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ABSTRACT 

Spectral Signature Studies For Application in 

Deer Census Using Remote Sensing Techniques 

by 

Maran C. Pate, Master of Science 

Utah State University, 1979 

Major Professor: Dr. Clair Wyatt 
Department: Electrical Engineering 

x 

This study was performed to determine the spectral signatures 

of deer and their natural background elements for censusing purposes. 

Consideration was given to atmospheric transmittance, acceptable 

flying weather, and terrain. Possible spectral bands between 0. 3 and 

14. 0 µm were obtained (over a pathlength of 1500 feet at an altitude of

5000 feet) based upon atmospheric transmittance using the LOWTRAN 

3B computer program. They are: 0. 30 - 1. 33, 1. 49 - 1. 79, 2. 00 -

2. 50, 3, 00 - 3. 16, 3, 38 - 4. 10, 4. 59 - 5. 05, and 8. 00 - 13. 33 µm, for

transmittance greater than 75%. Weather conditions are favorable for 

flying and taking data on the average of 2 days per week (in areas near 

Salt Lake City) throughout the winter months. Measurements were 

obtained of the spectral reflectance and spectral emissivity of deer hide, 

sands, soils, sage brush, and other natural winter habitat elements. 

The results of these measurements indicate that all the biological 



xi 

samples tested emit blackbody radiation; that is, the emissivity is 

approximately unity and there are no unique spectral signatures. The 

reflected spectra in the region 0. 5 to 1. 1 µm contains considerable 

unique spectra, including chlorophyll absorption at 0. 66 µm, that 

might be useful in de signing a multi spectral classifier. 

(85 pages) 



INTRODUCTION 

Nature of the Problem 

In rec ent years there has been an increasing interest in wild

life populations. Society in general, and biologists, in particular, are 

concerned about the e ffects which modern civilization has on wildlife 

habitat. Furthermore, it is important for wildlife managers to know 

the size of populations in order to make sound management decisions. 

A number of techniques have been employed with varying success 

to estima t e the size of deer populations. Some methods used include 

ground surveys and st ripcounts, aerial census, pellet counts, spotlight 

surveys, browse surveys, hunter kill and success results, and count

ing shed antlers. 

Wolfe (1976) pointed out inherent weaknesses in several of the 

techniques used. He states, "· .. browse surveys appear mainly to 

provide hindsight and reflect cumulatively events and conditions of the 

past more adequately than those in the time the surveys are conducted. " 

A problem with aerial and ground counts of deer is that "· .. they can 

only serve as an index to the general population trend over a relatively 

long period of time." Politics also seems to play a role in the useful

ness of hunter kill results. "Current harvest data alone do not allow an 

accurate determination of mule deer populations, particularly on a 
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statewide basis, due to more variable and restrictive seasons applied 

under present management practices. 11 Some techniques have been 

discarded as inadequate, but others have been kept and used as the 

most adequate to date in terms of information gained in exchange for 

effort expended. However, no single method has proved satisfactory. 

A further discussion of current limitations and capabilities in de e r 

censusing is given in the literature (Wolfe, 197 6) . 

Previous Work 

Efforts to es timate the size of deer populations in recent years 

have moved in the direction of electronic censusing. The pas sibility of 

using the thermal infrared regions has been considered by several 

res ea rchers, e . g ., Marble (1967), Carneggie (1968), Croon et al. (1968), 

McCullough et al. (1969), Graves et al. (1972), Parker (1972), Parker and 

Driscoll (1972), Isakson et al. (1975), 

Th e concept of a warm- blood e d animal standing out from a 

colder inanimate background seems to be the most appealing reason 

fo r investigating the thermal infrared. The peak radiant power (heat) 

em itt ed from many an imals is in a region where the atmosphere has a 

high transmittance (8. 0 - 14. 0 µm). Carneggie {1968) investigatin g 

livestock censusing stated: 

Animals can be imaged particularly well at night when the heat 
from their bodies is in contrast to the cool night-time tempera
tures of background material such as soil and grass. Animals 
can also be imaged during the daytime, when temperature differ
ences are detectable between the animals and its background. 
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Animals lying in shadows are readily seen on thermal infrared 
imagery. 

There are several areas where previous investigators agree 

and some areas needing further clarification. The results of the 

literature review performed can be divided into four categories: 

1. spectral bands investigated, 2. thermal contrast measured, 3. 

environmental conditions, and 4. censusing capabilities. 

Spectral bands investigated 

Parker (1972) used a 8. 0 - 13. 0µm band and was able to obtain 

census data at 500 feet but not at 1000 feet using penned d ee r and ante-

lop e. One set of measurements was conducted under ''idealistic" 

conditions (small, open, snow-covered pens with no foliage) and 

another set was obtained under more natural conditions (large enclosure 

with some foliage, and snow-covered terrain). 

McCullough et al. (1969) investigated three bands (3. 5 - 5. 5µm, 

3. 5 - 14. 0 µm, and 8 . 0 - 14. 0µm) and obtained results indicatin g the 

8. 0 - 14. 0µm region is the best. The censusing conditions included 

three groups of penned animals; one having an open snow-covered pen, 

one located in a deciduous for es t after leaf fall, and one located among 

evergreens. The animals in the evergreens were not detectable with-

out a priori information. 

A third group (Graves et al. 1972) investigated three bands 

(3. 0 - 4. 0µm, 3. 0 - 5. 0µm, 3. 0 µ 14. 0µm) and found the short wave-

l ength bands gave the best r esu lts during the warm summer months and 
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the broadband detector gave the best results during the winter. Their 

best results overall came from the shorter wavelength region. The 

results of a study (Barhydt et al. , 19 70) to determine the optimum 

spectral region for infrared scanning show that ''At very short range 

[several thousand yards] essentially equivalent performance can be 

obtained in either the 3. 0 - to 5. 5 µm region or in the 8 - to 14 µm 

region. 11 The author also points out that haze tends to make the longer 

wavelengths more favorable while high humidity tends to make the 

shorter wavelengths more favorable. 

It appears from the literature that the differing results (con

cerning which wavelength region is best) may have been obtained more 

because of lo ca l or statistical differences than from large inherent 

differences in th e bands investigated. 

Thermal contrast measured 

Several research groups have conducted outdoor winter tempera

ture measurements. McCullough et al. ( 19 69) reported an apparent 

t em p e rature differential of about 7°C between deer and a snow back

ground with an air t em perature of 4°C. Parker (1972) found a mean 

t em perature differential of 7. 7°C between deer and background. He 

concluded that the actual difference at any time may be much less than 

the average. Parker (1972) and Marble (1967) both indicate that the 

temperature measurements of deer etc. are highly variab l e. The 

th e rmal contrast may be defined by 
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thermal contrast = 
T T 

deer - snow 
T 

snow 

and is approximately 3% for Parker 1s measurements. A recent analysis 

of Parker 1s data (Wyatt et al., 1979) indicates that deer could be 

successfully detected with snow cover background, however, a thermal 

scanner would exhibit large errors in detecting deer when the probability 

of snow-free objects is greater than the probability of deer. 

Environmental conditio ns 

11Experience has shown that meteorological conditions during 

thermal data collection are extreme ly important to the quality of the 

output'' (Isakson e t al., 1975). The fact that the detectability of a 

target is related to the time of day, season, and altitude is probably 

due to the intera c tion with th e meteorological conditions. Wind, rain, 

haze, frost or dew on an animal's back are conditions which seem to 

hind e r infrar ed detection. 

Moen and Jacobsen (1974), Parker (1972), Marble (1967) and 

others generally agree that the following conditions are beneficial in 

obtaining thermal census data: 

1. level topography, 

2. snow covered terrain (for winter censusing), 

3 . low atmosphe ric moisture (no rain, etc.), 

4. no temperature inversions, 

5. little or no wind. 
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There is some disagreement as to whether daytime flights are 

better than night flights and whether a clear sky or a high overcast sky 

is better for obtaining infrared data. Solar radiation, during the day, 

causes the radiant temperatures of grass, soil, and snow etc., to vary 

considerably. A clear sky during the night and a high overcast sky 

during th e day tend to produce a more uniform background. 

Censusing capabilities 

To date no investigator has been able to obtain good thermal 

infrared census data of deer from more than 500 feet elevation. Nearly 

11ideal 11 conditions were used to obtain the existing data. Both Graves 1 

(1972) and Parker 1s (1972) attempts to detect deer above 500 feet were 

unsuccessful. Researchers have obtained distinguishable livestock 

data at altitudes of 1000 feet and higher (Graves et al. 1972, Shilin 

et al. 1971 ). Apparently livestock can be detected at significantly 

higher altitudes than deer because of their lar ge r size. 

Objectives 

The objectives of this work are to: 

1. perform a literature review to determine what progress 1n 

censusing has been made, 

2. determine candidate spectral bands for censusing based upon 

the atmosphere transmittance, 
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3. determine the average numb er of days available for surveying 

deer ranges using light aircraft, and 

4. determine the spectral radiation "signatures II of deer and its 

wintertime background in the laboratory in the thermal 

emission and r e flective bands. 

Significance of This Work 

The success of any discrimination system depends upon utiliza

tion of the statistical properties of both the target and the background. 

The purpose of this study is to investigate the spectral properties 

(signatures) of deer and background in both emitted and reflected 

radiation; including the ultraviolet (UV), visible, and infr ared (IR) 

regions. A characterization of th e deer and background elements is 

necessary before a workable, efficient censusing syste1n can be 

de signed or constructed . The samples measured were deer-hide, tree 

barks, foliage from brushes and trees obtained from the wintertime deer 

habitat, and various sand and soil samples. A list of the samples 

measured is given in Appendix A. 
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FUNDAMENTALS OF TARGET DISCRIMINATION 

Introduction 

Targ e t discrimination is a problem of detecting and characteri

zing a target based upon th e sensor response to elec troma gne tic radia

tion in the presence of competing background and atmospheric scattering. 

The radiation incident upon the entrance aperature is a combination of 

reflected and em itt ed radiation from the target and th e background 

which has been modified by the atmosphere, as illustrated in Figure 1. 

Figure 1. Tar get discrimination. 
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Target attribut e s such as size, shape, temperature, position, and 

spectral charact e ristics can be inferred from the radiation measure-

ment in a properly designed experiment. The target radiation (emitted 

or reflected) is spr ead over the electromagnetic spectrum and hence 

cannot be fully utilized or measured by any single detector. The main 

challenge of discrimination is to find unique properties of the tar get 

that can be characterized using remote sensing of electromagnetic 

radiation. This includes: an examination of the electromagnetic spec-

trum; consideration of interferring (atmospheric) media; and an under-

standing of what target parameters can be characterized by remote 

s e nsing techniqu e s. Consideration of the above mentioned areas is 

g iv e n in the succ e eding text. 

Electromagnetic Spectrum 

Th e e l ec tr o m a gnetic spectrum can be divided into several 

regions, d e p e ndin g upon the detection technique employed (see Figure 2). 

. l 

ultra viol e t 

I I I I I 

visible 

1.0 

near 
infrared 

Figure 2. Electromagnetic energy spectru1n. 

I I II I 
10.0µm 

thermal 
infrared 
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Th e regions overlap. The micrometer (µm = 10-
6 

meters) is a 

commonly u sed unit fo r wav e length to specify a region of th e spectrum. 

Th e wavelength is defined as the distance between two points in adjacent 

waves havin g the sarne phas e . 

Th e cont inu ous spectrum is divided into smaller usable bands 

because the e arth's atmosphere does not transmit radiation at some 

wavelengths. Atmospheric constituents such as H
2

0, CO
2

, and CO 

absorb part of th e ene rgy. 

Atmospheric Effects 

The atmospheric transmission at some wavelengths varies con-

siderab l y with small changes in humidity. A computer program, 

LOWTRAN 3B (Se lby e t al., 1976), was used to ca lculat e th e atmos-

pheric tran smit t ance und e r th e ex p ec t ed censusing conditions. The 

input data used were: 

Visibility--5 m il es (8. 1 km), 

Atmospheric Model- - Midlattitud e Winter, 

-1 
Spectral range- -. 3 to 14. 0µm (3360 - 710 cm , using varying 

resolution incr e ments), 

Atmospheric pathlength- -15 00 ft (. 45 7 km), 

Vertical Atmospheric Path--6500 ft to 5000 ft (1. 981 km-1. 524 

km). 

Th e program output showed that atmospheric humidity and CO
2 

con t en t are the major factors degrading atmospheric transmission. 
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The effec ts of CO
2 

for a given altitude, pathlength, and wavelength are 

essentially constant. Changes in humidity are more variable and can 

cause significant changes in transmittance at some wavelengths. A 

summary of the program results is given in Table 1. The results show 

spectra l regions which cou ld be utilized for censusing purposes. 

Domains of Characterization 

Brown et al. (1975) pointed out, "As remote sensing is used in 

more varied and comp reh ensive investigations, it becomes quite obvious 

how la cking in knowledge we are, in many instances, of some of the 

basic paramet e rs of our 'targets 1. 11 

The response of any remote sensing spectrometer to an incom-

ing noncoherent signa l can be d esc ribed by th e eq uation: 

R(X.) =R R(t)R(p)R(.g.,cp)R (>..)R.(t...) 
0 S 1 

Where R (;\.) i s th e senso 'r responsi vity which has the units of volts/ flux; 

R is the absolute signal intensity. R(t) is the temporal response (i.e. 
0 

the sensor response to a time-varying signal); R(p) is the sensor res-

pons e as a function of the polarization of the incident radiation; R (.g., cp) 

is the sensor field of view (FOV) (i.e. spatial response); R (A) is the 
9 

system relative spectral response throughout th e free spectral range 

of the spectrometer; R . (;\.) is the "instantaneous II spectral respons e 
1 

resolution function. See Figure 3 . Radiometric n1easurements ar e 

considered more fully in Wyatt (1978) . 



Atmospheric 
Transmittance 

(°lo) 

95 

90 

75 

50 

(%) 

95 

90 

75 

50 

TABLE 1 

ATMOSPHERIC TRANSMISSION WINDOws ,:, 

UV, Visible -, and Near IR Window Regions (. 30 - 2. 90 p.m) 

0. 50 - o. 93 

0. 32 - o. 93 

o. 98 - 1. 1 0 

0.98 - 1.11 

1.16 - 1.30 

1. 16 - 1. 32 

o. 30 -------------------------------1. 33 

o. 30 -------------------------------1. 33 

1.52 - 1.75 

1.49 - 1.75 

1. 49 - 1. 79 

1. 43 - 1. 79 

2. 08 - 2. 38 

2.08 - 2.47 

2. 00 - 2. 50 

1. 96 - 2. 50 

IR Window Regions (2. 90 - 14. 00 µm) 

X 

X 

3. 00 - 3. 16 

X 

X 

3.38 - 4.10 

2. 90 ---------------- 4. 17 

X 

4. 63 - 4 . 81 

4. 59 - 5. 05 

4 .50 - 5.32 

8.55 - 9 . 43 9.62 - 12.42 

8. 13 -----------------13. 07 

8. 0 0 - - - - - - - - - - ·_ - - - - - -13. 3 3 

7. 55 -----------------13. 90 

,:,The data shown were obtained using a ''midlattitude winter" atmospheric model with visibility of 
5 miles and a vertica~ pathlength of 1500 feet (6500 feet to 5000 feet altitude). 

....... 
N 



free spec tral range 

R. (\) In stan t :.in eous 
1 

I 
resolution ' 

Wave length 

~ Relative spectral 
response R (A) 

s 

Figure 3. Instantaneous sp ec tral r e solution. 

13 

Th e four quantities--R(t), R(p), R(-s-,cp), and R.(A)--are nor-
1 

malized and dimensio nless. Th e se parameters can b e considered as 

ind e p e nd en t. The sens or measures the flux which is incident upon the 

sensor co ll ec t or . The temporal, polarization, spatial, and spectral 

properti es of th e tar g et can b e deduced from th e sensor response to 

th e tar ge t in a proper ly d es i gn e d ex periment provided that th e sensor 

respons e has b een cha ract e rized in those domains. Th e sensor can 

also m e asur e th e abso lute intensity of the radiation or the "contrast 11 

b e t ween the tar ge t an d the background in a properly designed ex peri-

ment. 

Each of these independent parameters may exhibit unique 

tar ge t charact e ristics and may th erefore be utilized in a d e t ec tion, 
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di sc rimin a ti on, or pa tt ern recognition scheme as follows: 

1. Time variat ion- -the target may chang e position as a function 

of time; 

2. Polarization- -th e targ e t may reflect and/ or emit polarized 

radiation; 

3. Spatial charac teristic s --unless the target is a gas or fluid 

it will have a d e finite spatial shape and orientation in three 

di mensiona l spac e at any instant of tim e; 

4. Spectral co nt e nt--every tar ge t has spectral characteristics, 

some of whic h may form a unique 11signature 11 over a wav e -

length interval. 

5. Target to background con trast--the tar ge t may exhibit an 

intensity con trast to the background. 

Tim e variation 

.Many tar gets of interest cha n ge position with time. Such is th e 

case with deer. It has been possible in som e military applications 

i nvolving tim e-vary ing targets t o store the incoming radiation from a 

scene and th en compare th e stored data with that taken at some lat e r 

time. The changes in radianc e of the two sc enes indic a t e th e pr ese nce 

of th e (mobile) targ e t. While such an approach works well for tracking 

hi gh-speed objects, time variation of the deer and its background may 

be too si m ilar to be useful. It is necessary to characterize a targets 

background in order to determine when the target has moved. At th e 
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present tim e, the backgro und has not been characterized sufficiently 

to discriminat e between background changes and target movements. 

Polarization 

Emitt ed and reflected energy may have polarization character-

istics. Th e d eg r ee of polarization of electromagnetic energy is given 

by the equation: 

iJ = 
I - I 

(max) (min) 

\max) + \min) 

Where I( ) and I( . ) are the maximum and minimum values of 
max min 

int ens ity as measured by a polarimeter. 

Th ere seems to be a lack of material on polarization in the infra-

red region. In a gove rnment sponsored study (Beard, 19 76 ), 3100 docu-

ment titl es were extrac ted using a computer search and retrieval sys-

t e rn. Two-hundred thirty of those extracted plus 40 additional docu-

ments not on the compu ter system w e re selected for inclusion in the 

survey. From the total of 270 documents included, only one was listed 

as having polarization as a discrimination criterion. It appears from 

the scarcity of literature in general that polarization in the thermal 

infrared is still relatively undeveloped. Polaroid lenses and filters 

are us ed extensively in the visible region and in the near infrared. 

Polarization characteristics are not considered in this project. 
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Spatial characteristics 

The spatial chara cteristics of wildlife constitute additional 

information which may be used to discriminate for censusing purposes. 

When scanning or imaging wildlife, the FOV of th e instrument 

functions as a spatial filter and should be matched to the target. The 

spatial target character istics which can be measured include size, 

shape, and three-dimensional extent. The spatial parameters are 

lin ear ly related to time for a sensor that scans uniformly. 

The size of a target can be obtained from a single scan or line

transect. Th e shape and size can be obtained only if the scanner data 

can be arranged into a rast er to obtain a "picture" of the scene. Pattern 

correla ti ons can be calcu lat ed by comparing the target data to some 

standard patt e rn. Three-dimensional character i za tion of a remote 

tar get requir e s the use of a stereoscopic system. Correlations can be 

performed in two, three or more dimensions but the addition of eac h 

dimension increases the complexity. Considerable effo rt has been 

spent developing computer t echn iques to utilize the spatial information 

of target scenes (Marshall 19 69 , ·Tanguay 1969). The spatial profiles 

of deer and other wildlife may not be unique because background objects 

such as rocks, trees, patch es of soil, e tc. can have similar spatial 

characteristics. A de er 1 s spatial characteristic, by itself, is probably 

not adequate for discrimination purposes. However, the spatial distri

bution of the deer can be used along with other parameters to improve 

th e discrimination. 
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Spectral content 

All known naturally occurring materials emit and/ or reflect 

radiation that ex hibits charact eristics over th e range from the UV to 

th e th erma l IR . The spectra may b e continuous or discontinuous 

depending upon th e reflec tion, absorption, and emiss ion characte ristics 

of the material. Th e degree of uniqueness is a measure of information 

content. 

The 11spectral signature 11 of a tar get is th e distribution of flux 

as a continuous function of wave length. The spectral signature can be 

consi de r e d as a multidimensional vector, where each component of the 

v e ctor is a r eso lved co mponent of th e sp e ctrum. Data processing tech

niques are us ed to perform a spectral fea ture sel ec tion proc e dure, 

based upon a hierarchial c lust e r analysis, to d e t e rmin e which features 

provid e the b es t tar ge t characte rization. A classification scheme 

bas e d upon a sing l e fea ture would d ege nerate to th e "target contrast 11 

case; while a mu ltisp ec tral system would utilize more complex techni

qu e s of pattern recognition. Band s e lection for a tar get contrast 

s ch e m e has b een based upon the signal-to-noise ratio (SNR) for detectors. 

Target-to- ba ckg round con trast 

Th e absolute s ignal intensity of a target is highly va riable and 

difficult to predict. Changes in solar illumination cause the signal 

i nt e nsity from the target to become erratic. Measurernents of absolute 

i ntensity tend t o characterize the environmental conditions rather than 



unique target features . Attempts have been made (Earing (1969), 

Kriegler (19 69) to" obtain measurements that are independent of th e 

absolute intensity and which are more characteristic of the target 
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rather than of the env ironm ent. This includes thermal contrast and 

multisp ec tral ratioing techniques. Measuring the target-to-background 

contrast reduces the data variability considerably. Using ratioing 

techniques, ideally it would be possible to find spectral bands which 

give cons istant target/background measurements, regardless of 

variability in the illumination. 

Signal-to- Noise -Rati o 

Thermal contrast is a possibility for discrimination in the 

thermal IR r egion (3 . 0 - 14. 0 µm), if a target and background ar e 

essentially 11blackbody II in nature. Barhydt (Barhydt et al. 1970) 

outlines a te chnique to obtain the optimum spectral band using a back-

ground-noise-limited (therma l-ima ging) system based upon the signal-

to-noise-ratio. Th e idea is that if there is no spectral information; 

i.e. the emission is blackbody, then the only information in the 

emission is that of thermal contrast and an appropriate selection basis 

for a band is one that yields the maximum signal-to-nois e ratio. The 

optimum band is obtained when the function 

I = 
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is maximized where 

\. = wave length 

T F(;\) = filter transmittance as a function of wavel e ngth 

T (A.) = atmos pheric transmittance as a function of wavelength 
a 

Rd(;\) = normalized detector response as a function of wavelength 

W = Planc k's spectral radiant- e mittance function 
A. 

T = temperature 

Q"- = Planck I s photon spectral distribution. 

All wavelength dependent parameters must be included to obtain 

th e optimum so lu ti on. A computer program was written to find an 

it era tiv e solution using a target temperature of 295 K (22 C) and a 

diff e rential incr emen t of 0. 1 µm. For the sake of simplicity, th e filt e r 

characteristi cs T F(\.) were ass um ed to be unit y in th e r egion from 3. 0 -

14. 0 µm and ze ro eve rywh e r e e ls e . Th e r es ults of th e LOWTRAN 3B 

pro g ram provided th e va lu es of T (\.). Lin ea r approximations of two 
. a 

sets of detector cha racteristics (InSb 3. 0 - 5. 5 µm, HgCdTe 5. 5 - 14. 0 

µm) wer e used for Rd(:\.) as shown in Fi g ure 4. 

In the short wavelength IR region (3. 0 - 6. 0µm), th e optimum 

sp ec tral band is 3. 0 to 5. 2µm while in the long wavelength region 

(6 . 0 - 14 . 0µm) the op timum is 7. 5 - 13. 2µm. The 7. 5 - 13. 2µm band 

was th e overall optim um by a factor of four. 
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Operational Aspects 

The feasibility of utilizing light aircraft for an operational deer 

censusing system in the state of Utah is dependent upon the climatic 

conditions. Also, previous studies have indicated that diffuse overcast 

conditions are be st for daytime measurements. Meteorological data 

for the Salt Lak e International Airport were used to determine the 

numb e r of a cceptable days for operational censusing since that is the 

only s it e for which a statistical data set is available. 

The minimum requirements used to sel ec t censusing days were 

1. visibility of 5 mil es or gre ater, 

2. t otally overcast sky at 8:00 a. m., 

3. cloud ceil in g of at l eas t 1500 ft (above ground lev e l), 

4. days betwee n January 1st and March 31st. 

Using a mini mum cloud ceiling level of 1500 feet gives the maximum 

number of censusing days possibl e at ar eas near Salt Lak e City. To 

obtain a more conserva tive es timat e , a check was made using a m1n1-

mum cloud ceiling of 550 0 feet. A 5500 feet ceiling at th e airport 

(4, 220 ft. altitude) give s a sufficiently high cloud cover to allow census

ing up to altitudes of a ppro x imately 8500 feet. The results found using 

the upp er and l ower ex trem e s, are shown in Table 2. The data indicate 

that ther e is an average of 25 to 34 censusing days available per year. 

Approximatel y two days per week are available throughout the winter 

months f o r census in g . 
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TABLE 2 

CENSUS ING DAYS AVAILABLE ,:, 

M on th 

January 

February 

Mar ch 

Cloud 
ceiling (ft) 

> 5500 
> 1500 

> 5500 
> 1500 

> 5500 
> 1500 

Total number of census days p e r y e ar 

,:, Based upon statistica l data for a 6 year p e riod 

Censusing days 
per month 

8.00 
10. 50 

7 . 50 
19. 67 

10 . 00 
14.00 

25.50 - 34. 17 
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EXPERIMENTAL MEASUREMENTS 

Methods and Instrumentation 

Reflection bands 

Reflectance measurements from the ultraviolet (0. 21 µm) through 

the near infrared (2. 6 µm) were made using a Beckman Model DK- 2A 

Ratio Recording Spectrophotometer with an integrating sphere attach

ment. The integrating sphere has two sample viewports for a 100% 

reflectance (reference) sample and the data sample (see Figure 5 ). 

The samples are mounted in a vertical plane; thus loose pieces of the 

samples (sand, leaves, etc.) must be properly secured. Samples were 

Integrating cover 
sphere 

I 
Spectrometer \ 

\ 

'..... / --
Figure 5 . Beckman spectroreflectormeter int eg rating sphere arrange

ment (Top view). 
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attached to a 2-inch-square matboard, using Elmers Glue-All. A 

sample of the glue was analyzed to determine if its spectra was present 

in any of the sample data (see Figure 6 ). Some sand samples were 

adv e rsely affected in th e 1. 5 - 2. 6µm region; so these measurements 

were repeated using a special sample chamber equipped with a glass 

window. Th e effect of the window was evaluated by measuring a 100% 

reference sample with and without the glass. The glass lowered the 

apparent sample reflectance by 10 - 15% and appropriate corrections 

were made. The effe ct of the glue was removed by this method as is 

illustrated in Figure 7. The reflectance spectra obtained are shown 

in Appendix B. 

All of the sam pl es measured in the ultraviolet (UV) region 

(O. 21 - 0. 35 µm) ex hibited very low r e fl ec tanc e values which decr ease d 

with decreasing wave l eng th. Elmers Glue-All showed the highest re

fl ectance value (25 % ;:i.t 0. 35 µm). Some of the silica sands, and Juniper 

bark showed r e flectance values near 17%. All of the other samples 

measured, including deer hide, had reflectance values less than 10%; 

consequently, the UV data are not considered useful for censusing. 

Infrared emission bands 

Measurem ents made in the thermal IR (emission) region of the 

spectrum are r efere nced to a blackbody. The emissivity of a sample 

1s defined as the ratio of the radiant energy emitted by a sample <p (A), 
s 
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Figure 7. Sand no. 2 (silica) r e flectance spectra. a. samp l e using glass 

holder b. gluecl samp l e. 
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to that of the radiant energy emitted by a blackbody cpbb (>-.) at the same 

temperatur e (T). 

sample emissivity E = 
s 

cp (\.) 
s 

The energy radiated by the sample and the blackbody is a function of 

wavelength, t em perature, and emissivity. Accurate temperature and 

spectral measurements are required for absolute emissivity measure-

ments which th eoret ically can vary from zero to unity. Practically, 

such measurements are not easily obtained because of stray radiation. 

The em issi v it y E (X.) a nd reflectivity r(X.) of an opaque object are related 

(W olfe , 1965, Jamieson, 1963) by the equation: 

E ( \.) + r ( \.) = 1 

If a sample is surrounde d by objects near the same temperature, the 

sum of th e emitted and r e fl ec ted energy can be unity. Thus, the apparent 

emmissivity measured will be in e rr o r unless st e ps are taken to shield 

the sample or to eval uate th e r e flected radiation (see Brown and Young, 

19 7 5 ). 

An oth er measurement problem arises because the spectrometer 

used to measure the e mission of objects at, or near ambient temperatures 

must generally hav e a cooled baffle. This results in the rapid cooling of 

the sampl e by radiation coupling to the cold baffle. The sample can be 

· maintained at a constant temperature in at least four ways as indicated 

in the literatur e (Brown and Young, 1975): 
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1. by heating the sample substrate, 

2. by irradiating the sample with energy outside the spectral 

re gion of interest, 

3. by convec tion using a warm (non-interferring) gas, 

4. by thermal soaking the sample at the de sired temperature 

and then allowing only a short exposure to the spectrometer. 

Heating th e sample substrate will not work effectively for biological 

samples havin g low, variable, or unknown thermal conductivities. 

The other thr ee methods are possibilities. We used method 3 as dis-

cussed in detail below. 

A number of infrared circular-variable filter (CVF) spectra-

meters have been des i gned, developed, and fabricated at Utah Stat e 

University (USU) Electro-Dynamics Laboratories to measure the over-

head spectral radiance of th e atmospheric emission. Two general 

categories of spectrome ters are available: short wavelength infrared 

(SWIR) liquid -nitrogen cooled systems; and long wavelength infrared 

(LWIR) liquid-helium cooled systems. Each type was us e d on this 

project. 

A SWIR CVF spectrometer was used to make sp ec tral measure-

ments in the 3. 0 - 5. 4µm region. The system is composed of a rotating 

interference filter (CVF), a drive motor and a position reference genera-

tor, optics section, detector, and accompanying electronics preampli-

fier. 
0 

The CVF is composed of two 180 filter segments which provide 

a continuous spectral scan from 2. 0 to 5. 4µm at a rate of two scans 
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p e r second. The filte r is c ooled to liquid nitrogen temperature (77. 4 K, 

- 201 C), using a spec ial co nductive bearing designed at USU. The 

e ntire optical section is also cooled to achieve enhanced detector res-

pons e characteris ti cs of such low back g round conditions. The drive-

motor and r eference generator provide synchronization pulses to corre-

lat e th e filt er scan position with the wavelength. The cold optics and 

baffle limit the fie l d -of-vi ew, reject off-axis radiation, and focus the 

incoming signal on the indium antimonide (InSb) detector . The peak 

wavelength (5. 3 µm) noise e qui v alent spectral radiance of the system is 

-10 -2 -1 -1 
l. 93x l0 (W ern sr µm ). Theelectronicamplifierscondi-

tion th e s i gnal and provide several outputs at diff e rent gain factors 

( s ee Figure 8 ). The r es olution of the unmodifi e d CVF spectrom e ter 

w it h the scan position and wave l e ngth is shown in Tabl e 3 . A more 

complete description of th e SWIR system is given in the lit e ratur e 

(Wyat t et a l. 1977). 

A LWIR CVF spectrometer was used t o make spectral m eas ure-

ments in th e 7. 0 - 14. 01.1m region. The basic sections of th e LWIR 

system are similar to th e SWIR syst em in function. Th e germanium 

filt e r half covers wave lengths from 6. 5 - 13. 0µm and the irtran-6 half 

covers from 12. 5 - 23. 0µm. Th e arsenic dop e d silicon detector pro-

vid es a p ea k waveleng th noise equivalent spectral radianc e sensitivity 

-11 -1 -1 -1 
(at 22 µm) better than 1 x l 0 (W cm sr µm ). The resolution 

. and scan positi on of the unmodified instrument are shown in Table 4. 
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TABLE 3 

UNMODIFIED SWIR CVF SPECTROMETER RESOLUTION 

Wavelength (µm) Bandwidth (%) % of Scan 

1. 918 1. 74 0.0 

2. 15 5 1. 81 7.0 

2.491 2. 71 15. 3 

2.831 1. 52 23.6 

3. 172 1. 57 31.9 

3 . 49 1. 61 40.3 

3. 75 l. 72 48.6 

3. 01 1. 23 51. 4 

3.41 l. 26 58.3 

3.90 1. 20 66.7 

4.39 1. 19 75.0 

4.89 1. 27 83 .3 

5.38 1. 25 9 1. 7 

5. 78 1. 27 98 . 6 

Fi gur e 9 . LWIR CVF spectrometer layout (After Wyatt, 1975 ). 
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TABLE 4 

RESOLUTIO N OF UNMODIFIED LWIR CVF SYSTEM 

Wav e length (µm) Bandwidth (%) % of Scan 

7 4.20 1. 01 

8 3.75 8.75 

9 3.38 16. 50 

10 3. l 0 24.24 

11 2.86 31. 98 

12 2.67 39.72 

13 4.29 50. 91 

14 4. 18 54.80 

16 3.86 62.56 

18 3.62 70.32 

20 3.42 78.09 

22 3.23 85.85 

Th e LWIR s ys t em is shown in Figure 9, and d e scribed mor e compl e tely 

in th e lit e ratur e (Wya tt, 1975). 

Th e t wo CVF spectrometers us e d to measure ambi e nt temp e ra

tur e obj e cts we r e o riginally designed to be flown under conditions of 

high altitude va c uum to measure upper atmospheric emissions. Two 

instrument m o difi ca tions w e r e required to perform laboratory m e asure -

ments. 1. A vacuum cover with a transparent window had to be 

placed in front of the normally exposed optics section of each instru

n1ent. 2. Th e ambient temperature sample radiation incident on the 

spectrometer d e t e ctor had to be reduced to prevent saturation of the 
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sensitive circuitry. The signal reduction was accomplished by placing 

a cryogenically cooled pinhole aperture in front of the collecting aper

ture. Addition of the small aperture resulted in the resolution of the 

spectrometer approaching the theoretical limit. The modified SWIR 

and LWIR syst ems have a resolution of 1. 0% or better throughout their 

spectral rang es . 

Results 

Reflection 

All refl ecta nce samples measured show at least a 10% spectral 

diff erence from deer over some portion of the visible- -near infrared 

spectrum. Dry Aspen leaves, fallen log bark, and soil provide th e 

spectra most similar to th e deer spectra. Even such background 

elements as l og bark and soil which are difficult to distinguish in the 

visible region have spec tra significantly different from deer in the 

near IR (see Figure 10). Soils differ from deer by 15-20 % in some 

regions and rotten log bark differs by as much as 35% in places. Aspen 

leav es (Figure 11) differ by at least 10 % in regions from 0. 7 - 0. 9 µm 

and 1. 4 - 1. 8µm. 

Background elements containing chlorophyll show absorption 

near 0. 675 µm and an abrupt rise in reflectivity around 0. 7 µm. The 

pine spectra measured (Figure 12) shows the same features and com-

. pares favorably with such spectra reported by others (Heller, 1968, 

Kalensky and Wilson, 1975 ). The most prevalent background elements 
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ex p ec t e d (oth e r t han s oil or snow) on d ee r ra~ges are junip e r and sage-

b r ush. Fi gur es 13 an d 14 show their sp ec tra contrasted with d ee r . 

R e fl ec tanc e di fference s of 25 % or b e tt e r are shown around 0. 8 µm . 

Sn o w (Fi gur e 15) ex h i bits th e g reat e st spec t ral difference from d ee r 

sp ec tra whi ch a moun ts to 5 0% in both the visibl e and near infrar e d. 

Emissi on (th e r ma l IR) 

Th e C VF sp ec trometer was mounted on a bench in a v e rtical 

p o sition w ith t he op ti c s aimed downward so that the samp l e s and black-

b o di es co uld be h a n dl e d e asily. Th e spectrometer output was simul-

tan eous l y dis p layed on a n os cillosc op e and r e cord e d. The scatterin g 

of amb i e nt r adiation a nd e mission of th e IR vacuum window w e r e e valu-

a t ed by m easur i ng the s y st e m r e spons e V (A.) to a 77 1:<: bla c kb o dy. The 
w 

r efere n ce bl ackbody re sp o n se VB (A.) and th e sampl e respon s e 

w e r e a l so m easured a nd utiliz e d in th e r e lati onship: 

V (A-) - V (A.) 
E ( A.) == 

s w 

V (A-) 
s 

R e fl ec ti o n of ambi e nt r a diation from th e sampl e is gr e atly r e du ce d 

sin ce it is exposed pr imaril y to th e cold and absorbing baffl e as illus-

trat e d in Fi gur e 16. Thd 318K (45 C) refer e nce blackbody was an I. R. 

Indu s t r i es m ode l 463 . All sampl e s measur e d we re a l so h eat e d to 318 k 

(45 C) using pr eh ea t e d dry nitrogen gas . The samp l e t e mpera t ur e was 

measured usin g a ca librated bead thermister a t the n i trogen gas exi t. 

Th e sampl e s we r e h e at e d until stab l e t emperature readin g s were 
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Figure 10. Reflection data. a. deer hide, b. fallen lo gb ark, c. soil 
no . 2. 
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Fi gure 14. Reflection data. a. fresh sagebrush leaves, b. dry sage
brush leaves, c. deer hide. 
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ob tained. Multiple sca ns were recorded on an FM data recorder then 

processed using a Tek tronix 4051 graphics t e rminal and A/D converter. 

Seve ral averaged data scans (for the SWIR and LWIR systems) obtained 

b efo re the data was reduced are shown in Figures 17 and 18. 

Th e object ive of the measurements is to discover the presenc e 

of ex isting spectral e missivity features rather than to obtain the absol

ut e spectral emissivi ty. Nevertheless the temperature was maintained 

as accurately as possible and was measured by converting the resistance 

values of th e thermister to degrees (see Appendix F). The , deviations in 

the t em p er atur e from 3 18 k (45 C) are shown in Table 5 and are the 

ex tr emes of all measuremen ts used. Th e thermal emission data are 

gi ven in Appendixes C a n d D. The emissivity of all biological samples 

Resistanc e 
(K St) 

SWIR 

LWIR 

2.65 

2.60 

2. 76 

2. 60 

2.66 

TABLE 5 

SAMPLE TEMPERATURE DEVIATION, :, 

Equivalent 
T e mp e ratur e (oC) 

45.0 

45. 5 

43.8 

45.5 

44.9 

D ev iati o n 

(oc) 

max+. 5 

min-1. 2 

max+. 5 

min - . 1 

,:,Dev iation is defined as the departure of the temperature from 45 C. 
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exhibit a relatively uniform response as shown in Figures 19, 21, and 

22 for deer and log. The spectrum of gypsum (Figure 23), quartz 

(Figure 24), and silica (Figure 20) exhibit features that appear in the 

literature, e.g., Lyon (1965) and Brown and Young (1975). Some of the 

silica t e spectra obtained (0. 5 - 6. 0µm) compa re favorably with data 

obtained by Hovis (1966) . His data are reflective, but can be converted 

to emissivity using the relation E (A.)= 1 - r(A.) which provides a good 

comparison for thermal data over a comparable wavelength region. 
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Fi gur e 19. Dee rhi de emission data (SWIR) . 
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· Fi gure 20. Silica, sa nd no. 2 (SWIR) 
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Figure 21. Deerhide em i ss i on da t a (L WIR) . 
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· F i gu r e 22. R ott en log bark (LWIR). 
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Figure 23. Gypsum (LWIR). 
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· Figur e 24. Crush ed fused quartz (LWIR). 
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CONCLUSIONS AND RECOMMENDATIONS 

Summary 

Th e results of the study performed can be summarized as 

1. Th e reflective visible and near infrared (0. 35 - 2. 6 µm) 

contains substantially more spectral information than any 

ot h er region inv e stigated in this study, i.e. th ere is a sub

stantial de partur e at selected wavelengths from the spectra 

of the illumina tin g source and betw ee n various samples. 

Most backgro und elemen ts ex hibit at l ea st 10% difference 

from that of deer over some p o rtion of the near IR (0. 70 -

2. 6 µ m), a nd at l e ast 5% sp e ctral difference in some portion 

of th e v i sib l e region (0. 35 - 0. 70 µm). 

2. The optimum th e rmal contrast band for obtaining census 

data, based upon signal-to-noise ratio and utilizing the 

LO WTRAN 3B atmospheric transmittance calculations, is 

7. 5 - 13. 2 µ m. 

3 . Th e reflect iv e contrast (relative difference) between d ee r 

and snow at 0. 6 µm (see Figures 14 and 15) is 50% which 

compares favorably with the 3 % contrast obtained for the 

th ermal bands. 
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4. The thermal IR spectra obtained of deer and its native back

ground e lements (except silicate and gypsum materials) 

exhibite es sentially "blackbody" characteristics in the 3. 0 -

l 0. 0 µm region. 

5. There is an average of 25 to 34 totally overcast days each 

winter suitable for light aircraft censusing in areas near 

Salt Lake City (at altitudes from 5,000 to 8,500 feet). 

Recommendations 

A field data sample should be obtained. Using a spectrometer 

equipped with a bore-sigh ted telescope that co uld be aimed, would pro-

vide spectral signatures as a continuous representation of the reflectance 

of deer, snow, tr ees , and brush in a suitably controlled field t es t pro

grarn. A relatively large data set, representative of varying environ

mental conditions would be required. Data analysis would consist of: 

1. a feature selection study to determine the wavelengths most effective 

1n discriminating between deer and background; 2. the designing and 

testing of a multispectral classifier to determine the feasibility of deer 

census using the reflectance bands. Such a study, conducted in the O. 7 

to 2. 6 µm region, shou ld yield favorable results, particulary in dis

criminating between deer, snow and any plant that exhibits the chloro

phyll absorption characteristic. 
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TABLE 6 

SAMPLES MEASURED 

Samples Measur ed l 2 3 

b a rk, asp e n XXX 
bark, fallen log xx 
bark, junip e r X 
bark, rott e n lo g xx 
bitter brush xx 
deer hide XXX 
douglas fir (n ee dl e s) 
juniper (foliag e) xx 
leaves, asp e n (dead, dry) xx 
leaves, mapl e (d e ad, dry) XXX 
limber pin e (n ee dl e s) XXX 
mahogany, c url y leafed xx 
quartz (crush e d , fused) 
rabbit brush XXX 
sagebrush (dr y ) X 
sagebrush (fr e sh) X 
sand no. 1 (g r a y /whit e ) 

.. , ..... ,,. 
XXX "J'- .. , .. 

sand no. 2 (fl e sh co lored) ,:, , ,, xx ,,, 

sand no. 3 (y e llo w ) 
._,,. ... ,,. x x ,., ..... .... 

sand no. 4 (p a l e r e d) ... ,,. .. , ... xx .., ......... 

s and n o . 5 (fla t red ) .. , ... ,,. xx "r• ..... 

sand no. 6 (li ght o r a nge) ,:, ,, . xx . ,, 

sand no. 7 (g r een ) .. ,,. .. , ... xx "1' ... J, 

sand no. 8 (li gh t o rang e ) ,:, ,:, xx 
sand no. 9 (ye ll ow/ o rang e ) 

, ,, ,,_ xx ,,, , ,, 

sand no. 10 (t a n ) .. , ...... X .. , .. "I'' 

sand no. 11 (r e d s ilica) ,:, ,:, 

sand no. 12 (whi te gypsum) ,:, , ,_ ,,, 

soil no. 1 xx 
soil no. 2 xx 
soil no. 3 xx 
tun1blew e ed xx 

Equipment M ea su r ements 
alurninum sampl e holder 

0 
blackbody, c old (77 Kb 
blackbody, warm (300 K,roomtemp) 

0 0 
blackbody, warm (318 K, 45 C) 
Elmers Glue-All XXX 

Measur e ments ':' 
4 5 6 

X 

X 

X 
X 
xx X 

X 
xx 
xx 

X 
X 

xx X 

xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx X 
xx X 

X 

X 
X 

X 

,:, 1) 0. 21 - 0. 3 6 µm; 2) 0. 35 0. 75µm; 3) 0. 50 - 2. 60µm; 

4) 0.35 - 0.75µm; 5) 0.50 - 2.60µm; 6) 6.8 - 9.8µm; 
7) 3.1 - 5 . 5 µm 

7 

X 

X 

X 

X 

X 
X 

X 

X 

X 
X 
X 

X 
X 
X 

,:<>:< A min e r a logal analysis of sand samples is given in Appendix E. 
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Figure 25. Deer hide reflection data. 

100 

90 

8 0 

70 l 
-"' 

j 
b -

>, 60 .... .... 
> .... 50 .._, 
u 
(l) ...... 40 ...... 

l (l) 

~ 
30 

20 l 
I 

I 0 I 

T 

• 3 • 4 

I 
I 
I 
I 
I 

r--, 
I ' , \ , .... 
I ,, ' 

.s .6 .7 . 8 . 9 1.0 

I 
I 
I 
I 
I 

I 

I ', 
I ' 
I ,' 
I / 
I ' 

" 

I. 5 z.o z.s 3.o µn, 

Figure 2 6 . Reflection data. a . Fresh Lim be r Pine Needl e s u. Dry 
Pine Nee dl e s 

57 



I 00 

90 

80 

70 

~ 
t,O 

>-
.µ 

'> 50 ..... 
.µ 
u 
(1) 40 ...... ...... 
(1) 

~ 30 

20 
i -----,, 

10 1 
I 

• 3 .4 

~"- ,, 
' 

,.-- ... -- , 
I \ 

I ' ' \ 

' ' I ' -'\ 
I I 
I I 
I I 
I I 
I I 

' ' I 
I 
I 
I 

. 5 . b .7 .8 .91.0 

58 

a 

b 

I. 5 z. o z. s 3.o µm 

Fi gure 27. R eflec t ion da t a . a . Fr e sh Junip e r no. I , b . Dry Juniper 
n o . I. 
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Figure 39. Rotten log bark. 

6() ~ 

s2. so j 
>- 40 ...., 

I ·--< 
> ..... 

3 0 ~ .µ 

u 
(l) 

.--< 
<-, 20 
(l) 

~ 
IO" 

• 3 .-1 . s .o ., .s.q1.o 1. :=; z.o z.~ J.o µm 

Figure 40. Fallen log bark. 
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Figur e 4 1. Reflection data. a. Soil no. 1, b. S o il no. 2, c. Soil no. 
3 (glued) 
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Figure 43. R eflec tio n data . a. Sand no. 5 , b. Sand no. 6 . 
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Figur e 45 . Reflection data . a . Sand no . 10, b . Sand no . 9, c. Sand 

no. 10 (glued) 
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Figur e 47. R e fl ec ti on da ta. a. Sand no. 2, b. Sand no. 2 (glued) 
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Figure 5 b. Deer hid e emission data (SWIR). 
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Figure 51. Gypsum~ Sand no. 12 (SWIR). 
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Figure 52. Juniper (SWIR) . 
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Figure 53. Rott en log bark (SWIR). 
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Figure 54. Dry Wiaple l eaves (SWIR). 
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Figure 55. Crushed fus e d quartz (SWIR). 
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Figure 57. Rabbit brush (SWIR). 
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Figure 59. Silica, Sand no. 11 (SWIR). 
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Figure 61. Deer hide emission data (LWIR). 
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Figure 63 . Juniper foliage (LWIR). 
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Figure 64 . Sagebrush (LWIR). 
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Figure 65. Gypsum, Sand no. 12 (LWIR). 
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Figure 66 . Crushed fused quartz (LWIR) . 
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Figure 69. Soil no. 1 (LW IR). 
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App e ndix E 

Min e ralogical Analysis 

82 



83 

A min e ral og i c al analysis by x-ray diffraction was made of the 

sand samples t o h elp correlate any salient minerallic features with the 

reflection and e mis s ion data. The samples were analyzed as follows. 

Each sampl e was powdered to pass a 115 mesh sieve. The 

sample was th e n spr e ad uniformly on a glass slide which had been lightly 

coated with Vaselin e . 

Analysis conditions: 

Copper tub e; K a radiation; nickel filter; scan speed: 2° 20/min.; 

chart speed: 1 inch / min.; copper tube operated at 35 kv., 16 ma.; 

scintillation dete c t o r ; time constant: 3; Krystalloflex-4 x-ray generator. 

Sand Sampl e N o . 

1 

2 

3 

4 

5 
6 
7 

8 

9 
10 
1 1 

12 

TABLE 7 

MINERALOGICAL ANALYSIS 

Mineralogy ':' 

subequal amounts of quartz and feldspar 
quartz 
quartz, trace of feldspar 
quartz, some calcite, trace of feldspar 
quartz, some dolomite 
quartz, trace of feldspar 
quartz, calcite, dolomite, feldspar, some clay 
minerals such as illite and some smectite group 
quartz, trace of feldspar (?) 
quartz, trace of feldspa r 
quartz, some feldspar, trace of dolomite? 
quartz, some feldspar 
gypsum, some quartz 

,:, The chemical composition of the principal minerals 1s as follows: 

quartz - Si0
2

; calcite - CaCO
3

; dolomite - (CaMg)C0
3

; gypsum -

Ca:S0
4 

· 2H
2 

0 feldspar - silicate minerals, composition varies widely. 



Appendix F 

Th e rmister Calibration 

84 



oc 

50 

45 

40 

35 

30 

25 

20 

l 5 
2. 0 

~ 
I\ 
I \ 

\' 

\ 

l 5°C \ 
\ 

\ 
\ 
\ 

I \ 

L--------~ 
' -----v-__________./ 

1. 4 Kn 

I 

3.0 

R ~ 2. 65 KS2 

4.0 5. 0 

Resistance (R, in Ki2) 
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