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ABSTRACT 

Effect of Mild Water Stress and 

Enhanced Ultraviolet-B Irradiation 

on Leaf Growth 

of Rumex obtusifolius 1. and Rumex 

na tientia 1. (Polygonaceae). 

by 

Steven R. Holman, Mas�er of Science 

Utah State University, 1981 

Major Professor: Dr. Martyn M. Caldwell 
Department: Range Science 

Leaves of Rumex obtusifolius L, and B, patientia 1. 

were exposed to combinations of mild water stress and en-

hanced ultraviolet-B irradiation during their ontogeny. 

Two UV-B treatments (enhanced U'J'-B and control) and three 

water stress treatments (-0.0 l'{!Pa, -0.2 MPa and -0.4 MPa 

rooting medium ma�ric potentials) were employed. The 

impact of the stress interaction 
� . � . 

�as assessea on tne �asis 

of changes in lea= area, average adaxial epid9rmal cell 

size, and total number of adaxial epidermal cells per leaf. 

Although the level of UV-B irradiation applied was in-

sufficient to significantly alter leaf growth at any given 

water stress, UV-B did interact with water stress to alter 

the pattern o= plant response to water stress. The inter-

action was only apparent when the water stress was greater 



vi 

than -0.2 MPa root matric potential. For both species 

UV-B irradiation exacerbated the depression of leaf growth 

due to -0.4 MPa water stress. For R, obtusifolius the 

basis of the reduction in leaf growth was likely a reduction 

in the rate of cell division during the early phase of leaf 

growth. For R· patientia the effect of the interaction on 

cell division was less clear. Cell expansion was not 

directly affected by UV-B irradiation in eit�er species, 

although the reduction in cell size with increasing water 

s�ress was apparent. In terrestrial ecosystems, mild water 

stress is a common occurrence and with predicted anthro­

pogenic modifications of the atnospheric ozone layer, UV-B 

radiation reaching the ear�h's surface can be expected to 

increase. The effect or. higher plants of �he stress inter­

action may thus be of considerable signi1,icance under !latural 

conditions. 

( 4� pages) 



INTRODUCTION 

The manner in which a plant responds to its physical 

environment may be strongly influenced by the interaction 

of many different environmental factors. These factor 

interactions ·can produce plant responses quite different 

from those due to the effect of any of the individual 

factors alone. Plant responses to two or more factors may 

either be additive, when the response to the combination 

of factors is equal to the sum of the responses to the 

individual factors, or synergistic, when the plant shows a 

response either more or less than additive (Salisbury, 

197 5). 

Recent research in~o anthropogenic modifications of 

t he stratospheric ozone layer (Molina and Rowland, 1974) has 

led to concern that a reduction in the ozone l ayer would 

lead to an increase in ultraviolet radiation reaching the 

Earth's surface (Green et a l ., 1974). This increase would 

occur mainly in the ultraviolet-B (280-320 nanometer) region 

of the spectrum. Because radiati on in this waveband is 

quite actinic, even a slight increase in terrestrial UV-B 

could significantly affect higher plants. 

In order to fully ur.dersta~d the impact of enhanced 

terrestrial UV-Bon plants, factor interactions must be 

considered. Most L>-1vestigations to date have examined UV-B 

as an isolated stress factor, al .though ?ox and Caldwell 

(:i.978) have examined the interactior. of competitive stress 
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and enhanced UV-B. 

Among the effects of enhanced UV-B radiation on higher 

plants so far observed has been a significant reduction in 

leaf growth (Sisson and Caldwell, 1976; Dickson and 

Caldwell, 1978). Although UV-B radiation can cause a de­

crease in the photosynthetic rate of exposed leaves which 

could indirectly limit leaf growth, Sisson and Caldwell 

(1976) demonstrated that the depressicn of early leaf 

expansion ir. Rumex patientia was greater than the level 

solely attributable to photosynthate limitation. Dickson 

and Caldwell (1978) determined that UV-B irradiation 

depresses leaf growth in Rumex patientia by reducing the 

rate of epidermal and mesophyll cell division in young 

leaves. Brown and Klein (1973 ) found that "near-UV" (JOC-

400 nm) repressed cell division in pea root meristems by 

increasing the length of interphase period between divisions. 

Similar responses to near-UV have been observed in many 

procaryotic and eucaryotic cells (Klein, 1979). 

Water stress is a widespread and commor. natural stress 

factor. There are faw terrestrial ecosystems wtere water 

is universally abundant and most pla.'1'1.ts are subjected to 

occasional water stress. Even plants growing i::1 well 

watered soil may suffer mild water stress when evaporative 

demands are high. 

The most frequently observed effect of water stress 

on plants is a reduction in leaf growth (Slatyer, 1967: 



Hsiao, 197J). At the cellular level this reduction has 

been correlated primarily with a reduction in cell size due 

to depressed cell expansion (Hsiao, 197J; Slatyer, 1967) 

although water stress has been reported to reduce cell 

division in some cases (Hsia o, 197J; Mccree and Davis, 

1974). 

The rate and duration of leaf growth is a function of 

the rate and duration of both cell expansion and cell 

division (Milthorpe and Newton, 196J). Cell divisiJn is 

most important during the early phases of leaf growth, but 

division ceases when the leaf is from 1/6 to 1/2 final size, 

depending on the species (Avery, 19JJ; Maksymowych, 196J; 

Milthorpe an~ Newton, 196J; Saurer and Possingham, 1970) . 

Sunderland (1960) however, reported that in sunflcwer 

leaves, cell division may continue until the leaf is frcm 

1/2 to J/4 final size. Cell expansion con~inues throughout 

the growth of the leaf. 

These two growth processes are closely linked. During 

the interphase period betwee~ ce~l divisions, :-nust 

expand to reac~ a 'threshold' size oefore the next division 

can take place (Hsiao; 197J). After division ceases, 

further leaf growth depends solely on the rate and duration 

of cell expansion. 

J 

Because UV-B irradiation and water stress ha•re a signi­

ficant impact on the processes of cell expansion and division 

and inasmuch as these processes are closely tied .J... .J...' 
vC .,{le 
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early phase of leaf growth, it seems likely that the com­

bined effects of the two stresses would have a significant 

effect on leaf growth. The purpose of this study was to 

investigate the nature of this potential interaction by 

testing the hypothesis that the two stresses would interact 

to produce a synergistic reduction in leaf growth. 

This hypothesis seems reasonable if, during the cell 

division phase _of leaf growth, water stress increased the 

amount of time necessary for a cell to expand to the 

'threshold' size and divide. If UV-B irradiation exerted 

an independent but concurrent effect on the cell division 

process, the combination of increased time ~or cell en­

largement and decreased cell divisions per unit time would 

likely result in a synergistic reduction of leaf growth. 

Two closely related species were chosen for the study: 

Rumex natientia, a plant sensitive to UV-B irradiation and 

Rumex obtusifolius, which is relatively less sensitive to 

elevated UV-B according to da~a from Sisson (unpublished). 

Both leaf size and the cna.~ges in size ar.d number of the 

upper epidermal cells were monitored for stress-induced 

effects, It was expected that the synergistic reduction 

of leaf growth due to the interaction would b~ more 

apparent in the UV-B sensitive species. The results of the 

investigation made a comparison of the species' responses 

difficult, although the data generally support the 



hypothesis that UV-Band water stress interact synergisti­

cally. Cell division appeared to be the primary growth 

parameter affected by the interaction. 

5 
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METHODS 

Plant Growth 

Seeds of Rumex patientia and~- obtusifolius from 

field collections made near Logan, Utah were germinated on 

moist filter paper. The seedlings were planted in 22 cm x 

4 cm conical plastic containers (Ray Leach Conetainer Co.) 

in vermiculite and placed in a controlled environment 

chamber under ,conditions identical to those under which the 

experiments wculd b~ conducted, with the exception of UV-B 

irradiation. Plants were watered every other day with 1/2-

strength modified Hoagland's nutrient solution until the 

initiation of the 7th leaf. At that time the plants were 

placed in the controlled water stress system devised by 

Tingey and Stockwell (1977), The plants were trar..sferred 

into conetainers with approximately 75% of the surface area 

removed leaving an open plastic framework around the vermi­

culite root mass. The frame and root-vermi culite mass were 

then enclosed i n two layers of cellulcse acetate semi­

permeable membrane with an upper molecular weight 

of 8000-9000. (Spectrapor t.m. dialysis membrane #1, 

Spectrum Medical Industries, Inc.) Transplanting was ac­

complished with minimal disturbance to the plants since, by 

the time of the transfer, the vermiculite rooting medium 

was thoroughly permeated by ~cots and the entire mass was 

easily manipulated, 
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Water Stress System 

The plant-membrane systems were equilibrated for 24 

hours in distilled water, theh placed in 1/2-strength 

Hoagland's solutions to which had been added varying amounts 

of polyethylene glycol 20,000 (PEG) (J. T. Baker Chemical 

Co.). The PEG was used to control the osmotic potential of 

the solutions at different levels to provide different 

levels of water stress. The PEG solutions controlled water 

movement t~rough the membrane s o that the matric potential 

of the vermiculite rooting medium was in equilibrium with 

the osmotic potential of the solutions. The plants were 

subjected to three different levels of water stress; no 

water stress, or zero megapascals (MPa) solution osmotic 

potential, achieved by immersing the plant-membrane system 

into 1/2-strength Hoagland's solution to which no PEG was 

added, low water stress, -0.2 MPa solution osmotic poten­

tial, and high water stress, -0,4 MPa solution osmotic 

potential. The PEG concentration needed to achieve the low 

and high water s~ress treatments was determined ty a cali­

bration curve provided by ·ringey (personal cormnunication). 

During the investigation, these osmotic solutions 

maintained midday leaf water potentials of the test plants 

at -1.3 MPa C~o.1 MPa), -0.96 r~1Pa (~0.05 MPa), and -0.65 

MP a (2::o. 2 Ill.Pa) for the -0. 4 MF a, -0. 2 MP a and zero MP a 

treatments respecti 1iely. Pre-dawn leaf water potentials 

ranged from -0,4 lv1Pa to -0,6 MFa for all treatments. All 



water potential measurements were made with a P. M. S. 

pressure chamber. For each experiment, twelve plants, all 

at approximately the same stage of leaf development, . were 

subjected to each stress. 

The plants were allowed to equilibrate for 48 hours 

in the solutions. Then for the following three days the 

length of the 7th leaf on each plant was measured daily. 

8 

The rate of leaf growth and the absolute leaf length were 

used as a basis of similarity for choosing five pairs of 

plants from each water stress treatment. Although this 

method of pairing plants was considered the most practical 

one, some difficulty was encountered in insuring syn­

chronous leaf ontcgeny within each pair and with each treat­

ment. This difficulty was reflected in relatively high 

variability in some of the data. 

Growth Chamber Conditions 

The ef=ect of UV-B irradiation on the experimental 

plants was assessed under gr0wth chamber conditions. Cne 

~ember of each plant pair was r2.ndomly assiaied ~l,o a ~~ow~h 
u o- t,, 

ch2.mber with an enhanced UV-B ;rrad~a~i· n ° · d the ~ ~ v o r~gime an 

other was placed in an identical chamber, but under control 

(low UV-B irradiation) conditions. 

Apart from UV-E radiation, both growth chambers were 

maintained at identical environmental conditions. A 6000-W 

Osram Co. Xenon arc provided 500 µE·m- 2 -s-l photosyn­

thetically active radiation (400-700 nm) as ~easured with 
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a Lambda Co. Model LI-190-SR quantum sensor. Photoperiod 

was nine hours. Growth chamber temperatures were maintained 

at constant 25°c in order to maintain the temperature­

dependent osmotic potentials of the PEG solutions at con­

stant levels. Humidity remained constant at approximately 

20% relative humidity. Daytime leaf temperatures in both 

chambers, as measured with a copper-constantan thermocouple, 

remained between 22 and 24°c. 

The enhanced UV-B treatment was achieved by placing 

the plants 40 cm below three Westinghouse FS-40 sunlamps 

fitted with 5 mil (0.13 mm thickness) cellulose acetate 

plastic filters. These filters transmit ultraviolet 

radiation down to approximately 290 nm. The control treat­

ment consisted of sunlamps filtered with Mylar Type o (5 

mil, 0.13 mm, DuPont Co. ) plastic fi.J..m which tra..'>'lsmits no 

radiation below 315 nm. Sample leaves were held hori­

zontally with thread to ensure maximum irradiation. Ult:ra­

violet lamps were engaged for tte middle seve~ hours of ~he 

day. Dose rates were determ:.ne ::i with a Ga.r:-u'Tla 3cien ti:: ic Co . 

spectroradiome~er a::d weightec :or ~iological effectiveness 

based on a relationship reported by Caldwell (1971). 

Biological effective UV-B (UV-BBE) dose rates were 

2.4 x 103 effective J·m- 2 ,day-l and 1.0 x 10 2 effective 
-2 -1 

J•m ·day for the enhanced UV-Band control treatments; 

respectively, 



10 

Data Collection and Analysis 

The eighth leaf, which was the youngest leaf at the 

start of the experiment, was examined periodically during 

the experiment for changes in leaf size and in size and 

number of the adaxial epidermal cells. Data were collected 

for up to 14 days after the start of UV-B irradiation, the 

duration of the experiment being dependent on the longevity 

and growth rates of the test leaves. Cellulose acetate 

dialysis tubing is subject to bacterial degradation over 

time. Many workers have estimated the effective life of 

dialysis membrane in PEG solutions. The estimates include: 

2 1/2 to J weeks (Painter, 1966), 12 days to 2 weeks (Zur, 

1966 ), lJ days (Kaufmann, 1969), 5 to 10 days (Wisbey, e t . 

a l. , 1977), and 7 days (Tingey and Stockwell, 19 77). I n 

ord e r to insure the continua l integrity of the water stress 

system used in this investigation, the dialysis membrane 

was changed for all treatments on the 7th day of each 

experiment. In preliminary investiga~ions it was no t ed 

th at visible signs of membrar.e decay di d n ot oc cur un t i l at 

Experiments were repeated twice for each species. 

Leaf area was measured with light sensitive blueprint 

paper held closely appressed to the leaf and briefly ex­

posed to the light. ~hen developed in amr.lonia vapo~ the ­

silhoue~te of the ~eaf was precisely reproduced. T~is was 

then cut out and used to measure leaf area with a Lambda Co. 
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model Dl-J000 photoelectric area meter. 

Epidermal cell density was determined by taking a 

rubber impression of the upper leaf surface each day by a 

modification of the technique described by Groot (1969). 

Dow Corning brand RTV silicon rubber encapsulant was used 

to make the impression. The liquid rubber was mixed with a 

catalyst, spread on the leaf, and could be peeled off as a 

solid impression within two minutes without harming the 

leaf. Clear fingernail polish was used to make a secondary 

impression from the sili~on rubber and this was mounted 

and inspected at 100 power under a microscope. A reticule 

grid was used to count the number of cells per square 

millimeter. For each lea£ 10 counts of cell density 

-2 (cells·mm ) were made at the tip, middle and base cf the 

leaf. 

Continuous transects through the long axes of repre­

sentative leaves of both Rumex patientia and 2. obtusifolius 

were counted and from this it was determined that a linear 

relationship existed between cell density and relative 

pcsition along the leaf. The slope of the rela:ionship 

changed with leaf size, but the relationship remained 

~ . .Llnear. It was also noted that for both species, the 

relationship between leaf length and leaf width for a given 

leaf size class could be described by a quadrat~c equation. 

The product of the linear equation of eel: density at each 

position along the leaf and the quadratic eq_~atior, of 
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width at each position along the leaf would give, for a 

leaf of given size class, an estimate cf the total number 

of adaxial epidermal cells across the leaf at each position 

along the leaf length. Integrating over the entire leaf 

length would give the total number of cells per leaf or, 

L 
y = \ 

1 
W .z dx 

X X 

where Y = total number of adaxial epidermal cells per leaf, 

W is the 
X 

C o~ 1 
"-'-'--'- density per relative 

leaf width per relative length. 

' lengt:-: anc. z is the 
X 

To solve this expression the leaf length and the slope 

of the cell density-leaf :ength relationship were required. 

Eecause the res~ltant cell nu~ber was only an estimate of 

the actual cell number, the equatio~ was also used to cal­

culate ~he estimated leaf area based on the measured leaf 

length. The ratio between the actual leaf area and esti-

mated leaf area was applied as a correction factor to the 

estimated number of cells per leaf. T~e corrected cell 

tctal was t hen di7ided into the actual leaf area to gi7e 

the average cell size for each leaf. 

To test for significant differences in mean values of 

leaf area, cell size, and cell number among ~he three 

water stress treatments under either UV-E or control condi-

tions, a two factor analysis of variance was applied (Zar, 

1974). For all treatment combinations measured each sample 

day, the three sample parameters were tested for sigr . .i.f icant 
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differences (P ~ 0,05) due to enhanced UV-B irradiation 

alone, water stress alone, and to the treatment interaction. 
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RESULTS 

Rumex obtusifolius 

The results of this investigation indicate that there 

was an interaction between enhanced UV-E irradiation and 

water stress as measured by leaf growth and epidermal cell 

dynamics. Ultraviolet radiation apparently acted to alter 

the response of R, obtusifolius to the different levels of 

water stress used in this study. 

?igure 1 (A, 3) i.::..lus-:;rates the pattern of leaf gro'.vth 

for plants exposed to the three levels of water stress 

(-0. 0 MPa, -0. 2 MPa, and -0. 4 i',1Pa) under both enhanced 

UV-Band control conditions. Under control conditions 

(Fig. 1-B) by day eight of the experiment the leaves u~der 

both -0.2 MPa and -0.4 ~i:Fa waters-cress were si&1ificantly 

smaller than the unstressed (- 0 . O :flPa) leaves, bu-:; ·uere :'lot 

different from each other. Under enhanced UV-B irradiation 

(Fig. 1-A) a different pattern emerged. By day six and for 

the remainder of the experiment, the leave~ under the 

grea:::est ·t:atar s-::ress ·,:ere signif:. car.t~:,,- smaller tha~ t:i c se 

under the two lesser stresses. :....nder -0. C :ii?a 

-0.2 MPa stress were r..0t significa!1tly different frsm each 

other until day lJ. At no time did leaf area respond s~gn~-

ficantly to UV-B alone, er to the stress interaction. There 

was, however, an apparent change in plant response to in-

creasing water stress between t~e UV-Band control groups. 

The impact of the -O.h MPa wa-:er s~:ress treat::nent compare:l. 





Figure 1. Patterns of leaf growth, cell division and cell 
expansion for Rumex obtusifolius exposed to en­
hanced UV-B (graphs A, C, and E) and control 
(graphs B, D, and F) treatments while under three 
levels of water stress (-0,0 MPa, -0.2 MPa, and 
-0. 4 MPa rooting medium ~a~ic potential). 
Average values which are not significantly 
different from one another at P < 0,05 are 
connected with vertical bars. Asterisks denote 
days on which a significant (P < 0,05) inter­
action was observed between water stress and 
UV-B irradiation. 
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-co the -0.2 MPa treatment was exacerbated by UV-B irradiation. 

In addition, the depression of leaf growth due to -0.2 lV:Pa 

water stress as compared to the unstressed leaves was mani­

fest five days later under UV irradiation than under control 

conditions. In a replicate experiment, however, the differ-

ence between the leaf area of plants under -0.0 MPa and 

-0.2 MPa stress was apparent approximately six days into the 

experiment under both UV-Band control conditions (Appendix 

1-A, B), suggesting that the differences in timing observed 

here were probably not due to supplemental UV irradiati0n. 

In an effort to quantify the relative influence of 

both epidermal cell division and cell expansion on the 

pattern of leaf growth, the total number of adaxial epi­

dermal cells and the average epidermal cell s~ze was 

determined at intervals throughout the experiment. 

?igfare 1 (C, D) illustrates the pattern of cell divi­

sion as influenced by water stress and UV-B irradiation. 

When the three water stress treatments were compared u::1der 

control conditions, there were no sigr.if ica~'l t ~if::erenc es, 

and only small apparent dif~erences bet~een the average 

numbers of cells per leaf (?ig. 1-J). Under enhanced GV-B 

the apparent differences were much larger (Fig. 1-C). The 

total number of cells in the leaf epidermis of plants 

subjected to -0.4 lVIPa was significantly less than for the 

two lower water stress levels on days six and eight. This 

transient difference, and t~e small increase in cell 
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numbers over time for the -0.4 MPa treatment as compared 

to the other treatments indicates that the rate of cell 

division was proceeding more slowly at -0.4 MPa water stress 

under supplemental UV-B than under any of the other stress 

combinations tested. As for leaf area, no statistical inter­

action between the stress effects was observed. One factor, 

however, suggests that a subtle form of interaction may have 

been manifest. First, since cell numbers for the -0.4 MPa 

plants under enhanced UV-B .:.ncreased steadily throughout 

the investigation, while division ceased earlier under the 

other treatments, UV-B irradiation seemed to act to prolong 

the cell division phase of leaf growth in the most severely 

water stressed plants. The overall rate of cell division 

was also slower unde!' -0.4 MPa and UV-B irradiation than for 

any other treatment. The replicate experiment, though of 

a shorter duration, repeated this trend (Appendix 1-C, D). 

It thus seems possible that, although the interaction is 

subtle, the effect of UV-Band water stress is to depress 

the rate and to prolong ~he du~ation of eel~ division in 

R. octusifolius. 

Changes in average epidermal 2ell size during t~e 

experiment are illustrated in Figure 1 (E, F). Under en­

hanced UV-B irradiation, the reduction in cell size with 

increasing water stress was quite apparent (Fig. 1-E). 

Plants subjected to the three water stress treatments ex­

hibited significantly different cell size from day eight. 

The control plants did not show the same relationship in 



cell size as a function of water stress At no 

time were the leaves under -0.2 MPa and -0,4 MPa water 

stress significantly different in cell size. Beyond day 

eight the unstressed leaves were different from those at 

-0.4 MPa and by day lJ they were different from both -0.2 

MPa and -0.4 MPa treatments. On days 8, 11, and lJ of the 
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experiment, a statistical interaction between water stress 

and UV-B irradiati~n was observed. Under UV-B irradiation, 

cell size decreased with decreasing rooting ~edium matric 

potential. This did not occur until day lJ under control 

conditions and then only between the unstressed (-0. O 111Pa) 

and s-cressed (-0.2 MPa and -0,4 MPa) groups. The trends ob-

served here were confirmed by the replicate experiment. This 

relationship indicates that the response of cell expansion 

processes to increasing water stress is, at least within the 

range tested here, influen ced by UV-E irradiation. 

Rur.1ex: uatien-tia 

The response of E· patientia to the combination of 

stresses was somewhat similar to that of~ - obtusifolius. 

The leaf growth patterns a:-e presented in ? ig,1re 2 (A, :a) . 

Under control conditions, the only significant differences in 

leaf area were observed between the unstressed (-0.0 MPa) 

and stressed (-0.2 MPa and -0.4 MPa) plants (Fig. 2-B). 

Leaves under -0.2 MPa and -0.4 MPa stresses were never 

different from each other. Under enhanced UV-B irradiation, 

however, leaves under -0. 4 ?!;Pa stress were different from 
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either of the other two water stress treatments :rom day six 

through day ten (Fig. 2-A). On day 10 under UV irradiation, 

leaf area began to decline in the two stressed treatments. 

This was due to an early onset of senescence in these leaves. 

After day 10,leaves from both treatments began to develop 

small chlorotic areas along the leaf blade and attrition 

of the leaf margin was noted in many cases. This decline 

in living leaf area undoubtedly influenced the relationship 

between the leaves under the three water stresses during 

the latter part of + 1 • • vf'.e experimenv (days 10 thro~gh 14) and 

may have been responsible for the lack of difference be­

tween -0.2 and -0.4 MPa stressed plants on days lJ and 14. 

This early leaf senescence did not appear in any plant 

ur.der con-:;rol conditions. Ne statistically significant 

effect of UV-B irradiation was observed within any water 

stress :evel and no interacti on between the two stresses 

was demonstrated. 

There were no signi:icant differences in total cells 

per leaf among plants from a~y water stress level u~der ei-

ther UV er central treatme~ts a~d ~o i~teraction ~as apparent 

for 0 pa~i·en+ia (~~c 2 ,~ J· ) ~· v '-'- .... ~o• -v, . • 

For R. natientia enhanced ultraviolet radiation did 

not appear to have an important effect on the rate or 

magnitude of cell expansion (?ig. 2-E, F). The relation­

ship between cell size under the three water stresses 

appeared to be very similar for both UV and control groups. 

The only clear differences ~ccurred on days 10 and 14, 





Fi~~re 2. Patterns of leaf growth, cell division and eel~ 
expansion for Rumex patientia exposed to en­
hanced UV-B (graphs A, C, and E) and control 
(graphs B, D, and F) treatments while under th~ee 
levels of water stress (-0,0 MPa, -0.2 MPa, anl 
-0.4 MPa rooting medium rnatric potential). 
Average values which are not significantly 
different from one another at P < 0,05 are 
connected by vertical bars. 
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when under UV irradia-:ion · the -0.2 MPa and -0.4 MFa treat­

ment groups were not statistically different (Fig. 2-E) 

while under control conditions they were (~ig. 2-F). 

Because senescence was occurring in both treatments under 

UV it is possible that ~his was partially responsible for 

the difference. In addition, on day 10, the average cell 

size for the unstressed plants under enhanced UV-B irradia­

tion was significantly smaller than for the cor:!'."esponding 

plants under control iYradiation. 



DISCUSSICN 

The combined effect of enhanced UV-B irradiation and 

water stress on leaf growth of Rumex obtusifolius resulted 

in an unexpected interaction. The UV-B dosage applied to 

R. obtusifolius in this investigation was insufficient to 

significantly suppress leaf growth or alter most leaf cell 

characteristics of irradiated plants when these were com­

pared to control plants under any given water stress. The 
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nature of the stress interaction was evident in the differ-

ential plant response to water stress under UV irradiation 

d + - d. +. (...... 1 ) an convrol con i~ions rig. - . Under UV-B irradiation, 

leaf growth and total epidermal cells per leaf were depressed 

by -O,!J. MFa water stress relative to -t::1e -0,0 MPa and -0.2 

IVIF2. treat:nents (Fig. 1-A, C). Under control conditions 

lea ·-res did not respond differently to -0. 2 :','!Pa or -0. 4 MP a 

water stresses in any growth parameter (Fig. 1-B, D, F). In 

most cases the relationship between leaf growth parameters 

at -0.0 ~i!Pa and -0.2 MPa water stresses was the same under 

both UV and cor.tr~l conditions (Fig. :) , indicati~g that 

in this water s~ress range, UV does not altar the response 

of R. obtusifolius to water stress. 

Without the additional stress of UV-B radiation, the 

change in the severity of water stress imposed by a drop in 

the ma-:ric potential of -che rooting medium frcm -0.2 MPa 

to -0.4 I'liFa was not sufficient to affect leaf ~row+h ce,, c- " - , ..J... ..L 

division, or cell expansion (Fig. 1-B, D, E). Superi~posi-
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tion of UV-B irradiation subtly altered this relationship. 

At some point between -0.2 lV'iPa and -0,4 MPa, UV-B began 

to interact with water stress to amplify the leaf growth 

depression due to water stress. 

After the initiation of the leaf primordium, the rate 

and duration of cell division and cell expansion are solely 

responsible for leaf growth (Milthorpe and Newton, 1963). 

An analysis of both these processes in this experiment re­

vealed that under water stress and UV-B irradiation cell 

division and expansion were both to some extent affected 

by the interaction. 

Ultraviolet radiation did not directly affect epidermal 

cell size except on the final day cf the experiment at 

-0.0 MPa. However, UV-B did alter the cell size response 

to water stress during the latter part of the experiment 

(?ig. 1-3, F). It is notable that by the final day of the 

experiment the pattern of differences in cell size was simi-

lar to the differences l·-r. l 0 a-f' ~rca (:;,i·:::r 1 A -=--) ina·'cati"'a - '- ... a. ._ .!. '::I • ..L - . • ~ - ..., -• ... o 

that the relationship between the ~reat~e~ts due ~o the 

in~eraction observed in tte whole :eaves may be exp~ained 

in part by the patterns in cell expansion. ~~ is c~ear, 

however, that the patterns of cell division must also be 

important in determining leaf growth response to the stress 

interaction. It must be remembered that cell expans~cn 

plays two roles in leaf growth. Expa.~sion takes place dur­

ing interphase (Hsiao, 197J) and after the cell divis~on 

phase of leaf growth has ceased (Maksymowyct, 196J). If the 
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rate of cell division was reduced by the stress interacti on 

then a long-term reduction in cell size might be expected 

since the cell expansion phase of leaf growth would be 

delayed. At any given time, therefore, plants so affected 

would have had less time for the cells to expand to their 

final size and would have, on average, smaller cells, than 

unstressed plants. If, alternately, the stress interaction 

primarily acted to reduce cell expansion, then with longer 

interphase periods reauired to all ow the cells to grow large 

enough to divide, cell division rates would be reduced. It 

is difficult to seperate these two possibilities based on 

the data presented here. There is,however, strong evidence 

to suggest tha~ cell division may be ~ost directly sensitive 

to the stress interaction. 

The effect of the stress combination on total number 

of cells i~ the leaf seems clear . The s~aller rate of in-

crease in total cells per leaf and the extended duration 

of the cell jivision phase of leaf grcwth resulted in 

si.gni:icantly :ewer cells producec by tte middle portion of 

the experiment i~ plants unier the grea~est wa~er stress 

and UV-B irradiation (?ig. 1-C). The manner in ~hich UV 

interacted with -0.4 MPa water stress to produce the ob­

served effect on cell division is not clear. Either UV-B 

irradiation directly affected cell division and this level 

of water stress indirectly reduced the ability of the leaf 

cells to overcome the UV-B injury or both stresses combined 

to directly affect the division process. 
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A previous attempt to analyze UV-:0-mediated reduction 

in leaf growth on a cellular basis (Dickson and Caldwell, 

1978) revealed that the rate of palisade and adaxia l epi­

dermal cell division in Rumex patientia was reduced under 

supplemental UV-B. ~or~. obtusifolius a si~ilar response 

was observed, but only under a stress combination, not due 

to UV-B alone. In addition, the duration of the cell divi-

sion phase of leaf growth was increased under the stress 

interaction in this investigation, while the earlier work 

suggested no change in the durati~n of cell division under 

UV-B. Although a direct comparison of the two studies is 

difficult, it is clear that in both cases, UV-B irradiation 

influenced the process of cell di7isicn. 

Brown and Klein ( 1973) working '.Ni th "near UV," a wave­

band from JOO to 40 0 n~ overlapping both UV-E (290-320 nm) 

and UV-A (J20-400nm) spectral regions, found that irradi­

ation increased the length of the mitotic cycle in excised 

pea root meristems by lengthening the G. or pre-CNA synthesis 
.L . 

period of mitotic interphase. lt ~hus seems reasonable to 

postulate that GV-B may have acted direct~y to slaw the 

mi to tic cycle cf the lea:' ce~ls under -0. 4 1~I?a 'Nate~ s"tress 

in this study. 

The role of water stress in the interaction is unclear. 

Although a direct effect of water stress on cell division has 

occasionally been reported (Terry et al.: 1971, McCree and 

Cavis; 1974; reviaw by Hsiao, 1973), the true nature of the 

relationship is far ~rem certain. Hsiao (1970), however, 
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has reported that the number of polyrit os omes and hence the 

rate of protein synthesis is reduced in the cytoplasm of 

cells of Zea mays coleoptiles exposed to mild water stress 

(-0.65 Y~a to -1.1 lf~a plant water potential). Because 

enzyme and structural protein synthesis are closely linked 

to cell division, the effect of water stress on protein 

synthesis has important implications concerning the effect 

of water stress on cell division. 

There is evidence,therefore, to sugges t that water stress 

and UV-B irradiation ~ay have an affect on cell division. 

Data presented here also suggest a role of UV-Bin affecting 

the cell expansion process. Because these two processes 

are clos e ly tied, the relative effects of the two stresses 

are difficul~ to separate in a study of natu re. As 

suggested above, the observed effect of UV-B irradiation 

en cell expansion under water stress ~ay be simply a conse­

quence of a direct effect on cell division. Conv ersely; by 

a mechanism as yet unk:10vm, a direct a.:::::ect of UV-B on cell 

expansion of p lants under water s tres s ~ay be responsible 

for ~he obse rved resp on s e of cell d~v isi an . Eased en the 

data presented here a definitive answer is not possible. 

Experimental evidence gathered by other workers, however, 

lends strong support to the possibility ~hat the process of 

cell division is primarily and directly affected by the stress 

combination. To extend ar.d refine this conclusion, detailed 

cytological studies of cell growth behavior under these 

stress conditions woald be invaluable. 
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The pattern of the growth response of~- patientia to 

UV-Band water stress was generally similar to that of R. 

obtusifolius. As found for R, obtusifolius, leaves of 

~- patientia did not grow differently under -0.2 MPa or 

-0.4 MPa water stress under control conditions. However, 

under supplemental UV-B irradiation, leaf growth was signi­

ficantly reduced by -0.4 MPa stress relative to the other 

two water stress levels (?ig. 2-A, B). The senescence 

that was observed in the water stressed leaves under en­

hanc ed UV-B affected the relationship between the -0.2 :vi?a 

and -0.4 MPa stressed leaves by day lJ and, thus, inter­

pretations of the last two days of the experiment were 

dif:icult to ffia~e. !tis interesting, however, that only 

under water stress and enhanced UV-B was this early onset 

of senescence n8ted. Sisson and Caldwell (1977) reported 

that leaf longevity of R· natientia was reduced substan­

tially in a suppleffiental UV-B radiation regime that was 

slightly greater than that employed in this investigation. 

~tis thus possible that ~nde~ ~ild wa~er s~ress, one ef:2ct 

of enhanced UV-B radiation is ~c reduce leaf :Jngsvity in 

this species. Unfortunately, a replication cf ~his experi­

ment was curtailed by technical difficulties after five 

days, well before leaf senescence could have occurred and~ 

thus, this possibility awaits verifica~ion. 

When the two growth parameters of cell size and eel~ 

number were examined for~- patientia, the sa~e disti~ct 

relationship between water stress, UV-B irradiat~on and 



cell division found for R, obtu sifolius did not emerge. 

At no time was the total number of cells different for 

different water stress treatments under either enhanced 

UV-B or control conditions (Fig. 2-C, D). There was a 
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slightly greater difference in number of cells between 

water stress treatments under control conditions, and a 

slightly greater reduction in number of cells under -0.4 

MPa stress in relation to -0.0 MPa and -0.2 ~?a values with 

supplemental UV-B, but the differences were ~at statisti-

cally significant. Likewise, there was no clea r indication 

of an effect of the stress interaction on cell expansion 

(Fig. 2-E, ?) . Cell size see~ed to respond similarly to 

water stress under either UV-B regi~e. 

Numerous studies have e s~ab li s hed the relatively higt 

sensitivity of~- nati en~ia ~c UV-B irradia tion (Sisson and 

Caldwell , 1976, 1977; Sickson and :aldwell, 1978; Robbe recht 

. C ld 11 19,...,A) an a a~ we ~ ~ , r - . ~ickson and Ca ldwell (1978) have 

li~ked this sensi t ivi ~y partially to an effec~ of UV-B on 

cell division r~:es. -~ ~~is invsstiga~i an, ~owever, tigh 

UV-B sensitivi~y ~as net a;paren~ eve~ ~toug~ appr:xi~a~e:y 

the same effective CV-B doses were employed as in previous 

investigaticns. The difference in UV-3 se~sitivity may have 

been due to differences in other environmental condi~ions 

during the experime~ts. f"no v._ ..... possible explanation may be 

+ ' • 1 ! +- "Y'O ~ne soi~ mo~s~u-~ cor.citions of these experime~ts. In this 

study plants were grown unaer conditions much different 

than these encountered by ::he soil-grov.rn Rurr.e:{ na-cien-:i3. 
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used in all other studies. Because of soil matric forces, 

soil water potentials are rarely zero. It is undoubtedly 

more difficult for plant roots to extract water and nutrients 

from soil (especially slightly dry soil) than from the 

solution-membrane syste~ employed here, at least for the 

-0,0 MPa solution and perhaps for the -0,2 MPa solution as 

well. It may be that under slight or nonexist:e.nt water 

stress, UV-Bis for some reason unimportant and that only 

under greater stress is the effect of the irradiation 

manifest. If so, then water stress may have ~een an un-

recognized contributing factor ~o the effects previously 

reported. To test this possibility for one study, scil 

grown R, patientia were exposed ~o growth sharnber conditions 

closely approximating th-Jse ::mpl oyed by Sisson and Caldwe::;_1 

(1977) and leaf water potentials were measur~d with a 

pressure bomb periodically during the day. In this in-

s"":ance under the relatively high midday chamber tempera­

tures used by Sisson and Caldwell (37°c) leaf water poten­

-:ials cropped to approximately -: .1 :-il:?3. from a pre-dawn 

(en' am'oer ~emp0 ~a~u-e -~Or) -0,,~ 1 of .., •• V 1 -• l, .J.. 1- V ~- ::==_ .- -0.J ~,~Pa. The plants 

were watered to field capacity daily at the beginning of the 

light period. The lowest leaf water potentials were recorded 

seven hours after wcitering. The lowest water potentials for 

the soil-grown Rumex were between t:ie midday values recorded 

for plants grown hydroponically under -0. 2 MPa and -0. h 11TP2. 

stress levels. Because this seems to be the zone in which 

UV-B irradiation begi~s to interact with water stress, it is 



possible that a hitherto unsuspected interaction between 

water stress and UV-B irradiation was at least partially 

responsible for the effects noted by Sisson and Caldwell 

(1977), Although this is only speculation, the evidence 
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would seem sufficient to suggest that further research on 

UV-B radiation and leaf growth should include some consider­

ation of the water status of the test plants. 

The synergistic reduction in leaf growth, cell division 

and cell expansion due to water stress and enhanced UV-B 

irradiation suggested by this research has important eco-

logical implications. It is possible, given sufficient leaf 

longevity, that the reduction in cell division rate observed 

here would only delay and not curtail the process of leaf 

growth. ~owever, this early period of leaf growth is criti-

cal to the ul:imate success o: the plant. Photosynthetic 

carbon fixa~ion is T.ost rapid duri~g ~his pericd for these 

species and a small, even transient decrease in leaf area 

could seriously reduce the carbon pool available for later 

growth and reproducticn. The implications of this are clear. 

The ~a~er str~ss under whic~ ~he interaction was manifest 
-

was quite nild, and may often te exceeded during the growing 

season in both natural and agricultural systems. Hence, if 

the relationship between water stress and UV-B irradiation 

observed here holds for other species, under an enhanced 

UV-B regime sig:'lificant reductions in plant growth, c~rbon 

gain and reproduction might be expected, As a consequence 

of the effects on individual plants, altered competitive 
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iY1teractions and community dyna!Tlics might be an even more 

important result of UV-B irradiation, as has been suggested 

by Fox and Caldwell (1978). 

Further work is required to extend the results 

presented here, particularly ~n order to examine the 

mechanism of the interaction in finer detail and to examine 

the interaction over a broader range of stress combinations. 

Nevertheless, it does seem clear that an interaction does 

exist, an interaction with important ecological implications 

in view of ~he currently predicted anthropogenic reductions 

of the ozone layer. 
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APPENDIX 





Figure 3 Patterns of leaf growth, cell division and cell 
expansion for the replicate experiment with 
Rurnex obtusifolius, exposed to enhanced UV-B 
(graphs A, C, and E) and control (graphs B, D, 
and~) treatments while under three levels of 
water stress (-0.0 MPa, -0.2 i'l!Pa, a....-1.d -0.4 MPa 
rooting medium matric potential). Average 
values which are not significantly different 
from one another at P ~ 0,05 are connected by 
vertical bars. Asterisks denote days on which 
a significant (P < 0,05) interaction was ob­
served between waler stress and UV-B 
irradiation. 
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