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ABSTRACT 

Channel Narrowing of the Green River near Green River, Utah: 

History, Rates, and Processes of Narrowing 

by 

Tyler M. Allred, Master of Science 

Utah State University, 1997 

Major Professor: Or. John C. Schmidt 
Program: Watershed Science 

Previous scientific research has documented channel narrowing on the 

Green River near Green River, Utah, but the exact timing, rates, and causal 

mechanisms of that narrowing have been the source of disagreement in the 

scientific literature. This thesis demonstrates that the Green River has 

narrowed in two separate periods during the last 100 years. The narrowing is

driven primarily by changes in the hydrologic regime and not by the invasion of 

saltcedar. The channel narrowed between 1930 and 1938, when a shift from 

wetter than normal conditions to a period of draught led to a reduction in river 

discharge. Channel width then remained relatively stable until construction of 

Flaming Gorge Dam in 1962, despite the presence of saltcedar. Narrowing has 

occurred since dam construction. 
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Detailed analysis of the formation of an inset floodplain deposit indicates 

that it formed by a process of vertical accretion, during incremental events. 

Inset bank deposits within the study area are composed primarily of particles 

smaller than 0.125 mm. Measurement of suspended sand distribution within the 

water column shows that particles of this size are carried in suspension by the 

2-yr flood. Continued vertical accretion over time elevated the floodplain

surface until inundation rarely occurs 

(126 pages) 



ACKNOWLEDGMENTS 

This project was funded by the Utah Division of Wildlife Resources and 

the Recovery Program for the Endangered Fish of the Upper Colorado River 

Basin. Supplemental support was provided by the Water Resources 

Division/US Geological Survey through Dr. E.D. Andrews, whose advice is 

greatly appreciated. 

I would like to thank Dr. John C. (Jack) Schmidt for his knowfedge, 

insight, and continual assistance, which have made this thesis possible. I also 

wish to thank Dr. Michael P. O'Neill and Dr. James P. Dobrowolski for their 

input and suggestions, and their willingness to work with my busy schedule. 

I also wish to acknowfedge USGS personnel who assisted in obtaining 

the archived discharge records for this study, specifically David Allen and 

Julane Muldaur from the Utah State office of WRD/USGS. Dr. Richard Cutter, 

Department of Mathematics and Statistics, Utah State University, provided 

assistance with statistical analysis of the time series data. Also a very special 

thanks goes to Steve Monroe of the USGS in Flagstaff, Arizona, for his 

technical expertise and his willingness to train me in the operation of sampling 

equipment 

Finally, I would like to thank my lovely wife, Deanna, and my daughters, 

Janie, Caitfin, and Savannah, for putting up with my frequent absences during 

iv 



v 

the last two years, and for helping me to keep my priorities straight and my 

sanity intact Tyler M. AJlred 



CONTENTS 

Page 

ABSTRACT ................................................................................................ ii 

ACKNOWLEDGMENTS ............................................................................ iv

LIST OF TABLES .................................................................................... viii

LIST OF FIGURES .................................................................................... ix 

CHAPTER 

1. INTRODUCTION ................................................................... 1 

2. CHANNEL NARROWING OF THE GREEN RNER
NEAR GREEN RNER, UTAH: HISTORY AND
RA TES OF NARROWING .................................................... 3 

INTRODUCTION ........................................................ 3 
THE GREEN RIVER IN UTAH I

THE STUDY AREA .................................................. 9 
METHODS ............................................................... 11 
RESULTS AND DISCUSSION ................................. 15 
CONCLUSIONS ....................................................... 26 

3. CHANNEL NARROWING OF THE GREEN RIVER
NEAR GREEN RNER, UTAH: DETAILED
MEASUREMENTS VERSUS PROCESS
MODELS ............................................................................. 49 

INTRODUCTION ..................................................... .49 
BACKGROUND ........................................................ 50 
STUDY REACH ........................................................ 63 
METHODS ............................................................... 64 
RESULTS ................................................................. 67 
DISCUSSION ........................................................... 71 
CONCLUSIONS ....................................................... 75 

vi 



4. CONCLUSION .................................................................. 107 

LITERATURE CITED ............................................................................. 110 

vii 



UST OF TABLES 

Table Page 

1 DISCHARGES OF SPECIFIC RETURN PERIOD FOR 
THREE TIME INTERVALS ............................................................ 28 

2 SUMMARY OF AIR PHOTO INFORMATION ................................ 29 

3 CROSS-SECTION SURVEY DA TES AND DISCHARGES ............ 30 

4 MEASUREMENT DATES WITH DISCHARGES ........................... n 

5 SUMMARY OF VELOCITY DATA FOR ALL DATES ..................... 78 

6 CONCENTRATION DATA FOR ALL MEASUREMENT DA TES .... 79 

7 SUMMARY OF VELOCITY CURVE FIT PARAMETERS ............... 80 

8 SUMMARY OF SEDIMENT CONCENTRATION AT THE 
TOP OF THE BEDLOAD LAYER ................................................... 81 

9 SUMMARY OF SEDIMENT CONCENTRATION CURVE 
FIT r2 DATA ...................................................•............................... 82 

10 SAND, SILT, AND CLAY PROPORTIONS FOR DIFFERENT 
ELEVATIONS: USGS CABLEWAY EXCAVATION ...................... 83 

11 PERCENT FINER-THAN-INDICATED-SIZE CLASSES FOR 
DIFFERENT ELEVATIONS IN THE USGS CABLEWAY 
DEPOSIT ........ ................ .. .... ................................ .................. 84 

viii 



LIST OF FIGURES 

Figure Page 

1 Map of the study area in east-central Utah .................................... 31 

2 Hypothetical formation and rate of increase in flood-plain 
elevation by overbank deposition .................................................. 32 

3 History of peak annual instantaneous discharges for 
Green River at Green River, Utah, showing peak 
flows and a five-year moving average ........................................... 33 

4 Flow duration curves for three time periods: pre-1930, 
1930-1957, and 1963-1995 ........................................................... 34 

5 Comparison of stage-to-discharge relations at the present 
cableway location and at the USGS gage ..................................... 35 

6 Schematic illustrating the importance of using the proper 
range of flows when determining bankfull channel 
width from discharge measurements ............................................. 36 

7 Pattern of scour and fill at the time of discharge 
measurements at the Green River cableway ................................. 37 

8 Plots of ferry/cableway cross section used by the U.S. 
Geological Survey prior to 1930 .................................................... 38 

9 Matching photographs of the old ferry/cableway at Little 
Valley, approximately 9 km downstream from the town 
of Green River, Utah ...................................................................... 39 

1 O Changes in bankfull channel characteristics over time, from 
USGS discharge measurements and from air photos .................... 40 

11 Changes in channel geometry between 1932 and 1995 ............... 41 

12 Hydraulic geometry relations for the present cableway for 
three time periods .......................................................................... 42 

13 Loss of secondary channels .......................................................... 43 

ix 



14 Photograph of the stratigraphy within the excavation near the 
present USGS cableway at Green River, Utah .............................. 44 

15 Effective discharge curves for three time periods: pre-1930, 
1930-1957, and 1962-1993 ........................................................... 45 

16 Vertical accretion of an inset floodplain deposit over time ............ 46 

17 Change in effective discharge over time based on 10 
previous years of flow .................................................................... 4 7 

18 Channel width over time at two ranges of discharge .................... .48 

19 Schematic showing rays and isovels using the method 
of Leighly ....................................................................................... 85 

20 Hydrograph for 1996 showing the dates of measurement ............. 86 

21 Plot of the cross section at the Green River cableway on 
5/29/96, with vertical exaggeration and without ............................. 87 

22 Velocity distribution on 5/29/96 ..................................................... 88 

23 Measured velocities and least squares curve fits using 
Eq. 4b, for indicated stations ......................................................... 89 

24 Best fit velocity profiles for all measured verticals, 5/29/96 ........... 96 

25 Suspended sediment concentration distribution on 5/29/96 .......... 97 

26 Plot of measured concentrations at Station 128 ............................ 98 

27 Plot of measured concentrations at Station 116 ............................ 99 

28 Plot of measured concentrations at Station 91 ............................ 100 

29 Plot of measured concentrations at Station 67 ............................ 1 O 1 

30 Plot of measured concentrations at Station 55 ............................ 102 

31 Volumetric concentrations at the top of the bedload layer 
for 4 size classes of sand: 62.5 micron, 88 micron, 125 
micron, and 175 micron ............................................................... 103 

x 



32 Diagram of isovels and rays used for graphical solution 
of shear stress distribution using the method of Leighly .............. 104

33 Shear stress distributions ............................................................ 105 

34 Formation of a channel margin deposit ....................................... 106 

xi 



CHAPTER 1 

INTRODUCTION 

The Green River is the longest tributary of the Colorado River, draining 

approximately 115, n2 km2 of Wyoming, Colorado, and Utah. The Green flows 

primarily to the southwest, which is perpendicular to the orientation of the major 

geologic features of the region. The river flows through bedrock formations of 

varying erosional resistance, resulting in alternating reaches of canyons and 

wide alluvial valleys. Over the last century, the hydrology of the Green has 

been influenced by many factors, both natural and anthropogenic, including 

natural climatic change, invasion of exotic species, altered land use, diversion 

of water, construction of levees, and the building of major dams. The 

cumulative effect of these factors has caused the channel of the Green River to 

narrow. This narrowing has been well documented, but the extent, timing, and 

causal mechanisms for the change have been the source of disagreement 

within the scientific literature (Graf, 1978; Andrews, 1986). 

Chapter 2 addresses the primary objective of this study, to determine the 

extent, timing, causal mechanisms of channel narrowing on the Green River, 

and to provide insight into the processes that govern channel adjustment to 

changes in fluvial processes. 

Chapter 3 examines the interactions between sediment transport and 

bank accretion by analyzing a set of detailed measurements of the velocity 



distribution at the USGS cableway located within the study reach. These 

measured data are compared with predicted distributions from several 

commonly used mathematical models. We also assessed the shortcomings of 

these models by regressing predicted distributions against measured data. 

2 
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CHAPTER2 

CHANNEL NARROWING OF THE GREEN RIVER NEAR GREEN 

RNER, UTAH: HISTORY AND RATES OF NARROWING 1

INTRODUCTION 

The adjustment of landforms to changes in the magnitude and frequency 

of their formative processes and to changes in vegetation is of long-standing 

geomorphic interest Twentieth-century climatic change, nonnative vegetation 

invasion, and construction of large dams have altered the character and 

function of riverine ecosystems in the semiarid western United States. Habitat 

availability at critical life stages of endemic endangered fish, the quality of river 

recreation, and the magnitude of sediment transfer to downstream reaches 

have also been altered. The Colorado River system has been greatly affected 

by each of these climatic, biotic, and anthropogenic changes. In an era when 

dam operations are being revised to mitigate and improve downstream river 

environments, it is essential that we understand the magnitude of twentieth­

century channel change and the relative roles of climate, vegetation, and dam 

construction in causing those changes. 

This study concerns adjustment of the Green River near Green River, 

Utah (Fig. 1). This reach has been known to geologists since John Wesley 

1
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Powell floated through this open valley on July 13, 1869. Graf (1978) and 

Andrews (1986) both studied this reach, and came to different conclusions 

about the timing and cause of channel narrowing. We initiated this study to 

resolve this disagreement and because revisions in the operations of Flaming 

Gorge Dam, located 475 km upstream, have been proposed in part to maintain 

habitat diversity and to inhibit narrowing. We sought to understand whether 

channel narrowing had actually been caused by the dam. 

4 

Graf (1978) and Andrews (1986) showed that channel r.arrowing has 

occurred in areas of both restricted and fixed meander planform. Grams (1997) 

showed that narrowing also has occurred in the debris fan-affected canyons of 

the eastern Uinta Mountains. These studies document the existence of inset 

alluvial deposits that comprise a new floodplain. It is important to note that 

these inset floodplains often occur in areas where lateral migration is restricted; 

thus, these deposits must form by some process other than lateral accretion. 

No studies exist that demonstrate the rate or mechanism by which inset 

floodplains form. There is a clear need to understand how these deposits form 

because many geomorphic settings limit channel migration. 

One part of this study utilizes previously unanalyzed archived discharge 

records of the US Geological Survey's (USGS) streamflow gaging station 

"Green River at Green River, Utah• (station number 09315000). Although 

Thompson (1984) and Andrews (1986) had analyzed the sediment transport 

data collected at the gage, no analysis had been completed of the more than 



2600 discharge measurements that have been made at this site since 1909. 

We supplemented this detailed temporal analysis of a single cross section with 

air photo analysis of an adjacent 26.4-km reach, stratigraphic analysis of bank 

deposits, channel cross-section measurements of scour and fill during flood 

passage, and measurement of velocity and suspended sediment distribution at 

flood stage. The purposes of this thesis are to describe the history of channel 

change of the Green River in the study area, to relate that history to climatic 

change, saltcedar (Tamarix sp.) invasion, and dam construction, and to 

describe the process of channel narrowing by vertical accretion. 

Channel Fonn 

5 

Classic studies conclude that channel geometry in a river system is 

largely controlled by the magnitude and duration of flood events (Wolman and 

Leopold, 1957; Wolman and Miller, 1960). Andrews (1980) introduced the term 

"effective discharge
s 

which is the increment of discharge that transports the 

most sediment, when averaged over a period of years. He also showed that 

channels narrow in association with decreased magnitude of the effective 

discharge. Other studies have shown that channel form changes in response to 

factors either directly or indirectly associated with the magnitude and duration 

of flow. These factors include; large magnitude floods (Schumm and Lichty, 

1963; Burkham, 1972; Osterkamp and Costa, 1987; Pizzuto, 1994; Gomez et al., 

1995; Friedman et al., 1996), damming and diversion (Williams, 1978; Williams 
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and Wolman, 1984; Andrews, 1986; Everitt, 1993; Stevens et al., 1995; Collier 

et al., 1996), natural climatic change (Schumm, 1969; Graf, 1983; Graf et al., 

1991; Gellis et al., 1991), altered land use (Hadley, 1974; Nadler and Schumm, 

1981; Brookes, 1989), and via cyclic erosional and depositional processes 

(Patton and Schumm, 1981; Nanson, 1986). 

Vegetation, both native and introduced, also has been shown to affect 

channel form by stabilizing banks and by increasing bank roughness (Hadley, 

1961; Schumm and Lichty, 1963; Smith, 1976; Graf, 1978; Williams and 

Wolman, 1984; Friedman et al., 1996). An increase in roughness can lead to 

vertical accretion of sediment during overbank flooding events. 

Pizzuto (1994) showed that channel narrowing can occur by a process of 

bench building at lower elevations that follows large-scale flooding and channel 

widening. He also demonstrated that the balance between erosion and 

deposition is correlated to the annual maximum daily mean discharge, a value 

that is constantly changing through time. This finding highlights the continuing 

readjustment in channel form and geomorphology, and discounts the 

importance of a single dominant channel-forming discharge, or effective 

discharge, that is responsible for observed channel form. 

Lateral Migration Versus 
Vertical Accretion 

Flood plains are the dominant geomorphic feature of fluvial systems. In 

general, floodplain deposits can be separated into two categories: laterally 
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accreted deposits that result from channel migration across a flood plain, and 

vertically accreted deposits that result from overbank deposition of sediment 

Flow hydraulics through laterally migrating meander bends have been studied 

extensively (e.g., Dietrich and Smith, 1983; Bridge and Jarvis, 1976) and they 

are relatively well understood. The stratigraphy of point bar deposits that result 

from lateral channel migration and create these floodplains also have been 

studied by Jackson (1975) and Bridge and Diemer (1983). Conversely, the 

processes involved in vertical accretion of sediment are largely undocumented, 

due in part to the low rate of sediment deposition that is often associated with 

overbank flow (Wolman and Leopold, 1957; Gomez et al., 1995) and the belief 

that this process is less widespread or of less geomorphic importance. 

The basic theoretical model describing the rate of vertical accretion on 

flood plains was proposed by Wolman and Leopold (1957), who showed that 

the rate of vertical accretion must decrease with time if thalweg elevation does 

not change (Fig. 2). The decreased rate of sediment deposition over time is 

due to the decreasing frequency of overbank flow, because higher stages are 

necessary to inundate an aggrading flood plain. Few field studies have 

confirmed this model. 

Nanson (1986) studied laterally stable and vertically aggrading streams 

in southeastern Australia. He concluded that continued vertical accretion over 

time and the associated formation of natural levees leads to a concentration of 

flow energy in the main channel and in flood-plain backchannels. The energy 



concentration eventually causes catastrophic erosion of portions of the flood 

plain which Nanson termed ·floodplain stripping.• Eroded areas then begin a 

new cycle of vertical accretion. He argued that the presence of these eroded 

areas leaves floodplains in a state of disequilibrium, meaning that the flows 

required to inundate vertically accreting deposits are not well correlated in the 

downstream direction. 

8 

Both Graf (1978) and Andrews (1986) describe channel narrowing along 

the Green River in Utah. However, these authors disagree about the timing and 

the cause of this change. Graf (1978) matched photographs and concluded 

that there has been little change to the channel since 1962. He suggested that 

narrowing occurred prior to dam construction (pre-1962) and this narrowing was 

caused by the invasion of saltcedar. 

The work of Andrews (1986) offers a different interpretation. Andrews 

used a sediment budget approach and suggested that the channel near Green 

River, Utah, was accumulating sediment and narrowing in response to the 

operation of Flaming Gorge Dam. He also concluded that the channel was still 

adjusting to the change in flow regime and sediment transport caused by dam 

operations and it might continue to narrow for many years. Neither the causal 

mechanism for the channel adjustments nor the timing of those adjustments 

were clearly identified by either researcher. 



THE GREEN RIVER IN UT AH I 

THE STUDY AREA 

The Green River is the longest tributary of the Colorado River, draining 

approximately 115,772 km2 (44,850 mr) of Wyoming, Colorado, and Utah 

(Andrews, 1986). The river flows alternately through bedrock canyons and 

9 

alluvial valleys. Typical downstream hydraulic geometry relations (Leopold and 

Maddock, 1953) do not apply to large sections of the river due in part to the 

varying erosional resistance of the local geology (Grams, 1997). Most of the 

Green's annual water discharge originates as snowmelt runoff from high 

mountains, whereas most of its sediment load is derived from low-elevation 

semiarid sections (Andrews, 1990). Flows of the Green River have been 

regulated by Flaming Gorge Dam since October 1962. 

Streamflow at Green River, Utah, has been affected by climate change, 

dam construction, and trans-basin diversions. On the basis of dendro-

chronology, Stockton and Jacoby (1976) showed that the two periods of 

greatest annual runoff occurred between approximately 1600 and 1650, and 

between 1900 and 1930. Streamflow gaging beg an in 1894, and these records 

also indicate that the magnitude of flood flows decreased greatfy after 1930 

(Fig. 3). The magnitude of the average flood decreased again after closure of 

Flaming Gorge Dam in 1962. The 2-yr recurrence flood was calculated far 

three time periods selected by visual assessment of the data. The 2-yr flood 

decreased from 1190 m3/s for the period of record prior to 1930, to 800 m3/s 
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between 1930 and 1957, and decreased again to 635 m3/s after dam closure 

(Table 1 ). Recurrence intervals were calculated using the Weibull formula for 

plotting position, (n+1 )Im (Singh, 1992), where n is the number of years of 

record for each time period, and m is the rank of a flood event 

The duration of flooding and of low flows has decreased since dam 

closure because the duration of intermediate discharges has increased (Fig. 4). 

The number of days per year when mean daily discharge exceeds 650 m3/s has 

decreased by roughly 50 percent Similarly, very low discharges which were 

common before dam closure, now rarely occur. 

The study area is a 26.4 km reach near the town of Green River, Utah, 

which is known as the Green River Valley (see Fig. 1 ). Average annual 

precipitation is 155 mm per year. At the upstream end of the study reach, the 

river exits the Mesaverde Formation of Grey Canyon at the Book Cliffs. The 

Green River alluvial valley comprises the central portion of the study reach, and 

it is primarily eroded into the Cretaceous Mancos Shale. The shale is highly 

erodible and poorly consolidated. The river also cuts through Pleistocene 

gravel deposits in some locations, and these deposits are a major source of 

gravel to the river. The downstream end of the study reach flows alternately 

through Dakota Sandstone and Mancos Shale. 

Large cottonwood trees (Populus sp.) line the streamward edge of high­

elevation terraces. At lower elevation, dense stands of nonnative vegetation 

including saltcedar and Russian olive (Eleagnus sp.) line the banks and cover 
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the present floodplain. At still lower elevations, a willow-covered inset bench 

also is visible in many locations. 

The bed material in the study reach is gravel and cobbles, mantled by 

sand or silt Channel width is variable through the reach but exceeds 100 m at 

most locations. Slope varies from .0001 to .001 mlm through the reach but is 

generally between .0003 and .0005 m/m. Several semipermanent island 

complexes are found within the study reach, and secondary channels separate 

these islands from nearby floodplains and terraces. A few small rapids and 

riffles are found in the reach, primarily where debris from dry washes enters the 

channel. Two debris flows constrict the river into a rapid in the upstream 

portion of the study reach. 

METHODS 

Analysis of USGS Discharge 
Measurement Records 

Over 2600 discharge measurements of the Green River were made at or 

near Green River, Utah, between 1909 and 1993 by the U.S. Geological 

Survey. Discharge measurements prior to 1909 are not available. Between 

1912 and 1930 the measurements were made at a ferry and cableway located 

approximately 9 km downstream from the present cableway (see Fig. 1). This 

site was reoccupied and surveyed in 1997. After 1930, most measurements 

were made at the present cableway, and these measurements provide an 
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uninterrupted record of channel geometry to the present Each discharge 

measurement includes water depth at a minimum of 20 points across the 

channel. Distance across the channel is determined from markings on the 

cable that have remained constant over time. Each cross-sectional 

measurement also includes river stage, discharge, width, depth, mean velocity, 

and thalweg depth. Data from these discharge measurements were entered 

into a spreadsheet for analysis. Measurements made during periods with 

extensive shore ice were inconsistent with other stage-discharge relations and 

were excluded from the analysis. 

Reconstruction of a channel cross section from discharge measurements 

is computed by subtracting water depth from water stage. In the case of the 

Green River gage, however, the gage itself is located approximately 1 km 

upstream from the present cableway. Water surface elevation data were 

collected near the cableway and coupled with discharge information from the 

gage. We used these data to establish a stage-discharge relation at the 

cableway for comparison with the relation at the gage (Fig 5). The relation at 

the cableway was the same as the present relation at the gage for flows greater 

than 600 m3/s. Adjustments were made to the discharge measurement data to 

ensure proper vertical positioning of the cross sections during analysis. 

Since one focus of this research was to determine changes in active 

channel width, it was necessary to develop a method for extracting this 

information from the large data set of discharge measurements. Measurements 



made at or just below bankfull stage best describe the bankfufl channel width; 

therefore, we analyzed all discharge measurements made at or slightly below 

the 2-yr recurrence interval flood. Inclusion of measurements made at higher 

discharges in the analysis introduces excessive variability due to large 

differences in the width of floodplain inundation (Fig 6). 

Aerial Photo Interpretation and Analysis 

13 

Stereo aerial photos taken in 1938, 1952, 1962, 1985, and 1993 (Table 

2) were analyzed to charaderize and quantify channel change in the entire

study reach. Map units are defined as areas having a unique combination of 

four attributes. These attributes include: (1) major feature (flood plain, mid­

channel bar, secondary channel. etc.), (2) vegetation density (dense. sparse, 

unvegetated, etc.). (3) part of the active channel (yes or no-based on breaks in 

slope and vegetation borders-used to account for different discharges on dates 

of photography), (4) geomorphic surface (current floodplain with 

saltcedar!Russian olive, cottonwood terrace, inset willow level) (1993 only). 

Digital photographic scaling techniques were used to transfer attributes 

from photos to a common 1:12,000 scale base map. These data were input into 

a geographic information system for quantitative analysis. The area of different 

map units was measured in each photo series and changes over time were 

calculated. Errors were calculated as the width of the trace line times the scale 

of the map, and that error was assumed on both sides of the channel. This 
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method of error estimation assumes that we identified the boundaries correctly, 

and that aerial error is the result of map scale only. 

Stratigraphy and Dendrochronology 

Stratigraphy was analyzed by excavating part of the active floodplain 

near the present cableway. Root crown elevations were noted for a number of 

buried saltcedar exposed during excavation. Slabs were removed throughout 

the root crown area and were sanded and polished. Tree rings were counted to 

determine the approximate age of the tree, and the age of the sedimentary layer 

at that level was assigned the same age as the tree. Comparisons were made 

between cross-section data and tree-ring data to corroborate conclusions about 

the timing of bank aggradation. 

Channel Cross-Section Monumenting 
and Surveying 

Eight semipermanent cross sections were established near the present 

cableway. Detailed surveys of the cross sections were completed over a range 

of discharges from 98.8 to 801.4 m3/s on both the rising and falling limbs of the 

1995 snowmelt flood (Table 3). Each channel cross section was monumented 

by driving 1.5-meter metal fence posts into the banks. These posts also served 

as semipermanent benchmarks. All benchmarks were surveyed from a common 

point to provide relative coordinates and elevations. Cross sections were 

surveyed using a geodetic total station for all areas that were above water or 
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that could be waded safely. Deeper channel locations were surveyed by 

stretching a tag line marked at 3.05-m intervals across the channel and using a 

motorboat equipped with a recording depth sounder to mark each interval on a 

recorded trace. Four traces were completed for most cross sections. The 

depth of flow at each point was calculated as the average of the four traces. 

Standard errors also were calculated based on the scatter within the traces. 

The survey data were combined with the depth-sounding trace data for a 

complete description of channel response to a flood event 

RESULTS AND DISCUSSION 

Channel Bed Behavior 

The Green River scours and fills during flood passage (Fig. 7). Average 

bed elevation at the present cableway has not changed appreciably since 1930, 

although bed elevation increased several times and then returned to the 

previous level. Rising limb scour now only occurs during the largest post-dam 

floods. Detailed measurements showed that the channel filled during passage 

of the flood. 

Channel Cross-8ec:tion Change 

The channel has narrowed by about 25 m at the old cableway that was 

used prior to 1930 (Fig. 8). Most bank accretion occurred on the left bank, 

which is the inside of the channel bend. Photographs of the old ferry/cableway 
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taken prior to 1914 by USGS personnel were matched in spring 1997 (Fig. 9). 

The new saltcedar-covered floodplain is clearly visible, as is a loMr elevation 

willow-covered surface. Cottonwoods that once were near the channel are now 

greater than 25 m away. It is not possible to determine the timing or rate of 

bank accretion at the old cableway because no measurements were made at 

the site between 1930 and 1997. 

The rate and style of channel narrowing were measured at the present 

cableway by analyzing changes in the bankfull channel width between 1930 

and 1993. Figure 1 Oa summarizes these findings. Regression lines in Figure 

1 Oa were computed for time intervals selected by visual assessment of the 

data. These groupings were analyzed for statistical significance using an 

analysis of covariance that accounts for the uneven distribution of data points 

over time. Channel widths for the three time periods are significantly different 

at the a = 0.15 level (p < 0.01 ). To ensure that the identified changes in 

channel width were not a product of systematic variations in discharge at the 

time of measurement, river discharge at the time of each measurement also 

was analyzed using the same statistical technique. Discharge values for the 

three time intervals are statistically equivalent; thus, the channel width changes 

are real and are not an artifact of any measurement bias. Changes in mean 

section velocity and mean depth for each of the three time periods are also 

significant at the a = 0.15 level (p == 0.1 ). 
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There have been three periods in the evolution of the channel at the 

cableway (Fig. 10a). Channel narrowing occurred at the bankfull level between 

1930 and 1938 and again after 1959. Between these periods, channel width 

did not change. The channel is continuing to narrow, and has not completely 

adjusted to the present-day hydrologic regime. 

Channel cross sections were plotted from the discharge measurements 

to determine the location of the bank accretion that has caused channel 

narrowing at the present cableway (Fig. 11 ). The left bank has been very 

stable at this site, but approximately 12 m of sediment has accreted on the right 

bank. Rapid accretion rates occurred between 1957 and 1962. 

Hydraulic Geometry 

Hydraulic geometry relations were calculated for the present cableway 

cross section for the time periods 1930 to 1938 (narrowing), 1939 to 1957 

(stable), and 1963 to 1993 (narrowing}, using discharge measurement data. 

The relationships are shown in Figure 12. The figure shows a shift in the width­

to-discharge relation. Changes in mean depth and mean velocity are less 

apparent due to the smaller scale of the change when compared to the width 

data. These plots show that the channel width has decreased over the entire 

range of discharges. 



GIS Analysis of Aerial Photos Taken 
Between 1938 and 1995 

Stereo air photos taken in 1938, 1952, 1962, 1985, and 1993 were 
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analyzed to determine the geomorphic changes that have occurred in a 26.4-km 

section of the study reach over time and to determine if the style and magnitude 

of narrowing at the cableway was representative of the entire study reach. 

Total active-channel surface area of the Green River through the study reach 

has decreased by approximately 14.5 percent since 1938, from 4.20 x 106 to 

3.46 x 106 m2
. This corresponds to a reduction in average channel width of 

approximately 23.5 m. The decrease in channel width has not been continuous 

over the last 66 yrs, but instead has been episodic, and the trends are similar to 

those determined from discharge measurements at the present cableway 

(compare Figs. 10a and b). Air photos do not provide a continuous temporal 

record of channel change, but narrowing occurred between 1938 and 1952. 

This was followed by overall width stability between approximately 1952 and 

1962. High rates of channel narrowing occurred after dam closure in 1962. 

Thus, channel changes measured at the cableway are representative of the 

entire study reach. 

GIS analysis also shows that many semipermanent island complexes 

that existed in 1938 are now attached to the bank, and the secondary channels 

that once surrounded these islands have become constricted and filled with 

sediment (Fig. 13). Mapped surface area of secondary channels decreased by 
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roughly 50 percent between 1938 and 1993 (Fig. 10b). Loss of island 

complexes and the accompanying secondary channels represent an overall 

simplification of the channel form and could have implications for the availability 

of aquatic habitat 

The GIS analysis also indicated that both erosion and deposition 

occurred even during periods of relative stability. The maps also showed some 

overall patterns in the style of erosion and deposition that occurred during the 

period of photographic record. The following patterns generally were identified 

for all time periods: (1) margins of persistent islands tended to be quite dynamic 

with erosion on the main-channel side and deposition on the near-shore side, 

(2) river meanders in the wide portion of the valley were active, experiencing

slight erosion on the outside of the bends and considerable deposition on the 

point bars, and (3) straight reaches generally were less active but did show the 

formation of inset lateral deposits or benches. 

Stratigraphy and Dendrochronology 

The accreted deposit on the right bank at the present cableway was 

excavated and its stratigraphy analyzed (Fig. 14). Several of the saltcedar 

emerging at ground level have multiple buried root crowns located primarily on 

and below two organic layers located approximately 1 m below the present 

surface. The organic layers are distinct and well-developed, and have high 

levels of organic carbon (Boettinger, pers. comm.), which indicates that each 
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was probably the ground surface for several years. Horizontal bedding 

surfaces show that vertical accretion has occurred since germination. Tree 

rings indicate that germination occurred in 1959 or 1960, at a level 

approximately 0. 7 m below the organic layers. Root crowns on the lower 

organic layer date to approximately 1965. The sand above these organic layers 

occurs in two thick layers, indicating it was deposited during two vertical 

accretion events. Ripple drift cross-stratification is extremely variable in these 

two layers, indicating that bedform migration occurred in many directions during 

deposition. 

Effective Discharge 

Effective discharge curves were computed for the time periods 1906-29. 

1930-57. and 1962-present Sediment transport relations were those computed 

by Andrews (1986) for all sediment sizes. and the duration of mean daily 

discharge was divided into 35 unequal increments. Andrews (1986) computed 

a single effective discharge curve for the pre-dam period, but when calculated 

separately, the curves before and after 1930 are very different (Fig. 15). The 

modal value for the period 1910-1929 is 1 on m3/s and the value for the period 

1930-1957 is 675 m3/s. This decrease of more than 50 percent is primarily 

associated with natural climatic variability. Dam-induced changes in flow 

duration further reduced the effective discharge to 494 m3fs and caused a bi­

modal distribution with a secondary mode at 166 m3fs. 



The Rate and Process of 
Vertical Accretion 
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Discharge measurement data were used to reconstruct the formation of 

the inset right bank near the present cableway. Cross sections were plotted for 

those times when the right bank was inundated, and these data provide a 

detailed picture of the rate of vertical accretion for this deposit (Fig. 16b). Little 

accretion occurred between 1965 and 1983 because the deposit was rarely 

inundated. Ground surface in 1965 and 1973 was determined from the cross-

section notes and corresponds to the two organic layers exposed in the trench. 

The elevation determined for each time was the average for the nearty 

horizontal surface at the right bank (Fig. 16b). These data show that accretion 

rapidly occurred on the bank-attached bar between 1957 and 1965. 

The trend in the rate of vertical accretion shown in Figure 16a is 

consistent with Wolman and Leopold's (1957) conceptual diagram, although the 

rates of accretion are different The gray areas on Fig. 16a indicate periods of 

inundation and are the only possible periods of deposition. Figure 16 also 

illustrates that large magnitude floods of rarer recurrence can lead to episodes 

of rapid deposition, as seen in the 1983 flood. Accretion is episodic, and the 

smooth curve of Wolman and Leopold (1957) disguises the incremental nature 

of inundation and subaerial exposure, and masks the variable nature of 

overbank deposition. 
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The difference in time scales between Figure 2 from Wolman and 

Leopold (1957) and Figure 16 is of interest The high rate of accretion for the 

Green River deposit is probably due to the close proximity of this deposit to the 

main channel, and the high levels of suspended sediment carried by the Green 

River. Figure 2 (Wolman and Leopold, 1957) shows accretion over a 2000-yr 

period, but it was constructed using several assumptions, including: (1) no 

change in flood frequency over time, (2) identical thickness of sediment 

deposited for each overbank event. (3) bed elevation being constant over time, 

and (4) no change occurring in the stage-to-discharge relation over time. Our 

data show, in fact, that none of these assumptions are completely valid for the 

Green River study area. Figure 16 offers a detailed picture of the building of an 

actual deposit and provides considerable insight into the process of vertical 

accretion. 

Effective Discharge and 
Landfonn Response 

Few studies have linked the concept of effective discharge with the 

actual processes that create fluvial landforms. Thus, the appropriate time 

domain over which effective discharge should be calculated is unknown. We 

calculated the moving effective discharge based on 1 O prior years of flow 

conditions (Fig. 17). Effective discharge is a continually changing value when 

calculated in this way, due to the large variability in flood magnitudes over long 



periods of time. The post-dam variability in effective discharge appears to be 

greater than the pre-dam condition. 
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The record of channel width change at the cableways provides a rare 

continuous record to compare with estimates of effective discharge (Fig. 17). 

Effective discharges were greater than 1400 m3/s prior to 1920 and steadily 

decreased to about 680 m3/s by the mid-1930s. Following closure of Flaming 

Gorge Dam, effective discharges dropped to approximately 600 m3/s, but large 

floods between 1983 and 1986 increased effective discharges to magnitudes 

that had not occurred since 1930. 

There is generally good agreement between the trend in effective 

discharge and the trend in channel width (Fig. 17). The time phase of the 

1930s narrowing coincides with a substantial decrease in effective discharge. 

However, the large increase in effective discharge during the floods of the mid-

1980s had no effect on channel width. These large floods simply elevated the 

existing floodplain surface {Fig. 16). These data suggest that narrowing can 

begin soon after effective discharge is reduced, but even large increases in 

effective discharge do not necessarily lead to channel widening. Dense 

riparian vegetation that often forms near channel margins, in this case 

saltcedar, may be sufficient to stabilize banks and prevent widening of the 

channel except in the largest long-duration floods. 

Andrews (1980) found that bankfull discharges identified in the field were 

well correlated with effective discharges for streams in the Yampa River basin. 
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However, our data indicate that vertical accretion may elevate floodplain 

surfaces until inundation rarely occurs (Fig. 16). Vertical accretion during large 

flooding events can elevate floodplain surfaces considerably, leaving them at 

higher elevations than would be predicted using long-term effective discharge 

calculations. 

In order to gain additional insight into the process of inset floodplain 

fonnation, channel width at a lower range of discharges was plotted over time 

(Fig. 18). Measurements made at lower discharge are more sensitive to 

emplacement of low-elevation deposits (see Fig. 6). It is clear that bank­

attached bar emplacement occurred many times between 1930 and 1948. In 

fact, a bar persisted fer several years in the earty 1930s. But, subsequent 

flooding consistently scoured the bar and returned the channel to the pre­

emplacement condition. Bar emplacement occurred again in the late 1950s; 

however, low-magnitude floods in subsequent years, due to both natural 

climatic variation and Flaming Gorge Dam operations, did not scour this bar. 

These low-magnitude floods apparently allowed vegetation to establish and 

develop a sufficiently dense root structure to stabilize the bar and prevent 

subsequent scour. Beginning in 1959, the added roughness of saltcedar at the 

channel margin probably decreased flow velocity and increased the rate of 

vertical accretion atop the newly formed emergent bar. The floods of the 1980s 

further elevated the bar surface to a level that has not been subsequently 

overtopped. 



Conceptual Model of Inset 
Floodplain Fonnation 

The detailed data on the building of this deposit on the Green River 

provides a good conceptual model for how inset floodplain deposits develop. 

The formative steps identified by this research are ( 1) emplacement and 

accretion of a lateral bar as large amounts of sediment are being moved 

through the system, (2) low flood magnitude in years following bar 

emplacement (3) rapid encroachment of riparian vegetation onto the bar 
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surface, (4) stabilization of the bar through extensive root system development, 

and (5) continued vertical accretion of the bar surface during episodic periods 

of inundation. 

These steps are clearfy controlled by many factors, both natural and 

anthropogenic, but a knowledge of the basic steps of inset floodplain formation 

is critical if we are to understand how river systems respond to decreases in 

effective discharge often caused by dams and diversions. The work of Pizzuto 

( 1994) clearly illustrates some of the steps outfined above, although they were 

not specifically discussed. 

The Cause of Channel Narrowing 

Data from several sources presented in this chapter indicate that 

changes in streamflow regime are the likely causal mechanism for the 

narrowing of the Green River. Figure 10 shows a period of channel-width 

stability from the 1940s to the mid-1950s, a time when saltcedar were well 
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established within the study reach. This period of stability, when saltcedarwas 

present, clearly indicates that the mere presence of saltcedar alone cannot 

cause channel narrowing. Figure 16a shows that the bank-attached bar was 

under water continually during the early phases of bar formation. Thus. 

saltcedar could not have been responsible for the initial emplacement of the 

bar. Tree-ring analysis also shows that saltcedar did not invade until after initial 

bar formation. Saltcedar appear to opportunistically invade newty exposed 

surfaces, leading to stabilization. Thus, the species might play a role in 

narrowing, but the evidence presented in this study indicates that it did not 

initiate the channel narrowing on the Green River. 

CONCLUSIONS 

Data presented in this chapter support the following conclusions: (1) 

vertical accretion of inset floodplain deposits is incremental in nature, and 

generally follows the conceptual model proposed by Wolman and Leopold 

(1957); (2) rates of vertical accretion can be very high in near-channel 

environments including inset floodplains; (3) the Green River has experienced 

several changes in hydrology over the last century, both natural and 

anthropogenically induced; (4) two periods of narrowing have occurred on the 

Green River in the study area (these periods are between 1930 and 1938, when 

narrowing occurred in response to natural reductions in discharge caused by 

climatic variability, and from 1962 to the present, when narrowing occurred in 
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response to decreased discharges from Flaming Gorge Dam); (5) channel 

response to changes in effective discharge is variable, with different responses 

to increasing and decreasing trends in effective discharge; (6) stabilization of 

banks by vegetation might provide a new threshold of resistance in the channel 

system, thus minimizing erosion except in the largest flood events; and (7) 

hydrologic processes are responsible for initiating channel narrowing on the 

Green River in Utah, and saltcedar appears to simply invade and stabilize 

newfy formed surfaces. 



TABLE 1. DISCHARGES OF SPECIFIC RETURN PERIOD FOR THREE TIME INTERVALS 

Recurrence Interval 

1.5 yr. 2 yr. 5 yr. 10 yr. 

Time Period (m
3
/a) (m

3
/a) (m

3
/a) (m

3
/a)

1895-1929" 800 1190 1440 1785 

1930-1957 740 800 925 1090 

1963-1993 508 635 830 980 
* No data for 1900-1904, and 1906
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Approximate 
Photo Dates Photo Scale 

7/7/38 1:12,875 

8115/52 1:16,500 

10/2/52 1:16,500 

6116/62 1:16,500 

8/15185 1:17,300 

6/13/93 1:8,875 

6114/93 1:8,875 

TABLE 2. SUMMARY OF AIR PHOTO INFORMATION 

Mean Dally 
Discharge 

(m3/s) Photo Source Comments 

12100 National Archives 

5820 CFSA - SLC, Utah 

2220 CFSA - SLC, Utah 

18700 CFSA - SLC, Utah 

3310 CFSA - SLC, Utah Photos were enlarged for mapping 

14500 CFSA - SLC, Utah Photos were enlarged for mapping 

13700 CFSA - SLC, Utah Photos were enlarged for maeplng 

N 
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TABLE 3. CROSS-SECTION SURVEY DATES AND DISCHARGES 

Survey Date 

4/15/95 

4/16195 

5120/95 

5121/95 

6/20/95 

6/21/95 

7/17/95 

7/18/95 

8114/95 

8/15195 

8/16195 

Hydrograph State 

Pre-Flood 

Pre-Flood 

Rising 

Rising 

Near Peak 

Near Peak 

Falling 

Falling 

Post-Flood 

Post-Flood 

Post-Flood 

Discharge 

(m3/s) 

106 

99 

362 

399 

801 

784 

428 

408 

104 

106 

99 

w 
0 
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Figure 1. Map of the study area in east-central Utah. 
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a. b. 

Figure 9. Matching photographs of the old ferry/cableway in Little Valley, approximately 9 km downstream 
from the town of Green River, Utah. (a) Dec. 5th, 1911 photo looking west at ferry/cableway. (b) 1997 
match of photo "a". (c) 1911 photo looking east at ferry/cableway. (d) 1997 match of photo 11c11

• Note 
both the willow and saltcedar levels in photo "d" that were not present in the 1911 photo. 
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a. 

b. 

Figure 13. Loss of secondary channels. Gray areas denote floodplain 
deposits. (a) Map of island complexes in 1938. (b) Map of the same area 
in 1993. Note the number and extent of secondary channels that are no 
longer part of the active channel. 
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Figure 14. Photograph of the stratigraphy within the excavation near the 
present USGS cableway at Green River, Utah. Note the two organic layers. 
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The height of the nearly horizontal bar surface over time. Note the incremental nature of the bar building process, 
and that accretion did not occur during all periods of inundation. 
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CHAPTER3 

CHANNEL NARROWING OF THE GREEN RIVER NEAR GREEN 

RIVER, UTAH: DETAILED MEASUREMENTS 

VERSUS PROCESS MODELS
1

INTRODUCTION 
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Channel narrowing is a ubiquitous response to decreased sediment 

transport capacity. For example, Williams and Wolman (1984) showed that 

many of the streams that they studied downstream from large dams had 

narrowed. Channel narrowing has been widespread on the Green River in Utah 

(Graf, 1978; Andrews, 1986). Allred and Schmidt (previous chapter) showed 

that channel narrowing near the town of Green River, Utah, occurred between 

1930 and 1938, and also has occurred continuously since Flaming Gorge Dam 

closure in 1963. Nonnative saltcedar (Tamarix sp.) invaded this area by the 

earty 1930's, and the species has assisted the process of channel narrowing. 

The most important factor that has led to narrowing, however, is a lack of 

closely spaced floods of sufficient magnitude to scour bank-attached bars 

before they become emergent and are colonized by vegetation. 

Allred and Schmidt (previous chapter) showed that narrowing occurs 

where in-channel bars move adjacent to the banks and then vertically aggrade. 

1
Coauthored by Tyler M. Allred and John C. Schmidt 



50 

Once these bars become emergent at low discharge, they may be colonized by 

riparian vegetation, which enhances the vertical aggradation process. If a 

sufficient number of years pass, and vegetation increases, the next large flood 

may not be large enough to scour the aggrading bar. Thereafter, aggradation 

occurs, and the bar eventually becomes part of the active floodplain. 

The mechanisms by which sediment is dispersed to adjacent floodplains 

have received relatively little attention in the geomorphic literature. This 

chapter presents a series of velocity and suspended sediment measurements 

that were made at the cableway near Green River, Utah, near bankfull stage in 

1996. The chapter addresses the mechanisms by which sediment is entrained 

and distributed to the channel margins to accomplish the task of vertical 

accretion. This chapter also reviews some current models for calculating shear 

stress, velocity, and suspended sediment distributions within a channel, and 

assesses each model's ability to accurately predict results comparable to 

measured data from the Green River. 

BACKGROUND 

General 

The question of how natural channels establish an equilibrium width has 

plagued scientists for decades, and continues to be the focus of much research 

(e.g. Parker, 1978a, 1978b; Williams and Wolman, 1984; Andrews, 1986). The 

basic premise that must be met in order for channels to achieve a stable width 
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is that the rate of erosion in some areas must be equal to the rate of deposition 

elsewhere. Channel erosion is caused primarily by shear stresses applied to 

the banks and bed of a channel by moving water, or by mass wasting, which is 

often triggered by undercutting of banks. Deposition within channels is caused 

by sediment being laterally diffused and falling out of suspension near channel 

margins, or by migrating bedforrns that accrete to form new deposits. To 

understand how a stable width is reached and maintained, it is necessary to 

understand both the forces acting on the banks and bed to cause erosion, and 

the processes leading to transport of sediment toward the banks of a river 

channel. 

Mechanics of Sediment Transport 

The shear stress acting on particles within a channel is responsible for 

the downstream transport of sediment in fluvial systems. In order to 

quantitatively understand how shear stress is distributed in channels, it is 

necessary to begin with a simple case where bank influences are negligible, or 

with a theoretical channel of infinite width. The momentum equation for steady 

and horizontally uniform flow in a straight channel with a downstream slope that 

is small is 

dr-zz d du 
pgS = - = -(pK-) dz dz dz 

(1) 

where g is the acceleration due to gravity, pis the density of the fluid, S is the 

energy slope of the stream, u is the velocity component in the downstream 
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direction, K is the kinematic eddy viscosity, 'tzx is the component of deviatoric 

stress in the downstream direction on a surface parallel to the bed, xis the 

downstream coordinate, and z is the vertical coordinate normal to the bed. 

Integrating Eq. 1 with respect to z, and with a boundary condition that 

cu I c z = o at the water surface z = D, yields 

du z 
i-

:r 
= pK dz = pgSD(.1- D) (2a) 

where D is the total depth. The shear stress at the bed is given when z = O thus 

T
b 

= shear stress at the bed = pgSD 

Shear stress at any point in the flow is given by 

z 

r = r (1--):r b D 

(2b) 

(2c) 

Shear velocity (u·) is defined as (r
b 

I p)n . Combining this with Eqs. 2a and 2c,

we find that 

(2d) 

Eqs. 2a and 2d yield a linear shear stress profile that is proportional to 

the depth. Eqs. 2a-d provide a very simple way to calculate bed shear stress, 

and the method is commonly used. This method provides adequate results for 

the central region of very wide channels, but is physically incorrect for those 

portions of the channel where bank roughness elements significantly influence 

the velocity field. 
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In unaccelerated flow, dwdt = 0, thus, the downstream component of 

gravitational acceleration must be exactly balanced by the friction along the 

channel cross-sectional perimeter. From this balance we can produce the well-

known DuBoy's equation 

. A 
r =pgsmcI>-
a,g p 

or (2e) 

where 't
avg 

is the average shear stress at the bed, y is equal to pg, A is the cross-

sectional area perpendicular to the flow, P is the wetted perimeter, R is the 

hydraulic radius (defined as AIP), and CZ> is the downslope angle. Channel 

slope is often used to approximate sinct> in low gradient rivers. 

DuBoy's equation provides a simple method for estimating the average 

boundary shear stress on the bed of a river channel. This method essentially 

calculates the downslope weight component of the volume of fluid and equates 

it to the resistance of the bed, or shear stress, along the entire perimeter. 

Examination of the formulation of hydraulic radius reveals that as channel width 

increases, R approaches D, and Eqs. 2b and 2e become approximately 

equivalent DuBoy's equation does not provide any information about the 

distribution of shear stress along the bed and banks of a river channel, but 

simply provides an average value of shear stress. As a result, the equation is 

of little value when trying to assess the shear stresses applied at or near 

channel margins. 
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Bank-affected regions require a modified approach to the shear stress 

distribution problem. The basic premise fer unaccelerated flow, that the 

downstream component of gravitational acceleration on the body of water must 

be exactly balanced by the total friction along the channel cross-sectional 

perimeter, is still valid. But the distribution of that frictional resistance must be 

determined. Leighty (1932) proposed a method for determining how shear 

stress is distributed across the bed of a channel in which bank effects are not 

negligible. He argued that every unit mass of water exerts a force on the 

stream bed, and every unit area of bed exerts a resistant force on the flow 

depending on its hydraulic roughness. But Leighty correctly recognized that 

energy is transmitted to the bed along lines normal to the surfaces of constant 

velocity, or, in a cross-sectional profile, along lines perpendicular to the isovels. 

This must be correct given the relationship between bed resistance and velocity 

distribution shown in Eq. 2a. Thus, the volume of water creating the shear 

stress on any given portion of the bed has the form of a prism whose base is 

the perimeter of bed influenced, whose top is located at the point of highest 

velocity in the cross section, and whose sides are perpendicular to the isovels 

(Figure 19). Using currently available digitizing techniques, it is possible to 

solve a shear stress distribution graphically from a measured set of velocity 

data. 

Another method for calculating shear stresses from velocity profiles uses 

Eq. 2d. In order to apply this approach, an approximation fer eddy viscosity (K) 
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is needed because eddy viscosity is a function of depth. Rattray and Mitsuda 

(1974) proposed an approximation for eddy viscosity (K) as follows 

K = lcu.(I-zl D) zl DS02 (3a) 

K = lcu.DI p zl D>02 (3b) 

where k is von Karmann's constant (0.41) and {3 is 6.24. Combining Eqs. 2d 

with Eqs. 3a and 3b and integrating with respect to z with the boundary

condition that u = 0 at z = Zo yields the familiar von Karmann-Prandtl equations 

(Streeter and Wylie, 1979), known as the "Law of the Wall" for velocity

distribution in the near-bed region of flow (Eq. 4a), and a similar expression for 

velocity distribution in the upper region (Eq. 4b). 

u. ,_1 z] 
u=

=

kl_Zo 

[ { ( )' }] 
u. 02 z 1 z -

u_ =- ln-+p --- - -018 
- k Z0 D 2 D 

D 

zl DS02 (4a) 

zl D>02 (4b) 

Eqs. 4a and 4b can be used to back-calculate values of Zo and u. from a 

set of measured vertical velocity distributions. The calculation of u. from 

measured velocity profiles allows Eq. 2d to be used for determination of shear 

stress at the bed. 
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Particle Entrainment 

In order to begin moving bed material as bedload, shear stresses must 

overcome the static frictional resistance of particles to movement Conditions 

leading to the initial entrainment of bedload particles have been extensively 

studied (e.g., Shields, 1936; Vanoni, 1975; Andrews, 1983), but large 

uncertainty still remains in these estimations. The calculation of critical 

dimensionless shear stress ('r*c) using the method of Shields (1936) is still the 

most common approach. The basic Shields equation is 

" r * .  = b 

a 

g(pP -Pr )d, 

where PP is the density of the particle, Pf is the density of the fluid, di is the 

diameter of the particles of class i, and lJ is the mean flow depth. Shields' 

(5) 

results demonstrated that initial entrainment of particles occurred at values of 

't*c between 0.03 and 0.06. Andrews (1983) argued that particle entrainment 

can begin at values of 't*c as low as 0.02. Andrews also argued that the size of 

a particle relative to the mean particle diameter of the bed ( dso) was an 

important determinant of entrainment thresholds. He concluded that particles 

having diameters greater than 4.2 times the ds, of the bed moved at low values 

of t* c· Many bed load transport models use some form of dimensionless critical 

shear stress for determining bedload transport rates. 



57 

Form Drag Effects 

The shear stress calculation methods described above do not 

differentiate between form drag and skin friction at the bed. Sand-bedded 

streams typically have beds that are deformed into ripples and dunes, 

roughness elements that project into the higher velocity flow above the bed 

(Smith and Mclean, 1977). These projections cause form roughness as flow 

separation occurs near the crests, causing increased velocity at certain points 

on the bed, leading to a pressure gradient over the particles or bedforms. If 

form roughness exists, some of the total force acting on an area of the bed is 

composed of an uneven pressure distribution over the roughness elements. 

The pressure force exerted on the bedforms due to pressure gradients can 

represent a significant amount of the total force available at the bed. However, 

the length scale of the pressure distributions is very long when compared to the 

diameter of a particle, making the pressure forces ineffective at transporting 

individual sediment grains (Smith and Mclean, 1977; Mclean, 1991 ). Skin 

friction is that portion of shear stress that is effective in moving individual grains 

in fluvial systems. Calculation of the skin friction and form roughness 

components of shear stress is known as form drag partitioning, and it is a 

necessary step before accurate calculations of sediment transport can be made 

in sand-bedded streams. 

Einstein (1942, 1950) was among the first to recognize the importance of 

form drag on sediment transport relations in sand-bedded streams with 



bedforms. He developed a method for drag partitioning that essentially 

separated form drag from skin friction by partitioning the hydraulic radius, and 

calculating the effective shear stress as 
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t =�R'S (6) 

where y is the density of the fluid times gravity, and R' is that part of the 

hydraulic radius responsible for skin friction (Einstein and Barbarossa, 1952). 

The procedure for determination of R' depends on the data that are available, 

but a series of physical and empirical relationships developed by Einstein is 

often used. 

Since Einstein first developed a method for estimating the effects of form 

roughness, several additional models have been proposed. One method that 

has received much attention is the model proposed by Smith and Mclean 

(1977). This model uses measured velocity profiles and bedform geometry to 

partition total shear stress into form drag and skin friction components. This 

model separates the flow field into two regions, an inner and an outer layer. 

They suggested that the inner layer velocity profile is dominated by skin friction, 

and the outer layer velocity profile results from the combined effects of skin 

friction and form roughness. Each layer is proposed to have its own roughness 

length (Za the roughness length of the inner layer, and Zar the total roughness 

length) and its own shear velocity (u., and u-r) due to skin friction and total 

roughness, respectively. They also assume that at some elevation Zn above the 
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bed, U-r is equal to u-r . and this elevation above the bed is the height of the 

inner layer that is dominated by skin friction. 

Smith and McLean's model for separated flow over dunes has the form 

r r r 'o.s, 12 

'T Cd H1 1 , A. • , ,
-=1+-2- lnja11-1 1,1 2k A.I '-z""/ I 

L '-
WJ 

/j 

(7) 

where � is the drag coefficient and is equal to 0.212 for sand, 'tt is skin friction 

shear stress, tr is total shear stress, a1 is an empirical constant and is equal to 

0.1, His dune height, and tis dune wavelength. 

Several methods are proposed to calculate the roughness length of this 

inner region (Za). Smith and Mclean (19n) and Mclean (1991) explain that as 

sediment is transported within the bedload layer, collisions with the bed remove 

momentum from the particles, which must be replaced by the flow. This 

process of momentum extraction from the flow results in an apparent roughness 

that is greater than would be expected if no sediment were moving. They 

proposed that the roughness length for the inner layer would be proportional to 

the excess shear stress at the bed. Wiberg and Rubin (1989) additionally 

proposed that the roughness length of the inner layer would be proportional to 

the thickness of the bedload layer. By accounting for particle saltation 

trajectories, Wiberg and Rubin found that 

(8)
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where oe is the thickness of the bedload layer, d is the sediment diameter, and 

T· is 't/'tc and is called the transport stage. 'tc is the critical shear stress 

calculated using the method of Shields (1936). Empirical constants were 

determined by Wiberg and Smith (1985) and Wiberg and Rubin {1989) and 

have the following values 

A1 = 0.68 

A2 = 0.0204(1n d)2 + 0.022(1n d) + 0.0709 

where d is in cm.

(9a) 

(9b) 

Using the method outlined above, the thickness of the bedload layer 

rarely exceeds 3 to 5 times the particle diameter. The value of Z« is then

calculated as 

0.68T. 
z

ef 
= 0.056· D 1 T. = 0.056-88 

+Az •

(10) 

The equations used for this model cannot be solved directly, but can be 

solved by iteration (Smith and Mclean, 19n). The method of solution is as 

follows: (1) mean depth, slope, bed material size, dune height, and wavelength 

are measured in the field; (2) Eq. 9 is solved for the given bed material (d in 

cm.), and 'tT is solved using Eq. 4b and a measured velocity profile; (3) Eq. 10 

is then substituted into Eq. 7, which now has only one unknown (-r,); (4) 'tt is 

iterated until the left side of Eq. 7 equals the right side; and (5) 'tt is the shear 
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stress at the bed that is effective at transporting sediment grains, or at 

suspending sediment within the profile. 

Form drag partitioning provides a method for calculation of the shear 

stress that is available to transport sediment in sand-bedded rivers. Several 

transport equations have been developed that base transport estimates on the 

excess shear stress available at the bed. These models include: Meyer-Peter 

and Mueller (1948), Ackers and White (1973), Valin (1963), and Parker et al. 

(1982). Application of the Smith and Mclean (1977) method can improve the 

accuracy of bed shear stress calculations, thus improving bedload transport 

estimates. 

Suspended Sediment Profiles Resulting 
from Shear Sbess at the Bed 

Most methods for calculating the distribution of suspended sediment 

begin with a bed shear stress calculation, because one can estimate the 

distribution of suspended sediment in the vertical only if shear stress at the bed 

is known and the concentration of sediment is known at some depth. The 

theoretical basis for this approach is that, in most cases, the shear stress at the 

bed is responsible for the initial entrainment of sediment and is therefore 

related to the vertical sediment concentration profile. One common method for 

the prediction of suspended sediment concentration at a given point in the flow, 

for a given size particle, is the Rouse (1937) equation. It has the form 



62 

(11) 

where Cz is the volumetric concentration of a given particle size {I) at a distance 

(z) above the bed, Ca is the volumetric concentration of a given particle size at 

a reference level (a) above the bed (usually the top of the bedload layer), and 

Wn is the fall velocity of a given particle size. 

Examination of Eq. 11 shows that the suspended sediment concentration 

profile is a function of the shear stress at the bed . Given that dependence, the 

importance of correctly calculating shear stress becomes evident A stress 

calculation method that is appropriate for conditions within a reach should be 

applied before accurate predictions of suspended sediment distribution and 

sediment transport can be made. In rivers with sand beds and bedforms, U-t 

should be used in Eq. 11 instead of U•, with 

(12) 

In gravel-bedded rivers with no bedforms, u· can be used as defined in Eq. 2. A 

Rouse distribution describes only the vertical distribution of sediment, and does 

not explain lateral diffusion of sediment toward the banks or any other bank 

effects. 

Turbulent lateral diffusion of sediment is driven by gradients in 

concentration, and has the form 
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dC 
lateral flux of sediment = Ky dy (13) 

where y is the lateral coordinate, Ky is the eddy diffusivity in the cross-stream 

direction, and C is the suspended sediment concentration. Pizzuto (1987) 

provided a model for how sediment might be diffused laterally from a high-

energy river channel to low-energy inundated flood plains. His model assumes 

a constant eddy diffusivity in the cross-valley direction even though Pizzuto 

recognized this assumption to be incorrect Pizzuto noted that several 

researchers have documented the presence of intense eddies at the interface 

between the channel and the flood plain in laboratory experiments (Yen and 

Overton, 1973; Myers and Elsawy, 1975), indicating that eddy diffusivity could 

not be constant in the cross-valley direction. Unfortunately, there is littJe 

scientific study to accurately describe changes in eddy diffusivity across a flood 

plain, or how those changes might influence the near-channel overbank 

environment. More study is needed to describe these phenomena. 

STUDY REACH 

The study reach is a 1-km long portion of the Green River that extends 

upstream and downstream from the US Geological Survey (USGS) cableway 

near Green River, Utah (see Fig. 1). Bed material is mostly gravel and cobbles 

with sand-filled interstices, and the banks are composed of fine sand, silt, and 

clay. Reach gradient at near bankfull stage is .0004 m/m. Channel width is 

variable between 100 and 150 m. A more detailed description of the study 
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reach and the historical evolution of this site is provided by Allred and Schmidt 

{previous chapter). 

METHODS 

Velocity Measurements 

During the 1996 spring snowmelt flood, detailed measurements of 

velocity were made at the cableway {Fig. 20). General information regarding 

flow conditions on the dates of measurement appears in Table 4. Five vertical 

sections were measured each day between May 29 and 31. One additional 

section was measured on each side of the channel on May 29, to provide a 

more detailed description of the velocity field. Velocities were measured at six 

points in each of the vertical sections, each day, using a Price AA velocity 

meter with an electronic counter. Measurements were made at specific points 

above the bed at 0.1, 0.2, 0.3, 0.4, 0.5, and 0. 7 times total depth {Fig. 21 ). The 

measured values are an average velocity over a time of at least 40 seconds. 

Table 5 summarizes the locations of velocity measurements for the three days. 

Channel slope was surveyed over a length of approximately 600 m. Depth 

soundings revealed that no bedforms were present at the time of measurement, 

and no sand was captured with a USGS BM-54 bed sampler, so it was assumed 

that the bed was mostly covered with gravel and cobbles. Thus, form drag 

partitioning information was not collected. 
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Velocity data for dimensionless depths greater than or equal to 0.2 were 

fitted to the velocity distribution shown in Eq. 4b using a least squares method 

similar to that outlined by Bauer et al. (1992). Both roughness length (Zo) and 

shear velocity (U·) were iterated in order to provide a best possible least­

squares fit of Eq. 4b to the data. The adequacy of Eq. 4b in describing the 

measured velocity distribution was assessed using r2 values of measured 

versus predided velocities. 

Cross-section data were combined with velocity data to predict the 

distribution of shear stress within the channel. Eq. 2b, which is probably the 

most common method for calculating shear stress, was used to estimate bed 

shear at a number of points. Stresses were also calculated using the method of 

Leighly (1932), and by applying values of u* calculated from Eq. 4b. Shear 

stress distributions estimated using these three methods were plotted for visual 

comparison. 

Suspended Sediment Measurements 

A USGS P-61 point sediment sampler was used (Subcommittee on 

Sedimentation, 1952) to measure suspended sand concentration at the five 

verticals located in the interior of the channel. Samples were taken at the same 

positions as were velocity measurements, from 0.1, 0.2, 0.3, 0.4 , 0.5, and 0.7 

times total depth. Suspended sediment samples then were analyzed using 



66 

a US-VATSA visual accumulation tube to determine total sand concentration 

and particle size distribution of the sand fraction. 

A suspended sediment distribution curve was fitted for each size class to 

the measured data using Eq. 11, and using the value of u-r calculated from 

velocity measurements for each vertical. Form drag partitioning was not 

needed because bedforms were not present An estimate of bedload layer 

thickness was made using Eq. 10 and an average Zo, and this was selected as 

the reference height �a·. The concentration at the top of the beef load layer for 

each size class was iterated to produce a least squares best fit. This approach 

allows sand concentrations at the top of the bedload layer to be inferred from 

the measured data, and provides insight regarding the distribution of sand 

particles on the bed during a flood event 

Particle Size Distribution Measurements 
of a Vertically Accreted Deposit 

An inset floodplain on the right bank at the cableway was excavated (Fig. 

14), and sediment samples from several layers were analyzed for sand, silt, and 

clay content using the pipette method. Particles that would not pass through a 

62.5-micron sieve were considered to be sand, and these particles were further 

analyzed using a US-VATSA visual accumulation tube, to determine the size 

distribution of the sand fraction. A comparison was made between the sand 

particles found in the banks, and those measured in the suspended load. 



RESULTS 

Due to the large amount of data generated from these measurements, 

detailed results are presented for May 29 only. Similar results were obtained 

for the other two days of measurement. General data for all three days are 

summarized in Tables 5 and 6 for velocity measurements and suspended 

sediment measurements, respectively. 

Velocity Measurement Results 
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The distribution of velocity on May 29 is illustrated in Figure 22. The 

area of the circles is proportional tp velocity. Measured near-surface velocities 

ranged from a high of 2.24 mis at Station 116, to a low of 1.39 mis at Station 49. 

At this discharge, the cross section shows a clear asymmetry of velocity 

distribution, with the core of highest velocity shifted to the left-center portion of 

the channel. The asymmetric location of the high velocity zone likely is the 

result of upstream channeJ geometry. 

Fitting of Eq. 2d to the measured velocity data was accomplished using a 

least-squares curve-fitting procedure. Velocity measurements and best-fit lines 

are shown in Fig. 23a-g. Dimensionless depths (z/0) were used for ease of 

comparison. Near the high-velocity central core, the curve fi1s are very good, 

with higher r2 values, indicating that Eq. 2d accurately describes the velocity 

distribution in these areas, and that bank effects are minimal. In near-shore 

locations, the curve fits are less accurate, indicating that bank effects that are 
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neglected by Eq. 2d may be more important in these zones. Best-fit lines from 

all stations, illustrating the overall range and distribution of velocities within the 

channel, appear in Figure 24. A summary of the curve fitting parameterization 

and r2 values for all plots appears in Table 7. 

Suspended Sediment Measurement 

Results 

Suspended sediment measurement, when coupled with particle size 

analysis, provides information on sand-sized particle distribution within the 

channel. An illustration of the distribution of total suspended sand throughout 

the cross section is shown in Figure 25. Measured total sand concentrations 

ranged from a high of 2,870 mgJl at Station 116, to a low of 189 mg/I at Station 

55. These data show the same asymmetry as the velocity distribution, with the

highest concentrations of suspended sand shifted to the left.center portion of 

the channel. 

Fitting of Eq. 11 to the measured suspended sediment data was 

accomplished for the size classes 62.5, 88, 125, and 175 microns, and the plots 

of both measured data and least-squares best-fit lines are shown in Figs. 26 

through 30 for Stations 128, 116, 91, 67, and 55, respectively. Dimensionless 

depths again were used for ease of comparison. Note that the curve fits are 

again best in the high velocity central core of the flow as shown by higher r2 

values. Also note that curve fits are better for larger sand particles than for 

finer particles. 
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Sand concentrations at the top of the bedload layer (C.) were back-

calculated from concentration profiles for each size class, at each vertical 

location, and these values are also shown on Figures 26-30 and summarized in 

Table 8. The r2 values for measured concentration versus predicted 

concentration are summarized in Table 9. 

Sand Distribution at the Top of the 
Bedload Layer 

Sand concentration at the top of the bedload layer is variable for different 

size classes across the cross section (Fig. 31). In the high velocity portion of 

the channel, the concentration of 125- and 175-micron sand at the top of the 

bedload layer was much higher than were the concentrations of smaller sizes. 

In the lower velocity zones near the banks, very fine sand was dominant The 

lack of very fine sand on the bed in the high-velocity zone is probably the result 

of winnowing of smaller particles and selective deposition of larger particles. 

Another important characteristic of the sand distribution within the cross 

sedion is revealed in Table 8. The zone of highest velocity also has the 

highest total concentration of sand at the top of the bedload layer. The 

concentration of sand in the high-velocity zone seems somewhat counter-

intuitive, in that high shear stresses could tend to scour sand-sized material out 

of the bed. Sand that is being entrained by the flow at this location must be 

replaced by sand from upstream, or depletion of sand at the bed would occur 

and suspended concentrations would decrease. 
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Distribution of Shear Stress 

A plot of the isovels and fluid prisms used to calculate shear stress 

distribution using the Leighly method is shown in Figure 32. Results from the 

Leighly solution together with the distribution of shear stress as calculated 

using both Eqs. 2b and 4b are shown in Figure 33. Both the Leighly method 

and Eq. 2b show a zone of high shear stress near the right bank, which is 

unlikely based on suspended sediment and velocity distributions. From Eq. 4b, 

the zone of highest shear is at the high-velocity left-central portion of the 

channel. The magnitude of shear is also much lower using Eq. 4b, which may 

indicate that the energy slope is smaller than the measured water surface slope 

used for the other two methods. Clearly, these methods do not produce 

comparable results, probably because the uniform flow assumptions are not 

being met It does appear, however, that Eq. 4b provides the most believable 

distribution of shear and that it describes the conditions at this cross section 

more accurately than the other two methods, given the velocity and suspended 

sediment profiles. 

Bank Deposit Size Distribution Results 

A summary of the sieve/pipette analyses for the right-bank deposit at the 

Green River cableway is shown in Table 10. Particles that did not pass through 

a 62.5-micron sieve (sand) were further analyzed using a visual accumulation 

tube to provide information about size classes (Table 11 ). Proportions of sand 
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ranged from a high of n percent at the 3.9-m elevation, to a low of 1 percent at 

the 2.5-m elevation. It is important to note that a large proportion of the 

particles that did not pass a 62.5-micron sieve had effective fall diameters of 

less than 62.5 microns (Table 11). 

There was no continuous upward-fining sequence present in this deposit, 

as the highest proportions of sand occurred at low elevations in the deposit, 

and again in layers near the top of the deposit. Particles larger than 125 

microns were essentially nonexistent within the cableway deposit (Table 11 ), 

but they were common in the suspended sediment measurements made at the 

channel's interior (Figs. 26-30). This may indicate that the turbulence near the 

channel margins is not sufficient to keep these larger particles in suspension. 

Thus, the larger particles drop out long before reaching the bank. The inability 

of the flow to suspend large particles near channel margins also helps to 

explain the higher bed concentrations of fine sand near the channel margins. 

Sand particles in the 62.5- and SS-micron size class were common in the banks, 

indicating that these particles are carried in suspension to the bank region. 

DISCUSSION 

Velocity and Suspended Sediment 

The least-squares curve fitting of Eq. 2d to the measured velocity profiles 

illustrates the importance of bank effects to the velocity field. Examination of 

Table 7 shows that near the left-central high-velocity portion of the channel, at 
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Station 116, calculated r values are very high. However, the r values 

decrease with distance from this part of the channel. Near the banks. the r 

values are quite low, indicating that Eq. 2d is not likely to be appropriate for the 

near-bank environment where bank roughness elements influence velocity. 

Although Eq. 4 is considered to be one of the best ways to predict the 

distribution of velocity in river channels, it is not adequate for channel margins, 

which are the primary point of interest for geomorphologists. 

The curve fitting of suspended sediment data to Eq. 11 reveals the same 

general trend found in the velocity data, decreasing r with increasing distance 

from the high-velocity core (Table 9). Away from the high-velocity zone, vertical 

profiles of fine sand-sized particles consistently had steeper slopes than the 

model predicts, indicating that these small particles are more evenly distributed 

than would be expected. Higher than expected concentrations near the water 

surface are likely a result of turbulent lateral diffusion of fine sediment from 

zones of higher concentration. Secondary circulation patterns that could not be 

measured also may contribute to these vertically uniform distributions of fine 

sand. It also is important to note that Eq. 11 provided a very good fit to the 

concentration distributions of 125- and 175-micron sand. Perhaps lateral 

diffusion is less significant for larger-sized particles, and vertical turbulent 

diffusion is the dominant mechanism responsible for their distribution. It 

appears that Eq. 11 does not truly capture the near-margin sediment 

distribution subtleties present in natural channels. 



A Proposed Mechanism for Inverse 
Stratification of Channel Margin 
Deposits 

Several researchers have noted the presence of inversely graded river 

deposits (Rubin et al., in review; lseya, 1989). Rubin et al. found inversely 

graded fluvial deposits created by the 1996 experimental flood in Grand 

Canyon, Arizona. They concluded that fine sands were being selectively 

winnowed from the bed during the flood, leaving behind higher concentrations 

of coarse sand. Increasing bed concentrations of coarse sand over time 

causes higher concentrations of coarse sand in suspension over time, thus 

creating inverse stratification in the developing flood deposits. 

lseya (1989) also identified inverse grading of overbank flood-event 
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deposits, and proposed a mechanism for their emplacement. She suggested 

that silts and clays are deposited during the earfy stages of flooding when flow 

over the floodplain is shallow and velocities are low. As flood magnitude 

increases, sand-sized particles can be suspended in the channel but cannot be 

suspended over the floodplain. Thus, these larger particles fall from 

suspension onto the floodplain, leading to inverse grading. 

Allred and Schmidt (previous chapter) described the formation of an inset 

floodplain near the present cableway on the right bank. Their data, when 

coupled with bank deposit particle-size information from this chapter, describe 

another possible mechanism for the disruption of the typical upward fining 

sequences commonly found in fluvial deposits. Figure 34 illustrates the 
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building of the right bank deposit at the present cableway, and is useful in 

visualizing how inverse grading could occur. The locations of three conceptual 

zones that represent fundamentally different formative processes are shown. 

These conceptual zones correspond to low river stage (zone 1 ), relatively 

common flood flow stage (zone 2), and infrequent large magnitude flood stage 

(zone 3). 

Zone 1-Low Elevations 

During the earty formation of inset floodplains, the elevation of the 

deposit surface is very low, and even moderate magnitude flows that suspend 

very little coarse sand result in relatively deep flow over the deposit Coarse 

sand could move primarily as bedload, and climbing bedforms could accrete 

vertically, forming the lower portions of the deposit Coarse particles occur in 

this zone. 

Zone 2-Moderate Elevations 

By the time the deposit surface has reached zone 2, moderate floods can 

overtop the surface, but flow depth and velocity are low, and bedform migration 

is inhibited. Deposition of finer particles is dominant, and larger particles are 

present only in small quantities. The continuum of processes through zones 1 

and 2 leads to the classic upward fining sequence that is commonly identified 

within river deposits. 
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Zone 3-Hiqh Elevations 

In zone 3, the deposit surface has been elevated to the point where only 

large magnitude floods overtop it The turbulence generally associated with 

these large floods is competent to carry more sand in suspension at very high 

concentrations throughout the water column. Also, vegetation generally 

invades and covers surfaces at this range of elevation, since inundation is less 

frequent and scour less likely. When turbulent flows of large floods eventually 

overtop the surface in zone 3, rapid deposition of coarse sand from suspension 

can occur as flow velocity is quickly reduced by the roughness elements, 

including the vegetation. The fining upward sequence of zones 1 and 2 is thus 

disrupted by increased sand deposition in zone 3. 

Clearly, the sequence of events outlined above could be altered by 

unusual patterns of flooding, but the general sequence would be likely to occur. 

Large dams can prevent all but the largest floods, and tend to minimize the 

occurrence of moderately large floods. After the deposit surface entered zone 

3, the time between periods of inundation is greatly extended by large dams. 

Eventually, however, a large magnitude flood will overtop the deposit, and 

accretion of coarser material could occur. 

CONCLUSIONS 

The distribution of different size classes of sand particles is uneven 

across the bed of the Green River. The high-velocity areas of the channel 
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appear to deplete the bed of small sand particles. This nonuniformity adds to 

the difficulty of transport calculations by introducing complex spatial variability 

that must be recognized if accurate transport calculations are to be made. 

Detailed measurement sets presented in this chapter clearly demonstrate 

that commonly used methods for the calculation of velocity and suspended 

sediment distribution are inadequate near channel banks. The channel of the 

Green is very wide, which allows these models to work well in the central 

portions of the channel where the infinite channel width assumption is 

acceptable and flow conditions approximate uniformity. Near the margins, 

however, both vertical and lateral roughness elements become very important 

and neither can be ignored. Given that channel margins are the critical area 

where channel change is manifested, the lack of adequate models to describe 

processes in these areas is troubling. More research is clearly needed to 

develop models that accurately describe the influence of channel margins on 

the velocity and suspended sediment distributions in natural channels. 



TABLE 4_ MEASUREMENT DATES WITH DISCHARGES 

Measurement Date 

5/29/96 

5/30/96 

5/31/96 

Discharge 

( cubic meters per second) 

507 

538 

510 

77 
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TABLE 5. SUMMARY OF VELOCITY DATA FOR ALL DATES 
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TABLE 6. CONCENTRATION DATA FOR ALL MEASUREMENT DATES 

!lt'2MI 5l3M6 v.rt.191 

Sbtiol'l 51 

Tata!Depttt(m) 3.57 Total Depttl (m) 3.72 Total Deplt'I (mJ 3.47 
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3.21 315 l.35 285 3.13 251 

2.85 245 2.97 282 2.78 244 
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1.78 194 1.as 19& 1.74 179 
1.07 191 1.12 175 1.04 167 
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1.94 7'1111 2.01 10:ZS U6 t23 
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TABLE 7. SUMMARY OF VELOCITY CURVE FIT PARAMETERS 

Station ID 

P•r•meter 134 128 118 91 87 

ra 
0.88 0.95 0.98 0.91 0.90 

Sum of Squared Devlatea 0.008 0.011 0.007 0.011 0.016 

lter•ted She•r Velocity (m/a) 0.046 0.087 0.096 0.054 0.067 

She•r Veloclty (gDS)112 (m/a) 0.100 0.104 0.107 0.121 0.119 

She•r Veloclty % Error 217 120 112 225 178 

Zo(mmt 0.003 0.583 0.657 0.001 0.172 

H 

0.77 

0.023 

0.050 

0.118 

237 

0.054 

49 

0.78 

0.026 

0.055 

0.110 

201 

0.373 

c» 
0 



TABLE 8. SUMMARY OF SEDIMENT CONCENTRATION AT THE TOP OF THE BEDLOAD LA YER 

Volumetric Concentration 

Class 

Slze Class St.121 St.116 St. 91 St. 87 St. 55 Mean Ca 

62.5 8.4E-05 9.2E-05 1.1E-04 7.1E-OS 8.6E-05 l,IE-05 

88 2.8E-04 3.0E-04 3.3E-04 1.SE-04 2.1E-04 2.5E-04 

125 6.4E-04 8.9E-04 8.9E-04 2.8E-04 3.6E-04 8,1E-04 

175 4.5E-04 2.1E-03 1.0E-03 7.3E-05 9.1E-05 7.4E-04 

Totlls • All 4 Classes 1.4E-03 3.4E-03 2.3E-03 5.IE-04 7.5E-04 



TABLE 9. SUMMARY OF SEDIMENT CONCENTRATION CURVE FIT r2 DATA

r
2 

Value

Size Class St. 128 St. 116 St. 91 St. 67 St. 55 

62.5 0.366 0.515 0.743 0.047 0.971 

88 0.898 0.694 0.877 0.074 0.069 

125 0.836 0.966 0.619 0.809 0.966 

175 0.708 0.997 0.877 0.952 0.921 

Station Mean r
2 

0.702 0.843 0.829 0.470 0.732 

Class 

Mean r
2 

0.528 

0.562 

0.879 

0.891 

0.715 

OD 
N 



TABLE 10. SAND, SILT, AND CLAY PROPORTIONS FOR DIFFERENT ELEVATIONS: 
USGS CABLEWAY EXCAVATION 

Elev Sand"' sntt Clay1 Sllt+Clay 
Organic 

Carbon 

(m) % % % % % Comments 

4.05 64 28 8 

3.90 77 16 7 

3.80 24 61 16 

3.70 49 48 3 0.31 

3.49 36 49 15 

3.42 22 65 13 

3.34 32 57 12 0.87 

3.24 16 84 3.83 Upper Organic Layer 

3.20 20 62 18 

3.16 39 45 17 1.26 Lower Organic Layer 

3.09 70 22 8 0.17 

2.94 58 29 13 

2.78 49 37 14 0.51 

2.63 48 40 12 

2.48 1 79 20 

2.33 47 44 9 

*Greater than .0625 mm.

teetween .0625 mm and .002 mm

§Less than .002 mm



TABLE 11. PERCENT FINER-THAN-INDICATED-SIZE CLASSES FOR DIFFERENT 
ELEVATIONS IN THE USGS CABLEWAY DEPOSIT 

Elev 
Percent of sand fraction only with fall 

diameters finer than Indicated size 

(m) 175 llffi 125 llffi 88µm 62.5 l,m * 

4.05 99 94 74 26 

3.90 100 91 62 15 
3.80 100 93 69 24 

3.70 100 98 83 39 

3.49 100 91 66 20 
3.42 100 99 93 51 

3.34 100 98 89 49 
3.24 100 80 51 11 
3.20 100 96 79 33 
3.16 100 89 62 17 
3.09 100 91 61 14 

2.94 99 94 69 22 
2.78 100 95 68 21 
2.63 100 97 75 27 

2.33 100 98 85 42 

•particles with fall diameters smaller than 62.5 microns could be Included In silt fraction
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The channel of the Green River near Green River, Utah, has 

experienced large-scale adjustment over the past century, primarily in response 

to changes in hydrologic regime. Channel narrowing is the most apparent 

adjustment. but other changes also are evident Mid-channel bars and large 

islands are being invaded by nonnative vegetation, and in many cases are 

becoming attached to the banks, leading to fewer secondary channels and an 

overall simplification of the channel. 

Research results described in Chapters 2 and 3 provide detail about the 

exact timing of historical channel adjustments on the Green River in Utah. 

USGS discharge measurements combined with air photo analysis show that two

episodes of narrowing have occurred on the Green River in the study area: 

1. between 1930 and 1938, narrowing occurred in response to natural

reductions in flood magnitude caused by climatic variability, and

2. from 1962 to the present, narrowing has occurred in response to decreased

flood magnitudes caused by Flaming Gorge Dam operations.

Hydrologic processes are responsible for initiating channel narrowing on 

the Green River. Saltcedar do not initiate channel narrowing, but they do 

appear to stabilize deposits and prevent future scour. Data presented in 

Chapter 2 clearly show that saltcedar could not have been responsible for 
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initiating the formation of the cableway deposit because the surface of the 

deposit was continually submerged during the earty phases of bar emplacement 

and vertical accretion. Saltcedar invaded the bar surface only after the bar had 

accreted to the elevation where it became subaerially exposed and could 

provide substrate for germination. 

Evidence from Chapter 2 supports the following conceptual model for the 

necessary steps involved in narrowing by vertical accretion: 

1. emplacement and subsequent vertical accretion of a lateral bar,

2. low flood magnitude in years following bar emplacement and no significant

scour of the bar,

3. rapid encroachment of riparian vegetation onto the bar surface once the bar

becomes emergent at low flows,

4. stabilization of the bar through extensive root system development, and

5. continued vertical accretion of the bar surface during episodic periods of

inundation.

Vertical accretion of floodplain deposits over time follows the general 

trend outlined by Wolman and Leopold (1957), but the rate of accretion at high 

elevations can still be large. Additionally, the smooth curve of Wolman and 

Leopold disguises the incremental nature of inundation and subaerial exposure, 

and masks the variable nature of overbank deposition. 

At bankfull discharge, the Green River suspends sand particles up to 

approximately 250 microns. However, the banks of the Green River through the 
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study reach are principally composed of particles finer than 125 microns. 

Larger particles are not found in the banks, indicating that larger particles fall 

out of suspension before being transported laterally to the banks. Sand-sized 

particles were distributed unevenly across the bed of the Green River at 

bankfull discharge. Larger size classes dominate the high-velocity region of the 

channel, whereas smaller particles dominate near the banks. 

Models used to predict the distribution of velocity and suspended 

sediment fail to include bank effects. These models fit measured data quite 

well in the central portion of the channel, but are less accurate when used near 

the banks, indicating that bank effects are important to the distribution of 

velocity and suspended sediment, and cannot be neglected. Given that 

channel margins are the critical area where channel change occurs, models 

that more accurately describe the physical interaction of processes in these 

important near-shore zones need to be developed. 

The linking of river channel processes to geomorphic fonn is a much­

needed critical step that can allow geomorphologists to better predict resulting 

landfonns based on a set of hydrologic management options. Improved 

understanding of the interactions between processes and landforms can lead to 

better management alternatives and may ultimately allow society to improve the 

condition of earth's rivers and streams. 
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