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ix 

The relative competitive abilities of Agropyron desertorum and 

Agropyron spicatum were compared using Artemisia tridentata 

transplants as indicator plants. Although these two tussock grasses 

have similar shoot growth forms and shoot physiological 

characteristics, they have substantial differences in their 

competitive abilities. Artemisia had lower survival, growth, 

reproduction, and water potential when transplanted into neighborhoods 

of A. desertorum than in neighborhoods of A. spicatum. 

Plant attributes associated with the differences in competitive 

ability were explored. Agropyron desertorum and~ spicatum have 

remarkably similar potential growth rates at warm soil temperatures. 

In a prolonged cold soil temperature treatment in the greenhouse, A. 

desertorum had a 66% greater aboveground relative growth rati than A. 

spi cat um. These differences, however, were not apparent for early 

spring tiller growth rates in the field. 

Distinct differences in timing of root growth were found between 



X 

the two tussock grasses. Aqropyron desertorum exhibited greater root 

growth during winter and early spring and invaded disturbed soil space 

more rapidly than~ spicatum, especially if the disturbance occurred 

soon after the snow had melted. Si mil arl v, ~ desertorum proliferated 

its roots in zones of nutrient enrichment created early in the spring 

sooner than~ spi cat um. No differences in root growth were found 

between species in zones of nutrient enrichment that were created 

later in the growing season. 

Despite differences in early spring root growth, water extraction 

and radiophosphorus acquisition early in the spring were similar for 

the two grass species. Later in the spring, A. desertorum extracted 

more water and radiophosphorus than~ spicatum. Differences in 

resource extraction between the two species in a specific soil layer 

occurred weeks before~ spicatum, but not~ desertorurn, had obtained 

maximum root length. Early root growth probably provides ~ 

desertorum an important head start over~ spicatum in soil 

exploration each growing season. Differences in resource extraction, 

however, do not become apparent between the two species of Agropyron 

until plant demand exceeds soil supply rate to the roots. 

(121 pages) 



CHAPTER I 

OVERVIEW 

Plants commonly increase in biomass at the expense of their 

neighbors. The reasons may be quite obvious, such as a taller plant 

suppressing a shorter plant in competition for light. However, often 

the reasons for differences in competitive ability among pl ants are 

poorly understood. In a cold-winter, dry-summer steppe environment, 

plants whose roots explore and occupy favorable soil space or extract 

resources from that space early in the growing season should be at a 

competitive advantage over neighbors whose roots develop later. This 

timing advantage of competitively successful species may be the result 

of a general plant attribute such as rapid potential growth rates when 

water and nutrients are abundant. However, more specific plant 

characteristics, such as more rapid root growth at cold temperatures 

or more rapid root growth in localized favorable microsites may be 

involved~ 

Preliminary evidence indicated that two species of Agropyron were 

ideal subjects for a comparative study of plant attributes associated 

with competitive ability. Despite remarkably similar shoot 

characteristics, rooting depths, and patterns of root:shoot biomass 

allocation,~ desertorum appeared to have much greater ability to 

restrict growth of neighbors than~ spicatum (Richards et al. 

unpubl). In order to confirm these observations, competitive ability 

of the two grasses was assessed in a lightly grazed rangeland 

community. Growth and s1,1rvival of Artemisia, transplanted in nearly 
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monospecific stands of the two species of Agropyron, were used as 

indicators of the competitive ability of the grasses. Water 

extraction rates of the qrasses and water potential and nitrogen and 

phosphorus concentration of the Artemisia were also examined in an 

effort to more completely understand the competitive interactions in 

these grass stands. 

Having established in Chapter II that these grasses are indeed 

suitable subjects for a study of competitive ability, I examined 

specific growth characteristics of these grasses that might contribute 

to their different abilities to compete. Differences in potential 

growth rate of the two species of Agropyron is one possibility 

(Chapter III). Whole-plant relative growth rates were measured in 

solution culture where water was not limiting growth and N and P were 

either optimal or suboptimal. Aboveground growth rates were examined 

for plants in soil culture at warm and cold soil temperatures. Lastly, 

growth rates of tillers as well as yearly increases in aboveground 

biomass of individual tussocks were examined in the field using widely 

spaced plants, which were essentially free from competition. 

Evidence from the potential growth rate investigation suggested 

that ~ desertorum grows faster than A. spicatum at cold soil 

temperatures. Therefore, differences in root growth and 

resource acquisition of monocultures of the two qrass species were 

tested at two times during the growing season (Chapter IV). The 

amount of new root growth over winter and early spring was first 

assessed. Then soil was disturbed, either soon after the snow had 

melted or several weeks later in the spring, and rates of root 
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invasion in the disturbed soil and radiophosphorus and water uptake 

from the disturbed soil were determined. 

In Chapter V, I examine timing of root growth in ferilized 

microsites. A concentrated liquid fertilizer was injected at two 

times. In 1985, microsites rich in nutrients were created in early 

spring, soon after snow melt. In 1984, favorable microsites were 

created in mid-July. 

In the last chapter of this dissertation, I contrast the 

indicator plant appoach used in Chapter II with other ways that 

competitive ability can be assessed. I also discuss some 

characteristics of these plants that might account for their 

differences in competitive ability. Lastly, I synthesize the 

information found in this study as well as from other studies to 

formulate my view of the process by which ~ desertorum more 

effectively competes with neighbors than~ spicatum in these cold 

desert communities. 
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CHAPTER II 

COMPETITIVE ABILITY OF TWO TUSSOCK GRASSES: 

DIFFERENT RATES OF WATER EXTRACTION ARE 

RELATED TO INDICATOR PLANT PERFORMANCE 

SulllTlary 

The relative competitive abilities of Agropyron desertorum and 

Agropyron spicatum under rangeland conditions were compared using 

Artemisia tridentata ssp. wyomingensis transplants as indicator 

plants. Although~ desertorum and ~ spicatum have similar shoot 

growth forms and shoot physiological char~cteristics, these two 

tussock grasses have substantial differences in their competitive 

abilities. These differences in competitive ability were manifested by 

the responses of Artemisia shrubs that were transplanted into the 

location where a tussock grass was removed. The Artemisia ind1cator 

plants had lower survival, growth, reproduction, and late-season water 

potential when transplanted into essentially monospecific 

neighborhoods of 11_ desertorum than into neighborhoods of 11_ spicatum. 

In similar, essentially monospecific stands, single tussocks were 

removed and r·epl aced by neutron probe access tubes. Soi 1 moisture 

measurements with these installations showed that A. desertorum 

extracted water more rapidly from the soil profile than did~ 

spicatum. These differences in extraction rates relate clearly to the 

differences in Artemisia success. Nitrogen and phosphorus 

concentrations in Artemisia suggested these nutrients were not 
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limiting Artemisia growth and survival in the A. desertorum plots. 

Introduction 

Competition for water in arid environments has been i ndi rectl y 

indicated by the improved water status of plants following removal of 

neighboring plants (e.g., Fonteyn and Mahall 1981, Robberecht et al. 

1983, Ehleringer 1984). However, the significance of the timing of 

water extraction for competitive ability has not been often tested 

under field conditions (but see Thorgeirsson 1985). 

Agropyron spicatum (Pursh) Scribn. and Smith 1 and Agropyron 

desertorum (Fisch. ex Link) Schult. are well suited for an 

investigation of mechanisms of competition. These grasses have 

numerous similarities and yet have striking differences in competitive 

ability (Caldwell and Richards 1986). They are both lon-g-lived 

grasses with similar t~ssock architecture and shoot phenological 

patterns and rooting distributions (Caldwell et al. 1983, Chapter 

III_). Physiologically, these grasses have similar water- and 

nitrogen-use efficiencies, potential growth rates under various 

1Recent taxonomic revisions have been proposed: Elytrigia spicata 

(Pursh) D.R. Dewey (Dewey 1983) and Pseudoroegneria spicata (Pursh) 

Love (Love 1980, Dewey 1984). Although the genomic evidence indicat~s 

that this species is not an Agropyron, insufficient data are available 

to clearly finalize its taxonomic position. Therefore, we will use A. 

spicatum in this paper. 
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nutrient conditions, and seasonal patterns of photosynthesis and leaf 

water potential (Caldwell et al. 1981, Nowak and Caldwell 1984a, b, 

1986, Chapter I I I). 

Despite these similarities in shoot characteristics, Thorgeirsson 

(1985) demonstrated that soil water depletion in a monoculture of ~ 

desertorum occurred earlier and to a greater extent than in an 

adjacent monoculture of~ spicatum. Furthermore, he demonstrated 

indirectly that the deeper water not used as quickly by & spicatum 

was heavily used by Artemisia. 

There are differences in the root systems of these species that 

are linked with diff~rences in the ability to compete for water and 

nutrients. Although they have similar root biomass and distribution 

with depth, & desertorum, by virtue of its thinner roots, has 

approximately twice the root length of & spicatum (Caldwell and 

Richards unpubl.). Agropyron desertorum also tends to be more heavily 

infected with mycorrhizae and has greater root growth in winter and 

early spring than ~ spicatutn (Caldwell et al. 1985, Chapter IV). 

The intensive field studies of the comparative physiological 

ecology of these two grasses cited above were conducted in artificial 

communities near Logan, Utah. The two-species communities were 

created by transplanting ei 1ther & spicatum or & desertorum in a 

50:50 mixture with Artemisia tridentata ssp. vaseyana (Rydb.) Beetle. 

In the current study we tested the competitive ability of these 

grasses under rangeland conditions. We used Artemisia tridentata ssp. 

wyomingensis (Beetle and Young) transplants, the subspecies native to 

this site, as an indicator of the competitive ability of A. desertorum 
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and ~spicatum in an established pasture lightly grazed by cattle. 

We examined how the transplanted indicator, Artemisia, responded to 

neighboring grasses in terms of survival, growth, water status and 

concentrations ~f N and P. Rates of water extraction were also 

examined from essentially monospecific stands of these two grasses as 

a potential explanation for observed differences in Artemisia success. 

Study Area 

The study was conducted in Curlew Valley in northwestern Utah 

near the Raft River Mountains in an Artemisia tridentata ssp. 

wyomingensis /Agropyron spicatum habitat type (Hironaka et al. 1983) 

( 41° 56' N, 113° 71 W, 1480 m elev.). Soils were sandy 1 oams with 

alluvial gravels beginning at 40 to 80 cm. Climate of this region, 

compiled from long-term U.S. Weather Bureau data at Snowville, UT, 40 

km east of the study area, is summarized by Caldwell et al. (1977). 

Precipitation in 1984 was twice the amount in 1985. Precipitation in 

October through April, a period when evapot-ranspiration is generally 

low, was 284 mm in 1983-84 and 134 mm in 1984-85. Precipitation 

during the active growing season (May to August) was 148 mm in 1984 

a n d 8 7 m m i n 1 9 8 5 , e s p e c i a 11 y w h e re a 11 t h e v e g e t a t i 011 h a d be e n 

removed. 

Vegetation in the study area is primarily Agropyron spicatum, a 

complex of the crested wheatgrasses, Agropyron desertorum and~ 

cristatum (L.) Gaertn., Poa sandbergii Vasey. and scattered Bromus 

tectorum L. (The crested wheatgrass complex will be identified in this 

study by its most abundant representative in this area, A. 



desertorum.) The dense interspersed stands of A. spicatum and A. 

desertorum found in this area are unusual for the Great Basin region. 

The mosaic of nearly monospecific stands of these two qrasses provided 

an excellent opportunity to compare their relative competitive 

abilities under ranqeland conditions. 

In the 1960's, the stands of~ spicatum were interspersed with 

stands of Artemisia at this site. To improve forage production for 

cattle, the Artemisia was sprayed with 2,4-dichlorophenoxy acetic acid 

tn 1968 and 1973. In fall, 1973, the pasture was aerially broadcast 

seeded with A. desertorum. The pasture was grazed by cattle the 

following winter to tread seeds into the soil to enhance germination 

and establishment. 

This study was initiated in April, 1984. Ouring this study, 

cattle were brouqht into the pasture in March and removed in early 

May. Previously, the pasture had been grazed over winter. In neither 

year, however, were animals in the pasture late enough in the spring 

to remove the apical meristems of the tussock grasses. Consequently, 

defoliation stress was CJenerally light (Richards and Caldwell 1985). 

Trampling damage of the Artemisia indicator plants, however, was quite 

severe in some plots in 1985. 

Methods 

Artemisia indicator plants 

The transplant experiment was conducted in an area with 

interspersed, nearly monospecific stands of~ spicatum and ~ 

desertorum. Poa sandbergi i and Bromus tectorum were the only other 

species frequently found with the perennial qrasses. Neither Bromus 
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nor Paa contributed appreciably(< 5%) to overall stand biomass. On 5 

May, 1984, 30 circular plots, 1.5 min diameter, were placed in either 

areas dominated by~ desertorum or by~ spicatum. There was no 

evidence to indicate any factors besides the dominant grass species 

affected the plots; hence, a completely randomized experimental design 

was assumed. The plots were centered on an Artemisia seedling, 

approximately 10 cm tall, which had been transplanted into the spot 

where a tussock had been removed. The kind of neighborhood was the 

primary basis for plot selection. However, no tussock replaced by an 

Artemisia transplant was exceptionally small or large. Artemisia 

transplants were obtained from a recently disturbed area adjacent to 

the study site. Each Artemisia received approximately one liter of 

water following planting to aid in establishment. 

Thirty more plots were added on 25 May where the tussock removed 

for the Artemisia indicator was a different species from the majority 

of its neighbors (15 for each grass species). In addition, Artemisia 

was transplanted into 14 plots where all the neighbors were removed 

within a 1-m radius of the transplant (7 plots each in~ spicatum and 

A. desertorum stands). 

Artemisia survival was tallie d in June, August and November, 

1984 and May and August, 1985. Total and current year's aboveground 

biomass was determined by harvesting transplants at ground level on 1 

August 1985 and drying at 70°C before weighing. Total N concentration 

in current year's growth from the Aug st harvest was determined with 

an ammonia electrode (Orion model 95.-12) after Kjeldahl digestion. 

Total P concentration was determined colorimetrically after ashing at 
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500 °C (AOAC 1980). Predawn xylem pressure potential of the Artemisia 

in all plots was determined 11 June and 1 August 1985 with a pressure 

chamber. 

Soil water extraction 

Neutron probe access tubes were installed in 18 plots on 8 April 

1985 in the place where an individual tussock was removed. In nine 

plots, a single~ desertorum was removed and an access tube installed 

in its place in an area of predominantly~ spicatum. In nine other 

plots, individual~ spicatum were removed for the access tubes in a 

predominantly~ desertorum stand. In each set of nine plots, three 

were randomly chosen to serve as controls where all the neighbors 

within 1 m of the tube were removed. Soil water content was 

monitored weekly by a neutron probe (Campbell Pacific Nuclear model 

501DR) until mid-May and then biweekly until mid-June, 1985. 

Soil water content during the measurement period was expressed as 

a percentage of the first measurement of 18 April 1985 for each access 

tube in Fig 3. The water content on 25 February 1986 was found to be 

comparable to the 18 April 1985 measurement at 15 and 30 cm. However, 

at 45 and 60 cm, water content was greater in February than in April, 

presumably because the water had not fully drained in February from 

recent heavy rains. Since water is normally extracted from the 

surface layers first, we believed soil water content on 18 April was a 

reasonable estimate of field capacity (i.e., water content of the soil 

after it has fully drained; Hanks and Ashcroft 1980). 

Water content was also expressed as a percent of the total water 

extracted by~ desertorum to a depth of 67 cm during the period 
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between 18 April and 13 June (Fig. 4). Soil water content was 

estimated from the calibration curve provided by Campbell Pacific 

Nuclear Corp. 

Neighborhood analysis 

Biomass of neighboring plants in concentric annuli defined by 

radii of 18, 40, and 75 cm was clipped at ground level for each 

species after the foliage had senesced. (Annuli were centered on the 

Artemisia transplant.) Annuals (principally~ tectorum) in the~ 

desertorum and~ spicatum plots were harvested in mid-June, 1985 and 

perennials (principally~ desertorum and~ spicatum) were harvested 

in mid-September. Biomass was weighed in the field and then corrected 

for differences between fresh and oven-dried biomass using subsamples 

weighed in the field and then dried at 70°C. To assess the 

competitive influence of species in the annuli on Artemisia 

performance, we weighted biomass of different species in a manner 

similar to Weiner's (1982) weighting of number of neighbors: 

A = 
a2 a3 

+ + ( 1) 
dl d2 d3 

where "A" is the weighted estimate of biomass of a species (or a 

growth form) around the target individual, "a" is the amount of 

biomass in annuli 1, 2, and 3, and 11d11 is the distance of an annulus 

from the target species (the radius of the circle that divides the 

annulus into two parts of equal area). The closest distance, d1, is 

set equal to 1.0, and the other values of d scaled accordingly. We 
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did not use d2 as did Weiner (1982) because a linear distance (d) 

produced a fit equally as good or slightly better than d2. Similar 

results were found subsequently by Weiner (1984). 

In the survival analysis of Artemisia, plots where at least 80% 

of the weighted perennial biomass, A, was either ~desertorum or~ 

spicatum were designated accordingly. Plots with less than 80% of 

either species were considered to be a mixture. An 80% criterion was 

used to define the three kinds of neighborhoods to assure that there 

were enough Artemisia in each category (see Table 1) to permit a 

robust analysis of the data. For all other analyses, plots designated 

as either A. desertorum or A. spi cat um had at 1 east 90% of the 

weighted biomass, A, of that species. 

Statistical analysis 

Artemisia survival and reproduction were analyzed by log-linear 

models and significance was determined by the likelihood-ratio chi-

square statistic. Model selection was based on methods described by 

Fienberg (1970). If a significant difference in a treatment was 

detected, pairwise comparison of individual cells were made using a 

2 x 2 chi-squared analysis. Artemisia biomass, N and P 

concentrations, and xylem pressure potentials were analyzed 

nonparametrically using the Kruskal-Wallis test because of their 

highly skewed distributions. This test allowed us to determine if a 

significant difference existed among treatments. Under conditions 

w h e re a s i g n i f i c a n t d i f f e r e n c e e x i s t e d (_!: < 0. 1 0 ; _!:, a s u s e d i n t h i s 

dissertation, represents the probability that observed differences in 

means or medians occurred by chance alone), pairwise comparisons were 
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made of individual treatment medians using the Wilcoxon rank-sum test. 

Differences in amounts of perennial and annual biomass in the A. 

desertorum and A. spicatum plots were also determined by the Wilcoxon 

rank-sum test. The relationship of neighborhood biomass with 

Artemisia qrowth was determined by least-squares regression analysis 

after examination of residuals for normality and independence from X 

and predicted Y (Framstad et al. 1985). Co-rrelations were tested for 

significance from zero. Water extraction data were analyzed using a 

multivariate repeated measures design (Hotelling T2 statistic) which 

permits correlation among sampling dates (Gurevitch and Chester 1986). 

Results 

Artemisia indicator plants 

Table 1 illustrates the survivorship of Artemisia the first 

summer for the two different planting dates with different 

neighborhoods. Survivorship was not considered for the later time 

period from November, 1984 until August, 1985, since only four 

Artemisia died from factors not clearly associated with cattle 

trampling. 

For the Artemisia that were transplanted on 5 May, mortality was 

nearly 8-fold greater with~ desertorum neighbors than with A. 

spicatum neighbors during the first growing season. However, when 

Artemisia were transplanted just a few weeks later in the growing 

season, mortality was less noticeably affected by the species of the 

neighboring tussock grasses (species x planting date interaction: 

_!:<0.01). In the later transplanting experiment, there were also plots 

where all neiqhbors were removed. In these plots, average mortality 
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Tabl~ 1. Percent mortality of Artemisia indicator plants by November, 
1984 when planted in either early or late May in different 
neighborhoods (see text for details; population size in parenthesis). 
Percentiles followed by a different letter significantly different 
at P < 0.05. 

Neighborhood 

A. spi cat um 
ITTxtu re 1 
A. desertoru~ 
No neighbors 

Planting Date 
5 May 1984 25 May 1984 

5 (22)a 
14 (?)ab 
40 (3o)b 

33 (3)ab 
56 (16)~ 
55 (11) 
7 (14}a 

1The neighborhood was a mixture of~ desertorum and~ spicatum 
· grasses. 

2Treatment was not imposed on 5 May 1984, so that the percent 
mortality was only compared among neighborhoods for the 25 May 
planting date. 

Percent of 
Current individuals 

year's growth reproducing 

8 40 

6 

g 4 

C 30 

%20 

10 

b b 

0 

-0.5 

M Pa -1.0 

-1.5 

-2.0 

Predawn 1/' 
June, 85 August, 85 
de sp No de sp No 

C 

Fig. 1. Current year's aboveground growth, percent of individuals 
reproducing (with inflorescences), and predawn xylem pressure 
potentials of Artemisia indicator plants that had been transplanted in 
A. desertorum plots (de), A. spicatum plots (sp), or in plots where 
vegetation had been removedwitfiin 1 m of the Artemisia (No). Medians 
denoted by a different letter were significantly different at P<0.05 
(n=7 to 20). 
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was only 7%, which was less than mortality in either the mixed plots 

or the ~ desertorum plots for the same planting date (£.<0.01). 

Artemtsia water status, growth, and reproduction were also 

affected by the species of Agropyron neighbor (Fig. 1). Although 

there was no difference in predawn for Artemisia in the competition 

plots with the two grass species in June, 1985, by August of that year 

Artemtsia in the~ desertorum plots was significantly lower than in 

the~ spicatum plots. Several Artemisia transplants had predawn 

less than -4.0 MPa in the~ desertorum plots. Artemisia in the no 

competition plots had greater water potentials than in either the A. 

spicatum or the~ desertorum plots. 

Growth of Artemisia was greatest in the no competition plots, 

intermediate in the~ spicatum plots, and least in the A. desertorum 

plots (Fig. 1). Percent of Artemisia individuals with inflorescences 

was greater in the A. spicatum than the ~ desertorum plots. 

However, there was no difference in percentage of Artemisia 

flowering between the~ spicatum and no competition plots. 

Median nutrient concentrations of the current year's growth of 

Artemisia were very similar in the~ desertorum, ~ spicatum, and no 

competition plots. Nitrogen concentrations of Artemisia ranged from 

1.9% in the~ desertorum plots to 2.1% in the~ spicatum and no 

competition plots. Although these differences were small, they were 

statistically significant (£.<0.01). Phosphorus concentrations of 

Artemisia ranged from 0.26% in the~ spicatum plots to 0.28% in the 

~ desertorum plots and showed no significant differences among 

treatments (£.>0.20). Plants with high nutrient concentrations tended 
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Fig. 2. Correlation coefficients of Artemisia N and P concentrations 
with Artemisia predawn xylem pressure potentials and current year's 
growth. Correlation coefficients were determined for Artemisia in A. 
desertorum plots (de), A. spicatum plots (sp) or in plots where 
vegetation had beenremoved within 1 m of theArtemisia (No)(**= 
significantly different from zero at P<0.01, other coefficients were 
not siqnificantly different from zero ~>0.10); n=7 to 11). 

to be plants of poorer water status or less current year's growth 

(Fig. 2). This pattern was especially evident in the A. desertorum 

plots. 

Water extraction 

Agropyron desertorum extracted water more rapidly than ~ 

spicatum from the soil profile to a depth of 45 cm (Fi g. 3). 

Differences appeared sooner closer to the surface than they did deeper 

in the profile. Differences between species in soil wat er 

content after mid-May persisted until the end of the measurem en t 

period, indicating~ desertorum was able to extract water at rat e s 

similar to those of A. spicatum even though~ desertorum roots were 

in somewhat drier soil. 

The total amount of water extracted by~ desertorum to a depth 

of 67 cm between 18 April and 13 June was approximately 4.7 cm. A 



Fig. 3. Soil water depletion 
in 1985, expressed as a 
percent of field capacity in 
A. desertorum plots, A. 
spicatum plots, or inpiots 
where vegetation had been 
removed within 1 m of the 
neutron access tube. (Field 
capacity estimated 18 April 
1985.) Heavy arrows indicate 
rainy periods. The 
probability that the observed 
difference bet ween A. 
desertorum and A. sp,catum 
iJ lots occurred oy chance, P, 
is indicated. (The P-value­
for the species x t1me 
interaction; i.e., that 
differences were greater 
between the two grasses on 
some sampling dates compared 
to other sampling dates is 
shown in parenthesis.) 

Fig. 4. Soil water depletion 
in 1985 from Oto 67 cm in A. 
desertorum and~ spicatum 
plots. Measurements expressed 
as a percentage of total 
water extracted by A. 
desertorum during the ti me 
period 18 April to 13 June, 
ca. 4. 7 cm. Shaded area 
indicates average difference 
in amount of water extracted 
between plots of the two 
grass species. 
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time course for&_ desertorum and&_ spicatum water extraction during 

the spring relative to the total amount extracted by&_ desertorum for 

this time period is illustrated in Fig. 4. The amount of water 

extracted by these two grass species was similar until mid-May. 

However , after m i d - May , A:_ desert or um p 1 o ts had about 2 0% 1 es s 

available water than plots of A. spicatum (Fig. 4). 

Neighborhood analysis 

The relationship of aboveground biomass of neighboring perennial 

grasses, weighted according to their proximity to the Artemisia, with 

current year's growth of Artemisia transplants is illustrated in Fig. 

5. When analyzed separately, A:_ spicatum plots showed a higher 

correlation between weighted neighboring perennial grass biomass and 

Artemisia growth (_c2=0.31) than did A. desertorum plots (_c2=0.10, 

plots with grass biomass = 0 g per plot not included). The 

significant correlation (_!:<0.01) between weighted &_ spicatum biomass 

and Artemisia growth was largely due to the presence of four plots 

with low I\. spicatum biomass and high Artemisia growth (Fig. 5). In 

other words, once the neighboring perennial grass biomass, A, exceeded 

20 g per plot, neighborhood biomass did not relate predictably with 

Artemisia growth for either grass species. Inclusion of Bromus 

tectorum biomass in a multiple regression did not significantly 

(_!:>0.10) increase the correlation of aboveground neighborhood biomass 

with Artemisia growth. 

Median weighted biomass, A, of perennial grasses in&_ desertorum 

plots was greater than in A:_ spicatum plots (Fig. 6). Conversely,~ 

tectorum biomass was greater in A. spicatum plots although 
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Fig. 5. Relationship of current year's growth of Artemisia indicator 
plants with weighted biomass of perennial grass neighbors (g per 
plot), A, around the indicator plant. Plots designated as A. 
desertorum or A. spicatum had at least 90% of the total weightea 
biomass, A., orthat species. (See Eq. 1 for definition of A.) 
A ropyron desertorum and A. spicatum plots where all ·biomass had been 
remove are also indicatea..Th~ negative correlation was significantly 
different from zero (!:<0.01). 
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Fig. 6. Weighted perennial grass and Bromus tectorum biomass in A. 
desertorum and~ spicatum plots. (See Fig. 5 for criteria used fn 
plot designation.) Medians denoted b_y a different letter were 
significantly different at P<0.05 (n=l9 for A. spicatum plots, n=36 
for ~ desertorum plots). - -
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considerably less than the perennial biomass in those plots. 

Discussion 

The two tussock grasses we studied exhibited appreciable 

differences in rate of soil water extraction. The large differences in 

the performance of the indicator plant, Artemisia, in the 

neighborhoods of the two grass species were likely related to these 

differences in water extraction. Differences in competitive ability of 

clipped and unclipped_&_ spicatum and_&_ desertorum were also found in 

earlier work in common gar-dens on a di ffe~nt field site (Richards et 

al. unpubl.) 

Artemisia indicator plants 

We could only detect large differences in m9rtality of Artemisia 

between the A. desertorum and the_&_ spicatum neighborhoods when the 

tussock grass was replaced by the Artemisia on the earlier planting 

date (Table 1). In Chapter IV, we show that differences in root 

invasion by these two grass species is strongly dependent upon the 

date that a tussock is removed. Extensive root growth over winter and 

early spring by ,_&_ desertorum allows it to invade these soil 

disturbances more rapidly than A. spicatum, especially if the 

disturbance occurs soon after snowmelt rather than later in the 

spring. 

Artemisia reproduction in A. desertorum plots was less than in 

A. spicatum plots. However, there was a similarity in percentage of 

the Artemisia flowering (Fig. 1) or in mean weight of inflorescences 

per individual (data not shown) between the ,_&_ spicatum and no 

competition plots. This similarity was probably of only temporary 
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duration. In widely spaced (2 m) plantings on a different field site, 

Artemisia exhibited primarily vegetative growth the second year after 

transplanting but exhibited approximately 10 times more reproductive 

growth (inflorescences) than aboveground vegetative growth the third 

year after transplanting. This magnitude of allocation to 

reproduction was never observed in more dense plantings (spacing= 

0.5 m). Consequently, the Artemisia in the plots with the grasses 

removed probably would have had more reproduction than the Artemisia 

in the A. spicatum plots if the experiment had been continued another 

year. 

The influence of~ desertorum neighbors on Artemisia transplants 

seemed principally caused by competition for water. A study of 

nitrogen fertilization of Artemisia on a somewhat drier site 

approximately 40 km southeast of our study area indicated only small 

increases in shoot length in the first year after fertilization and no 

increase in either shoot length or shoot weight in the second year 

(James and Jurinak 1978). Nitrogen concentrations in the shoots, 

however, were greater for the fertilized than the unfertilized plants 

in the second year after fertilization. Since even the fertilized 

plants had approximately 16% lower N concentrations in the shoots than 

the Artemisia in our study, the Artemisia in our study may not have 

been particularly N limited. 

The conclusion of the importance of water relative to nutrient 

competition is further sup~orted by the correlations of nutrient 

concentration with either plant water potential in August or current 

growth (Fig. 2). In general, Artemisia in A. desertorum plots tended 
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to have lower nutrient concentrations when current growth was greater 

or water status was more favorable. Plants that were severely water 

stressed and generally had 1 ittl e growth tended to exhibit higher N 

and P concentrations. The Artemisia in the~ spicatum and no 

competition plots, which were under less severe water stress in August 

(Fig. 1), did not show as strong a negative correlation between 

nutrient concentration and biomass or water status. 

Effect of the species of grass removed 

The predominant effect on Artemisia performance was likely caused 

by the species of neighbor, not by the species of grass that was 

replaced by the Artemisia. This view is supported by several lines of 

evidence. There were no consistent differences in Artemisia growth 

after all neighbors had been removed in areas orginally dominated by 

either A. spicatum or A. desertorum (Fig. 5). Secondly, even in the -------
relatively dry year of 1985, soil water content in the.&_ spicatum and 

A. desertorum plots were similar until mid-May (Fig. 6). Yet, 

differences in Artemisia mortality in the relatively wet summer of 

1984 was only clearly greater in the A. desertorum than the A. 

spicatum plots for those shrubs transplanted 5 May 1984. Furthermore, 

in those locations where an A. desertorum tussock in~ spicatum 

neighborhoods was replaced by a neutron probe access tube, soil water 

content was greater than in the.&_ desertorum neighborhoods where the 

species of tussock replaced was .&_ spicatum. Consequently, when the 

tussock replaced by the Artemisia in the 1984 experiments was the same 

species as its neighbors, the species of tussock removed probably had 

little impact on the subsequent performance of the Artemisia. 
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Water extraction 

Differences in extraction rates of the two grass species may 

partly reflect differences in shoot biomass. Agropyron desertorum 

plots had a 37% greater mean weighted biomass surrounding the neutron 

access tubes than~ spicatum plots. However, in one~ spicatum plot 

which had greater biomass than any of the~ desertorum plots, water 

extraction was still less than in the~ desertorum plots. 

Furthermore, in garden plots at another field site where average plot 

biomass of~ spicatum exceeded~ desertorum, Thorgeirsson (1985) 

demonstrated and we later also found (Appendix, Chapt er IV) that~ 

desertorum in these plots depletes the water in the soil profile 

sooner than does~ spicatum. 

Neighborhood analysis 

The poor correlation of Artemisia growth with aboveground biomass 

of the tussock grasses may in part be related to the measurement of 

shoots to infer size and sites of activity of the root system. In 

another study (Chapter IV), location of active roots of individual 

tussocks of these two grasses was not closely correlated with size or 

proximity of shoots. This result was determined by 32P uptake from 

isotope injected into the soil as a liquid plane and subsequent 

appearance of radioisotopes in the shoots of neighboring tussocks. 

The competitive ability of species can be compared by testing for 

significant differences in the slopes of the regression lines which 

relate the amount of shoot biomass of a species in the neighborhood 

with the performance of the indicator plant (see Goldberg and Werner 

1983). However, if correlations of aboveground neighborhood biomass 
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with an indicator plant's success are poor, slopes of regression lines 

provide little information regarding the relative competitive ability 

of the neighbors. This problem was avoided in this study because of 

the existence of interspersed, nearly monospecific stands of the two 

tussock grasses. This condition permitted an assessment of the 

relative competitive ability of the two grass species without needing 

to rely heavily on assumptions that a neighbor's competitive influence 

on an indicator plant would be a function of location or amount of 

that neighbor 's shoot bi om ass. 

Extension of results 
beyond theindicator plants 

The difference in ability of the two tussock grasses to suppress 

Artemisia transplants has important implications for other neighbors. 

As a winter annual, .!b_ tectorum is largely dependent on stored water 

for growth and reproduction and would be more l i mited by neighbors 

that have early season root growth and extract water rapidly from the 

soil profile (Harris and Wilson 1970). Thus, the smaller biomass of .!b_ 

tectorum in the~ desertorum than in the~ spicatum plots (Fig. 6) 

probably partly reflects differences in com pet iti ve ability of these 

two tussock grasses. 

Artemisia tridentata that establishes naturally from seed would 

probably al so be more suppressed by~ desertorum than~ spi catum. 

Since Artemisia germinates early in the spring (e.g., Young and Evans 

1986), differences in survival and subsequent growth of individuals 

that establish naturally probably would show similar differences as 

did Artemisia transplants to the species of Agropyron neighbor (even 
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under conditions where qrazing by large herbivores is light). 

Conclusion 

Agropyron desertorum and ~ spi cat um exhibit marked differences 

in competitive ability. We demonstrated these differences in 

rangeland conditions by use of Artemisia indicator plants transplanted 

into interspersed, nearly monospecific stands of the two grass 

species. Neighborhood ana 1 ys is, however, was not found usefu 1 in the 

assessment of the relative competitive abilities of these two species 

of Agropyron. 

More rapid water extraction by~ desertorum than~ spicatum is 

probably a major factor contributing to the differences in Artemisia 

water status, growth, and reproduction in the neighborhoods of the two 

grass species. Despite the numerous similarities of the shoots of 

these two grasses, substantial differences in their root systems 

likely contribute to their different abilities to extract water and 

compete. 
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CHAPTER II I 

CHARACTERISTICS OF SUCCESSFUL COMPETITORS: 

AN EVALUATION OF POTENTIAL GROWTH RATE IN 

TWO COLD DESERT TUSSOCK GRASSES 

Sunmary 

Within the first few weeks after seedling emergence, Agropyron 

desertorum, a more competitive tussock grass, had a much higher mean 

relative growth rate (RGR) than Agropyron spicatum, a very similar, 

but less competitive species. However, beyond the early seedling 

stage, the two grasses had a remarkably similar whole-plant RGR in 

hydroponic culture and aboveground RGR in glasshouse soil, if root 

temperatures were above approximately 12°C. At soil temperatures 

between 5 and 12°C, ~ desertorurn exhibited a 66% qreater aboveground 

RGR than~ spicatum (£.<0.05). 80th species responded similarly to 

warming soil temperatures. In the field, however, tiller growth rates 

were generally similar. Neither species showed marked tiller 

elongation until a couple weeks after snowmelt, by which time soil 
0 temperatures, at least to a depth of 10 cm, were above 12 C for a 

significant portion of the day. Aboveground biomass accumulation over 

a three-year period indicated that both grasses have similar potential 

growth rates whereas Artemisia tridentata ssp. vaseyana, a common 

neighbor planted in the same plots, had a much greater potential 

growth rate. The greater competitive ability of adult~ desertorum, 

as compared to A. spicatum, cannot be attributed to appreciable 



27 

differences in potential growth rates. 

Introduction 

Agropyron spicatum (Pursh) Scribn. and Smith, a tussock grass, 

and Artemisia tridentata ssp. vaseyana (Rydb.) Beetle, a shrub, are 

prominent co-occurring species of the Great Basin steppe of North 

America. Agropyron desertorum (Fisch. ex Link) Schult., an introduced 

tussock grass from Eurasia, has been widely planted in this region. 

Competition experiments using transplanted mixtures of Artemisia with 

both of these grass species have shown~ desertorum to be much more 

effective in reducing vegetative and reproductive biomass of~ 

desertorum than is A. spicatum (Caldwell and Richards 1986). The 

greatest difference in competitive ability of these two grasses was 

exhibited two years following transplanting (Richards et al. unpubl). 

Although these Agropyron grasses differ greatly in competitive 

effectiveness, they have many characteristics in common. They are 

both long-lived tussock grasses with similar shoot phenological 

patterns, biomass allocation patterns, water-use and nitrogen-use 

efficiencies, seasonal patterns of leaf water potential, and light and 

temperature dependencies of photosynthesis (Caldwell et al. 1981, 

Nowak and Caldwell 1984a, Nowak and Caldwell 1986). 

Competitive advantage can be realized if a plant is able to 

rapidly occupy space released following disturbance. Preemptive 

competition in this case is being distinguished from colonization 

since the leaves or roots of the plants are gaining control instead 

of new propagules. When new space becomes available, species with 
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greater potential growth rates would be more likely to gain a greater 

share of the available space and the resources associated with that 

space and thereby disadvantage the competitive position of their 

neighbors. Disturbance may simply be the abrupt death of a neighbor 

or the death of a portion of the neighbor's root or shoot system as 

could be caused by pathogens, trampling, or burrowing animals. 

High growth rates at cold soil temperatures may be particularly 

beneficial in a steppe environment since most of the soi-1 water 

recharge comes in the form of melting snow and spring rains with 

little effective recharge of the soil profile from summer 

precipitation (Caldwell 1985). Indeed, many species in this 

environment initiate growth very early. Working in the sagebrush-grass 

region of southern Idaho, Jensen (1984) found that the date of growth 

initiation was significantly correlated (correlation coefficient, 

r=0.82) with the date soil temperatures at 0.5-m depth exceeded 1°C. 

Most work demonstrating enhanced competitive ability by early spring 

qrowth has dealt with seedling establishment (Harris 1967, Larsen and 

Schubert 1969, Harris and Wilson 1970, Bazzaz 1984). However, adult 

plants may also gain an advantage over their neighbors in seasonal 

resource exploitation if they can grow rapidly at cold soil 

temperatures. In a study of groundlayer species in mesophytic 

hardwood stands, Rogers (1985) found that the presence of spring­

active plants, which generally develop when the soil is still cold, 

appeared to result in reduced productivity of some summer-active 

perennials. Acer saccharum and Ulmus rubra had at least 50% lower 
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cover in locations with a high shoot density of spring-active plants. 

We investigated differences in potential growth rates of A. 

spicatum and~ desertorum und€r a variety of conditions. We use the 

term, potential growth rate, to refer to growth rates without either 

intraspecific or interspecific competition, but constrained only by 

the genetic potential of the individual, the resource supply, and 

other abiotic controls (e.g., soil temperature). We wanted to examine 

the growth responses to very plentiful water and nutrient conditions, 

as would occur during short-term flushes, as well as to lower nutrient 

conditions more representative of average conditions. Therefore, we 

examined mean relative growth rate (RGR) of whole plants in hydroponic 

culture at saturating and suboptimal N and P concentrations and 

optimal water conditions. Aboveground growth rates were examined in 

soil culture under controlled warm and cold soil temperatures. Growth 

rates of individual tillers were examined in the field using widely 

spaced individuals in fertilized and unfertilized plots. Annual 

changes in final standing crop were also examined in the field for the 

two bunchgrasses as well as their common neighbor, Artemisia 

tridentata. 

Methods 

Glasshouse experiments 

Glasshouse experiments were conducted from November until March. 

Air temperatures were approximately 20 to 30°C and photoperiod was 

held constant at 13 hr using supplemental fluorescent lighting. 

Mean relative growth rates (RGR) of whole plants were examined 
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weekly at four levels of phosphorus and two levels of nitrogen in a 

factorial design with three replicates per treatment. Agropyron 

desertorum cv. Nordan and Agropyron spicatum cv. Secar were germinated 

on blotter paper and after 7 d placed in bottles with 900 ml of 

aerated full-strength nutrient solution (Hoaqland and Arnon 1950; 

modifications: pH 5.5, 50 )JM FeC13, 50 )JM of the iron chelate, 

ethylene di-(o-hydroxy-phenylacetate) (EDDHA). The seedlings were 

grown for 23 d to reduce the potential benefits derived from 

differences in the seed, selected for uniformity, and P and N nutrient 

treatments imposed. Total fresh biomass(± 1 mg) was determined 

weekly for the following 35 d by blotting roots to a uniform dampness. 

Mean relative growth rates were calculated over the time interval as 

follows: 

where W = fresh or dry biomass, depending on the experiment, t = time 

(in days unless stated otherwise) on either the first (1) or second 

(2) harvest. Mean relative growth rate was expressed on a daily basis 

for glasshouse experiments to allow for comparison between 

experiments. The time interval, however, is always noted. 

The high-N solution contained saturating N levels typically 
-t-

requ ired of high yielding crop plants (15 mM N03 and 1.5 mM NH4). The 

moderate-N treatment was 10% of the high N treatment ( 1.5 mM N03 and 

0.15 mM NH4). For the phosphorus treatment, we were interested both 

in saturating and minimum concentrations for P uptake. Since larger 

and faster growing plants have a higher nutrient demand, nutrient 

concentrations in the culture solution which are below saturating 
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levels need to be continuously replenished to accommodate these 

differences in demand (Ingestad 1982). Phosphorus was therefore added 

to result in a constant tissue concentration, assuming the relative 

growth rate remained constant over the subsequent week. The P 

treatment covered four orders of magnitude. The lowest was lower than 

the level at which either species could sustain growth, as determined 

by a pilot experiment, and the highest concentrations saturated 

uptake (approximate solution concentration range: 0.3 ).JM to 3 mM). 

Pl ants from the same seed sources as in the hydroponic 

experiment were grown in soil culture at two ranges of soi 1 

temperature and three levels of fertilization. Pots were 50 cm deep 

and 10 cm in diameter and constructed from plastic pipe with plastic 

screen attached to the base. Soils (< 6 ppm P, < 0.10% N) were 

collected from the field site (Caldwell et al. 1981) and mixed in a 

1:1 ratio with washed sand to lower the nutrient content and provide a 

better aerated potting mixture. A small sample of soil from beneath 

the same species in the field was mixed in the surface layer of the 

pot to enhance mycorrhizal infection and establishment of soil 

microbes. 

Four seeds per pot were sown and after four weeks, the seedlings 

were selected for uniform size both within and between species, 

leaving only one plant per pot. After two additional weeks the cold 

temperature treatment was initiated. Seedlings were approximately 10 

cm in height at this ti me. Cold soil temperatures were achieved by 

circulating cooled water through copper tubing surrounding the pots. 
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Temperatures were monitored with thermocouples at 10- and 40-cm 

depths. For the first three weeks, temperatures at 10 cm ranged from 

13 to 16~C and at 40 cm from 10 to 13°C, after which temperatures were 

further reduced to 7 to 12 Ve, and 5 to 6 °C, at 10 and 40 cm, 

respectively. The warm soil treatment ranged from 20 to 26 °C 

throughout its soi 1 volume. After 90 d, all the pl ants in the warm 

temperature treatment and 14 of the 28 plants in the cold temperature 

treatment were harvested. The remaining half in the cold temperature 

treatment were examined for changes in growth rate by allowing the 

soil to warm in increments over a 27-d period. 

Plants were watered every 3 d as needed and fertilization 

occurred weekly. The nutrient treatments were full-strength nutrient 

solution, 1/10-strenqth solution, and tap water. Ten ml of solution 

were injected every 10 cm to provide a uniform distribution in the 

soil. 

Aboveground biomass was estimated nondestructively each week by 

measuring total leaf length and average leaf width of fully expanded 

leaves. Thirty-two plants were sacrificed 65 dafter germination to 

develop the regression between the product of length and width to dry 

weight (!:,2=0.97; no significant difference between species or 

treatment) and then tested against final weights of 22 remaining 

pl ants (predicted versus observed: _!:.2=0.97). 

Field experiments 

The study area is located in a site typical of semiarid North 

American Great Basin rangelands where Agropyron spicatum and Artemisia 

tridentata are native and where Agropyron desertorum has been 



33 

extensively seeded. The study area has been previously described 

(Caldwell et al 1981); thus, we will describe only the specific plots 

used to measure potential growth rates. Agropyron spicatum var. 

inerme, ~ desertorum, and Artemisia tridentata ssp. vaseyana were 

planted in early June, 1983 in four plots. Competitive interaction was 

minimized by planting the species in a 2-m spacing. Each individual 

was surrounded by two plants of the other species. Medium-size 

tussocks of A. spicatum and seedlings approximately 2 yr old (< 10 cm 

in height) of A. tridentata were collected from the surrounding 

hi 11 sides of the study area. Medium-size tussocks of A. desertorum 

were collected from a pasture sown approximately 30 years earlier 

about 140 km south of the field site. Two plots were heavily 

fertilized with 150 kg ha-1 ~-NH4No3 and 50 kg ha-1 P-P2o5 in June and 

September, 1983 and April, 1984. Weeds were controlled with 

preemergent herbicide (dimethyl tetrachloroterephthalate) sprayed at 

8.4 kg ha- 1 active ingredient each spring and fall and by rototilling 

between plants no deeper than 10 cm. In 1983, plants were watered to 

promote establishment. Soil temperatures were monitored in 1984 and 

1985 at 10- and 40-cm depths using thermocouples. 

Growth rates of ten permanently marked tillers uniformly 

distributed throughout the tussock for four plants per species per 

plot were monitored in 1984 using the technique described in the 

glass house soil temperature experiment. A second set of ti 11 ers was 

harvested on 27 May, 1984, weighed, and leaf area determined using a 

leaf area meter (Licor, Model LI-3000). We found that a simple 
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allometric relationship could not be used to predict tiller biomass in 

the field, only tiller surface area, since tiller specific area (m2 

kg-1) in the field differed between the species, and varied with time 

a n d f e r t i l i z a t i o n (~ < 0. 0 5 ) • I n 1 9 8 5 , t w o t i l l e r s p e r p l a n t fr o m f i v e 

healthy plants per species per plot were destructively sampled weekly 

and leaf area and dry biomass were determined. 

Final standing crop of the bunchgrasses was determined by 

clipping the senesced foliage in the fall of each year to a 5-cm 

height in 1984 and 1985. In 1983, the same year the plants were 

transplanted, the amount of foliage that had grown after the summer 

dry period, fall regrowth, was estimated using a reference unit 

technique (Kirmse and Norton 1985; _!:.2=0.95, n=32). Aboveground 

biomass of sagebrush was also estimated in 1983 using a log - log 

r e l a t i o n s h i p o f t w i g b i o m a s s t o s t e m d i a m e t e r (_!:. 2 = 0. 9 4 , n = 3 3 ) a n d 

confirmed with 1984 sagebrush seedlings (predicted versus observed: 

_!:.2=0.95, n=28). In 1984 and 1985, fall biomass was more easily 

calculated using a correlation between canopy volume and biomass 

(_!:.2=0.98, n=21) which was checked with 20 sagebrush harvested in 1985 

(predicted versus observed: ..!:.2=0.53; slope did not differ from 1.0 and 

intercept did not differ from 0.0, ~>0.20). 

Analysis of field growth rates was complicated by the fact that 

many.&_ spicatum plants did not undergo transplanting well and many of 

the tillers in the bunches died by 1984. Since we were interested in 

potential growth rates, we only compared tiller growth rates and 

changes in final standing crop of the larger tussock grasses which had 

established successfully. A minimum oven-dried biomass of 75 g by the 
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1985 fall harvest was the criterion used to identify the sample 

populations. 

Results 

During the first few weeks following germination,~ desertorum 

seedlings had substantially qreater RGR than~ spicatum in hydroponic 

culture. These relative growth rates were higher than at any other 

time during the experiment (Table 2}. Similar differences between the 

species were found in aboveground biomass 51 d after germination in 

the soil culture experiment. The differences in growth rates of young 

seedlings of the two species were not related to seed weight. 

Table 2. Seed weight, seedling mean relative growth rate (RGR) for 
the 14- to 21-d interval in full-strength nutrient solution, and 
aboveground biomass in soil culture 51 dafter germination of A. 
spicatum and A. desertorum (*** denotes significance at P<.OOI; 
se=standard error of mean) 

~ spicatum A. desertorum -n mean± se n mean± se 

Seed weight ( g/100 seeds} 4 0.321 ± 0.005 4 0.319 .± 0.003 

RGR (g g-1 d-1)*** 27 0.129 ±. 0.007 27 0.172 ± 0.005 

Aboveground biomass (g) 
soil temperature 20-26 c*** 20 o. 067 ±. o. 008 20 0.127 ± 0.005 

soil temperature 5-12 c*** 14 0.020 :1: 0.001 14 0.034 ± 0.003 

After 56 d, ~ spicatum had very similar whole-plant RGR to~ 

desertorum over a range of nutrient regimes in solution culture 

(~=0.67; Fig. 7). Growth rates were unaffected by the 1 evel of N when 

P was high but were lower at high N than at moderate N when P was low. 
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Fig. 7. Whole-plant mean relative growth rates between 49 and 56 d 
following germination for A. desertorum and A. spicatum plants grown 
in hydroponic culture (n--; 3 for each mean) at four levels of 
phosphorus and two levels of nitrogen. Phosphorus treatment 
significant at P<0.001 and P x N interaction significant at P=0.07. 
No si gni fi cant cfi fferences between species (!:>0.20). ' 

At the lowest P treatment level, RGR never stabilized but continued to 

decline to negative values for both species (data not shown). 

Plants grown in soil culture in the glasshouse were examined for 

differential response to soil temperature under various fertilization 

regimes. Plants tended to have an exponential rate increase of 

aboveground biomass at warm temperatures, especially with high 

fertilization, but increased only linearly at cold temperatures (time 

course not shown). Mean relative aboveground growth rates from 51 to 

66 d at soil temperatures between 20 and 26 C also did not differ 
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between species (£.>0.20; Fig. 8). Fertilization did increase RGR 

(£.<0.01) at these temperatures. At soi 1 temperatures between 5 and 12 

"c, RGR from 51 to 90 d was 66% greater for~ desertorum (£.=0.04) and 

fertilization had an inconsistent effect (£.=0.20). We also examined 

absolute growth rates for the same time interval for the cold 

temperature treatment. Agropyron desertorum had nearly a four-fold 

greater median growth rate (1.29 versus 0.346 mg d-1) than~ spicatum 

during this period (Wilcoxon Sum Rank Test; £.<0.01), and fertilization 

did not affect the absolute growth rate of either species (Kruskal­

Wallis Test; £.>0.20). 

Plants were also examined for differential ability to respond to 

a change in soil temperature (Fig. 9). Neither species exhibited an 

substantial lag in growth acceleration as soil temperatures 

increased, and their RGR values never differed from one another 

(£.>0.20). Fertilization did not affect plant growth rates during the 

warming period. 

Although there was a distinct difference in RGR of the two 

species as a result of a prolonged cold soil temperature treatment in 

the glasshouse, this was not generally apparent in the field. Field 

absolute growth rates of tillers from widely spaced plants in the 

spring did not show any appreciable differences (Fig. 10). Snow melted 

approximately 22 d before the first measurement in 1984 and 9 d before 

the first measurement in 1985. Soil temperatures beneath the snow 
O 0 

were 1 C at 10 cm and 2 C at 40 cm in March, 1985. As would be 

expected, soil layers closer to the surface exhibited a much greater 
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Fig. 8. Aboveground relative qrowth rates of A.. desertorum and A. 
spi cat um from 51 to 66 d for the warm soil treatment (20 to 26 ·c; n= 6 
to 7) and from 51 to 90 d for the cold temperature treatment (5 to 12 
•c ; n = 4 t o 6 ) • Fe rt i l i z a t i o n re p re s e n t s O , 1 0 a n d 1 0 O % o f m o d i f i e d 
Hoagland 1s solution (see text for details}. For the cold temperature 
treatment, species differences were significant (P=O.O4) but increased 
fertilization did not consistently increase RGR (P=O.20). For the 
warm temperature treatment, there were no significant differences 
hetween species (!>O.2O}, but fertilization was siqnificant (!:_=0.002) • 
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Fig. 9. Mean relative growth rates (RGR) of aboveground bi oma-ss of A. 
desertorum and A. spi caturri and corresponding soil temperature at 1/)':" 
and 40-cm depths in the glasshouse. Relative growth rate at day=O 
calculated over a 39-d time interval, and the remaining means plotted 
at the end of the time interval for which they were calculated (e.g., 
RGR at day=4 had a time interval of 4 d). Relative growth rates of 
fertilized and unfertilized did not differ significantly and were 
pooled (P>O.2O). Arrow indicates the day on which soil was allowed to 
warm. Nosignificant differences were found in RGR between species 
(£.>O.2O). 
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diurnal range (Fig 10). In 1985, soil in the surface layers began to 

experience periods of the day above 15 degrees within a week after 

snowmelt. At the 40-cm depth, temperatures fluctuated less and took 
(J 

several weeks or longer to warm above 12 C, deper ing on the year. 

In 1984, biomass was estimated by a single destructive harvest 

(data not shown) on 30 May. On this date, tiller biomass of~ 

spicatum was greater than biomass of~ desertorum (~<0.05), 

presumably since tiller height of~ spicatum is usually greater than 

that of A. desertorum at full extension. In 1985, very early spring 

tiller biomass was generally similar for the two species. On 23 

April, however, following a week of cold weather and cold soil 

temperatures,~ desertorum did exhibit greater tiller biomass than A. 

spi catum (~=0.02), but these differences disappeared by the fo 11 owing 

week. Until the end of May in 1984, and after the first measurement 

in 1985, green surface area of tillers of the two qrasses showed 

d i f f e r e n c e s i n m a g n i t u d e (~ < O. 0 5 ) , b u t n o d i f f e re n c e i n s l o p e ( i.e. , 

absolute rate of increase). Fertilization had inconsistent results 

on green surface area between the two fertilized and two unfertilized 

plots (~>0.20). Relative growth rates of green foliage surface area 

were also similar for the two grasses (data not shown). Since A. 

desertorum tends to have greater specific foliage area (FiglO, 1985 

data; see also Caldwell et al .. 1981, Nowak and Caldwell 1984b), the 

greater green surface area of A. desertorum in 1984, does not reflect 

appreciable differences in tiller biomass. 

Total aboveground biomass measured in the fall of each year with 

minimal competition was quite different for A. tridentata, 
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Fig. 10. Green surface area per tiller in 1984 and 1985 from A. 
desertorum (de) and A. spicatum (sp) planted in the field in a 2.:-m 
spacing and corresponciTng diurnal soil temperature range at 10- and 
40-crn depths. Means of green surface area differed significantly 
between species until end of May 1984 and after first measurement in 
1985 (f<0.05), but absolute growth rate did not differ significantly 
(P>0.20). Inset: aboveground biomass accumulation of 1985 tillers. 
BTomass in 1985 was only significantly different between species on 
one sampling date, which immediately followed a period of cold soil 
temperatures (23 April, P=0.02). Vert i ca 1 bars represents =1.l standard 
error of individual plants in fertilized and unfertilized plots; not 
the error associated with the fertilization treatment (n=2). Each 
plant (3 to 7 plants per mean) represents the average of 5 to 10 
tillers in 1984 and 2 tillers in 1985. Fertilization did not 
significantly af f ect either green surface area or biomass (f>0.20). 
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Fig.11. Aboveqround biomass accumulation of A. desertorum (de), A. 
s picatum (sp), and Artemisia tridentata (tr) planted in earl _yJune," 
1983 in a 2-m spacing in fertilized and unTertilized plots. 13iomass 
measured in fall of each year. Vertical bars unless covered by symbol 
represents -=l standard error of the mean of pl ants in the fert i 1 i zed 
and unfertilized plots; not the error associated with the 
fertilization treatment (n=2). The fertilization treatment only 
affected 1983 grass biomass (P=0.013), and neither absolute nor 
relative growth rates. Note change in scale of ordinate axis. Inset: 
Annual mean relative growth rate of aboveground biomas ,s of A. 
desertorum and A. spicatum for a 10- and 100-g initial biomass for the 
time intervalsTrom 1983 to 1984, and from 1984 to 1985, respectively 
(calculated from a linear model used in an analysis of covariance). 
Initial weights of 10 and 100 g represent the magnitude of initial 
biomass in 1983 and 1984, respectively. Solid bar = fertilized plots, 
open bar= unfertilized plots. Mean relative growth rates using an 
analysis of covariance (initial biomass used as the covariate) were 
slightly greater for A. desertorum between 1983 and 1984 (P=0.07) and 
much greater for ~ sp,catum from 1984 to 1985 (£.<0.001 ). -

,/ 
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~ spicatum, and ~ desertorum (Fig. 11). Agropyron desertorum 

withstood transplantation better than~ spicatum and had greater 

fall regrowth in 1983 (£.<0.01). Fall regrowth in 1983 was also 

affected by fer t i1 i z at i on (£.=0.01 ) • Thi s i n i ti a 1 advantage i n 

recovery from transplantation was the major reason for the large 

differences in biomass between the two tussock grasses in 1984 and 

1985. The slopes of the lines through time represent absolute growth 

rates. From 1983 to 1984, absolute growth rates of A. desertorum were 

similar to those of~ spicatum from 1984 to 1985 (Fig.11). Since 

mean relative growth rates declined as biomass increased, initial 

weight was used as a covariate of RGR to determine differences between 

species and response to fertilization. Agropyron desertorum had a 

slightly greater RGR between 1983 and 1984 (£.=0.07), while~ spicatum 

h a d a m u c h g re a t e r R GR b e t w e e n 1 9 8 4 a n d 1 9 8 5 (..!:. < 0. 0 1 ; F i g 11 i n s et ) • 

Fertilization did not affect RGR in either period (£.>0.20). 

The shrub, Artemisia tridentata, had much higher aboveground 

growth rates than either grass species. Inflorescence mass alone of 

A. tridentata in 1985 was more than four times the biomass of the 

grasses. 

Discussion 

Several studies that have examined reasons for differences in 

competitive ability among established plants have emphasized 

differences in growth form and morphological development (Pavlik 

1983c, Grace 1985, Kuppers 1985), differences in shoot phenological 

patterns (Rice and Menke 1985), shoot:root allocation patterns (Baan 
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Hofman and Ennik 1982, Pavlik 1983b), and nitrogen-use efficiency 

(Pavlik 1983a). None of these morphological or physiological 

characteristics clearly explain the differences in competitive ability 

of these two Agropyron species. Indeed, these grasses are very 

similar in a wide array of morphological and physiological traits 

(Caldwell et al. 1981, Caldwell et al. 1983, Nowak and Caldwell 1984a, 

1984b, 1986). Only two factors have thus far been identified that 

differ between these species that may contribute to greater 

competitive ability. Agropyron desertorum has greater root length per 

unit root biomass (Caldwell and Richards 1986) and a greater number 

of penetrations by mycorrhizal hyphae per unit length of root infected 

with mycorrhizal arbuscules (Caldwell et al. 1985). 

In this study, we wished to determine if there were differences 

in potential growth rate of these grass species as established plants, 

especially in early spring, that might place~ desertorum at some 

advantange in competition with neighbors. Hydroponic culture, though 

obviously a very artificial medium, provided the opportunity to assess 

whole-pl ant growth rates under optimal and suboptimal nutrient 

conditions and optimal water status. The glasshouse soil culture 

experiment provided a controlled examination of the influence of soil 

temperature on aboveground RGR while the field experiments permitted 

an assessment of aboveground growth rates with minimal competition in 

the natural environment. 

The principal difference between the grass species emerging from 

these experiments was a greater tiller growth rate of~ desertorum in 

the glasshouse, cold-soil experiment. This difference was not 
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apparent in the field tiller growth studies even in cold spring 

periods. Only once, following a week of cold weather and soil 

temperatures in late April, 1985, did ~desertorum exhibit greater 

tiller biomass. Nowak (unpubl.) also indicated greater leaf biomass 

of A. desertorum on some winter and spring sampling dates in 1981 and 

1982. Both in the earlier studies (Nowak and Caldwell 1984b, Nowak 

unpubl.) and in the present study,~ desertorum exhibited greater 

surface area of tillers in the early spring. However, as with tiller 

biomass, the grass species increased in surface area during the 

spring at similar rates. 

The lack of appreciable differences in tiller growth rates in the 

early spring cautions against extrapolating from controlled glasshouse 

or growth chamber experiments to conditions found in the natural 

environment. One reason for the discrepancy between the cold 

temperature glasshouse experiment and what was observed in the field 

might be that in the field, there was only a short period of time 

between snowmelt and warming of the surface soil. More importantly 

though, belowground we have found considerable early spring root 

growth in ~ desertorum compared with A. spicatum (Chapter IV, 

Thorgeirsson and Richards 1983). 

The growth rates of both grasses pale by comparison, however, 

when compared to the growth rates of Artemisia tridentata (Fig. 11). 

Artemisia tridentata is indeed an effective competitior with both 

Agropyron desertorum and~ spicatum (e.g., Cook and Lewis 1963). 

Yet, the differences in competitive ability among these three species 
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are definitely not proportional to their potential growth rates. 

The importance of high potential growth rates as a general 

attribute of competitive ability is well documented in comparisons of 

species from different environments (Grime 1977, Bazzaz 1979). 

However, a high potential growth rate as a general characteristic of 

competitively successful plants is probably not sufficient to explain 

specific differences among plants in similar environments. Similiar to 

the results obtained in this study, there is often little relationship 

between growth in monocultures and competitive ability in mixtures 

(e.g., Eagles 1983). 

Fertilization in the field had a weaker effect than expected, 

possibly due to increased mineralization of nutrients during site 

preparation. Thus the 'control' plots probably had more available 

nutrients than what would be normally expected in established pastures 

in this area. The fertilization treatments show, however, that 

nutrients were not a limiting factor in testing the potential growth 

rates of these species. 

This study has concentrated on potential growth rates of plants 

which are beyond the very early seedling stage, because of the 

striking difference between these grass species in their ability as 

older plants to suppress biomass production of their neighbors. In 

the first few weeks following germination, potential growth rates of 

~ desertorum in this study were much greater than that of A. 

spicatum, regardless of soil temperature. This difference in the 

early seedling stage probably contributes to the greater competitive 

ability of A. desertorum in mixtures with winter annual species 
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(Harris and Wilson 1970) and in mixed seedings with other perennials 

(Schuman et al. 1982). Obviously, rapid growth in the very early 

seedling stage will probably result in accrued benefits later even if 

subsequent growth rates are the same as those of competitors. 

However, a favorable competitive position achieved in the seedling 

stage may not be retained as an adult. For example, Grace (1985) found 

that competitive differences of Typha species as seedlings were not 

always apparent in later growth stages. 

These two Agropyron species are so similar in many respects that 

their striking difference in competitive ability is not easily 

ascribed to particular traits. The difference in potential growth rate 

in the very early seedling stage is not so apparent in later growth 

stages. Competitive advantage of the older, more established plants 

is due to other characteristics such as root morphology, root 

symbiotic associates and timing of root growth. 
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CHAPTER IV 

EARLY SEASON INVASIVE ROOT GROWTH AND ITS 

SIGNIFICANCE FOR RESOURCE COMPETITION: A 

COMPARISON OF TWO TUSSOCK GRASSES 

Summary 

Agropyron desertorum, a more competitive tussock grass than 

Agropyron spicatum, exhibited greater root growth during the winter 

and early spring than~ spicatum. Furthermore, when new soil space 

was made available by removing a neighboring tussock, the rate of root 

invasion into this space was more rapid for~ desertorum than for~ 

spi cat um. This difference between species was more pronounced when 

the removals were conducted soon after the snow melted in early spring 

than when the removals were conducted 24 d later. Despite the large 

difference in root invasion in the first removal experiment, 

acquisition of 32phosphorus placed in the soil where the tussocks had 

been removed was similar for the two grass species. In the second 

removal experiment,~ desertorum did acquire considerably more 32p 

from the disturbed soil than did~ spicatum. In both removal 

experiments, the greater invasive root growth of ~desertorum was 

reflected in slightly faster soil moisture extraction. Rapid root 

growth in the early spring can allow a plant to occupy a greater soil 

volume or soil microsites richer in resources. However, greater 

resource acquisition due to this rapid, early-season root growth may 

not become apparent until resources become limiting which often does 
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not occur until later in the spring. 

Introduction 

Difference in competitive ability between species of similar life 

form and physiological characteristics may be determined by subtle 

traits. In temperate environments, early season root growth may be 

important in competition for limited resources, not only for 

seedlings (Harris 1967, Larsen and Schubert 1969), but also for 

established perennial pl ants. 

Agropyron spicatum (Pursh) Scribn. and Smith, a tussock grass, 

and Artemisia tridentata ssp. vaseyana (Rydb.) Beetle, a shrub, are 

prominent co-occurring species of the Great 8asin steppe of North 

America. Agropyron desertorum (Fi sch. ex Link) Schult., an introduced 

tussock grass from Eurasia, has been widely planted in this region. 

Competition experiments using transplanted mixtures of Artemisia with 

both of these grass species have shown~ desertorum to be much more 

effective in reducing vegetative and reproductive biomass of A. 

tridentata than is~ spicatum (Caldwell and Richards 1986). Although 

these Agropyron grasses differ greatly in competitive effectiveness, 

they have many characteri sit i cs in common. They are both l ong-1 i ved 

tussock grasses with similar shoot phenological pattern, biomass 

allocation, water- and nitrogen-use efficiencies, and seasonal course 

of leaf water potential. Seasonal photosynthetic rates and 

photosynthetic responses to temperature and light are also very 

similar (Caldwell et al. 1981, Caldwell et al. 1983, Nowak and 

Caldwell 1984a, b, 1986). However, ~ spicatum generally has slightly 
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greater yield in monocultures than ~ desertorum (Eissenstat unpubl.). 

Rapid root growth at cold soil temperatures may be particularly 

beneficial in a cold-winter, dry-summer steppe environment since most 

of the soil water recharge comes in the form of melting snow and 

spring rains with little effective recharge of the soil profile from 

any subsequent summer precipitation (Caldwell 1985). Most work 

demonstrating enhanced competitive ability by early spring root growth 

has dealt with seedling establishment (Harris 1967, Larsen and 

Schubert 1969, Harris and Wilson 1970). However, adult plants may 

also gain an advantage over their neighbors in seasonal resource 

exploitation if their roots grow rapidly at cold soil temperatures. 

In a controlled greenhouse experiment,~ desertorum had similar 

relative growth rates (RGR) at warm soil temperatures (20-26 't) 

compared to~ spicatum, but at cold soil temperatures (5-12 °C), ~ 

desertorum exhibited greater RGR (Chapter III). In the field, 

aboveground growth rates of these two grasses early in the spring 

were very similar (Chapter III). Preliminary evidence, however, has 

indicated that A. desertorum exhibits more root growth at low 

temperatures (Thorgeirsson 1985, Thorgeirsson and Richards 1983). 

They found greater adventitious root initiation from the base of 

tillers in fall and winter for~ desertorum than for~ spicatum. 

Earlier root growth may provide a competitive advantage by 

allowing a plant to invade unoccupied soil space sooner and thereby 

limit use of the resources in that volume by neighbors. Small-scale 

disturbance, such as livestock trampling, burrowing animals, harvester 
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ants or pathogens, are some of the more obvious ways soil space may 

become free of roots in cold desert communities. Even without 

disturbance, some soil space becomes available due to high annual 

root system turnover in most plant communities (Caldwell 1986). The 

advantages of earlier seasonal root growth should he further enhanced 

if soil space becomes available over winter rather than later in the 

spring after the soils have warmed. 

In Chapter II, we demonstrated that the survival of Artemisia 

indicator plants, when transplanted soon after the snow melted, was 

strongly dependent on whether its neighbors were~ desertorum or~ 

spicatum. When the indicator plants were transplanted later in the 

spring, there were no apparent differences in Artemisia survival 

between ~ desertorum and ~ spi cat um neighborhoods. We al so showed 

that essentially monospecific stands of~ desertorum extracted water 

sooner than did stands of~ spicatum under rangeland conditions. 

These phenomena suggest that there were early-season differences in 

root growth of these qrass species. 

The objectives of this study were: (1) to determine whether A. 

desertorum has greater root growth than~ spicatum during the winter 

and early spring, (2) to determine whether ~ desertorum has greater 

ability to extend roots into disturbed soil space and extract water 

and phosphorus from that space, and (3) to determine whether root 

invasion and resource acquistion of the two grass species respond 

differently to time of disturbance. The experiment was conducted in 

replicated monocultures of each grass species. 
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Methods 

The study area is located on a site typical of semiarid North 

American Great Basin rangelands where Agropyron spicatum and Artemisia 

tridentata are native and where Aqropyron desertorum has been 

extensively seeded. The study area has been previously described 

(Caldwell et. al 1981); thus, we will describe only the specific plots 

used in this investigation. Two monocultures of each grass species 

were planted in late spring, 1983, and sprinkle irrigated in the first 

summer to facilitate establishment. Tussocks of A. spicatum were 

collected from the hillsides surrounding the study area. Similar­

sized tussocks of ~desertorum were collected from a pasture sown 

approximately 30 years earlier about 200 km south of the study area. 

Soils in the four plots were analyzed by the Utah State 

University Soil Testing Service for texture, available P (Olsen's 

bicarbonate - 0.5 M NaHco3 extractable), and total Kjeldahl N. Soil 

was collected at depths of Oto 0.2 and 0.2 to 0.4 m on 10 and 17 

June, 1985. A portion of the soil was dried to calculate gravimetric 

water content. Bulk densities were determined from single samples in 

each of the North and South Plots (Fig. 12) to allow comparison to 

neutron probe volumetric water content data. (Soi 1 water content was 

expressed on a mass basis (8m) rather than a volume basis in Table 

4 because soil bulk density was not determined for each soil 

sample.) The relationship between soil water content and soil water 

potential was developed from a comparison of neutron probe and soil 

psychrometer measurements at this field site. Soil temperature at 0.1-

and 0.4-m depths and preci pit at ion were continuously monitored within 
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50 m of the study plots. 

Sqil free of living roots was created by removing a single 

tussock and its associated soil volume in subplots at two tim~s in the 

spring. Preceding these removals, glass plates were installed 

November, 1984 to separate the pl ant root systems and to provide an 

estimate of overwinter root activity prior to the disturbance. Two 

glass plates, 0.5 m wide and 0.4 m deep, were installed on both sides 

of the pl ant to be removed, 0.3 m from the center of the neighboring 

plants, and perpendicular to an imaginary line connecting the center 

of the removal pl ant an-d its neighbor (Fig. 12). The pl ates were 

placed into the frozen soil, by first digging a trench with a pick, 

approximately 8 cm wide and then backfilling with the same soil after 

removing the rocks. Consequently, for a distance of approximately 4 

cm next to the plate, the soil was free of living roots after 

installation. The configuration of the experimental manipulations and 

root observation devices is illustrated in Figure 12. 

Different subplots were disturbed either on 12 April 1985 (Time 

1), or on 6 May 1985 (Time 2). (The snow had melted by March 31.) The 

central plant was removed and a ~08-m3 volume _of soil was excavated. 

Roots against the glass plates were then traced and their total length 

against the plates was determined (Newman 1966, Tennant 1975). The 

plates were then removed and the soil was replaced at similar depths 

and densities from which it was removed. Soil settlement was minimal. 

Minirhizotrons (Richards 1984), 38 mm in diameter and 0.5 min length, 

were installed in a row of three and inclined 30 degrees from normal 
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to the surface (Fig. 12). (Vertical tubes tend to result in roots 

growing down along the tube-soil interface which causes an 

overestimation of root length at deeper depths; Bragg et al. 1983.) 

On 23 April, 25 ml of orthophosphoric-32p acid (carrier-free in 

0.02 N HCl) were injected with a syringe into each of 10, 0.30-m deep 

holes spaced 25 mm apart so as to form a plane of isotope solution. 

Each plane had a total of 18.5 MBq (500.)JCi), injected at 74 kBq m1-l. 

Two planes of 32p were injected, 0.35 m on either side of center of 

the removed plant (Fig. 12). 

Approximately every 10 d, six to ten tillers were harvested from 

the two plants directly adjacent to the injection plane in each 

subplot. Tillers closest to the injection planes, tillers in the 

middle of the tussock, and tillers on the side of the tussock remote 

to the injection plane were harvested so as to obtain an average 

amount for the entire tussock. Tillers were dried at 70 "C, weighed, 

and ashed at 500°C in borosilicate vials. The ash was then suspended 

in 6 N HCl and brought to dryness twice and then resuspended in 0.1 N 

HCl. An aliquot was then placed in scintillation cocktail and 

counted. Counts were corrected for decay, quench, and counting 

efficiency and then expressed as original Bq of activity. 

After nearly a month, we still found only very low levels of 

radiophosphorus in individual tillers (on the average, less than 0.5 

counts s-1 g-1 tiller above background). Most tillers had no 

detectable activity. Therefore, we reinjected subplots of Time 1 with 

32p on 23 May. 

Aboveground foliage of all nine plants that surrounded the 
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Fig. 12. Design of Timing Experiment. Bottom: Scaled diagram of 
replicated monocultures of Agropyron spicatum and~ desertorum with 
locations of Time-I and Time-2 subplots indicated. Top: Scaled 
diagram of a subplot, which included nine tussock grasses of either A. 
desertorurn or A. spicatum in a 0.5-m spacing. The center plant and 
associated sofT (as defined by disturbance zone) were removed on 
either 12 April, 1985 (Time-1 subplots, 13 dafter the snow melted} or 
6 May, 1985 (Time-2 subplots, 37 d after the snow melted}. Roots 
growing against glass plates were then traced, the plates were 
removed, the soil was replaced, and the minirhizotron glass tuhes were 
installed. 32Phosphorus was then injected as liquid planes (see text 
for details). 
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disturbance area (Fig. 12) was harvested on 13 June, and oven-dried 

biomass was determined. Since 32p is an energetic beta emitter, 

radioactive plants could be readily determined by a Geiger-Muller (G­

M) surface scanner. Tillers of each radioactive plant were cut into 

fine pieces, mixed, and total 32p activity in aboveground foliage was 

determined. Entire crown tissue and roots in the upper 50 mm of soil 

were also harvested from the radioactive plants. These were dried, 

weighed, and ashed in their entirety. Preparation was the same as for 

the aboveground tissues, except the acidified ash was decolorized 

using activated charcoal to reduce quenching. 

On 30 May, Time-2 subplots were injected with two, 18.5-MBq 

planes of 32p as previously described. The aboveground foliage of the 

nine plants surrounding the disturbance area was harvested on 20 June 

and analyzed for total radioactivity. Crowns were scanned with the G­

M scanner and radioactivity calculated from a regression (after 

adjusting for decay) of G-M counts to actual radioactive emission 

developed from the Time-1 crowns (r2 = 0.63, n=17). 

Only three of the five Time-1 and Time-2 subplots were injected 

with P radioisotopes using the liquid injection technique. The other 

two subplots were labeled with gelatin capsules (Jacobs et al. 1970). 

This technique proved unsatisfactory in our highly buffered semiarid 

soils (Caldwell et al. 1985) because of very low P uptake, which was 

more than two orders of magnitude less than that obtained using the 

liquid injection technique. Analysis of P acquisition, therefore, 

only includes the liquid injection subplots. 
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Analysis of variance was used to test for differences between 

species and between times of disturbance (a subplot was randomly 

assigned to be disturbed either at Time 1 or Time 2). The basic model 

was: 

Y =plot+ species+ time+ (species x time)+ error 

with 3 degrees of freedom (df) for estimation of error. The model was 

simplified (thereby increasing the df for estimating error) when the 

plot or interaction term explained very 1 ittle of the total variance 

(£.>0.40). A square root transformation was required for the 

phosphorus data to satisfy the assumption of equal variance among 

treatments. A repeated measures component was added to the model for 

the mini rhi zotron measurements using a Gei sser-Greenhouse adjustment 

of degress of freedom to control correlation among measurements 

(Gurevitch and Chester 1986). 

Results 

Soils 

Soil texture of the study plots was approximately 33% sand, 51% 

silt, and 17% clay to a depth t>f 0.4 m and relatively uniform 

throughout the study plots. Available P was less in the South Plot 

and decreased with depth in both plots (Table 3). Judging from the low 

concentrations measured, available P may have limited plant growth in 

these soils (e.g., Hays et al. 1982). Neither total soil N nor 

available P were different between the two grass monocultures in 

either the North or South Plots. 

Soil temperatures were near ot beneath the snow in March. After 
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Table 3. Nutrient content of air-dried soil from replicated 
monoculture plots of Agropyron desertorum and Agrypyron spicatum. 

Available Pa Total 

Soil Depth (m) 0 - 0.2 0.2 - 0.4 0 - 0.2 

North Plot 
A. desertorum 5.2 3.8 0.93 
7C spicatum 6.0 3.9 0.85 -

South Plot 
A. desertorum 3.0 1. 7 0.93 
A. spi cat um 3.8 1. 9 0.95 

LSD (0.10) 1.5 0.8 0.17 

ao.5 M NaHC03 extractab 1 e P (01 sen' s P) (µg g-l) 
bKjeldahl N {mg g-1) 

Nb 

0.2 - 0.4 

0.90 
0.85 

0.83 
0.80 

0.09 

the snow melted, the soil tended to warm rather quickly near the 

surface but took considerably longer to warm at greater depths. A 

week before the Time-1 disturbance, soil temperatures were 

approximately 5 °Cat 0.4-m depth and ranged from 3 to 12°C at 0.1 m. 

On the day the Time 1 disturbance was initiated, soil temperatures at 

0.1 m had reached daily maxima between 18 and 22 C. At 0.4 m however, 

soil temperatures were generally below 10 to 12°C until the end of 

April. Soil temperatures at the initiation of the Time-2 disturbance 

we re above 15 °C to a dept h of 4 0 cm ; t em p e rat u res at w h i c h the t w o 

grasses have been shown to have similar growth responses in greenhouse 

experiments (Chapter I I I). 

Root growth 

Root growth over winter and during the 13 dafter the snow melted 

(Time 1) was estimated by tracing roots that had grown against the 

glass plates. Agropyron desertorum had nearly 3.4 times the root 
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Fig. 13. Mean root length against glass plates (bar graphs) of 
Agropyron desertorum and A. spicatum subplots (averaged for the two 
monocultures; + S.E.=standara error) just prior to disturbance at 13 d 
after the snow melted (A and B; Time-1 subplots) and 37 dafter the 
snow melted (C and D; Time-2 subplots). Hatched portion of bar 
represents root length at 0.2-to-0.4-m depth; open portion of bar 
represents root 1 ength at 0.0-to-0.2-m depth. Mean root 1 ength of A. 
desertorum and A. spicatum subplots (averaged for the two 
monocultures; + CT.) against minirhizotron glass tubes measured 
nondestructively through May and early June, 1985 at 0.22 to 0.43-m 
depth (hatched portion) and 0.0- to-0.22-m depth (open portion). 
Slopes of dashed lines represent approximate rate of growth from time 
of disturbance (at which time there were no roots) to the time of 
first measurement. Both glass plate and minirhizotron data are 
presented as root length m-2 of glass. Note break of time axis in 
April. Precipitation on site (E) and period of 32p acquisition are 
also noted. 
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length of by~ spicatum against the glass at this time as represented 

by the bars in Figs. 13A and 13B (£.<0.01). After the plates were 

removed and the soil replaced, the length of roots which grew into the 

disturbed zone as determined by the minirhizotrons was also 

considerably greater for A. desertorum than for ~ spi cat um (£.<0.01). 

When disturbance occurred in early May (Time 2), root growth into the 

released soil space was much more rapid (Figs. 13C and 130). 

Agropyron desertorum al so had considerably greater root length than 

~ spicatum, both prior to disturbance (glass plate data, 2.2-fold 

greater than~ spicatum) and in the disturbed soil volume 

(minirhizotron data). 

Root growth of~ desertorum exhibited somewhat more fluctuation 

through time than root growth of~ spicatum in the shallower layers. 

Agropyron desertorum al so showed a greater proportional increase in 

root growth in the deeper (0.22 - 0.43 m) soil layers earlier in the 

growing season (Fig 13). When the soil disturbance occurred early in 

the spring (Ti me 1), root length of ~ desertorum in the sha 11 ow soil 

layers reached a maximum by about 20 May and then subsequently 

declined. Root length in the deeper soil layers remained more or less 

constant. Agropyron spicatum on the other hand, exhibited a steady 

increase in root length at both depths throughout the measurement 

period. For the Time-2 disturbance, root growth was apparently 

enhanced by the rainfall at the end of May and in early June, but the 

increases were greater for A. desertorum than for~ spicatum. (The 

probability that the two grasses had different seasonal patterns of 

root growth by chance was 0.006 and 0.06 for the 0-to-0.22-m and 0.22-
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to-0.43-m depths, respectively.) 

The percentage of total root length in the deeper soi 1 layers for 

the two qrass species is illustrated in Fig. 14. In order to contrast 

different periods of root growth activity, the minirhizotron data only 

include the first three measurements of Time 1, when the soil was 

quite moist and root 1 ength was tncreasi ng for both species, and the 

last three measurements of Time 2 when root lenqth of both species was 

decli ning. The percentage of total root length that was in the deeper 

soil layers tended to be fairly constant for~ spicatum for either 
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A. desertorum 
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Fi q. 14. Percentage of total root length in the deeper soil la ye r s 
(0.2 to 0.4 m for glass plates and 0.22 to 0.43 m for minirhi zot r ons) 
for Aqropyron spicatum and A. desertorum subplots (averaged for th e 
two monocultures). For minuhizotron data, Time 1 represe nts the 
period when both grasses had increasing total root length (firs t th ree 
measurements) and Time 2 represents the period when both qras ses IJAd 
decreasing root length (last three measurements, see Fig. 13) . See 
text for statistical significance of various treatments. 
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the glass plate or minirhizotron measurements. Agropyron desertorum, 

however, had proportionately qreater root length in the deeper (0.22 -

0.43 m) soil 1 ayers for Ti me 2 than Ti me 1 for the mini rhi zotron data 

(species x time interaction: glass plate, i=0.66; minirhizotron, 

i=0.04). 

Soil water extraction patterns reflected the greater proportional 

root growth of~ desertorum compared to~ spicatum in the lower soil 

depths in June. Soil water content in the~ desertorum plots at the 

0.2-to-0.4-m depth on 10 and 17 June was sliqhtly lower than in the~ 

spicatum plots. Since the soil was quite dry, the differences in soil 

Table 4. Gravimetric soil water content (em) at two soil depths in 
Time-1 subplots (sampled 10 June) and Time-2 subplots(sampled 17 June) 
(soil bulk density= 1600 kg m-3). Means represent average of North 
and South monoculture Plots (see Fig. 12; standard error in 
parenthesis). The South Plots tended to be drier than the North 
Plots. Si gni fi cance of factors in the ana 1 ysi s of variance mode 1 are 
noted (MSE=mean square error ; P = probability that observed difference 
occurred by chance). -

em (%) 
0 - 0.2m 0.2 - 0.4m 

Time 1 ---- ----
A. desertorum 11. 2 (0.5) 10. 6 (0.7) 
A. spicatum 11. 0 (0.8) 11.4 (0.02) 

Time 2 
A. desertorum 8.8 ( 1. 3) 9.3 (0.3) 
A. sp1catum 9.9 (0.3) 10.2 (0.8) 

df MSE p MSE p 

Species 1 0.52 0.47 1.34 0.07 
Time 1 6.07 0.05 3.31 0.02 
Plot 1 2.70 0.14 1.65 0.05 
Error 4 0.82 0.21 
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water potential were proportionately larger. A range of 8.8 to 11.4% 

in 8m at this field site corresponds to differences in soil water 

potential at these soil water contents of approximately -3.0 to -0.5 

MPa. 

Agropyron desertorum roots consistently proliferated in the 

disturbance zone more rapi dl.Y than those of ~ spi catum. Figure 15A 

illustrates the rate of root growth from the time of disturbance to 

the first minirhizotron measurement for each species at Time 1 and 

Time 2. At either time of disturbance,~ desertorum root extension 

rates were considerably greater than those of A. spicatum; the 

differences were more pronounced at Time 2 when the roots were 
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Fig. 15. The effect of time of disturbance on root extension rates of 
Agropyron desertorum and A. spicatum in subplots (averaged for the two 
monocultures). A. Rate ofroot extension from time of disturbance to 
the first minirhizotron measurement (35 dafter disturbance) for Time 
1 and for Time 2 (14 dafter disturbance). (Root length data 
calculated m-2 of glass.) B. Percent of maxi mum root length achieved 
by the time of the first minirhizotron measurement for Time 1 and Time 
2. See text for statistical significance of various treatments. 



63 

growing faster (species x time interaction: £.=0.04). However, the 

proportional difference in root extension rates between the species 

was greater at Time 1 than at Time 2 (3.1- and 2.3-fold difference 

between the species at Time 1 and Time 2, respectively). If root 

length as observed with the minirhizotrons is expressed as a 

percentage of the maximum root length achieved during the measurement 

period in each subplot (Fig 158), ~ desertorum in either time period 

had a greater proportion of its maximum root length in the disturbance 

zone sooner than ~ spicatum (species main effect: £.=0.06). This 

difference was more apparent in Time 1 than in Time 2 (species x time 

interaction: £.=0.17). (The maximum root length achieved during the 

measurement period for either species was very similar in Time 1 and 

Ti me 2, E_>0.50.) 

Phosphorus acquisition 

Phosphorus acquisition by the grasses in the disturbed subplots 

was extremely variable. Figure 16 represents distributions of 32P 

acquired by the final harvest among the nine plants surrounding the 

disturbance zone in a subplot. 32Phosphorus acquisition was clearly 

not correlated with plant size. Plants in the corners tended to be 

less radioactive than plants directly adjacent to the injection 

planes. However, 32P acquisition differed by orders of magnitude 

among individual tussocks whose shoots were equally distant from the 

injection planes. 

Total P acquisition by the nine grasses surrounding the 

disturbance zone did not differ between species for Time 1 (Table 5). 

For Time 2, A. desertorum extracted more 32P, but the variability was 
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Fig. 16. Distribution of 32p among tussocks in subplots of A. 
desertorum and A. spi cat um. Each dot represents 1 kBq. The area of 
the ci rel es are proportional to aboveground bi om ass of tussock. Lines 
indicate location of the 32p injection plane. 

Table 5. Total 32p acquisition in aboveground biomass of the nine 
grasses in the 6 suplots (3 subplots per species) of Time 1 and of 
Time 2 (see Fig. 12). Data required a square root transformation to 
maintain homogeneity of variance. Retransformed means and 90% 
confidence intervals (LC = lower confidence limit, UC = upper 
confidence limit) are presented. Significance of factors used in 
analysis of variance are noted (MSE = mean square error; P = 
probability that observed difference occurred by chance). 

Time 1 
A. desertorum 
A. sp1 cat um 

Time 2 
A. desertorum 
A. sp1 ca turn 

df 

Species 1 
Time 1 
Species x Time 1 
Error 4 

32p in aboveground 
biomass (kBq) 

Mean (LC, UC) 

94 (17, 235) 
84 (12, 219) 

271 (118,489) 
15 ( 0, 90) 

MSE p 

5216 0.07 
63 0.80 

4369 0.08 
838 
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very large between monoculture plots, as indicated by the broad 90% 

confidence limits (Table 5). The differences in aboveground 32p pools 

between the two species in either time period could not be related to 

differences in aboveground biomass of the nine plants surrounding the 

disturbance zone nor to differences in allocation of P to the crown 

tissue (Table 6). 

The time course of 32p uptake also indicated very little 

difference in rates of 32p acquisition by the two grass species (Fig. 

17A). (A time course of 32p acquisition was only done for the Time-1 

Table 6. Mean aboveground biomass of nine grasses in subplots of Time 
1 and Time 2 (see Fig. 12) and proportion of 32p in foliage 
relative to crowns. Means represent average of North and 
South monoculture Plots (Standard errors in parenthesis). (The South 
Plots tended to have lower biomass than the North Plots.) 
Significance of factors used in analysis of variance are noted (MSE = 
mean square error; P = Probability that observed difference occurred 
by chance). 

Aboveground foliage 32pa 
bi amass ( g) crown 32p-

Time 1 
A. desertorum 448 (56) 3.9 ( 0.1) 
A. spicatum 633 (3) 4.1 ( 1.1) 

Time 2 
A. desertorum 498 ( 17) 4.7 ( 1. 5) 
A. spi catum 571 (29) 2.9 ( 2.2) 

df MSE p MSE p 

Species 1 70688 0.01 1.26 0.63 
Time 1 166 0.81 0.09 0.89 
Plot 1 11573 0.12 3.80 0.42 
Species x Time 1 13103 0.11 2.13 0.53 
Error 3 2380 4.36 

.,If a simplified model was used in analysis of variance, there would 
havebeen no effect on significance of Species or Time effects (see 
Methods). 
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disturbance.) These data were collected from the two tussocks on 

either side of the injection plane in each of the three subplots (Fig. 

12 and /6). The first three sampling dates indicated that very little 

of the 32p injected on 23 April (11 d after disturbance) was taken up 

by the plants. Generally, fewer than half of the plants sampled 

showed detectable activity despite their proximity to the injection 

plane. On one sampling date, !:.:_desertorum appeared to have greater 

uptake than!:.:_ spicatum, but this was the result of single very 

radioactive tillers in two of the replicate plants. (Six tillers per 

plant were sampled.) On the following sampling date, when 10 tillers 

were sampled from each plant, mean radioactivity of !:.:_desertorum 

plants was very similar to that of ~spicatum plants. By the time 

32p was injected a second time in the Time-1 subplots, a profuse root 

system had developed (Fig. 17B). In this case, 32p uptake was rapid 

and most plants exhibited radioactivity. Within 20 d, average 

radioactivity per mass of plant tissue had increased three orders of 

magnitude. Surprisingly, there were still no differences in 32p 

acquistion between the two grass species despite the large differences 

in root length of the two species in the disturbance zone. 

Discussion 

The two tussock grass species we studied exhibited large 

differences in their root growth during the winter and in the early 

spring when soil temperatures were cold, although the timing of shoot 

growth does not differ between these species (Chapter III). In this 

study, we examined the importance of timing of root growth and 
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Fig 17. Time course of ' 32p acquisition for Time-1 subplots. A. 
Average concentration of 32p in tillers of A. desertorum and A. 
spicatum for tussocks adjacent to planes of 32P,njection (2 tussocks 
per subplot; see Fig. 16). Numbers inside symbols represent the number 
of tussocks (of the 6 sampled) with measurable radioactivity. The A. 
desertorum measurement denoted by an asterisk was the result of sinqle 
very radioactive tillers in two of the replicate plants. Six to 10 
tillers representing a cross-section of the tussock were used on the 
first four sampling dates. For the final harvest, all the tillers of 
a tussock were cut into small Rieces, pooled, and subsampled. Heavy 
arrow indicates time of second 32p injection for Time 1 (see text for 
details). Final measurement represents means and standard error 
(S.E.) (unless covered by symbol) for monocultures of each qrass 
species (n=2). B. Mean root length (m-2 of glass) in the O.O-to-0.30-
m depth interval (same depth as for 32p injection) in A. desertorum 
and A. spicatum subplots (averaged for the two monocultures; +/­
S.E.J. 



68 

resource acquisition, by removing single plants in uniform monoculture 

plots at two times, the first soon after the snow melted and the 

second when the soil was still moist, but considerably warmer. The 

abi 1 i ty to rapidly extend roots into avai 1 ab 1 e soi 1 space and extract 

resources from that space is considered an important attribute of 

competiti~e ability for these semiarid grasses. 

In our experiments, we used disturbance to create soil space 

unoccupied by roots. However, the soil already occupied by perennial 

plant roots is continually reexplored as roots senesce and new roots 

grow (Caldwell 1976). A large proportion of the root system of plants 

turn over each year (Caldwell 1986); thus, even without disturbance, 

soil space is continually becoming unoccupied. Plants with actively 

growing roots which can explore and occupy this space before their 

neighbors should be at a competitive advantage. 

Root growth 

The timing of invasion of the new space differed markedly between 

the two grasses. At either time of disturbance, fl:.. desertorum had 

much greater extension rates into the zone of disturbance compared to 

!l:._spicatum. This is in part due to the greater rooting density of fl:.. 

desertorum. Agropyron desertorum has thinner roots and, thus, greater 

root length for the same investment in root biomass (Caldwell and 

Richards 1986). In addition, A. desertorum had developed a greater 

proportion of its root length in the disturbance zone earlier than A. 

spicatum (Fig. 15B). 

Similar differences between the two grass species were found at 

this study site in rates of root invasion into small fertilized 
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microsites (Chapter V). When liquid fertilizer was injected into the 

soil in the early spring near minirhizotrons, roots of~ desertorum 

began to proliferate in the favorable microsites without delay. 

Agropyron spicatum and also Artemisia tridentata, however, did not 

begin extensive root growth in either the fertilized or unfertilized 

soil until about two weeks later. When fertilized microsites were 

created in July, they were rapidly occupied by all three species in a 

similar fashion. 

The glass plates and minirhizotrons provide only a relative 

measure of root length and not absolute root density in the soil (Bohm 

1979). However, for a measure of relative root length in our 

experiments, we feel these techniques provided a valid comparison of 

these two species. Extensive destructive harvest of roots in 

sagebrush-grass mixtures in this area in July indicated that A. 

desertorum has approximately twice the rooting density of~ spicatum 

regardless of soil depth (Caldwell and Richards, unpubl.). Since both 

the minirhizotrons and the glass plates at Time 2 also showed about a 

two-fold greater root length for A. desertorum, we feel these 

approaches adequately represented the differences in root length of 

these two species. 

Competition and neighborhood analysis 

Many investigators have attempted to evaluate a neighboring 

plant's influence on a target plant by the neighbor's size, 

proximity, and the degree to which its roots can directly interact 

with a target plant without having to go around another neighbor 
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(i.e., "angular dispersion", Mack and Harper 1977). For individual 

tussocks neighboring a removed plant in our study, these attributes 

corresponded only weakly with the location of active roots as 

indicated by 32p uptake {Fig. 16). Unfortunately, easily measured 

shoot attributes of a neighbor and a target species may still shed 

little light on the intensity of root interactions. 

Phosphorous acquisition 

Although the root length data clearly support the hypothesis that 

A. desertorum invades more rapidly into the newly available soil space 

early in the spring, this is not reflected in greater 32P acquisition 

at Time 1. The results of Time 1 were surprising since~ desertorum 

not only has much greater root length than~ spicatum during this 

period (Fig. 17), but~ desertorum al so has been found, at least in 

late summer, to have a greater number of mycorrhizal hyphal 

penetrations per unit root length with arbuscules, the transfer organ 

of the ·fungus (Caldwell et al. 1985). 

The appearance of 32P in the shoots of these grasses is a 

reflection of both shoot demand for P and the ability of the roots 

to supply P to meet shoot demand. 32Phosphorus acquisition by the two 

grasses may have been similar for Time 1 because demand did not exceed 

the supply rate. Phosphorus, therefore, may not have been 1 imiting 

plant growth at this time of year when the grasses were still in an 

early stage of shoot growth. Earlier studies (Mazurski unpubl.) 

indicated that early season P fertilization did not result in any 

observable effects either in tissue P concentrations nor increased 

biomass of either grass species. 
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The differential phosphorus acquisition by the two species in 

late spring (Time 2) probably was a result of larger plants creating 

qreater shoot demand and restricted 32P supply to the roots due to 

reduced soil moisture (Table 4). Soil moisture influences P 

availability in many diverse ways. Reduced soil water content 

directly reduces the rate at which P can diffuse to the root (Olsen et 

al. 1965). At reduced soil water contents, water depletion zones 

around the roots are more likely to develop. Low soil water content 

should affect P acquisition of~ spicatum more than of A. 

desertorum. Since~ spicatum has less root length, water uptake 

rates per unit length of root would be greater for this species than 

for~ desertorum for the same transpiration rate. Greater demand for 

water per unit root length would contribute to greater development of 

water depletion zones around individual roots (Passioura 1982). 

Greater water depletion zones, of course, would contribute to reduced 

P diffusion to ~ spicatum roots. Further interactions between soil 

water content and nutrient acquisition are discussed by Nye and 

Tinker (1977). 

Consequently, the greater root absorbing surface of~ desertorum 

may principally be an advantaqe for P acquisition later in the season 

when soil moisture is less abundant or under other conditions where 

plant demand exceeds the soil supply rate. Caldwell et al. (1985) 

showed directly that~ desertorum was more effective than~ spicatum 

in acquiring labeled P and limiting uptake of P by neiqhboring 

Artemisia later in the season on this study site. 
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Early season root growth may al so contribute to more effective 

acquisition of Plater in the season. A plant with earlier root 

development may restrict root growth of neighbors in soil abundant in 

P even before plant demand exceeds the supply rate. Depletion of 

resources other than P, such as water, would limit invasion of that 

soi 1 volume by roots of neighbors. Therefore, each ti me the soi 1 

moisture is recharged, plants with roots occupying the most favorable 

soil volumes would acquire more P. Although difficult to demonstrate, 

exudation of toxic compounds is another way by which root exclusion 

may occur. 

Water extraction 

Differences in rate of root invasion of the two grass species 

into available soil space apparently contribute to differences in 

abi 1 ity to extract water. The greater soil water extraction in June 

at 0.2-to-0.4-m depth (Table 4) corresponds with the earlier increase 

in the proportion of roots at these depths by ~ desertorum (Fig. 14 ). 

In other undisturbed planted monocultures at this site, similar 

differences between these two species in rates of water extraction 

have also been demonstrated (Thorgeirsson and Richards 1983, 

Thorgeirsson 1985, Appendix). We also demonstrated these 

differences in soil moisture extraction rates for a rangeland site 

(Chapter II). 

As with P, appreciable differences in water extraction between 

the two grass species may occur after the period of greatest 

difference in root extension rate. Very early in the spring, these 

grasses have similar rates of water extraction (Chapter II, Appendix). 
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However, as the spring progresses, plant demand quickly exceeds soil 

water supp 1 y. 

Even though differences in resource extraction between A. 

spicatum and.&_ desertorum only become apparent later in the spring, 

early-season root growth is probably an important factor contributing 

to the greater competitive ability of A. desertorum. The head start 

provided by early root growth allows A. desertorum to have 

proportionately more root length in soil space richest in resources 

than species whose roots develop later (Fig. 158; also see Chapter V) 

When plant demand for water begins to exceed supply (ca. mid-May for 

1985), a greater rate of water extraction by_.&.. desertorum compared to 

A:_ spicatum is likely to be a result of the earlier root growth as 

well as the finer root morphology of A. desertorum. Greater P 

acquisition by.&_ desertorum compared to A. spicatum in later spring 

may further enhance differences in water extraction potential (e.g., 

Radin and Eidenbock 1984). Therefore, preemption of the water resource 

by A:_ desertorum would disadvantage competing species such as A. 

spicatum or.&_ tridentata, whose root growth is somewhat delayed. 

Conclusions 

Early root growth initiation and rapid invasion of roots into 

newly available soil space is an attribute of A:_ desertorum which 

probably contributes to the greater competitive effectiveness of this 

species when compared with A:_ spicatum. However, this ability to 

rapidly occupy resource-rich soil space with roots did not cause 

immediate differences in water or P acquisition. The benefits of 



74 

early root growth may be delayed until resources become more limiting 

which may not occur until later in the growing season. 
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CHAPTER V 

CHARACTERISTICS OF SUCCESSFUL COMPETITORS: 

TIMING OF ROOT GROWTH IN FAVORABLE MICR0SITES 

Summary 

Agropyron desertorum is more successful in competition with 

Artemisia tridentata ssp. vaseyana than is Agropyron spicatum 

(Chapter II). Root growth in favorable microsites was compared for~ 

desertorum, ~ spicatum, and Artemisia. Favorable soil microsites 

were created by the injection of concentrated nutrient solution at two 

times, once soon after snow melt in mid-April, 1985 and the other in 

mid-July, 1984. For either time, all three species showed similar 

levels of enhanced root growth in the favorable microsites relative to 

unfertilized controls. However, since~ desertorum had more root 

growth in unfertilized soil early in the spring than the other two 

species, this competitively successful species occupied the favorable 

microsites created in early April weeks sooner than either~ spicatum 

or Artemisia. No such . differences between species were found for the 

July fertilization. The consequences of early occupancy of favorable 

microsites on competition are discussed. 

Introduction 

The heterogeneous nature of soil is well known. Over short 

distances, a soil may vary considerably in nutrient and water 

availability, physical impedance, toxic ion concentration, and 

numerous other factors that affect plant growth and function. 



76 

Localized root growth in small soil volumes with favorable chemical 

and physical characteristics is well documented (Fitter and Hay 1981, 

St. John et al. 1983, Wang et al. 1986). Such responses are generally 

considered to be mechanisms by which plants compensate for the 

generally unfavorable conditions of the bulk soil (e.g., St. John et 

al. 1983). 

Aggregations .of roots in favorable microsites may limit use of 

those microsites by roots of plants that arrive later. Restriction 

may occur in the small soil volumes by temporary depletion of water, 

nutrients, or in some other way preempting resources important to 

neighboring plants (e.g., occupancy of soil channels, Wang et al. 

1986). Thus, rapid occupancy of a limited number of favorable soil 

microsites may be an important attribute of a plant's ability to 

compete. 

Studies on intrinsic differences among species in rates of root 

development in favorable microsites are scarce- In a split-root 

solution-culture experiment, Robinson and Rorison (1983) examined 

root growth of a low- and high-nutrient-adapted grass which also 

differ in their ability to compete (Grime 1979). A cultivated grass 

species was also included in the study. The high-nutrient-adapted 

grass had greater root growth rates than the low-nutrient-adapted 

grass in the uniformly available-N control; a result commonly reported 

in the literature (Chapin 1980). The high-nutrient-adapted grass also 

had greater root growth rates in the high-nutrient compartment of the 

split-root treatment than the low-nutrient-adapted species. However, 
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the low- and high-nutrient-adapted grasses as well as the cultivated 

grass exhibited similar root growth enhancement in the high-N 

compartment of the split-root treatment relative to the uniformly 

a v a i1 ab 1 e - N c on t ro 1 • 

In this study, we compare rates of root proliferation in 

favorable microsites of two Agropyron species and their frequent 

Artemisia tridentata ssp. vaseyana (Rydb.) Beetle neighbor. These two 

Agropyron tussock grasses differ strikingly in their ability to 

compete with~ tridentata. The grass of greater competitive ability, 

Agropyron desertorum (Fisch. ex Link) Schult., is introduced from 

Eurasia and widely planted in the Great Basin steppe of North America. 

Aqropyron spicatum (Pursh) Scribn. and Smith, a native codominant with 

~ tridentata, has experienced a decline in abundance since the coming 

of European settlers, presumably due to excessive livestock grazing 

and fire suppression (Tisdale and Hironaka 1981). 

Material and Methods 

The study area is located on a site typical of semiarid North 

American Great Basin rangelands where Agropyron spicatum and Artemisia 

tridentata are native and where Agropyron desertorum has been 

extensively seeded. The study area has been previously described 

(Caldwell et al. 1981); thus, we wil1 describe only the specific plots 

used to measure root growth. Root measurements in 1984 were made in 

two-species grass-shrub mixtures planted in a 0.5-m spacing in spring, 

1979. Mixtures had a 50:50 ratio with each species surrounded on all 

four sides by plants of the other species. Although older roots of 



78 

the shrub are readily distinguishable from roots of the two grass 

species (Richards 1984), very young roots of the shrub and grasses are 

very similar in appearance. Therefore, 1985 root measurements were 

made in plots containing all three species that had been transplanted 

in a 2-m spacing in order to minimize overlap of the root systems. 

Plants were transplanted June, 1983. Each individual was surrounded 

by two plants of the other species. 

For both plots, medium-size tussocks of~ spicatum and seedlings 

approximately 2 yr old (<10 cm in height) of~ tridentata were 

collected from hillsides surrounding the study area. Similar-sized 

tussocks of A. desertorum were collected from a pasture sown 

approximately 30 years earlier, 200 km south of the study area. 

For the 1984 experiment, glass tubes, 38 mm in diameter and 50 cm 

in length, were installed approximately 10 cm from the north edge of 

the tussock grass and inclined 30 degrees from normal to the soil 

surface. Glass tubes were installed in a similar manner in the plots 

used for the 1985 experiment, except additional tubes were placed 20 

cm from the base of the Artemisia shrub. Glass tubes were installed 

in August, 1983 and March, 1985 for the 1984 and 1985 experiments, 

respectively. 

Root length against the glass tubes was measured with a root 

periscope (Richards 1984)._ A collar that fixed the azimuth angle of 

the periscope to the glass tube was added to the instrument. The 

collar permitted us to count root intersections down the glass tube, 

which was more rapid than counting intersections circumferentially as 

described by Richards (1984). Since the azimuth angle as well as 
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depth of individual roots were known, a map of root length against the 

glass tube could be produced (Fig. 19). Six passes in 60 degree 

intervals were made around each tube with root length mapped in 5-cm 

intervals (vertical depth= ~3 cm) down the tube. 

Liquid fertilizer was applied using plastic tubing (2-mm outside 

di am et er) that was attached to the g 1 ass tubes at depths of 8. 7 and 

34.6 cm. Fifty ml of fertilizer were injected at each depth and then 

repeated 24 h later. In this way, drainage down the glass tube was 

minimized. Commercially available fertilizer was used to make the 

nutrient solution (49 mM NH4-N, 59 mM CO(N2H2)rN, 42 mM P, 16 mM K) 

Fertilizer was injected 17 July 1984 and 22 April 1985 for the 1984 

and the 1985 experiments, respectively. 

The A. desertorum and~ spicatum plants used for the 1984 

experiments were located in parallel rows in adjacent plots. Since 

plots were not replicated and the plants of the two species were not 

interspersed, species differences could not be analyzed statistically. 

Plants were randomly assigned to receive fertilization; thus, the 

effect of fertilization was replicated. Root length just prior to 

fertilization was used as a covariate to test for subsequent 

differences in root length between plots and between fertilized and 

unfertilized plants using a repeated-measures design. 

The 1985 measurements of root growth were located in plots where 

all three species were interspersed. Thus, a completely randomized, 

repeated-measures design was used. The algorithm developed by 

Gurevitch and Chester (1986) was used to test for differences in shape 
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of the root growth response curves. We used Robson's (1959) procedure 

to derive the orthogonal polynomials for the unequally-spaced sampling 

dates. 

Results 

Figure 18 provides a time course of root growth against the glass 

tubes in the 1984 and 1985 experiments. Since the data are plotted on 

a natural log scale, the slopes of the lines correspond to relative 

growth rates of the roots (m m-1 d-1 ). 

Agropyron desertorum had rapid root growth around the glass tubes 

in late April and early May (Fig. 18A). Agropyron spicatum and 

Artemisia on the other hand, did not initiate rapid root growth until 

the latter half of May (cubic or S-shaped pattern diffe -red between 

species, _!:.=0.01). Although fertilization clearly increased root growth 

(_!:.=0.01), the increase in root growth relative to unfertilized 

controls was generally similar for the three species (fertilizer x 

species interaction: _!:.>0.20). The enhanced relative growth rates of 

roots in April and May due to fertilization may have been the reason 

why growth rates for the fertilized plants diminished earlier in the 

growing season than growth rates for the unfertilized plants 

(quadratic or U-shaped pattern affected by fertilization, _!:.=0.03). 

There were no differences in root growth patterns in July and 

A u g u s t i n t h e A:_ d e s e rt o r u m a n d A:_ s p i c a t u m p 1 o t s (_!:. > 0. 2 0 , F i g. 18 B ) • 

Fertilization in July caused similar increases in root growth relative 

to the controls in the two plots (fertilizer effect: f_<0.01). 

For the glass tubes where fertilizer was injected, root growth 
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Fig. 18. Visible root length against glass tubes (m-2 of glass 
surface) from depths of Oto 43 cm for fertilized and unfertilized 
plants. Fertilization achieved by injecting so' ml of nutrient 
solution in the soil adjacent to the glass tube at depths of8.7 and 
34.6 cm and then reapplied 24 hr later. A. Agropyron desertorum, 
Agropyron spicatum, and Artemisia tridentata planted in a 2-m spacing 
in the same plot. Fertilization occurred 22 April 1985 after the 
first measurement (n=4 or 5; see text for statistical comparisons). 
B. Agropyron desertorum and A. spicatum, each planted with Artemisia 
in separate but adjacent plots ,n a uniform matrix in a 0.5-m spacing. 
Glass tubes were installed next to the tussock grass. Fertilization 
occurred 17- July 1984 after first measurement (n=2 for unfertilized, 
n=6 for fertilized; see text for statistical comparisons). 
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Fig. 19. Pattern of root length aqainst glass tubes in the /\. 
desertorum plot for a fertilized and a unfertilized plant28 dafter 
fertilization. The tubes chosen were representative of the gener a l 
response to fertilization, which was also exhibited by A. spicatum and 
Artemisia. Fertilizer was injected 17 July 1984 at 8.7 and 34.6 cm 
(indicated by heavy arrows), at which time root length was nearly 
identical around the two tubes. The amount of root lenqth is 
calculated for each 10 cm2 of glass surface area and is expressed as 
m of root length m-2 of surface are~. 
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was primarily restricted to the microsites that received the liquid 

fertilizer (Fig. 19). Elsewhere on the tube, root length was 

comparable to root length on tubes where no fertilizer was applied. 

Discussion 

The ability of roots to proliferate in favorable microsites was 

vividly demonstrated by this experiment. Furthermore, absolute 

differences in early spring root growth of these species allowed~ 

desertorum to invade and occupy favorable microsites weeks earlier 

than either~ spicatum or Artemisia. However, despite the different 

root growth forms of the grasses compared to the shrub and the 

different competitive abilities of the two grasses, we found no 

differences among the three species in relative root response to 

fertilization (Fig. 18). 

Evidence for earlier growth of~ desertorum compared to~ 

spicatum also has been illustrated under other environmental 

conditions. Under controlled, constant-cold soil temperatures, A. 

desertorum has greater aboveground relative growth rates than A. 

spicatum, even though the relative growth rates of the two species are 

very similar at warm soil temperatures. Agropyron desertorum has m-0re 

root growth than~ spicatum during the winter and in the early spring 

(Chapter IV). Consequently,~ desertorum invades areas of soil 

disturbance more rapidly than~ spicatum, especially when 

disturbances occur early in the spring (Chapter IV). 

Further evidence that once the soil warms, differences in root 

growth behavior between species diminish is provided by the 1984 
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experiment. These data indicated no differences in root growth 

pattern in July and August in the~ desertorum and~ spicatum plots. 

Although we could not tell if fine roots belonged to a tussock grass 

or to Artemisia, previous soil coring and root profile wall studies in 

similar plots (Caldwell and Richards unpubl.) suggest that roots this 

close to the tussock grass and at soil depths less than 50 cm should 

be primarily grass roots. 

Our field experiments corroborate earlier work in solution 

culture (Robinson and Rorison 1983). The amount of root growth 

enhancement in fertilized microsites relative to growth in 

unfertilized soil may be quite similar for genetically and 

ecologically diverse species. However, absolute growth in these 

microsites may differ markedly among species, depending on the time of 

year and their genetic potential for rapid root growth. 

Early occupancy of favorable microsites is probably an important 

way a plant can gain a competitive advantage over its neighbors. 

Available resources in favorable microsites normally should decline as 

occupants of the microsites use the resources for their growth 

processes. The reduced availability of resources would tend to 

restrict efficient root growth and resource acquisition of roots of 

species which arrive later. 

The patterns of root growth of the species used in this study 

suggest that such competitive dominance of favorable early-season 

microsites likely occurs. By the end of May, total~ desertorum root 

length around the glass tubes where fertilizer was applied averaged 

nearly 7.4 m m-2 of glass surface (Fig. 18A). Root length of~ 
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spicatum and Artemisia at this time was only about 3 m m-2. The lack 

of additional root growth by~ desertorum in June suggests that 

resources like water in the fertilized microsites no longer could 

sustain further root growth. The conditions that caused t-his lack of 

root growth in June for~ desertorum probably would also hamper root 

invasion of A. spicatum and Artemisia into the fertilized microsites 

occupied by ~ desertorum. However, when these species did not have 

to compete with ~ desertorum, their root growth in June was 

substantial (Fig. 18A, recall that data are plotted on a log scale). 

In a greenhouse experiment, Fitter (1976) provides direct evidence 

that utilization of favorable microsites by Lolium perenne can be 

restricted by neighbors. He grew Lolium perenne in an experimental 

system containing a row of five compartments in which roots could grow 

freely into adjacent compartments. Lolium was planted in the second 

compartment. Root and shoot growth of Lolium was strongly enhanced if 

the third soil compartment was fertilized. However, if Plantago 

lanceolata was planted in the fourth compartment, root growth of 

Lolium in the fertilized third compartment was inhibited, and 

concomitantly, overall shoot and root production of Lolium was 

reduced. In conclusion, early occupancy of soi 1 volumes most 

favorable for plant growth is probably an important factor 

contributing to the competitive success of A. desertorum. 
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CHAPTER VI 

SYNTHESIS 

Assessment of Competitive Ability 

The major focus of this study was to identify pl ant 

characteristics that might account for the differences in competitive 

ability between.&_ desertorum and.&_ spicatum. However, the basis for 

this comparative analysis, i.e., that~ desertorum did indeed have 

greater competitive ability than ~ spicatum, was a result of 

investigations in garden plots near Logan, Utah. In Chapter II, I 

described results from an indicator-plant approach conducted in a 

rangeland community that support the garden-plot evidence that~ 

desertorum is generally more competitive than.&_ spicatum. Assessment 

of competitive ability, however, is at best an inexact process. 

Several studies have indicated that a species that is more competitive 

than another species under one set of conditions may be less 

competitive if environmental conditions are changed (see Harper 1977). 

Conversely, other studies have indicated that a plant may be a 

superior competitor than a number of species under a range of 

conditions (e.g., Welbank 1963). In this section, I will briefly 

review the major techniques for determining the relative competitive 

ability of a species, discuss their strengths and weaknesses, and 

compare them with the indicator-plant approach chosen for this study. 

Pot experiments 

Pot and cultivated-garden approaches to the analysis of 

competitive ability have underqone intensive examination and review. 
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Probably the most common way competitive ability is determined is by 

the use of the substitutive or replacement-series design {de Wit 

1960). This design involves comparing two species, i and j, at 

various proportions in mixture with total density kept constant. 

Competitive ability of the two species is usually compared by 

calculation of the relative crowding coefficient, kij {de Wit 1960): 

ZjYij / 2 iYji 
kij = 

Yii / Yjj 

where Yij and Yii are the dry weight or number of seeds per pot of a 

strain i in mixed or pure stands, and z; and Zj are the relative seed 

frequencies of strains i and j, respectively (z 1 + Zj = 1). If 

species i has proportionately greater yield in mixture than in 

monoculture compared to species j, then k;j will be greater than one. 

Although uncommon, a replacement-series design can be used in a 

natural community by removing individuals to achieve a desired density 

and frequency (e.g., Berendse 1983). 

A diallel approach is very similar to a replacement-series 

approach except only a single frequency (z; = Zj = 0.5) is used and 

the competitive ability involves calculation on a per plant basis. 

Commonly, the increment or decrement of the performance of strain i 

due to the effect of strain j, h1j, is calculated using the natural 

logarithm of individual plant performance: 

hij = l n Yi j - l n Y;; 

where Y;j is the average individual plant performance of strain i in 

association with strain j, and Vii is the average individual plant 
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performance in monoculture (Sano et al. 1984). Similarly, the effect 

of species ion its associate, j, is given by -hji = ln Yjj - ln Yji· 

The value of h1 j represents the "resistance" of i to the effects of j, 

and -hji, the "aggressiveness" of i on j. One can consider average 

"resistance" of target i measured in a diallel experiment as the mean 

effect of all species acting on the target plant (Wilson and Keddy 

1986). A species with high resistance generally grows better with 

other species than with itself. The average "aggressiveness" of 

target plant, i, is a measure of the average response of different 

species when i is their neighbor. Commonly, a plant that is resistant 

to the effects of competitors is also quite aggressive, but not always 

(e.g., Sano et al. 1984). 

The overall "competitive effect" in a diallel experiment 

represents the sum of the measures of resistance and aggressi.yeness 

(h;j - hji). Sano et al. (1984) demonstrate that the competitive 

effect represents the natural log of the relative crowding 

coefficient, k;j, when k;j is calculated on a per plant basis. 

An important benefit of the substitutive design, especially when 

analyzed with a diallel approach, is that the resistance component of 

competitive ability and the aggressiveness component can be analyzed 

separately. Furthermore, a diallel approach is often used to compare 

the relative competitive abilities of several species by planting the 

species in all pair-wise comparisons. Such an approach is not 

possible with designs that have numerous densities or frequencies for 

each pair-wise comparison. Apart from an analysis of competitive 

ability, another advantage of the substitutive design is its ability 
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to provide information regarding the relative yield of mixtures vs. 

monocultures (i.e., relative yield total, see Harper 1977). However, 

there are also some major shortcomings of the substitutive design. 

In recent years, the substitutive design has received criticism 

for its many theoretical and statistical pitfalls (e.g., Inouye and 

Schaffer 1981, Firbank and Watkinson 1985, Connolly 1986). One major 

problem is that density is held constant. Such a restriction is very 

artificial, since one of the important traits of competition is that 

density changes during the course of an experiment. Also, the density 

chosen is arbitrary. A number of studies have demonstrated that the 

relative competitive abilities of two species can be affected by a 

change in density (e.g., Bazzaz et al. 1982). Another problem of 

substitutive designs concerns the use of monoculture production as a 

baseline measure of species' performance. Species can differ in the 

intensity by which they compete intraspecifically. In addition, the 

intensity of intraspecific competition is density dependent (Jolliffe 

et al. 1984). Lastly, the statistics commonly calculated in 

substitutive designs (e.g., relative crowding coefficient) can be 

widely unstable (Connolly 1986). 

A common alternative to the substitutive design is the additive 

design. Additive experiments involve planting individuals at 

different densities around a constant number of target individuals. 

Plots of target plant performance as a function of neighborhood 

density are then compared for different species of neighbor. 

Commonly, the target is an important crop species and the neighbors 
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are specific densities of weedy species (e.g., Welbank 1963). 

Earlier workers generally felt that competition experiments based 

on a substitutive design were easier to interpret than additive 

experiments, where density and frequency are typically confounded. 

However, more recent studies have demonstrated that two-species 

mixtures that change both density and frequency can be analyzed by 

simple mathematical models using a reciprocal equation (Watkinson 

1985). For the two species condition, 

Y1: Ym1(l + a1(N1 + b12N2))-Cl 

Y2 = Ym2(l + a2(N2 + b21N1))-c2 

where Y is the mean yield per plant of species 1 and species 2, Ym is 

the yield with no density stress, 1/a is the density of plants at 

which mutual interference between individuals becomes appreciable, and 

-c describes the efficiency of resource utilization (Watkinson 1981). 

The competition coefficients, b12 and b21• determine the equivalence 

between the two species. This "recent" theory, has brought plant 

competition models into agreement with other well known models, 

including the self-thinning rule (Yoda et al. 1963) and the Lotka­

Volterra equations (see Watkinson 1985). 

Designs which vary both frequency and density avoid many of the 

prob 1 ems that are associated with the basic sub st itut i ve experiment. 

However, designs which do not hold density constant still have many 

problems. The number of species which can be effectively compared for 

differences in competitive ability is reduced because of the number of 

pots or plots required to examine the two species at a range of 

densities and frequencies. Systems which examine a range of 
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frequencies and densities in a single planting may successfully 

circumvent this problem (Antonovics and Fowler 1985). However, 

serious statistical problems associated with these fan-type desiqns 

st i 11 need to be resolved. 

Another problem with use of the negative reciprocal equation is 

the assumption that the competition coefficients, b12 and b21• are 

constant. Competitive ability may be a function of many factors, 

including population density, plant age, and resource supply. 

Lastly, a basic problem common to all the experimental designs 

discussed so far is the difficulty of extending the results to 

conditions that actually occur in nature. Various attempts to invoke 

more realism, such as placing pots outdoors or use of garden plots, 

reduce, but do not eliminate this problem. For instance, the greatest 

response of a target plant to changes in neighborhood density occurs 

at very low densities; densities which may be very uncommon for 

natural conditions (Chapter II, also see Harper 1977). Consequently, 

the parameters that define the reciprocal equations may be strongly 

influenced by very unnatural conditions and, therefore, may have 

little correspondence to potential differences in competitive ability 

commonly occurring in the field. 

Natural communities 

Few studies have attempted to contrast competitive ability of 

different species in natural communities. Generally, workers have 

restricted themselves to a simple assessment of the importance of 

competition relative to other environmental factors, such as resource 
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supply, disturbance, and predation (del Moral 1983, Cook and Ratcliff 

1985, Rabinowitz and Rapp 1985, Parker and Salzman 1985), 

Fowler (1981, 1984) demonstrated the difficulty of analyzing 

competitive ability in the field. In a North Carolina grassland, she 

removed individuals singly or in groups and then measured the response 

of companion species. She found interactions among species to be 

generally nonreciprocal (i.e., removal of species i affected species 

j, but not the reverse). Often, competition appeared diffuse in that 

several neighboring plants were affecting an individual. Lastly, she 

detected no clear competitive dominant in these communities and felt 

that higher-order interactions may be present (e.g., a third species 

affects the intensity of competition between two other species). 

Goldberg and Werner (1983) describe in detail a method for the 

assessment of competitive ability in the field, although a review of 

the literature has not revealed any published studies that have used 

their technique. The method utilizes an indicator plant or 

"phytometer" (sensu Clements and Goldsmith 1924) to measure the 

aggressiveness of neighbors. The influence of neighbors on the 

indicator plant is characterized using neighborhood models (e.g., 

Weiner 1982). Neighborhood models typically assign a single value to 

the overall influence of the neighborhood on the target individual by 

summing the separate effects of each neighbor. A neighbor 1 s influence 

on the target individual is determined by various formulations of 

the neighbor's shoot biomass, distance from the target species, and 

ability to directly influence the target species without another 

neighbor interferring. 
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In the Goldberg-Werner experimental design, individual indicator 

plants are transplanted into stands dominated by a specific species of 

neighbo~ All other species in the neighborhood are removed and the 

desired species of neighbor is then thinned to a specific density or 

degree of influence as determined by neighborhood analysis (simply 

referred t-0 by Gal db erg and Werner as neighborhood "amount"). By 

creating a range of neighborhoods, indicator-plant performance as a 

function of neighborhood amount can be calculated by regression. 

Slopes of the regression lines for various species of neighbor can 

then be compared for equivalence of competitive ability on the target 

species. 

Despite the problems encountered in Fowler 1 s work, the 

methodology described by Goldberg and Werner avoids many of the 

problems encountered in the designs ascribed to pot or garden 

experiments. For instance, they express competitive effects of 

neighbors on a "per-amount" or "per-unit biomass" basis, which relates 

much more to resource use, than a "per-individual" or "density" 

basis. This use of amounts also avoids the restrictions of even-aged 

populations with monocultures used as the base-line for competitive 

ability. 

The methodology used in Chapter II was in many ways similar to 

the approach described by Goldberg and Werner (1983). The major 

differences were that I did not manipulate the amount or frequency of 

grasses in the plots and I did not use the slopes of the regression 

lines to contrast competitive ability of A. spicatum with A. 
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desertorum. Goldberg and Werner (1983) warn that if one does not 

artificially create a range of neighborhood amounts, microsite 

differences may be confounded with neighborhood effects. Since~ 

desertorum was seeded following sagebrush removal and was highly 

interspersed among the ~ spi catum, it seemed unlikely that strong 

microsite differences were correlated with the distribution of the two 

grasses. I further tested for this possibility by examining the 

performance of indicator plants where all the grasses removed within 

1 m of the indicator plant was either principally~ desertorum or 

principally~ spicatum. 

Manipulation of neighborhood shoot amounts may cause unexpected 

changes below ground. For instance, the amount of decomposing roots 

and available soil space might only weakly reflect shoot 

manipulations. In Chapter IV, I demonstrated that available soil space 

created by the removal of a plant may be explored more rapidly by one 

grass species than another. Thus, thinning shoots to a specific 

de-nsity may benefit individuals of one species more than an-other, so 

that general competitive ability is confounded with the ability to 

resp-ond to disturbance. 

I chose not to assess competitive ability of the two bunchgrass 

species by contrasting slopes of the regression lines because of the 

poor correlation of amount of neighbor with indicator-plant 

performance at densities typical of field situations. Relatively high 

correlations with sharply negative slopes are not uncommon when 

neighbor amount is low. However, as the amount of neighbors 

increases, often the variance around the regression line increases and 
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the slope approaches zero. These problems greatly complicate the use 

of a regression approach at naturally occurring neighborhood 

densities. 

Fowler (1981, 1984) also found that the noise in a natural 

community may make modelling of neighborhood effects difficult. A 

neighborhood approach is probably better than a density approach but 

still may describe only a small amount of the variance in indicator­

plant performance. Diffuse competition, higher-order interactions, 

variability of microsites and genotypes, and differences in 

transplantation shock among indicator species are just some of the 

reasons why the poor correlations exist. An additional reason concerns 

the difficulty of predicting the influence of a neighbor's roots by 

the amount and location of its shoots (Chapter IV). 

In this study, I used average indicator-plant response in natural 

neighborhoods of the two grass species to assess competitive ability. 

Nearly monospecific stands of the grasses permitted such an analysis. 

- An important assumption of an indicator-plant approach is that the 

response of the indicator plant reflects general competitive ability. 

Harper (1977) and Newman (1983) discuss experiments where the ranking 

of competitive ability among species tends to be fairly constant for 

different indicator species. Whether this is true for the two species 

of Agropyron would require further study. 

In summary, there is no measurement of competitive ability which 

does not have problems. Pot and garden methods provide more detailed 

information, but extrapolation to natural communities is tenuous. 
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Field methods may be unable to detect important differences in 

competitive ability in natural communities with so many uncontrolled 

factors possibl _y affecting the experiments. Al though the methods I 

chose for this study worked remarkably well, they are poorly suited 

for more diverse communities. 

Characterisitics of Successful Competitors 

Competitive ability is a complex process and may be related to 

many traits. Often a trait associated with physiological vigor such 

as high photosynthetic rates of a plant would also provide for greater 

competitive ability. However, plants in a cold-winter, dry-summer 

steppe environment must also tolerate other selection pressures, 

including herbivory, drought, salinity, fire, and pathogens. Often 

selection for a general trait such as competitive ability involves a 

tradeoff in tolerance to some other stress (Grime 1977). A remarkable 

aspett of these two grass species is that compared to 8.:_ spicatum, ~ 

desertorum does not seem to have less tolerance of environmental 

extremes despite its great competitive ability. 

Root length per unit root biomass 

An obvious reason for the greater competitive ability of~ 

desertorum compared to~ spicatum is differences in their root 

morphology. Agropyron desertorum obtains much more root length for a 

sirrilar investment in root biomass (Caldwell and Richards 1986). This 

more efficient allocation of biomass for production of length and 

surface area has far-reaching implications in terms of rapid rates of 

exrloration of unoccupied resource-rich soil and water and nutrient 
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uptake when plant demand is high and soil supply rate is low (Chapter 

IV). Another possible advantage is that fine roots should grow 

faster through small pores because they encounter less resistance than 

coarse roots (Whiteley and Dexter 1983). However, this advantage may 

be offset by the ability of coarse roots to displace soil aggregates 

normally more easily than fine roots (Whiteley and Dexter 1984). 

Amounts of mycorrhizal infection 

In 1 ate summer, Agropyron desertorum had a greater number of 

hyphal penetrations per unit root lenqth with arbuscules than A. 

spicatum (Caldwell et al. 1985). Mycorrhizae have been shown to 

enhance acquisition of several nutrients and also may aid in water 

uptake (Auge et al. 1986). However, the amount of root length infected 

by mycorrhizae can be influenced by many factors, including herbivory, 

soil aeration, and soil fertility (Mosse et al. 1981). Thus, the 

degree to which mycorrhi zae benefit ~ desertorum s i gni fi cantly more 

than A. spicatum during the growing season and under various 

environmental stresses is not clear. 

Root growth~ cold soil temperatures 

This study provides strong evidence that part of the competitive 

success of~ desertorum compared to A. spicatum is due to its 

greater root growth at cold soil temperatures. This trait, as well as 

the traits mentioned above, allow ~desertorum to occupy resource­

rich sites in the spring sooner than~ spicatum. Early occupancy 

provides future advantages in resource acquisition as discussed in 

Chapters IV and V. 
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Other traits 

I did not find appreciable differences between the two grasses in 

potential growth rates or responsiveness of roots to fertilized 

microsites. The list of other traits that might potentially influence 

competitive ability is only limited by one's imagination. I 

emphasized traits that would allow a plant to rapidly occupy space 

because soil space must be reexplored each year and preemption of soil 

space is most clearly associated with belowground competition. 

The main resource that limits growth in these systems is water. 

Rates of water extraction are influenced by the plant's potential 

transpiration rate and the ability of the roots to supply water to the 

shoot. Soil depletion rates in early spring did not appear to differ 

between species, but variability at this time of year was high and 

more data should be collected. Data on whole-bunch transpiration rates 

in early spring would also be useful. The greater leaf area of A. 

desertorum than~ spicatum early in the spring suggests it may have a 

higher transpiration rate and, thus, may use stored water more 

rapidly. Similar differences in leaf area of the two grasses in the 

fall may also cause differences in water extraction. 

Later in the spring, potential rates of shoot transpiration 

exceed the rate that roots can supply the shoots with water. The 

ability of roots to supply water is a function of their length and 

surface area, their hydraulic conductivity, and their spatial 

distribution. The differences in root length have already been 

discussed. Proportionately, ~ desertorum and A. spi cat um have quite 

similar root distributions with soil depth (Caldwell and Richards 
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1986), although~ desertorum may have greater ability for continued 

root growth at low soil matric potentials (Thorgeirsson 1985). Almost 

no information exists on the root hydraulic conductivity of these two 

grass species and the various characteristics associated with it, 

including: percent suberization, root hair length and density, axial 

resistance, radial resistance, tendency to maintain good soil -root 

contact in dry soil, and resistance to xylem vessel cavitation. 

Consequently, more detailed information on the rates water can be 

absorbed per unit length of root would be of considerable interest in 

order to better understand the water-extraction capabilities of these 

two grasses. 

Another direction which might lead to a better understanding of 

competitive ability is the development of a mechanistic water-uptake 

model of these two grass species and probably also Artemisia. The 

Bunchgrass Project has considerable root length data, water extraction 

data, and shoot demand data over the growing season. This information 

is essential for meaningful model development. With good soil and 

root hydraulic conductivity data, the beginnings of a mechanistic 

model should be attempted. A modelling approach would help focus 

efforts aimed at understanding processes of water extraction for 

perennial shrubs and grasses in steppe environments as well as efforts 

to identify plant characteristics associated with competitive ability. 

An important question is whether the traits which confer 

competitive success for~ desertorum can be extended to other 

competitively successful species. Preliminary evidence suggest that 

shrubs may gain a competitive advantange in ways very different from 
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grasses. Artemisia, for instance, is very competitive even though it 

has considerably less root length, rates of mycorrhizal infection, and 

early-season root growth than~ desertorum. The competitive success 

of Artemisia may be partly due to its high potential growth rate and 

large stature. Artemisia may also have the ability to produce 

allelopathic compounds. Clearly, more work on the relative competitive 

abi l ities within and between life forms needs to be conducted before 

generalizations can be made. 
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Fig. 20. Soil water depletion in 1985 in adjacent monocultures of A. 
desertorum and A. spicatum (established in 1978). Data are expressed 
as the percent of field capacity. The probability that the observed 
difference in water extraction occurred by chance, P, is indicated. 
( The P - v a 1 u e f o r t he s o e c i e s x t i me i n t e r a c t ion ; i • e. , t h a t 
differences were greater between the two grasses on some sampling 
dates than on other sampling dates is shown in parenthesis.) 
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