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ABSTRACT 

Winter Habitat Selection by American Marten 

(Martes americana) in Newfoundland: 

Why Old Growth? 

by 

Gary S. Drew , Doctor of Philosophy 

Utah State University, 1995 

Major Professor : Dr. John A. Bissonette 
Department : Fisheries and Wildlife 

Although the American marten (Martes americana) generally is recognized as an 

obligate late-seral species, the factors dictating this association are poorly understood . 

Martens were studied in Newfoundland , Yellowstone National Park, and in a captive 

setting . As expected, use of habitat types was not proportional to availability ce < 

0 .001) . Defoliated and late-seral conifer stands were used more than expected , while 

all other types indicated expected or less than expected use . Habitat selection by 

martens was detectable at spatial scales greater than 80 m (£ < 0 .001) . 

Newfoundland martens were radio-collared and monitored for diel activity during 

the winters of 1990 and 1991. A regression of the percent active fixes on temperature 

had a negative slope (.b_ = -4.45, £ = 0.084, n = 12), indicating that martens did not 

minimize their exposure to low temperatures. A log-linear model suggested that the 

II 
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presence or absence of light was the only factor associated with marten activity patterns 

(E < 0.001). 

Martens in Western Newfoundland and a population in Yellowstone National Park 

were tested for their response to predation risk using bait stations in various habitat 

types. Visitation rates of martens at bait-boxes were not different between study sites 

(E = 0.190). However, martens visitation by habitat was different (E = 0.001) . 

Martens use of bait-boxes was similar in old-growth and defoliated habitats, suggesting 

that foliar cover may not have a strong influence on the risk of predation for martens 

during winter. Martens did use bait-boxes in defoliated stands to a greater extent than 

those in open habitats (E < 0 .001), suggesting that they perceived stem structure as 

decreasing predation risk . 

In captive experiments, martens selected areas with both overhead cover and woody 

stem structure (E = 0.012) . I detected no difference between the use of areas with 

only overhead cover and those having only stem structure (E = 0.671) . However, 

martens decreased foraging activity in response to a predatory cue (E = 0 .004) . The 

inability of martens to use food resources in areas lacking cover during the summer 

suggests a perception of increased threat associated with these areas . 

(83 pages) 
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FOREWORD 

This dissertation is presented in 5 chapters. Chapter I is a comprehensive 

introduction and chapter V a comprehensive conclusion both of which were formatted 

in the style of the Journal of Wildlife Management. My research was organized into 

the 3 middle chapters (II-IV), each dealing with some aspect of this question. These 

chapters have been formatted in the style of the Journal of Wildlife Management 

(chapter 11), the Canadian Field-Naturalist (chapter 111), and Animal Behavior (chapter 

IV) . Literature citations, tables , and figures are organized within individual chapters . 



Vll 

CONTENTS 

Page 

ABSTRACT ... . ........... . . . ................... . ........ 11 

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1v 

FOREWORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI 

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1x 

CHAPTER 

I. INTRODUCTION 1 

Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

II . WINTER HABITAT SELECTION BY AMERICAN MARTEN IN 
NEWFOUNDLAND : MULTIPLE -SCALE ANALYSIS . . . . . . . . . 10 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Meth ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

Marten Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
Habitat Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
Habitat Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

Results . . .... . ............. . ... . ........... . .. 18 

Landscape -Scale Selection 
Scale of Habitat Selection 

18 
. . ........ . . . . .... ... .. . 19 

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
Management Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 



Vlll 

III. WINTER ACTIVITY PATTERNS OF AMERICAN MARTEN 
(MARTES AMERICANA) IN NEWFOUNDLAND . . . . . . . . . . . 26 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Method s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

Marten Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
Marten Diets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

IV. PERCEPTION OF RISK BY CAPTIVE AMERICAN MARTEN 
(MARTES AMERICANA) : INFLUENCES OF HABITAT AND 
PREDA TOR CUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

Study Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
Field Experiment s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

Study site difference s . . . . . . . . . . . . . . . . . . . . . . . . 48 
Individual difference s . . . . . . . . . . . . . . . . . . . . . . . . 48 
Habitat use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
Foliar cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
Stem structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

Captive Experiment s . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

Arena design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
Design of trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
Statistical analysis of trials . . . . . . . . . . . . . . . . . . . . 52 

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

Field Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

Habitat use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 
Foliar cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 
Stem structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
Field observations . . . . . . . . . . . . . . . . . . . . . . . . . . 58 



Captive Experiments ..... . . . .. . ... . .. . 

Trial arena effects ...... . ...... . .. . 
Trial 1: Overhead cover and stem structure vs. no 

IX 

60 

59 

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 
Trial 2: Foliar cover vs . stem structure . . . . . . . . . . . . 60 
Trial 3: Foliar cover vs . stem structure with predator 
cues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 
Trial 2 vs . Trial 3 : Predator cues vs. no predator cues . . . 62 

Discussion ........ . ....... . . . . . 63 

Population Difference s . . . . . . . . . . . . . . . . . . . . . . . 63 
Winter Habitat Cues . . . . . . . . . . . . . . . . . . . . . . . . 63 
Summer Habitat Cues . . . . . . . . . . . . . . . . . . . . . . . . 64 

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

V. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 



LIST OF TABLES 

Table 

II-1. Partitioned chi-square residuals comparing winter habitat use of 
martens in the Little Grand Lake region of Western Newfoundland , 
during the winters of 1990 and 1991, to null model datesets created 

X 

Page 

from random transects overlaid on the study area GIS . . . . . . . . . . . 19 

II-2 . Goodness-of-fit statistics and standardized x2 residuals comparing 
composition of habitats used by martens in the Little Grand Lake 
region of Western Newfoundland during the winters of 1990 and 
1991 with the composition of 80-m and 160-m buffers around used 
habitats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

III-1 . Results of G-tests to examine potential causes for the activity 
patterns of marten in the Little Grand Lake area of Newfoundland 
during the winters of 1989-90 and 1990-91 . . . . . . . . . . . . . . . . . . 33 

III-2 . Activity patterns of marten prey items present in the Little Grand 
Lake area of Western Newfoundland and the frequency of 
occurrence of prey items in scats collected during the winters of 
1986-1987 and 1990-1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 



Xl 

LIST OF FIGURES 

Figure Page 

II-1 . Illustration of the spatial arrangement of cells of the GIS in relation 
to the trails of martens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

II-2. Comparison of the composition of habitats from trails used by 
martens during the winters of 1990 and 1991, and 80-m buffers, 
160-m buffers, and the study area in the Little Grand Lake region 
of Western Newfounoland . . . . . . . . . . . . . . . . . . . . . . . . . 21 

III-1. Diel activity patterns of martens at Little Grand Lake , 
Newfoundland during the winters of 1989-1990 and 1990-1991 32 

IV-1 . Overhead cover measured at bait-box locations (means ± 1 SE) . . . . . . 55 

IV-2. Number of stems > 10 cm dbh found within a 5-m radius of 
bait-boxes (means ± 1 SE) . . . . .... .. . ... .. .. .... . 

IV-3. Comparison of marten use of bait-11oxes in coniferous forest and 
defoliated coniferous forest to evaluate the influence of foliar cover 

. . . 56 

on marten habitat use (means ± 1 SE) . . . . . . . . . . . . . . . . . . . . . . 57 

IV-4 . Comparison of marten use of bait-boxes in defoliated coniferous 
forest and open habitats to evaluate the influence of stem structure 
on marten habitat use (means ± 1 SE) . . . . . . . . . . . . . . . . . . . . . . 59 

lV -5. Mean bait consumption by five martens (3 : d', 2: ~ )( ± 1 SE) in three 
trials : trial 1; overhead cover and stem structure vs. no structural cues , 
trial 2; stem structure vs. overhead cover, and trial 3; which was 
identical to trial 2, but included a predator cue . . . . . . . . . . . . . . . . 61 



CHAPTER I 

INTRODUCTION 

The reduction in old growth forest throughout the world has led to increased 

research and debate concerning old growth communities (Harris 1984) . In addition to 

t1e absolute reduction of old growth habitat, obligate old growth species are 

confronted with the added effects of fragmentation of remaining habitat (Harris 1984, 

Wilcox 1980). As a result , these species are highly susceptible to decreases in genetic 

civersit y and local extirpation or extinction . These problem s are especially acute for 

carnivores, such as American marten (Martes americana) , that occur in relatively low 

censities . The loss of mature and older coniferous forests characterized by overhead 

rover has been cited as one of the major factors responsible for the reduction in 

r.umbers of martens in much of North America (Davis 1983, Thompson 1991) . 

Historical harvest data show synchronous decline s in martens with the loss of first ­

growth forest in North America (Novak et al. 1987). 

Numerous studies have shown a pattern of close association between martens and 

c::miferous forests containing large trees and abundant coarse woody debris (CWD) 

(Koehler and Hornocker 1977, Mech and Rodgers 1977, Cambell 1979, Soutiere 

1979 , Steventon and Major 1982, Spencer et al. 1983, Zielinski et al. 1983, Bateman 

1986, Snyder and Bissonette 1987). However, recent work in Maine indicates that 

although martens are associated with later seral stage coniferous forest at the 

landscape scale , their smaller scale selection is broader than originally thought (D . 
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Harrison, pers. commun.). Recognition of the relationship between martens and their 

preferred habitats has led to the use of martens as an indicator species for mature 

boreal forest by the U.S. Forest Service. Although martens are habitat specialists, the 

factors limiting martens to coniferous forests have not been tested quantitatively. 

Marten habitat association has been attributed to: (1) the abundance of prey in old 

growth habits (Koehler and Hornocker 1977), (2) abundant access to subnivean 

resources during the winter (Raine 1982, Steventon and Major 1982, Hargis and 

McCullough 1984, Bissonette et al. 1988, Buskirk et al. 1989, Sherburne and 

Bissonette 1994), and (3) decreased predation risk while in late-seral forest (Pulliainen 

1981, Thompson 1991) . 

The evidence for martens selecting coniferous forest habitats because of higher 

prey abundances is ambivalent. While many of the species common in the diets of 

martens are found in forested habitats, others including the meadow vole (Microtus 

pensylvanicus), lagomorphs, and various berries typically reach higher densities in 

more open habitats. If martens were selecting areas based on prey availability alone, I 

would expect the habitat use of martens to change during population lows of their 

most common prey. For example, meadow vole populations on Newfoundland 

crashed in the summer of 1987 (Bissonette et al. 1988, Tucker 1988). However, 

martens still made only limited use of the abundant raspberry fruits available in clear­

cuts (Bissonette et al. 1988) and their movements indicated avoidance of newly cut 

areas (Fredrickson 1990). While forage resources are undoubtedly important in the 



habitat use of martens, this appears to offer only a partial explanation for the habitat 

selection of martens . 

3 

The use of subnivean access points by martens is well documented (Buskirk et al. 

1989, Corn and Raphael 1992 , Sherburne and Bissonette 1993). Coniferous forests 

typically possess a variety of structural components, including moderate to high 

canopy closure, large stems, and abundant coarse woody debris (CWD), that interact 

with snowfall to provide numerous access points. A long thin body , minimal body fat 

reserves , and short pelage allow martens to make use of breaks in the snow layer to 

access subnivean resources (Brown and Lasiewski 1972 , Buskirk 1984, Buskirk et al. 

1989) . However, snow tracking data have shown that martens use only a small subset 

of the available access points (Sherburne 1992 , Sherburne and Bissonette 1993 , 

Thompson and Colgan 1994) . Snow tracking also has revealed that martens often 

circumvent even very small tree-gaps in late-seral forest (G . Drew and J. Bisson ette , 

Utah State Univ. , unpubl. data). Availability of subnivean access certainly is not 

lacking in older forests (Sherburne 1994) and plays a role in the habitat selection of 

martens during winter , however avoidance of treeless gaps in the forest begs another 

explanation. If access to resources was the only selection pressure on martens , I 

would expect the affinity of martens for coniferous forests to be primarily a winter 

phenomenon. This is certainly not the case. 

Although previous researchers have noted that martens may be sensitive to 

predation risk (Hargis and McCullough 1984 , Thompson 1991), these hypotheses have 

yet to be tested. While martens must balance requirements for foraging and thermal 



homeostasis with risk of predation, the asymmetric costs of predation would strongly 

bias a long-lived species, such as American marten, toward overestimation of 

predation risk (Bouskila and Blumstein 1992). 

4 

Characteristic American marten habitat , i.e., coniferous forests, provide 2 

conspicuous physical components that could serve as security from predation, (1) 

foliar cover, i.e., leaves, and (2) stem structure, i.e., live stems, snags, and CWD . 

The Habitat Suitability Index model (HSI) developed by the U.S. Fish and Wildlife 

Service employs measures of overhead cover and CWD to grade habitat quality (Allen 

1984). However , since foliar cover and stem structure may be associated, their 

independent influence on the habitat use of martens is poorly understood. The 

relatively dense canopies of late-seral stands may provide martens with required cover 

from avian predators (Pulliainen 1981, Hargis and McCullough 1984). This could be 

especially important during the winter months when their dark brown winter pelage 

contrasts with snow cover (Pulliainen 1981). There is limited evidence of avian 

predation on American martens . However, attacks on martens in Newfoundland by 

hawk owl (Surnia ulula) (Bissonette et al. 1988) and in California by prairie falcon 

(Falco mexicanus) (Murie 1961) have been recorded . Predation by raptors also has 

been documented for M. martes in Finland (Pulliainen 1981). Stem structure has been 

linked to escape cover. Pulliainen (1981) observed that late-seral trees also provided 

pine martens with escape cover from red fox. The characteristic practice of climbing 

trees to escape terrestrial predators could also explain early anecdotal accounts of 

martens as primarily arboreal. This view was generally accepted until the 1950s when 



researchers looked closely at the movements of martens and found them to be almost 

exclusively terrestrial (Hawley and Newby 1957). 

5 

Newfoundland pine martens (M. _a. atrata) were once found in most forested areas 

of the island (Bergerud 1969, Snyder, unpubl. data), but by 1934 they were 

sufficiently rare to require a closing of the trapping season (J . E. Snyder, Nfld. Wild!. 

Div . unpubl. data). Even with this protection, martens appear to have been extirpated 

from eastern Newfoundland by 1969 (Bergerud 1969) . In 1973, a Pine Marten Study 

Area (PMSA) was created by the Newfoundland and Labrador Wildlife Division as a 

refuge, where all trapping and snaring was prohibited to protect the last known 

population of martens on the island. Although the marten population within the 

PMSA has remained relatively stable , estimated at approximately 150 resident adults, 

martens have not been able to disperse and colonize surrounding areas (Bissonette et 

al. 1988). In response to their steady decline in numbers and distribution, martens in 

Newfoundland were listed as "threatened" by the Committee on the Status of 

Endangered Wildlife in Canada (COSEWIC) in April of 1986. 

No detailed study of American marten survival in the wild exists, but previous 

studies in the PMSA found predation resulted in at least 3 mortalities of martens 

(Bissonette et al. 1988). A red fox appeared to have partially consumed 1 marten. 

The other 2 mortalities could not be attributed definitively to any species, though 1 

was being fed on by a raven (Corvus corax) . In Yellowstone National Park, 

Sherburne (pers. commun.) documented 2 martens killed in traps by coyotes (Canus 



latrans). Given the cryptic nature and wide dispersal patterns of martens, it is not 

surprising that reports of predation are rare. 

The goals of this study were first, to describe the activity and habitat use patterns 

of Newfoundland martens and test them for adherence to the predictions of the 3 

hypotheses explaining the obligate use of late-seral habitats. Secondly, to investigate 

the relative risk associated with various combinations of foliar cover and stem 

structure in late-seral forest. Combinations of field observations, field experiments, 

and captive experiments were used to investigate how the habitat selection criteria of 

martens were influenced by predation risk in Newfoundland, Yellowstone National 

Park, and Utah . 
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CHAPTER II 

WINTER HABITAT SELECTION BY AMERICAN MARTEN IN 

NEWFOUNDLAND: MULTIPLE-SCALE ANAL YSIS 1 

10 

Abstract: Scale dependency in winter habitat use by American martens (Martes 

americana) in Newfoundland, Canada was studied during the winters of 1990 and 

1991. Martens were snow tracked (35.5-km) and 193 global positioning system 

locations collected. Integration of highly accurate snow tracking data with satellite 

imagery enabled the development of a spatially explicit method for examining the 

scale at which selection was detectable . Landscape-scale habitat use was not in 

proportion to habitat availability in the study area based on a null model simulation (E 

< 0 .004) . Mature and defoliated conifer stands were used more than expected. 

Habitat composition differed between marten trails and habitats at distances greater 

than 80 m from used habitats (E < 0 .001) . Analysis of buffers around randomly 

distributed transects suggested the probability of this result by chance was E = 0.024. 

Although analyses of habitat selection at both the landscape and trail buffer scales 

detected selection of mature and defoliated stands by martens, the magnitudes of 

selection varied considerably. In particular, landscape-scale measurements 

underestimated the avoidance of broad-leaf- dominated habitats. 

1Coauthored by Gary S. Drew and John A . Bissonette. 
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The chosen habitat of any species is a collection of environmental features that 

p:ovide adequate resources for its continued survival. However, the scale at which 

htbitat use is examined can influence results and interpretations (Johnson 1980 , D. 

Harrison, Univ . Maine, unpubl. data). American martens (Martes americana) 

generally are associated with late-seral conifer and mixed conifer-hardwood forests 

(Koehler and Hornocker 1977, Mech and Rodgers 1977, Cambell 1979, Soutiere 

1979, Steventon and Major 1982, Spencer et al. 1983, Bateman 1986 , Snyder and 

B:ssonette 1987). However, our understanding of how martens use habitats has been 

be.sect primarily on (1) telemetry studies that reflect a wider home-range scale and (2) 

sr.ow tracking of martens that, by itself, cannot provide a context or scale within 

which movement decisions are made . Although snow tracking can provide precise 

locational data, without knowledge of the availability of surrounding habitats , 

identification of habitat selection is difficult . The incorporation of a context-sensitive 

measurement of habitat selection, i.e., one that takes surrounding habitats into 

account, is needed. As an added benefit, this approach may be used to assess the 

scale at which habitat decisions are made . 

This study was initiated in response to a steady decline of American martens (M. 

1. atrata) on the island of Newfoundland. In April 1986, Newfoundland martens were 

listed as threatened by the Committee on the Status of Endangered Wildlife in Canada 

) . E. Snyder, Nfld . Wildl. Div. unpubl. data). My objectives were to (1) determine 

:he scale of habitat selection exhibited by martens in Newfoundland, Canada, and (2) 

dentify the factors influencing use of specific habitats by martens during the winter. 



A determination of the scale at which martens make movement decisions, and the 

factors influencing these movements, provides valuable information for making 

management decisions , e.g ., the design of timber-harvesting plans. 

STUDY AREA 

12 

I conducted the study in the northwestern portion of the Pine Marten Study Area 

(PMSA) in Western Newfoundland , Canada . The PMSA is located approximatly 50 

km southea st of Corner Brook , and was designated in 1972 to try to halt the decline in 

marten population s on the island . There was no trapping allowed in the PMSA ; 

however , logg ing operations continued until 1991. My study area (approxirnatly 100 

km2
) within the PMSA was characterized by a mosaic of first-growth spruce-fir forest 

inter spersed with pond s, bogs , and barrens . Primary tree species included balsam fir 

(Abie~ balsamea ), black spruce (Picea mariana) , and white birch (Betula 

papyrifera)(Rowe 1972). First-growth stands contained large numbers of uprooted 

trees and snags . Hemlock looper (Lambdina fiscellaria) and spruce budworm 

(Choristoneura fumiferana) infestations in the study area have left extensive defoliated 

stands. The study area also contained 2 clear -cuts , conducted in 1988 , that were 

dominated by broadleaf vegetation . Topography was rugged with elevations ranging 

from 80- 700 m. 
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MITHODS 

Maten Tracking 

I captured martens in 20 x 20 x 50-cm live traps during the winters of 1990 and 

1951. All animals were immobilized with ketamene-hydrochloride (100 mg/ml) , 

we.ghed , sexed, and fitted with ear tags . If animals were residents, as indicated by 

rec1ptures, they were fitted with radio collars (approx . 21 gm , 1.5-3 .8% of body wt.) . 

Eight ( 4-d' , 4-~) martens were radio-collared during the study. However , no data 

weie used from 1 female that slipped her collar after 2 days . Following snowfalls , I 

usd a hand-held 3-element Yagi antenna to locate martens , who were then 

backtracked until trail or light conditions deteriorated . I elected to use snow tracking 

to dentify winter habitat use patterns because it provided more accurate and detailed 

assessment of habitat use than could be determined using telemetry . At 200-m 

intervals along marten trails I documented locations using an average of 3 readings 

from a portable global positioning system (GPS) ; GPS error averaged 39.8 m from 

known points in the study area . In addition , azimuths were sighted foreword and 

backward along visible portions of trails at GPS sampling points. 

Eabitat Classification 

I used multispectral scanner (MSS) satellite imagery with a moderate scale (80 m2
) 

to develop habitat cover maps of the study area. The choice of sensor was largely 

p~agmatic; the West Coast of Newfoundland often is obscured by clouds and the only 

recent (1990) cloud-free image available was from the MSS. Clustering of MSS data 

into habitat classes was unsupervised. Forty clusters were reduced to 6 classes based 
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on aerial photos, Forestry Canada forest type-maps, ground control points (GCP) , and 

visual evaluation of clusters. I elected to develop a few broad classes because, given a 

fixed number of samples, there is an inverse relationship between the number of 

classes and the ability to distinguish selective use of these classes . Validation with an 

independent group of 126 GCPs (approximately 21 per class) indicated 87 .6% 

agreement between habitat classes and GCPs . 

Habitat Selection 

I examined the question of marten habitat selection by : (1) comparing the 

composition of used habitats vs. random samples from the study area , henceforth 

referred to as landscape -scale selection, (2) comparing the composition of used 

habitats with surrounding habitats at some minimum scale at which selection could be 

detected, henceforth referred to as fine-scale selection, and (3) comparing the results 

of fine and landscape-scale selection. GPS locations from marten trails (200-m 

intervals) were entered into a geographic information system (GIS) as points, and trail 

were interpolated by connecting these points with forward and backward azimuths. In 

the absence of temporal movement data , I assumed that the rate of marten movements 

was independent of habitat type. Although actual movement rates may vary to some 

extent, I noted more differences in gait associated with snow conditions, e.g ., hard 

crust vs. new snow, than habitat type. Landscape-scale habitat selection was tested by 

overlaying trails on a classified satellite image, and measuring the amount of each 

habitat type traversed. The probability of observed marten habitat use occurring by 
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chance was determined by comparing random samples against used trails. Each 

random sample was composed of 30 transects of 1.18 km with random center points 

and 1 of 4 randomly assigned orientations (N-S, E-W, NE-SW, SE-NW). Transects 

were overlaid on the habitat map and classes were tallied. All intersections with non­

terrestrial classes , i.e. , lakes and rivers, were not used for the analysis and only 

transects with over 50 % of their length overlaying terrestrial habitats were used in the 

analysis. 

To examine the scale at which habitat selection was detectable I constructed 

buffers around the I-pixel-wide trails used by martens in 80-m increments , i.e ., the 

width of 1 pixel, and tested for differences in habitat composition (Fig . II-1) . Buffers 

of increasing width were tested in succession until a significant difference in 

composition was detected. Because the composition of habitats is expected to change 

as distance increases , a null simulation model was used to determine the likelihood of 

detected differences occurring by chance . Design of this model was similar to the test 

for study area use . Random transects were overlaid on the study area and buffers 

were constructed around each transect. If a significant difference was detected 

between used trails and a buffer of some size, habitat compositions of random 

transects and buffers of that size were tested to determine the likelihood of this 

difference by chance. The use of buffers to examine animal-habitat associations is not 

new. Buffer comparisons are commonly used with point phenomena, e.g., nest site 

selection (Hunter et al. 1995, Homer 1991). However, movement paths are not 

discemable from isolated point data. 



- Marten Trails 

D Used Habitat 

IIJ 80 m Buffer Zone 

fl 160 m Buffer Zone 

Fig . II-1 . Illustration of the spatial arrangement of cells of the GIS in 

relation to the trails of martens . The line represents the trail of a marten. 

Cells with no fill represent "used" habitats . Cells with fills represent 

habitats included in buffers around used trails . 
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The use of accurate point locations along contiguous trail segments allowed me to 

compare used with unused surrounding habitats along the length of the trail . 
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The distance of buffers from used trails served as a measure of the scale at which 

martens made their habitat choices . As distance increases, I expect habitat 

composition to shift from selected habitats towards less desirable habitats . If the 

movements of martens are based on fine-scale micro-habitat characteristics , e.g. , 

escape cover , then selection should be detectable at a fine scale . Conversely , if the 

movements of martens are influenced primarily by factors at some larger scale , e .g. , 

clumped distributions of prey , habitat selection should be detected only at substantial 

distances from used habitats . A limitation on our ability to discern a minimum scale 

of selection was imposed by the 80-m 2 resolution of the MSS imagery used to create 

the habitat cover map. Even if finer scale sensor data such as Thematic Mapper or 

SPOT had been available , the inability of the GPS to provide subpixel accuracy at 30 

m2 would have limited detection of finer scale selection. 

Statistical Analysis 

Comparisons of habitat use between random transects and used trails were made 

using chi-square goodness-of-fit test statistics. The null model of random transects 

was tested against the critical chi-square value of 11.1 (alpha= 0.05, 5 df) . The 

percentage of random transects with habitat compositions not significantly different 

from used trails represents the approximate _e value . Because use-availability tests 

have a discrete range (0-100%) with non-normal distributional properties, 



siiwltaneous comparisons with confidence intervals are suspect. Instead, significant 

chi-square results were interpreted using the standardized residuals for each habitat 

cla)s. Identification of differences between the habitat composition of buffers and 

used trails also was based on chi-square statistics. Habitat compositions of buffers 

we;e tested against the expected composition based on used trails. If a significant 

result was detected , a null simulation was used to test for the probability of random 

traJ.sects having a chi-square statistic greater than or equal to the actual statistic. All 

tesrs used an alpha of O. 05 . 

RESULTS 

Landscape -Scale Selection 

18 

During the winters of 1990-1991 and 1991-1992 , I followed 7 martens for a total 

f 35 .45 km in 30-track segments ( x = 1.18 , SD = 1.12) . A comparison between 

Lsed marten habitats , based on tracking data , and the composition of the study area 

) ielded a chi-square value of 37.73. A Monte Carlo simulation indicated that the 

r,robability of a sample of transects returning a value equal or higher than the actual 

g:atistic was£ = 0.014 (n = 500). Standardized residuals indicate that defoliated and 

nature conifer habitats had the greatest contribution to the chi-square statistic with both 

leing used more than would be predicted by chance (Table II-1 ). All other habitats 

vere used less than expected with scrub and regenerating conifer representing the 3rd 

md 4th largest standardized residuals . These findings are consistent with previous 

rudies of winter habitat associations of martens (Koehler and Hornocker 1977, 
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Trole II-1. Partitioned Chi-square residuals comparing winter habitat use of martens 

in '.he Little Grand Lake region of Western Newfoundland, during the winters of 1990 

and 1991, to null model datesets created from random transects overlaid on the study 

ana GIS . 

Observed Mean Expected Mean 
Habitat Type (Used Habitats) (Random Transectsa) Standardized 

N (%) N (%) Residuals a 

l..ate-Seral Conifer 112 (52.8) 92.8 (43.8) 0.215 

Early-Seral Conifer 8 (3.8) 19.8 (9.3) 0 .125 

llirrens 18 (8 .5) 19.8 (9 .4) 0 .021 

refoliated 36 (16.9) 18.3 (8 .6) 0 .369 

s ~rub 23 (10.9) 39 .6 (18 .9) 0 .195 

Broadleaf (Clear-cut) 15 (7.0) 21.3 (10 .1) 0 .076 

;B~sed on 500 samples 

Mech and Rodgers 1977, Cambell 1979, Soutiere 1979, Steventon and Major 1982, 

Spmcer et al. 1983, Bateman 1986, Snyder and Bissonette 1987), with the exception 

of :he high use of defoliated stands . While tracking marten I also noted that they 

appeared to have core areas of high foraging activity linked by long unidirectional 

movements devoid of foraging behavior. 

Scale of Habitat Selection 

Buffers constructed around the trails of martens suggested a pattern of decreasing 

ielection with increasing buffer size. As buffer distance from trails increased, 

composition of the habitats became less like habitats selected by martens and more like 



the composition of the greater study area (Fig . II-2) . This suggests that selection 

occurred at or below the resolution of our data (80-m 2 cell). Chi-squared statistics 

comparing habitat composition of used habitat with increasing buffer size indicated 

that the second buffer (2 pixels; 80m > x > 160m) around used habitat had a 

significantly different composition than used habitat (X2 = 63. 05, £ < 0 .001 , df = 

4). As expected, habitats selected by martens had higher proportions of late-

20 

seral forest and lower proportions of broadleaf and softwood scrub than the buffers 

surrounding trails (Table II-2). Additionally , habitats used by martens were composed 

of less immature forest and more defoliated forest than buffers around trails. 

DISCUSSION 

The integration of satellite-derived vegetation maps, accurate mapping of trails, and 

the GIS analysis tools allowed a highly accurate assessment of habitat selection and a 

measure of selection scale to the nearest 80 m. At a landscape scale, martens 

demonstrated a selection of late-seral conifer forest and a low use of open and early­

seral habitats. The extensive use of defoliated forest stands has not been previously 

reported, though martens in Alaska (Magoun and Vernam 1986) and Wyoming 

(Sherburne and Bissonette 1993) have shown an ability to use previously forested 

habitats following fires. The physical structure of forested stands following moderate 

to low-intensity fire events can resemble that left by extensive insect defoliation, and 

both can provide sufficient resources to make them suitable marten habitat. However, 

while defoliated forest made up a significant portion of the home ranges of all but 1 
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Figure II-2. Comparison of the composition of habitats from trails used by martens 

during the winters of 1990 and 1991, and 80-m buffers, 160-m buffers , and the 

study area in the Little Grand Lake region of Western Newfoundland . 
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Table 11-2. Goodness-of-fit statistics and standardized i residuals comparing composition of habitats used by martens in the 

Little Grand Lake region of Western Newfoundland during the winters of 1990 and 1991 with the composition of 80-m and 

160-m buffers around used habitats. 

Observed Expected Standardized Observed Expected Standardized 
(80 m Buffer} (From Marten Trails} x2 Contribution (160 m Buffer} (From Marten Trails} x2 
N (%) N (%) N (%) N (%) Contribution 

~ Mature Conifer 244 (50.2) 258.8 (52.8) 0 . 14 238 (44 .0) 285.3 (52 .8) 0.12 

< Mature Conifer 25 (5.1) 18.3 (3.8) 0 .53 32 (5.9) 20.4 (3.8) 0.10 

Barrens 46 (9.5) 41.3 (8.5) 0 . 12 53 (9.8) 45 .8 (8.5) 0.02 

Defoliated 78 (16.0) 82.5 (17 .0) 0.06 74 (I 3. 7) 91.7 ( 17 .0) 0.05 

Scrub 54 (I l.l) 52.7 (10 .9) 0 .01 64 ( II. 9) 58.6 ( 10. 9) 0.01 

Broadleaf 39 (8.0) 34.4 (7. l) 0.14 79 (14.6) 38.2 (7 . l) 0.69 

4 .49 n.s. 63.05 3 

• E < 0.001, df = 5 

n.s. = not significant 

10 
N 
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marten in Newfoundland, the largest portion of all home ranges was intact mature and 

older coniferous forest. The use of regenerating clearcuts and deciduous forest on 

smaLer scales in Maine further illustrates that marten habitat selection is a complex 

decision based on a variety of factors that may be scale dependent (D. Harrison, Univ . 

Mair.e , unpubl. data). 

The individual-centered approach to examining habitat use indicated that habitats 

berw~en 80 m and 160 m from the trail were significantly different from the habitats 

used by martens . Given the habitat-smoothing characteristics of raster satellite 

imag;!ry, a significant difference could reflect a considerably smaller scale of 

selec:ion. Martens may discriminate habitats at a scale less than 80 m; however, my 

ability to detect selection was limited to the resolution of my map and classification 

scheme. The use of satellite sensors to map habitats imposes a minimum resolution on 

the dHa that may not match the operating scale of a given species or landscape 

proctss. 

C mparison of landscape- and fine-scale selection of habitats showed agreement 

with egard to expected use; however, there were some important differences in the 

magritude of selection. In particular, the relationship of martens to clearcuts in the 

study area showed scale dependence. Although slightly less than proportional use of 

clear ;uts was evident at the landscape scale, only at the finer scale of the 2-pixel 

buffer (80 m > x > 160 m) was I able to resolve this distinct lack of habitat use . 

This 1iscrepancy between coarse and fine scale was likely caused by an interaction 



between the small proportion of clearcuts in the study area and their location in and 

around the older conifer stands favored by martens. 
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The concept of fine-scale habitat selection is intuitively obvious for a foraging 

animal; however, most of the followed marten trails contained long segments of travel 

with no hunting behavior. While selection of foraging sites certainly occurs at a fine 

scale, my results suggest that even when making nonforaging movements, martens in 

Newfoundland are highly sensitive to surrounding habitats. 

MANAGEMENT IMPLICATIONS 

While GIS can provide powerful evaluation tools for spatial phenomena , care 

should be taken to minimize potential errors in interpretation caused by scale­

dependent relationships. Because selection can be scale dependent, the ecological 

question being addressed should dictate the appropriate scale. My evaluation of 

marten movements in Newfoundland suggests that their habitat selection has a fine­

scale component apparently not linked to foraging strategies. Some other fine-scale 

factor , e.g., predation, appears to be influencing marten habitat selection. These 

results have implications for designing buffer zones and maintaining continued 

landscape connectivity. Based on my results, it appears that any cutting plan 

integrating management of martens should avoid any isolation of forest patches . 

Additionally, based on the scale of habitat selection demonstrated by martens in 

Newfoundland, landscape linkages less than 160 min width may not be perceived as 

providing the minimum threshold of habitat quality by martens . 
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CHAPTER III 

WINTER ACTIVITY PATTERNS OF AMERICAN MARTEN 

(MARTES AMERICANA) IN NEWFOUNDLAND 2 

26 

Previous studies on winter activity patterns of marten have yielded conflicting 

results regarding the daily activity patterns of American marten . Despite their 

temperate to subarctic geographic range, American marten possess a thermally 

inefficient morphology . The lack of morphological adaptations for reducing thermal 

costs suggests that marten may use behavioral strategies to optimize thermal budgets . 

During the winters of 1989-1990 and 1990-1991, I radio -collared and monitored diel 

activity of 7 marten . A regression of the percent active fixes on ambient temperature 

had a negative slope (h = -4.45, p = 0.084, n = 12), the opposite of what a thermal 

optimization strategy would predict. A log-linear model suggested that the presence 

or absence of light was the only factor associated with marten activity patterns (p < 

0.001) . Contents of marten scats suggested that marten were not synchronizing their 

activity patterns with that of their major prey items. While martens must balance 

multiple life requisites , their activity patterns fail to support the influence of either 

temperature or prey availability considerations . The nocturnal habits of 

Newfoundland martens in the winter were consistent with the avoidance of predation 

risk hypothesis. 

2Coauthored by Gary S. Drew and J. A. Bissonette. 
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Introduction 

Animals living in thermally stressful environments typically acquire 

morphological, physiological, or behavioral adaptations to assist in thermal regulation 

(Chappell 1980). However, American martens (Martes americana), like other small 

mustelids, do not appear to possess significant morphological or physiological 

adaptations for thermal efficiency (Brown and Lasiewski 1972; Buskirk et al. 1988). 

The morphological characteristics of martens suggest a trade-off between thermal 

efficency and predatory efficiency, i.e. , a long thin body, minimal body fat reserves , 

and a short pelage allow them to enter confined spaces in search of small prey (Brown 

and Lasiewski 1972; Buskirk et al. 1988) . However, these adaptations exact a high 

toll in homeothermic efficiency (Brown and Lasiewski 1972; Schmidt-Nielson 1983). 

Laboratory studies have found the minimum critical temperature (MCT) of marten to 

be in the range l6 °C (Buskirk et al. 1988; Adair and Bissonette, 1995 Utah State 

Univ., unpubl. data) to 29 °C (Worthen and Kilgore 1981). Below the MCT, martens 

at rest must increase their metabolic rate to compensate for heat loss. Based on these 

constraints, marten might be expected to minimize their exposure to low temperatures, 

particularly during the winter months. Marten in Wyoming (Buskirk et al. 1988) and 

Alaska (Buskirk 1984) selectively used thermally efficient resting sites during the 

winter. These results are consistent with the hypothesis that marten have developed 

behavioral adaptations for maintaining thermal homeostasis. 

In addition to using thermally efficient resting sites, martens could also decrease 

thermal costs through limiting activity during the colder portions of the day. 
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However, variability in the winter activity patterns of American marten suggests that 

the timing of marten activity is based on multiple factors. Martens in Alberta (More 

1978) and Ontario (Thompson and Colgan 1994) were found to be diurnal during the 

winter, apparently in an attempt to limit homeothermic costs . In contrast, Zelinski et 

al. (1983) and Martin (1987) found martens in California to be primarily nocturnal 

during the winter. Zelinski et al. (1983) suggested that the adoption of nocturnal 

activity patterns during winter could be a result of the synchronization of marten 

activity with that of their prey during the period when prey are less detectable due to 

snow cover . One point of general agreement is that the total time spent active is lower 

during the winter (More 1978; Zelinski et al. 1983) . 

The purpose of this study was to examine the activity patterns of marten in 

Newfoundland during the winter to test whether martens minimize their exposure to 

the coldest temperatures (i .e ., marten activity decreases with decreasing ambient 

temperature) . If martens failed to minimize their thermal costs behaviorally, I wanted 

to examine the possible causes for their thermally inefficient behavior. Other 

hypotheses that might influence the temporal activity patterns of martens are (1) 

activity of martens may be synchronized with that of their prey to increase foraging 

success or (2) martens may be limiting their activity to times when predation risk is 

lowest. I addressed the first alternative hypothesis by examining the activity patterns 

of prey species detected in the scats of martens. If the activity patterns of martens are 

a result of attempts to synchronize activity with that of their prey items, their primary 



prey should be nocturnal. Data on predator density and activity were limited, so 

assessment of the second alternative hypothesis was limited and inferential. 

Methods 
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This study was conducted in the northwestern portion of the Pine Marten Study 

Area (PMSA) in Western Newfoundland, Canada (Bissonette et al. 1988). The 

PMSA , located approximately 50 km south of Corner Brook , was set aside in 1972 to 

arrest the decline in marten populations on the island . Although there is no mammal 

trapping allowed in the PMSA , logging operations continued until 1991. The study 

area is characterized by a mosaic of old-growth forest interspersed with ponds , bogs , 

and barrens . Primary tree species include balsam fir (Abies balsamea) , black spruce 

(Picea mariana), and white birch (Betula papyrifera) (Snyder and Bissonette 1987). 

Old-gro wth stands contained large numbers of uprooted trees and snags. Hemlock 

looper (Lambdina fiscellaria) and spruce budworm (Choristoneura fumiferana) 

infestations in the study area have left large defoliated stands . Topography is rugged 

with elevations ranging from 80-700 m (Snyder and Bissonette 1987; Bissonette et al. 

1988). 

Eight martens (4 5?: 4 d') were captured in 20 x 20 x 50-cm live traps during the 

winters of 1989-1991. Animals were immobilized with ketamene-hydrochloride ( 100 

mg/ml) . All martens were fitted with radio collars (approx . 21 g) . However, no data 

were used from 1 female that slipped her collar after 2 days. Marten activity was 

treated as a dicotomous variable; either active or not. Activity was determined by 
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evaluating the telemetry signal variation. Signals with erratic strength and pitch 

indicated active animals (Sunquist and Montgomery 1973; Zelinski et al. 1983) . 

These measurements were taken during daily telemetry relocations and during activity 

monitoring sessions conducted at all hours of the day and night. Observations were 

separateC: by a minimum of 30 minutes and grouped into 2-hour blocks, following the 

protocol f Zelinski et al. (1983). The percentage of fixes within each 2-hour block 

was calculated and used as a representation of the activity level of the 7 monitored 

martens . I tested for an dependency of marten activity level on temperature with a 

regressi oo analysis . A significant result with a positive slope would support the 

hypothes .s that martens are primarily constrained by thermal constraints. Conversely , 

a lack of correlation , or a slope other than positive, would indicate that martens were 

trading off thermal efficiency for some other factor. Log-linear models were used to 

test for V1riation in marten activity due to : individuals (n = 7) , age-class (n = 2) , sex 

(n = 2) , and presence or absence of light (n = 2). Temperature was not included in 

the log-liflear models because of the obvious covarience with light , and its previous 

testing ir: the regression analysis . 

To determine the predatory habits of martens , I collected scats encountered while 

snow tracking radio-collared martens. In addition, I was able to draw on a marten 

diet stud~ conducted in our study area during the winter of 1986-1987 (Tucker 1988). 

The freqtency of occurrence of prey in scats was used to quantify marten diet 

compone1ts so my results could be compared to the previous study . The 
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determination of marten predators included direct observation, tracks, and a raptor call 

count in the winter of 1990-1991. 

Results 

Marten Activity 

A total of 273 activity measurements was made on 7 telemetered marten from 

January-March of 1989 and 1990. Within each 2-hour block an average of 23 

measurements was made . Activity patterns during these winters were predominantly 

nocturnal (Figure III-1) . The regression of mean activity level on temperature for 

each 2-hour sampling-block was not significant (I: = 0 .084) . However, a negative 

slope (h = -4.45) , indicated that marten activity varied inversely with temperature , 

i.e ., marten activity increased as temperature decreased . The plot of marten activity 

over the die! period illustrates that the presence or absence of light appeared to explain 

the general pattern of marten activity (Figure IIl-1). This was supported by the best 

fit log-linear model (Light) (Table III-1). Marten activity levels were significantly 

lower during the daylight hours than at night. This result also could explain the 

inverse relationship between marten activity and ambient temperatures , i.e., 

. temperature is dependent on solar insolation . Although the number of marten 

monitored was small (7) , a log-linear model failed to detect any significant variation in 

activity patterns by individuals (Light) (Activity) (Individual) (Table III-1). Neither 

sex nor age was found to be a significant factor, although juveniles and males did 

display slightly higher activity rates than adults and females, respectively. 
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Fig . III-1. Diel activity patterns of martens at Little Grand Lake, Newfoundland 

during the winters of 1989-1990 and 1990-1991. The line represents mean 

temperatures over the diel period. Bars indicate average activity levels of marten . 

Bold horizontal lines represent average sunrise and sunset over the sampling period . 
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Table III-1. Results of G-tests to examine potential causes for the 

activity patterns of marten in the Little Grand Lake area of 

Newfoundland during the winters of 1989-90 and 1990-91. 

Model df Parameter G-value 
Estimates 

(Age) 1 0.49 0.47 

(Light) 1 *** 25.60 

(Sex) 1 0 .19 1.71 

(Age)(Light) 1 0 .69 0.16 

(Sex)(Light) 1 0 .63 0.21 

(Individual)(Light) 6 0.46 5.70 

*** £ < 0 .001 

Marten Diets 

The diets of martens throughout North America tend to be similar , with local 

microtines providing the bulk of marten diets in Alaska (Buskirk and MacDonald 

1984), Maine (Soutiere 1979), Montana (Weckwerth and Hawley 1962), 

Newfoundland (Tucker 1988), the Northwest Territories (Douglass et al. 1983), and 

Utah (T . Hargis, Utah State University, pers . commun .). However , to be sure that 

marten in the study area followed this pattern I collected scats from the martens I 

tracked. The small number of scats examined (12) precluded statistical analysis. 

However, since all scats were collected from trails of known marten, they gave an 

indication of prey consumed by the monitored marten (Table IIl-2) . I also had the 
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Table III-2 . Activity patterns of marten prey items present in the Little Grand Lake 

area of Western Newfoundland and the frequency of occurrence of prey items in scats 

collected dur ing the winters of 1986-1987 and 1990-1991. 

Species Winter Occurrence in Scats ( % ) 
Activi~ Patterns 1990-1991(n= 12) 1986-1987 (n=30) 1 

Lepus americana Nocturnal 2 8.3 3.3 

Microtus Qennsxlvanicus All Times3 50.0 66.7 

Peromxscus maniculatus Diurnal 0 

Sorex cinereus All Times2 16.7 23.0 

Tamiasciurus hudsonicus Diumal 2 16.7 20.0 

Birds Diurnal 33.3 10.5 

Carrion None 8.3 0.1 

Vegetation None 33.3 13.3 

1Tucker 1988; 2Banfield 1974; 3Madison 1984. 

benefit of data from a previous diet study in the area during 1985-1986. The relative 

agreement between my sample of scats and that collected by Tucker (1988) gave me 

confidence in concluding that the most common component of marten diets in the 

study area was Microtus pennsylvanicus . During my study the only known mortality 

was attributable to predation by a red fox . Previous research in the same study area 

recorded 3 mortalities attributed to predation (Bissonette et al. 1988). 

Discussion 

Because martens do not appear to possess significant morphological or 

physiological adaptations for thermal efficiency they must regulate their thermal costs 
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through primarily behavioral means . The selection and use of thermally efficient 

subnivean resting sites by martens indicates that martens do take advantage of 

available thermal protection (Buskirk et al. 1989). However, because the thermal 

benefits of subnivean resting sites are dependent on ambient temperature, i.e., as 

temperature decreases potential benefits increase, maximum thermal benefit would be 

accrued by resting during the coldest portions of the day . Chappell (1980) estimated 

that arctic animals , including ermine (Mustela erminea), could save an average of 30% 

of their thermoregulatory costs by leaving burrows only on sunny days. Hence , 

during the winter, when martens are faced with high thermodynamic costs, they could 

substantially decrease thermal maintenance costs by using subnivean resting points 

during the night and confining activity to daylight hours . 

However , my data , as well as the studies conducted in California (Zelinski et al. 

1983; Martin 1987), indicate a pattern of primarily nocturnal activity during the winter 

months . While this is at odds with More's (1978) study in Alberta, and Thompson 

and Colgan' s (1994) study in Ontario , climatological data indicate mean ambient 

temperatures for January are lower in both More's and Thompson and Colgan 's study 

areas in central Canada (-17.5°C) than marten study areas in either California (0°C) or 

Newfoundland (-7.5 °C) (WMO 1979). These differences suggest a possible 

temperature threshold at higher latitudes and altitudes, where thermal constraints may 

take precedence over other factors influencing marten activity patterns. My data show 

that marten in Newfoundland, which is characterized by less extreme winter 

temperatures, fail to limit thermal costs through their die! activity patterns . 
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Zelinski et al. (1983) suggested that the thermally inefficient activity patterns of 

marten they studied in California could be related to a strategy to increase hunting 

efficiency by synchronizing their activity patterns with those of their primary prey 

species. This hypothesis would seem to require that a major portion of marten diets be 

composed of species with nocturnal activity patterns similar to those of marten. 

However, the most common prey species found in this analysis, as well as the previous 

food habits study (Tucker 1988), i .e., meadow vole (M. pennsylvanicus) and red 

squirrel (Tamiasciurus hudsonicus), were not nocturnal. The only prey species in the 

study area known to exhibit nocturnal activity patterns were snowshoe hare (Lepus 

americanus) and deer mice (Peromyscus maniculatus) , neither of which was a common 

constituent in either scat analysis conducted on the study area. While there was no 

evidence for synchronization of activity patterns of prey, when captured to remove 

radio collars in early spring, martens appeared to be in good physical condition with 

only minor drops in body weight from over the test period. Even without any obvious 

synchronization with prey , martens were able to survive on available forage. 

An alternative to any of the previous hypotheses is that martens might rest during 

the warmer portions of the day and hunt during the coldest to take greatest advantage 

of the substantial heat released through physical activity , i.e ., hunting . However, such 

a strategy would require substantial prey resources that were not available in the study 

area (Bissonette et al. 1988). In fact, the low numbers of prey and prey species have 

been cited as a major factor limiting recovery of the Newfoundland marten populations 

(Bissonette et al. 1988). 



My evidence does not provide a definitive explanation for why martens in 

Newfoundland and California are nocturnal during the winter months . However , 

given that martens in these areas are sustaining substantially increased thermal costs, 

the ultimate costs of not assuming nocturnal winter activity patterns must be greater. 
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A potent ial alternative explanation is that because martens are relatively long-lived and 

late in reaching sexual maturity, they may try to limit their own exposure to predation 

by being active when predators are less efficient. I suggest that low-light conditions 

would have less effect on the hunting patterns of martens, which are predominantly 

subnivean, than on the efficiency of potential supernivean marten predators such as red 

fox. 

The disagreement between studies suggests 2 important points . First, martens 

appear to be behaviorally plastic in their activity patterns. The environmental 

constraints placed upon martens may limit them to a narrow range of responses and 

preclude any stereotypical activity pattern . Secondly, these behaviors are likely 

dependent on a combination of factors , including : (1) minimizing energetic costs, (2) 

energy acquisition , and (3) avoiding mortality risks. Detailed research on the trade­

offs between these factors will be necessary to better understand the decision-making 

processes of martens. 
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CHAPTER IV 

PERCEPTION OF RISK BY AMERICAN MARTEN (MARTES 

AMERICANA): INFLUENCES OF HABIT AT 

AND PREDATOR CUES3 

ABSTRACT 
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American martens (Martes americana) appear to be habitat specialists, using 

primarily late-seral conifer forest; however , potential causes for this association have 

not been tested experimentally. Experiments conducted on martens in Newfoundland, 

Canada; Yellowstone National Park, Wyoming; and Utah were used to test for their 

responses to habitat and predator cues . Although the limitation of martens to late­

seral forest habitats has been linked to requirements for access to subnivean prey and 

thermally advantageous resting sites, the risk of predation could also help account for 

the association of martens with these habitats. In field experiments, martens in 

Newfoundland and Yellowstone National Park, Wyoming, were offered food 

resources at various distances from the edge of three habitat types, providing martens 

with a spectrum of habitat cues while holding food resources constant. Rates of 

visitation by martens at bait-boxes did not differ by study site or between late-seral 

and defoliated habitats. Martens did use bait-boxes in defoliated habitats more than 

boxes in habitats lacking both foliation and stem structure. Captive experiments 

3Coauthored by Gary S. Drew and John A. Bissonette. 



indicated that martens from Utah selected areas possessing both overhead cover and 

woody stem structure . No difference was detected between the use of areas 

possessing only overhead cover and those possessing only stem structure, though the 

size of the pen may have limited the ability to make this comparison . Martens 

decreased foraging effort regardless of habitat when presented with predatory cues . 

These experiments show that martens are sensitive to predation threats and that these 

perceived threats can influence their habitat use . 
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Habitat use is often a compromise between requirements for food, shelter, and 

security from predation . However, because of the asymmetrically high costs of 

predation when compared to requirements for food or shelter , all but short -lived 

species should have a low tolerances for predation risk (Bouskila & Blumstein 1992). 

Organisms can decrease risk by restricting activities to habitats or times that limit the 

efficiency of predators ; however, there often are costs associated with access to 

resources (Sih 1980) . The avoidance or limitation of activity in certain habitats has 

been documented for fish (Werner et al. 1983), birds (Caraco 1980), and rodents 

(Kotler 1984). Organisms can use habitats to decrease encounters or increase chances 

of escape (Lima & Dill 1990). Adaptations permitting habitat specialists to persist can 

disadvantage them when new species are introduced and/or disturbances occur (Seal et 

al. 1989). These problems are especially acute for carnivores, e.g., American marten 
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(Martes americana), that occur in relatively low densities (Buskirk & McDonald 1989). 

Numerous studies have shown a pattern of close association between marten and 

coniferous forests containing large trees and abundant coarse woody debris (CWD), 

henceforth referred to as coniferous forest (Koehler & Hornocker 1977; Mech & 

Rodgers 1977; Cambell 1979; Soutiere 1979; Steventon & Major 1982; Douglass et 

al. 1983; Spencer et al. 1983; Zielinski et al. 1983; Snyder & Bissonette 1987). The 

loss of coniferous forest types has been recognized as the major factor leading to the 

reduction in numbers or extirpation of marten in parts of North America (Davis 1983; 

Thompson 1991). However, debate remains over the mechanisms responsible for 

decreases in marten populations . The affinity of martens for coniferous forest is 

commonly attributed to seasonal limitations on access to prey (Francis & Stephenson 

1972; Koehler & Hornocker 1977) or thermally advantageous resting sites (Buskirk 

1984 ; Buskirk et al. 1989) . During the winter months , access to the subnivean zone is 

limited by the physical structure of the forest. Given that martens occur in northern 

coniferous forests characterized by high snowfall, access to prey could potentially 

constrain marten habitat choice . However , research in Yellowstone National Park 

found that martens ' use of subnivean access points was related to prey biomass ; 

subnivean access points were not limiting (Sherburne & Bissonette 1994). 

Additionally, several researchers have suggested that martens are susceptible to 

predation , however, none have experimentally tested this hypothesis (Herman & 

Fuller 1974; Thompson 1991; Thompson & Colgan 1994). 



43 

Avoidance of high risk areas has been demonstrated in numerous species, 

including bluegill sunfish (Werner et al. 1983) , heteromyid rodents (Brown et al. 

1988), and moose (Edwards 1983). Habitat structures often are used to moderate 

predation risk or the perception of risk (Sih 1980 ; Edwards 1983; Werner et al. 1983). 

Coniferous forests provide two conspicuous physical components that may be 

perceived by martens as security or escape cover, (1) foliar cover , which provides 

concealment, and (2) coarse woody stem structure , i.e. , live stems, snags , and coarse 

woody debris, which provide escape routes . However , since foliar cover and stem 

structure tend to be covariates , their independent influence on marten habitat use is 

poorly understood . 

Dense foliar canopies, common in coniferous forest stands , may provide martens 

with required cover from avian predators (Hawley & Newby 1957; Pulliainen 1981; 

Hargis & McCullough 1984) , and could be especially important during the winter 

months, when their dark brown winter pelage contrasts with snow cover. Although 

there is limited evidence of avian predation on marten in North America , in Finland , 

golden eagles (Aquila chrysaetos) are known to prey upon pine marten (M . martes) 

(Nyholm 1970; Pulliainen 1981) . Observations of failed attacks on North American 

martens by a hawk owl (Surnia ulula) (Bissonette et al. 1988) and a prairie falcon 

(Falco mexicanus) (Murie 1961) have been recorded . 

Stem structure also has been linked to marten refuge. The stereotypical practice of 

climbing trees to escape potential predators (Pulliainen 1981; Raine 1982) may explain 

early anecdotal accounts of martens as primarily arboreal. This view was generally 
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accepted until researchers, who were snow tracking martens, determined that marten 

movements were almost exclusively terrestrial (de Vos 1952; Hawley & Newby 

1957). 

This research had two primary objectives: (1) I wanted to determine whether 

habitat cues influenced perceived predation risk and (2) I wanted to identify which 

cues influenced this perception. The role of stem structure and foliation as cues for 

marten perception of predation risk had not received systematic examination. While 

the design and execution of manipulation experiments at scales sufficient to resolve 

causal mechanisms are always difficult (Wiens et al. 1986), the ability of this approach 

to directly test hypotheses made it essential. 

METHODS 

Study Areas 

My first study area was located within the Pine Marten Study Area (PMSA) of 

western Newfoundland, Canada , approximately 50 km south of Corner Brook . The 

PMSA (approximately 1600 km2) was designated in 1972 as a reserve where martens 

could be studied in an effort try and halt the marten population decline on the island . 

During the winter, temperatures in the area typically range from approximately 12 °C 

to -38 °C. All trapping was prohibited in the area; however, logging operations 

continued in the PMSA until 1991. The area is characterized by a mosaic of 

coniferous forest interspersed with ponds, bogs, and barrens. Primary tree species 

include balsam fir (Abies balsamea), black spruce (Picea mariana), and white birch 
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(Betula papyrifera) (Rowe 1959). Forest stands contain large numbers of uprooted 

trees and snags. Infestations of hemlock looper (Lambdina fiscellaria) and spruce 

budworm (Choristoneura fumiferana) have left large defoliated stands. Topography is 

rugged with elevations ranging from 80-700 m . While large portions of the PMSA 

had bee11. harvested , less than 4 % of the forest in my study area had been cut. 

My second study area was the Canyon-Norris region of Yellowstone National Park 

(YNP) , which had a healthy and stable marten population . The dominant common 

cover type in the area was lodgepole pine (Pinus contorta). The matrix of lodgepole 

pine also contained moderate to small interspersions of engleman spruce (Picea 

engelmannii) and doug1as fir (Pseudotsuga menziesii) stands . Elevations in the study 

area ranged from 2500-3500 m. During the winter, temperatures in the area ranged 

from 5°C to -60 °C . The 1988 fires left large areas of standing dead trees . Though 

defoliated stands in Yellowstone were caused by fire , they provided structural 

characteristics similar to insect-killed stands in Newfoundland . 

Captive trials were conducted during the summer of 1993 at the Utah State 

University Green Canyon compound in Logan , Utah . Martens were captured in the 

Uinta mountains wilderness area in eastern Utah and transported to holding pens (800 

cm x 300 cm x 300 cm) at the Green Canyon compound for the duration of the study . 

Field Experiments 

I developed a field experiment to partition the influences of foliar cover and stem 

structure on risk perceived by marten during the winter . Martens were offered food in 
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each of three habitat types: (1) coniferous forest (stem structure and foliage), (2) 

defoliated (only stem structure), and (3) open (no structure or foliage) within each 

marten home-range . Bait-boxes were constructed of plywood (60 cm x 40 cm x 25 

cm) with a 7. 5-cm circular entrance that restricted access of non-targets to the bait. 

Baits consisted of 60-gm prepackaged patties of commercial dog food . A single box 

was baited and scented with commercial skunk lure near a habitat edge until 

discovered by a resident marten. Bait was checked daily , and following discovery and 

consumption, it was replaced as needed for 3 days before beginning the experiment. 

Trials consisted of placing three resource boxes at three intervals , 25 , 50, and 75 m, 

first, from a habitat edge into coniferous forest, then defoliated, and finally into 

habitats devoid of cover. Trials were run for 3 days in each habitat , checking bait­

boxes daily for visitation and replacing bait as needed . Additionally , I measured 

overhead cover at bait-box locations with a semi-hemispherical densiometer, and 

tallied the number of stems > 10 cm DBH within a 5-m radius around bait-boxes. 

These measurements gave me specific micro-habitat information from which study 

sites and habitat types could be compared independent of my habitat classifications , 

i.e ., open, defoliated, and coniferous . Each animal was presented with bait-boxes in 

the same order, from most to least structure. The sequence of presentation was 

important for three reasons. First, it controlled for variances between marten 

responses based on order of presentation; important because of the anticipated small 

sample size. Secondly, the sequence allowed me to isolate the effects of foliar cover, 

and had the potential to isolate complex stem structure if foliar cover turned out to be 
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unimportant. Finally, the sequence also allowed martens to gain experience with the 

boxes in habitats with the greatest cover before being placed in less commonly used 

habitat types. Thus biases caused by differential encounter rates among tested habitats 

and potential confusion caused by missing contextual cues , e.g., stems, was 

minimized. 

For these experiments to be valid, each trial had to be independent. Although 

martens are known to have intrasexually exclusive home ranges (Hawley & Newby 

i957 ; Francis & Stephenson 1972; Bissonette et al. 1988), overlapping intersexual 

home ranges meant that home range alone was not sufficient to ensure independence . 

To identify areas of exclusive use in Newfoundland during the winter of 1989-1990. , I 

trapped and fitted four martens with radio collars and used telemetry locations to 

identify their home ranges . Areas of exclusive use were then identified using home­

range maps. Within areas of exclusive use, test subjects had to have sufficiently large 

(150 m diameter) contiguous blocks of coniferous, defoliated , and open habitats types . 

Only two martens in Newfoundland met all of these criteria. Data were also collected 

on a third marten for coniferous and open habitats. 

In YNP I relied on marten telemetry data collected the previous summer by 

Sherburne (1992). I identified four martens that met my qualifications; however, one 

marten was apparently not present at the time of my trials This gave independent field 

tests of six marten (three from Newfoundland and three from Yellowstone N.P .). 

Prior to testing for differences due to habitats, I compared visitation rates for study 

sites and individuals to identify potentially confounding sources of variation. I used 
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randomization tests for the first three test questions due to their statistical power when 

testing nonnormal distributions of data commonly encountered when sample sizes are 

limited . 

Study site differences 

I first tested for differences due to study site by comparing marten visitation rates 

at bait-boxes using the equation (Noreen 1989): 

.S = I (Lx /n,)-(Ly/ny) I (1) 

where .S is the test statistic based on the absolute value of differences between mean 

study site visitation rates , x and y are samples of visitation rates for the two study 

sites , and n, and ny are the numbers of samples from each study site. For example , if 

the actual test statistic were I 125/5 - 20/5 I = 21 , and in 100 random samples , three 

samples were greater than or equal to 21 , the probability of this arrangement of 

samples by chance would be approximately 0 .03 . 

Individual differences 

To identify differences due to individual visitation rates at bait-boxes, I used the 

equation (adapted from Noreen 1989): 

(2) 



where .S. is the test statistic based on the absolute value of variance from the actual 

visitation rate , x1 is the mean visitation rate across all habitat types and distances for 

animal I , and Y is the mean visitation rate for all animals . 

Habitat use 
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My first question (Do marten perceive different habitats as conferring different 

levels of predation risk?) was tested using a randomization test. The equation used to 

generate a test statistic was the same as equation (2) ; however , for this test X; was the 

sum of visitation rates for the _tth habitat type , and n; was the sample size in the fh 

habitat. If martens do perceive differences in risk of predation between habitats , I 

expected to see significantly different visitation rates at bait-boxes in different habitat 

types . The null hypothesis tested was H01: visitation rates at bait-boxes in different 

habitats are not different. 

Foliar cover 

If H0 1 was rejected , I could ask the question, Do marten perceived the presence of 

foliar cover as decreasing exposure to predation risk? I tested this second question by 

comparing marten visitation rates at bait-boxes in coniferous and defoliated forest 

using a Tukey multiple comparison test. If martens perceive a decreased risk of 

predation in stands with foliar cover, I expected to see significantly lower visitation 

rates of bait-boxes in defoliated stands due to the lack of foliar cover. The null 

hypothesis tested was H02: visitation rates at bait-boxes in coniferous or defoliated 



forest are not different. If H02 was rejected, I would conclude that foliar cover is 

important to marten as cover from predation. 

Stem structure 
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I was also interested in whether martens perceive the presence of stem structure as 

decreasing predation risk . I tested this question by comparing marten visitation rates 

at bait-boxes in defoliated stands and clearings using a Tukey multiple comparison 

test. If martens perceive a decreased risk of predation due to the presence of stem 

structure, I should see significantly lower visitation rates of bait-boxes in clearings due 

to the lack of stem structure. The null hypothesis tested was H03: visitation rates at 

bait-boxes in defoliated forest with rates in open areas are not different. 

In addition to recording visitations at boxes, I made detailed diagrams of marten 

tracks around bait-boxes for each exposure day. I used these diagrams to qualitatively 

evaluate marten use of bait-boxes and to quantitatively measure any boundary effect in 

relation to habitat edge. 

Captive Experiments 

Arena design 

A 10 m x 13 m x 2 .2 m pen served as the trial arena. Plastic tarps were used to 

simulate canopy cover. Stem structure was created using 2- to 4-m lengths of 

lodgepole pine 25 to 40 cm diameter. Because of the relatively small size of the trial 

arena, I limited tests to simple dichotomous choices. Commercial cat food was used 
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for marten daily rations as well as for baits in trials . Martens were put on half rations 

the day prior to testing to assure that they would show interest in baits. Kernels of cat 

food (n = 30) were mixed with 6 L of millet and the combination was placed in a 

plastic tray (60 cm x 40 cm) . For each trial, one tray was placed in the center of the 

northern half of the arena, and 1 tray was placed in the center of the southern half of 

the arena. Holding cages were fitted with 10-cm circular gates . A flexible 10-cm 

diameter tube provided access to the trial arena . Martens were released into the trial 

arena by remotely operating the circular gates . As martens removed pieces of bait , 

the remaining pieces became more difficult to locate in the millet , making it more 

likely that foraging differences would be detected. I recorded all trials with two VHS 

cameras , providing a permanent record of the trials and eliminating the potential for 

bias due to detection of observers during trials. Before beginning trials , each marten 

was introduced to the trial arena once for approximately 5 minutes to habituate it to 

release and recovery procedures . All work was done in accordance with Utah State 

University guidelines regarding care and treatment of animal subjects . 

Design of trials 

Five martens were tested in captive trials . To identify any cage effects, every trial 

consisted of testing three martens, and then swapping structural cues for the last two 

martens . If cage effects were present, the strength of selection for structural cues 

should be different for the two structural arrangements. Marten foraging responses 

were tested under three different arrangements of structural cues during the summer of 
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1993. Trial 1 tested for the influence of both structural and overhead cues on 

perceived risk. For the first trial , half the arena had both vertical structure (stems) 

and overhead cover (tarp), while the other half had no structural cues . Trial 2 was a 

test to contrast the effect of stem and overhead cues . For the second trial, half the 

trial arena had only stem structure and the other half had only overhead cover. The 

third trial also contrasted the effect of stem and overhead cues, but included the 

addition of a predator cue to increase perceived risk and emphasize differences 

between cues . Trial 3 had the same arrangement of vertical structure (stems) and 

overhead cover (tarp) as trial 2 , with the addition of a predator cue (coyote scats were 

simultaneously placed in each half of the trial arena) . All trials lasted for 10 minutes , 

with the clock starting from the point at which martens actually entered the arena. 

After the trial was completed , I made visual contact with test subjects by looking over 

the pen wall directly opposite the entrance used by martens . This prompted martens 

to return through the access tube to their pens . 

Statistical analysis of trials 

I tested for a cage effect by comparing consumption of bait with an initial 

arrangement of structural cues, and then with structural cues reversed. A t-test was 

used to compare bait consumption at feeding trays for all trials by arena half. If one 

of the arena halves was more attractive to martens, there should be significantly 

greater consumption of bait in that half. Thus, biases due to differences in arena 

halves could be detected and, if necessary, factored out. I used randomization tests 
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(Noreen 1989) to evaluate whether differences in cover types affected the consumption 

of baits by martens during summer. Captive trials also allowed me to test the 

responses of martens to a specific predatory cue . Statistical distributions for all 

comparisons between marten consumption of bait by cover type were created using the 

equation (1). For within-trial comparisons, .S is the test statistic based on the absolute 

value of differences between mean bait consumption for each structural cue, x is a 

random sample of bait consumed from cover-typex, and y is a random sample of bait 

consumed from cover-typeY for all martens in a given trial. The numbers of samples 

from each cover type were nx and ny. The number of randomly sampled test statistics 

greater than or equal to the actual statistic divided by the number of random samples 

provides an approximate probability. To evaluate the effect of a predatory cue, trials 

2 and 3 were compared using an equation similar to (1). In this test, .S is the test 

statistic based on the absolute value of differences between mean bait consumption by 

trial, x and y are random samples from actual consumption of bait from the 2 trials, 

and nx and ny are the numbers of samples from each trial. Probability distributions for 

captive tests were derived from 2,000 random simulations . An alpha level of 0.05 

was used to assess significance for all tests. 

RESULTS 

Field Experiments 

Micro-habitat data collected around bait-boxes indicated that overhead cover 

differed between all habitat classes; highest overhead cover measurements were 
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recorded in coniferous forest , and lowest were made in open habitats with defoliated 

habitats falling between these two extremes due to remaining stem structure (Fig. IV-

1). Within habitat classes , there were no differences between study sites. The 

number of stems was similar for coniferous and defoliated habitats and lower for open 

habitats (Fig . IV-2). These measurements suggested that my classification scheme 

was effective in separating habitats by their overhead cover and stem structure 

characteristics . Thus , a series of habitat comparisons could decouple the individual 

influences of these factors . 

Habitat use 

Marten use of bait-boxes by habitat showed significant differences (E = 0.001, n 

= 3, NS = 1000). By controlling the availability of food and minimizing potential 

effects of increased thermal costs , this result indicated a variable perception of risk by 

martens associated with habitat. Based on this result, I rejected H01 (habitat 

associations of marten are not based on perceived risk of predation) and proceeded to 

test H02. 

Foliar cover 

The comparison of coniferous and defoliated forest failed to detect any difference 

in visitation at any distance. This failure to reject H02 suggests that martens in my 

study areas failed to recognized a lack of foliar cover as influencing their exposure to 

predation risk (Fig . IV-3). Based on this result, I proceeded to look at H03 and the 

influence of stem structure on marten habitat use. 
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Figure IV-1. Overhead cover measured at bait-box locations (means ± 1 SE) . Bars 

sharing the same letters are not statistically different (Tukey , P > 0.05) . CF-NFLD 

= coniferous forest-Newfoundland (n=9), DEF-NFLD = defoliated-Newfoundland 

(n=6) , OP-NFLD = open-Newfoundland (n=9) , CF-YNP = coniferous forest­

Yellowstone National Park (n=9), DEF-YNP = defoliated-Yellowstone National Park 

(n=9), OP-YNP = open-Yellowstone National Park (n=9). 
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Figure IV-2 . Number of stems > 10 cm dbh found within a 5-m radius of bait-boxes 

(means ± 1 SE). Bars sharing the same letters are not statistically different (Tukey , P 

> 0.05) . CF-NFLD = coniferous-Newfoundland (n=9) , DEF-NFLD = defoliated­

Newfoundland (n=6) , OP-NFLD = open-Newfoundland (n=9) , CF-YNP = 

coniferous-Yellowstone National Park (n=9), DEF-YNP = defoliated- Yellowstone 

National Park (n=9), OP-YNP = open-Yellowstone National Park (n=9). 
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Figure IV-3. Comparison of marten use of bait-boxes in coniferous 

forest and defoliated coniferous forest to evaluate the influence of foliar 

cover on martens habitat use (means± 1 SE). Bars sharing the same 

letters are not statistically different (Tukey, P > 0.05). D: coniferous 

forest (n = 6); D: defoliated coniferous forest (n = 5). 
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Stem structure 

Marten visitation rates differed significantly between defoliated forest and open 

areas as distance into habitats increased (Fig. IV-4). This suggests that marten 

perceive the presence of large stems as a moderating influence on predation risk. 

However, this test could not identify how stems limited risk to marten, i.e., 

concealment, escape cover, or both . 

Field observations 
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In addition to experimental tests I collected detailed observations on the approach 

of martens to and from bait-boxes . These data provided strong confirmation that 

martens perceived open habitats as more dangerous than either coniferous or defoliated 

forest. When faced with bait-boxes in open habitats , martens always approached from 

the forest and traveled in a straight line to and from boxes (D = 17). I also noted that 

martens would follow the edge of the forest to both sides of the direct line of approach, 

apparently in an attempt to find a way to get closer to the more distant boxes . When 

bait-boxes were placed in coniferous habitats , marten were more likely to approach 

and/or leave transects from the forest interior. Defoliated stands did not appear to 

elicit any preference for marten approach or exit suggesting that they do not perceive 

defoliated habitats as inherently risky. In addition, one collared marten was killed at 

the Newfoundland study site by a red fox (Vulpes vulpes) . A previous study in the 

same area (1986-1988) documented two marten mortalities , one attributed to red fox 

and one unknown, as well as one failed predatory attack (Bissonette et al. 1988). 
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Figure IV- 4. Comparison of marten use of bait-boxes in defoliated 

coniferous forest and open habitats to evaluate the influence of stem 

structure on marten habitat use (means± 1 SE). Bars sharing the 

same letters are not statistically different (Tukey, P > 0.05) . O: 
coniferous forest (n = 6); O: defoliated coniferous forest (n = 6). 
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Captive Experiments 

Trial arena effects 

Marten consumption of bait was similar on both sides of the arena (1 = 0.128 , _e 

= 0 .899 , df = 28), indicating that the arena did not introduce a measurable bias to 

the trials. Based on this result, I did not block the data by arena halves . 

Trial 1 : Overhead cover & stem structure 
Yh...n.Q....S true ture 
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When presented with a choice of foraging in the half of the arena with both 

overhead cover and woody stem structure or the half with no structure , martens 

showed a strong preference for the combination of cover structures (£ = 0 .013 , n = 

5, NS = 2000 , Fig . IV-5) . Results were conclusive, with all animals consuming more 

bait from the arena half with cover . Arena halves lacking both overhead cover and 

stem structure apparently failed to provide martens with the cues associated with 

usable habitat. This suggests that tested martens perceived areas lacking structural 

cues common to coniferous forests (overhead cover and coarse woody stem structure) 

as more dangerous . 

Trial 2: Foliar cover vs. stem structure 

Having established that martens did perceive differential risks between a 

combination of overhead and structural cover vs. no cover, I attempted to separate the 

effects of overhead cover and stem structure in trial 2. However , the results of the 

second trial were ambiguous .. While individual martens appeared to prefer either 
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overhead cover or stem structure, as a group, they did not exhibit a preference (£ = 

0.671 , n = 5, NS = 2000, Fig. IV-5). 

Trial 3: Foliar cover vs. stem structure 
with predator cues 
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The addition of two coyote scats, one to each half of the trial arena, produced an 

unexpected result. I had hypothesized that encountering some cue indicating the 

proximity of a predator would prompt marten to show greater preference for either 

overhead cover or large woody stem structure based on which provided them the 

greatest protection from predators. However, coyote scats did not appear to influence 

marten choice between cover types (E = 0. 999, n = 5, NS = 2000). Instead of 

influencing their choice of cover type , the addition of the predator cue (coyote scats) 

appeared to cause a general decreased in marten bait consumption (Fig. IV-5) . 

Martens limited their movement from the access tube entrance and displayed increased 

vigilance. 

Trial 2 vs . trial 3 : Predator cues 
vs. no predator cues 

As suggested by the plots of trials 2 and 3 (Fig. IV-5) , there was a significant 

difference between the amounts of bait consumed in trial 2 and trial 3 (£ = 0.004, n 

= 10, NS = 2000) . Martens had a strong negative reaction to the additional cue 

(coyote scats) . In addition, during trial 3, martens demonstrated behaviors suggesting 

increased vigilance. They spent little or no time foraging and generally remained 

close to the pen entrance. When martens did forage, they tended to grab a single 



piece of bait in their mouths and run back to the pen entrance before consuming it. 

These behaviors were in marked contrast to martens foraging in the previous two 

trials, where bait usually was consumed while martens stood in the feeding trays. 

DISCUSSION 

Population Differences 

63 

Martens in this study came from three distinct populations, separated by as much 

as 5,800 km. In addition, the island of Newfoundland has been separated from the 

North American mainland since the last ice age, suggesting that the martens on the 

island have been genetically isolated Because of this separation, I had expected some 

variation in marten response by study area; however , patterns of bait-box visitation by 

martens in Newfoundland and YNP, as well as the results of captive trials in Utah, 

suggested that these different populations share similar habitat requirements . 

Although the specific tree species and their size varied for the coniferous forests 

inhabited by the three populations tested, they all contained numerous large stems, 

abundant CWD and abundant overhead cover . 

Winter Habitat Cues 

Although overhead cover has been considered important to the habitat selection of 

marten (Koehler & Hornocker 1977; Allen 1984), I found no evidence that martens 

perceived defoliated coniferous forest as different from intact coniferous forest with 

regard to predation risk . Given their small mass (500 - 1,400 gm), I anticipated that 
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martens would be sensitive to the risk of avian predation . However , most of the avian 

predators in Newfoundland and Yellowstone study areas migrate south during the 

winter. Martens may be more sensitive to the risk of avian predation during the 

summer when raptors are more common . 

While American martens have long been recognized as an obligate coniferous 

forest species, previous studies were purely observational and unable to determine the 

cause(s) for this behavior. By controlling food availability through baiting , I was able 

to isolate the influence of perceived risk through the manipulation of habitat cues . 

Surprisingly , martens did not perceive a lack of overhead cover as an increased risk 

during the winter . Conversely , the lack of large stems and complex physical 

structures all but excluded them. Only one marten ever visited a bait-box 50 m from 

the forest edge into a clearing , and none ever visited boxes 75 m from the forest edge . 

The cause for this close association between marten and large complex stem structure 

may be twofold. First , marten will climb trees when threatened . In conifer forests , 

with their tight branching structure , this strategy would work against both terrestrial 

and avian predators. Secondly, forest habitats characterized by large complex stem 

structure may provide some measure of concealment from potential predators . 

Martens select habitats perceived as less risky, even when this avoidance had energetic 

costs . The stereotypical response to specific habitat characteristics suggests that the 

preference of martens for coniferous forests is linked to an antipredation strategy. 
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Summer Habitat Cues 

The results of the first captive experiment (stems and overhead cover vs. no stems 

or overhead cover) indicate that martens perceived refuge qualities in the portion of 

the trial arena emulating coniferous forest (stems and cover) . This supports the 

hypothesis that martens identify coniferous forests as less risky in summer as well as 

winter. Furthermore, captive tests indicated that the scale at which martens made 

their assessments of predation risk was extremely fine . The straight-line distance 

between feeding tray s in the trial arena was only 6 m. This fine scale , imposed on 

trials by the limited size of the trial arena , may have limited my ability to tease apart 

the separate influences of overhead cover and stem structure. 

Although previous trials suggested that observed marten behaviors were linked to a 

" lifestyle " that limited their exposure to predation risk , the final trial provided an 

opportunity to test for the response of martens to a more direct predator cue. When 

confronted with the predator cue, every marten tested showed a strong and immediate 

decrease in activity and an increase in vigilance . 

The life history of American martens provides clues to the potential influences of 

predation. Martens typically do not breed until their second or third year of life and 

can live to 14 years . While martens must balance requirements for foraging and 

thermal homeostasis with risk of predation, the asymmetric costs of predation strongly 

bias a K-selected species toward overestimation of predation risk (Bouskila & 

Blumstein 1992). 
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Conclusions 

These experiments demonstrated that American martens do perceive the structural 

habitat cues of coniferous forest as conveying some decreased risk of predation and 

that perception is not seasonally limited. Martens were unwilling or unable to make 

extensive use of food resources in habitats lacking structure in both summer and 

winter. Surprisingly, overhead cover did not appear to influence martens ' use of 

habitats in either Newfoundland or YNP , though this may be related to the absence of 

avian predators during the winter in these areas . Captive trials were unable to resolve 

differences between martens response to overhead cover and stem structure cues , 

though the source of security cover in coniferous forests during the winter appears to 

be primarily large woody stems and debris. The uniform reaction of all martens tested 

for their response to a direct predator cue also was highly sensitive to direct predator 

cues and they responded by limiting activity and increasing vigilance . The recognition 

of the martens' dependency on specific habitat characteristics should be investigated 

further with an emphasis -on detecting threshold values for stem structure and larger 

scale testing of the value of overhead cover during the summer . 
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CHAPTER V 

SUMMARY 
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Although the preference of American martens for coniferous forests is widely 

recognized, the mechanisms responsible for this relationship have remained largely 

untested. My research program systematically addressed the causes for and 

implications of this association . I began by testing the habitat selection of American 

martens in Newfoundland, and confirmed that they preferred coniferous forests that 

contained large trees and abundant coarse woody debris (CWD). More importantly, I 

was able to determine that the scale at which this selection occurs is quite small. 

Composition of habitats was significantly different at distances greater than 80 m from 

used habitats. The actual scale of selection may be even smaller, but my ability to 

detect it was limited by the resolution of the remote sensing device used, the 

classification scheme, and the natural variability of the study area habitats. This result 

suggests that both foraging and nonforaging movements of martens are linked 

intimately to surrounding forest structure. Factors operating at some larger scale, 

e.g. , thermally advantageous resting sites, are not sufficient to explain this resolution 

of selection. 

The use of thermally efficient subnivean resting sites appears to be a behavioral 

strategy used by martens to limit their thermal costs . However, resting sites offer 

only limited thermal protection; ground-level temperature under snow cover are 

approximately 0 °C . If thermoregulatory factors were dictating the actions of martens , 
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they should adjust their activity patterns to limit energetic costs . However, martens in 

Newfoundland failed to minimize these costs. Marten food habits failed to prov ide 

any evidence that martens were synchronizing their activity patterns with that of their 

prey . Alternatively, I found that martens suffer a real threat of predation as evidenced 

by the 2 known cases of predation by red fox . Although activity patterns of red fox 

were not measured , they were seen commonly seen during the daylight hours . 

Martens may experience some decreased risk by being less detectible at night. 

Additionally , martens are relatively long lived and late in reaching sexual maturity , 

suggesting that the risk of mortality could be stronger proximate influence than 

energetic constraints. 

Based on these findings , a field experiment was used to test whether martens were 

constrained to coniferous forests by access to food resources or predation risk . 

Martens in Newfoundland and Yellowstone National Park showed similar responses, 

consistent with the hypothesis that they perceived decreased predation risk in 

coniferous forest habitats . Martens did not perceive a lack of foliar cover as a limiting 

factor in accessing baits, but did limit their use of baits in habitats devoid of complex 

woody stem structure. The source of security cover in old/mature forests appears to 

be large woody stems and possibly CWD . 

The field experiments in Chapter IV provided strong evidence that during winter, 

martens perceive some increased risk outside of late-seral coniferous forest habitats, 

but they could not provide any indication of the influence of predation risk during the 

snow-free period. While I was unable to determine which structural feature was most 
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important to martens during the summer , captive experiments demonstrated that 

martens perceive late-seral coniferous forest habitats as less dangerous. Together, 

field and pen experiments (Chapter IV) provide compelling evidence that martens are 

cognizant of predation threats year-round . I was also able to detect a strong restriction 

in foraging activity in response to a predator cue . 

American martens make their habitat selection decisions on a fine scale . Although 

they must take both thermal conditions and prey availability into account , my research 

sugge sts that these factors were not the primary influences for observed marten 

behaviors . Instead , martens from 3 distinct areas demonstrated a consistent sensitivity 

to predation risk. Martens' selection of habitats, in part, reflects the indirect effect of 

predation risk . Structures that provide them with either concealment or escape cover 

are selected . Additionally, martens can and will modify other behaviors to limit 

detection as perceived risk increases . 
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