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ABSTRACT 

Effect of Short Duration Grazing on Soil Moisture 

Depletion and Plant Water Status in a 

Crested Wheatgrass Pasture 

by 

Jon M. Wraith, Master of Science 

Utah State University, 1986 

Major Professor: Dr. Douglas A. Johnson 
Department: Range Science 

vi 

A short duration grazing system was utilized to determine the 

effects of intensive periodic defoliation during spring on soil 

moisture depletion patterns and plant water status in a crested wheat­

grass (Agropvron cristatum and A. desertorum) pasture in central Utah. 

Exclosures were constructed to compare grazed and ungrazed responses. 

Soil moisture was monitored to a depth of 193 cm at one to two week 

intervals from mid-April to late-September using a neutron moisture 

gauge. Predawn and midday leaf water potentials were estimated using a 

pre~sure chamber technique. The two paddocks included in the study were 

grazed three times between mid-April and mid-June in 1985. A difference 

in time of grazing between the two paddocks was also examined for its 

effect on soil moisture depletion patterns and plant water status. 

Soil moisture was depleted at a higher rate within ungrazed plots 
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than grazed plots during 13 April to 1 July in both paddocks. Soil 

moisture was depleted at a higher rate after 1 July in grazed compared 

to ungrazed plots in the early-grazed paddock; however, no difference 

in soil moisture depletion rate was noted after 1 July within the late­

grazed paddock. Total cumulative depletion was greater within ungrazed 

plots than grazed plots in the early-grazed paddock from 6 June until 

13 August, and from 23 May until 30 July in the late-grazed paddock. 

During the pre-July period, soil moisture was depleted more rapidly in 

the upper- and mid-portions of the soil profile in ungrazed plots. By 

25 September there was no difference in total soil water depletion 
' 

through 53 cm between grazed and ungrazed treatments, but ungrazed 

plots extracted relatively more water in the mid- and lower-portions of 

the soil profile. 

Grazing had no effect on predawn leaf water potentials prior to 1 

July, but predawn leaf water potentials were lower for ungrazed plants 

than for grazed plants after 1 July. Midday leaf water potentials were 

lower for grazed plants than for ungrazed plants before 1 July, but did 

not differ between grazed and ungrazed plants after 1 July. Time of 

grazing had no effect on either predawn or midday leaf water 

potentials. 

(68 pages) 
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INTRODUCTION 

Soil moisture is one of the limiting resources for primary 

production in much of the Great Basin area (West 1983). The seasonal 

dynamics of moisture availability, evaporative demand, and vegetative 

utilization significantly affect the growth and competitive 

interactions of the various plant communities present in this region. 

Two of the most successful species used to reseed Intermountain 

rangelands have been the crested wheatgrasses (Aqropyron cristatum (L.) 

Gaertn. and 8. desertorum (Fisch. ex Link) Schult). Their early spring 

growth and tolerance to grazing and drought make the crested wheat­

grasses an extremely valuable forage resource (Frank 1981, Mohammad et 

al. 1982). It has been estimated that approximately 4 million hectares 

in the Intermountain Region have been seeded to these grasses (Provenza 

and Richards 1984). 

Short duration grazing systems are another recent development on 

Intermountain ranges. These systems concentrate large numbers of live­

stock on relatively small paddocks for a short period of time (usually 

a few days). The paddocks are then allowed to "rest" for several 

weeks. There has been considerable interest in these systems recently 

because of purported increases in animal and forage production in some 

instances (Savory and Parsons 1980, Heitschmidt et al. 1982a, 1982b, 

Jung et al. 1985). Malechek and Dwyer (1983) suggested--that short 

duration grazing might provide an efficient means of utilizing crested 

wheatgrass ranges during spring in Utah. 

Reviews by Gifford and Springer (1980) and Blackburn et al. (1982) 
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on the impacts of grazing on rangeland watersheds showed that little 

research has been done regarding the effects of livestock grazing on 

soil moisture use patterns. Because atmospheric conditions such as 

2 

temperature and humidity greatly influence the water status of a plant, 

measurements of soil moisture content alone are not sufficient to 

determine the effects of water supply on plant water status. As the 

availability of soil water and its atmospheric demand at any given time 

are reflected in the water status of a plant, estimates of plant water 

potential are essentially indications of the effective soil moisture 

potential that the plant is actually experiencing, regardless of soil 

water content. 

Optimal management of rangelands is dependent on an understanding 

of the physical and biological processes at work in these natural 

systems. A knowledge of plant-soil-water interactions and how these 

are influenced by management practices is especially critical in 

semiarid regions such as the Great Basin. The primary objective of 

this study was to investigate the effect of short duration grazing on 

seasonal soil moisture depletion patterns and plant water relations in 

a crested wheatgrass pasture in an Intermountain foothill rangeland 

area in central Utah. 

LITERATURE REVIEW 

Related Studies 

Buckhouse and Coltharp (1976) reported that extreme clipping 

treatments (complete denudation) of a crested wheatgrass and alfalfa 

(Medicago sativa L.) mixture at a mid-elevation site in Utah resulted 
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in significantly less soil moisture depletion than a control treatment. 

Other clipping intensities also showed reductions in soil moisture 

depletion as compared to control plots, although in some cases the 

differences were not statistically significant. Galbraith (1971) found 

that continuous grazing treatments significantly reduced evapotrans­

piration on a shortgrass prairie site in northeastern Colorado. 

Heitschmidt et al. (1982a) observed an increase in fall aboveground 

live biomass under a short duration grazing system in Texas. They 

hypothesized that this enhanced growth may have resulted from accel­

erated regrowth after grazing caused by shading differences of 

individual leaves and/or differences in evapotranspiration. Berg and 

Sims (1985) found no statistical difference in depletion or recharge of 

soil moisture between short duration and continuous grazing systems 

over a 10 to 12 month grazing season in Oklahoma. 

Caldwell et al. (1981) and Richards (1984) in studies involving 

resource allocation among crested and bluebunch (Pseudoroegneria 

spicata (Pursh) A. Love subsp. spicata) wheatgrasses noted that crested 

wheatgrass curtails root production by as much as 50 percent in 

response to defoliation, thus allowing a more rapid return to the 

preclipping root-shoot balance than bluebunch wheatgrass. Thorgeirsson 

(1984), working with crested wheatgrass, and other researchers studying 

various plant species (Taylor and Klepper 1975, Nnyamah and Black 1977, 

Rambal 1984) demonstrated that rate of water uptake and rooting density 

were highly correlated. These studies suggest that defoliation of 

crested wheatgrass plants by livestock might be expected to influence 

soil moisture depletion patterns by their effect on root production as 
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well as by reducing the photosynthetic area of defoliated plants. 

Measurement of Soil Moisture Depletion 

There are several methods of monitoring the apportionment of water 

in the environment, many of which involve the principle of a water 

balance. Water balance refers to the balance between the income of 

water from precipitation and snowmelt and the outflow of water by 

evapotranspiration, streamflow, and groundwater recharge (Dunne and 

Leopold 1978, Branson et al. 1981). This method has commonly been 

applied to studies involving the annual cycle of soil moisture 

depletion and recharge, using some modification of the basic equation: 

P = Et + Ro + Dr ± ~s 

where Pis precipitation, Et is evapotranspiration, Ro is surface 

runoff, Dr is drainage beyond the soil zone under consideration, and AS 

is change in soil moisture storage. Because evapotranspiration 

constitutes by far the largest loss of water in most cases, studies 

concerned with soil moisture depletion consider the equation as: 

Et = P - Ro - Dr ± 6S 

Precipitation, runoff, and changes in soil moisture are readily 

measurable, but drainage is difficult to measure or calculate. Because 

drainage often constitutes a negligible portion of water loss in arid 

and semiarid environments (Rambal 1984, Galbraith 1971), it is often 

ignored (Thorgeirsson 1984, Lauenroth and Sims 1976). However, other 

investigators, particularly those utilizing irrigation treatments, have 

stressed the importance of incorporating drainage measurements into the 

equation to accurately estimate evapotranspiration in areas where some 

drainage may occur (Bowman and King 1965, Van Bavel and Stirk 1967, Van 
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Savel et al. 1968a, 1968b). 

Lysimetry is one method of monitoring changes in soil moisture, 

and several types of lysimeters have been employed (Hanks and Shawcroft 

1965, Van Bavel and Reginato 1965, Harrold and Dreibelbis 1967). 

Lysimeters have the advantage of being quite precise, but they are 

relatively difficult and expensive to install. In addition, the 

relationship between results obtained with soil in a lysimeter to those 

obtained under external soil conditions is sometimes suspect (Hanks 

pers. comm.). 

A more commonly used method for monitoring changes in soil 

moisture in the field is the neutron moisture gauge. Provided that 

runoff and deep percolation are known or negligible, evapotranspiration 

measurements obtained by lysimeters and neutron probes are generally 

quite comparable (Bowman and King 1965, Van Bavel and Stirk 1967, Wight 

1971). Rouse and Wilson (1972) also found comparable values of evapo­

transpiration in a study using the neutron probe and energy-budget 

calculations. Advantages of the neutron moisture gauge are that 

repeated, non-destructive measures can be made through time, readings 

are integrated over a volume of soil, and the necessary equipment is 

relatively inexpensive in comparison to other methods. 

Numerous studies within the past 30 years have explored the 

mechanics, appropriateness, and limitations of using neutron probes in 

evapotranspiration and soil moisture research (Merriam 1959, Hanks and 

Bowers 1960, McHenry 1962, Douglass 1966, Koshi 1966, Hajdukovic et al. 

1967, Leubs et al. 1968, Cameron 1970, Richardson and Burroughs 1972, 

DeJong and McDonald 1975, Sinclair and Williams 1979, Haverkamp et al. 
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1984). Concensus opinion has been very favorable, provided basic 

procedures and precautions are heeded. Hewlett et al. (1964), Sinclair 

and Williams (1979), and Haverkamp et al. (1984) reported on the 

various sources of error associated with the method and stressed the 

importance of accurate instrument calibration and consideration of 

spatial variability. Rouse and Wilson (1972) showed that the accuracy 

of evapotranspiration estimates was greatly influenced by the length of 

the interval between soil moisture measurements and by the number of 

replications. They found that an interval of at least 8 days was 

necessary to maintain accuracy within 10% for their six sites. Lawless 

et al. (1963), Van Bavel and Stirk (1967), and Wight (1971) noted that 

greater precision and sensitivity resulted when depth increments were 

15 cm or less. 

Measurement of Plant Water Status 

The pressure chamber technique has become the standard for 

measuring plant water status in the field (Ritchie and Hinckley 1975) 

because of its ease of use, speed, and reliability . In addition this 

technique does not require fine control of temperature, which is a 

requirement with psychrometric procedures (Turner 1981). 

Plant water status is proportional to the difference between water 

gained from the soil and water lost to the atmosphere. During periods 

of high atmospheric demand, transpiration can exceed uptake, and the 

column of water within the vascular system is placed under tension. 

When a twig or leaf is severed, the water column is broken and water 

withdraws into the plant tissues. If pressure is applied to the 

leaves, the water column is forced back to the cut surface. The 
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pressure at which water is observed at the cut surface is assumed to be 

the tension on the water column before it was severed (Waring and 

Cleary 1967). This method measures the combined gravitational and 

frictional plant water potentials, collectively termed xylem pressure 

potential. The combined solute and matric potentials are not measured, 

but their value in the xylem sap of most plants is considered either 

constant or negligible (Ritchie and Hinckley 1975). Pressure chamber 

determinations are thus estimates of the total water potential of the 

xylem sap. 

Plants generally undergo a diurnal fluctuation in xylem pressure 

potential. During the day when atmospheric demand is high, transpir­

ation exceeds water uptake and plants may experience water stress. 

During the night, transpiration is generally curtailed because of lower 

air temperatures and higher relative humidities. In the presence of 

high soil water potentials an equilibrium is established between the 

plant and soil at night. Consequently, predawn measurements of xylem 

pressure potential provide an estimate of the effective soil water 

potential to which the plant is exposed. As the soil dries, 

equilibrium time between the plant and the soil increases until predawn 

measurements of xylem pressure potential may no longer be directly 

indicative of soil moisture . Nevertheless, measurement of predawn 

xylem pressure potential is still informative because it indicates the 

minimum level of water stress experienced during the diurnal period. 
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METHODS 

Study Area 

The study was conducted at the Tintic Valley research site located 

approximately 10 km southwest of Eureka, Juab County, Utah (39 5l'N, 
' 

112 08'W, 1750 m elevation) (Fig. 1). Thi! site has been cooperatively 

maintained by the Utah State University Range Science Department and 

the U.S. Department of Interior/Bureau of Land Management since 1949. 

The area receives 374 mm average annual precipitation, which is 

quite evenly distributed throughout the year (Fig. 2). Monthly preci-

pitation is highly variable between years, as is common in semiarid 

environments. Precipitation during the study period was representative 

of the long-term average for the site (Fig. 3). Total precipitation 

for the year ending at the conclusion of the study was 370 mm. 

Measurable runoff totalling approximately 8 mm occurred during July. 

Plots were established within a 28-ha pasture that was seeded to 

crested wheatgrass in the early 1950's. At the time of this study 

Pasture 8 was part of a IO-paddock short duration grazing cell (Fig. 4) 

that had been in operation for 2 years (Malechek and Dwyer 1983). The 

pastures adjacent to Pasture 8 were also incorporated within the 

grazing cell; however, they were not included in this study because of 

differences in forage composition. Pasture 7 was seeded to inter-

mediate wheatgrass (Thinopyrum intermedium (Host) Barkw. & D.R. Dewey 

subsp. intermedium), while Pasture 9 contains a mixture of crested, 

intermediate, and tall (I. ponticum (Podp.) Barkw. & D.R. Dewey) wheat-

grasses. 
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VALLEY 

Fig. I. Location of the Tintic Valley research site, Juab County, 
Utah. 

9 



c 
30 

20 

10 

0 

TINTIC (17SO m) 374 

mm 
60 

40 

20 

0 

10 

Fig. 2. Climate diagram for the Tintic study site following the 
general format of Walter and Leith (1960). Temperature averages 
(dashed line) were estimated by normalizing data from the Delta and 
Tooele stations (30-year normals, 1951 to 1980). Precipitation 
averages are based on 23 years of data collected at the.research site 
between 1940 and 1984. The abscissa represents the 12 months of the 
year beginning in January. The horizontal bar along the abscissa 
represents the portion of the year between the mean first and last O C 
day; the number below the center of the abscissa represents the mean 
length of this freeze-free period in days. The site elevation and mean 
annual precipitation values are at the top of the diagram. 
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Fig. 3. Cumulative and monthly precipitation totals (mm) for the study 
site. Long-term average values are based on 23 years of data collected 
at the site from 1940 to 1984. 
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Fig. 4. Diagram of the short duration grazing cell at the Tintic 
Valley research site. Paired x's represent locations of field plots 
within Pasture 8. Vertical dashed lines indicate where fences between 
pastures were removed upon establishment of the grazing cell. Lines 
radiating from the center represent paddock borders. Mapped soil types 
(Jensen 1983) are outlined and labeled. 
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Design 

Experiments were established within three soil type-time of 

grazing combinations. Soil types were delineated based on an intensive 

(order 1-2) survey of the soils within the research site (Jensen 1983, 

1985) and were selected to compare responses between areas of 

dissimilar available soil moisture characteristics. Five replications 

were established in Paddock 2, with each replication consisting of a 

pair of grazed and ungrazed plots. The soil where the plots were 

placed is a mixed (calcareous), mesic, Torrifluventic Haploxeroll 

(Jensen 1983, 1985). Five replications were also established on the 

same soil type in Paddock 7. Five additional replications were 

established in Paddock 7 on a loamy skeletal, mixed, mesic, Xerollic 

Calciorthid (Jensen 1983, 1985). These two soils will hereafter be 

referred to as the Juab and Ki series, respectively. 

Plots were 3 m by 4 min size. Pairs of plots were randomly 

located within the appropriate study areas, and grazed and ungrazed 

treatments were then randomly assigned to the individual plots. 

Fencing was installed around each of the ungrazed plots to exclude 

livestock. A 2-m corridor was left between each of the paired plots to 

minimize undue disturbance to the grazed plots by livestock attracted 

to the exclosures (Fig. 5). 

Paddocks were stocked with yearling Angus heifers at 0.7 ha per 

AUM. The spring grazing season lasted from mid-April to mid-June in 

1985. Three grazing cycles were completed utilizing a 2-day rotation 

through each paddock during the first two cycles and a 1-day rotation 

during the final cycle. Paddock 7 was grazed during 24 and 25 April, 
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Fig. 5. Dimensions and spatial relationship of paired field plots. 
Solid border indicates a livestock exclosure around the ungrazed plot . 



14 and 15 May, and 3 June. Paddock 2 was grazed during 2 and 3 May, 

22 and 23 May, and 7 June. 

Soil Moisture Depletion 

15 

Two thin-walled aluminum access tubes (Alcoa 6061-T6) were 

installed within each plot using a motor-driven hydraulic core sampler 

(Giddings Machine Co.). One tube was installed to a depth of approx­

imately 2 m and one was installed to 2.5 m. The 0.5-cm space 

surrounding the access tubes was backfilled with a very fine sand, 

except that the top 5 to 7 cm of each hole was filled with topsoil to 

prevent free surface water from draining along the tubes . The tubes 

were spaced 1 m apart, resulting in a distance of slightly greater than 

1.5 m from each tube to the nearest plot boundary (Fig. 5). 

Soil moisture was monitored with a neutron moisture gauge 

(Campbell Pacific Nuclear, Inc.). Data were gathered at approximately 

weekly to biweekly intervals from mid-April to late-September during 

1985. Readings were taken at 15-cm increments to a depth of 105 cm, 

then at 25-cm increments to a depth of 180 cm (thus monitoring soil 

moisture to 192.5 cm) in all tubes. Additional measurements were 

obtained at 25-cm increments to 230 cm in tubes that were installed to 

a 2.5 m depth. The gauge was field-calibrated for the study soils 

using a gravimetric sampling technique. Separate calibration curves 

were utilized for the readings at 15-cm depth and for the remainder of 

the soil profile (Fig. 6). 

Soil moisture depletion and evapotranspiration were calculated 

both cumulatively and between successive sampling dates. Evapotrans­

piration was calculated using a water balance equation: 
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Fig. 6. Calibration relationships for the neutron soil moisture gauge. 
Re~ression equations for volumetric water content are: 0.228 R - 0.0~3 
(r = 0.99, n = 22) for 15-cm depth readings, and 0.230 R - 0.043 (r = 
0.93, n = 47) for the balance of the profile. 
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Et= P - Ro - Dr ±.6S 

where Et is evapotranspiration, Pis precipitation, Ro is surface 

runoff, Dr is drainage beyond the soil zone under consideration (192.5 

cm in this case), and.AS is change in soil moisture storage. Surface 

runoff was estimated by installing metal frames around a pair of plots 

in each study area and collecting any water that ran to the downhill 

edge of the plots in a buried container. Estimates of drainage were 

made by using a physically-based computer simulation model (modified 

from Childs and Hanks 1975), utilizing the 192.5 cm to 242.5 cm soil 

moisture data from the 2.5 m tubes as a reference for comparing model 

output . 

Precipitation was monitored with a standard rain gauge at each 

study area as well as by a recording weather station located along the 

border of Pastures 6 and 7 (Fig . 4). Incoming solar radiation and pan 

evaporation were measured at a similar station approximately 1.3 km 

north of the study site. Potential evapotranspiration was calculated 

by both the Class A Pan and Jensen-Haise (Jensen and Haise 1963) 

methods. A coefficient of 0.71 was used in the evaporation pan 

calculations . 

Texture and bulk density were analyzed within each soil type . A 

soil moisture release curve was developed for each soil using tensio­

meters and a sample changer thermocouple psychrometer (Decagon Devices, 

Inc.). 

Plant Water Status 

Predawn and midday leaf xylem pressure potentials of crested 

wheatgrass plants were measured in the field using a pressure chamber 
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technique (Waring and Cleary 1967). One leaf sample was taken from 

each of two plants sampled per plot. Sampled plants were selected at 

random from among those growing near the center of the plots. Attempts 

were made to select leaves of similar developmental stage and 

orientation for measurement; this was not always possible during late 

summer due to variability in leaf senescence. Leaves were enclosed in 

small plastic bags throughout the sampling process to minimize water 

loss after excision (Turner and Long 1980). Measurements were taken on 

the same schedule as soil moisture measurements, but were discontinued 

after the first week of September due to a lack of sufficient green 

leaf samples in the ungrazed plots. 

Data Analysis 

The individual study areas (soil type-time of grazing combin­

ations) were considered a series of three experiments. This made it 

possible to analyze each experiment separately, then selectively 

combine them to evaluate the effects of soil type and time of grazing 

without mutual confounding. A randomized block design involving split 

plots was used for the analysis of variance. Plots were split through 

time for plant water status and by depth and through time for soil 

moisture depletion. Variances of the individual experiments were 

assumed to be homogeneous due to their close proximity and the 

negligible time differences between sampling. Violation of this 

assumption would probably result in only minimal changei in the 

analyses (Sisson 1962, Glass et al. 1972). 
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RESULTS 

Analyses of soil water content-water potential relationships (Fig. 

7) and soil texture and bulk density (Table 1) indicated that the two 

soils included in the study had very similar soil moisture character­

istics. Analysis of soil moisture content on the first sample date (13 

April), at which time the soils should have been very near field 

capacity, showed no difference between soils. The placement of the two 

experiments within Paddock 7 near the mapped soil boundary apparently 

did not result in the inclusion of typical pedons of the Ki soil. 

Evaluation of any effect due to a difference in available soil moisture 

was therefore not possible. Because of this, data from the two exper­

iments in Paddock 7 were pooled, thus doubling the sample size within 

that paddock. To evaluate the effects of time of grazing, pooled data 

from Paddock 7 were compared to data from Paddock 2 using orthogonal 

contrasts. 

The months of May and July received somewhat higher than average 

precipitation in 1985, while August was quite dry (Fig. 3). Plants 

which had been grazed responded to the July rainfall with a marked 

flush of new growth. Ungrazed plants, which were in an advanced 

phenological stage, exhibited less of a response. Because little 

foli~ge remained on grazed plants at the conclusion of the grazing 

season, nearly all foliage present on these plants afte~ early July was 

young, mostly vegetative tillers. Consequently, the study period was 

divided into two sub-periods to examine responses before and after the 

differential growth occurred. Separate analyses were obtained for the 
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Table 1. Average texture (n = 2) and bulk density (n = 10) for core 
samples extracted from the three experimental areas within Pasture 8. 

Paddock Depth (cm) Texture % Sand % Silt % Clay Bulk density 

2(Juab) 0-30 Silt Loam 30.8 56.0 13.0 1.28 

30-60 Silt Loam 29.8 55.0 15.2 1.33 

60-90 Silt Loam 30.8 52.0 17.2 1.41 

90-120 Silt Loam 26.8 56.0 17.2 1.44 

7(Juab) 0-30 Silt Loam 30.2 50.5 19.3 1.29 

30-60 Silt Loam 22.2 57.6 20.2 1.35 

60-90 Silt Loam 28.0 54.8 17.2 1.41 

90-120 Silt Loam 31.0 52.8 16.2 1.43 

7(Ki) 0-30 Loam 36.2 49.6 14.2 1.33 

30-60 Silt Loam 31.2 51.6 17.2 1.35 

60-90 Loam 33.2 49.6 17.2 1.42 



periods from 13 April through 1 July (which encompassed the grazing 

season), 2 July through 25 September, and for the entire study period 

(see Appendix). 

Soil Moisture Depletion 
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There was no statistically significant difference (p ~ 0.05) in 

rate of soil moisture depletion between grazed and ungrazed treatments 

within either paddock when data were analyzed over the entire season. 

However, when data were analyzed separately for the time periods before 

1 July and after 1 July, significant differences were detected. Soil 

moisture was depleted at a significantly (p < 0.01) higher rate within 

ungrazed plots than grazed plots during the April-June period in both 

Paddocks 2 and 7 (Fig. 8). After 1 July, depletion rate was 

significantly higher for grazed plots than ungrazed plots in Paddock 7. 

However, in Paddock 2 grazed and ungrazed plots were not statistically 

different in depletion rates after 1 July. 

Total cumulative depletion was greater within ungrazed plots than 

grazed plots in Paddock 7 from 6 June through 13 August. Total 

cumulative soil moisture depletion was greater within ungrazed plots 

than grazed plots in Paddock 2 from 23 May through 16 July. 

The time of grazing difference between Paddocks 2 and 7 resulted 

in different patterns of depletion rate through time in grazed plots 

within these paddocks during the pre-July period. Grazed plots in 

Paddock 7, which were grazed prior to those in Paddock 2· during each of 

the three grazing cycles, had a higher overall mean depletion rate by 1 

July (0.11 mm d-1 ) than grazed plots in Paddock 2 (0.08 mm d-1 ). 
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Fig. 8. Soil moisture depletion rates (mm d-1) and total cumulative 
depletion (mm) within Paddock 2 (n"' 10) and Paddock 7 .(.n = 20) during 
the study period. Stars in total depletion graphs indicate that grazed 
and ungrazed treatments are significantly different (p < 0.05) based on 
a one-way analysis of variance at each date. Points above bars in 
depletion rate graphs indicate approximate dates that the respective 
paddocks were grazed during each cycle. 



Total cumulative depletion was greater in grazed plots for Paddock 7 

than Paddock 2 beginning on 20 June (Fig. 9). 
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When data from ungrazed plots were analyzed over the entire 

season, soil moisture depletion rate was not statistically different 

between Paddocks 2 and 7. However, significantly more total cumulative 

soil moisture was depleted in ungrazed plots in Paddock 7 than in 

Paddock 2 from 30 July to 25 September (Fig. 9). Because of this 

difference in total cumulative soil moisture depletion, direct 

comparison of responses between Paddocks 2 and 7 after 16 July is not 

possible. This difference in cumulative depletion between ungrazed 

plots may be due to differential surface runoff that may have occurred 

between the paddocks during one or more of the high-intensity 

convective storms experienced at Tintic during July. Approximately 3 

mm of surface runoff were measured between 1 July and 16 July in each 

paddock. Runoff during the 16 July to 30 July period was sufficient to 

exceed the 5 mm (depth equivalent) capacity of the storage containers 

used to measure runoff; thus a difference in total runoff between the 

paddocks would not have been detected. Between the 16 July and 30 July 

sample dates cumulative depletion totals for Paddock 2 declined 

somewhat more sharply than for Paddock 7 in both grazed and ungrazed 

plots (Fig. 10), suggesting that more soil moisture recharge may have 

occurred in Paddock 2 than in Paddock 7. If differential recharge did 

occur, this may be at least partially due to the slightly greater 

slopes present in Paddock 7 compared to Paddock 2. 

Figures 11 and 12 illustrate the pattern of soil moisture 

depletion by depth for grazed and ungrazed plots during the study 
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Fig. 9. Cumulative soil moisture depletion (mm) for grazed plots (top) 
and ungrazed plots (bottom) within Paddock 2 (n = 10) and Paddock 7 (n 
= 20) during the study period. Stars in each graph indicate treatment 
differences (p < 0.05) between paddocks based on a one-way analysis of 
variance at each sample date. 
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period for Paddocks 2 and 7, respectively. By 23 May, after each 

paddock had been grazed twice, ungrazed plots had extracted more total 

cumulative soil moisture than grazed plots to a depth of 83 cm in 

Paddock 2 and to 38 cm in Paddock 7. Ungrazed plots continued to 

extract more water to 143 cm than grazed plots by 6 June in both 

paddocks. Plant regrowth and subsequently higher rates of soil water 

depletion by defoliated plants during the latter part of the study 

reduced this difference in the upper soil profile by 25 September. On 

that date there was no difference between treatments in total 

cumulative depletion through 53 cm, but ungrazed plots had extracted 

relatively more water from the 53 to 143 cm depths in the soil profile 

than grazed plots within both paddocks. By 25 September plots within 

Paddock 7 had depleted somewhat more soil moisture from depths below 83 

cm than plots in Paddock 2. This difference would be expected if soil 

moisture was recharged to a greater extent in Paddock 2 than compared 

to Paddock 7 during July (as discussed earlier). 

Computer simulation of changes in soil water content agreed 

extremely well with actual field data (Table 2). Model inputs 

including initial water content at each depth, potential evapotrans­

piration, and relationships between soil moisture parameters were based 

on field-observed values. Because the model indicated only 0.016 mm of 

drainage during the early season when soil water content was highest, 

the assumption that soil moisture depletion during the study was due 

solely to evapotranspiration was supported. 
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Table 2. Comparison of field data with predicted values of volumetric 
soil water content and depth equivalent obtained from model SOWATET 
(modified from Childs and Hanks 1975) for the period of 13 April to 14 
May in 1985. Field values are the means of 10 access tubes. 

Soil depth 
(cm) 

Vol. water content Depth equivalent {mm) 

0 - 22.5 
22.5 - 37.5 
37.5 - 52.5 
52.5 - 67.5 
67.5 - 82.5 
82.5 - 97.5 
97.5 - 117.5 

117.5 - 142.5 
142.5 - 167.5 
167.5 - 192.5 
192.5 - 217.5 
217.5 - 242.5 

Field Model 

0.252 
0.225 
0.235 
0.239 
0.256 
0.269 
0.264 
0.253 
0.247 
0.269 
0.252 
0.240 

0.246 
0.226 
0.235 
0.236 
0.257 
0.272 
0.270 
0.255 
0.246 
0.265 
0.255 
0.239 

Sum thru 192.5 cm 
Sum thru 242.5 cm 

Model estimate of drainage beyond 192.5 cm: 

Field Model 

56.66 55.46 
33.70 33.93 
35.28 35.22 
35.90 35.43 
38.36 38.59 
40.37 40.87 
52.73 54.05 
63.19 63.75 
61.80 61.62 
67.21 66.19 
62.98 63.75 
59.98 59.87 

------- -------
485.20 485.14 
608.16 608.76 

0.016 mm 

- . ~ .-{ 
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Plant Water Status 

Predawn leaf xylem pressure potentials exhibited a general decline 

throughout the season with values remaining above -1.4 MPa (Fig. 13). 

Midday values declined to a greater extent during the season and ranged 

between -1.4 and -3.3 MPa. Grazing had no effect on predawn leaf water 

potential prior to 1 July, but predawn leaf water potentials were 

significantly lower for ungrazed than grazed plants after 1 July. 

Midday leaf water potentials were significantly lower for grazed than 

ungrazed plants before 1 July, but did not differ after 1 July. 

When analyzed over the entire season, predawn leaf pressure 

potentials were lower for ungrazed plants; however, grazed and ungrazed 

plants did not exhibit differences in midday leaf pressure potentials. 

Time of grazing had no effect on either predawn or midday leaf xylem 

pressure potentials during the study period. 

Both predawn and midday xylem pressure potentials were highly 

correlated with soil moisture content throughout most of the profile 

during the pre-July period and for the season as a whole (Table 3). 

During the July to September period, this correlation for ungrazed 

plants was similar to that before 1 July, but was shifted slightly 

deeper within the soil profile. Grazed plants showed no correlation 

between predawn pressure potentials and soil moisture content after 1 

July, while midday values for grazed plants during this same time 

period were only significantly correlated with soil moisture for the O 

to 38 cm increment. 
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Fig. 13. Predawn and midday leaf water potentials (MPa) as estimated 
by a pressure chamber technique for grazed and ungrazed crested 
wheatgrass plants during the study period. Values are combined over 
both paddocks (n • 30). Bars at the bottom of the figure represent 
daily precipitation totals (mm). 
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Table 3. Correlations between mean leaf water potential and mean soil 
moisture content by depth within the soil profile. Significant (p < 
0.05) correlation coefficients are followed by an asterisk. The soil 
profile was divided into increments of 0-38, 38-68, 68-98, 98-143, 
143-193 cm, and the mean soil moisture content for the entire profile 
(0-193 cm). 

Depth 
(cm) 

0-38 
38-68 
68-98 

98-143 
143-193 

0-193 

0-38 
38-68 
68-98 

98-143 
143-193 

0-193 

0-38 
38-68 
68-98 

98-143 
143-193 

0-193 

Predawn leaf water gotential Midda~ leaf water gotential 
Ung razed Grazed Unqrazed Grazed 

--------------------Through July 1------------------------

0.946* 0.951* 0. 716* 0.805* 
0.831* 0.869* 0. 714* 0.805* 
0.806* 0.884* 0.723* 0.788* 
0.871* 0.691* 0.497 0.831* 
0.307 0.347 0.627 0.435 
0.897* 0.924* 0.728* 0.826* 

----------------------After July 1------------------------

0.584 0.312 0.603 0.755* 
0.867* -0.027 0.797* 0.261 
0.827* -0.006 0.791* 0.140 
0.867* 0.205 0.797* 0.297 
0.729* -0 .035 0.540 0.162 
0.802* 0.103 0.730* 0.382 

----------------------Whole Season------------------------

0.846* 
0.909* 
0.942* 
0.954* 
0.870* 
0.941* 

0.829* 
0.693* 
0.636* 
0.658* 
0.508 
0.735* 

0.747* 
0.892* 
0.943* 
0.939* 
0.909* 
0.906* 

0.905* 
0.913* 
0.866* 
0.892* 
0.804* 
0.922* 
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DISCUSSION 

Seasonal Water Balance 

DeJong and MacDonald (1975) studied the soil moisture regime under 

a native grassland in Saskatchewan. They reported that soil moisture 

extraction started about mid-April and continued to mid-September or 

later with the most rapid water use occurring in May, June, and July. 

Water use exceeded precipitation during the growing season in their 

study and accounted for 90% of the annual precipitation received. 

Their findings were quite similar to the pattern observed in the 

present study at Tintic. Of the 312.5 mm average total evapotrans­

piration measured at Tintic during the study period, 56% (176 mm) came 

from precipitation and 44% (137 mm) was from soil moisture storage. 

This amounted to 84% of the year's precipitation at the site. 

Evapotranspiration during the fall and evaporation during winter and 

early spring, coupled with small amounts of runoff during the year 

probably account for the remaining yearly precipitation. There are no 

perennial streams on the Tintic study site, and percolation of water 

beyond the ~oting zone is probably negligible (see discussion below). 

Potential evapotranspiration (that which would occur under 

conditions of 100% vegetative cover and unlimited soil moisture) is a 

function of the energy available to change moisture from· the liquid to 

the vapor state. Actual evapotranspiration refers to the rate of 

evapotranspiration (ET) measured under a given set of field conditions. 

Vegetative characteristics such as leaf area and leaf conductance in 
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combination with soil factors including moisture content and the rate 

at which moisture can be transmitted to evaporative surfaces affect 

actual evapotranspiration rates. Actual evapotranspiration was 

relatively close to potential evapotranspiration during April (Fig. 14) 

when the soil was moist and temperature and solar irradiation were 

relatively low. However, actual and potential evapotranspiration 

differed markedly after this period. Potential ET rates rose to over 7 

mm d-1 during June through August, then dropped back to 3 mm d-1 by 

September 25. The relatively cool and rainy weather during late July 

caused potential ET to decline during that period. Because moisture 

was periodically applied to the soil by precipitation, actual ET rates 

were fairly constant at approximately 2.0 to 2.4 mm d-1 through June, 

then declined rather gradually to near 1.4 mm d-1 by early fall. 

Soil Moisture Depletion 

The possibility of vertical soil moisture flux is a concern in 

water balance studies involving the rooting zone. The conclusion that 

no significant drainage occurred during this study is in agreement with 

Scholl (1976), Ng and Miller (1980), and Rambal (1984), who suggested 

that no measurable drainage loss occurred under annual precipitation 

totals below approximately 540 to 600 mm.· Soil texture and structure 

in combination with precipitation patterns can affect the transmission 

of water through soil profiles. The silt loam soils investigated in 

this study should allow less potential drainage under similar 

conditions than the relatively more coarse soils involved in the 

studies of Scholl (1976) and Ng and Miller (1980). Additionally, 

during the periods of intense precipitation observed at Tintic during 
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Fig. 14. Actual and potential evapotranspiration rates (mm d-1) during 
the study period. Potential evapotranspiration is the mean of Class A 
Pan and Jensen-Haise calculations. Grazed and ungrazed values are 
means of 30 access tubes. 
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July, rainfall did not exceed the soil moisture deficit of the soil 

profile (Fig. 10). Little moisture was depleted from the deepest 

portion of the soil profile in the present study until late in the 

season . Consequently, hydraulic gradients across the lower boundary 

would have been minimal during most of the season, indicating that 

significant upward flux probably also did not occur. 
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More soil moisture was depleted in ungrazed plots than grazed 

plots during the spring and early-summer period in this study. The 

opposite pattern was noted during late-summer and early fall in Paddock 

7, while no treatment difference occurred in Paddock 2 during that 

period. These responses for the early and late-season time periods 

tended to cancel each other when summed over the entire season. This 

emphasizes the importance of examining the patterns of water use 

through time rather than merely the net seasonal result. 

Soil water use was highest in late-May through June, due to warm 

air temperatures in combination with relatively high residual soil 

moisture contents. Soil moisture depletion was lower in July than in 

May and June, largely due to the considerable precipitation received 

that month (Fig. 3). The 7 cm of precipitation that fell on the study 

site during July supplied additional moisture to the soil, resulting in 

fairly high depletion rates in early August. These depletion rates 

declined rather rapidly as this moisture was exhausted and plants 

became less physiologically active later in the month. 

Several authors (Nnyamah and Black 1977, Sala et al . 1981, Rambal 

1984) have noted that during the early growing season water is 

extracted from the upper soil layers where rooting density is highest . 
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As the soil dries, the deeper layers are increasingly utilized. This 

is especially pronounced in areas with dry growing seasons or where 

precipitation is prevented from reaching the soil. However, it was 

also evident in the present study at Tintic where 51% of the yearly 

precipitation was received during the 6-month study period. This 

precipitation pattern periodically added water to the upper soil 

profile, reducing the utilization of stored soil moisture. Approx­

imately 65% of the soil moisture that had been depleted by 20 June in 

ungrazed plots and 85% of soil moisture depleted by that date in grazed 

plots was from the top 68 cm of the soil profile. By 25 September 

considerable quantities of moisture were depleted from sample depths 

greater than 1.0 min the soil profile (Figs. 11 and 12). 

Caldwell et al. (1981) and Richards (1984) noted that crested 

wheatgrass plants curtailed root production by up to 50% in response to 

defoliation, thus facilitating a return to the preclipping root-shoot 

balance. Rambal (1984) suggested that the late-spring profile of water 

uptake can be considered as an estimate of the rooting density profile 

of actively transpiring vegetation. The lower rate and amount of soil 

water depletion within grazed plots during the pre-July period in the 

present study was presumably due to a combination of reduced leaf 

surface area and decreased rooting densities for grazed plants during 

that time, although direct measurements of these parameters were not 

made. 

Temperatures and daylength increased as the grazing season 

progressed, resulting in higher evaporative demands on plants within 

the grazing cell. Plants that were grazed earlier during the grazing 
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season would have attained a higher degree of regrowth in relation to 

this increasing atmospheric evaporative demand when integrated over the 

grazing season. This may partially account for the greater extraction 

of soil moisture by 1 July for plots within Paddock 7 than those within 

Paddock 2, which were grazed on a later schedule during each cycle. 

Differences in the phenologic development of crested wheatgrass plants 

within Paddocks 2 and 7 at the time they were defoliated may have 

affected their regrowth and subsequent water use responses. Plant 

phenological development was not specifically monitored during this 

study, however. 

Non-defoliated plants appeared to have considerably greater total 

leaf area during the July through September period, but tissue 

senescence on these plants was more advanced than on defoliated plants. 

Caldwell et al. (1981) found that leaf blades of crested wheatgrass 

that regrew following defoliation exhibited higher photosynthetic rates 

than foliage on control plants. Greater residual soil moisture content 

in grazed areas compared to ungrazed areas during part of this period 

(Fig. 8) probably also contributed to the higher extraction rates by 

grazed plants within Paddock 7. Paddock 2 did not exhibit differences 

between grazing treatments during this interval; however, this may have 

been due in part to a difference in recovery from defoliation related 

to the difference in time of grazing. 

Although significant differences in soil moisture depletion within 

the mid and lower soil profiles were noted between grazed and ungrazed 

plots at the end of this study (Figs. 11 and 12), these were not 

sufficient to create a statistical difference in total cumulative 
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depletion between defoliated and non-defoliated plots due to the 

relatively large proportion of soil moisture depleted within the upper 

portion of the profiles. The approximately 13.7 cm of stored soil 

moisture that was depleted during the 13 April to 25 September period 

in 1985 should be completely recharged by the 20.6 cm average precip­

itation total received during the balance of the year at Tintic (Fig. 

3). This would be true even if some of this precipitation were lost to 

evaporation and surface runoff during the recharge period. The 

relatively small but statistically significant differences in soil 

moisture content between grazed and ungrazed plots deep in the profile 

on 25 September are therefore probably not important. 

Plant Water Status 

Grazed plants experienced lower midday leaf xylem pressure 

potentials than ungrazed plants during the grazing season, but 

recovered equally well by early morning (Fig. 13). Midday leaf 

pressure potential values were more variable between plots and from 

week to week than were predawn measurements because of the greater 

effect of fluctuating atmospheric conditions such as incident 

radiation, temperature, and humidity on midday plant water deficits. 

Because midday leaf water potentials were above -2.2 MPa during this 

pre-July period, crested wheatgrass plants were probably not under a 

high degree of water stress (Johnson 1978, Frank 1981). 

The flush of new growth by grazed plants in response to July 

precipitation resulted in a dramatic increase in both predawn and 

midday leaf pressure potentials between the 16 and 30 July measurement 

dates (Fig. 13). A short period of cold weather in early August may 
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have been the cause of the sharp decline in leaf pressure potentials of 

grazed plants to values similar to those of ungrazed plants for the 6 

August measurements. However, this probable response to chilling was 

short-lived. Grazed plants had higher predawn leaf water potentials 

than ungrazed plants during the latter part of the study. These higher 

potentials were a result of a relatively more favorable soil moisture 

profile (Figs. 11 and 12) and more physiologically active leaves in the 

grazed plots. 

Differences in rooting density in combination with gradients in 

soil moisture with depth and with atmospheric demands affect plant 

responses to water supply (Waring and Cleary 1967, Ritchie and Hinckley 

1975, Sala et al. 1981). Leaf xylem pressure potential is a measure of 

the instantaneous water deficit experienced by a plant and does not 

necessarily indicate rate of water uptake. Plants that differ in leaf 

area, rooting density, or leaf physiological activity may have 

dissimilar transpiration rates yet experience essentially the same 

water deficit. Even though differences in total soil water content and 

soil moisture content with depth existed between treatment plots during 

much of the season (Figs. 9, 11 and 12), these soil differences were 

apparently buffered somewhat by the plant. Consequently, differences 

in soil moisture depletion during the season between grazed and 

ungrazed plots did not always produce significant differences in leaf 

pressure potential (Fig. 13). Differences in soil moisture depletion 

between plots that were grazed at different times did not result in any 

significant differences in predawn or midday leaf pressure potential. 

The ability of a plant to extract water from different portions of the ~ 
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soil profile may at least partially compensate for these soil 

differences. This is supported by the observation that both predawn 

and midday leaf water potentials of crested wheatgrass plants in the 

present study were highly correlated with soil water content throughout 

much of the soil profile (Table 3). 

Implications 

The present study demonstrated that the net seasonal water balance 

of a foothill crested wheatgrass pasture in central Utah was not 

affected by a spring short duration grazing treatment; however, 

differences were observed in water use patterns between grazed and 

ungrazed plots during the critical spring and early-summer period. 

These differences may be important in influencing growth and 

competitive relationships within crested wheatgrass communities. 

In a near monoculture pasture, as was the case in the present 

study, plants tend to be utilized relatively uniformly under short 

duration grazing. Deferred soil water use due to defoliation might 

allow a lengthening of the grazing season under near-monoculture 

conditions. After the final grazing cycle in the present study, 

defoliated plants had been heavily utilized and appeared not able to 

tolerate additional use. However, under an intensively managed short 

duration grazing system using plant physiological development as a 

criterion for scheduling the rotation of livestock through individual 

paddocks, similar soil moisture responses might allow grazing to 

continue longer into the summer. 

In a mixed-species pasture or where non-palatable shrubs are 

present, defoliated plants may be competing for soil resources with 
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neighbors that are not palatable to grazing animals or that are 

utilized to a significantly lesser extent. Moisture that is not 

extracted by crested wheatgrass plants during the spring grazing season 

under these conditions may not be available for their use later in the 

growing season. The lower amount of soil moisture depleted within 

plots that were grazed 9 days later in the present study suggests that 

initial grazing should be rotated among paddocks from year to year in 

situations where this type of competition for soil moisture might be an 

important factor. 

Managing for soil moisture may be an effective tool in achieving 

maximum on-site water use efficiency for forage production in semiarid 

rangelands. Further research should be conducted to investigate the 

feasibility of manipulating soil moisture depletion patterns to 

accomplish this goal. Studies involving different plant communities as 

well as research conducted at different locations should indicate 

whether the responses observed at Tintic are representative of those 

that would occur under other semiarid rangeland conditions. Additional 

research is also needed to examine competitive relationships between 

differentially defoliated co-occurring plant species in rangeland 

environments. 
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Summary Of Statistical Analyses 

Paddock 2, Depletion Rate (See Fig. 8) 

Through 7-1 After 7-1 Whole Season 
source df £ df £ df £ 

Reps 4 4 4 
Grazing 1 0.007 1 0.277 1 0.120 

error a 4 4 4 
Depths 9 0.000 9 0.000 9 0.000 

error b 36 36 36 
G x D 9 0.000 9 0.000 9 0.064 

error c 36 36 36 
Weeks 6 0.000 5 0.000 12 0.000 

error d 24 20 48 
G x W 6 0.000 5 0.210 12 0.000 
D x W 54 0.000 45 0.000 108 0.000 
G x D x W 54 0.046 45 0.038 108 0.000 

error e 456 380 912 
Residual 700 600 1300 
Total 1399 1199 2599 

Paddock 7 (Juab), Depletion Rate 

Through 7-1 After 7-1 Whole Season 
source df £ df £ df £ 

Reps 4 4 4 
Grazing 1 0.008 1 0.018 1 0.080 

error a 4 4 4 
Depths 9 0.000 9 0.000 9 0.000 

error b 36 36 36 
G x D 9 0.000 9 0.000 9 0.508 

error c 36 36 36 
Weeks 6 0.000 5 0.000 12 0.000 

error d 24 20 48 
G x W 6 0.000 5 0.040 12 0.000 
D x W 54 0.000 45 0.000 108 0.000 
G x D x W 54 0.000 45 0.000 108 0.000 

error e 456 380 912 
Residual 700 600 1300 
Total 1399 1199 2599 
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Paddock 7 (Ki), Depletion Rate 

Through 7-1 After 7-1 Whole Season 
source df f df f df f 

Reps 4 4 4 
Grazing 1 0.122 1 0.051 1 0.570 

error a 4 4 4 
Depths 9 0.000 9 0.000 9 0.000 

error b 36 36 36 
G x D 9 0.003 9 0.015 9 0.834 

error c 36 36 36 
Weeks 6 0.000 5 0.000 12 0.000 

error d 24 20 48 
G x W 6 0.006 5 0.265 12 0.000 
D x W 54 0.000 45 0.000 108 0.000 
G x D x W 54 0.000 45 0.002 108 0.000 

error e 456 380 912 
Residual 700 600 1300 
Total 1399 1199 2599 

Paddock 7 Pooled, Depletion Rate (See Fig. 8) 

Through 7-1 After 7-1 Whole Season 
source df f df f df f 

Reps 9 9 9 
Grazing 1 0.000 1 0.002 1 0.087 

error a 9 9 9 
Depths 9 0.000 9 0.599 9 0.000 

error b 81 81 81 
G x D 9 0.000 9 0.000 9 0.012 

error c 81 81 81 
Weeks 6 0.000 5 0.000 12 0.000 

error d 54 45 108 
G x W 6 0.004 5 0.108 12 0.000 
D x W 54 0.000 45 0.000 108 0.000 
G x D x W 54 0.241 45 0.000 108 0.000 

error e 1026 855 2052 
Residual 1400 1200 2600 
Total 2799 2399 5199 
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Paddocks 2 and 7 Combined, Depletion Rate 

Through 7-1 After 7-1 Whole Season 
source df f df f df f 

Time of Grazing 2 0.065 2 0.005 2 0.006 
2 vs 7b + 7t 1 1 0.001 1 0.002 
7b vs 7t 1 1 0.922 1 0.851 
error a 12 12 12 

Grazing 1 0.000 1 0.005 1 0.018 
TG x G 2 0.142 2 0.928 2 0.412 

2 vs 7 (ungr.) 1 0.709 1 0.020 1 0.097 
2 vs 7 (graz.) 1 0.008 1 0.012 1 0.005 
error b 12 12 12 

Depths 9 0.000 9 0.000 9 0.000 
error c 36 36 36 

TG x D 18 0.000 18 0.000 18 0.000 
G x D 9 0.000 9 0.000 9 0.000 
TG x G x D 18 0.774 18 0.693 18 0.892 

error d 180 180 180 
Weeks 6 0.000 5 0.000 12 0.000 

error e 24 20 48 
TG x W 12 0.000 10 0.000 24 0.000 
G x W 6 0.000 5 0.144 12 0.000 
D x W 54 0.000 45 0.000 108 0.000 
TG x G x W 12 0.007 10 0.232 24 0.001 
TG x D x W 108 0.000 90 0.001 216 0.000 
G x D x W 54 0.000 45 0.000 108 0.000 
TG x G x D x W 108 0.985 90 1.000 216 0.999 

error f 1416 1180 2832 
Residual 2100 1800 3900 
Total 4199 3599 7799 
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Paddock 2, Total Cumulative Depletion (See Fig. 8) 

4-26 5-14 5-23 6-6 6-13 6-20 7-1 
source df £ £ £ £ £ £ £ 

Reps 4 
Grazing 1 0.942 0.263 0.043 0.025 0.021 0.017 0.014 

error a 4 
Depths 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

error b 36 
G x D 9 0.945 0.228 0.316 0.000 0.000 0.000 0.000 

error c 36 
Residual 100 
Total 199 

7-16 7-30 8-13 8-26 9-8 9-25 
source df £ £ £ £ £ £ 

Reps 4 
Grazing 1 0.037 0.085 0.138 0.226 0.276 0.293 

error a 4 
Depths 9 0.000 0.000 0.000 0.000 0.000 0.000 

error b 36 
G x D 9 0.009 0.055 0.084 0.047 0.151 0.186 

error c 36 
Residual 100 
Total 199 
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Paddock 7 Pooled, Total Cumulative Depletion (See Fig. 8) 

4-26 5-14 5-23 6-6 6-13 6-20 7-1 
source df f f f f f f f 

Reps 9 
Grazing 1 0.670 0.199 0.180 0.011 0.001 0.002 0.002 

error a 9 
Depths 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

error b 81 
G x D 9 0.927 0.621 0.088 0.000 0.000 0.001 0.000 

error c 81 
Residual 200 
Total 399 

7-16 7-30 8-13 8-26 9-8 9-25 
source df f f f f f f 

Reps 9 
Grazing 1 0.004 0.010 0.023 0.067 0.154 0.218 

error a 9 
Depths 9 0.000 0.000 0.000 0.000 0.000 0.000 

error b 81 
G x D 9 0.000 0.000 0.095 0.383 0.506 0.611 

error c 81 
Residual 200 
Total 399 



Paddocks 2 and 7 Combined, Cumulative Depletion, Grazed Plots Only 
(See Fig. 9) 

4-26 5-14 5-23 6-6 6·-13 6-20 7-1 
source df £ £ £ £ £ £ £ 

Time of Grazing 2 0.429 0.810 0.283 0.584 0.479 0.048 0.039 
Residual 27 
Total 29 

7-16 7-30 8-13 8-26 9-8 9-25 
source df £ £ £ £ £ £ 

Time of Grazing 2 0.004 0.000 0.001 0.008 0.002 0.002 
Residual 27 
Total 29 

Paddocks 2 and 7 Combined, Cumulative Depletion, Ungrazed Plots Only 
(See Fig. 9) 

4-26 5-14 5-23 6-6 6-13 6-20 7-1 
source df £ £ £ £ £ £ £ 

Time of Grazing 2 0.832 0.545 0.745 0.264 0.363 0.950 0.925 
Residual 27 
Total 29 

7-16 7-30 8-13 8-26 9-8 9-25 
source df £ £ £ £ £ £ 

Ti me of Grazing 2 0.301 0.021 0.035 0.086 0.042 0.032 
Residua 1 27 

.. 

Total 29 

55 
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Paddocks 2 and 7 Combined, Total Cumulative Depletion 
(See Figs. 11 and 12) 

4-26 5-14 5-23 6-6 6-13 6-20 7-1 
source df £ £ £ £ £ £ £ 

Time of Grazing 2 0.571 0.905 0.680 0.570 0.856 0.544 0.368 
2 vs 7b + 7t 1 
7b vs 7t 1 
error a 12 

Grazing 1 0.751 0.090 0.019 0.001 0.000 0.000 0.000 
TG x G 2 0.790 0.864 0.401 0.596 0.376 0.379 0.310 

error b 12 
Depths 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

error c 36 
TG x D 18 0.980 0.000 0.003 0.000 0.000 0.000 0.000 
G x D 9 0.967 0.215 0.009 0.000 0.000 0.000 0.000 
TG x G x D 18 0.996 0.958 0.897 0.951 0.996 0.979 0.873 

error d 180 
Residual 300 
Total 599 

7-16 7-30 8-13 8-26 9-8 9-25 
source df £ £ £ £ £ £ 

Time of Grazing 2 0.111 0.005 0.011 0.034 0.017 0.018 
2 vs 7b + 7t 1 0.001 0.000 0.003 0.001 0.002 
7b vs 7t 1 0.392 0.138 0.258 0.281 0.467 
error a 12 

Grazing 1 0.000 0.002 0.008 0.034 0.080 0.110 
TG x G 2 0.298 0.377 0.543 0.636 0.653 0.619 

error b 12 
Depths 9 0.000 0.000 0.000 0.000 0.000 0.000 

error c 36 
TG x D 18 0.001 0.200 0.000 0.000 0.000 0.000 
G x D 9 0.000 0.000 0.004 0.043 0.074 0.149 
TG x G x D 18 0.947 0. 971 0.976 0.953 0.982 .. 0. 948 

error d 180 
Residual 300 
Total 599 
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Paddock 2, Predawn Leaf Water Potential 

Through 7-1 After 7-1 Whole Season 
source df £ df £ df £ 

Reps 4 4 4 
Grazing 1 0.942 1 0.005 1 0.013 

error a 4 4 4 
Weeks 7 0.000 5 0.012 13 0.000 

error b 28 20 52 
G x W 7 0.177 5 0.010 13 0.000 

error c 28 20 52 
Residual 80 60 140 
Total 159 119 279 

Paddock 2, Midday Leaf Water Potential 

Through 7-1 After 7-1 Whole Season 
source df £ df £ df £ 

Reps 4 4 4 
Grazing 1 0.034 1 0.061 1 0.465 

error a 4 4 4 
Weeks 7 0.000 5 0.001 13 0.000 

error b 28 20 52 
G x W 7 0.509 5 0.085 13 0.006 

error c 28 20 52 
Residual 80 60 140 
Total 159 119 279 
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Paddock 7 (Juab), Predawn Leaf Water Potential 

Through 7-1 After 7-1 Whole Season 
source df £ df £ df £ 

Reps 4 4 4 
Grazing I 0.496 I 0.005 I 0.007 

error a 4 4 4 
Weeks 7 0.000 5 0.007 13 0.000 

error b 28 20 52 
G x W 7 0.736 5 0.000 13 0.000 

error c 28 20 52 
Residual 80 60 140 
Total 159 119 279 

Paddock 7 (Juab), Midday Leaf Water Potential 

Through 7-1 After 7-1 Whole Season 
source df £ df £ df £ 

Reps 4 4 4 
Grazing I 0.088 I 0.730 I 0.267 

error a 4 4 4 
Weeks 7 0.000 5 0.020 13 0.000 

error b 28 20 52 
G x W 7 0.157 5 0.006 13 0.002 

error c 28 20 52 
Residual 80 60 140 
Total 159 119 279 
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Paddock 7 (Ki), Predawn Leaf Water Potential 

Through 7-1 After 7-1 Whole Season 
source df f df f df f 

Reps 4 4 4 
Grazing 1 0.280 1 0.078 1 0.125 

error a 4 4 4 
Weeks 7 0.000 5 0.001 13 0.000 

error b 28 20 52 
G x W 7 0.160 5 0.014 13 0.000 

error c 28 20 52 
Residual 80 60 140 
Total 159 119 279 

Paddock 7 (Ki), Midday Leaf Water Potential 

Through 7-1 After 7-1 Whole Season 
source df f df f df f Reps 4 4 4 

Grazing 1 0.836 1 0.474 1 0.458 
error a 4 4 4 

Weeks 7 0.000 5 0.031 13 0.000 
error b 28 20 52 

G x W 7 0.971 5 0.674 13 0.903 
error c 28 20 52 

Residual 80 60 140 
Total 159 119 279 
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Paddock 7 Pooled, Predawn Leaf Water Potential 

Through 7-1 After 7-1 Whole Season 
source df f df f df f 

Reps 9 9 9· 
Grazing 1 0.193 1 0.003 1 0.010 

error a 9 9 9 
Weeks 7 0.000 5 0.000 13 0.000 

error b 63 45 117 
G x W 7 0.666 5 0.054 13 0.000 

error c 63 45 117 
Residual 160 120 280 
Total 319 239 559 

Paddock 7 Pooled, Midday Leaf Water Potential 

Through 7-1 After 7-1 Whole Season 
source df f df f df f 

Reps 9 9 9 
Grazing 1 0.252 1 0.795 1 0. 712 

error a 9 9 9 
Weeks 7 0.000 5 0.595 13 0.000 

error b 63 45 117 
G x W 7 0.244 5 0.299 13 0.315 

error c 63 45 117 
Residua 1 160 120 280 
Total 319 239 559 
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Paddocks 2 and 7 Combined, Predawn Leaf Water Potential 
{See Fig. 13) 

Through 7-1 After 7-1 Whole Season 
source df .e df .e df .e 

Paddock 2 0.102 2 0.140 2 0.843 
2 vs 7b + 7t 1 1 1 
7b vs 7t 1 1 1 
error a 12 12 12 

Grazing 1 0.228 1 0.000 1 0.000 
TG x G 2 0.697 2 0.326 2 0.304 

error b 12 12 12 
Weeks 7 0.000 5 0.000 13 0.000 

error c 28 20 52 
TG x W 14 0.002 10 0.278 26 0.000 
G x W 7 0.963 5 0.000 13 0.000 
TG x G x W 14 0.198 10 0.500 26 0.513 

error d 140 100 260 
Residual 240 180 420 
Total 479 359 839 

Paddocks 2 and 7 Combined, Midday Leaf Water Potential 
{See Fig. 13) 

Through 7-1 After 7-1 Whole Season 
source df .e df .e df .e 

Paddock 2 0.500 2 0.233 2 0.851 
2 vs 7b + 7t 1 1 1 
7b vs 7t 1 1 1 
error a 12 12 12 

Grazing 1 0.007 1 0.178 1 0.532 
TG x G 2 0.038 2 0.269 2 0.272 

error b 12 12 12 
Weeks 7 0.000 5 0.007 13 0.000 

error c 28 20 52 
TG x W 14 0.052 10 0.000 26 0.000 
G x W 7 0.114 5 0.001 13 0.000 
TG x G x W 14 0.977 10 0.180 26 0.259 

error d 140 100 260 
Residual 240 180 420 
Total 479 359 839 
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