhaps the results would differ if people 

actually received the consequences of their choices. Studies that have explicitly compared 

the degree of discounting and the shape of discounting curves obtained using hypothetical 

and real outcomes generally find good concordance between the two methods though (see 

Odum, 2011a, for a complete discussion).  

Second, the sample size used in the present study was not as large as in Read et al. 

(2005), who found that when delays were framed as specific dates, the pattern of 

discounting across delays appeared to suggest an exponential decay process rather than a 

hyperbolic one. In the present study, we replicated the main effect from Read and 

colleagues, that the degree of discounting was reduced when delays were framed as 

specific dates. Our adjusting procedure that obtained indifference points at a variety of 

delays allowed us to fit a theoretical model to the data, which Read et al. were not able to 
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do. Thus, while the limited data of Read et al. suggested discounting might be 

exponential with delays framed as specific dates, our more extensive investigation of that 

element of their findings does not support that suggestion. Our sample size was sufficient 

to allow detection of the main result, that discounting is shallower with delays framed as 

specific dates, and therefore we do not believe that sample size was a factor in our 

finding that the shape of the discounting curve was hyperboloid in nature. 

Regardless of the mechanism of the effect of framing of time on delay 

discounting and possible limitations of our procedure, the present study replicated the 

relation between the degree of discounting as measured in one task and the degree of 

discounting as measured in another task (see Odum, 2011b; Johnson & Bickel, 2002; 

Rodzon, Berry, & Odum, 2011). Participants who tended to show steep discounting as 

measured in the calendar units’ task showed steep discounting as measured in the other 

task. Similarly, people who show steep discounting of one type of outcome tend to show 

steep discounting for another type of outcome (Charlton & Fatino, 2008; Odum, 2011b), 

and people who show steep discounting at one time point tend to show steep discounting 

when assessed at other time points (up to a year later; Kirby, 2009; Simpson & 

Vuchinich, 2000). These types of findings and others have led us to suggest in that delay 

discounting may have enduring trait-like aspects (Odum, 2011a, 2011b). 

Fortunately, in addition to trait influences, delay discounting also shows strong 

state influences and is also potentially modifiable. Some promising interventions to 

reduce the degree to which people discount delayed outcomes include neurocognitive 

rehabilitation through working memory enhancement (Bickel et al., 2011), financial 
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education and training (Black & Rosen, 2011), and acceptance and mindfulness 

interventions (Hendrickson & Rasmussen, 2013; Morrison et al., 2014). These 

interventions, though providing encouraging results, are in some cases time- and 

resource-intensive. Framing manipulations, however, are potentially immediate and 

relatively easily accomplished (Radu et al., 2011), and thus provide a promising 

additional avenue for research into effective ways to modify maladaptive steep delay 

discounting.  
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CHAPTER 3 
 

A FISTFUL OF QUARTERS: THE EFFECTS OF OUTCOME UNIT  
 

FRAMING ON DELAY DISCOUNTING2 
 
 

Introduction 
 

 
People are frequently faced with choosing between a small but immediate 

outcome and a comparatively larger but delayed outcome. An individual that more 

consistently prefers the smaller, immediate outcome to the larger, delayed outcome is 

said to behave in a relatively “impulsive” manner (Ainslie, 1974). An example of an 

impulsive decision is eating a poor diet now (choosing the small, immediate outcome) at 

the expense of long-term health (the large, delayed outcome). 

Delay discounting encompasses this insensitivity to delayed outcomes. Delay 

discounting is the process by which delayed outcomes lose value (Mazur, 1987; see also 

Odum, 2011). The degree to which delayed outcomes lose value is an important predictor 

of the acquisition and maintenance of many maladaptive behaviors (Bickel, Jarmolowicz, 

Mueller, Koffarnus, & Gatchalian, 2012; de Wit, 2008). Delayed outcomes are more 

steeply discounted in users of cocaine (e.g., Heil, Johnson, Higgins, & Bickel, 2006), 

cigarettes (e.g., Bickel, Odum, & Madden, 1999; Mitchell, 1999; Reynolds, Richards, 

Horn, & Karraker, 2004), alcohol (e.g., Petry, 2001), heroin (e.g., Odum, Madden, 

Badger, & Bickel, 2000), and methamphetamine (e.g., Hoffman et al., 2006) compared to 

                                                 
2 Chapter 3 of this dissertation was adapted from “A fistful of quarters: The effects of outcome unit framing 
on delay discounting,” DeHart, W. B., Friedel, J. E., Frye, C. C. J., Galizio, A., & Odum, A. L. (n.d.). This 
manuscript is currently being revised for the Journal of the Experimental Analysis of Behavior. (See 
Appendix B for permission letters.) 
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discounting by individuals who do not use these substances. In addition to substance 

abuse, steep delay discounting is also related to problematic gambling behaviors (e.g., 

Petry, 2001; Reynolds, 2006), obesity (e.g., Fields, Sabet, & Reynolds, 2013; 

Hendrickson & Rasmussen, 2013), and safety belt use in automobiles (e.g., Daugherty & 

Brase, 2010). 

 Because steep delay discounting is related to a variety of maladaptive behaviors, 

interest has grown in the development of techniques to reduce delay discounting. 

Acceptance and Commitment Therapy (ACT) and mindfulness training have been 

productive avenues in regards to decreasing delay discounting. For example, Morrison, 

Madden, Odum, Friedel, and Twohig (2014) administered a brief ACT intervention to 

college students who met a criterion for steep discounting. The ACT intervention sought 

to increase the participant’s tolerance of negative emotional experiences such as distress. 

Delay discounting was reduced for the students receiving the ACT intervention compared 

to a waitlist control group. Hendrickson and Rasmussen (2013) found that a mindful-

eating intervention was also an effective intervention to decrease delay discounting. 

Participants were given the option of several foods to sample and instructed to attend to 

the various sensations of eating including the texture and taste of the food choice. 

Participants that engaged in mindful eating experienced a decrease in delay discounting 

for food compared to baseline. Working-memory training has also been shown to 

effectively reduce delay discounting. Bickel, Yi, Landes, Hill, and Baxter (2011) 

administered working-memory training to participants that abused stimulants. After 

several training sessions, participants in the working-memory-training condition 
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demonstrated a decrease in delay discounting compared to participants in the sham 

training condition. However, a more recent attempt to replicate the finding that working 

memory training reduces delay discounting was unsuccessful (Rass et al., 2015).  

 Although various interventions have proven effective for reducing delay 

discounting (Koffarnus, Jarmolowicz, Mueller, & Bickel, 2013), several disadvantages 

hinder their administration. One disadvantage of the interventions described so far is that 

they can require a large time investment. Another disadvantage is that an expert is often 

needed to effectively administer the intervention. For example, a trained clinician may be 

needed to administer ACT or to train others to administer the treatment. Both of these 

disadvantages may be required to effect a lasting change in behavior that generalizes 

across context, but less-intensive methods of influencing choice are also valuable. An 

alternative approach that is not hindered by these same restrictions is differential framing 

of the decision. Framing refers to the specific context of how a decision is presented 

(Tversky & Kahneman, 1981), such as the probability or unit of an outcome, while 

maintaining the objective components of the decision. One advantage of framing over 

more time-intensive interventions is that it can be employed to influence many decision-

makers at once. For example, menu items can be framed to encourage patrons to choose a 

healthier food item. While this framing intervention may not produce a lasting change in 

an individual’s behavior, it has the possibility of influencing many individual’s 

immediate choice. 

Framing has been shown to affect decision making in a variety of contexts 

(Kühberger, 1998). In Tversky and Kahneman’s (1981) original example, individuals 
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were presented with a choice scenario and asked to choose between a certain and 

probabilistic outcome. In one group, the certain outcome was framed as a gain whereas in 

the second group the certain outcome was framed as a loss, even though the objective 

amount of both certain outcomes was identical. Participants in the gain group were more 

likely to choose a certain outcome compared to the loss group despite the outcomes being 

equivalent. In a more recent example, Gurm and Litaker (2000) informed a group of 

patients about the risks of undergoing a medical procedure. Half of the patients were 

shown a video that described the procedure as 99% safe whereas the video for the second 

group of patients described the likelihood of complications as 1 in 100. When told that 

the procedure would improve quality of life but not increase life expectancy, patients that 

viewed the “99% safe” video were more likely to consent to the surgery than patients that 

viewed the “complications of 1 in 100” video.  

 Framing has specifically been shown to reduce impulsive choice. Magen, Dweck, 

and Gross (2008) found that including an explicit zero in the intertemporal choice 

scenario increased choices for delayed outcomes. In other words, participants who chose 

between $10 today and $0 in 1 week or $0 now and $100 in 1 week (explicit zero 

condition) more often selected the delayed outcome than participants that chose between 

$10 today or $100 in 1 week (implicit zero condition). Radu, Yi, Bickel, Gross and 

McClure (2011) replicated this finding using delay-discounting tasks over the course of 

several experiments.  

 Other researchers have demonstrated that framing time for the delayed outcome 

can affect delay discounting. Read, Frederick, Orsel, and Rahman (2005) demonstrated 
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that when the occurrence of the delayed outcome was framed as a specific date (e.g., July 

10, 2021), the degree of discounting for participants was less steep compared to the 

degree of discounting of participants who answered choice scenarios with occurrence of 

the delayed outcome framed in units of weeks or months (e.g., in 60 months). Other 

researchers have replicated this finding between groups (Klapproth, 2012; LeBoeuf, 

2006) and within subjects (DeHart & Odum, 2015). Additionally, DeHart and Odum 

found that participants discounted more when the delay was framed in units of days (e.g., 

9,125 days) than when time was framed in units of weeks, months, and years (e.g., 25 

years).  

 One unexplored manipulation within this paradigm is how the framing of the unit 

of the outcome affects delay discounting. For example, food is consistently discounted by 

delay more steeply than money (Friedel, DeHart, Madden, & Odum, 2014; Holt, 

Newquist, Smits, & Tiry, 2014; Odum, Baumann, & Rimington, 2006; Odum & Rainaud, 

2003), even when the objective value of the food and the money is equated. Food is often 

framed in “fuzzy” units such as servings (Friedel et al., 2014) or bites (Rasmussen, 

Lawyer, & Reilly, 2010). Servings of food are “fuzzy” because the perception of the 

amount represented can vary between individuals. This fuzzy unit framing results in a 

less precise description of the actual amount of food that is represented in the delay-

discounting task. Money, however, is always framed in the “clear” unit of dollars. A 

quantity of clear outcomes is more likely to be interpreted in the same manner across 

participants, whereas participants are more likely to differently interpret the quantity of 

fuzzy outcomes. Clear outcomes also do not require additional computation for 
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comparison between amounts. Fuzzy framed outcomes may increase delay discounting 

by increasing the computational load required to make the decision, or by requiring the 

participant to rely more heavily on decision-making heuristics (e.g., larger amounts are 

discounted less than smaller amounts regardless of the outcome unit). The exact 

mechanism, however, is unknown. 

In this study, we examined the effects of framing the outcomes in clear and fuzzy 

units on delay and probability discounting. Probability discounting tasks were included to 

investigate whether the effects of outcome unit framing were similar between delay and 

probability discounting. Comparing the results with delay discounting tasks to the results 

obtained with probability tasks is important as research suggests that delay and 

probability disocunting are separate processes, so it is unknown if fuzzy unit framing will 

affect both processes similarly (Myerson, Green, Hanson, Holt, & Estle, 2003). In 

Experiment 1, participants completed delay-discounting tasks that included both clear 

and fuzzy units of money and food. A subset of participants also completed two 

probability-discounting tasks for clear and fuzzy units of money. In Experiment 2, 

participants completed delay-discounting tasks that included clear units of dollars and 

clear units of quarters to determine if differences in handling costs between dollars and 

quarters account for the results of Experiment 1. Our prediction was that outcomes 

framed in clear units (e.g., dollars, 100 candy pieces) would be discounted less steeply 

than outcomes framed in fuzzy units (e.g., handfuls of quarters, servings). We were 

unsure, however, whether these results would generalize to probability discounting, given 

that probabilistic food rewards are not discounted differently than probabilistic money 
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(Estle, Green, Myerson, & Holt, 2007). 

 
Experiment 1 

 
 

Method 

 Participants.  Sixty participants (29 males, 31 females, mean age of 35 years) 

were recruited from the community through online advertisements via Craigslist. Prior to 

any experimental tasks we obtained informed consent from each participant and 

answered any questions they had about the study. Participants were paid $25 for 

participating. 

 Procedure. All portions of this experiment were conducted in a private office. All 

experimental tasks were controlled with custom-written E-Prime (Psychology Software 

Tools, Inc.) experimental programs. Sessions were completed within approximately 40 

minutes. The Institutional Review Board at Utah State University approved all 

procedures. 

 All participants completed four delay-discounting tasks presented in a random 

order. The delay-discounting tasks were identical except for the choice outcomes across 

tasks. Those outcomes were money in dollars (clear money), handfuls of quarters (fuzzy 

money), number of food items (e.g., 250 grapes; clear food), and servings of food (fuzzy 

food). Twenty participants also completed two probability-discounting tasks. The 

probability-discounting tasks were always experienced last to ensure that those 

participants’ choices in the delay-discounting tasks were not affected by experiencing the 

probability-discounting task. These tasks were added to investigate whether the effects of 
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framing generalized to probability discounting. The order of presentation of the two 

probability-discounting tasks was random. The choice alternative outcomes for the 

probability-discounting task were money in dollars (clear money) and handfuls of 

quarters (fuzzy money).  

 Seven indifference points were obtained for each task. The indifference point, or 

immediate amount of the outcome that is subjectively equivalent to the larger delayed or 

probabilistic outcome, was determined for each delay or probability using a titrating (e.g., 

adjusting) procedure (Du, Green, Myerson, 2002; Frye, Galizio, Friedel, DeHart, & 

Odum, 2016). Participants completed seven trials per delay or probability. On the first 

trial, participants were asked to choose between the immediate amount (1/2 of the 

delayed amount) and the larger delayed amount. Both choices were presented 

simultaneously to the participants and participants could make their choice either by 

touching the screen or by using the mouse to click a box that contained the choice text. If 

the participant chose the immediate amount, the immediate amount on the subsequent 

trial decreased by 50%. If the participant chose the delayed amount, the immediate 

amount on the subsequent trial increased by 50%. For the remaining questions, the 

immediate amount was increased or decreased by 50% of the previous titration. After the 

participant made the choice, a feedback screen displayed the text “You chose” followed 

by the text displayed on their desired choice alternative. All of the outcomes were 

hypothetical; the participants did not receive any of the outcomes associated with their 

choices. The delays for the delay-discounting tasks were: no delay (i.e., the choice 

alternatives were smaller and immediate vs. larger and immediate), 1 day, 1 week, 2 
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weeks, 1 month, 6 months, and 1 year. The probabilities for the probability discounting-

tasks were: 100% likely, 95% likely, 75% likely, 50% likely, 33% likely, 10% likely, and 

5% likely. No-delay and 100% probability conditions were included in the delay- and 

probability- discounting tasks to test the proportion of choice of the larger outcome when 

the only difference in the choices was amount. The now and 100% indifference points 

were not included in the model fits or AUC analyses. 

All of the discounting outcomes were equated to $50. The clear amount of money 

was displayed to participants as “$50.” For the clear amount of food, participants selected 

their favorite food item from a list of items. All of the items were small, easily 

quantifiable and cost approximately $0.05 per unit. The amounts of food that participants 

were asked about were determined by the amount of that food item that could be 

obtained, based on local prices, for $50. For example, the local unit price for a grape was 

$0.05, so the larger amount of grapes was 1000 for all participants. The list of food items 

was M&M’s®, grapes, Goldfish®, Skittles®, raisins, and peanuts.  

 The amounts for the participant-determined outcomes (i.e., fuzzy money and 

fuzzy food) were established by asking participants several questions. For the fuzzy 

money, all amounts of money were put in terms of “handfuls of quarters”. Participants 

were asked how many quarters they could retrieve if they reached into a bucket of 

quarters and grabbed as many as possible at one time. The participant then typed into the 

computer the number of quarters. The number of quarters the participant reported as the 

amount they thought they could retrieve from the bucket was then divided into $50 to 

give the number of handfuls used as the larger amount (for example, 20 quarters per 
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handful would mean asking about a larger amount of “10 handfuls of quarters”). For the 

servings of food condition, participants were first asked their favorite food. Participants 

were then asked how much a serving of their favorite food cost. The cost was then 

divided into $50 to give the number of servings used as the larger amount (for example, 

$5 for a serving of hamburger would mean asking about a larger amount of “10 servings 

of hamburgers”). 

 Data analysis. Results of the delay-discounting tasks were analyzed in two ways. 

First, two models of delay discounting were fit to indifference points via curvilinear 

regression. Indifference points were calculated as a proportion of the larger, delayed or 

probabilistic outcome. Indifference points for the probability discounting tasks were 

expressed as normalized indifference (indifference point amount / larger amount) as a 

function of probability (odds against; O = [1/p] - 1, where O represents odds against and 

p represents probability of obtaining the outcome), for clear money and fuzzy money. 

The no-delay and 100% probability indifference points were not included in the model 

fits. Equation 3-1 (Mazur 1987) is a one free-parameter hyperbolic model: 

     ܸ ൌ 	 

ଵା	
      (3-1) 

where V is the present (discounted) value of the delayed outcome, A is the amount of the 

delayed outcome, D is the delay to the outcome, and k is the degree to which the delayed 

outcome loses value as a function of delay. k is a free parameter that varies to produce a 

line of best fit through the data; the value of k determines the steepness of the delay 

discounting curve. We also evaluated a two free-parameter hyperbolic-like model, 

Equation 3-2 (Rachlin, 2006), which is similar to Equation 3-1 but with the addition of an 
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s parameter for the nonlinear scaling of time: 

     ܸ ൌ 	 

ଵା	ೞ
      (3-2) 

Equations 3-1 and 3-2 were fit to both group median and individual indifference 

points using curvilinear regression (Graphpad Prism®). To compare the quality of 

models, the Akaike Information Criterion (AIC) was used. To determine the quality of a 

model fit, AIC weighs the goodness-of-fit against the number of free parameters in the 

model. Therefore, if both models fit equally well, the model with fewer parameters is 

favored. The lower the AIC value, the better the quality of the fit. Inferential statistics 

were not conducted on model parameters because the k and s parameters interact in 

Equation 3-2. Therefore, a comparison of k values between tasks would be inappropriate. 

The best fitting model (based on AIC comparisons) is displayed (Franck, Koffarnus, 

House, & Bickel, 2015).  

 Delay discounting was also assessed using Area Under the Curve (AUC; 

Myerson, Green & Warusawitharana, 2001). AUC is the sum of the trapezoidal area 

between each indifference point: x2-x1[(y1+y2)/2] where x1 and x2 are successive delays 

and y1 and y2 are successive indifference points at those delays. AUC can range between 

0 and 1, with lower AUC values indicating greater delay discounting. AUCwas compared 

between conditions using generalized estimating equation (GEE) analyses and pairwise 

comparisons. GEE analysis is a regression technique for repeated dependent variables 

that are correlated (Hanley, Negassa, Edwardes, & Forrester, 2003). A Bonferroni 

adjustment was applied to all pairwise comparisons. For all analyses, the no-delay 

indifference points were not included in model fits or AUC comparisons but were 
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analyzed separately. Data from all participants were included in the analyses.  

 
Results 

Two key analyses are presented. First, the results of the model fits to group 

median and individual indifference points are reported and the best fitting model is 

identified. Second, the results of the GEE analysis are reported.  

 Model fits. The two models of discounting were first fit to the group median 

indifference points for each task using nonlinear regression. Table 3-1 reports the model 

fit parameter estimates (k and s) as well as the goodness of fit and quality of fit measures 

(R2 and AIC). Equation 3-1 was the better fitting model (lower AIC value) for clear 

delayed money, clear probabilistic money, and fuzzy probabilistic money. Equation 3-2 

was the better fitting model for fuzzy money, clear food, and fuzzy food.  

 Figure 3-1 displays the model fits for all six outcomes. The best fitting model 

(lower AIC) is displayed for each outcome. Indifference points for all outcomes  

 
Table 3-1 
 
Experiment 1: Equation 3-1 (Hyperbolic) vs. Equation 3-2 (Hyperboloid) Model Fits to 
Group Median Indifference Points 
 

  Hyperbolic (Mazur, 1987) 
──────────────── 

Hyperbooid (Rachlin, 2006) 
────────────────────── 

Condition Outcome k R2 AIC k s R2 AIC 

Delay Clear money 0.005 .985 12.45 0.011 0.869 .993 18.15 

Delay Fuzzy money 0.026 .824 27.38 0.107 0.590 .973 26.05 

Delay Clear Food 0.037 .754 28.48 0.164 0.527 .973 25.29 

Delay Fuzzy food 0.186 .757 27.32 0.470 0.535 .962 26.21 

Probability Clear money 0.076 .993 11.07 1.068 0.947 .994 20.47 

Probability Fuzzy money 0.994 .996 8.33 0.994 1.00a .996 18.33 
Note. Bold model fit values indicate a superior model fit. a indicates that the parameter estimate would have 
exceeded the constraint. 
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Figure 3-1. Discounting functions for clear and fuzzy framed outcomes. Delay 
discounting functions for clear and fuzzy unit outcomes. Points show median indifference 
points for $50, converted to proportion larger-later, as a function of delay. Lines show the 
best-fitting discounting functions for each task. Equation 3-1 is displayed for clear 
delayed money, clear probabilistic money, and fuzzy probabilistic money whereas 
Equation 3-2 is displayed for fuzzy delayed money, clear delayed food, and fuzzy 
delayed food. The no-delay condition indifference points are not presented in the model 
fits. 
 

 
decreased as a function of delay. Overall, money was discounted less by delay than was 

food. Clear-framed money was discounted less than fuzzy-framed money. Clear-framed 

food was also discounted less than fuzzy-framed food. There was no effect of framing on 

the indifference points from the probability discounting tasks for money. 

 Next, the two models of delay discounting were fit to the indifference points for 

each participant. Table 3-2 reports the median R2 and AIC values for model fits to 

individual participant data. Equation 3-1 provides a better quality of fit (i.e., lower AICc 

value) for all tasks at the individual participant level, despite Equation 3-2 having a 

higher R2 value. This finding suggests that the additional goodness of fit provided by 

Equation 3-2 (compared to Equation 3-1) does not justify the greater complexity of that 

model. The model fits for money (delayed and probabilistic) were better than the model 

fits for food. 

The difference in the quality of fits between clear and fuzzy framed outcomes was  
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Table 3-2 

Experiment 1: Median Fit Values of Equation 3-1 (Hyperbolic), and Equation 3-2 
(Hyperboloid) Model Fits to Individual Indifference Points 
 

Condition Outcome 
Median R2 

Mazur 
Median AIC 

Mazur 
Median R2 

Rachlin 
Median AIC 

Rachlin 

Delay Clear money 0.861 25.85 0.899 32.51 

Delay Fuzzy money 0.702 28.47 0.826 30.84 

Delay Clear food  0.546 28.51 0.816 33.79 

Delay Fuzzy food 0.031 31.90 0.685 34.09 

Probability Clear money 0.928 -22.60 0.962 -15.29 

Probability Fuzzy money 0.875 -19.67 0.918 -14.04 
Note. Median R2 value is the median of the R2 values for the model fits to individual participant 
indifference points. Median AIC value is the median of the AIC values for the model fits to individual 
participant indifference points. Bold values indicate the superior fitting model. 
 

compared by conducting a Wilcoxon matched-pairs test (e.g., nonparametric t test) on the 

R2 values of the model fits to individual data. A nonparametric test was chosen because 

of the highly skewed distribution of R2 values. The R2 values derived from Equation 3-1 

(Mazur, 1987) were used in the analyses because the median AIC score for individual fits 

favored Equation 3-1 in all cases. A statistically significant difference in the overall 

model fits was found between clear and fuzzy money (W = -643, p < .001) and clear and 

fuzzy food (W = -523, p < .05). This result indicates that Equation 3-1 fit clear-framed 

outcomes better than fuzzy outcomes. 

 Generalized estimating equation. GEE analyses were conducted to investigate 

the overall effects of clear versus fuzzy framing as well as the differences between 

individual tasks. Probability discounting results were not included in this model because 

visual analyses indicate that unit framing had no effect on probability discounting. Table 

3-3 reports the parameter values for each factor. An unstructured correlation matrix was 

included in the model to control for the correlation between repeated measures. A  
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Table 3-3  
 
Generalized Estimating Equation Results 
 

Coefficient β Robust S.E. Robust z 

Intercept 0.821 0.086 9.500*** 
Framing condition -0.186 0.048 -3.841*** 
Task type -0.129 0.039 -3.349*** 

Note. Framing condition coefficient represents change from clear to fuzzy 
framing. 
 
*** p < .001. 

 

statistically significant main effect for the framing condition was found with a 0.186  

average reduction in AUC in the fuzzy framing condition, indicating that fuzzy-framed 

outcomes were discounted more steeply than clear-framed outcomes. A statistically 

significant main effect for task type was also found. Pairwise comparisons revealed a 

statistically significant difference between clear money and fuzzy money (MD = 0.177, p 

< .01), clear money and clear food (MD = 0.166, p < .01), clear money and fuzzy food 

(MD = 0.250, p < .001) and clear food and fuzzy food (MD = 0.084, p < .05).  

Figure 3-2 reports the mean AUC values with standard error bars for the delayed 

money and food conditions. The brackets identify significant pairwise comparisons as 

determined by the GEE analysis. Consistent with the indifference points displayed in 

Figure 3-1, Figure 3-2 shows that clear-framed outcomes were discounted less steeply by 

delay than were their fuzzy-framed alternatives. Also, fuzzy-framed money was 

discounted similarly to clear-framed food and fuzzy-framed food was discounted the 

most of any outcome. 
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Figure 3-2. Graphic depiction of generalized estimating equation results. Mean area 
under the curve with structural equation model. Brackets connote statistically significant 
pairwise comparison. Asterisks indicate statistically significant differences. 

 

 
We also analyzed the no-delay and 100% probability indifference points across all 

participants in all delay- and probability-discounting tasks in Experiment 1. These 

conditions were included to investigate if participants will choose the larger outcome 

when there is no delay or if the outcome is guaranteed. Most participants reliably selected 

the larger option (i.e., for most participants, the indifference point was greater than 80% 

of the larger outcome) when both outcomes were immediate. However, the proportion of 

individuals who did not select the larger option (i.e., the proportion of people whose 

indifference points were not greater than 80% of the larger outcome) when the outcomes 

were immediate were 0.017 for clear delayed money, 0.186 for fuzzy delayed money, 

0.322 for clear delayed food, and 0.458 for fuzzy delayed food, 0.050 for clear 

probabilistic money, and 0.050 for fuzzy probabilistic money. For the majority of cases, 

when participants chose a smaller amount of food over a larger amount of food in the 

now condition, the indifference point for the first delay was larger. 
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 Finally, AUC for each outcome was correlated to AUC for all other outcomes to 

investigate how the discounting of outcomes was related within individuals (Table 3-4). 

Pearson correlations were conducted on all possible outcome pairings. All outcomes from 

the delay-discounting tasks were moderately to strongly correlated indicating that how 

steeply one outcome was discounted was directly related to how steeply other outcomes 

were discounted.  

 
Discussion 

The goal of Experiment 1 was to extend the previous research on framing (DeHart 

& Odum, 2015) in delay-discounting tasks to the framing of the outcomes. Traditionally, 

monetary outcomes are framed as dollars (Bickel et al., 1999; Green, Myerson, Oliveira, 

& Change, 2013; Rachlin, Raineri, & Cross, 1991) whereas food outcomes are framed as 

servings or bites. In Experiment 1, we found that framing monetary outcomes in fuzzy 

units (i.e., handfuls of quarters) resulted in steeper discounting than when monetary 

outcomes were framed in clear units (i.e., dollars). We also found that framing food in 

clear units (e.g., 250 grapes) resulted in less discounting than when food was framed in  

 
Table 3-4 

Correlation Matrix 

Task Clear money Fuzzy food Clear food 

Fuzzy money 0.752*** 0.433** 0.339* 

Clear food 0.558*** 0.401***  

Fuzzy food 0.413**   

* p < .05. 
** p < .01. 
*** p < .001 
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fuzzy units (e.g., 25 servings). However, a direct comparison between the two food tasks 

is limited. In the clear food condition, participants chose a food outcome from a list of six 

food options previously selected by the researchers. In the fuzzy food condition, 

participants were asked about their favorite food. For most participants, the food choices 

were different for the two tasks. Finally, unit outcome framing did not affect discounting 

of probabilistic outcomes, providing additional evidence that delay and probability 

discounting are not affected the same way by some manipulations (Myerson et al., 2003). 

These findings provide further evidence that differential framing of the outcome can 

change how delayed outcomes are discounted.  

One novel finding in the food delay-discounting tasks is that a large percentage 

(32-45%) of participants did not choose the larger outcome when both outcomes were to 

be delivered immediately. Many participants elected to receive a smaller amount of food 

now instead of a larger amount of food now, but almost exclusively choose the larger 

amount of money in the same scenario. Such behavior is not necessarily irrational in 

regards to food, but does limit direct comparisons between the discounting of money and 

food. For example, an individual may prefer one pizza now over 100 pizzas now because 

that individual can only consume one pizza and imagines that most of the 100 pizzas 

would be wasted. Research has indicated that humans have an aversion to waste (Bolton 

& Alba, 2012). Though we did not explicitly state food storage options, it is possible that 

participants interpreted that larger amounts of food would be wasted. Importantly, the 

indifference point for the first delay was typically larger than the now condition 

indifference point. Therefore, it was not possible to include the now indifference point in 
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the model fit analyses. Further research should investigate if informing participants that 

they do not have to eat all of their food choice at that moment but can instead prepare to 

store surplus food reduces the proportion of participants that choose a smaller amount in 

the now condition. 

Finally, the model fits for clearly framed outcomes were superior to fuzzy framed 

outcomes. One possibility, which does not appear to be the case, is that fuzzy-framed 

outcomes are discounted less hyperbolically than clear-framed outcomes. To evaluate this 

possibility, we fit the hyperbolic model (Equation 3-1) and an exponential model 

(Samuelson, 1937) to the individual data from Experiment 3-1 for clear and fuzzy framed 

money and food. The hyperbolic model (Equation 3-1) was favored over the exponential 

model for all outcomes, although the proportion of data sets for which the hyperbolic 

model was favored differed between clear and fuzzy framed outcomes. Sign tests were 

conducted to determine how likely the reported proportion of hyperbolic model fits to 

exponential model fits would be found due to chance. In all cases, the sign test results 

were statistically significant suggesting that the proportion of hyperbolic model fits was 

larger than would be expected by chance. The hyperbolic model fit to individual 

indifference points was chosen (had a lower AIC) over an exponential model fit to 

individual indifference points in 38 of 59 individuals (p < .05) in the clear money 

condition and 51 of 59 individuals (p < .001) in the fuzzy money condition. The 

hyperbolic model fit to individual indifference points was also chosen over the 

exponential model fit to individual indifference points in 43 of 59 individuals (p < .001) 

in the clear food condition and 52 of 59 individuals (p < .001) in the fuzzy food 
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condition.  

Another possible explanation for the finding that fuzzy-framed outcomes yielded 

lower R2 values than clear-framed outcomes is that fuzzy-framed outcomes produced less 

orderly data than clear-framed outcomes. This possibility does appear to be the case. Two 

suggested criteria for identifying nonsystematic data were applied to the data (Johnson & 

Bickel, 2002). The first criterion identifies participant data for which an indifference 

point is larger than the previous indifference point by 20% of the amount of the delayed 

outcome. The second criterion identifies participant data in which the final indifference 

point is larger than 90% of the first indifference point. More participant data met at least 

one of the two suggested criteria for identifying nonsystematic discounting when the 

outcomes were framed in fuzzy units than when the outcomes were framed in clear units 

(48 out of a total of 118 for fuzzy-framed outcomes versus 25 out of 118 for clear-framed 

outcomes; ߯ଶ = 9.073, p < .01). Thus, fuzzy-framed outcomes resulted in a greater degree 

of discounting by delay as well as less systematic patterns of discounting compared to 

clear-framed outcomes. 

 
Experiment 2 

 
 

 One possible explanation for the finding that fuzzy money is discounted more 

than clear money is the increased handling cost associated with the fuzzy option (i.e., 

having $10 in quarters is more burdensome than having a $10 bill). The goal of 

Experiment 2 was to investigate the difference in delay discounting of quarters and 

dollars when both outcomes are framed using clear units. On one hand, if the difference 
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in delay discounting found in Experiment 1 was due to increased handling costs, quarters 

should be discounted more than dollars. On the other hand, if the difference was due to 

clear versus fuzzy outcome unit framing, quarters should be discounted similarly to 

dollars.  

 
Method 

Participants. Twenty-three participants (19 males, 4 females, mean age of 20 

years) were recruited from introductory courses at Utah State University via an online 

recruitment tool. Prior to any experimental tasks we obtained informed consent from each 

participant and answered any questions about the study. Participants received course 

credit for participating. 

Procedure. All portions of this experiment were conducted in a private office. All 

experimental tasks were controlled with custom-written E-Prime (Psychology Software 

Tools, Inc.) experimental programs. Sessions were completed within 20 minutes. The 

Institutional Review Board at USU approved all procedures. 

 Participants completed two randomly presented tasks: discounting of delayed 

money for $50 (displayed in dollars), discounting of delayed money for $50 (in units of 

quarters). The adjusting amount procedure (Du et al, 2002; Frye et al., 2016) was used to 

establish indifference points and was identical to the procedure described for Experiment 

1.  

 
Results 

Equation 3-1 and Equation 3-2 were fit to the group median indifference points 



56 
 

 

(with the exception of the no-delay data indifference point) for each task using nonlinear 

regression. The no-delay indifference points were not included because they did not 

differ from the one-day indifference points. Table 3-5 reports the parameter estimates and 

goodness and quality of fit measures (R2 and AIC) for each model. Equation 3-1 (Mazur, 

1987) was a higher quality fit for all conditions. Equation 3-1 and Equation 3-2 were also 

fit to individual participants’ indifference points. Table 3-6 reports the median R2 and 

AIC values for model fits to individual participant data. Equation 3-1 provides a better 

quality of fit (i.e., lower AICc value) for all tasks at the individual participant level, 

despite Equation 3-2 having a higher R2 value. This finding shows that the additional 

goodness of fit provided by Equation 3-2 (compared to Equation 3-1) does not justify the 

greater complexity of that model. 

The left panel of Figure 3-3 shows the line of best fit (Equation 3-1) for the 

median indifference points (with the exception of the no-delay indifference point) for 

dollars and quarters. Indifference points for $50 and 200 quarters decreased as a function 

of delay. Dollars and quarters were discounted similarly. To provide a summary measure 

of the steepness of discounting, the right panel of Figure3-3 shows mean AUC compared 

 
Table 3-5 
 
Experiment 2: Equation 3-1 (Hyperbolic) vs. Equation 3-2 (Hyperboloid) Model Fits to 
Group Median Indifference Points 
 

  Hyperbolic (Mazur, 1987) 
──────────────── 

Hyperboloid (Rachlin, 2006) 
────────────────────── 

Condition Outcome k R2 AIC k s R2 AIC 

Delay Dollars 0.003 .909 18.98 0.012 0.711 .939 26.61 

Delay Quarters 0.002 .909 19.52 0.002 1.000a .909 29.55 
Note. Bolded model fit values indicate a superior model fit. The a indicates that the model arrived at the 
parameter constraint. 
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Table 3-6 
 
Experiment 2: Median Fit Values of Equation 3-1 (Hyperbolic), and Equation 3-2 
(Hyperboloid) Model Fits to Individual Indifference Points 
 

Condition Outcome 
Median R2 

Mazur 
Median AIC 

Mazur 
Median R2 

Rachlin 
Median AIC 

Rachlin 
Delay Dollars 0.752 24.15 0.871 27.32 
Delay Quarters 0.867 23.22 0.922 33.21 

Note. Median R2 value is the median of the R2 values for the model fits to individual 
participant indifference points. Median AIC value is the median of the AIC values for the 
model fits to individual participant indifference points. 
 

 

 
Figure 3-3. Discounting functions and AUC comparison of 50 dollars and 200 quarters. 
Left Panel: Delay discounting functions for money when the outcome unit was expressed 
as dollars (closed circles) or quarters (open circles). Points show median group 
indifference points for $50, converted to proportion larger-later, as a function of delay. 
Lines show the best-fitting discounting functions for each task. Equation 3-1 is displayed 
for both outcomes. Right Panel: mean AUC from individual participants with SEM bars. 
 

 
across outcomes (dollars and quarters). There was no significant difference in AUC 

between dollars (M = 0.653, SEM = 0.060) and quarters (M = 0.736, SEM = 0.068; t(23) 

= 0.320, p = .752, d = 0.057). Area Under the Curve for dollars and quarters was 

significantly positively correlated (r = 0.788, p < .001) demonstrating that how one 

outcome was discounted was strongly related to how the other outcome was discounted. 

Finally, we analyzed the no-delay indifference points. All participants chose the larger 
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immediate outcome over the smaller immediate outcome for both the $50 and $50 in 

quarters conditions.  

 
Discussion 
 

Experiment 2 sought to clarify the results of Experiment 1 by framing the unit 

outcome as clear units of dollars or clear units of quarters. Although dollars and quarters 

were both discounted by delay in an orderly manner, there was no difference in the 

degree of discounting by delay between them. This finding suggests that the difference in 

delay discounting between clear money (dollars) and fuzzy money (handfuls of quarters) 

in Experiment 1 was not a result of the increased handling cost of handfuls of quarters. If 

the difference in Experiment 1 were due to handling costs, we would have expected 

quarters to be discounted more than dollars regardless of framing.  

 
General Discussion 

 
 

The purpose of these experiments was to further explore the effects of framing on 

delay discounting. Previous research has demonstrated that differential framing of delay 

to the receipt of the larger outcome can affect delay discounting (Read et al., 2005; 

DeHart & Odum, 2015); however, this is the first study to extend those findings to 

framing of the unit of the outcome. In Experiment 1, we demonstrated that framing the 

outcome in clear units (e.g., $50, 100 pieces of candy) resulted in less discounting than 

framing the outcome in fuzzy units (e.g., 4 handfuls of quarters, 2 servings of pizza). 

Experiment 2 clarified that the difference in discounting of money framed in dollars 

versus money framed in quarters is likely not due to the increased handling cost of 
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quarters. How framing affects delay discounting, however, remains unclear. Finally, 

delay discounting was strongly correlated across outcomes, indicating that how one 

outcome is discounted is predictive of how other outcomes are discounted. 

Research suggests that the value of an outcome is not absolute, but is strongly 

influenced by context (Lempert & Phelps 2016). Context can incorporate a variety of 

concepts including the presence of outcome-related stimuli, previously made choices, and 

motivational states of the individual. For example, one important context is how an 

outcome compares to other available outcomes (Kahneman & Tversky, 1991). Dai, Grace 

and Kemp (2009) found that if participants completed a delay-discounting task for a 

small amount of money ($50) first, they discounted $500 less on a subsequent task. 

However, if participants first completed a delay-discounting task for a large amount of 

money ($5,000), they discounted $500 more on a subsequent task compared to the first 

group. In our experiments, the framing of the unit of the outcome served as the context 

manipulation.  

There are several possible explanations for why outcomes framed in clear units 

were discounted less by delay than outcomes framed in fuzzy units. The simplest 

explanation is that larger numbers (i.e., $50) are discounted less steeply than smaller 

numbers (i.e., 5 handfuls of quarters). The tendency to discount larger numbers less then 

smaller numbers of an outcome, the magnitude effect, has been consistently demonstrated 

(e.g., Green, Myerson, & McFadden, 1997; Green et al., 2013; Kirby, 1997). A variety of 

processes may be involved that account for magnitude effects, beyond the objective 

magnitude of the numerical representation of the outcome, such as satiation in non-
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monetary outcomes, etc. However, regardless of the process, neurological evidence 

supports the finding that large numbers are evaluated differently from small numbers. 

Arshad et al. (2016) demonstrated that different neural systems are involved in the 

processing of small and large numbers, which may result in different delay discounting 

processes for large and small amounts. It is possible that the observed difference in delay 

discounting between clear and fuzzy money in Experiment 1 is a result of the clear 

condition presenting larger numbers than the fuzzy condition. However, in Experiment 2, 

no difference was found between discounting of $50 and 200 quarters, suggesting that the 

difference in numerical amount did not account for the observed differences, but instead 

is something unique to fuzzy framing. Further research should combine a wider range of 

magnitudes (e.g., thimblefuls vs. handfuls) and delays to rule out alternative explanations. 

Attentional processes may explain the way participants simplified the choice 

scenario to “big versus small.” Radu et al. (2011) demonstrated that the inclusion of an 

explicit 0 in the framing of the immediate and delayed outcomes decreased choice of 

smaller-sooner outcomes. They posit that the inclusion of an explicit 0 shifts attention 

from the now option to the delayed option. Differential framing of the outcome may 

serve to shift attention from the more complex complete unit (amount + unit) to the 

amounts. For example, the fuzzy framing of the handfuls of quarters may have caused an 

attentional shift from the more complicated objective amount of the outcome (e.g., 10 

handfuls of quarters = $40) to simply focusing on the numerals of the choice (e.g., 10 

handfuls of quarters = 10).  

Individual differences in numeracy may also explain why, for some individuals, 
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outcomes that are framed in fuzzy units are discounted more steeply than outcomes 

framed in clear units. Numeracy refers to an individual’s ability to understand basic 

mathematical concepts such as amount, distance, and probability (Lipkus, Samsa, & 

Rimer, 2001). Research in numeracy has shown that individual differences in number 

processing ability influence how strongly framing manipulations affect decision making 

(Peters et al., 2006). Participants high in numeracy are more likely to process the entire 

choice decision (e.g., amounts, probability, etc.) whereas participants low in numeracy 

are more strongly influenced by how the decision is framed. Individuals low in numeracy 

may have been primarily responsible for the effects of framing on delay discounting 

because they were unable to translate the fuzzy framed outcomes into their clear 

equivalents. Future research should explore numeracy as a possible moderator of the 

effects of framing on delay discounting.  

Finally, more complex framing may require greater effort to fully evaluate the 

choice and this increase in effort may result in steeper discounting. Previous findings 

indicate that as the required cognitive resources of evaluating a choice increases, the 

propensity for impulsive decision making increases (Deck & Jahedi, 2015). This finding 

has been extended to delay discounting. Hinson, Jameson and Whitney (2003) found that 

taxing working memory in participants through various techniques resulted in greater 

delay discounting (see Franco-Watkins, Rickard, & Pashler, 2010 for an alternative 

explanation of the effects of taxing working memory on delay discounting). Bickel et al. 

(2011) further investigated the relation between working memory and delay discounting. 

Participants that received working-memory training reported a decrease in delay 
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discounting whereas participants in the control group did not. Certain ways of framing 

have been shown to increase the effort required to make a choice (Gonzalez, Dana, 

Koshino, & Just, 2005; Kuo, Hsu, & Day, 2009), which in turn may tax working memory 

and increase delay discounting. For example, Gonzalez et al. found that outcomes framed 

as a sure gain resulted in lower neural activity (suggesting lower effort in evaluating the 

choice) than when outcomes were framed as an uncertain gain. 

We also found that for the discounting of food, participants did not consistently 

choose the larger outcome when there was no delay to its receipt. In human discounting 

research, participants are seldom asked to choose between small and large outcomes that 

are both immediately received. Not consistently choosing the largest possible outcome 

may be attributed to avoiding waste (Bolton & Alba, 2012) but there is another possible 

explanation.  

Paglieri, Addessi, Sbaffi, Tasselli, and Delfino (2015) theorize that one 

explanation for the difference in delay discounting between outcomes is not due to the 

differential effects of delay on those outcomes but is a result of differing baseline 

motivations to maximize those outcomes. Similar to our findings, Paglieri et al. found 

that participants were more likely to maximize (e.g., choose the largest possible outcome) 

monetary outcomes than food outcomes. Paglieri et al. posit that one method to measure 

baseline motivation is to measure preference for different amounts of the outcome in the 

absence of delay. Future research should devise methods of incorporating baseline 

motivation into the theoretical models of delay discounting. 

Finally, we found that delay discounting was significantly correlated across 
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outcomes. People who showed relatively steep discounting for one outcome were likely 

to show relatively steep discounting for another outcome. This finding was true 

regardless of the framing condition. Previous research has also found that delay 

discounting is correlated across different outcomes (Friedel, et al., 2014, 2015) and 

framing conditions (DeHart & Odum, 2015). This finding adds to the growing body of 

evidence that delay discounting has trait-like characteristics (Odum, 2011) meaning that 

it is consistent within individuals across outcomes and also across time (Kirby, 2009). 

In conclusion, we have extended the findings of the effects of framing on delay 

discounting to include outcome-unit framing. Regardless of the mechanism of how 

framing affects delay discounting, how the choice is presented can have an important 

impact on decision-making. One benefit of using framing to reduce impulsivity is that it 

can be relatively easy to employ. Although more intensive interventions have proven 

effective at reducing delay discounting such as working-memory training (Bickel et al., 

2011) and mindfulness interventions (Morrison et al., 2014), framing provides a 

relatively simple way of affecting choice. For example, retirement savings could be 

increased or unhealthy eating behaviors decreased by properly framing relevant choice 

scenarios for the decision-maker. Interventions aimed at training individuals to take more 

time and attend fully to the choice may also reduce impulsivity. Miu and Crişan (2011) 

demonstrated that instructing participants to assess a choice carefully and increase 

decision-making time (e.g., cognitive reappraisal) improved economic decision making. 

A similar strategy could be extended to delay discounting by training individuals to 

reframe choice scenarios in a way that encourages self-control. Framing presents a 
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promising avenue for better understanding the mechanisms of delay discounting as well 

as developing better methods for behavioral change. 
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CHAPTER 4 
 

A LATENT DISCOUNTING MODEL: STRUCTURAL EQUATION 
 

MODELING ANALYSES OF DELAY DISCOUNTING 
 
 

Introduction 
 
 

 Substance abuse, both illicit and nonillicit, costs more than half a trillion dollars 

per year in health care, lost productivity, crime, incarceration, and law enforcement 

(National Institute on Drug Abuse [NIDA], 2008). Unfortunately, substance abuse 

treatments are moderately effective at best, with 40-60% of participants experiencing 

relapse (NIDA, 2012). It is necessary to understand the psychological processes related to 

addiction if substance abuse treatments are to be improved. One process related to 

substance abuse is impulsive choice, as measured by delay discounting, which can be 

defined as choosing an immediate outcome over a larger delayed outcome (de Wit, 

2008).  

Various costly behaviors, including cigarette smoking (Bickel, Odum, Madden, 

1999; Friedel, DeHart, Frye, Rung, & Odum, 2016; Friedel, DeHart, Madden, & Odum, 

2014), cocaine (Coffey, Gudleski, Saladin, & Brady, 2003; Heil, Johnson, Higgins, & 

Bickel, 2006), methamphetamine (Hoffman et al., 2006), heroin (Madden, Petry, Badger, 

& Bickel, 1997), and alcohol (Petry, 2001) abuse can all be conceptualized as choosing 

the smaller, immediate outcome of substance abuse over the larger, delayed outcome of 

improved health and avoidance of negative legal and social consequences. Other costly 

behaviors such as risky sexual activity (Herrmann, Johnson, & Johnson, 2015; Reimers, 
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Maylor, Swewart, & Chater, 2009), obesity (Fields, Sabet, Peal, & Reynolds, 2011; 

Fields, Sabet, & Reynolds, 2013; Weller, Cook, Edwin, Avsar, & Cox, 2008), and 

problematic gambling (Petry, 2001; Reynolds, 2006) show similar relationships, with 

greater impulsivity positively correlating with participation in the risky behavior. 

Because of its pervasive relationship to many maladaptive behaviors, delay 

discounting has been referred to as a “trans-disease” process (Bickel, Jarmolowicz, 

Mueller, Koffarnus, & Gatchalian, 2012; Bickel, Koffarnus, Moody, & Wilson, 2014). In 

this view, delay discounting is a general process that underlies impulsive decision-

making. Individuals that discount delayed outcomes steeply are at a higher risk for 

engaging in these behaviors. Some evidence exists to support that steep delay discounting 

precedes acquisition of such behaviors. Using a longitudinal design, Audrian-McGovern 

et al. (2009) found that steep delay discounting predicted acquisition of cigarette smoking 

and that delay discounting did not increase as a function of smoking acquisition. Fernie et 

al. (2013) similarly found that steep delay discounting predicted future problematic 

alcohol use in adolescents. They also did not find that alcohol use increased delay 

discounting. Evidence that steep delay discounting precedes addiction does not exclude 

the possibility that substance abuse also increases delay discounting (Landes, 

Christensen, & Bickel, 2012). There is a growing body of evidence that suggests that 

steep delay discounting plays a causal role in substance abuse acquisition and therefore 

supports the trans-disease theory. 

 Delay discounting could be referred to as trait (Odum, 2011) because it is 

consistent across time and by outcome. How an individual discounts one delayed 
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outcome is strongly correlated with how they discount other delayed outcomes, providing 

further evidence for the general process view of delay discounting. Friedel et al. (2014) 

found that how an individual (both smokers and nonsmokers) discounted one outcome 

significantly correlated with how they discounted other outcomes. For example, a 

participant that steeply discounted delayed money was also likely to steeply discount 

delayed food, alcohol, and music. In a separate study, Friedel et al. (2016) also found that 

the delay discounting of qualitatively different outcomes (e.g., health and money) was 

strongly correlated within individuals. In one example, how participants discounted a 

monetary gain and a temporary improvement in overall health function was strongly 

correlated. Although some exceptions exist (Lawyer & Schoepflin, 2013), an individual 

that discounts one delayed outcome steeply will tend to discount other delayed outcomes 

steeply as well. 

 Finally, the general process/trait view of delay discounting is supported by the 

temporal consistency of delay discounting. Ohmura, Takahashi, Kitamura, and Wehr 

(2006) demonstrated that delay discounting, including individual indifference points, was 

stable over the course of three months. Kirby (2009) found that without intervention, 

delay discounting was stable over a year. In summary, these findings support the view of 

delay discounting as a trait because of its consistency between outcomes and across time. 

 One of the most widely used theoretical models of delay discounting, the 

hyperbola (Mazur, 1987), reflects this general process view. In this hyperbolic model 

(Equation 4-1),  

     ܸ ൌ 	 

ଵା
	     (4-1) 
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A is the amount of the delayed outcome, D is the delay and k is a free parameter that 

measure the rate at which the delayed outcomes lose value. Historically, Mazur derived 

this equation from the Matching Law and specifically from the idea that delay reduces the 

reinforcing value of an outcome (Mazur, 1987; Rachlin, 2006). In this context k is a 

descriptor that quantifies the effects of delay on reinforcer value. However, the parameter 

k may also represent the combination of different underlying psychological processes that 

combine to result in a reduction of the reinforcing value of a delayed outcome.  

 An alternative view of delay discounting posits that the devaluation of delayed 

outcomes as measured by delay-discounting tasks is the aggregate of multiple 

psychological processes. Individual differences in any one of these aggregated processes 

may in turn account for the differences in delay discounting found between groups. Some 

proposed psychological processes have been included in quantitative models of delay 

discounting such as nonlinear time perception, nonlinear amount perception, and 

marginal utility and cardinal utility.  

 
Time Perception 

Nonlinear time perception is one underlying process that has been explicitly 

incorporated into quantitative models of delay discounting. A vast body of literature has 

explored human (Grondin, 2001; Wearden, 1991; Zauberman, Kim, Malkoc, & Bettman, 

2008) and nonhuman (Crystal, 2001) time perception and the general finding is that time 

is perceived nonlinearly. As with many psychophysical processes, the Weber-Fechner 

law describes subjective time perception as a logarithmic function (Dehaene, 2003; 

Grondin, 2001). For example, the perceived temporal distance between 1 week and 2 
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weeks is greater than the perceived temporal distance between 50 weeks and 51 weeks, 

despite the objective distance between the two being equal. 

Two extensions of the hyperbolic model (Equation 4-1; Mazur 1987) incorporate 

the nonlinear perception of time. Myerson and Green (1995; Equation 4-2) proposed an 

additional free parameter: 

     ܸ ൌ 	 

ሺଵାሻೞ
      (4-2) 

in which s scales for delay and/or amount. Rachlin (2006; Equation 4-3) proposes a 

similar model: 

     ܸ ൌ 

ଵାೞ
     (4-3) 

in which s only scales delay. Importantly, both of these models frequently fit delay-

discounting results better than the hyperbolic model (Franck, Koffarnus, House, & 

Bickel, 2015; McKerchar et al., 2009). 

One difficultly of validating the inclusion of nonlinear time perception in the 

modeling of delay discounting in the above models is that k and s share variance. 

Therefore, examining the independent contributions of nonlinear time perception on the 

devaluation of delayed outcomes is not possible in these models. However, other research 

has found a relation between time perception and delay discounting. 

Using a temporal bisection task, Baumann and Odum (2012) investigated the 

relationship of delay discounting and timing, as measured by a temporal bisection task. In 

the temporal bisection task, participants were asked to categorize the duration of a circle 

(range of 2-4 s) as either short or long, in reference to short (2 s) and long (4 s) 

comparison stimuli. They reported a moderate positive correlation (r = 0.228) between 
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delay discounting and timing as measured by the temporal bisection task, meaning that an 

overestimation of time was related to greater delay discounting. Importantly, they did not 

find a significant correlation between probability discounting and timing. 

On a larger time-scale than the temporal bisection task, Zauberman et al. (2008) 

further demonstrated that nonlinear time perception is one underlying components of 

delay discounting. Participants indicated on a number line how far into the future they 

perceived a delay to be. Participants did not report linear increases in subjective time 

perception as objective time increased. Instead, the researchers found that subjective time 

increased logarithmically as objective time increased, further supporting that Weber-

Fechner Law’s description of time perception is valid. The researchers also found 

evidence that logarithmic time perception accounts for why delayed outcomes are 

discounted hyperbolically (e.g., devaluation occurs rapidly at short delays and then slows 

and long delays). By statistically controlling for logarithmic time perception, the 

researchers found that the discounting of delayed money was consistent across time (e.g., 

exponential discounting).  

Further supporting the role of logarithmic time perception in delay discounting, 

Takahashi (2005) presented a mathematical proof that demonstrates that by incorporating 

logarithmic time perception into exponential discounting (e.g., the rate of devaluation of 

a delayed outcome is constant across delays), delay discounting becomes hyperbolic-like. 

Specifically, Takahashi derives the Myerson and Green (1995) hyperboloid. This 

mathematical proof further supports the role of time perception as a key component of the 

delay discounting process.  
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Amount Perception and Utility 

 The nonlinear perception of amount may also influence how delayed outcomes 

are discounted. Halberda, Mazzocco, and Feigenson (2008) found individual differences 

in the accuracy of amount perception using pictures that displayed two groupings of 

colored (blue and yellow) dots. Participants were asked to indicate which group, blue or 

yellow, had more dots. Their findings suggest a nonlinear decrease in accuracy of amount 

perception as the difference between the two groups of colored dots decreased. Ren, 

Nicholls, Ma, and Chen (2011) found shared neurological processes for estimating the 

magnitude of a number, physical size of an object, and luminance, which indicates that 

amount is also perceived logarithmically.  

 Quantitative models of delay discounting have also incorporated nonlinear 

amount perception; however, with similar problems as time perception in that s and k 

cannot be investigated independently. The s parameter in Equation 4-2 (Myerson & 

Green, 1995) is actually a ratio that describes the nonlinear scaling of both time and 

amount. Roelofsma (1996) also presented a model that assumes nonlinear amount-

perception and applies a Weber-Fechner law scaling to both the amount of the outcome 

and time.  

The perceived utility of the outcome, and not just its objective amount, may also 

serve as an underlying components of delay discounting. Utility is a complex term that 

can refer to a variety of qualities of an outcome including the increase in subjective value 

from a unit increase in the outcome (marginal utility) and the hedonic (e.g., pleasure) 

value that a unit of an outcome brings (cardinal or experienced utility; Kahneman, 
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Wakker, & Sarin, 1997). Like time perception, utility appears to be perceived nonlinearly 

(Harinck, Van Dijk, Van Beest, & Mersmann, 2007). For example, the increase in the 

utility of receiving $100 compared to $10 is not 10 times greater. Assuming logarithmic 

marginal utility, the increase in utility from $10 to $100 is closer to four times greater. 

Other researchers have posited that similar conceptualizations of utility may play 

an important role in the discounting of delayed outcomes. The utility of an outcome, in 

part, may manifest in delay discounting tasks through the motivation to obtain that 

outcome. Paglieri, Addessi, Sbaffi, Tasselli, and Delfino (2015) theorize that one 

explanation as to why different outcomes are discounted at different rates (e.g., money 

vs. food; Friedel et al., 2014) is the motivation to obtain that outcome is different. 

Paglieri et al. suggest that the motivation to obtain an outcome could be investigated by 

asking participants to choose between a small amount of an outcome now and a large 

amount of an outcome now. Participants should universally choose the largest amount of 

money now; however, how they should respond regarding food is less clear. The utility of 

food is less than money, meaning that it would not be uncommon for a participant to 

choose a smaller amount of food now. Alternatively, as the amount of food increases, an 

individual may reach a saturation point and now the utility of food has converted to 

disutility. This same process does not apply to money, as money typically has no 

saturation point. Both explanations may account for why food is discounted more than 

money. Unfortunately, though Paglieri et al. offer an interesting explanation as to why 

different outcomes are discounted differently, there is little empirical evidence to test this 

hypothesis (see DeHart, Friedel, Frye, Galizio, & Odum, 2017, for a tentative example).  
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Various models of delay discounting have attempted to incorporate the nonlinear 

perception of utility. Read (2001) and Doyle and Chen (2012) both propose models that 

incorporate nonlinear utility. A recently proposed model of delay discounting, the 

additive-utility model (Killeen, 2009, 2015), attempts to incorporate both utility and time 

perception but is difficult to test directly. In this model: 

   ܷሺݒ, ሻݐ ൌ ሻఈݒሺ݇௩ݓ	 െ ሺ1 െ  ሻఉ    (4-4)ݐሻሺ݇௧ݓ

the value (ݒሻ of an outcome as a function of time (t) is calculated as the utility of the 

outcome (ሺ݇௩ݒሻఈ) a combination of cardinal and marginal utility) minus the disutility of 

waiting for that outcome (ሺ݇௧ݐሻఉ). To date, only one attempt has been made to directly 

test this model (Friedel, 2016). Friedel independently derived the free parameters of the 

additive utility model and then compared the quality of the model fit (imputing those the 

independently derived parameters into the model) to the fit of the hyperbolic model of 

delay discounting (Mazur, 1987). He found that the additive utility model fit the results of 

a delay-discounting tasks at least as well as the hyperbolic model. These findings provide 

tentative evidence for utility and time perception as underlying components of delay 

discounting, but further evidence is needed.  

Other psychological processes are also associated with delay discounting. 

Working memory capacity (Wesley & Bickel, 2014), numeracy (Peters, Västfjäll, Slovic, 

Mertz, Mazzocco, & Dickert, 2006), and general intelligence (Shamosh et al., 2008) all 

appear to be related to how individuals discount delayed outcomes. However, how these 

processes serve as underlying components or interact with other underlying processes 

such as time perception is unclear.  
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Changing Delay Discounting 

The general process perspective of delay discounting (e.g., delay discounting as 

the basic process) is valuable in identifying differences between groups and predicting 

maladaptive behaviors. However, the aggregate processes approach (e.g., delay 

discounting as the combination of multiple underlying components) can provide greater 

insight into why differences exist between groups and how impulsive choice can be 

improved. Various interventions have been developed to reduce delay discounting 

(Koffarnus, Jarmolowicz, Mueller, & Bickel, 2013) including working memory training, 

engaging in episodic future thinking, and reframing the decision. However, the general 

process view does not describe why these changes occur. A change in k does not 

necessarily explain why an intervention reduced delay discounting. 

Framing. Framing effects are one example of an effective manipulation that 

cannot be explained by many models of delay discounting. DeHart and Odum (2015) 

demonstrated that framing the delay to an outcome in either specific dates (results in less 

discounting) or in units of days (results in greater discounting) was sufficient to alter 

delay discounting within individuals. It could be theorized that different ways of framing 

the delay affect the subjective perception of time. Read, Frederick, Orsel, and Rahman 

(2005) found that when delays in an intertemporal choice task were framed as specific 

dates, delay discounting was reduced and the pattern of discounting more closely 

approximated an exponential decrease in value, not hyperbolic. 

Framing manipulations may also alter the utility of the outcome. Radu, Yi, Bickel, 

Gross, and McClure (2011) found that explicitly including a 0 in the delay discounting 
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task choices reduced delay discounting. For example, participants were more likely to 

choose the delayed outcome when choosing between “$25 now and $0 in 1 week or $0 

now and $50 in 1 week” than when choosing between “$25 now or $50 in 1 week.” This 

manipulation may have increased the utility of the outcome by shifting the choice 

comparison from $25 and $50 to $0 and $50. DeHart et al. (2017) have also demonstrated 

that differentially framing the unit of the outcome in clear or fuzzy units altered delay 

discounting. For example, they found that framing the outcome in handfuls of quarters 

(fuzzy framing) resulted in greater discounting than when the outcome was framed as 

dollars (clear framing). This method of framing may have reduced the utility of the 

outcome, thereby increasing delay discounting. 

Financial education. The underlying psychological processes of other 

interventions demonstrated to alter delay discounting are less clear. For example, Black 

and Rosen (2011) administered a financial management program to individuals in a 

treatment facility for cocaine abuse. Delay discounting increased in the group that did not 

receive the financial management program over the course of their treatment, whereas 

delay discounting did not change in the group that did receive the financial management 

program. DeHart, Friedel, Lown, and Odum (2016) also report financial education to be 

an effective intervention for impulsive decision making. They compared delay 

discounting in university students at the beginning and end of a four-month semester. 

Participants enrolled in a semester long financial education course reported a decrease in 

delay discounting at the end of the semester whereas participants in a control group did 

not. Although it is clear that delay discounting can be changed, current quantitative 
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theories of delay discounting do not identify processes to explain those changes. Even 

models that define possible processes (e.g., Killeen, 2015) do not easily allow evaluation 

of the interaction of those individual processes and the intervention.  

 
Identifying the Underlying Components 

One possible solution for identifying the underlying components of delay 

discounting is through latent factor modeling. A latent factor is a variable that has been 

statistically derived from a series of observed variables. Latent factors can be interpreted 

as representing the true score (e.g., error-free) of a set of observed variables that are not 

perfectly reliable (e.g., are confounded by measurement error; Bollen, 2002).  

Latent factors are derived by grouping variables according to their covariance and 

extrapolating a common factor. This method of comparing multiple measurements is 

superior to bivariate correlations as it allows for the comparison of many variables at 

once and adjusts for the shared measurement error across tasks (MacCallum & Austin, 

2000). Two latent factor methods are commonly used: exploratory and confirmatory. In 

exploratory factor analysis, observed variables are grouped in factors according to their 

covariance without a priori theoretical considerations. Latent factors are then derived that 

represent these groupings. These latent factors have no a priori theoretical meaning but 

are instead interpreted based on how observed variables were grouped together. 

Confirmatory factor analysis superimposes an a priori model on the data to determine if 

the covariance structure of the data aligns with the theoretical model. A poor fitting 

model indicates that the covariance structure (how the variables are correlated) does not 

align with the a priori theoretical model. 
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Latent factor analysis could be applied to delay discounting to better identify the 

underlying processes involved. For example, most individuals discount delayed food 

outcomes more than delayed monetary outcomes. However, if an individual steeply 

discounts food they will likely also steeply discount money. This would suggest that there 

are multiple processes involved that allow for different degrees of discounting but are 

consistent across outcomes. Current theoretical models do not explain these seemingly 

contradictory findings. Latent factor modeling can help to identify the different 

underlying processes and how they contribute to differences in the discounting of 

different outcomes.  

Limited research has applied factor analysis to delay discounting. Weatherly, 

Terrell, and Derenne (2010) administered five delay-discounting tasks to two groups of 

participants and analyzed the results using exploratory factor analysis. In the first group, 

two factors were derived from the delay discounting tasks. Delay-discounting task results 

for winning $1,000, winning $100,000, and 100 cigarettes comprised factor one and body 

image (some improvement to physique now versus greater improvement to physique at a 

delay) and dating (less-than-ideal mate now versus ideal mate at delay) comprised factor 

two. These two factors suggest a difference between how these consumable and non-

consumable outcomes are discounted. The two factors were moderately correlated at 

0.349. 

In the second group, two factors were also derived from the delay discounting 

tasks. Delay-discounting task results for owing $1,000, and owing $100,000 comprised 

factor one and medical treatments (immediately effective but not guaranteed to work 
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versus effective after a delay but guaranteed to work) and federal legislation (a less-than-

perfect bill now versus a perfect bill at a delay) comprised factor two. Retirement savings 

was included in both factors. The factors for this group were also moderately correlated 

at 0.362. Again, these results suggest a difference between how these consumable and 

non-consumable outcomes are discounted with retirement savings having both 

consumable and non-consumable aspects but the modest correlations suggest that they 

are not completely separate processes. Weatherly and Terrell (2010) replicated these 

findings by administering the same delay-discounting tasks to a new set of participants. 

Instead of using exploratory factor analysis, they used confirmatory factor analysis. The 

authors report a good-fitting model, suggesting that the factor groupings found in the first 

study are consistent.  

 Green and Myerson (2013) explored the distinction between delay and 

probability discounting by reanalyzing the results of a previous study (Estle, Green, 

Myerson, & Holt, 2007). In the original study, participants completed delay- and 

probability-discounting tasks for a variety of outcomes such as money and candy. In their 

reanalysis, Green and Myerson applied exploratory factor analysis and found clear 

distinctions between delayed and probabilistic outcomes, suggesting that delayed and 

probabilistic outcomes engage different processes. In a similar study, Green, Myerson, 

Oliveira, and Change (2014) administered delay-discounting tasks for gains and losses as 

well as probability discounting-tasks for gains and losses. Again, using exploratory factor 

analysis, they found two factors: a factor for delayed outcomes (both gains and losses) 

and a factor for probabilistic outcomes (both gains and losses). 
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These studies exemplify the ability of factor analysis to compare the discounting 

of many outcomes at once, but are limited in their abilities to identify underlying 

components. The purpose of this study was to apply structural equation modeling to 

better understand the underlying components of delay discounting. Specially, the 

underlying components of marginal utility, cardinal utility, and nonlinear time perception 

were investigated. First, a pilot study was conducted to provide evidence that latent factor 

modeling can be effectively used to identify those components. An overview of the pilot 

study is given here. Please see Appendix 4-A for a full description of the methods and 

results. 

 
Pilot Study 
 
 A preliminary study was conducted to evaluate the ability of latent factor 

modeling to identify the underlying components of delay discounting. Appendix 4A 

reports the methodology, model creation steps, and model values. Only a figure and 

description of the final model will be given here. Appendix 4B contains a glossary that 

defines the key terms for understanding the confirmatory factor analysis results. Two-

hundred fifty-eight participants completed twelve delay-discounting tasks in the Fall of 

2015 and Spring of 2016. The delay discounting outcomes varied by commodity type and 

magnitude and the delay distribution was the same between all tasks. Several models 

were tested, beginning with the simplest one-factor model. The final model was selected 

because of its superior model fit indices compared to other models and the model’s 

theoretical relevance. The chi-square value for final model was statistically significant, 

which indicates that the superimposed model did not fully fit the data. The significant 
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chi-square value may be due to the strong correlations between manifest variables. Other 

model fit indices (e.g., CFI, TLI, RMSEA, and SRMR; Appendix 4A) did indicate an 

acceptably fitting model.  

The results of the final latent model suggest that separate components of cardinal 

utility (commodity factor) and marginal utility (amount factors; Kahneman et al., 1997) 

interact to determine the overall utility of an outcome (Figure 4-1). This model supports 

the utility component of the additive-utility model put forth by Killeen (2009, 2015). 

However, two limitations of the model remain. First, residual covariances between the 

magnitude latent factors were highly significant. The high covariance between magnitude 

factors suggests how individuals discount one amount of the outcome is strongly related 

 
Figure 4-1. Pilot structural equation modeling results. Small, medium, and large factors 
represent marginal utility of the outcomes. The Food, Gasoline, and Probabilistic Money 
factors represent the cardinal utility in the outcome in comparison to the money delay-
discounting tasks. 
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to how they discount other amounts of that outcome. Finally, it is important to note that 

this model cannot address the separate influence of delay on the value of the outcome 

because the delays did not differ by task. 

 
Conclusions 

The results of the pilot study indicate that CFA can be an effective in exploring 

the underlying components of delay discounting. This study was an extension of the pilot 

study and improved on two of its limitations. This study included independent measures 

of time perception, marginal utility, and cardinal utility to further support the derived 

latent factors. This study also increased the sample size to ensure that the sample size is 

sufficiently large to derive the proposed model.  

 
Method 

 
 

Participants 

 A power analysis was conducted in the R statistical computing environment (Kim, 

2005) indicating that a minimum sample size for 300 participants is required for a latent 

factor model with 35 degrees for freedom (17 manifest variables). Three-hundred fifty-

two participants completed the survey (mean age = 34 years, mean income = $9,722, 

female = 47%) participants were recruited through Amazon Mechanical Turk, an online 

survey distribution forum. All participants received $2 for participating. 

 
Procedure 

Participants completed the study online using Qualtrics survey software. 
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Participation took approximately 45 minutes. Participants completed eighteen tasks: 

delay discounting (12 tasks), marginal utility (3 tasks), cardinal utility (two tasks), time 

perception (1 task), and demographics. The tasks were presented randomly except for the 

demographics questions, which were presented at the end. 

 Delay discounting. All participants completed 12 delay-discounting tasks: four 

money, four food, and four gasoline. These outcomes were chosen because they represent 

a range of possible marginal utilities meaning that the hedonic value derived from each 

differs. Gasoline is of particular interest because like food, gasoline is consumable but 

unlike food, it is not perishable but does entail substantial storage costs. Finally, money is 

necessary to serve as a proxy in the calculation of cardinal utility (see cardinal utility 

subheading). For the three outcomes, participants completed two small and two large 

magnitude tasks. They also completed two short and two long delay tasks (Table 4-1). 

The delay distribution of the short tasks was: 1 hour, 2 hours, 4 hours, 1 day, and 10 days. 

The delay distribution of the long tasks was: 1 week, 2 weeks, 1 month, 6 months, and 5 

years. Multiple delay distributions were required to investigate the specific role time 

perception in delay discounting. Previously unpublished research from our laboratory has  

 
Table 4-1 

Discounting Tasks for the Three Outcomes 

 Delay distribution 
───────────────────── 

Magnitude Short delays Long delays 

$10 Small-short Small-long 

$100 Large-short Large-long 
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indicated that both delay distributions yield orderly data for the discounting of food 

(Appendix 4C, Figure 4-1c).  

Prior to participants completing the discounting tasks, the survey determined the 

favorite type of food and favorite brand of gasoline and the relative value of those 

favorites for each participant. Participants were asked if they owned a car; however, they 

were not excluded from participation if they did not. Independent samples t tests did not 

reveal any difference in the discounting of delayed gasoline (all four tasks), gasoline 

cardinal utility, or gasoline marginal utility between car owners and non-owners. To 

determine the favorite food and brand of gasoline, the text “Please type in your favorite 

[food/brand of gasoline]. Press the ‘Enter’ key when you are done” was presented to the 

participants. After hitting the Enter key, the participants completed a question to 

determine the relative value, in dollars, of each outcome. The text “You said your 

favorite [food/brand of gas] was [participant’s favorite]. How much does a 

[serving/gallon] of your favorite [food/brand of gas] cost?” was presented to the 

participants. The text was accompanied by a text box in which participants entered a 

monetary value of a serving of their favorite food or a gallon of their favorite brand of 

gasoline. A content validation on the text box was in place to only accept numeric 

characters. The task did not allow participants to continue until they have entered a 

numeric value. 

The cost of a single unit (i.e., serving of a favorite food or a gallon of gas) was 

used to equate the relative value of the outcomes across the different delay discounting 

tasks. For example, if in a delay-discounting task the larger outcome was $100 and the 
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cost of a serving of a favorite food was $5 and the cost of a gallon of gas was $2, then the 

delayed amount of the food was 20 servings and the delayed amount of the gasoline was 

50 gallons. In this example, 20 servings of food and 50 gallons of gas are equivalent in 

monetary value to $100. The amounts of $10 and $100 were chosen to provide a 

sufficiently large contrast between the different amounts. These values were successfully 

used for money and food delay discounting tasks in the pilot study. 

For all the tasks, indifference points were obtained for each delay using an 

adjusting amount procedure (Du, Green, & Myerson, 2002 Frye, Galizio, Friedel, 

DeHart, & Odum, 2015). Within a given trial, two choice alternatives were 

simultaneously presented to the participant, and the participant chose their most preferred 

alternative. The choice alternatives consisted of a smaller amount of the outcome to be 

delivered immediately and a larger amount of the outcome to be delivered after a delay. 

For the first trial within a block of trials, the amount of the immediate outcome was set to 

half of the larger delayed outcome.  

After the first trial within a block, the amount of the immediate outcome was 

changed based on the participant’s choices on the preceding trial. If a participant selected 

the immediate outcome, on the following trial the amount of that outcome was decreased. 

If a participant selected the delayed outcome, on the following trial the amount of the 

immediate outcome was increased. The amount of the immediate outcome was adjusted 

after the first trial by one fourth of the delayed amount. For each successive trial within a 

block, the adjustment was one half of the previous adjustment (e.g., after the second trial 

in a block the adjustment was one eighth of the delayed amount). A block consisted of 
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five trials with a single delay to the larger outcome. The indifference point was taken as 

the amount of the immediate outcome after the participant makes the final choice within 

the block. 

 Marginal utility. Marginal utility was measured by asking participants to indicate 

how pleasant it would be to receive various amounts of money (Harinck et al., 2007). 

Participants first read the following instructions:  

“Imagine that the researcher was to give you a prize (e.g., money, food, gasoline) 
at random with no strings attached. On a scale from 0-100, how happy would you 
be if you received the prize? Zero is not happy and 100 is completely happy.” 
 

Participants then indicated on a number line from 0 to 100 how much pleasantness that 

amount would bring them. Participants were asked about the following monetary (and 

converted food and gasoline) amounts: $1, $5, $10, $20, $35, $50, $65, $80, $90, and 

$95. For food and gasoline, the amounts were determined by dividing the monetary 

amount (e.g., $10 or $100) by the participant-reported serving/gallon cost.  

Cardinal utility.  Cardinal utility is the amount of utility that is gained when 

receiving a unit of an outcome (Köbberling, 2006). Historically, this increase in utility is 

conceptualized as an increase in “utiles” or “value.” Value in this context is difficult to 

measure directly. In measuring cardinal utility, money appropriately serves as a proxy for 

utiles or value. However, using money as a proxy for utiles does restrict the analysis to 

deriving the cardinal utility of food and gasoline but not money. The assumption that 

money may serve as an appropriate proxy for utiles to measure cardinal utility is 

appropriate in the context of the proposed latent model.  

 An alternative method of measuring cardinal utility could be to ask participants 
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how much they would pay for a specific quantity of an outcome (the opposite of what is 

stated in the above paragraph) and then deriving the rate of change of elasticity (e.g., 

essential value) of the demand curve as a summary value of cardinal ulitity. The demand 

task was choosen instead because of the large body of literature demonstrating the 

validity of the demand task (Bidwell, MacKillop, Murphy, Tidey, & Colby, 2012; 

MacKillop et al., 2009, 2016). For this reason, cardinal utility for food and gasoline were 

approximated using demand curve analyses (Hursh & Silberberg, 2008). 

Participants reported how much of an outcome (e.g., food or gasoline) they would 

purchase at a series of unit prices: $0 (free), $0.01, $0.10, $.25, $.50, $1, $1.50, $2.00, 

$2.5, $3.00, $4.00, $5, $6.00, $7.00, $8.00, $10, $15, $25, $50, and $150. At the 

beginning of the food task, participants read the following instructions (adapted from 

Koffarnus, Franck, Stein, & Bickel, 2015):  

“Imagine a typical day during which you eat. The following questions ask how 
many servings of (participant food choice) you would consume if a serving costs 
various amounts of money. Assume that you have the same income/savings that 
you have now and NO ACCESS to any other servings of (participant food 
choice). In addition, assume that you would consume the purchased food on that 
day; that is, you cannot save the purchased food for a later date. Please respond to 
these questions honestly. There are no right or wrong answers.” 

 
The instructions for the gasoline task were identical but adapted for gallons of gasoline.  

 Time perception. Subjective time perception was measured by asking the 

participant to indicate on a line how long they believed a delay was (Zauberman et al., 

2008). The further to the right the participant selected on the line, the longer they 

perceived the delay to be. Participants responded to the following delays: 10 minutes, 1 

hour, 12 hours, 1 week, 1 month, 6 months, 5 years, and 25 years. The delays were 
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presented in random order. At the beginning of the time perception task, participants read 

the following instructions:  

“We are going to ask you to indicate your subjective feeling of duration between 
right now and various times in the future. Those times will range from 10 minutes 
to 25 years. Imagine that these time-spans all start right after you wake up in the 
morning.” 

 
 

Analyses 

Before the primary analyses were conducted, the results of the delay-discounting 

tasks were analyzed to identify unsystematic data. This analysis was done for the purpose 

of comparing the quality of results collected through Amazon Mechanical Turk to the 

results of the Pilot Study conducted in the laboratory. Removing unsystematic data is a 

common practice (e.g., DeHart, Friedel et al., 2016; Lee, Stanger, Budney, 2015; 

Myerson, Green, van den Berk-Clark, & Grucza, 2015); however, participant data were 

not removed for the actual analyses. First, the criteria for identifying nonsystematic 

discounting were developed for “long” delay distributions (e.g., 1 week to 25 years) but 

are not appropriate for “short” delay distributions. Also, the criteria were developed to 

identify single task outliers, but it is unclear how to address multiple tasks. For example, 

it is unclear if all of a participant’s data should be removed for violating the criteria for a 

certain proportion of tasks. Finally, similar criteria do not exist for the other tasks. 

I applied two identification criteria similar to that suggested by Johnson and 

Bickel (2002), but modified to reject fewer participant data, to the individual participant 

indifference points for each task. The first criterion required that the final indifference 

point not be greater than 95% of the first indifference point. The second criterion required 
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that no indifference point be 120% greater than the previous indifference point.  

Several important limitations exist, however, that impede the ability to directly 

compare the results of the long delay-discounting tasks to the results of the pilot study. 

First, the present data only included five indifference points per task whereas the pilot 

data included six. Also, the length of the delay distributions was slightly different, with 

different starting and ending delays. 

 Delay discounting. In the first analysis, theoretical models of delay discounting 

were fit to the median group indifference points for each delay-discounting task. The 

models that were selected for analysis were the hyperbola (Mazur, 1987; Equation 4-1) 

and hyperboloid model of delay discounting (Myerson & Green, 1995; Equation 4-2). For 

these analyses, curvilinear regression was used to fit the models to the obtained 

indifference points by determining the best estimates of k and s. 

 The two models were then compared across several metrics to determine which 

model best described the data. Although R2 is an inappropriate metric for the goodness-

of-fit for curvilinear models because the sum of the residuals of curvilinear regression do 

not always equal one, I report it by convention (Johnson & Bickel, 2002). I also 

calculated Sy.x., which is the standardized deviation of the residuals and is a more 

appropriate metric for nonlinear regression (Brown, 2001). Akaike’s Information Criteria 

(AIC) was used to compare the relative quality of each model across outcomes and 

magnitudes for group level data (Akaike, 1974). As a measure, AIC weighs the relative 

goodness-of-fit of a model against the number of free parameters in the models. A better 

fit is indicative of a higher quality but the measure of quality is also penalized for 
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additional free parameters in the model. When comparing AIC values across models, 

lower AIC values indicate a higher quality model. For this study, AICc, which adjusts for 

having a low number of data points, was calculated. 

 Area Under the Curve (AUC) also calculated for each delay discounting outcome 

(Myerson, Green, & Warusawitharana, 2001). AUC is a nontheoretical summary score of 

delay discounting. AUC is computed as the sum of the trapezoidal area between 

indifference points: x2-x1[(y1+y2)/2] where x1 and x2 are successive delays and y1 and y2 

are successive indifference points at those delays. However, for these analyses, the delays 

converted to their ordinal values of 1 through 5 (AUCord; Borges, Kuang, Milhorn, & Yi, 

2016). This conversion improved comparisons between short and long delay distribution 

tasks. Ordinal UC can range between 0 and 1, with lower AUCord values indicating 

greater delay discounting.  

Ordinal AUC was compared between conditions using generalized estimating 

equation (GEE) analyses and pairwise comparisons. GEE analysis is a regression 

technique for repeated dependent variables that are correlated (Hanley, Negassa, 

Edwardes, & Forrester, 2003). 

Marginal utility. Several models were fit to the marginal utility data. Previous 

research suggested that a logarithmic function (ܷ ൌ ln	ሺ݇݉ሻ) may best describe the data 

(Killeen, 2015). However, exploratory analyses demonstrated that an exponential growth 

model provided a far superior fit. For the purposes of the latent factor model analyses, the 

theoretical implications of the specific models are less important than deriving a model 

parameter that accurately describes the data.  
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The rate of increase in marginal utility was modeled by fitting an exponential 

growth equation to the marginal utility task results: 

ܷ ൌ 	ܻ݉݅݊  ሺܻ݉ܽݔ െ ܻ݉݅݊ሻ ∗ ൫1 െ ݁ሺି∗ሻ൯     (4-5) 

 where marginal utility (ܷሻ is the reported pleasantness of the outcome, Ymin is the 

smallest amount of money, Ymax is the largest amount of money, m is the amount of 

money, and k is the rate of increase in marginal utility. Adjusting for a starting point 

larger than 0 helped improve the model fit by beginning the function at a reasonable 

value for the given data. For further analyses, k is the value of interest and was natural 

log transformed to improve its parametric qualities. 

 Cardinal utility. To analyze the results of the cardinal utility task, a demand 

curve model was fit to the consumption values at each price point of the outcome: 

ܳ ൌ	ܳ ∗ 	10ሺ
షഀೂబିଵሻ	    (4-6) 

in which Q is consumption amount of the outcome at a given price, Q0 is the 

consumption of the commodity at zero price,  is the demand elasticity (i.e., essential 

value), and k is the span of the function (Koffarnus, et al., 2015). The parameter k was 

calculated by subtracting the log10-transformed average consumption at the highest price 

($150) from the log10-transformed average consumption at the lowest price ($0.01; 

Koffarnus, et al., 2015). For all analyses, k was set to 2.584. In this model,  is a free-

parameter. Q0 is also a free parameter though it should closely approximate consumption 

at $0.00 (free). For further analyses,  is the value of interest and was natural log 

transformed to improve its parametric qualities. 

 Time perception. The rate of increase in subjectibve time perception was 
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calculated by fitting a logarithmic equation (Zauberman et al., 2008) to the subjective 

durations, as indicated on the number line, for each objective delay: 

ௌܶ௨ ൌ 	 ܻ  ݇ ∗ ln	ሺ ைܶሻ     (4-7) 

In this logarithmic equation, the subjective perception of a delay (TSub) is the reported 

distance on the number line, Y0 is the function’s y intercept, TObj is the objective delay, 

and k is the rate of increase in subjective time perception.  

 Structural equation model. The final analysis conducted was the structural 

equation model (SEM). Ordinal AUC was calculated for each outcome (Borges, et al., 

2016). AUCord was used as the dependent measure for the SEM because it is normally 

distributed and easily compared between outcomes.  

 A SEM is composed of two parts: a model structure and regression equations 

(Hox & Bechger, 1988). The model structure is composed of the latent factors. A latent 

factor is an unmeasured construct that explains the covariance between a series of 

manifest (measured) variables (Hox & Bechger, 1988). For each latent factor, a reference 

variable is selected, which serves to set the scale of the latent factor. The covariance 

between latent factors describes the degree to which the factors uniquely predict their 

manifest variables. The regression equations measure the ability of a variable (latent or 

manifest) to account for the variance of another variable (latent or manifest). 

Consequently, the covariance between latent factors is interpreted as the covariance that 

remains after the regression variable (latent or manifest) has accounted for a unique 

portion of the latent factor (Hox & Bechger, 1988). It is also possible to compare factor 

means; however, that is unnecessary in this study because the GEE analyses provide the 
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same information (e.g., the mean difference between AUCord). Therefore, factor means 

were set to 0 to allow for the investigation of the covariances between factors. 

Several CFAs were conducted, beginning with a one-factor model. This model 

only included delay discounting measures and simply asserts that one general process is 

involved in the discounting of delayed outcomes. This model best reflects the hyperbolic 

model of delay discounting (Equation 4-1, Mazur, 1987). The next model included 

factors for the different amounts of each outcome and residual factors for the different 

delay distributions and factors for marginal and cardinal utility. SEM was used to regress 

the utility factors onto the delay discounting factors to determine the degree to which 

marginal and cardinal utility predict delay discounting. 

Six model fit indices are reported. First, a chi-square test was conducted to 

compare the hypothesized model to the actual data. A non-significant chi-square value 

indicates that the hypothesized model and that data align well. Next, comparative fit 

index (CFI) and Tucker-Lewis index (TLI) values are reported. These values compare the 

hypothesized model fit to a null model that assumes no covariance between the observed 

variables. CFI and TLI values above 0.95 are considered to indicate that the proposed 

latent model fit the actual data better than a null model that assumes no covariance 

between observed variables (Hu & Bentler, 1999). The root mean square error of 

approximation (RMSEA) was also calculated. This index measures how well the 

hypothesized model fits the data’s covariance matrix with optimally chosen parameter 

estimates. Values below 0.08 are considered to indicate a well-fitting model (Hu & 

Bentler, 1999). Finally, the standardized root mean square residual (SRMR) is reported. 
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This index measures the discrepancy between the sample covariance matrix and the 

model covariance matrix. Values below 0.05 are considered to indicate a well-fitting 

model (Hu & Bentler, 1999). All structural equation models were conducted in the R 

statistical computing environment (R Core Team, 2015) using the Lavaan package 

(Rosseel, 2012). 

 
Results 

 
 

 The results are broken into individual tasks. For each task, a full analysis is 

reported. the latent factor analyses results are reported.  

 
Marginal Utility  

 First, the exponential model was fit to the median values for each task. The model 

fits to the median marginal utility values were all very good (Table 4-2). Figure 4-2 

displays the model fits to the median values. The exponential model was also fit to 

individual marginal utility values for the three commodities (Table 4-3). The model fits to 

individual marginal utility values were very good (high R2 and low Sy.x values), 

indicating that the derived model k parameter well represents the data.  

 
Table 4-2 
 
Marginal Utility Fits to Group Median Values of Subjective Happiness 
 

Outcome k R2 Sy.x

Money 0.053 0.976 2.936 

Food 0.089 0.971 4.595 

Gasoline 0.042 0.991 2.066 
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Figure 4-2. Marginal utility model fits. Exponential model fits to the group median 
subjective happiness values for money, food, and gasoline.3 
 
 
 
 
 
Table 4-3 
 
Median Marginal Utility Fit Values to Individual Values of Subjective Happiness 
 

Outcome  R2 Sy.x 

Money 0.036 0.983 2.908 

Food 0.071 0.971 4.250 

Gasoline 0.053 0.981 3.160 

 

 
Cardinal Utility 

 A demand curve model (Koffarnus et al., 2015) was fit to the consumption 

amounts at each value for individual responses (Table 4-4). First, the demand curve was 

fit to the median consumption values (Figure 4-3) for food ( = 0.013, Q0 = 5.083, R2 = 

0.984, Sy.x = 0.254) and gasoline ( = 0.003, Q0 = 21.62, R2 = 0.975, Sy.x = 1.336). The  

  

                                                 
3 A systematic pattern of model misfit was observed for all three outcomes. Three patterns of misfit were 
observed. The model under fit the data at the small objective outcome amounts, over fit at the middle 
objective outcome amounts, and under fit the data at the large objective outcome amounts. A one-parameter 
model cannot be modified to better fit all three residual patterns without additional free-parameters. 
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Table 4-4 
 
Median Demand Curve Fit Values to Individual Consumption Amounts 
 

Outcome  Q0 R2 Sy.x

Food 0.008 5.482 0.915 0.582 

Gasoline 0.002 21.98 0.914 2.862 

 

 

 

 
Figure 4-3. Cardinal utility model fits. Demand curve fits to the median consumption 
values at each price. The left panel displays the demand curve fit to food consumption 
values and the right panel displays the demand curve fit to gasoline consumption values. 
 

 

model fits to individual cardinal utility values were very good (high R2 and low small 

Sy.x), indicating that the derived model  parameter well represents the data. A 

Spearman’s correlation was conducted between Q0 and consumption at $0.00 to ensure 

that Q0 closely approximated consumption at $0.00 for both outcomes. The correlation 

for food (rsp = 0.906) and gasoline (rsp = 0.909) were both strong, indicating that 

consumption closely approximated Q0 for both outcomes. 
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Time Perception 

 First, the logarithmic model was fit to the median group subjective time 

perception values. The quality of the model fit to median time perception values was very 

good (k = 0.304, R2 = 0.973, Sy.x = 0.058). Figure 4-4 shows the logarithmic model fit to 

median time perception values. The logarithmic model was also fit to individual 

subjective time perception values. The median fit values indicate that the logarithmic 

model fit the date moderately well (k = 0.134, R2 = 0.910, Sy.x = 0.097). 

 
Delay Discounting 

 Delay discounting results were analyzed in several steps. First, two theoretical 

models (Equations 4-1 and 4-2) were fit to the group median and indifference points of 

individual participants for each delay-discounting task. Then, the results of the present 

study were compared to the pilot study. Finally, AUCord was analyzed to identify 

differences in the discounting of different outcomes, magnitudes, and delay distributions.  

 

 
Figure 4-4. Subjective time perspective model fit. Model fits to the group median 
subjective time perception values. The left panel displays the model fit to objective 
delays. The right panel displays the model fit to log transformed objective delays. 
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 Model fits. Delay discounting results were fit to two quantitative models (Mazur 

1987; Myerson & Green, 1995). First, the models were fit to the median indifference 

points for each outcome (Table 4-5, Figure 4-5). The hyperbolic model (Mazur, 1987) 

was favored for 9 out of 12 tasks as indicated by lower AICc values. Table 4-6 reports the 

median model fit values for each outcome. The delay discounting models were also fit to 

the indifference points from individual participants. Although the overall fits for the 

hyperboloid model were superior, the hyperbolic model (Mazur, 1987) was favored for 

all 12 outcomes despite poor R2 values because of the lower AICc values.  

Finally, to investigate the congruency of discounting between long and short 

delay distributions, the hyperboloid model was fit to to the long and short delay 

distribution tasks individually (Figure 4-6). The hyperboloid model was chosen for this  

 
Table 4-5 
 
Equation 4-1 (Hyperbolic) and Equation 4-2 (Hyperboloid) Model Fits to Group Median 
Indifference Points 
 

 Hyperbolic (Mazur, 1987) 
────────────────────── 

Hyperboloid (Myerson & Green, 1995) 
──────────────────────────── 

Task k R2 Sy.x AICc k s R2 Sy.x AICc 

Money Long $100 0.018 0.910 0.090 -15.216 0.105 0.363 0.966 0.064  -0.042 

Money Long $10 0.060 0.895 0.100 -14.155 0.383 0.345 0.979 0.052 -2.083 

Money Short $100 0.124 0.891 0.014 -33.918 13.308 0.043 0.921 0.014 -15.556 

Money Short $10 0.254 0.979 0.012 -35.313 1.935 0.210 0.981 0.013 -15.705 

Food Long $100 211.000 0.665 0.132 -11.355 1984.201 0.315 0.900 0.084 2.619 

Food Long $10 252.924 0.610 0.125 -11.952 3123.350 0.290 0.953 0.050 -2.474 

Food Short $100 15.178 -2.270 0.251 -4.943 4955.849 0.092 0.997 0.009 -19.397 

Food Short $10 1.422 -2.030 0.241 -5.338 3448.483 0.086 0.970 0.002 -8.350 

Gasoline Long $100 23.000 0.812 0.127 -11.736 243.302 0.296 0.928 0.091 3.506 

Gasoline Long $10 62.090 0.581 0.162 -9.317 841.940 0.240 0.946 0.067 0.445 

Gasoline Short $100 0.321 0.569 0.057 -19.724 246.225 0.048 0.990 0.010 -18.745 

Gasoline Short $10 0.621 0.235 0.110 -13.215 498.936 0.071 0.999 0.004 -27.574 

Note. Bolded numbers highlight best fitting model. 
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Figure 4-5. Delay discounting model fits to median group indifference points. Model fits 
to the median indifference points for each outcome. The x-axis is standardized as the 
proportion of the largest delay. The line representing the best fitting equation, as 
determined by the AICc value, is displayed for each outcome. 
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Table 4-6 
 
Median Equation 4-1 (Hyperbolic) and Equation 4-2 (Hyperboloid) Model Fit Values to 
Indifference Points from Individual Participants 
 

 Hyperbolic (Mazur, 1987) 
────────────────────── 

Hyperboloid (Myerson & Green, 1995) 
──────────────────────────── 

Task k R2 Sy.x AICc k s R2 Sy.x AICc 

Money Long $100 0.014 0.865 0.010 -14.292 0.208 0.313 0.962 0.057 -1.277 

Money Long $10 0.043 0.724 0.117 -12.633 0.621 0.347 0.913 0.075 1.487 

Money Short $100 0.000 0.000 0.015 -32.886 8.500 0.018 0.852 0.014 -15.33 

Money Short $10 0.000 0.396 0.033 -25.324 4.601 0.042 0.888 0.028 -8.159 

Food Long $100 0.339 0.302 0.114 -12.829 7.073 0.241 0.821 0.086 2.908 

Food Long $10 0.418 0.183 0.152 -9.9797 8.741 0.219 0.798 0.101 4.560 

Food Short $100 0.011 -0.378 0.128 -11.660 29.32 0.055 0.778 0.074 1.435 

Food Short $10 0.003 -0.319 0.187 -7.8804 7.304 0.094 0.762 0.096 4.026 

Gasoline Long $100 0.029 0.530 0.134 -11.246 1.371 0.277 0.899 0.085 2.747 

Gasoline Long $10 0.094 0.477 0.149 -10.187 1.864 0.277 0.888 0.094 3.759 

Gasoline Short $100 0.001 -0.219 0.081 -16.273 9.367 0.041 0.840 0.048 -2.978 

Gasoline Short $10 0.001 0.085 0.116 -12.705 4.171 0.087 0.857 0.071 1.029 
Note. Bolded numbers highlight best fitting model. 

 

analysis because of its superior fit to the indifference points of the short delay distribution 

delay-discounting tasks. The hyperboloid model was also fit to the combined short- and 

long-delay distribution task indifference points for each outcome and amount (Figure 4-

7).  

To determine if separate models fit the indifference points of the short and long 

delay distribution tasks better than an omnibus model that fit both tasks at once, two 

analyses were conducted. First, AICc values were compared between the separate model 

fits and the omnibus model. Second, the free-parameters (e.g., k and s) of the omnibus 

model were used in the model fits for the separate short and long delay distribution tasks. 

The quality of fit was compared to the separate task model fits to determine if the quality 

of model fit using the omnibus free-parameters approximated the quality of model fit of  
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Figure 4-6. Delay discounting of different outcomes with long and short delay 
distributions. Myerson and Green hyperboloid model fits are displayed. Both delay 
distributions are plotted on the same graph for each outcome. The x-axis is in a log10 
scale to allow for the visualization of both delay distributions. Model curves were 
extended to allow for comparisons between tasks. 
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Figure 4-7. Delay discounting of different outcomes with omnibus model fit. 
Omnibus model fit to combined short and long delay discounting task 
indifference points for each outcome and amount. 
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the separate task model fits (Table 4-7). The omnibus model fit AICc values were 

superior to the individual model fit AICc values because AICc imposes an additional 

penalty for data sets with fewer points (e.g., 5 versus 10). When the derived parameters 

of the omnibus model fits were used to fit the indifference points of the individual short 

and long delay distribution tasks independently, the omnibus model parameters fit the 

data worse than the individual model fits. However, the margin of improvement in the 

individual model fits was small in many instances, suggesting that the omnibus model fit 

the data similarly to the individual model fits. 

 
Table 4-7 
 
Median Equation 4-2 (Hyperboloid) Model Fit Values to Long, Short, and Combined 
Indifference Points from Individual Participants 
 

Outcome Model fit k s R2 Sy.x AICc Separate fit AICc 
Money $100        

 Short   -2.569 0.082 -3.425 -15.33 
 Long   0.982 0.071 -5.035 -1.277 
 Omnibus 0.037 0.285 0.915 0.062 -47.76  

Money $10        
 Short   -0.301 0.104 -1.187 -8.159 
 Long   0.440 0.144 2.036 1.487 
 Omnibus 0.245 0.200 0.833 0.096 -39.05  

Food $100        
 Short   -0.172 0.223 6.425 1.435 
 Long   0.204 0.212 5.936 2.908 
 Omnibus 11.74 0.155 0.675 0.142 -31.22  

Food $10        
 Short   -0.025 0.221 6.328 4.026 
 Long   -1.095 1.038 21.82 4.560 
 Omnibus 17.50 0.173 0.682 0.156 -29.4  

Gasoline $100        
 Short   -0.354 0.149 2.438 -2.978 
 Long   0.475 0.135 1.400 2.747 
 Omnibus 0.884 0.162 0.753 0.119 -34.78  

Gasoline $10        
 Short   0.971 0.155 2.805 1.029 
 Long   0.422 0.160 3.130 3.759 
 Omnibus 1.928 0.195 0.742 0.129 -33.20  

Note. The “Separate Fit AICc” is identical to the Myerson and Green (1995) AICc column from Table 
4-6. It is included here to add in comparisons. 
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Comparisons to pilot data. Where appropriate, results of the pilot study were 

compared to delay discounting results of the principle study. Results were compared on 

the degree of nonsystematic data obtained (Table 4-8). Two criteria were applied to the 

indifference points from individual participants for each delay discounting task (Johnson 

& Bickel, 2008).  

Overall, the present study contained a greater proportion of delay discounting 

results that failed one of the two modified criteria for nonsystematic discounting. Fisher-

Irwin tests were conducted to compare the differences in the proportion of nonsystematic 

data for each study. For both datasets, more nonsystematic data were identified in the 

food discounting tasks compared to money and gasoline. Also, more non-systematic data 

were reported in the present study compared to the pilot study. There are several 

explanations for the difference in data quality. First, participants in the current study  

 
Table 4-8 
 
Proportion of Individual Delay Discounting Results that Fail a Criterion for Identifying 
Nonsystematic Data 
 

 
Pilot study 

─────────────────── 
Present study 

─────────────────── 

Task Criterion 1 (%) Criterion 2 (%) Criterion 1 (%) Criterion 2 (%) 

Money $100 8 10 9 19** 

Money $10 8 14 8 24** 

Food $100 19 32 22 33 

Food $10 11 35 16 38 

Gasoline $100 16 14 13 31*** 

Gasoline $10 13 20 16 33*** 

Note. Asterisk on Present Study values identifies a significantly different proportion from the Pilot Study 
proportion. 
 
** p < .01. 
*** p < .001. 
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completed more tasks than participants in the pilot study, and did not have scheduled 

breaks. Second, it is possible that the compensation for the MTurk participants ($2) was 

not as valuable as the extra credit for laboratory participants. Third, the pilot study was 

conducted in a controlled laboratory setting compared to the uncontrolled setting of the 

participant’s personal computer. Participants in the laboratory setting may have attended 

more to the tasks than the Amazon Mechanical Turk participants did. These results 

suggest that a researcher should weigh the costs and benefits of collecting data online 

through Amazon Mechanical Turk (present study) compared to collecting data in the 

laboratory (pilot study). 

Ordinal area under the curve. Finally, ordinal AUC values were computed and 

GEE analyses were conducted (Table 4-9). No participant data were removed. Dummy 

variables were created for outcome type, amount, and delay distribution. Significant main 

effects for the delay distribution and outcome type were found. However, no significant 

main effect for the magnitude of the outcome was found. Significant interactions were 

also found for all three possible combinations of delay, magnitude, and commodity. The 

lack of significant main effect for magnitude is due to its dependence on commodity type 

and delay distribution. 

Pairwise comparisons were also conducted to investigate relevant differences 

between tasks (Figure 4-8). For money and gasoline, $100 was discounted less than $10 

and short delay distributions resulted in less discounting than long delay distributions. 

However, for food outcomes, no difference between discounting of $100 and $10 for the 

long delay distribution tasks were found (see red brackets in Figure 4-8). Also, $10 of  
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Table 4-9 
 
Generalized Estimating Equation Results 
 

Variable  Robust S.E. Robust z 

Intercept 0.371 0.038 9.71*** 

Delay 0.297 0.021 14.24*** 

Magnitude 0.008 0.020 0.40 

Commodity 0.032 0.014 2.29** 

Delay x magnitude -0.034 0.009 -3.54*** 

Magnitude x commodity 0.016 0.006 2.84** 

Delay x commodity -0.064 0.006 -10.30*** 

**p < 0.01. 
***p < 0.001. 

 

 
Figure 4-8. Pairwise comparisons of AUCord values for each outcome. The red bracket 
identifies a nonsignificant difference of interest. The blue bracket identifies a difference 
in delay discounting that is opposite of what is typically observed with money. Two 
panels are presented to improve the ease of making meaningful visual comparisons 
between tasks. 
 

food was discounted less than $100 of food, which is in the opposite direction of the 

typically observed magnitude effect (e.g., larger amounts are discounted less than smaller 

amounts). Although this finding is unexpected, the large sample size supports the validity 

of this finding. 
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Latent Factor Analyses 

 Structural equation modeling analyses were conducted to understand the relation 

between delay discounting, cardinal utility, marginal utility, and time perception. First, 

the model parameters for cardinal and marginal utility were log transformed to improve 

their parametric properties. Next, bivariate correlations between all variables of interest 

were conducted (Figure 4-9). All AUCord values were strongly positively correlated,  

 
Figure 4-9. Pearson correlations of all outcomes. Squares with no color represent 
nonsignificant correlations (e.g., p > 0.05). The figure abbreviations are: M = Money, F = 
Food, G = Gasoline, L = Long, S = Short, Marg = Marginal Utility, Card = Cardinal 
Utility, and Time = Time perception.  
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indicating that high AUCord (low discounting) values for one delayed outcome strongly 

predict high AUCord values for other outcomes. Marginal and cardinal utility ( 

parameter) were poorly correlated with AUCord or other utility measures. Some 

significant correlations between marginal utility, cardinal utility, and time perception and 

delay discounting were found. To aid in replication of the latent factor models, means, 

standard deviations, and standard error values are reported (Table 4-10). For all latent 

models, case-wise (or full information) maximum likelihood estimation was used instead 

of generalized least squares to allow for the inclusion of incomplete participant data.  

 
Table 4-10 
 
Outcome Descriptive Statistics 
 

Variable Mean SD S.E. 

Money Long $100 0.717 0.220 0.012 

Money Long $10 0.656 0.222 0.012 

Money Short $100 0.870 0.204 0.011 

Money Short $10 0.841 0.208 0.011 

Food Long $100 0.490 0.280 0.015 

Food Long $10 0.488 0.243 0.013 

Food Short $100 0.609 0.309 0.016 

Food Short $10 0.666 0.245 0.013 

Gasoline Long $100 0.630 0.245 0.013 

Gasoline Long $10 0.589 0.247 0.013 

Gasoline Short $100 0.768 0.253 0.014 

Gasoline Short $10 0.743 0.252 0.013 

Log Marginal Money  -3.819 2.832 0.158 

Log Marginal Food -3.276 3.377 0.182 

Log Marginal Gasoline 0.908 3.475 0.186 

Ln Cardinal Food -2.069 0.564 0.033 

Ln Cardinal Gasoline -6.479 4.722 0.270 

Log Time Perception -3.436 3.204 0.172 

Note. Cardinal utility values are  (elasticity) parameter. 
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Single discounting factor model. First, a model that explored the abilities of the 

utility outcomes to predict general delay discounting was created (Figure 4-10). A 

structural equation model was created with a factor for delay discounting, a factor for 

marginal utility, and a factor for cardinal utility. The two utility factors and time 

perception were regressed onto the delay discounting factor to analyze the degree to 

which those measures predict delay discounting. For the cardinal utility factor, it was 

necessary to set both factor loadings to 1 for the model to converge properly.  

The overall model fit was very poor (߯ଶ(df = 131) = 985.520, p < .001, CFI = 

0.688, TLI = 0.636, RMSEA = 0.136, SRMR = 0.079). This is largely because a single 

 

 

Figure 4-10. Single discounting factor model. SEM of marginal and cardinal utility 
factors regressed onto a delay discounting factor. Only the model structure is shown.  



114 
 

 

delay discounting factor is too restrictive. Although all loadings for the delay discounting 

factor were significant, no loadings for the two utility factors were significant, indicating 

that the utility factors poorly predicted the observed utility variables. This finding 

corroborates the poor correlations between these variables. However, time perception did 

significantly predict delay discounting (Std. loading = -0.259 p < .001), indicating that as 

the perception of time becomes increasingly nonlinear, delay discounting increases. 

Therefore, future models may include these variables in regression equations; however, 

they should not have their own factors. Modification indices (report of the residual error 

covariance between manifest variables that is not explained by a latent factor) suggest 

additional factors of magnitude and delay distribution for the delay discounting manifest 

variables. 

Bi-factor model. A bi-factor model (Eid, Geiser, Koch, & Heene, in press) was 

created with unique factors for magnitude and outcome type and residual factors for the 

short delay scales. This modeling approach is different from more traditional bifactor 

models (Eid et al., in press). For example, a traditional bi-factor model would include a 

general discounting factor that loads onto all delay discounting measured variables and 

residual factors for each specific delay discounting tasks. These models assume that 

factor representations (e.g., domains) are interchangeable or randomly selected. However, 

in practice, the assumption that domains are interchangeable is rarely the case. As a 

result, the meaning of the general factors is unclear.  

A more appropriate approach to bi-factor models when facets are non-

interchangeable is to define general factors based on a reference facet. In this approach, 
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one facet serves as reference to which the remaining facets are compared. Method (or 

specific) factors are specified for each non-reference facet. The method factors represent 

the residual covariance among the measured variables of a domain (e.g., shared 

characteristics of different measured variables) that is not shared with the reference 

factor.  

The short delay scale tasks were chosen as non-reference facets, because long 

delay scale tasks are more common and therefore are more appropriate points of 

reference. Other model structures are possible but they may not reflect the typical way in 

which delay-discounting task results are compared. Appendix 4D presents the results of 

the final model with the factors reversed: reference factors for the short delay scale tasks 

and residual factors for the long delay scale tasks. Comparing the two different model 

structures can indicate which tasks serve as better reference variables. However, for the 

purposes of this study, a model structure that closely reflects typical delay progressions 

and amounts is most appropriate. Because of the short delay methods factors, the 

magnitude/outcome factors also become magnitude/outcome/long factors. The 

magnitude/outcome/long factors are reference factors that measure the covariance 

between the discounting tasks of different amounts in context of the long delay 

distribution task. The loadings for the non-long variables within the long reference 

variables represents the amount of variance that is shared with the reference variable 

(e.g., $100 long or $100 short for each outcome). This covariance in part represents the 

shared covariance related to the amount of the outcome. For the long discounting tasks 

within the long discounting factors, these are the true scores of these variables because 
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they do not pertain to the methods factors.   

The method factor loadings for the short delay distribution tasks account for the 

variance between short delay distribution tasks not accounted for by the long reference 

factors. Finally, the marginal utility, cardinal utility, and time perception measured 

variables were regressed onto their corresponding factors. Therefore, the correlation 

between factors represents the residual correlations after removing the variance 

accounted for by marginal utility, cardinal utility, and time perception.  

 The overall model fit was very good, ߯ଶ(df = 66) = 98.908, p = 0.05, CFI = 0.988, 

TFI = 0.975, RMSEA = 0.038, SRMR = 0.033. All factor loadings were significant. Also, 

time perception significantly predicted most reference and methods factors (standardized 

regression coefficients: money long $100 = -0.226, money long $10 = -0.187, food long 

$100 = -0.119, gasoline long $100 = -0.220, gasoline long $10 = -0.192, money short 

= -0.166, gasoline short = -0.256). The factor correlation for money $100 and money $10 

was greater than 1, indicating that the correlation between the different money delay 

discounting tasks was perfect (within the margin of error) after accounting for the shared 

measurement error between tasks. The final model combined these two factors into a 

single factor to address this perfect factor covariance and create a more parsimonious 

model.  

 Final model. The final model was similar to the previous bi-factor model but with 

the Money $100 factors and Money $10 factors combined into a Money factor (Figure 4-

11—model structure; Figure 4-12—regressions onto factors; Table 4-11) to address the 

correlation of 1 between the two factors. This change decreased the quality of fit, ߯ଶ(df =  
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Figure 4-11. Structural model. Red lines are factor covariances. 
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Figure 4-12. Regression model. Blue lines are variable regression lines. 
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Table 4-11 
 
Final Bi-Factor Model Results 
 

Latent factor Manifest variable Estimate 

Standardized 
factor 

loading R2 

Reference factors     
Money long     
 Money long $100 1.000 0.882 0.778 
 Money short $100 0.674 0.642*** 0.412 
 Money long $10 0.918 0.803*** 0.645 
 Money short $10 0.795 0.743*** 0.552 
Food long $100     
 Food long $100 1.000 0.791 0.626 
 Food short $100 0.924 0.764*** 0.584 
Food long $10     
 Food long $10 1.000 0.791 0.623 
 Food short $10 0.952 0.746*** 0.557 
Gasoline long $100     
 Gasoline long $100 1.000 0.843 0.711 
 Gasoline short $100 0.840 0.689*** 0.474 
Gasoline long $10     

 Gasoline long $10 1.000 0.825 0.681 
 Gasoline short $10 0.917 0.743*** 0.552 
Methods factors     

Money short     
 Money short $100 1.000 0.508 0.258 
 Money short $10 1.139 0.568*** 0.323 
Food short     
 Food short $100 1.000 0.314 0.010 
 Food short $10 0.938 0.372*** 0.138 
Gasoline short     
 Gasoline short $100 1.000 0.370 0.134 
 Gasoline short $10 1.148 0.427*** 0.182 
     

Regressions Manifest variable Estimate 

Standardized 
regression 
coefficient R2 

Money long     
 Money marginal utility 0.002 0.031 0.000 
 Time perception -0.013 -0.213*** 0.045 
Food long $100     
 Food marginal utility -0.004 -0.057 0.003 
 Food cardinal utility -0.034 -0.078 0.006 
 Time perception -0.010 -0.119* 0.014 
Food long $10     
 Food marginal utility -0.002 -0.034 0.001 
 Food cardinal utility -0.015 -0.046 0.002 
 Time perception -0.004 -0.070 0.005 

(table continues) 
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Regressions Manifest variable Estimate 

Standardized 
regression 
coefficient R2 

Gasoline long $100     
 Gasoline marginal utility 0.005 0.092* 0.008 

 Gasoline cardinal utility -0.001 -0.022 0.000 
 Time perception -0.014 -0.220*** 0.048 
     
Gasoline long $10     
 Gasoline marginal utility 0.010 0.165** 0.027 
 Gasoline cardinal utility -0.002 -0.037 0.001 
 Time perception -0.012 -0.193** 0.037 
Money short     
 Money marginal utility -0.003 -0.094 0.008 
 Time perception -0.005 0.159* 0.025 
Food short     
 Food marginal utility 0.000 0.006 0.000 
 Food cardinal utility 0.019 0.117 0.014 
 Time perception -0.003 -0.113 0.012 
Gasoline short     
 Gasoline marginal utility -0.001 -0.019 0.000 
 Gasoline cardinal utility 0.002 0.115 0.013 
 Time perception -0.007 -0.255** 0.065 
     

Factor correlations with 
regressions Manifest variable 

Covariance 
estimate 

Residual 
correlation 

 

Money long     
 Food long $100 0.021 0.442***  
 Food long $10 0.020 0.556***  
 Gasoline long $100 0.026 0.682***  
 Gasoline long $10 0.026 0.703***  
 Food short 0.003 0.188  
 Gasoline short 0.002 0.115  
Food long $100     
 Food long $10 0.042 0.866***  
 Gasoline long $100 0.033 0.659***  
 Gasoline long $10 0.032 0.640***  
 Money short -0.004 -0.162*  
 Gasoline short -0.005 -0.200*  
Food long $10     
 Gasoline long $100 0.024 0.622***  
 Gasoline long $10 0.028 0.749***  
 Money short -0.003 -0.133  
 Gasoline short -0.001 -0.085  
Gasoline long $100     
 Gasoline long $10 0.035 0.897***  
 Money short -0.002 -0.092  
 Food short 0.004 0.200  
Gasoline long $10     
 Money short -0.004 -0.95**  
 Food short -0.002 -0.116  

(table continues)
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Factor correlations with 
regressions Manifest variable 

Covariance 
estimate 

Residual 
correlation 

 

Money short     
 Food short 0.008 0.838***  
 Gasoline short 0.008 0.931***  
Food short     
 Gasoline short 0.007 0.856***  
     

Factor correlations without 
regressions 

Manifest variable Covariance 
Estimate 

Factor 
Correlation 

 

Money long     
 Food long $100 0.022 0.444***  
 Food long $10 0.021 0.553***  
 Gasoline long $100 0.028 0.698***  
 Gasoline long $10 0.028 0.712***  
 Food short 0.004 0.222*  
 Gasoline short 0.002 0.099  
Food long $100     
 Food long $10 0.043 0.866***  
 Gasoline long $100 0.035 0.657***  
 Gasoline long $10 0.032 0.627***  
 Money short -0.004 -0.167*  
 Gasoline short -0.005 -0.227**  
Food long $10     
 Gasoline long $100 0.025 0.627***  
 Gasoline long $10 0.029 0.741***  
 Money short -0.003 -0.137  
 Gasoline short -0.003 -0.142  
Gasoline long $100     
 Gasoline long $10 0.038 0.906***  
 Money short -0.001 -0.054  
 Food short 0.005 0.230*  
Gasoline long $10     
 Money short -0.003 -0.143*  
 Food short -0.001 -0.060  
Money short     
 Food short 0.008 0.808***  
 Gasoline short 0.009 0.932***  
Food short     

 Gasoline short 0.008 0.878***  
*  p < .05. 
**  p < .01. 
***  p < .001. 

 
 
75) = 124.234, p < .001, CFI = 0.990, TFI = 0.984, RMSEA = 0.031, SRMR = 0.036. 

However, besides the now statistically significant chi-square value, the other fit indices 

still indicated an acceptable model fit. Table 4-11 reports factor loadings and regression 
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values as well as the factor covariances (with and without regressions) for the final 

model.  

 Strong correlations between factors remained (e.g., Gasoline $100 and Gasoline 

$10, Money Short, Food Short, and Gasoline Short) but these factors were kept separate 

to differentially investigate the regressions of the marginal utility, cardinal utility, and 

time perception variables on these factors. The factor loadings for both the reference and 

methods factors for all outcomes were statistically significant, indicating that the latent 

factors strongly predicted their corresponding measured variables. The large R2 values for 

each measured variable (e.g., R2 for reference measured variables and summed R2 for 

measured variables that load onto reference and methods factors) indicate a high degree 

of reliability for each variable. Finally, the majority of the regression equations did not 

yield significant results. However, marginal utility of gasoline did predict both the 

Gasoline $100 and Gasoline $10 factors. Also, nonlinear time perception (e.g., k in the 

model) significantly predicted the Money Long, Food Long $100, Gasoline Long $100, 

Gasoline Long $10, Money Short, and Gasoline Short. However, most of the R2 values 

were less than 5%. Importantly, nonlinear time perception did not predict most food 

factors.  

 
Discussion 

 
 

 This study is the first to apply structural equation modeling to understand the 

underlying components of delay discounting. Its goal was to investigate the proposed 

influence of marginal utility, cardinal utility, and time perception in the discounting of 
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delayed outcomes (Zauberman, et al., 2008; Myerson & Green, 1995; Rachlin, 2006; 

Killeen 2015). It also sought to understand the degree to which delay discounting has 

trait-like tendencies. First, the individual measures will be discussed. Next, the latent 

factor analyses will be interpreted. Finally, general conclusions will be discussed.  

 
Utility 

 The model fit values for marginal and cardinal utility from individual participants 

were very good. For cardinal utility, as measured by demand curve analyses, the demand 

curve equation (Hursh & Silberberg, 2008; Koffarnus et al., 2015) fit individual 

participant data well. This finding validates the inclusion of the elasticity parameter in the 

latent factor analysis, because it can be assumed that this parameter measures the 

proposed construct of demand elasticity. How to properly and quantitatively describe the 

marginal utility task results was less clear. Previous research (Harinck et al., 2007; 

Killeen, 2015) has suggested a logarithmic function best describes marginal utility. 

However, the results of this study (model fits to individual data) suggest an exponential 

growth function best describes the task results.  

 Two possibilities can account for the discrepancy between previously proposed 

models of marginal utility and the model selected here. First, it is possible that the true 

function of marginal utility is an exponential growth function. A second possibility is that 

the task used here did not actually measure the true construct of marginal utility because 

of its reliance on “utiles” or subjective value as its principle unit. Similar limitations exist 

in the measurement of cardinal utility. This difficulty is evident in the history of these 

constructs in economics. Utility was initially conceived in terms of marginal and cardinal 
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utility (Bentham, 1789). However, as economics moved towards a greater emphasis of 

precise quantification in the late 19th century, ordinal utility (e.g., the value of a good in 

quantities of another good) gained favor (Van Praag, 1990). More recently, psychology 

and economics have developed common interests and once again marginal and cardinal 

utility have gained favor as valid conceptualizations of utility (Kahneman et al., 1997). 

Unfortunately, and in part validating the concerns of the proponents of ordinal utility, 

methods of directly assessing marginal and cardinal utility are limited. It is possible that 

although the exponential model fit the marginal utility results very well, the underlying 

task did not actually measure marginal utility. Additionally, a compromise was necessary 

in the measurement of cardinal utility with the rate of change in elasticity (e.g., essential 

value) serving as the proxy for “utiles” or value. A similar compromise was necessary for 

marginal utility, with “happiness” serving as the proxy for “utiles.” Future research 

should work towards developing better methods of measuring cardinal and marginal 

utility. 

 
Time Perception 

 The results of the time perception model were similar to those of Zauberman et al. 

(2008) with the logarithmic model fitting the data well. A large body of literature 

confirms our finding that time is perceived logarithmically (e.g., Takahashi, 2005; 

Takahashi, Oono, & Radford, 2008). The current task was adopted from the Zauberman 

et al. task but modified to better match the delays from the delay discounting task. This is 

an important modification because it demonstrates that logarithmic time perception 

persists across a greater range of delays than previously demonstrated. 
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Delay Discounting 

 Three important findings from the delay discounting model fits emerged. First, 

the hyperbolic model (Mazur, 1987) was almost universally favored, comparing AICc 

values, over the hyperboloid model (Myerson & Green, 1995) for both model fits to 

group median and indifference points from individual participants. This finding held true 

despite low R2 values for the hyperbolic model fits to individual data. This discrepancy is 

due to the differences in how theses fit indices are calculated. R2 can be calculated as: 

ܴଶ ൌ 1 െ	ோௌௌ
்ௌௌ

     (4-8) 

where RSS is the residual sums of squares and TSS is the total sums of squares. The 

residual sums of squares represent the total deviation of the model from the actual data. 

The total sums of squares are the sum of the difference of each data point from the mean 

of all data points. It is possible to obtain a negative R2 if the TSS is smaller than the RSS. 

For the short delay discounting tasks, a negative R2 value is possible when the delayed 

outcome was not discounted. The hyperboloid model (Equation 4-2; Myerson & Green, 

1995) can provide a good fit to data with little or no discounting, resulting in a large R2 

value (e.g., small RSS and small TSS). The hyperbolic model (Equation 4-1; Mazur, 

1987) cannot, resulting in a larger RSS value compared to the TSS value and therefore 

negative R2 values.  

Akaike’s Information Criteria is not affected by the unlikely scenario of RSS 

being larger than TSS. Akaike’s Information Criteria (AICc in this study) can be 

calculated as: 

ܥܫܣ ൌ ݊ ∗ ln ቀோௌௌ

ቁ  	2 ∗  (9-4)                  ܭ
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where n is the number of data points, RSS is the residual sums of squares, and K is the 

number of free-parameters in the model. Therefore, a large RSS can be offset by the 

number of free parameters in the model. The additional correction for a small number of 

data points (AICc) further penalizes models with additional parameters.  

  The discrepancy between AICc (and to a lesser extent Sy.x) values and R2 provides 

further evidence that R2 is an inappropriate measure for summarizing the quality of fit for 

a nonlinear regression model. Additionally, the hyperboloid model was more likely to fail 

to converge or to provide ambiguous values. Franck et al. (2015) report a similar finding, 

that the Myerson and Green (1995) hyperboloid is more likely to not converge or to 

produce ambiguous parameter estimates (different parameter values that produce 

identical fits). 

 Another finding of interest is that the model fits for the two delay distributions of 

a specific magnitude of an outcome aligned. In most instances, the omnibus model fit was 

superior to the individual model fits. Even when the omnibus model fit parameters were 

used to fit the individual delay distribution tasks, the difference in the quality of fit from 

the individual model fits was minimal. These findings suggest that each delay is treated 

independently from the other delays in a delay discounting task. The quality of the 

omnibus model fit argues against the view that delays are evaluated in the context of the 

other delays in a delay-discounting task (Scholten, Read, & Sanborn (2014). There is 

evidence to suggest global patterns of discounting (as corroborated by the high 

correlation among the degree of discounting with different delay-discounting tasks) 

within an individual. If an individual steeply discounted an outcome in the short delay 
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progression task, they were also likely to steeply discount an outcome in the long delay 

progression task, resulting in the modest alignment of the two discounting functions. 

Further research should investigate the degree to which the discounting of an outcome at 

a specific delay is influenced by the other delays that have been presented. 

 Finally, like the pilot study results, there was no difference in the discounting of 

small and large food amounts for the long delay distribution tasks. This finding is similar 

to the non-human animal literature that fails to demonstrate that large amounts of food 

are discounted by delay less than small amounts of food (Freeman, Green, Myerson, & 

Woolverton, 2009; Green, Myerson, Holt, Slevin, & Estle, 2004; Richards, Mitchell, de 

Wit, & Seiden, 1997). Conversely, Food Short $10 was discounted less than Food Short 

$100, which is opposite of the typical finding in the human literature that large amounts 

of an outcome are discounted less than small amounts of an outcome (Chapman & 

Elstein, 1995; Estle, et al., 2007; Green, Myerson, Oliveira, & Chang, 2013). Discounting 

larger amounts of delayed food more than small amounts has also been found in the non-

human literature (Ong & White, 2004). For example, Richards, Mitchell, de Wit, and 

Seiden (1997) reported that rats discounted larger amounts of food more than smaller 

amounts (see Grace, Sargisson, & White, 2012, for an example of pigeons discounting 

larger amounts more than smaller amounts). Interestingly, this finding appears to be 

unique to food, as large amounts of money and gasoline were discounted less than small 

amounts of money and gasoline in both this study and the pilot study. Conversely, 

Jimura, Myerson, Hilgrad, Braver, and Green (2009) found that human participants 

discounted large amounts of juice less than small amounts of juice using a delay scale 
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that ranged from 5-85 s. Therefore, methodological factors (e.g., hypothetical vs. real 

rewards) may account for the conflicting results in both the human (Jimura, et al., 2009) 

and non-human (Grace et al., 2012) literature. The data reported here are some of the first 

to offer a potential reconciliation of the previously posited contradiction between 

discounting in human and non-human animals. 

 
Latent Factor Analyses 

 The SEM results will be discussed in terms of the implications of the model 

structure and the factor regressions. Typically, AUC is compared using bivariate 

correlations (Charlton & Fantino, 2008; Friedel, et al., 2014; Johnson et al., 2010). 

Structural equation modeling is superior to a bivariate correlation matrix in two ways. 

First, it allows for the comparison of many variables at once. Second, it accounts for the 

shared measurement error between tasks, which allows for a truer depiction of the 

covariance between tasks. Both of these benefits are made clear in the model structure 

results. The model structure describes the covariance between delay-discounting task 

results of the same amount, outcome type, and delay distribution. The factor regressions 

describe the ability of marginal utility, cardinal utility, and time perception to account for 

the factor variances.  

 The model structure revealed two important findings. First, the revised final 

model combined the Money Long $100 and Money Long $10 factors because the 

covariance between the two factors was one. This signifies that after factoring out the 

shared measurement error among the delay-discounting tasks, the rank order for 

individuals for the monetary delay-discounting tasks was nearly perfect. Additionally, 
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high factor covariances of the other factors suggest a very high individual rank-order 

among all delay-discounting tasks. This finding provides more complete evidence that 

delay discounting has trait-like qualities (Odum, 2011). Although some research has 

suggested that the discounting of all delayed outcomes is not related (Green & Myerson, 

2013; Lawyer & Schoepflin, 2013), superior methods of measure trait variables (e.g., 

SEM) provide a more complete answer. The results of this study indicate that there is 

very strong evidence for referring to delay discounting as a trait. 

 Second, the model structure was successful in accounting for a large proportion of 

the variance of each delay discounting task. The long factors accounted for the greatest 

proportion of variance, even for the short delay distribution tasks. However, the short 

factors also accounted for a significant proportion of the short delay distribution task 

variances. Therefore, the variance accounted for by the long factors for the short tasks 

more accurately represents the shared commodity and magnitude, after having accounted 

for specific variance of the short delay distribution. Because the long factors accounted 

for a greater proportion of variance in the short delay distribution tasks than the short 

factors, it can be concluded that commodity type and amount play a larger role in 

accounting for the similarities in delay discounting than the delay distribution. 

 The factor regressions did not provide evidence for marginal and cardinal utility 

as underlying components of delay discounting. Marginal and cardinal utility did not 

predict their corresponding factors except gasoline marginal utility, which did predict 

Gasoline Long $100 and Gasoline Long $10. However, the R2 values were minimal (1%). 

These findings suggest that the Additive Utility Model of delay discounting (Killeen 
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2009, 2015) may not incorporate the actual underlying psychological processes. Time 

perception did significantly predict the three short factors, with a small R2 values 

averaging 5%. Overall, these three underlying components do not appear to predict delay 

discounting in a meaningful way. In fact, a latent model that excludes these regression 

paths fit the data better, ߯ଶ(df = 25) = 36.568, p = 0.63, CFI = 0.996, TFI = 0.989, 

RMSEA = 0.036, SRMR = 0.017. The improved model fit suggests that the regression 

paths did not provide a greater explanation of the data and actually made the model more 

complex than necessary. However, it is valuable to maintain the regression paths in the 

model to test the hypotheses of the proposed underlying components of delay 

discounting. 

 Ultimately, the results of the SEM analyses are inconclusive in identifying the 

underlying components of delay discounting. Marginal and cardinal utility appear to have 

no explanatory power in understanding delay discounting and nonlinear time perception 

is less predictive than expected. Two possible explanations for these findings exist. First, 

the tasks used to measure marginal and cardinal utility may have poor construct validity. 

Although the quantitative models fit the data well, because of the nebulous nature of 

utility, further research is needed to identify the tasks that best measure these constructs. 

Second, the model may be correct in demonstrating that marginal and cardinal utility are 

not underlying components of delay discounting. An alternative explanation that accounts 

for differences in outcomes and magnitudes is the scaling of amount (similar to the 

scaling of time; Halberda et al., 2008). Perhaps larger numbers are perceived differently 

from smaller numbers (Arshad, et al., 2016), independently of the context in which they 
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are presented. Peters, Slovic, Västfjäll, and Mertz (2008) found that participants who 

more precisely identified numbers and nonnumerical stimuli (e.g., pictures of dots or 

lines) as smaller or larger than a target quantity were more likely to choose the larger-

delayed outcome in a delay-discounting task compared to participants with less accurate 

amount perception. The differential perception of amount also provides an explanation 

for the results of the experiments in Chapter 3 in that larger numerical representations 

(dollars) were discounted more than smaller numerical representations (handfuls of 

quarters). Further research should investigate how the perception of amount, independent 

of utility, predicts delay discounting.  

 Time perception did account for a statistically significant portion of the variance 

of several factors, although the degree of prediction was small. The time perception task 

used here represents one type of time perception. Other tasks, such as the temporal 

bisection task, measure different forms of time perception. Baumann and Odum (2012) 

found that the temporal bisection task moderately predicted delay discounting. The 

temporal-bisection tasks measures time perception on a much shorter time frame and is 

more concerned with the precision in estimating time intervals. The length of one’s 

temporal window also appears to be related to delay discounting. Quisenbery, Bianco, 

Gatchalian, and Kim-Spoon (2016) demonstrated that differences in delay discounting 

between adolescent smokers and nonsmokers can in part be attributed to shorter temporal 

windows (e.g., how far into the future a consequence can impact immediate behavior) in 

smokers compared to non-smokers. Stein et al. (2016) found that extending an 

individual’s temporal window through episodic future thinking (e.g., imagining oneself 
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into the future to experience the delayed outcome) reduces delay discounting and 

subsequent cigarette smoking. Future research should investigate the degree to which 

these different measures of time perception predict delay discounting.  

 
Conclusions 

 The results of this study provide powerful evidence for the establishment of delay 

discounting as a trait. The strong correlation among latent factors demonstrate that how 

an individual discounts one domain of an outcome (e.g., outcome type/amount/delay 

progression) is strongly related to how they are discounting other outcome types, 

amounts, and delay progressions. Classifying delay discounting as a trait does not 

necessarily mean that delayed outcomes should be discounted equally regardless of the 

amount, outcome type, or delay scale. Identifying delay discounting as a trait indicates 

that there is a great deal of consistency within an individual. The SEM results have 

clearly demonstrated that how one outcome (regardless of amount and delay scale) is 

discounting by delay is strongly predictive of how other outcomes are discounted by 

delay. Another characteristic of a trait is its temporal stability. Further research using 

latent state/trait methods should be conducted to better investigate the temporal stability 

of delay discounting by accounting for shared measurement error.  

 Calling a class of behaviors a trait also does not necessarily mean it can never 

change. Changes in personality traits have been shown (Roberts, Walton, & Viechtbauer, 

2006), suggesting that these behaviors, while highly consistent, are not unmovable. The 

classification of delay discounting as a trait would suggest that any intervention that 

affects the discounting of one type of outcome should also affect the discounting of other 
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outcomes. Future research can further solidify delay discounting as a trait by addressing 

this question.  

 Finally, the underlying components of delay discounting remain unclear. The 

results of this study perhaps best validate the hyperboloid model first proposed by Mazur 

(1987) and then reintroduced by Rachlin (2006). This model explicitly addresses 

nonlinear time perception but does not include additional processes that affect the amount 

of the outcome. Future research should work towards identifying those underlying 

components of delay discounting and in turn develop a quantitative model that 

incorporates those components. 
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Method 
 
 

Participants 

 Participants (n = 258) were recruited from undergraduate courses at Utah State 

University. Participants were recruited through an online registration system and from in-

class announcements. The mean age of participants was 20.5 years. One-hundred 

eighteen participants were male and 99 were female. All students received course credit 

for participating. All study procedures were approved by the Utah State University 

Institutional Review Board and participants signed an informed consent before 

completing any other tasks. 

 
Procedure 

Discounting tasks. All participants completed 12 delay-discounting tasks and 3 

probability-discounting tasks. All of the discounting tasks were for hypothetical 

outcomes and participants were aware that they would not be receiving any of the 

outcomes. There were three different outcomes for the delay-discounting tasks (3 

discounting tasks per outcome): money, food, and gasoline. The outcome for the 

probability-discounting tasks was money. The tasks were organized into three blocks of 

four tasks. The blocks were categorized by the magnitude of the outcome: small, 

medium, and large. The order of the presentation of the three blocks was randomized as 

was the order of the four discounting tasks within the blocks. All tasks were programmed 

with custom written E-Prime software. 

 The process of determining an indifference point for each delay was the same as 
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described in the methods of Chapter 4. There were six delays for each outcome: 1 day, 1 

week, 2 weeks, 1 month, 6 months, and 5 years. The algorithm used to determine 

indifference points in the probability discounting tasks were identical to the algorithm 

used in the delay-discounting task but the text for the choice alternatives was different 

across the task types. In the probability discounting tasks, the small outcome was 

delivered with a 100% probability and the larger outcome was to be delivered with a 

likelihood that decreased across successive blocks. There were six different probabilities 

to receive the larger outcome: 95%, 75%, 50%, 33%, 10% and 5%. 

 The delay discounting tasks were organized into three blocks with four 

discounting tasks per block. Those blocks were presented in a randomized order to each 

participant and the order of each task within a block was randomly presented to the 

participant. Participants were given a brief 5-minute break between each block in which 

they were allowed to leave the laboratory testing room. Table 4-1a displays the small 

outcome, medium outcome, and large outcome blocks and the monetary value of each 

outcome for the discounting tasks. 

 
Table 4-1a 

Discounting Tasks 

 Outcome type 
───────────────────── 

Outcome size Money Food Gasoline 
Small Outcome $10 $10 $10 
Medium Outcome $100 $50 $50 
Large Outcome $1000 $100 $100 

Note. The amounts of the monetary outcome were for delay 
discounting of money task and the probability-discounting task 
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Analyses 

 The analyses were the same as the analyses of Chapter 4.  

 
Results 

 
 

 Results are organized into three main sections. First, the results of the theoretical 

model fits to the median group indifference point for each task are reported. Next, the 

correlations of the twelve tasks are given. Finally, the results of the confirmatory factor 

analysis are described. 

 
Theoretical Model Fits 

 Equation 4-1 and Equation 4-3 were fit to the median group indifference points 

(Table 4-2a). For 8 of the 12 tasks, AIC scores favored Equation 4-1. For delayed 

monetary and gasoline outcomes, larger outcomes were discounted less than smaller 

outcomes. No difference in the discounting of difference food amounts was found. Also, 

no difference in the discounting of different probabilistic monetary amounts was found. 

 
Correlations 

 Area Under the Curve was calculated for each outcome and bivariate correlations 

were conducted between every outcome combination (Figure 4-2a). For all but one 

pairing (probability $10 and Food $100), the bivariate correlation between outcomes 

were positive and statistically significant. However, the correlation between delayed and 

probabilistic outcomes was much smaller than the correlation between delayed outcomes.  
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Table 4-2a 

Equation 4-1 (Hyperbolic) and Equation 4-3 (Hyperboloid) Model Fits to Group Median 
Indifference Points 
 

 Mazur (1987) 
─────────────────────── 

Rachlin (2006) 
───────────────────────────── 

Task k R2 Sy.x AIC k s R2 Sy.x AIC 

$10 delay .301 .906 .010 -20.762 .392 .671 .964 .069 -16.483 

$100 delay .057 .938 .062 -26.373 .113 .694 .994 .023 -30.338 

$1000 delay .017 .995 .013 -45.067 .027 .877 .999 .005 -47.969 

$10 probability .980 .993 .028 -36.104 .986 .887 .997 .021 -30.714 

$100 probability 1.048 .999 .012 -45.926 1.049 .980 .999 .013 -36.392 

$1000 probability 1.364 .989 .038 -32.320 1.364 ~ 1 .989 .043 -22.325 

$10 food 1.863 .868 .102 -20.533 1.337 .563 .971 .053 -19.602 

$50 food 1.347 .975 .052 -28.454 1.195 .770 .989 .038 -23.578 

$100 food 1.138 .958 .066 -25.638 1.001 .698 .992 .032 -25.565 

$10 gas .220 .811 .121 -18.405 .345 .560 .961 .062 -17.813 

$50 gas .095 .766 .119 -18.683 .225 .540 .970 .048 -20.954 

$100 gas .060 .601 .151 -16.641 .206 .487 .933 .064 -17.362 
~ Indicates that parameter hit constraint. 

Note. Bold indicates the chosen model based on AIC value. Sy.x is the standardized deviation of the residuals. 

 
 

 
Figure 4-1a. Delay discounting model fits to group median indifference points. Model 
fits to median group indifference points. The best fitting model for each task is displayed 
(Table 4-2a). 
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Figure 4-2a. Bivariate correlation matrix between all outcomes. Only the correlation of 
Food100 and Prob10 is not significant. 
 
 
 
The results of the bivariate correlation indicate that how an individual discounts one 

outcome is highly predictive of how that individual discounts other outcomes. In order to 

allow for replicating the latent factor models, the means, standard deviations, standard 

errors (Table 4-3a) are also provided. 
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Table 4-3a 
 
Delay Discounting Descriptive Statistics 
 

Task Mean SD SE 

Money $10 0.354 0.237 0.018 

Money $100 0.537 0.269 0.020 

Money $1,000 0.648 0.279 0.021 

Food $10 0.263 0.230 0.017 

Food $50 0.254 0.235 0.018 

Food $100 0.296 0.250 0.019 

Gas $10 0.418 0.282 0.021 

Gas $50 0.470 0.298 0.023 

Gas $100 0.487 0.299 0.023 

Probability $10 0.273 0.171 0.013 

Probability $100 0.222 0.138 0.010 

Probability $1,000 0.176 0.131 0.010 

 
 
 
Confirmatory Factor Analysis 

 Confirmatory factor analysis (CFA) was used to explore the covariance between 

outcomes. First, a one-factor latent model (Model 1) was created with one latent factor 

loading onto all twelve tasks. All factor loadings were statistically significant; however, 

the overall model fit was poor, ߯ଶ(df = 54) = 377.547, CFI = 0.737, TLI = 0.679, 

RMSEA = 0.186, SRMR = 0.111. Removing the three probability tasks (Model 2) 

improved the model fit but the overall model fit was still poor, ߯ଶ(df = 27) = 249.538, 

CFI = 0.840, TLI = 0.797, RMSEA = 0.195, SRMR = 0.074. 

  Next, a four-factor model (Model 3) that compares the discounting of food, 

gasoline and probabilistic money to delayed money was created. All factor loadings were 

statistically significant and the overall model fit was greatly improved though the chi-
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square value was still statistically significant, ߯ଶ(df = 42) = 86.312, CFI = 0.964, TLI = 

0.943, RMSEA = 0.078, SRMR = 0.043. The results of this model suggest that there is 

shared covariance between outcomes but that unique outcomes also share separate 

covariance. 

 The final reported model is the best fitting model and explores the different 

components of the utility of the outcome (Model 4; Figure 4-3a). Latent factors for time 

are not included in this model because time (e.g., delay scale) did not vary by task, 

therefore the differential effects of time cannot be extrapolated. Six latent factors were 

included in the model: small money, medium money, large money, food, gasoline, and 

probabilistic money. In this model, the amount factors serve as reference factors for true 

scores of Money $10, Money $100, and Money $1,000. The outcome factors (food, 

gasoline, and probabilistic money) serve as residual factors that describe the degree to 

which the discounting of non-monetary outcomes (and probabilistic money) cannot be 

predicted by monetary delay-discounting factors. The model fit, although more complex 

than the four-factor model, provided a superior fit, ߯ଶ(df = 39) = 74.791, CFI = 0.971, 

TLI = 0.951, RMSEA = 0.073, SRMR = 0.041. Though the chi-square value was 

statistically significant, indicating a less-optimal fit, the other fit indices suggest that 

Model 4 fits the data well. All factor loadings were statistically significant (Table 4-4a).  

 The reference factors were strongly correlated. This indicates that correlation 

between money delay-discounting is very large and that a single factor may more 

parsimoniously describe the data. The residual factors were also strongly correlated, 

suggesting strong covariance above what they share with money. This provides evidence 
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that additional (or different) components are involved in the discounting of non-monetary 

outcomes. This correlation was smaller for probabilistic money, suggesting that money is 

the uniting aspect of the tasks but that probabilistic outcomes are difference from delayed 

outcomes. This is in line with previous literature suggesting the delay and probability 

discounting are two difference processes (Jarmolowicz, Bickel, Carter, Franck, & 

Mueller, 2012). 

 
Figure 4-3a. Model 4 model structure. 
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Table 4-4a 

Model 4 Factor Loadings 

Latent factor Manifest variable Estimate 
Standardized factor 

loading R2 

Reference factors     

Money small     

 Money $10 1.000 0.805 0.648 

 Food $10 0.686 0.571*** 0.326 

 Gasoline $10 0.893 0.614*** 0.377 

 Probability $10 0.266 0.297*** 0.088 

Money medium     

 Money $100 1.000 .962 0.925 

 Food $50 0.499 0.549*** 0.301 

 Gasoline $50 0.785 0.689*** 0.475 

 Probability $100 0.135 0.252** 0.064 

Money large     

 Money $1000 1.000 0.819 0.671 

 Food $100 0.489 0.447*** 0.200 

 Gasoline $100 0.838 0.646*** 0.417 

 Probability $1000 0.156 0.271** 0.073 

Methods factors     

Food     

 Food $10 1.000 0.438 0.192 

 Food $50 1.336 0.568*** 0.323 

 Food $100 1.609 0.644*** 0.415 

Gasoline     

 Gasoline $10 1.000 0.576 0.332 

 Gasoline $50 1.185 0.641*** 0.412 

 Gasoline $100 1.139 0.615*** 0.378 

Probabilistic money     

 $10 1.000 0.613 0.376 

 $100 1.066 0.803*** 0.645 

 $1000 0.901 0.718*** 0.516 
**  p < .01. 
*** p < .001. 



155 
 

 

Appendix 4B 
 

Glossary of Terms
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Glossary of Terms 
 
 

Manifest Variable: Directly measured variable. 

Factor: Unmeasured variable that is derived from the covariance of manifest variables.  

Degrees of Freedom: The number of known values minus the number of unknown 
values that are derived from the known values.  

Unstandardized Loadings: The slopes of regressing the manifest variable onto the 
factor. 

Standardized Loadings: The correlation of the factor and manifest variable. 

Residual Covariance: The remaining correlation between manifest variables not 
accounted for by the latent factor. Large residual covariances suggest additional factors 
are needed. 

Chi-square: Tests the null hypothesis that the model perfectly fits that data. A significant 
chi-square value indicates that the model does not completely fit the data.  

CFI: Compares performance of the model to a model that assumes no correlation 
between all observed variables. 

TLI: Similar to CFI but with a greater penalty for additional free-parameters. 

RMSEA: The root mean square error of approximation. Measures the difference between 
the hypothesized model with optimally chosen parameters and the population covariance 
matrix. A value of 0.05 or small is considered an acceptably fitting model. Provides a 
better estimate of the model fit for large sample sizes than the chi-square. 

SRMR: The standardized root mean square residual. Calculated as the difference 
between the residuals of the sample covariance matrix and the hypothesized covariance 
matrix. A value of 0.08 or less indicates an acceptably fitting model. 
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Appendix 4C 

Short Delay  Discounting Task Example
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Figure 4-1c. Discounting of food for long- and short-delay distributions.  Left panel: 
Discounting of the same food outcome ($100) for short and long delay distributions. 
Delays were converted to proportions of the largest delay to aid in comparing the shape 
of the curve. Right panel: The same discounting results but with the nonconverted delays 
on a log scale. 
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Appendix 4D 

Reverse Structural Equation Modeling Model
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Reverse Structural Equation Modeling Model 

In order to investigate the difference model fits by changing the domain of the 

reference factors, a new model was created with the short $100 task for each outcome 

type and amount serving as the reference measured variable (and therefore defining the 

domain of the reference factor) and the long delay progression tasks loading onto the 

methods factors. The overall model fit was very good, ߯ଶ(df = 75) = 100.021, p < .05, 

CFI = 0.991, TFI = 0.983, RMSEA = 0.031, SRMR = 0.033, and was slightly better than 

the final model presented in the main text. The pattern of significant regression paths was 

similar to the main model, with time perception predicting the Money, Food $100, 

Gasoline $100, and Gasoline $10 reference factors. However, time perception did not 

predict the residual factors. Table 4-1d presents the results of the SEM model.  

A latent factor model without the regression paths was also created in order to 

report the factor correlations without the regressions. The model fit well, ߯ଶ(df = 25) = 

15.579, p = 0.927, CFI = 1.00, TFI = 1.009, RMSEA = 0.000, SRMR = 0.010. Similar to 

the final model reported in the main text, removing the regression paths from the model 

improves (in this case, greatly improves) the quality of the model fit.  

The model presented here fits the covariance structure of the data slightly better 

than the final model presented in the main text. This suggests that the short delay 

progression tasks serve as better reference variables than the long delay progression 

tasks. However, the marginal, cardinal utility, and time-perception tasks did not predict 

the latent factors better than in the final model presented in the main text. Therefore, the 

results of both models are similar in that separate factors for the long and short delay  
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progression tasks describe the data well, are highly correlated, and are not predicted by 

marginal utility, cardinal utility, and time-perception (some regression paths were weakly 

predictive). 
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Table 4-1d 
 
Reverse Bi-Factor Model Results 
 

Latent factor Manifest variable Estimate 
Standardized factor 

loading R2 

Reference factors     
Money short     
 Money short $100 1.000 0.830 0.689 
 Money long $100 0.953 0.734*** 0.539 
 Money short $10 1.168 0.951*** 0.904 
 Money long $10 0.776 0.593*** 0.352 
Food short $100     
 Food short $100 1.000 0.848 0.719 
 Food long $100 0.878 0.826*** 0.682 
Food short $10     
 Food short $10 1.000 0.835 0.697 
 Food long $10 0.843 0.711*** 0.506 
Gasoline short $100     
 Gasoline short $100 1.000 0.821 0.674 
 Gasoline long $100 0.886 0.748*** 0.560 
Gasoline short $10     
 Gasoline short $10 1.000 0.880 0.774 
 Gasoline long $10 0.783 0.701*** 0.491 

Methods factors     
Money long     
 Money long $100 1.000 0.436 0.190 
 Money long $10 1.467 0.635*** 0.104 
Food long     
 Food long $100 1.000 0.361 0.130 
 Food long $10 0.857 0.355*** 0.126 
Gasoline long     
 Gasoline long $100 1.000 0.338 0.114 
 Gasoline long $10 1.459 0.491*** 0.241 
     

Regressions Manifest variable Estimate 
Standardized 

regression coefficient R2 
Money short     
 Money marginal utility -0.002 0.035 0.001 
 Time perception -0.014  -0.262*** 0.069 
Food short $100     
 Food marginal utility -0.004 -0.047 0.002 
 Food cardinal utility -0.015 -0.035 0.001 
 Time perception -0.013 -0.161** 0.026 

 
(table continues)
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Regressions Manifest variable Estimate 
Standardized 

regression coefficient R2 
Food short $10     
 Food marginal utility -0.002 -0.030 0.001 
 Food cardinal utility -0.005 0.015 0.000 
 Time perception -0.007 -0.107 0.0.11 
Gasoline short $100     
 Gasoline marginal utility 0.004 0.069 0.004 
 Gasoline cardinal utility -0.001 -0.028 0.001 
 Time perception -0.019 -0.296*** 0.088 
     
Gasoline short $10     
 Gasoline marginal utility 0.080 0.124*** 0.015 
 Gasoline cardinal utility 0.001 0.030 0.001 
 Time perception -0.020 -0.288*** 0.083 
Money long     
 Money marginal utility 0.004 0.116* 0.013 
 Time perception -0.000 -0.004 0.000 
Food long     
 Food marginal utility -0.001 -0.018 0.000 
 Food cardinal utility -0.021 -0.124 0.000 
 Time perception 0.002 0.060 0.004 
Gasoline long     
 Gasoline marginal utility 0.003 0.119 0.014 
 Gasoline cardinal utility -0.002 -0.101 0.010 
 Time perception 0.002 0.091 0.008 

Factor correlations with 
regressions Manifest variable 

Covariance 
estimate Residual correlation 

 

Money short     
 Food short $100 0.020 0.470***  
 Food short $10 0.020 0.614***  
 Gasoline short $100 0.023 0.708***  
 Gasoline short $10 0.024 0.701***  
 Food long -0.007 -0.450***  
 Gasoline long -0.004 -0.281***  
Food short $100     
 Food short $10 0.045 0.862***  
 Gasoline short $100 0.034 0.669***  
 Gasoline short $10 0.027 0.500***  
 Money long 0.004 -0.146*  
 Gasoline long 0.004 0.195*  
Food short $10     
 Gasoline short $100 0.028 0.696***  
 Gasoline short $10 0.029 0.680***  
 Money long 0.003 0.149*  
 Gasoline long 0.001 0.085  

(table continues)
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Factor correlations with 
regressions Manifest variable 

Covariance 
estimate Residual correlation 

 

Gasoline short $100     
 Gasoline short $10 0.036 0.888***  
 Money long 0.003 0.154*  
 Food long -0.005 0.254*  
Gasoline short $10     
 Money long 0.003 0.164***  
 Food long 0.006 -0.055  
Money long     
 Food long 0.007 0.723***  
 Gasoline long 0.006 0.790***  
Food long     
 Gasoline long 0.007 0.828***  

Factor correlations 
without regressions Manifest variable 

Covariance 
estimate Factor correlation  

Money short     
 Food short $100 0.021 0.482***  
 Food short $10 0.021 0.615***  
 Gasoline short $100 0.026 0.739***  
 Gasoline short $10 0.027 0.722***  
 Food long -0.008 -0.463***  
 Gasoline long -0.004 0.270**  
Food short $100     
 Food short $10 0.046 0.864***  
 Gasoline short $100 0.037 0.676***  
 Gasoline short $10 0.030 0.513***  
 Money long 0.004 0.159*  
 Gasoline long 0.004 0.296*  
Food short $10     
 Gasoline short $100 0.029 0.696***  
 Gasoline short $10 0.031 0.677***  
 Money long 0.003 0.168*  
 Gasoline long 0.003 0.112  
Gasoline short $100     
 Gasoline short $10 0.042 0.898***  
 Money long 0.003 0.125  
 Food long -0.006 0.298**  
Gasoline short $10     
 Money long 0.003 0.145*  
 Food long -0.021 -0.102  
Money long     
 Food long 0.007 0.713***  
 Gasoline long 0.007 0.803***  
Food long     
 Gasoline long 0.007 0.857***  

* p < .05; ** p < .01.; ***p < .001. 
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CHAPTER 5 
 

GENERAL DISCUSSION 
 
 

 Delay discounting, or the devaluation of an outcome as the time to its receipt 

increases, has become one of the principle behavioral constructs for understanding the 

acquisition and maintenance of maladaptive behaviors such as substance abuse (Bickel, 

Moody, & Higgens, 2016), problematic gambling (Amlung, Vedelago, Acker, Balodis, & 

MacKillop, 2016), and risky sexual behaviors (Johnson, Johnson, Herrmann, & Sweeney, 

2015). The consistent predictive power of delay discounting to differentiate between 

individuals that do and do not engage in risky behaviors has led some to refer to delay 

discounting as a trait (Odum, 2011) and as one of the general underlying processes of 

maladaptive behaviors (Bickel, Koffarnus, Moody, & Wilson, 2014).  

 If delay discounting is one of the underlying mechanisms of the acquisition and 

maintenance of maladaptive behaviors, then changing delay discounting would result in a 

change in those behaviors. Chapter 2 and Chapter 3 demonstrate that delay discounting 

can be changed through the simple manipulation of reframing the choice. In Chapter 2, 

framing the delay of the larger outcome as a specific date decreased delay discounting 

whereas framing the delay in units of days increased delay discounting. In Chapter 3, 

fuzzy unit framing increased delay discounting whereas clear unit framing decreased 

delay discounting for both food and monetary outcomes. Both of these studies 

demonstrate that delay discounting can be changed through reframing the choice. These 

results could lead to promising developments of interventions that teach individuals how 

to reframe choices in a way that encourages self-control.  
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While the results of these studies add to the growing body of literature that delay 

discounting can be changed (Koffarnus, Jarmolowicz, Mueller, & Bickel, 2013), they do 

not provide a process for how delay discounting was changed. Chapter 4 sought to 

identify possible underlying components of delay discounting in order to aid in the 

development of interventions to reduce impulsive choice. Three hypothesized 

components were cardinal utility, marginal utility, and nonlinear time perception 

(Killeen, 2009, 2015; Myerson & Green, 1995; Rachlin 2006). Importantly, intervening 

on these basic components may result in more effect methods of reducing impulsive 

decision making. For example, if an individual could be taught to perceive time more 

accurately, delayed outcomes may be perceived as closer than before. 

Previously applied methods of evaluating delay discounting across different 

amounts and outcomes are limited in their ability to evaluate many tasks at once and how 

the three constructs listed above are related. For example, bivariate correlations can only 

describe how two variables are related. Multiple regression analyses could analyze how 

well those three constructs predict a single delay discounting task, but again it does not 

give a complete description. Even more complex methods such as multilevel modeling 

would require difficult-to-interpret three-way interactions. Structural equation modeling; 

however, provides a method of analyses that allows for the evaluation of the relationship 

of many variables.  

 Chapter 4 applied structural equation modeling (SEM) to understand the ability of 

marginal utility, cardinal utility, and nonlinear time perception to predict different 

components of delay discounting (e.g., amount, outcome type, and the specific delay 
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distribution). Despite the identification of a well-fitting delay discounting structural 

model, marginal utility and cardinal utility did not predict any aspect of delay discounting 

(with one small exception). Nonlinear time perception; however, did predict specific 

factors related to the delay distribution. This finding corroborates theoretical models that 

incorporate nonlinear time perception (e.g., Myerson & Green, 1995; Rachlin, 2006) but 

it does not justify the inclusion of utility (Killeen 2009, 2015). This finding does not 

suggest that nonlinear time perception (included in the hyperboloid models) is the only 

components involved in delay discounting. Other components such as the nonlinear 

perception of amount (Halberda, Mazzocco, & Feigenson, 2008), executive functioning 

(Olson, Hooper, Collins, & Luciana, 2007), and numeracy (Peters, 2012) may play 

important roles in the discounting of delayed outcomes. Structural equation modeling 

presents a promising framework for exploring these questions.  

 Chapter 4 also provided further evidence for the classification of delay 

discounting as a trait. The high degree of correlation between latent factors, after 

accounting for the shared measurement error among delay discounting tasks and any 

predictive qualities of marginal utility, cardinal utility, and nonlinear time perception, 

suggests that delay discounting is consistent across outcomes, amounts, and delay 

distributions. For example, if an individual discounts $100 steeply, they are very likely to 

discounting five servings of pizza steeply. This high degree of consistency is one of the 

defining characteristics of a trait (McCrae & Costa, 1995). Future research can employ 

SEM to evaluate other characteristics of delay discounting as a trait. For example, delay 

discounting is consistently demonstrated to be stable over time intervals ranging from 3 
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months (Ohmura, Takahashi, Kitamura, & Wehr, 2006) to 1 year (Kirby, 2009). 

However, measurement error restricts the ability to evaluate delay discounting’s true 

temporal stability. Latent state/trait analyses have the ability to account for the shared 

measurement error as well as identify the state fluctuations of delay discounting. 

Structural equation modeling also has the ability to identify differences between groups 

and further clarify why differences in delay discounting are found between those groups.  

 The answers from Chapters 2-4 (and the future research it points to) all 

culminates into a greater understanding of impulsive choice. The ultimate goal of this line 

of research is to better understand impulsive choice’s role in the acquisition and 

maintenance of problematic behaviors. In doing so, interventions for preventing or 

reducing these behaviors may become more successful and as a result improve the lives 

of millions struggling with these behaviors. 
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