Utah State University

Digital Commons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2017

First-Row Transition Metal Sulfides and Phosphides as
Competent Electrocatalysts for Water Splitting

Nan Jiang
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Cf Part of the Biochemistry Commons, and the Chemistry Commons

Recommended Citation

Jiang, Nan, "First-Row Transition Metal Sulfides and Phosphides as Competent Electrocatalysts for Water
Splitting" (2017). All Graduate Theses and Dissertations. 6480.
https://digitalcommons.usu.edu/etd/6480

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has

been accepted for inclusion in All Graduate Theses and /[x\

Dissertations by an authorized administrator of /\

DigitalCommons@USU. For more information, please (l .()Al UtahStateUniversity
contact digitalcommons@usu.edu. /'g;m MERRILL-CAZIER LIBRARY


https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F6480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/2?utm_source=digitalcommons.usu.edu%2Fetd%2F6480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/131?utm_source=digitalcommons.usu.edu%2Fetd%2F6480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/6480?utm_source=digitalcommons.usu.edu%2Fetd%2F6480&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

FIRST-ROW TRANSITION METAL SULFIDES AND PHOSPHIDES AS

COMPETENT ELECTROCATALYSTS FOR WATER SPLITTING

by

Nan Jiang

A thesis submitted in partial fulfillment

Approved:

of

of the requirements for the degree

MASTER OF SCIENCE

in

Chemistry

Yujie Sun, Ph.D.
Major Professor

Lance C. Seefeldt, Ph.D.

Committee Member

Lisa M. Berreau, Ph.D.
Committee Member

Mark R. McLellan, Ph.D.
Vice President for Research and
Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2017



Copyright © Nan Jiang 2017
All Rights Reserved



ABSTRACT

First-Row Transition Metal Sulfides and Phosphides as
Competent Electrocatalysts for Water Splitting
by
Nan Jiang, Master of Science

Utah State University, 2017

Major Professor: Dr. Yujie Sun
Department: Chemistry and Biochemistry

Conversion of renewable energy resources (such as solar and wind) through water
splitting to hydrogen and oxygen has attracted increasing attention. The sole product of
hydrogen combustion is water, rendering a carbon-neutral energy cycle. Water splitting
consists of two redox half reactions: hydrogen evolution reaction (HER) and oxygen
evolution reaction (OER). Both of these two transformations involve multi-
electron/proton movement and thus are kinetically sluggish. In order to accelerate the
reaction rates for practical application, efficient catalysts are needed. State-of-the-art
catalysts for water splitting are usually composed of noble metals, such as platinum,
ruthenium, and iridium, whose scarcity and high cost limit their wide employment.
Consequently, it is of critical importance to develop competent and non-precious
catalysts via low-cost preparation.

Owing to the thermodynamic convenience and potential application in proton



exchange membrane and alkaline electrolyzers, traditionally, most HER catalysts were
developed under strongly acidic conditions while OER catalysts under strongly alkaline
conditions. In order to accomplish overall water splitting, the coupling of HER and OER
catalysts in the same electrolyte is mandatory. This thesis will summarize our recent
efforts towards developing 1%'-row transition metal-based sulfides and phosphides for
electrocatalytic water splitting under ambient conditions.

(98 pages)



PUBLIC ABSTRACT

First-Row Transition Metal Sulfides and Phosphides as
Competent Electrocatalysts for Water Splitting
Nan Jiang

Solar energy is a carbon-neutral and renewable energy resource. Its nature of
intermittence and unequal distribution requires efficient solar energy capture, conversion,
and storage. Solar-driven water splitting to produce hydrogen and oxygen is widely
considered as an appealing approach to meet this goal, in which hydrogen acts as a green
energy carrier. Water splitting consists of two redox half reactions: hydrogen evolution
reaction (HER) and oxygen evolution reaction (OER). Both reactions involve the transfer
of multiple electrons and protons and possess high energy barriers to proceed at
appreciable rates, hence catalysts are needed.

A large number of HER and OER catalysts employ expensive metals, such as Pt,
Ru, and Ir, but the associated scarce and cost prohibit their wide application. Solid-state
catalysts employing earth-abundant elements have also been reported to show catalytic
performance for water splitting under various conditions. Most research efforts have been
devoted to developing non-precious HER and OER catalysts in acidic and basic media,
respectively. The incompatibility of electrolytes makes it difficult to couple HER and
OER catalysts to achieve overall water splitting. Taking into account of the vulnerability
of most 1%-row transition metal-based OER catalysts in acidic solution and the much
larger overpotential loss of OER than that of HER, we reasoned that developing

bifunctional catalysts that operate in basic solution will be a promising strategy for



vi
overall water splitting with high efficiency.
The research results presented in this thesis showcase our achievements in
developing low-cost electrocatalyts for HER and OER. Our research particularly focused
on the 1%-row transition metal-based sulfides and phosphides, which exhibited excellent

activity and stability for electrocatalytic water splitting.
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CHAPTER I
INTRODUCTION?

1-1. Background

The growing global energy demands, depletion of fossil fuel reserves, as well as
increasing concerns about climate change resulting from fossil fuel combustion have
urged the exploration of green and sustainable energy resources.!! Solar energy is a
promising candidate owing to its gigantic capacity. However, its diurnal and intermittent
nature requires efficient capture and storage. In this respect, solar-driven water splitting
to produce hydrogen and oxygen is an attractive means to store solar energy in chemical
forms.[!! In addition, hydrogen is also an important chemical feedstock, playing a crucial
role in petroleum refining and NH; synthesis for fertilizers.’! Molecular hydrogen (H.)
produced from water splitting with renewable energy input, is an attractive energy carrier
and fuel candidate, since water is the sole product of H> combustion. Water splitting
consists of two redox half reactions: Hz evolution reaction (HER) and O evolution
reaction (OER). Both reactions involve the transfer of multiple electrons and protons and
possess high energy barriers to proceed at appreciable rates, hence catalysts are required.

For electrocatalytic HER, it is a two-electron two-proton process, which has been
investigated for decades.™! Depending on the different reaction conditions (acidic,

neutral, or alkaline electrolytes), HER can proceed according to one of the following two

& Adapted with permission from [Nan Jiang, Meili Sheng, Yujie Sun, Chapter 6 in Green
Photo-active Nanomaterials: Sustainable Energy and Environmental Remediation, Hybrid
Molecular—Nanomaterial Assemblies for Water Splitting Catalysis, ISBN 978-1-84973-
959-7.]. Copyright 2016. The Royal Society of Chemistry. Reproduced by permission of
The Royal Society of Chemistry, http://pubs.rsc.org/en/conten t/chapter/bk9781 849739
597-00108/978-1-84973-959-7#!divabstract.
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pathways.B! In acidic electrolyte, the proton source is sufficient. The overall HER can
proceed via equation 1. However, in alkaline electrolyte, free protons are deficient. The
overall HER can be achieved through equation 2. For both acidic and alkaline conditions,
the commonly accepted reaction mechanism involves two steps: (i) an initial
electrochemical hydrogen adsorption reaction (Volmer step, equation 3 for acidic or
equation 4 for alkaline); (ii) an electrochemical hydrogen desorption (Heyrovsky step,
equation 5 for acidic or equation 6 for alkaline), or recombination reaction (Tafel step,
equation 7 for both acidic and alkaline), where H* represents a hydrogen atom adsorbed
on a catalytically active site on the electrode surface (M). Due to the low concentration of
free protons under alkaline conditions, water dissociation is involved prior to the

formation of M—H* in Volmer and Heyrovsky steps (equation 4 and equation 6).*

2H"aq) + 26 — Hy(g) (acidic) (1)
2H20¢q) + 28" — Ha(g) + 20H @q) (alkaline) (2)
H'@ag) + M + e — M—H* (acidic) 3)
H20 + M + e- > M—H* + OH"(5q) (alkaline) (4)
M—H* + H'ag) + € — M + Hy(g) (acidic) (5)
M—-H* + H20 + e > M + OH"(ag) + Hz(g) (alkaline) (6)
2M—-H* <> 2M + Hy(g) (both acidic and alkaline) @)

These reaction pathways are strongly dependent upon the inherent properties of
the active sites. The standard reduction potential of HER is defined as 0 V vs. standard
hydrogen electrode (SHE) at pH 0, which shifts -59 mV by every pH unit increase. This

pH dependence can be avoided when the measured potential is referenced to the



reversible hydrogen electrode (RHE). With a RHE scale, the observed potential always
equals to the overpotential n (the difference between applied potential and
thermodynamic potential), since the Nernstian potential of HER is 0 V vs. RHE
regardless of pH. Under kinetic-controlled region, the correlation between catalytic

current density and overpotential can be described by the Tafel equation (equation 8)&:

_ -23RT

onF

logj,+ Z%logj — a + blogj (8)
where R is the ideal gas constant, F is the Faraday constant, T is the temperature, n is the
number of electron transferred ( n = 2 for HER), a is the charge transfer coefficient, jois
the exchange current density at n =0V, j is the current density, and b is the Tafel slope.
Depending on the rate-limiting step, different Tafel slopes can be obtained: 29.5 (Tafel),
39 (Heyrovsky), or 118 (Volmer) mV/decade.

Owing to the sluggish kinetics of HER, electrocatalysts are needed to decrease the
overpotential for higher energy efficiency and accelerate the reaction rate. Billion years
of evolution provided nature with hydrogenases to perform the H*/H; inter-conversion
with a remarkably high efficiency under ambient conditions. Hydrogenases are able to
catalyze H> evolution near the thermodynamic potential and a turnover frequency (TOF)
of ~ 9000 s can be achieved at room temperature.®! In order to mimic the catalytic
fashion of hydrogenases, a large number of bioinspired molecular complexes containing
the core structures of hydrogenase cofactors, including [Fe-Fe], [Ni-Fe], and [Fe], have
been explored extensively.l®! Many delicate models have been synthesized and
investigated. Those studies led to our deeper understanding in the catalytic mechanisms

of hydrogenases, paving the way for designing improved biomimetic HER catalysts.



Owing to well-defined active sites and tunable properties of molecular HER
catalysts via structural/electronic substituents, molecular complexes have attracted much
attention in developing catalytic systems for water splitting. Traditionally, molecular
HER catalysts were studied in organic solvents with the addition of an organic or
inorganic proton source, owing to the limited solubility and/or stability of those catalysts
in aqueous media.[l In order to develop a catalytic system for water splitting at an
industrial scale, it is more desirable to directly utilize water as the reaction medium.
Although molecular catalysts might possess high intrinsic activity, their stability is
usually inferior compared to solid-state heterogeneous catalysts, potentially due to
undesirable inter-molecular collision of high-energy catalytic intermediates.®!

Along with the rapid development of nanomaterials science over the last three
decades, an ever increasing research focus has been shifted towards developing solid-
state heterogeneous HER catalysts, which tend to possess better stability in aqueous
media. Solid-state catalysts employing noble metals, such as Pt, have long been
recognized as competent HER catalysts with low overpotential and great stability.!
Unfortunately, the associated scarce and high cost limit their application on a large scale.
It remains a great challenge to develop inexpensive HER catalysts exhibiting both high
efficiency and strong robustness.*® Recent years have witnessed the emergence of
several promising solid-state HER catalysts composed of earth-abundant elements. For
example, metal alloys,™* metal oxides/hydroxides,*? chalcogenides,™*®! carbides,!**
phosphides,*3 and even metal-free nanomaterials(‘®! have been reported as potential HER
catalysts. During the last decade, transition metal chalcogenides and phosphides have

rapidly emerged as two popular groups of HER catalysts, largely owing to their earth



abundance, low cost, rich redox chemistry, promising activity, and stability under a
variety of conditions.[*”]

It is known that all the cofactors in hydrogenases ubiquitously involve metal-
sulfur interactions.[®! Inspired by the blueprints of hydrogenase active sites, increasing
efforts have been devoted to exploring 1%-row transition metal chalcogenides, such as
CoSx, 1 CoSe,, 1% FeS, 2% FeSe,,[24 and NiSk,[??! as potential HER catalysts. The success
of 1%t-row transition metal chalcogenides for HER application motivated researchers to
explore other transition metal chalcogenides. More recent work showed that molybdenum
sulfides with various morphologies and structures are active HER catalysts.?®l Due to its
terrestrial abundance and involvement in [Ni-Fe] hydrogenases,® nickel has long been
sought as a promising candidate for HER catalysis. Indeed, a variety of nickel-based
catalysts have emerged for electrocatalytic H2 production recently. Typical examples
include nickel alloys,?¥ sulfides,?® selenides,?®! oxides/hydroxides,?” and
phosphides, 8l among which nickel sulfides are one of the most investigated because of
their low cost, facile preparation, and high catalytic activity. In fact, many nickel sulfide-
based HER catalysts of different crystal structures have been reported for Hz evolution
under acidic, neutral, or alkaline conditions. For instance, metal-organic framework-
derived NiS nanoframes have been demonstrated as HER catalysts in 1.0 M KOH.2]
Similarly, NiS; of various nanostructures was reported to exhibit remarkable HER
catalytic performance in strongly acidic electrolytes.[? Recently, we reported an
electrodeposited Ni-S film with active and robust HER activity not only in neutral buffer
but also in natural water.[??l A suite of characterization techniques, including X-ray

absorption spectroscopy, were conducted to probe the catalyst and the main composition



6
of the Ni-S film was revealed to be NisS». This was the first time that NisS, was found to

be a competent HER catalyst. Details of preparation, characterization, and catalytic
performance of Ni-S film are presented in Chapter II.

Analogous to the case of chalcogenides, transition metal phosphides have long
been used for catalysis. The HER application of phosphides has also benefited from the
inspiration of hydrogenase. In 2005, Rodriguez et al. reported density functional theory
(DFT) calculation results suggesting promising HER activities of Ni2P (001) as the
dilution effect of phosphorous would make Ni>P (001) behave more like hydrogenases
rather than pure metal.*% It was suggested that the negatively charged phosphorous
atoms and isolated nickel atoms could function as proton and hydride acceptor sites,
respectively. Although it was not until 2013 that transition metal phosphides started to
attract wide attention as promising HER catalysts,[ currently phosphides are among the
most active category of HER catalysts, whose catalytic performance are quickly
approaching those of benchmark platinum groups. Parallel to the rapid development of
nickel phosphides for electrocatalytic H2 generation, a roughly equal amount of efforts
have been devoted to exploring cobalt phosphides® and molybdenum phosphidest®! as
potential HER catalysts.

As a four-electron/four-proton process, O evolution from water bears a high
activation barrier and has to go through multiple intermediate states. Nature evolved a
delicate biological machinery to convert solar energy, water, and CO into carbohydrates
via a process named photosynthesis. There are mainly two components involved in
photosynthesis: photosystem | and photosystem I1. The most chemically challenging step

occurs at the O, evolution center of photosystem |1, where water oxidation to O takes



place. Recently, the crystal structure of the O evolution center, which contains a
Mn4CaOs cluster, was obtained with a 1.9 A resolution.’**! The cubane-type MnsCaOs
cluster has been an inspiration source for many scientists aiming at developing competent
O2 evolution catalysts. Inspired, but not constrained, by nature, a large library of
molecular catalysts has been reported, ranging from early focus on ruthenium and
iridium complexes to more recent efforts on earth-abundant transition metals, like
manganese, iron, cobalt, nickel, and copper species. 6]

Owing to thermodynamic convenience and potential application in proton-
exchange membrane, most HER catalysts were developed under strongly acidic
conditions. Since most OER catalysts are vulnerable in acidic media, such a prevailing
approach in the development of HER and OER catalysts often result in their incompatible
integration to accomplish overall water splitting in the same electrolyte. As the
overpotential loss of OER is usually much larger than that of HER, it’s more
economically viable to explore bifunctional electrocatalysts active for both HER and
OER in strongly alkaline electrolytes. Such a new type bifunctional electrocatalyst will
not only avoid the incompatibility issue of the HER and OER catalysts working in the
same electrolyte, but also offer time-saving preparation and hence reduce the total cost of
water electrolyzers. Recently, transition metal oxides/hydroxides and phosphides have
been reported as bifunctional catalysts.[3”! For example, H.—CoCat, metallic cobalt coated
with a cobalt-oxo/hydroxo-phosphate layer can be prepared via electrodeposition in a
phosphate buffer containing cobalt salts.*™1 It is able to mediate H2 evolution in aqueous
solution. Remarkably, it can be converted via anodic equilibration into the amorphous

cobalt oxide film (O>—CoCat or CoPi) catalysing O evolution. The switch between the
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two catalytic forms is fully reversible and corresponds to a local interconversion between

two morphologies and compositions at the surface of the electrode. Based on the above
factors, H>—CoCat functions as a robust, bifunctional, and switchable catalyst for overall
water splitting albeit with mediocre performance. Last year, we reported that an
electrodeposited Co-P film (10% phosphorous doped in metallic cobalt) could act as a
bifunctional and competent electrocatalyst for both HER and OER under strongly
alkaline condition (1.0 M KOH).®2 Details of preparation, characterization, and catalytic
performance of Co-P film are presented in Chapter Il1.

In the following chapters, I will first summarize my research results in developing
electrodeposited Ni-S films for electrocatalytic H2 generation. Subsequently, a novel type
of bifunctional Co-P electrocatalyst for overall water splitting under strongly alkaline
conditions will be introduced, where the OER catalysts are formed from HER catalysts
under in situ electrocatalytic conditions.
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CHAPTER II

NICKEL SULFIDES AS EFFICIENT ELECTROCATALYSTS FOR HYDROGEN
EVOLUTION FROM WATERP
1-1. Introduction

Nature evolves hydrogenases to catalyze the conversion between proton and
hydrogen in neutral aqueous media at nearly zero overpotential with turnover frequencies
of 100 to 10,000 per second.™™ Nevertheless, the large size and relative instability of
hydrogenases under aerobic conditions limit their practical applications. Three types of
hydrogenase cofactors, binuclear iron/iron, iron/nickel, and mononuclear iron, have been
identified.l? All of these cofactors ubiquitously involve metal-sulfur interactions.

Inspired by the core structures and active elements of hydrogenases, metal chalcogenides
composed of earth-abundant elements have been investigated to catalyze HER in various
reaction systems.

Early in 1970s, Bennett et al. studied the electrocatalytic HER activity of bulk
MoS..B Subsequently, molybdenum sulfides of varying morphologies have been reported
to be active HER catalysts in strong acidic solution. In 2005, Ngrskov et al. predicted that
Mo (1010) edge of nanostructured MoS, materials possessed promising HER activity via
density functional theory (DFT) calculation.*! Later, Chorkendoff et al. experimentally

confirmed that the electrocatalytic HER performance of MoS; was indeed correlated with

b Adapted with permission from [Nan Jiang, Lia Bogoev, Marina Popova, Sheraz Gul,
Junko Yano, Yujie Sun, J. Mater. Chem. A 2014, 2, 19407-19414.]. Copyright 2014. The
Royal Society of Chemistry. Reproduced by permission of The Royal Society of
Chemistry, http://pubs.rsc.org/en/Content/ArticleLanding/2014/TA/C4TA04339A#!dIVA
bstract.
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the number of its edge sites.[®! Besides those crystalline MoS: species, various amorphous

molybdenum sulfides have also been reported as competent HER catalysts. For instance,
Hu et al. prepared MoSx films on conductive substrates via electrodeposition and the
resulting MoSy films demonstrated excellent HER performance in acidic electrolytes.©!
Inspired by the blueprints of hydrogenase active sites and encouraged by the success of
2"-row transition metal chalcogenides in HER electrocatalysis, increasing efforts have
been devoted to exploring 1%-row transition metal chalcogenides. For instance,
electrodeposited Co-S films on fluorine-doped tin oxide (FTO) were reported to act as
efficient and robust catalysts for electrochemical and photoelectrochemical Hz generation
in neutral aqueous media.l”! The amorphous Co-S film exhibited porous morphology, low
catalytic onset overpotential (43 mV), small Tafel slope (93 mV/dec), near 100%
Faradaic efficiency, and robust stability. Recently, bio-inspired FeS nanoparticles were
also reported as HER electrocatalysts in neutral water.!®! Despite its much lower catalytic
activity than that of CoS, FeS possessed attractive stability showing no structural
decomposition or activity decrease for at least six days. Continuous research in
elucidating the catalytic performance of NiS will undoubtedly provide more insights and
guidelines in designing and developing novel nickel-based HER catalysts.

Herein, we describe that a slightly modified electrodeposition method enabled us
to generate amorphous nickel-sulfide (Ni-S) films as well. Electrochemical experiments
under various conditions demonstrate that the Ni-S films are very active HER catalysts in
water over a wide range of pH values. The Ni-S film maintained its catalytic activity over
100 h in pH 7 phosphate buffer with a Tafel slope of 77 mV/dec and a Faradaic

efficiency of 100%. X-ray photoelectron spectroscopy (XPS) and X-ray absorption
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spectroscopy (XAS) results revealed that the major composition of the Ni-S film is NisSa.

1-2. Preparation of the Ni-S film

In a typical preparation of a Ni-S film, two FTO electrodes were used as the
working and counter electrodes, respectively, with a Ag/AgCI (sat.) electrode as the
reference electrode. Prior to electrodeposition, the FTO electrodes were sonicated in
acetone, water, and ethanol, consecutively. Each sonication was conducted for at least 15
min. Subsequently, the FTO electrodes were dried and stored under vacuum at room
temperature. Scotch tape was used to cover the working FTO electrode with only a
circular area of diameter of 7 mm exposed to the deposition solution (5 MM NiSO4 and
0.5 M thiourea in water). Nitrogen was bubbled through the electrolyte solution for at

least 20 min before deposition and maintained during the entire deposition process. The
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Figure 2-1. A typical potentiodynamic deposition for the preparation of Ni-S films on
FTO.
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potential of consecutive linear scans was cycled between —1.2 and 0.2 V vs. Ag/AgCI

(sat.) at a scan rate of 5 mV/s under stirring. Figure 2-1 shows typical cyclic
voltammograms of the deposition of a Ni-S film on FTO. Along the deposition process,
the area of the FTO working electrode exposed to the electrolyte solution gradually
turned black and a uniform film formed on the surface. After deposition, the Ni-S/FTO
electrode was removed from the deposition bath and rinsed with copious water gently.
Ni-S/FTO was dried under vacuum at room temperature overnight, followed by annealing
at 300 °C for 4 h under nitrogen, which was found to strengthen the mechanic stability of
the deposited film attached to FTO. The prepared Ni-S/FTO electrodes were always
stored under vacuum at room temperature prior to electrochemical experiments.
1-3. Characterization of the Ni-S film

The scanning electron microscopy (SEM) image of a typical Ni-S/FTO electrode
is displayed in Figure 2-2a, showing nearly complete coverage of the Ni-S film on FTO.

No regular crystalline particles or aggregates were observed. The presence of nickel and
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Figure 2-2. SEM images of the Ni-S films before (a) and after (b) a 1 h electrolysis in pH
7 phosphate buffer at —0.689 V vs. SHE. The post-electrolysis Ni-S film displays a
rougher and more porous surface compared to the pre-electrolys.
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sulphur in the deposited film were confirmed by energy dispersive X-ray spectroscopy

(EDS), Figure 2-3. The signals of Sn, O, Si, and F are attributed to the FTO-coated glass
substrate. The powder X-ray diffraction (XRD) pattern of Ni-S/ FTO is compared to that
of a blank FTO as shown in Figure 2-4. All the XRD peaks are due to the presence of
FTO, whereas no unique diffraction was noticed for the Ni-S film. Hence, it is concluded
that the Ni-S film is amorphous in nature. Elemental analysis via inductively coupled
plasma optical emission spectrometry (ICP-OES) for four Ni-S/FTO samples prepared
with different surface areas indicates that the average mass loading of Ni is 81.50 pg/cm?
and the Ni/S ratio is close to 1.55 (Table 2-1).

Table 2-1. ICP-OES data of four Ni-S/FTO samples.

Sample Area (cm?) | Ni (umol) S (umol) [Ni] (ng/cm?) Ni/S
1 0.385 0.5479 0.3845 83.61 14

2 0.735 1.0005 0.7884 79.89 1.25

3 0.750 1.0601 0.6443 82.96 1.65

4 0.750 1.0165 0.5443 79.55 1.85
Average 81.50 1.55

1-4. Catalytic activity of the Ni-S film

The HER catalysis of the Ni-S film was first evaluated in neutral water. Figure 2-
5a shows the polarization curve of Ni-S/FTO in pH 7 phosphate buffer at a scan rate of 2
mV/s. The polarization curve of a blank FTO electrode is also included as a comparison.
It is apparent that the blank FTO did not show any HER catalytic activity until —-0.95 V
vs. SHE, however a catalytic current was observed for Ni-S/FTO beyond —0.55 V vs.

SHE (Figure 2-5b). Further scanning towards negative potential produced a dramatic
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phosphate buffer (scan rate: 2 mV/s), and (c) Tafel plot of Ni-S/FTO (black solid) with its
linear fitting (red dotted) in the region of —0.55 to —0.65 V vs. SHE.

increase in current density, accompanied by vigorous growth and release of hydrogen
bubbles from the electrode surface. To reach current densities of 1 and 10 mA/cm?, the
Ni-S/FTO electrode required overpotentials of —227 and —330 mV, respectively. These
values compare favorably with other solid-state earth-abundant HER catalysts at pH 7.6}
[°1 Notably, the linear fitting of the Tafel plot (Figure 2-5c) rendered a Tafel slope of 77
mV/dec, which is among the smallest Tafel slopes obtained for non-noble metal HER
catalysts in neutral water.[®! [¥1 For instance, the MoS; film showed a Tafel slope of 86
mV/dec at pH 7, and the first-row transition metal doping in MoS: did not decrease the
Tafel slope (87-96 mV/dec).* An electrodeposited nickel hydroxide/oxide film was

reported to be active for hydrogen evolution catalysis, however it required an
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overpotential of —452 mV to reach 1.5 mA/cm? with a much larger Tafel slope (226

mV/dec) in a borate buffer (pH 9.2).[1 Although the Co-S film prepared in a similar
manner exhibited a better onset overpotential than the Ni-S film, the former possessed a
larger Tafel slope (93 mV/dec).["]

It was reported that three principal steps are involved in the hydrogen evolution
reaction: VVolmer (discharge), Tafel (recombination), and Heyrovsky (desorption)
steps.[*Y Depending on which one is the limiting step, the Tafel slope could be 29, 38, or
116 mV/dec, respectively. The deviation of the 77 mV/dec slope of the Ni-S film from
these three principal values indicates the complexity of the hydrogen evolution
mechanism of this system.

We next investigated the Faradaic efficiency of the Ni-S film in HER catalysis
through a chronopotentiometry experiment maintaining a catalytic current of 2 mA for
2.5 h. As shown in Figure 2-6, the increasing amount of generated hydrogen was
measured by gas chromatography and compared with the theoretical amount assuming
that all the passed charge was used to produce H.. The close match of the measured and
calculated hydrogen volume demonstrates a 100% Faradaic efficiency of Ni-S/FTO in
HER electrocatalysis. Given the average loading mass of Ni (81.5 pg/cm?), the mole of
Ni (0.534 pmol) in the Ni-S film is only ~0.5% of the mole of hydrogen (0.1 mmol)
produced during the 2.5 h electrolysis.

In order to assess the long-term stability of the Ni-S film for HER catalysis, an
extended electrolysis was carried out. Figure 2-7a presents the accumulated charge of Ni-
S/FTO in pH 7 phosphate buffer at —0.700 V vs. SHE for 100 h. A nearly linear charge

accumulation over time clearly demonstrates the robust durability of the Ni-S film for
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HER electrocatalysis, which is corroborated by the steady current over the entire course

(Figure 2-7a, inset). It should be noted that a blank FTO electrode only generated
negligible charge build-up under the same conditions. Calculations from the average

loading mass of Ni (Table 2-1) and passed charge during the 100 h electrolysis resulted in
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Figure 2-6. (a) Gas chromatograms of generated H> during a 2.5 h chronopotentiometry
experiment of Ni-S/FTO at 2 mA in pH 7 phosphate buffer. (b) Overlay of the measured
H2 volume (red) from gas chromatography every 30 min and the calculated H> volume
(black) based on the assumption that all the passed charge during the electrolysis was
used to produce Ho.
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a turnover number of 925 mole H, per mole Ni. It should be noted that this value only

represents an underestimated activity of the Ni-S film, since catalysis is expected to occur
at the active sites on the surface. From the very stable catalytic current over the entire
electrolysis, it is highly anticipated that the Ni-S film will maintain its catalytic activity

for a much longer duration than 100 h.
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Figure 2-7. Long-term controlled potential electrolysis of Ni-S/FTO (solid line) in (a) 1.0
M phosphate buffer of pH 7 at —0.700 V vs. SHE and (b) filtered Great Salt Lake water at
—0.959 V vs. SHE. The insets in (a) and (b) show the corresponding current over time.
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Given the low cost and wide availability, natural water is an ideal substrate for

water splitting. A natural water sample collected from the Great Salt Lake was filtered
through a medium frit to remove insoluble particles and directly used as an electrolyte
solution. As depicted in Figure 2-7b, a long-term electrolysis of the Ni-S film was
conducted in the Great Salt Lake water at —0.959 V vs. SHE over 50 h. Despite an initial
current decrease during the first few hours, the catalytic current stabilized and persisted
for the rest of the period (Figure 2-7b, inset). Hydrogen formation was confirmed by gas
chromatography. A 30 h electrolysis of a blank FTO electrode did not generate an
appreciable amount of hydrogen under the same conditions, implying that the species in
the Great Salt Lake water were not able to form in situ HER catalysts that can compete
with the Ni-S film. Overall, these results demonstrate that the Ni-S film is a competent
and robust HER catalyst even in natural water. Such a remarkable robustness of the Ni-S
film prompted us to explore its catalytic performance under extreme conditions. Since the
majority of solid-state HER catalysts reported recently were studied in strong acidic
media, we first investigated the HER catalysis of Ni-S/FTO in 0.5 M H2SO4. As shown in
Figure 2-8, Ni-S/FTO was able to reach catalytic current densities of 1, 10, and 20
mA/cm? at overpotentials of —150, —213, and —243 mV, respectively. A linear fitting of
its Tafel plot resulted in a Tafel slope of 52 mV/dec (Figure 2-8, inset). An electrolysis of
Ni-S/FTO at —0.168 V vs. SHE was conducted for 90 min (Figure 2-9). The catalytic
current decreased during the first half hour, followed by stabilization during the
following hours. The initial decrease was likely due to the dissolution and/or detachment

of the catalyst film from the FTO electrode.
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Figure 2-8. Polarizations of Ni-S/FTO (dotted) and blank FTO (solid) in 0.5 M H2S04 at
a scan rate of 2 mV/s. Inset shows the corresponding Tafel plot and slope of Ni-S/FTO.
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Figure 2-9. Controlled potential electrolysis shows the accumulated charge vs. time for
Ni-S/FTO in 0.5 M H2SO4 with an applied potential of —0.168 V vs. SHE. Inset shows
current vs. time during the electrolysis.
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We next assessed the HER catalytic performance of the Ni-S film in 1.0 M KOH.

A catalytic current density of 20 mA/cm? was achieved at —1.05 V vs. SHE with a Tafel
slope of 88 mV/dec (Figure 2-10). A 7 h electrolysis of Ni-S/FTO at —1.05 V vs. SHE
afforded an essentially linear charge build-up with no current decrease during the entire
period (Figure 2-11). It demonstrates the great stability of Ni-S/FTO in strong basic
media. Based on the aforementioned experimental results, the Ni-S/FTO can act as an

excellent HER catalyst under neutral, acidic, and alkaline conditions with remarkable

robustness.
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Figure 2-10. Polarizations of Ni-S/FTO (dotted) and blank FTO (solid) in 1.0 M KOH at
a scan rate of 2 mV/s. Inset shows the corresponding Tafel plot and slope of Ni-S/FTO.
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Figure 2-11. Controlled potential electrolysis shows the accumulated charge vs. time for

Ni-S/FTO in 1.0 M KOH at an applied potential of —1.05 V vs. SHE. Inset shows current
vs. time during the electrolysis.

During the electrocatalytic studies of the Ni-S film, an activation process was
observed. As shown in Figure 2-12, consecutive cathodic scans led to an increase in
catalytic current and a stabilized current density was achieved after roughly 9 to 10 scans.
To investigate the catalyst properties before and after electrochemical experiments, a
controlled potential electrolysis of a freshly prepared Ni-S/FTO electrode was conducted
at —0.689 V vs. SHE for 1 h. Electric impedance spectra (EIS) of the Ni-S film before and
after the 1 h electrolysis are compared in Figure 2-13. The Nyquist plots indicate that
there was no substantial resistance change of the catalyst film, showing a slight increase
from 100 to 110 Q. Therefore, resistance change can be ruled out as a cause of the

enhanced activity.
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Figure 2-12. Consecutive nine polarizations of Ni-S/FTO in 1.0 M phosphate buffer at
pH 7 (scan rate: 2 mV/s). The black curve is for a blank FTO electrode under the same
condition.

-50
-40 -
L atte,
[ ]
. ..n'l.' ..
g 30 o+ e
i, L . a ®
o . “ %
E 201 . .
a L
L L] f‘ L]
10 f 5
n } | L | } | 3 1 L |\|\| L
20 40 60 80 100 120 140 160
Re(Z) (£1)

Figure 2-13. Nyquist plots of Ni-S/FTO before (black) and after (red) the 1 h electrolysis.
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It has been reported that cyclic voltammetry at non-Faradaic potentials is able to

probe the electrochemical double layer as a means for estimating the effective electrode
surface area.[*? By plotting the difference in current density between the anodic and
cathodic scans (Aj = ja— jc) at a certain overpotential against the scan rate, a linear
relationship could be obtained. Fitting these data to a straight line enables the extraction
of the geometric double layer capacitance (Cai), which is known to be proportional to the
effective electrode surface area. The extracted slopes of these fitting lines allow a
comparison of the relative surface areas of electrodes with different morphologies,
especially when these electrodes consist of the same material. Figure 2-14a and b present
the cyclic voltammograms of a Ni-S/FTO electrode before and after the 1 h electrolysis in

the non-Faradaic region of —0.26 to —0.16 V vs. SHE. As increased accordingly. Depicted
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Figure 2-14. Cyclic voltammograms of Ni-S/FTO in the non-Faradaic region before (a)
and after (b) a 1 h electrolysis at —0.689 V vs. SHE in pH 7 phosphate buffer, and (c)
scan rate dependence of the current densities of the pre- (circle) and post- (triangle)
electrolysis Ni-S films at —0.21 V vs. SHE.
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in Figure 2-14c are the plots of Aj vs. scan rate. The calculated capacitance of the post-

electrolysis Ni-S film is 455.7 uF, nearly 34 times that before electrolysis (13.5 pF),
which indicates that the effective surface area of the post-electrolysis film is nearly 34
times that of the pre-electrolysis sample. This result is consistent with the rougher and
more porous surface of the Ni-S film after electrolysis (Figure 2-2b) compared to a fresh
Ni-S film (Figure 2-2a). A larger surface area is able to provide more active sites for the
hydrogen evolution reaction, leading to increased catalytic current density. Therefore, the
observed activation process is probably due to the enhanced specific surface area
resulting from surface reorganization under electrochemical conditions.
1-5. Composition of the Ni-S film

To further probe the surface composition of the Ni-S film, X-ray photoelectron
spectroscopy (XPS) was conducted (Figure 2-15). Figure 2-15a includes the XPS survey
spectra of the Ni-S films before and after the same 1 h electrolysis. Before electrolysis,
all the observed peaks can be assigned to anticipated elements, including Ni and S, in Ni-
S/FTO. The Sn 3d and 3p peaks are attributed to the FTO substrate. It is worth noting that
no Pt and/or Ag peaks were detected, indicating that Ni-S/FTO is free of noble metal
impurities. The high-resolution region of Ni 2p spectra (Figure 2-15b) shows peaks at
853.1 and 870.3 eV, corresponding to Ni 2ps2 and 2p1, respectively.[*®! The shoulder
around 855-860 eV implies the presence of Ni(OH)2 and NiSO4.[*¥1 XPS fitting of the Ni
2p32 peak of the pre- and post-electrolysis samples resulted in similar binding energies
(Figure 2-16). For instance, the fitted peak at 853.04 eV of the post-electrolysis sample is
similar to those reported for NisSz,[ NiS,* and NiS,.[*% The similarity in the binding

energy of the Ni 2ps2 peak of different nickel sulfides is known.™*® The process giving
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rise to the Ni 2ps2 peak is mainly of metal (Ni) character, with little contribution from the

surrounding ligands. This also explains why it is close to that of Ni metal (852.5 + 0.2
eV).[*% Therefore, we cannot solely rely on the binding energy of the Ni 2ps/2 peak to
determine the identity of nickel sulfide in the Ni-S film. Whereas, the simulated peaks at
854.73 and 857.00 eV can be assigned to Ni(OH), and NiSO4, respectively.™*3 Spectral
fitting of the high resolution region of the S 2p signal (Figure 2-17) resulted in a doublet

of 162.31 and 163.51 eV (161.82 and 163.00 eV for the pre-electrolysis sample),

corresponding to S 2pizand 2psy2, respectively.
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Figure 2-15. XPS spectra of the Ni-S films before (black) and after (red)a 1 h
electrolysis at —0.689 V vs. SHE in pH 7 phosphate buffer: (a) survey, (b) Ni 2p region,
and (c) S 2p region.
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Figure 2-16. XPS spectra and fittings of Ni 2p of Ni-S/FTO before (a) and after (b) the 1

h electrolysis.
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Figure 2-17. XPS spectra and fittings of S 2p of Ni-S/FTO before (a) and after (b) the 1 h

electrolysis.
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In order to gain more insights into the atomic structure of the bulk Ni-S film, X-

ray absorption spectroscopy (XAS) was carried out. The Ni K-edge X-ray absorption
near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS)
spectra of a Ni-S film before and after the 1 h electrolysis are shown in Figure 2-18a and
c, respectively. The XANES spectrum of the post-electrolysis sample is almost identical
to that of the pre-electrolysis counterpart. The Ni K-edge XANES spectrum of Ni(OH): is

also included in Figure 2-18a (blue trace) as a comparison. The drastic difference in the
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Figure 2-18. Ni K-edge (a) and S K-edge (b) XANES spectra and Ni EXAFS spectra (c)
of the Ni-S films before (black) and after (red) a 1 h electrolysis at —0.689 V vs. SHE in
pH 7 phosphate buffer. The blue curve in () is the Ni K-edge XANES spectrum of
Ni(OH). as a comparison.
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spectral shape and energy of the Ni-S film and Ni(OH). unambiguously rules out the

latter as a major component of the film. In addition, compared with the reported XANES
spectra of Ni,[*1 NiO,*1 NiS, 128 and NiS,[*¥! the appreciable involvement of these
species in the Ni-S film can also be excluded. In fact, the Ni K-edge XANES spectrum of
the Ni-S film resembles that of NisS very well, which is further supported by the Ni
EXAFS spectra (Figure 2-18¢).12"M19 NisS, (heazlewoodite) is one of the stable forms of
nickel sulphides.[?® Each nickel atom in crystalline NisSz occupies a pseudotetrahedral
site in an approximately body-centered cubic sulfur lattice.”?! The N3S; units are
interconnected through short Ni-S and Ni-Ni distances, 2.2914(5) and 2.5319(9) A,
respectively, within the NisS; unit. However, the Ni-S and Ni-Ni distances are even
shorter between Ni3S; units, being 2.2534(5) and 2.4966(4) A, respectively. Figure 2-19
displays the crystal structure of NizS. and highlights its trigonal bipyramidal core. Ni
EXAFS linear combination fitting of the post-electrolysis Ni-S film (Table 2-2) suggests
that its major component is NizS, with a small contribution of Ni(OH). (8%). The bond
distances of Ni-S (2.27(0.04) A) and Ni-Ni (2.51(0.04) A) resulting from the EXAFS
fitting well match those in the crystal structure of NisS2. The short Ni-Ni distances in
NisS2 have been proposed to be indicative of metal-metal bonding.?°! Indeed, the fitted
Ni-Ni distance in the Ni-S film (2.51 A) is very close to that in metallic nickel (2.49 A).
This result is also consistent with the close binding energy of the Ni 2ps/; peak of the Ni-
S film (Figure 2-18b) and Ni metal.l*3 Overall, the combination of the XPS and XAS
results, together with the ICP-OES data, unambiguously demonstrates that NiszS; is the

major composition of the Ni-S film.



Figure 2-19. (a) Crystal structure of NisS, viewed through the body diagonal direction;
(b) selected region of the NizS; structure highlighting its trigonal bipyramidal core

(green: nickel; yellow: sulfur).

Table 2-2. Ni EXAFS curve fitting parameters of the post-electrolysis film (So was fixed
to 0.83. N is the coordination number and o? is the Debye-Waller factor. AE is the

EXAFS threshold energy. R factor (%) indicates the goodness of the fit. Bold letters are
the fixed parameters. Values in parentheses indicate uncertainties.).

Fit NiOx:NiSx | Path R (A) N o? (A2 R (%)
Ni(OH), 0.08 | NiO | 2.03(0.03) | 6 |0.015(0.005)
(0.10) | NiNi | 3.08(0.05) | 6 |0.003 (0.005)
! NiS | 2.27(0.04) | 4 [0.007 (0.002) 7.5
Ni.g, | 092 | NiNi | 2.51(0.04) | 4 |0.009 (0.002)| AE=-4.1
%°21(0.10)| NiNi | 3.76(0.11) | 8 |0.023(0.018)
NiNi | 4.04(0.06) | 6 |0.011(0.004)
NiS | 2.24(0.04) | 4 [0.009 (0.002)
) Ni-S L | NiNi | 2.48(0.03) | 4 [0.008 (0.001) 8.7
392 NiNi | 3.78(0.12) | 8 |0.025(0.016)| AE=-9.9
NiNi | 4.00(0.05) | 6 |0.011(0.003)
Ni(OH), 0.11 | NiO | 2.03(0.02) | 6 |0.002 (0.001)
(0.12)| NiNi | 3.14(0.04) | 6 |0.003(0.005) 134
3 0go | NiS [ 232(0.01) | 6 [0.006(0.00)| T,
NiS, (0'12) NiS | 3.53(0.08) | 6 |0.014(0.012) '
! NiNi | 4.12 (0.05) | 12 |0.017 (0.006)
NiS | 2.32(0.01) | 6 [0.007 (0.001) 17
4 NiS, 1 | Nis | 337(031) | 6 |0.039(0.058)| ,~T¢
NiNi | 4.13(0.04) | 12 |0.018 (0.006) '
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1-6. Conclusion

In summary, we have demonstrated that amorphous Ni-S films prepared by facile
potentiodynamic deposition were efficient, robust, and inexpensive HER catalysts in a
variety of aqueous media, ranging from strong acidic, neutral, strong basic, to natural
water. The catalyst possesses a Tafel slope of 77 mV/dec, a Faradaic efficiency of 100%,
and superior stability for at least 100 h at pH 7. An initial activation process was
observed, which was likely due to the increased surface area of the Ni-S film resulting
from surface reorganization under electrocatalytic conditions. Finally, surface and
structural characterizations via SEM, EDS, ICP-OES, XRD, XPS, and XAS concluded
the amorphous nature of the Ni-S film with a major composition of NisS;, which was
preserved during the electrochemical experiments.
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CHAPTER IlI

COBALT PHOSPHIDES AS COMPETENT ELECTROCATALYSTS FOR OVERALL
WATER SPLITTING®

1-1. Introduction

Electrocatalytic water splitting, which consists of Hz and Oz evolution reactions
(HER and OER), has attracted increasing interest in the last few years because of its
critical importance in the context of renewable energy research.l! Most efforts in this
field are devoted to developing HER catalysts under strongly acidic conditions for
proton-exchange membrane electrolyzers whereas OER catalysts under strongly basic
conditions for alkaline electrolyzers.

Besides aforementioned transition-metal sulfides, transition-metal phosphides,
have shown catalytic performance for HER in strongly acidic electrolytes. In 2013,
Schaak et al. reported the exciting HER activity of Ni2P nanoparticles under acidic
conditions.’ When loaded on titanium foil, these Ni2P nanoparticles showed excellent
HER performance in 0.5 M H2SO, with an overpotential of only =130 mV to reach a
catalytic current density of 20 mA/cm? plus robust stability. It has been revealed that the
Volmer step was the rate-determining step based on X-ray absorption fine structure
spectroscopy (XAFS) and density functional theory (DFT) calculations for hydrogen
adsorption over the (001) and (002) facets of Ni,P nanoparticles.®! A similar thermolysis

method was also applied to prepare hollow CoP nanoparticles.l*! The resulting CoP

¢ Adapted with permission from [Nan Jiang, Bo You, Meili Sheng, Yujie Sun, Angew.
Chem. Int. Ed. 2015, 54, 6251-6254.]. Copyright 2015. WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim. Reproduced by permission of WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim, http://onlinelibrary.wiley.com/doi/10.1002/anie.201503447/abstract.
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nanoparticles exhibited even better performance than that of NizP, only requiring an

overpotential of -85 mV to afford a current density of 20 mA/cm?. Taking advantage of
the high conductivity and large surface area of carbon cloth, CoP nanowires anchored on
carbon cloth (CoP/CC) have been investigated for HER electrocatalysis.[®! Such a hybrid
CoP/CC cathode displayed a small onset overpotential of —38 mV and a decent Tafel
slope of 51 mV/dec. Similar synergistic HER activity of CoP nanoparticles decorated on
carbon nanotubes was reported by the same group.®! Recently, iron and copper
phosphides, such as FeP, Fe-P, and CusP, have also been explored for HER due to their
more abundance and hence lower cost.["]

On the other hand, many innovative noble-metal-free OER catalysts based on the
oxides/hydroxides of cobalt,®! nickel,[®! manganese,*¥ iron,*! and copper™ have been
reported with mediocre to excellent OER catalytic activities under basic conditions.
Despite these advances, challenges for large-scale water splitting catalysis still exist. For
instance, to accomplish overall water splitting, it is necessary to integrate both HER and
OER catalysts in the same electrolyte. Unfortunately, the current prevailing approaches
often lead to inferior overall performance because of the incompatibility of the two types
of catalysts functioning under the same condition. Therefore, it is highly desirable to
develop bifunctional and low-cost electrocatalysts that are simultaneously active for both
HER and OER in the same electrolyte. As ionic conductivity is usually higher at extreme
pH values than under neutral conditions and the overpotential loss of OER is much larger
than that of HER, plus most earth-abundant OER catalysts are vulnerable in strongly
acidic media, we are particularly interested in developing competent bifunctional water

splitting catalysts under strongly alkaline conditions.
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To increase the portfolio of bifunctional electrocatalysts for overall water

splitting, both transition metal chalcogenides and phosphides have been reported with
bifunctionality for overall water splitting very recently.l*® For example, Hu’s group
demonstrated that Ni2P, an excellent HER catalyst aforementioned, was also highly
active for OER.[*3 The Ni,P nanoparticles can serve as both cathode and anode catalysts
to generate 10 mA/cm? at 1.63 V for an alkaline water electrolyzer. The high activity is
attributed to the core-shell (Ni2P/NiOx) structure of the transformed catalyst under anodic
conditions. Recently, Shalom et al. synthesized NisP4 film by direct phosphidation of a
commercial Ni foam and demonstrated its outstanding HER and OER activity under basic
conditions.[**l For overall water splitting, the cell voltage to afford 10 mA/cm? was 1.70
V for NisP4 films. Sun et al. employed a similar method to obtain NiSe nanowire film on
a Ni foam (NiSe/NF) by a hydrothermal treatment of Ni foam with NaHSe as the Se
source.[3! Herein, we describe an electrodeposited cobalt-phosphorous (Co-P) film
which could be directly utilized as electrocatalysts for both HER and OER under strongly
alkaline conditions (1.0 M KOH).
1-2. Preparation of the Co-P film

Prior to electrodeposition, copper foils were rinsed with water and ethanol
thoroughly to remove residual organic species. For linear sweep voltammetry
experiments, a circular copper foil with a 3 mm diameter was prepared and pasted on the
rotating disk glassy carbon electrode, then the assembled electrode was exposed to the
deposition solution (50 mM Co0SOQOs, 0.5 M NaH2PO2, and 0.1 M NaOAc in water). A
platinum wire was used as the counter electrode and a Ag/AgCl (sat.) electrode as the

reference electrode. Nitrogen was bubbled through the electrolyte solution for at least 20
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min prior to deposition and maintained during the entire deposition process. The potential

of consecutive linear scans was cycled 15 times between —0.3 and —1.0 V vs. Ag/AgCl at
a scan rate of 5 mV/s under stirring and a rotation rate of 500 rpm. After deposition, the
assembled electrode was removed from the deposition bath and rinsed with copious water
gently. The prepared Co-P film can be directly used to collect its polarization curves or
stored under vacuum at room temperature for future use. For samples prepared for
controlled potential electrolysis, a copper foil was directly used as the working electrode
with a geometric area of 0.3 cm? exposed to the electrolyte. The deposition potential
window and cycle number are the same as aforementioned. A typical potentiodynamic

deposition of Co-P films is shown in Figure 3-1.

Current (mA)

-10 -09 -08 -07 -06 -05 -04 -03
Potential vs Ag/AgCl (V)

Figure 3-1. A typical potentiodynamic deposition for the preparation of Co-P films on
copper foil (scan rate: 5 mV/s).
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1-3. Characterization of the Co-P film

The SEM images of the as-prepared Co-P film showed nearly complete coverage
of the rough film on copper foil (Figure 3-2a). No crystalline particles or aggregates were
observed. The cross section SEM image revealed the thickness of the film in 1-3 pum
(Figure 3-2a inset). The Co 2p XPS spectrum (Figure 3-2b) displays two peaks at 778.3
and 793.4 eV, corresponding to the Co 2ps2 and Co 2pu/2 binding energies, respectively.!®
These values are extremely close to those of metallic cobalt.'> The P 2p XPS spectrum
(Figure 3-2c) exhibits a dominant peak at 129.5 eV, which can be attributed to the
phosphide signal.*®! A broad feature at approximately 133.6 eV is assigned to
phosphate.[*® The XPS survey of the as-prepared film (Figure 3-3) showed all the
anticipated elements. In addition, elemental analysis of the as-prepared Co-P film gave
the amount of Co and P as 2.52 and 0.19 mg/cm?, respectively, with a molar ratio of 6.98

(Table 3-1).

(b) Co 2912

I Co 2py,

" 1 " 1 " 1 A 1 " 1 i
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Figure 3-2. (a) SEM image of an as-prepared Co-P film. Inset: the cross section of the
Co-P film. Scale bars are both 5 pm. (b and ¢) XPS spectra of an as-prepared Co-P film:
(b) Co 2p region and (c) P 2p region.
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Figure 3-3. XPS survey of the as-prepared Co-P film.

Table 3-1. ICP-OES data of the as-prepared, after 2 h HER electrolysis, and after 2 h
OER electrolysis Co-P/Cu films.

Sample Area (cm?) | [Co] (mg/cm?) | [P] (mg/cm?) | Co/P mole ratio
Fresh prepared 0.3 2.52 0.19 6.89
After 2 h HER 0.3 2.48 0.12 10.5
After 2 h OER 0.3 2.47 0.12 9.74

1-4. Catalytic activity of the Co-P film

We first evaluated the HER activity of the Co-P film in strong alkaline solution
(Figure 3-4). It is evident that the blank copper foil did not show any HER catalytic
activity before —0.3V vs. RHE. In contrast, a rapid cathodic current rise was observed for
Co-P beyond —50 mV vs. RHE (Figure 3-4a inset). Further scanning towards negative
potential produced a dramatic increase in current density along with vigorous evolution
of Hz bubbles from the electrode surface. The Co-P film required an overpotential of only
—94 mV to reach a current density of 10 mA/cm?. Such a low overpotential requirement

compares favorably to other reported HER catalysts at pH 14 (Table 3-2). Remarkably,
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Figure 3-4. (a) Polarization curves of Co-P (red), Pt/C (blue), and blank Cu foil (black) in
1 M KOH at a scan rate of 2 mV/s and a rotating rate of 2000 rpm (Inset: expanded
region around the onsets of the polarization curves); (b) corresponding Tafel plots of Co-
P film (red) and Pt/C (blue) with their associated linear fittings (dotted lines); (c) long-
term controlled potential electrolysis of Co-P (solid) and blank Cu foil (dotted) in 1 M
KOH at an overpotential of —107 mV (Inset: the corresponding current change over time
of Co-P (bottom trace) and blank Cu foil (top trace) during the electrolysis); (d) SEM
image of Co-P after 2 h H, evolution electrolysis at = —-107 mV.

the Co-P film was able to produce a catalytic current density of 2000 mA/cm? within an
overpotential of —227 mV. The linear fitting of its Tafel plot (Figure 3-4b) gave a Tafel
slope of 42 mV/dec, which is among the smallest Tafel slopes of reported HER catalysts
in alkaline media (Table 3-2). Although Pt-C (loading amount: 1 mg/cm?) exhibited a

very small catalytic onset potential, its Tafel slope (108 mV/dec) was significantly larger
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Table 3-2. Comparison of selected non-precious HER electrocatalysts in alkaline media.

Electrolyt J »| m |Tafelslop
Catalysts e (mA)/cm (mV) | (mV/dec) Reference
10 94
Co-Pfilm |1 M KOH 20 115 42 This work
100 158
10 209 J. Am. Chem. Soc. 2014, 136,
CoP/CC 1 M KOH 100 >500 129 7587,
Co-SIFTO |IMKOH| 1 |48 | na | 7Am-Chem. Soc. 2013, 135,
17699.
10 370 Angew. Chem. Int. Ed. 2014,
Co-NRCNTs |1 M KOH 20 >450 N/A 53 4372,
Ni,P 1 M KOH 20 205 N/A J. Am. Chem. Soc. 2013, 135,
9267.
- 0.1M Angew. Chem. Int. Ed. 2012,
Ni/Ni(OH), KOH 10 >300 128 51, 12495,
0.1M Angew. Chem. Int. Ed. 2012,
MoB KOH 1025 59 51, 12703,
M0S,../FTO |1 M KOH 10 310 N/A Angew. Chem. Int. Ed. 2015,
54, 667.
Amorphous 0.1M .
MoS, KOH 10 540 N/A Chem. Sci. 2011, 2, 1262.
FeP NAs/CC |1 M KOH 10 218 146 ACS Catal. 2014, 4, 4065.

than that of the Co-P film. Therefore, beyond —167 mV vs. RHE, the catalytic current

density of Co-P surpassed that of Pt-C. Additionally, the Co-P film also exhibited

superior long-term stability. A 24 h controlled potential electrolysis at n = =107 mV

showed a nearly linear charge accumulation and steady current over the entire course of

electrolysis (Figure 3-4c). The blank copper foil generated negligible charge build-up

under the same conditions.
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To probe the morphology and composition of the Co-P film after HER

electrocatalysis, the SEM and XPS results of a post-HER Co-P film were collected. As
shown in Figure 3-4d, the film still maintained a uniform coverage on the copper foil and
no apparent clusters or aggregates were observed. Its Co 2p XPS spectrum showed two
peaks at 793.2 and 778.2 eV (Figure 3-5a), corresponding to Co 2pz/> and Co 2p1. states,
respectively. The similarity of the Co 2p peaks of the post-HER Co-P film compared to
those of the as-prepared one (Figure 3-2b) implied the major composition of the film
preserved as metallic cobalt during HER. Furthermore, a peak at 129.3 eV was observed
from the P 2p XPS spectrum of the post-HER sample (Figure 3-5b); while the phosphate
peak at 133.6 eV originally observed for the as-prepared Co-P film (Figure 3-2c¢) was
absent. Its absence is likely due to the dissolution of cobalt phosphate under cathodic
condition. As shown in Figure 3-6, the XPS survey of as-prepared (Figure 3-3) and post-
HER Co-P films exhibited similar, implying their similar composition. Elemental
analysis of the post-HER film gave Co and P amounts of 2.48 and 0.12 mg/cm? with a

Co/P ratio of 10.5 (Table 3-1).

(a) post-HER Co 2ps;, (b) post-HER P 2p

I Co 2pp; I

PR T TN TN I — 1 | 1
post-OER Co30, 28%22‘) post-OER POx2p
Co30, 2pyp, 32

/

Co 2pyj;
PR (NN RN T S (NN TR SN NSO AT S ' 1 1 1 ] 1
810 805 800 795 790 785 780 775 770 138 136 134 132 130 128 126
Binding Energy (eV) Binding Energy (eV)

Figure 3-5. XPS spectra of (a) Co 2p and (b) P 2p regions of Co-P films after HER (top)
or OER (bottom) electrolysis.
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Figure 3-6. XPS survey of the post-HER Co-P film.

We next assessed the catalytic activity of the Co-P film for OER in the same
electrolyte (Figure 3-7). As expected, a blank copper did not show appreciable anodic
current before 1.7 V vs. RHE. The OER catalytic current density of the Co-P film
increased dramatically beyond 1.53V vs. RHE (Figure 3-7a inset). It could reach current
densities of 10, 100, and 500 mA/cm? at n) = 345, 413, and 463 mV, respectively, lower
than those of IrO2 and many other reported OER catalysts (Table 3-3). Linear fitting of its
Tafel plot resulted in a Tafel slope of 47 mV/dec (Figure 3-7b). As one of the state-of-
the-art OER catalysts, IrO (loading amount: 1 mg/cm?) was able to catalyze OER at a
lower onset of approximately 1.50 V vs. RHE, however its performance was quickly
exceeded by that of the Co-P film beyond 1.58 V vs. RHE. In fact, the Tafel slope of Co-
P (47 mV/dec) is even lower than that of IrO2 (55 mV/dec), demonstrating more
favorable OER kinetics of the Co-P. Besides high OER activity, the Co-P film also

features excellent stability, as revealed by a 24 h controlled potential electrolysis at n =

343 mV (Figure 3-7¢).
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Figure 3-7. (a) Polarization curves of Co-P (red), IrO2 (blue), and blank Cu foil (black) in
1 M KOH at a scan rate of 2 mV/s and a rotating rate of 2000 rpm (Inset: the expanded
region around the onsets of the polarization curves of Co-P and IrO> ; (b) corresponding
Tafel plots of Co-P (red) and IrO2 (blue) with their associated linear fittings (dotted
lines); (c) long-term controlled potential electrolysis of Co-P (solid) and blank Cu foil
(dotted) in 1 M KOH at an overpotential of 343 mV (Inset: the corresponding current
change over time of Co-P (solid) and blank Cu foil (dotted) during the electrolysis); (d)
SEM image of Co-P after a 2 h OER electrolysis at n = 343 mV.

The SEM image (Figure 3-7d) of the post-OER Co-P film indicates it contains
large nanoparticle aggregates, in sharp contrast to the rough and porous morphology of
the as-prepared and post-HER samples (Figure 3-2a and Figure 3-4d). An intense O 1s
peak was observed in the XPS survey spectrum of the post-OER film (Figure 3-8), which

demonstrated a large concentration of O. The Co 2p spectrum displayed two peaks at
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Table 3-3. Comparison of selected non-precious OER electrocatalysts in alkaline media.

n (mV) at | Tafel slop
Catalysts |Electrolyte 10 mA/cm?| (mV/dec) Reference
Co-Pfilm (1.0 M KOH 345 47 This work
NiCo LDH 1.0 M KOH| 367 40 Nano Lett. 2015, 15, 1421.
Cu-N-
01MKOH| >770 N/A Nat. Commun. 2014, 5, 5285,
Clgraphene
CoCo LDH [1.0 M KOH| 393 59 Nat. Commun. 2014, 5, 4477.
003ggrm- 1.0MKOH| 310 67 Nat. Mater. 2011, 10, 780.
MnO,/Au |0.1 M KOH| >480 N/A  |J. Am. Chem. Soc. 2014, 136, 4920.
Ca,Mn,05/C|0.1 M KOH| 470 149 J. Am. Chem. Soc. 2014, 136,
14646.
C0,0,/NC |01 MKOH| 430 N/A | Angew. Cheméégg Ed. 2014, 53,
De-LiC00, |0.1 M KOH|  >400 50 Nat. Commun. 2014, 5, 4345.
CoMn LDH |1.0 M KOH 394 43 J. Am. Chem. Soc. 2014, 136,
16481.
. . 1.0M J. Am. Chem. Soc. 2013, 135,
NiFeOx film NaOH >350 N/A 16977,
CoO/NG |1.0 M KOH 340 71 Energy Environ. Sci. 2014, 7, 6009.
CoO, film [1.0 M KOH| 403 42 J. Am. Chem. Soc. 2012, 134,
17253,
0-MnO,-SF |0.1 MKOH| 490 77,5 J. Am. Chem. Soc. 2014, 136,
11452,
MnO, film [1.0 MKOH| 563 49 J. Am. Chem. Soc. 2012, 134,
17253,
. . 10M J. Am. Chem. Soc. 2013, 135,
NiFeO, film NaOH >350 N/A 16977,
Fe-Ni oxides|1.0 M KOH| >375 51 ACS Catal. 2012, 2, 1793.
Zn,C0s,0, |10 MKOH| 330 51 Chem. Mater. 2014, 26, 1889.
Ni,C0s,0,4 |1.0 M KOH| ~370 59-64 Adv. Mater. 2010, 22, 1926.
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780.7 and 796.3 eV (Figure 3-5a), which can be assigned to oxidized cobalt, Co30s4, plus

its satellite peaks at 786.3 and 802.7 eV.[*®] However, the metallic cobalt 2p peaks at
778.0 and 793.0 eV could still be well resolved. The P 2p spectrum showed a phosphate
peak at 133.2 eV (Figure 3-5b), whereas the original phosphide feature at 129.5 eV
disappeared completely. Taken together, it indicated that the original cobalt in the Co-P
film was partially oxidized to CozO4 and cobalt phosphate during OER. An OER
electrocatalyst with a metallic cobalt core and cobalt oxide/hydroxide shell was
reported.!™ Elemental analysis of the post-OER film resulted in the remaining amount of
Co and P as 2.47 and 0.13 mg/cm? with a Co/P ratio of 9.74 (Table 3-1), still similar to
those of the post- HER film.

Based on the results aforementioned, we anticipated that the Co-P film could act
as a bifunctional electrocatalyst for overall water splitting. Hence, a two-electrode
configuration was employed (Figure 3-9a). When the as-prepared Co-P films were used
as electrocatalysts for both anode and cathode (Co-P/Co-P couple), a catalytic current

was observed when the applied potential was larger than 1.56 V with a Tafel

Intensity (a.u.)

1 1 I 1 I 1 I 1 | 1 I 1 | 1 | 1 I 1 |
1100 1000 900 800 700 600 500 400 300 200 100 0
Binding Energy (eV)

Figure 3-8. XPS survey of the post-OER Co-P film.
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Figure 3-9. (a) Polarization curves of Co-P/Co-P (red), IrO./Pt-C (blue), Pt-C/Pt-C
(yellow), and IrO2/IrO2 (black) for overall water splitting in 1 M KOH at a scan rate of 2
mV/s (Inset: the expanded region around the onsets of those polarization curves); (b)
corresponding Tafel plots of Co-P/Co-P (red), IrO2/Pt-C (blue), Pt-C/Pt-C (yellow), and
IrO2/1IrO2 (black) and their associated linear fittings (dotted lines); (c) long-term
controlled potential electrolysis of Co-P/Co-P (red) and IrO2/Pt-C (blue) in 1 M KOH at
an overpotential of 400 mV (Inset: the corresponding current change over time of Co-
P/Co-P (red) and IrO2/Pt-C (blue)); (d) generated Hz and O2 volumes over time vs.
theoretical quantities assuming a 100% Faradaic efficiency for the overall water splitting
of Co-P/Co-P in1 M KOH at n =400 mV.

slope of 69 mV/dec. The rapid catalytic current density exceeded 100 mA/cm? at 1.744
V. When Pt-C or IrO2 (loading amount: 1 mg/cm? for both Pt-C and 1rO2) was used for
both electrodes (Pt-C/Pt-C or IrO2/IrO2 couple), much diminished catalytic current
densities were obtained with large Tafel slopes of 166 and 290 mV/dec, respectively.

Since Pt is well-established for HER and IrO- for OER, the integration of Pt-C on
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cathode and IrO2 on anode was expected to produce the excellent catalytic system.

Indeed, the IrO2/Pt-C couple was able to catalyze water splitting with an onset around
1.47 V (Figure 3-9a inset). However, the Tafel slope of 1rO./Pt-C is 91 mV/dec, larger
than that of Co-P/Co-P (69 mV/dec). Therefore, when the applied potential was higher
than 1.67 V, Co-P/Co-P was able to surpass IrO2/Pt-C in catalyzing overall water
splitting. In addition, the Co-P/Co-P couple maintained excellent stability as manifested
by the steady current change and nearly linear charge accumulation for a 24 h electrolysis
(Figure 3-9c). In fact, the integrated activity of IrO2/Pt-C was slightly inferior to that of
the Co-P/Co-P couple under the same conditions. Figure 3-9d indicates the produced H;
and O quantified by gas chromatography match the calculated amount based on passed
charge well and the volume ratio of Hz and O is close to 2, leading to a Faradaic
efficiency of 100%.
1-5. Conclusion

In conclusion, we have demonstrated that electrodeposited Co-P films could act as
bifunctional electrocatalysts for overall water splitting. The catalytic activity of the Co-P
films can rival the state-of-the-art catalysts, requiring n = —-94 mV for HER and n = 345
mV for OER to reach 10 mA/cm? with Tafel slopes of 45 and 47 mV/dec, respectively. It
could also be directly utilized as electrocatalysts for both anode and cathode with
superior efficiency, strong robustness, and 100% Faradaic yield. The understanding of
real-time composition and structural evolution of the films during electrolysis requires
future in situ spectroscopic study.
1-6. References

[1] (@) S. Chu, A. Majumdar, Nature 2012, 484, 294-303; (b) T. R. Cook, D. K.



[2]

[3]

[4]

[5]

[6]

[7]

56
Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, D. G. Nocera, Chem. Rev.

2010, 110, 6474-6502; (c) N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci.
U.S.A. 2006, 103, 15729-15735.

E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S.
Lewis, R. E. Schaak, J Am. Chem. Soc. 2013, 135, 9267-9270.

J. S. Moon, J. H. Jang, E. G. Kim, Y. H. Chung, S. J. Yoo, Y. K. Lee, J. Catal.
2015, 326, 92-99.

E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis, R. E. Schaak, Angew.
Chem. Int. Ed. 2014, 53, 5427-5430.

J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587-7590; (b)
Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asuru, X. Sun, Angew. Chem.
Int. Ed. 2014, 53, 6710-6714; (c) J. F. Callejas, C. G. Read, E. J. Popczun, J. M.
MaEnaney, R. E. Schaak, Chem. Mater. 2015, 27, 3769-3774.

Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asuru, X. Sun, Angew. Chem.
Int. Ed. 2014, 53, 6710-6714; (c) J. F. Callejas, C. G. Read, E. J. Popczun, J. M.
MaEnaney, R. E. Schaak, Chem. Mater. 2015, 27, 3769-3774.

(@) Y. Xu, R. Wu, J. Zhang, Y. Shi, B. Zhang, Chem. Commun. 2013, 49, 6656-
6658; (b) Y. Liang, Q. Liu, A. M. Asiri, X. Sun, Y. Luo, ACS Catal. 2014, 4,
4065-4069; (c) P. Jiang, Q. Liu, Y. Liang, J. Tian, A. M. Asiri, X. Sun, Angew.
Chem. Int. Ed. 2014, 53, 12855-12859; (d) J. F. Callejas, J. M. McEnaney, C. G.
Read, J. C. Cromption, A. J. Biacchi, E. J. Popczun, T. R. Gordon, N. S. Lewis,
R. E. Schaak, ACS Nano 2014, 8, 11101-11107; (e) Z. Huang, C. Lv, Z. Chen, Z.

Chen, F. Tian, C. Zhang, Nano Energy 2015, 12, 666-674; (f) J. Tian, Q. Liu, N.



[8]

[9]

[10]

[11]

[12]

57
Cheng, A. M. Asiri, X. Sun, Angew. Chem. Int. Ed. 2014, 53, 9577-9581.

(a) M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072-1075; (b) Q. S. Yin,J.
M. Tan, C. Besson, Y. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. 1.
Hardcastle, C. L. Hill, Science 2010, 328, 342-345; (c) F. Jiao, H. Frei, Energy
Environ. Sci. 2010, 3, 1018-1027.

(@) M. Dinca, Y. Surendranath, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2010,
107, 10337-10341; (b) M. A. Oliver-Tolentino, J. V.zquez-Samperio, A. Manzo-
Robledo, R. D. G. Gonz.lez-Huerta, J. L. Flores-Moreno, D. Ram.rez-Rosales, A.
Guzm.n-Vargas, J. Phys. Chem. C 2014, 118, 22432-22438.

(@) I. Zaharieva, M. M. Najafpour, M. Wiechen, M. Haumann, P. Kurz, H. R.
Dau, Energy Environ. Sci. 2011, 4, 2400-2408; (b) F. Song, X. Hu, J. Am. Chem.
Soc. 2014, 136, 16481-16484.

(a) J. Landon, E. Demeter, N. I'nog™ lu, C. Keturakis, I. E. Wachs, R. Vasic’, A. L.
Frenkel, J. R. Kitchin, ACS Catal. 2012, 2, 1793-1801; (b) R. D. L. Smith, M. S.
Privot, R. D. Fagan, Z. Zhang, P. A. Sedach, M. K. J. Siu, S. Trudel, C. P.
Berlinguette, Science 2013, 340, 60-63; (c) A. Indra, P. W. Menezes, N. R.
Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeif3er, P. Strasser, M.
Driess, J. Am. Chem. Soc. 2014, 136, 17530-17536; (d) D. Friebel, M. W. Louie,
M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M.-J. Cheng, D. Sokaras, T.-C.
Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Ngrskov, A. Nilsson, A.
T. Bell, J. Am. Chem. Soc. 2015, 137, 1305-1313.

(@) F. Yu, F. Li, B. Zhang, H. Li, L. Sun, ACS Catal. 2015, 5, 627-630; (b) J. Du,

Z. Chen, S. Ye, B. J. Wiley, T. J. Meyer, Angew. Chem. Int. Ed. 2015, 54, 2073-



[13]

[14]

[15]

[16]

[17]

58
2078.

(@) L. A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci. 2015, 8, 2347-
2351; (b) C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed.
2015, 54, 9351-9355.

M. Ledendecker, S. K. Calderon, C. Papp, H. P. Steinrtick, M. Antonietti, M.
Shalom, Angew. Chem. Int. Ed. 2015, doi: 10.1002/anie.201502438.

A. P. Grosvenor, S. D. Wik, R. G. Cavell, A. Mar, Inorg. Chem. 2005, 44, 8988-
8998.

F. H. Saadi, A. I. Carim, E. Verlage, J. C. Hemminger, N. S. Lewis, M. P.
Soriaga, J. Phys. Chem. C 2014, 118, 29294-29300.

S. Cobo, J. Heidkamp, P.-A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B.
Jousselme, V. lvanova, H. Dau, S. Palacin, M. Fontecave, V. Artero, Nat. Mater.

2012, 11, 802-807.



59
CHAPTER IV

CONCLUSION
1-1. Conclusion

This thesis starts with an introduction on the fundamental concepts and the current
status of electrocatalysts for overall water splitting. Water splitting with renewable
energy input to produce Hz and O has been widely considered as a promising approach
to alleviate our reliance on fossil fuels, match growing energy demands, and
simultaneously satisfy increasingly stringent environmental regulations because of the
clean nature of Hz as a fuel.! Recent years have witnessed the increasing popularity of
transition metal-based catalysts as competent H. and O, evolution catalysts, whose
activities rapidly approach those of platinum group benchmarks. Even within a relatively
short period of time, tremendous progress has been made in this field.[? Not only
catalysts need to be composed of inexpensive elements, they are also desirable to be
prepared at low energy cost. Besides the cost and activity of catalysts, the coupling of
HER and OER catalysts in the same electrolyte is mandatory to accomplish overall water
splitting. The current prevailing approaches often result in incompatible integration of the
two catalysts and lead to inferior overall performance. It remains a grand challenge to
develop bifunctional electrocatalysts active for both HER and OER.

In Chapter |1, I summarized our work on Ni-S films which were prepared by
facile potentiodynamic deposition. The Ni-S films could act as active HER catalysts in
aqueous media. Notably, the Ni-S films showed catalytic activity in water with a wide
range of pH values (0 to 14), as well as in natural water collected from the Great Salt

Lake. In pH 7 phosphate buffer, a current density of 60 mA/cm? could be achieved with a
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Tafel slope of 77 mV/dec and a Faradaic efficiency of 100%. A long-term bulk

electrolysis of the Ni-S film exhibited steady current over 100 h with no deactivation,
demonstrating its superior stability in neutral water. Moreover, an initial activation
process was observed, which is likely due to the increase in the effective surface area of
the Ni-S film under electrocatalytic conditions. A suite of characterization techniques,
including X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy
(XAS), were conducted to probe the composition and structure of the Ni-S film, revealing
that its major component was NisSz which was preserved under electrocatalytic
conditions.B!

To increase the portfolio of bifunctional electrocatalysts for overall water
splitting, we developed electrodeposited Co-P films which could be directly utilized as
electrocatalysts for both HER and OER under strongly alkaline conditions (1.0 M KOH).
The Co-P film is unique because of the following reasons: (i) it is prepared by facile
electrodeposition with low-cost regents under ambient conditions and it can be directly
employed as an electrocatalyst for both HER and OER without any post treatment; (ii)
the catalytic activity of the Co-P film can rival the state-of-the-art catalysts (Pt and IrO,),
requiring m =—94 mV for HER and n = 345 mV for OER to reach 10 mA/cm? with Tafel
slopes of 45 and 47 mV/dec, respectively; (iii) it can be utilized as a catalyst for both the
anode and cathode of overall water splitting catalysis under strongly alkaline conditions
with superior efficiency and strong robustness. Various characterization and analytical
techniques were applied to study the morphology and composition of the Co-P film prior
to and post electrocatalysis. It was concluded that the major components of the Co-P film

are metallic cobalt and cobalt phosphide for the as-prepared and post-HER samples,
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whereas it was partially oxidized to cobalt oxides/hydroxides/phosphates on the surface

during OER. Different from many reported hybrid systems, no conductive supports of
high surface area, such as graphenes, carbon nanotubes, and nickel foams, were involved
in the current system.[“!

Along these encouraging developments, there still exist many challenges and
opportunities in this exciting field. Since most inexpensive HER electrocatalysts only
function well under strongly acidic electrolytes where most OER catalysts are not stable,
this incompatibility of HER and OER catalysts functioning in the same electrolyte poses
a sever hindrance in developing practical devices for overall water splitting. Therefore,
more efforts should shift toward exploring and developing competent HER
electrocatalysts under alkaline (or neutral) conditions, which can be seamlessly integrated
with most OER electrocatalysts. Our progress in the development of bifunctional
electrocatalysts for overall water splitting in strongly basic electrolytes represent a
promising direction. Secondly, the HER catalytic activities of those non-precious
electrocatalysts in terms of mass activity, overpotential, and stability need to be further
improved for practical applications. Currently, high catalytic current always accompanies
large catalyst loading, which would complicate device fabrication and increase entire
cost. Structure engineering and hybrid composition can be powerful tools in improving
the specific activity and long-term stability.[®! In addition, it is of paramount importance
to introduce greener methods for catalyst synthesis, such as electrodeposition. The
involvement of expensive precursors, toxic or corrosive reagents, hazardous byproducts,

and high temperature/pressure/vacuum conditions should be minimized.
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As a heterogeneous reaction, electrocatalytic water splitting deals with interfaces

between liquid, solid, and gas phases under electric potentials. It is well known that many
electrocatalysts will transform from resting states to catalytic active states under
operating conditions. Therefore, electrocatalytic in situ spectroscopic studies should be
systematically carried out to elucidate the detailed mechanistic steps and provide insights
in the composition-activity relationship of different HER catalysts. Theoretical
computation, particularly DFT calculation, should contribute significantly to these
studies.[ Despite the success of DFT calculation in rationalizing the observed trend of
many metals as electrocatalysts, it often over simplify the real electrocatalytic conditions.
The influence of electric field, double layer formation, catalyst defects, solvation,
substrate transportation, and concentration gradient, should all be well considered in
describing the actual electrocatalytic condition, which warrants further studies of many
years ahead.

Considering the cost and working environment for practical applications, the
development of first-row transition metal chalcogenides and phosphides as
electrocatalysts via facile electrodeposition method is highly desirable. We have reported
Ni-S film as an active HER electrocatalyst and Co-P film as a bifunctional electrocatalyst
for overall water splitting, respectively. Our work about developing first-row transition
metal sulfides and phosphides as competent electrocatalytsts for water splitting is
beneficial for design other promising catalysts in the future.
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