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ABSTRACT 

Energy, Fractal Movement Patterns, and Scale-Dependent 

Habitat Relationships of Urban and Rural Mule Deer 

by 

Mark F. McClure , Doctor of Philosophy 

Utah State University , 2001 

Major Professors : Dr. John A Bissonette and Dr. Michael R. Conover 
Department: Fisheries and Wildlife 

Ill 

I studied the behaviors, movement dynamics , habitat relationships, and population 

characteristics of Rocky Mountain mule deer (Odocoi/eus hemionus) using urban and 

rural winter ranges in Cache Valley, Utah , from January 1994 to February 1998. There 

were 2 goals to my research endeavors . The first was to assess how and why the 

behaviors and demographic characteristics of urban deer differed from those of rural deer. 

The second was to assess the scale-dependent responses to habitat and the scale­

dependent patterns of habitat use by deer living in each area . To accomplish the first goal , 

I compared the prevalence of migration , the spatial and temporal patterns of migration, 

and the spatial patterns of home range use between urban and rural deer . I also compared 

deer reproduction and population density in each area. I then explain how behavioral and 

demographic dissimilarities between urban and rural deer may have corresponded to 

differences in their net energetic gains (NEG) on seasonal ranges . These explanations , 
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when combined graphically, generated a time-specific hypothesis oflower NEG by urban 

deer on a year-round basis. To accomplish the second goal, I developed new 

methodologies for analyzing animal movement pathways (which represent signatures of 

how animals respond to habitat) , and animal patterns of habitat use . These methodologies 

explicitly incorporated the effects of spatial scale by employing fractal geometry and 

information theory . The results of these analyses showed that urban and rural deer 

responded to their habitats in similar ways at coarse resolutions of analysis (100-600 m), 

but differently at fine resolutions of analysis ( 4-60 m). I argue that similarities in habitat 

response at coarse resolutions reflected a common movement process that allowed deer 

maximize use of their home ranges while minimizing energetic expenditures . With respect 

to patterns of habitat use, urban deer concentrated in areas with concealment vegetation , 

which was highly fragmented across all resolutions of analysis. Rural deer, on the other 

hand, dispersed throughout areas containing shrubby vegetation at fine resolutions , and 

south-facing slopes at coarse resolutions . Interpretation of these results is discussed in 

detail. 

(146 pages) 
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CHAPTER 1 

THEMATIC CONTEXT AND PREVIEW OF RESEARCH 

Continued increases in the human population and concomitant urban developments 

have resulted in significant alteration and reduction of wildlife habitats . Accordingly, one 

of the primary aspirations of many wildlife ecologists is to understand and predict how 

these developments affect animal behaviors and populations . The questions ecologists 

often wish to answer include: 1) how do habitat changes associated with development 

influence the way animals perceive and respond to their environments , 2) will these 

changes inhibit animals from using specific areas of the landscape , and 3) how will these 

changes influence population numbers and dynamics? My dissertation research was 

designed to provide a foundation upon which to answer these questions with respect to 

mule deer (Odocoileus hemionus) living in the foothill regions of the Rocky Mountain 

West. My study was conducted in Cache Valley, Utah . 

My research protocol was simple: compare the behaviors , patterns of habitat use 

and response , and population characteristics of mule deer using urban versus rural winter 

ranges . This protocol allowed me to infer 1) how urban winter ranges differed 

fundamentally from adjacent rural winter ranges , and 2) how urban and rural deer 

responded to and used their respective habitats . The main chapters of my dissertation 

correspond to this organization . Chapter 2 examines the differences between urban and 

rural winter ranges as characterized by deer behavior and demography . Chapters 3 and 4 

pertain to the habitat responses and patterns of habitat use by urban and rural deer . 

In Chapter 2, I develop a graphical hypothesis of the year-round net energetic 
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gains (NEG) of deer using urban and rural winter ranges. The qualitative properties of 

this hypothesis are generated by exploring the differences in the behavioral and 

demographic characteristics of deer using each area. Specifically, I compare the 

prevalence of migration , timings of migration , winter home range size, and patterns of 

home range use between urban and rural deer . I also compare deer densities and 

reproductive performance on each winter range . I then explain how behavioral and 

demographic differences between urban and rural deer might reveal discrepancies in their 

NEG on seasonal ranges . Because energy is likely to have a dominating influence on deer 

survival and reproduction, these discrepancies between urban and rural deer thus 

represent a time-specific hypothesis of the fundamental differences between urban and 

rural winter ranges . After developing this hypothesis, I use it to identify when factors 

associated with forage and risks may have differentially affected urban and rural deer. 

In Chapter 3, I assess how urban and rural deer respond to habitat by measuring 

the fractal dimensions of their movement pathways . A movement pathway provides a 

record of how animals respond to habitat based on the degree to which it fills space . And 

a fractal dimension measures a pathway ' s space-filling attributes across multiple 

resolutions of analysis. Before I attempt to assess urban and rural deer responses to 

habitat , however, I first show that the existing methods used to assess the space-filling 

attributes of movement pathways are unreliable . Therefore, I develop a new technique 

(Slider-D) for determining the fractal dimensions of movement pathways . After Slider-D 

is explained, I use it to show that urban and rural deer respond to their respective habitats 

in fundamentally similar ways once pathways exceed a certain length ( - 80 m). Based on 



these findings, I then hypothesize that similarities in D result from a behavioral process 

that allows deer to maximize use of their home ranges while minimizing the energetic 

expenditures associated with movement. I also hypothesize that differences in resource 

patchiness or landscape complexity cause urban and rural deer to exhibit different 

responses to their habitats when path segments are short (4-60 m). 

3 

In Chapter 4, I develop a 2-staged methodology for analyzing scale-dependent 

patterns of habitat use. I then use this methodology to show 1) how the spatial patterns of 

urban and rural deer point locations change with resolution , and 2) how the degree of 

correspondence between point locations and different habitat types change across this 

same range of resolutions. The first stage characterizes the distribution of deer locations, 

and the second stage provides a starting point for understanding the underlying basis for 

these distributions. An important finding that arises from these analyses is that urban deer 

locations are relatively space-filling at fine resolutions of analysis, and relatively 

fragmented at coarse resolutions . Stage 2 shows that these patterns of space use by urban 

deer are influenced largely by habitat components that reduce risk exposure , whereas 

those of rural deer are influenced by components that increase energy or nutrient intake. 

In Chapter 5, I integrate and synthesize the findings from Chapters 2 to 4. In 

doing so, I recapitulate how and why mule deer were affected by urban developments on 

their winter ranges of Cache Valley, Utah. I also suggest how the techniques that I 

develop to analyze animal movement pathways and scale-dependent patterns of habitat use 

open new avenues of research . 
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CHAPTER2 

BEHAVIOR AND DEMOGRAPHY OF URBAN VS. RURAL MULE DEER: 

THE RISK-ENERGY TRADE-OFF 

Abstract : Continued urban development on mule deer (Odocoileus hemionus) winter 

ranges demands that wildlife managers learn how urban habitats differ from surrounding 

rural areas , and how these differences affect deer behavior and demography . To assess 

such potential differences , I compared the behavioral and demographic characteristics of 

mule deer using urban and rural winter ranges of Cache Valley, Utah . Key behavioral 

differences included the following : 1) migration to high-elevation summer range was more 

prevalent among urban deer than rural deer, 2) urban deer initiated spring migrations 

before rural deer , 3) urban deer returned to winter ranges before rural deer in the fall, 4) 

winter home ranges of urban deer were much smaller than those of rural deer , and 5) 

within home ranges , locations of urban deer were clustered around concealment 

vegetation , whereas those of rural deer were dispersed broadly throughout the landscape . 

Demographically , urban deer exhibited lower densities and lower fawn :doe ratios than 

rural deer . I explain how these behavioral and demographic dissimilarities may have 

corresponded to differences in urban and rural deer net energetic gains (NEG) on seasonal 

ranges . These explanations , when combined graphically , suggest a time-specific 

hypothesis of lower NEG by urban deer on a year-round basis. I use this hypothesis to 

argue that risk avoidance prevented deer from foraging broadly, and thus selectively, on 

urban winter range . 
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INTRODUCTION 

Urban developments have usurped large tracts of mule deer winter range in the 

Rocky Mountain and Intermountain West. Presumably, developments are detrimental to 

mule deer populations because the overall availability of winter habitat is reduced, and 

migratory corridors are obstructed (Wallmo 1978, Rost and Bailey 1979, Reed 1981, 

Smith et al. 1989) . Despite these large-scale effects, however, mule deer have adapted 

locally to many urban areas (Conover 1995). But, there is currently no indication that 

they thrive in urban settings as do white-tailed deer ( Odocoileus virginianus; Swihart et al. 

1995, McClure et al. 1997, Warren 1997). As a case in point, Vogel (1989) reported that 

mule deer declined while white-tailed deer increased as developments encroached the 

Gallatin Valley of Montana. Given the continued development on winter range, it 

behooves managers to learn how urban habitats differ from traditional (rural) winter 

ranges, and how these differences affect deer behavior and population performance . 

One difference between urban and rural habitats may relate to risks, which 

obviously are important to consider because they cause the immediate deaths of 

individuals. Perhaps more importantly, however, is that risks induce stress and heighten 

vigilance, resulting in elevated metabolic rates and reduced foraging effort (Geist 1971, 

Freddy et al. 1986) . Moreover, by avoiding risks, deer may limit their access to areas 

containing quality forage (Homocker 1970, Sweeney et al. 1971, Nelson and Mech 1986). 

These behavioral or physiological changes brought on by risks will, in tum, manifest 

themselves as diminished nutritional or energetic gains (Lima and Dill 1990, Quenette 

1990). 



In urban areas, one might presume that the effects of risks on deer are minimal, as 

there is likely to be little predation or hunting. However, deer in urban areas face the risk 

of automobile collisions, and harassment by people and dogs . Although these risks are 

difficult to quantify, it is reasonable to conclude that they are more ubiquitous than the 

predation risks that rural deer encounter. Risk exposure in urban areas may therefore be 

higher than that in rural areas for a given amount of movement. Consequently, to reduce 

risk exposure, urban deer might be expected to limit their movements and foraging 

activities more so than rural deer. These behavioral changes would be evidenced as 

smaller home ranges, and patterns of habitat use that correspond to hiding cover . At a 

larger scale, urban deer might be expected to reduce risk exposure by migrating out of 

urban areas each spring, and by minimizing the time they spend on winter range between 

fall and spring migrations . 

6 

Forage characteristics may also differentiate urban and rural winter ranges. Urban 

areas contain both native and an assortment of exotic vegetation, which tends to be 

scattered broadly across the landscape in small patches. Forage in rural areas, on the other 

hand, is less diverse, consisting only of native and agricultural vegetation. Therefore, by 

increasing their mobility (i.e., expanding their home ranges), urban deer should be able to 

forage more selectively than rural deer, a behavior that may result in higher energetic and 

nutritional gains (Short 1981, Hobbs 1989, McCorquodale 1993). Alternatively, urban 

deer may have relatively small home ranges if they can satisfy their nutritional or energetic 

needs in a smaller area. On another note, much of the exotic vegetation in urban areas is 

irrigated and fertilized, thus providing green and succulent forage throughout summer and 
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into the fall. Accordingly, it might be expected that urban deer would take advantage of 

this forage by remaining on winter range the year-round, or by returning to winter range in 

early fall. 

Note that these behaviors are, for the most part, counter to those expected for deer 

attempting to minimize risk exposure in urban areas. Therefore, one might presume that 

behaviors directed toward avoiding risks or finding forage would have different 

consequences with respect to the physical condition of individuals, which, in tum , may 

have repercussions on population performance (Geist 1981, Anholt 1997). 

To assess how urban environments change deer behavior and demography, and to 

gain insight into how these changes might be explained by risks and forage, I compared 

the behavioral and demographic characteristics of mule deer using adjacent urban and rural 

winter ranges of Cache Valley, Utah . The behavioral characteristics that I compared 

included: 1) the prevalence of migration, 2) the timings of spring and fall migration, 3) the 

size of winter home ranges, 4) the degree of aggregation within winter home ranges, and 

5) the spatial associations between yearly home range locations . The demographic 

characteristics that I compared included 1) population density, and 2) reproductive 

performance , indexed via fawn :doe ratios . 

STUDY AREAS 

The urban and rural study areas were situated at the west-facing base of the 

Wasatch Mountains in Cache Valley, Utah, approximately 100 km north of Salt Lake City 

(Fig. 2-1). The 32-km2 urban area encompassed the cities ofLogan, River Heights, and 



Providence . The 42-km 2 rural area was centered 15 km north of the urban area, and 

about 4 km east of Richmond, Utah . Elevations were similar in the 2 areas, averaging 

1500 m. Climate also was similar, and was typical of the lntermountain West with dry, 

warm summers, and cold, snowy winters . Snow depths from November through March 

ranged from O to 40 cm in both areas, and averaged 8 cm in the rural area and 6 cm in the 

urban area (Utah State University, Climate Center) . No snow remained on the ground 

from April to October. 
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The urban area consisted mostly of residential housing, with housing densities 

ranging from O .15 to 8. 0/ha . A few small farms were interspersed within the urban area . 

Vegetation was diverse, with exotic and native species (i.e., the same species found in the 

rural area), as well as fields of alfalfa, wheat , and com . Hunting was prohibited in the 

urban area, as most of it was within city limits. The rural area, in contrast , contained only 

a few scattered farm houses . Vegetation consisted of alfalfa and wheat fields interspersed 

in a rangeland dominated by big sagebrush (Artemisia tridentata), antelope bitterbrush 

(Purshia tridentata) , cheatgrass (Bromus tectorum), and crested wheatgrass (Agropyron 

desertorum). Bigtooth maple (Acer grandidentatum), serviceberry (Amelanchier spp.), 

and Utah juniper (Juniperus osteosperma) were also dispersed throughout the area. 

Coyotes (Canis latrans) and mountain lions (Puma concolor) lived in the rural area, and 

posed potential risks to deer. 

Migratory urban and rural deer summered at elevations of2100 to 2900 min the 

Cache National Forest of northern Utah and southern Idaho (Fig 2-1) . Douglas-fir 

(Pseudotsuga menziesii) and quaking aspen (Populus tremuloides) comprised the bulk of 



overstory vegetation . On average, there was no difference in the summer ranges of 

migratory urban and rural deer, as their summer home ranges were intermixed . 

METHODS 

Deer Capture and Sampling 
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I captured 54 deer in the urban area from 4 January to 13 February 1994, and from 

10 to 14 February 1995. I attached radiocollars to 18 females (11 adults, 7 fawns), and 

marked the remaining 36 deer with numbered neckbands or ear tags . I captured 24 deer in 

the rural area from 18 December 1994 to 10 January 1995. I attached radiocollars to 16 

females (12 adults, 4 fawns), and marked the remaining 8 deer with numbered ear tags. I 

refer to deer wearing ear tags or neckbands as marked deer, which distinguishes them 

from radio-telemetered deer. I captured all deer in Clover traps and restrained them 

manually. I dispersed traps widely throughout each area to obtain representative samples 

of animals in each area . 

Deer Behavior 

Prevalence pf Migration.--! considered deer to be migratory if they moved 

between seasonal ranges that did not overlap. I estimated the proportion of non-migratory 

deer using the urban area by combining data from summer and winter locations of radio­

telemetered deer (see below) and sightings of marked deer on winter range during 

summer. To find marked deer during summer, I systematically searched the urban area 10 

times between 1 July and 31 August, 1994 and 1995. Additionally, I asked urban 
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residents to record sightings of all marked and unmarked deer throughout the summer. I 

estimated the proportion of nonmigratory deer using the rural area from summer and 

winter locations of radio-telemetered deer (see below); sightings of marked deer were not 

attempted in the rural area. I compared statistically the proportions of nonmigratory deer 

using urban and rural areas with chi-square contingency tables . 

Timings of Migration.--To detennine when deer migrated in the spring, I searched 

for radio-telemetered animals 2 times per week from April through June using ground 

surveillance and radio-telemetry . If a radio signal was received, I circled the area (radii of 

100-500 m) from which it emanated, and recorded deer locations to the nearest 500 m on 

U.S. Geological Survey (USGS) 1 :24,000 topographic maps. I considered a deer to have 

begun spring migration when: 1) it was first located ~ 2 km outside its respective winter 

range in the spring, with no subsequent return until fall, or 2) when its radio signal could 

no longer be received within its winter range, and subsequent observations revealed that 

the deer was alive with a functional radio collar. 

To detennine when deer returned to winter range, I searched for radio-telemetered 

animals in and near winter ranges 2 times per week from September through December. I 

considered a deer to have completed its fall migration when it was first located :.:; 2 km 

from its winter range of the previous year. I compared statistically the timings of 

migration between urban and rural deer in 1995 and 1996 by recording departure or return 

dates on a Julian calendar, and perfonning Van der Waerden tests (SAS Institute, Inc., 

1988). To assess whether the timings of migration corresponded to environmental or 

forage conditions, I also monitored qualitatively weather patterns (thermal conditions, 



snow cover) and forage conditions ( degree of dessication), and obtained weekly 

summaries of precipitation and temperature from the Utah State University Climate 

Center. 
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Spatial Patterns of Migration.--! calculated migration distances as the distance 

between centroids of winter and summer locations ofradio-telemetered deer. During 

summer (July and August), I located radio-telemetered animals ;:,: 3 times. For 

approximately half of these locations, I followed radio signals until deer were seen. For 

the other half, I estimated deer locations by circling the areas from which their radio 

signals emanated (radii of 100 - 1000 m). I plotted summer locations of radio-telemetered 

deer on USGS 1 :24,000 topographic maps to the nearest 1000 m. 

Winter Home Range Size.--From 1 January to 31 March 1995 and 1996, I located 

radio-telemetered animals every 2 to 5 days during 1 of 3 time intervals : 1) dawn or dusk, 

which included the hour before and after sunrise, or the hour before and after sunset, 2) 

the day, 1000 to 1600, and 3) the night, 2200 to 0400 . Approximately 40% of these 

locations were made during the dawn/dusk interval, 40% during the day, and 20% during 

the night. These intervals were designed to capture the full spectrum of deer activity 

patterns and thus provide an adequate description of home range size and patterns of 

home range use. I determined most locations (80%) by following radio signals in vehicles 

or on foot until animals were seen. When a deer was sighted, I used a hand-held global 

positioning system (GPS; mean error= 46 m, SE= 6.4 m) to estimate my location. I then 

added the directional distance from the GPS unit to the deer to estimate the deer's 

location. Direction was determined with a hand-held compass(± 2°), and distance was 
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estimated visually. Sighting distances were always< 100 m for urban deer and < 200 m 

for rural deer. When I could not see radio-telemetered deer (e.g., when it was too dark or 

when deer were in thick cover), I determined their locations by circling the areas from 

which their radio signals emanated (radii of 20-50 m for urban deer and 50-100 m for rural 

deer), and plotting their locations on USGS 1 :24,000 topographic maps . I recorded all 

locations of radio-telemetered deer during winter as UTMs , which were rounded off at 10 

m. I estimated winter home range size for urban and rural deer via the minimum convex 

polygon (MCP, 95%) method in the program CALHOME (Kie et al. 1994). I statistically 

compared MCPs of urban versus rural deer for 1995 and 1996 with t-tests . 

Aggregation Within Winter Home Ranges .--To determine how deer distributed 

themselves within their home ranges, I developed the following metric to estimate the 

degree of aggregation of location coordinates : 

where S is an index of aggregation ; d; is the distance from a location to the nearest 

neighboring location ; N is the number oflocations ; and Xis the linear extent of an animal's 

home range , calculated as the distance between the outermost locations . The value of S 

can range between O and 1, with smaller values indicating a greater degree of 

aggregation , and larger values indicating a greater degree of dispersion . This index 

allows for standardized comparisons among spatial patterns of any extent. What this 

means is that small and large areas can be compared . Note that if Xis removed, the 



13 

equation reduces to the mean nearest neighbor value for all coordinate locations. Also 

note that in order to make meaningful comparisons among animals, the number of 

locations should be equal. My sample sizes for urban and rural deer all ranged between 28 

and 32. I compared the values of S between urban and rural deer in 1995 and 1996 using 

t-tests. 

Association Between Yearly Home Range Locations .-- I quantified the association 

between a deer ' s locations from consecutive winters, 199 5 and 1996, in 2 ways . First, I 

calculated a centroid value from a deer's locations each winter (I January-31 March), and 

quantified overlap between each set of locations by measuring the distance between 

centroids from consecutive years. I then used t-tests to determine whether distances 

between yearly centroids for urban and rural deer differed . Second, I used the multi­

response permutation procedure (MRPP; Biondini et al. 1988) to test whether sample 

locations from the 2 consecutive years came from a common probability distribution . The 

null hypothesis of the MRPP is that the distribution of an animal's locations for each year 

are the same; a significant test , therefore, indicates a change in use of an area between 

years (White and Garrot 1990). 

Demographic Characteristics 

Reproductive Performance. --To index the reproductive performance of urban and 

rural deer, I recorded fawn-doe ratios while migratory and nonmigratory deer lived on 

winter ranges (December-April) . Throughout this period, I searched for deer in each area 

and classified them as fawns(< 12 months), does (yearlings and adults), or bucks on 8-10, 
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2-hr occasions each winter . To ensure that ratios were representative of deer using each 

area, I selected a subset of these counts in which 1) deer were classified in ~ 5 locations in 

each study area, and 2) sample size (fawns+ does) was> 40. Because classification 

counts on different days were not independent (i.e., the same deer may have been counted 

on different days), formal statistics were not used to compare the ratios of urban and rural 

deer. 

Densities .--! estimated population numbers of urban and rural deer using mark­

resight methods . For urban deer, I estimated population size on 6 occasions from 

February to March, 1994, and on 3 occasions from February to March, 1995. Each 

estimate entailed a 3-hr visual search (telemetry was not used to locate deer) for radio­

telemetered , marked , and unmarked deer throughout the study area . I input count data 

from each search into the immigration/emigration model of the program NOREMARK to 

genera te Lincoln-Petersen estimates of population size (G. C. White , Colo. St. Univ., pers . 

comm., Neal et al. 1993). I demarcated the boundaries of the study area based on the 

outermost locations of marked and radio-telemetered deer during the winters of 1994 and 

1995. Radio -telemetered and marked deer observed within this area from February to 

March each year were assumed to be available for NOREMARK estimates . Because 

each search was conducted by only 1 observer , I were confident that deer were not 

counted more than once during a search. Additionally, because the entire study area was 

searched , I assumed that all deer (radio-telemetered , marked , and unmarked) had an equal 

probability of being sighted . 

For rural deer, I estimated population size on 3 occasions from February to March, 
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1995. Counting procedures for rural and urban deer were similar, with 1 exception: I 

considered only radio-telemetered deer known to be within the rural study area during 

counts to be available for population estimates (marked deer were also included in 

estimates in the urban area) . Rural deer tended to range broadly across the landscape, 

and I were therefore unsure which marked deer were within the study area during the 

counts. In contrast , urban deer home ranges were very small, and I were confident that all 

marked deer were in the study area during counts. I verified which radio-telemetered rural 

deer were available for each count by scanning the study area with telemetry following the 

count. 

RESULTS 

Fates of Radio-Telemetered and 
Marked Deer 

Of the 54 radio-telemetered or marked urban deer, 9 were killed by automobiles on 

winter range, 1 was illegally shot on winter range , 3 died from unknown causes on winter 

range, 3 were killed by hunters on high-elevation summer ranges , and 2 were killed by 

automobiles on high-elevation summer ranges from January 1994 to January 1997; 19 

were alive, and 17 were unaccounted for when the study was terminated (January 1997). 

Of the 24 radio-telemetered or marked rural deer, 1 was killed by an automobile on winter 

range, 1 was killed by a mountain lion on winter range, 1 was ensnared in a barbed-wire 

fence and died on winter range, 1 died of an unknown cause on winter range, and 2 were 

killed by hunters on high-elevation summer range from January 1995 to January 1997; 11 



were alive, and 7 were unaccounted for when the study was tenninated . Deer that were 

unaccounted for may have been alive but 1) eluded detection, 2) lost their ear tags or 

neckbands , and thus could not be identified, or 3) moved out of their respective winter 

ranges. Or, they may have died unbeknownst to me. 

Deer Behavior 
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Prevalence of Migration.--Ofthe 54 radio-telemetered or marked urban deer, 45 

were migratory, 4 were nonmigratory with overlapping seasonal ranges, and 5 died before 

their migratory/nonmigratory behaviors could be determined (i.e., they died before deer 

migrated in the spring) . Of the 4 nonmigratory deer, 2 were radio-telemetered and 2 were 

marked. I were confident that these were the only 2 marked , nonmigratory deer in the 

urban area because they were each sighted on > 5 occasions in July and August during 

meticulous searches for nonmigratory deer, and they were the only 2 marked deer to be 

observed by urban residents . Incidentally, urban residents also observed the 2 radio­

telemetered nonmigratory deer during the summer on numerous occasions , suggesting that 

nonmigratory deer were readily observed . Of the 16 radio-collared rural deer , 8 were 

migratory, 6 were non-migratory , and 2 died before their migratory/nonmigratory 

behaviors could be determined . Based on these numbers, the proportion of migratory to 

nonmigratory deer using the urban area was significantly higher than that of deer using the 

rural area (r: = 9.98, df = 1, P < 0.005) . 

Overall, I frequently observed deer in the rural area during summer (July and 

August). On one occasion, I saw 18 deer (9 does and 9 fawns) in the rural area in a 1-hr 
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period during late August. On the other hand, I rarely saw deer in the urban area; nor did 

residents who documented sightings of deer in their yards . Of the deer that I did see in the 

urban area during summer, not one was a fawn. 

Timings of Migration.--Urban deer commenced spring migrations between 14 

April and 1 June, 1994-1996, while rural deer did so between 14 May and 2 June, 1995-

1996 (Fig . 2-2) . Spring migrations occurred 2-3 weeks sooner for urban deer than rural 

deer in both 1995 (P < 0.001) and 1996 (P < 0.001) . In general, onset of migrations for 

urban and rural deer appeared to follow spring green-up on winter ranges, which in turn, 

corresponded to average temperatures in April and May . Monthly mean temperatures in 

April were 10.0 C0
, 7 .9 C0

, and 8.1 C0 for 1994-1996, respectively. Monthly mean 

temperatures in May were 16.2 C0
, 10.4 C0

, and 12.5 C0 for 1994-1996, respectively 

(Utah State University, Climate Center). 

Migratory urban deer returned to winter range between 16 September and 15 

November , 1994-1996 (Fig. 2-2), while rural deer returned to winter range between 3 

October and 15 November, 1995-1996 (Fig. 2-2) . Return dates ofurban and rural deer 

to winter ranges were similar in 1995 (P = 0.253), but different in 1996 (P = 0.029) . In 

general, the return of deer to winter range did not appear to coincide with shifts in 

weather or snow accumulations in the mountains . Moreover, there was no relationship 

between the timings of fall migration and the onset of hunting season (i.e ., urban deer did 

not seek refuge from hunters in urban areas). Instead, median dates ofreturn to winter 

range appeared to be correlated with the dessication of forage on high-elevation summer 

range, which was likely determined by precipitation levels from the previous year 
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(October-August) . Precipitation was low in 1993/94 at 29 .5 cm, high in 1994/95 at 59.5 

cm, and moderate in 1995/96 at 41.2 cm (Utah State University, Climate Center) . 

Spatial Patterns of Migration .--Ofthe migratory deer, 14 of the radio-telemetered 

urban deer migrated east and northeast to summer ranges in the Cache National Forest of 

northern Utah and southern Idaho, and 1 migrated south to a summer range on the valley 

floor (Fig . 2-1 ). Mean distance between winter and summer ranges for migratory urban 

deer was 31 .5 km (range= 3 .5-52.1) . Seven of the 16 radio-telemetered rural deer 

migrated east and north-east to summer ranges in Cache National For est ; 1 of the 

migratory rural deer could not be located during summer. Mean distance between winter 

and summer ranges for migratory rural deer was 14.5 km (range= 8.0-24 .1 ). Migratory 

urban and rural deer intermixed on summer range (Fig . 2-1 ) . Winter ranges were discrete , 

however , as all radio-telemetered deer tracked for > 1 year exhibited fidelity to their 

winter ranges . These behaviors were evidenced by both migratory and non-migratory 

deer. 

Winter Hom e Range Size .--Urban deer home ranges were approximately 0.25 the 

size of rural deer home ranges (Table 2-1) , representing a statistical difference in 1995 (P 

= 0.005) , and in 1996 (P = 0.001) . 

Aggregation Within Winter Home Ranges .--Clearly, the relatively small winter 

home ranges of urban deer contributed to the shorter distances between home range 

locations (i.e., nearest neighbor values ; Table 2-1 , Fig. 2-3) . However , after standardizing 

for the linear extent over which locations could be distributed, urban deer still clustered 

their movements more so than rural deer; dispersion indices (S) for urban deer were 
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significantly smaller both in 1995 (P < 0.001) and in 1996 (P = 0.029). Based on 

observations of habitat use, it was clear that the clustering of urban deer locations 

corresponded to concealment cover (see Chapter IV). 

Association Between Yearly Home Range Locations .--The mean distance between 

the center of winter relocations (centroids) for 1995 and 1996 changed by 513 m (n = 8, 

SD= 286) for urban deer and 755 m (n = 9, SD = 502) for rural deer (Table 2-2). These 

distances for urban and rural deer did not differ significantly from each other (t = -1.24, P 

= 0.24) . Nevertheless , the MRPP revealed that urban deer were more likely than rural 

deer to shift the way they distributed themselves within their home ranges from winter to 

winter (Table 2-2) . A visual inspection of deer relocations revealed why most urban deer 

spatial distributions changed (Fig . 2-3). Within home ranges, urban deer clustered their 

movements around several key areas that provided concealment and loafing cover. 

Although home ranges overlapped from year to year, many of these key areas did not. 

Instead, urban deer tended to use some areas during 1 year , but not the following year. 

Rural deer , on the other hand, dispersed their movements over the same areas each winter, 

and were not restricted to regions that provided concealment cover . 

Demographic Characteristics 

Fawn:Doe Ratios.--Fawn :doe ratios of urban deer (0.41-0.61) were conspicuously 

smaller than those of rural deer (0.62-0 .84) in 1995 and 1996 (Fig. 2-4). Moreover, 

ratios of urban deer were 30-40% less than those of deer living in other rural areas 

throughout northern Utah from 1994 to 1996 (D. Austin, UTDWR, pers. comm.), 
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suggesting that fawn:doe ratios were uncommonly low in the urban area. Although I did 

not separately quantify fawn :doe ratios of migratory and nonmigratory deer during winter, 

I did observe that only migratory does had fawns in the urban area, whereas migratory and 

nonmigratory rural appeared to have fawns in equal numbers. 

Densities. --Lincoln-Petersen estimates of population size indicated there were 149 

urban deer in 1994, 161 urban deer in 1995, and 336 rural deer in 1995 (Table 2-3). 

These estimates translated to densities of '" 4. 8 urban deer/km 2 in 1994 and 1995, and 8. 0 

rural deer/km 2 in 1995. 

DISCUSSION 

Behavioral and demographic characteristics of urban and rural deer differed 

markedly during My study. Demographically, the relatively low fawn :doe ratios of urban 

deer indicated that natality or neonatal survival was substantially lower for deer using the 

urban area . In addition, the lower densities of urban deer during winter implies that fewer 

animals could exist in the urban area, and combined with fawn :doe data, suggest that 

density-dependent natality, if operating, occurred at a lower carrying capacity . 

Collectively, these data suggest that the urban area was an inferior winter habitat 

compared to the rural area. In addition, the relatively few nonmigratory urban deer, none 

of which appeared to reproduce , indicates that the urban area was also a relatively poor 

summer habitat. 

These conclusions can be drawn because all deer exhibited fidelity to their summer 

and winter ranges, and migratory deer intermixed on a common summer range, where they 
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were exposed to comparable forage, risk, and environmental conditions. As such, 

dissimilarities between urban and rural deer were likely caused by factors inherent to 

winter ranges. Moreover, because thermal and environmental conditions were equivalent 

on the 2 winter ranges , risks or forage probably caused these dissimilarities. 

Overall , these conclusions conflict with those drawn for white-tailed deer in the 

north central U.S . Swihart et al. (1995) reported that urban deer in this region achieved 

reproductive rates equivalent to those of rural deer when deer densities were similar in the 

2 habitats. The authors thus proposed that urban environments created ideal conditions 

for the rapid growth of white-tailed deer populations. When comparing sympatric 

populations of urban white-tailed and mule deer in Montana , however, Vogel (1983 , 

1989) found that white-tailed deer exhibited higher natality and lower fawn mortality than 

mule deer. He thus proposed that the demographic characteristics exhibited by white­

tailed deer , combined with their increased nocturnal activity patterns , made them more 

capable of tolerating the disturbances , and utilizing the resources , in urban habitats than 

mule deer. 

In this vein, the demographic differences between urban and rural deer in My study 

may have reflected the inability of deer to 1) utilize fully the resources , and 2) cope with 

the risks, in urban settings. If so, interpretations of the behavioral disparities between 

urban and rural deer should correspond to these demographic differences , as resource use 

and risk avoidance are both behaviorally driven. To ensure that behavioral interpretations 

are compatible with deer demography, however, it is necessary to couch them in terms of 

a common currency (Anholt 1997) . Energy is likely to represent such a currency , as 
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survival and reproduction of Rocky Mountain mule deer are generally limited by the year­

round energy balances of individuals (Short 1981, Hobbs 1989, Bartmann et al. 1992), and 

both foraging behavior and risk avoidance affect the net energetic gains (NEG) of these 

individuals (Geist 1981, Beier and McCullough 1990, Schmitz 1991, Parker et al. 1996). 

Therefore , assuming energy has such a subsuming influence, I hypothesize that the 

behaviors of urban deer, relative to those of rural deer , corresponded to lower NEG on a 

year-round basis, which reflected inferior demographic characteristics, i.e., natality. 

Below, I explain how the behavioral dissimilarities between urban and rural deer 

might have corresponded to the potential differences in deer NEG on seasonal ranges, 

under the assumption that both risks and forage affected these gains . I combine these 

explanations graphically , to construct a time-specific hypothesis of energy acquisition 

throughout the year (Fig . 2-5) . I then use this hypothesis to propose how urban and rural 

habitats might differ from each other with respect to risks and forage . 

Relating Behaviors to Energy 

Prevalence of Migration .-- Migration is thought to have evolved so animals could 

take advantage of spatial and temporal variations in habitat quality (Taylor and Taylor 

1977, Dingle 1980, Fryxell and Sinclair 1988). Therefore , given that habitat quality is 

reflected in deer NEG , the prevalence of migration should correlate with the deviation in 

the combined NEG of migratory versus nonmigratory animals on seasonal ranges 

(Fretwell 1972, Nicholson et al. 1997). If so, the proportion of migratory urban deer 

(92%) may have corresponded to a large difference in the combined NEG of migratory 



versus nonmigratory animals during summer (Fig 2-5) . This difference would have been 

less distinct for rural deer, as only 60% of them were migratory (Fig. 2-5) . 
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Timings of Migration . --The timings of mule deer migrations have been correlated 

with several proximate (i.e., environmental) cues (Garrot et al. 1987, Kucera 1992, 

Nicholson et al. 1997). These correlations generally indicate, however, that the onset of 

migration is geared ultimately towards maximizing NEG via more profitable foraging or 

reduced energetic losses (Parker and Stuart 197 6, Nicholson et al. 1997, McCorquodale 

1999) . In spring, this temporal behavior ensures that deer will boost their energy plane 

prior to birthing, which is crucial for successful reproduction (Short 1981, Fryxell and 

Sinclair 1988). In fall, this temporal behavior enables deer to buildup fat reserves as much 

as possible prior to the critical winter period (Wallmo and Regelin 1981, Garrot et al. 

1987). 

In this study, urban deer migrated 2-3 weeks sooner than rural deer in spring, 

suggesting that NEG on high-elevation summer range exceeded those on urban winter 

range before they did on rural winter range (Fig. 2-5) . In fall, migratory urban deer 

returned to winter range before migratory rural deer ; but, this trend was somewhat 

inconclusive as there was considerable overlap in the dates urban and rural deer arrived on 

their winter ranges . Overall, however, this trend suggests that NEG on high-elevation 

summer range dropped below those on urban winter range before they did on rural winter 

range ; albeit, these energy crossovers were probably near each other (Fig. 2-5). 

Note that these interpretations regarding spring and fall migrations implicitly 

suggest that the NEG of nonmigratory urban deer were less than those of nonmigratory 
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rural deer between spring and fall. Why? The availability of high quality forage on both 

winter ranges peaks in early summer, when vegetation is most succulent (Short 1981, 

Wallmo and Regelin 1981). Accordingly, maximum energy intake rates by nonmigratory 

urban and rural deer would have occurred at this time. Energetic interpretations of the 

temporal patterns of migration thus concur with those based on the prevalence of 

migration. 

Home Range Size and Patterns of Use.--Home range size within a species is 

commonly thought to relate inversely with resource density (Mace et al. 1983). This 

explanation is logical because increased resource density allows animals to fulfill their 

energetic needs in a smaller area . Assuming animals are not territorial, a corollary to this 

explanation is that animal density should increase with resource density . And, if animal 

density is low in a resource rich habitat, reproduction should be high. In this study, home 

range sizes of urban deer were only 1/4 those of rural deer, but density and reproduction 

were also lower in the urban area. This explanation of home range size thus seems 

dubious , and is unlikely to reflect the differences in NEG of urban and rural deer during 

winter. 

McCorquodale (1993) offers a more appropriate explanation for ungulates during 

winter : In the absence of disturbance , high energy intake rates are achieved by increased 

search effort for forage of the best quality, a behavior that manifests as larger home ranges 

and more dispersed patterns of habitat use. This hypothesis is rooted in optimal foraging 

theory (MacArthur and Pianka 1966), and implies that, within the constraints of minimum 

intake, maximum energy is obtained via selective foraging (Jarman 1974, Schmitz 1990). 
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In this study, the small home ranges and clustered patterns of habitat use of urban 

deer indicate that their search effort was less than that rural deer. One explanation for 

reduced effort by urban deer is that valuable forage was so sparse in the urban area that 

the energetic payoffs of pursuing it were not worthwhile; deer were better off limiting 

their movements, and conserving their energy reserves . This explanation is untenable for 

several reasons . First, most forage in urban and rural areas was desiccated and dormant 

during winter . Therefore, average forage quality should have been similarly poor in these 

2 areas , as quality is determined largely by succulence (Short 1981 ). Second, the urban 

area contained the same plant species found in the rural area . Presumably, urban deer 

could have eaten these plants if they searched for them. Finally, exotic vegetation was 

diverse and ubiquitous in the urban area, and should have been valuable to deer if they 

availed themselves to it. 

Rejection of this explanation suggests that reduced search effort by urban deer may 

have led to energy intake rates that were lower than those of rural deer during winter. If 

so, urban deer may have also had lower NEG during this period (Fig. 2-5), as processes 

affecting energy intake exert a greater effect on deer energy balances during winter than 

processes affecting energy expenditure (Hobbs 1989). This inference agrees with the 

observation that urban deer migrated earlier in the spring, as low NEG during winter 

should correspond to earlier energy crossovers between urban winter range and high­

elevation summer range . This inference also agrees with the disparate fawn:doe ratios of 

urban and rural deer, which indicate that urban deer entered the birthing season in 

relatively poor condition . 
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Risks vs. Forage 

Corroboration between behavioral and demographic characteristics imparts 

confidence in my hypothesis of deer NEG, and suggests that I interpreted accurately the 

dissimilar behaviors of urban and rural deer. As such, this hypothesis implicitly helps 

identify when factors associated with forage and risks may have differentially affected 

urban and rural deer. For instance, this hypothesis suggests that forage characteristics 

could not have explained the small home ranges of urban deer during winter . Therefore , it 

is likely that risks played a key role . 

On many occasions, I observed deer fleeing from dogs and people in the urban 

area . I also observed people throwing rocks at deer , and once I saw a person shooting at 

deer with a pellet gun . In addition, one of the radio-telemetered urban deer was illegally 

shot and killed in the urban area, and more than 1 7% of the sampled urban deer were 

killed by automobiles while on winter range during my study. Clearly, the spatial 

behaviors of urban deer during winter were , in part , responses geared toward reducing 

exposure to these risks. By compressing their home ranges , urban deer crossed fewer 

streets , and exposed themselves to fewer people and dogs . By clustering their movements 

around areas with concealment vegetation , they also reduced their chances of detection 

and disturbance. And by shifting their year-to-year distributions to different patches of 

concealment vegetation , they adjusted their patterns of habitat use as certain areas became 

more or less risky . 

The consequence of these behavioral modifications is that urban deer likely traded 

off access to potential forage , and thus selection opportunities, with risk avoidance . In 
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addition, given that urban deer spent more time in ruding cover, their overall feeding effort 

may have been reduced, wruch would have exacerbated trus trade-off The outcome of 

trus trade-off is that urban deer may have reduced risk exposure at a cost of lower 

energetic or nutritional gains, wruch, in tum , had repercussions at the population level. 

My hypothesis of NEG also suggests that risks may have caused urban deer to 

migrate sooner than rural deer in spring. Trus inference can be drawn because many 

regions of the urban area contained the same type ofrugh-quality vegetation (e.g, alfalfa, 

emerging forbs) that was found in the rural area during spring . And, as noted in other 

studies (Wallmo and Regelin 1981, Garrot et al. 1987, Kucera 1992), there appeared to be 

a correlation between the timings of migration and spring green-up , suggesting that urban 

deer were indeed responding to forage at trus time . Therefore , it is plausible that the risks 

inherent to the urban area reduced the intake of quality forage during spring; urban deer 

could better increase their foraging gains by migrating early, thereby accessing the 

emerging vegetation on less risky transitional and summer ranges . 

Unlike the timings of spring migration , the return of urban deer to winter range in 

fall appeared to be unaffected by risks. Instead , the temporal patterns of fall migration by 

both urban and rural deer were consistent with other recent findings, wruch suggest that 

deer time their migrations to make optimal use of quality forage on winter ranges (Garrot 

et al. 1987, Nicholson et al. 1997, McCorquodale 1999) . For example, Garrot et al. 

(1987) suspected that deer in Colorado migrated from rugh-elevation summer range to 

agricultural winter range before snow accumulations or adverse thermal conditions forced 

them from the mountains . Early migrations allowed deer to take advantage of irrigated 



forage on agricultural winter range when nutritional quality of native vegetation on 

summer range was declining because of plant senescence. This is likely the scenario for 

both urban and rural deer in My study. Urban winter range contained an assortment of 

irrigated vegetation, and both urban and rural areas contained several late-season alfalfa 

fields. This vegetation remained green in the fall, contrasting sharply against the 

desiccated, native vegetation. 
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Given that risks were largely responsible for the small winter home ranges and 

early spring migrations of urban deer, it is plausible that they also discouraged deer from 

using the urban area during summer. Bowyer (1986) and Loft et al. (1987) noted that 

fawn mule deer required more hiding cover than adult deer. Therefore, the high potential 

for disturbance and harassment in the urban area should have forced deer to seek areas 

with greater security ; migration may have been an obligatory response to avoid the 

adversity associated with urban habitats (Taylor and Taylor 1977). 

MANAGEMENT WPLICATIONS 

Migratory urban and rural deer intermixed on a common summer range, but they 

both exhibited fidelity to their respective winter ranges. Fidelity to seasonal ranges is 

perpetuated through matrilineal associations (Geist 1981, Mathews and Porter 1993), and 

its occurrence has been documented extensively. A potential detriment of fidelity to 

seasonal ranges is that it may constrain dispersal (Garrot et al. 1987). Therefore, if urban 

deer migrate onto an inferior winter range, tradition may compel them to stay there . 

My data do suggest that urban winter range was inferior to rural winter range for 
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most of the year, except for perhaps a brief stint in the fall. However, this conclusion was 

drawn from a comparison between 1 urban and 1 rural study area over several years of 

moderate snowfall . Further studies are needed in different regions, and under different 

environmental conditions. During years of heavy snowfall, urban winter ranges may be 

superior to surrounding rural areas, as much of the shrubby vegetation in urban areas 

would stand above the snow, whereas that in rural areas would be buried . Regardless, the 

results of this study emphasize the need to conserve undeveloped regions of traditional 

mule deer winter ranges . If the goal is to boost mule deer populations in or near urban 

settings , I recommend enhancing the amount of concealment vegetation available to deer. 

On the other hand, if control is needed , it may be possible to regulate deer distribution by 

manipulating the arrangement or accessibility of hiding cover. 

Because most urban deer were migratory , they can be harvested away from city 

limits where traditional hunting techniques are feasible. However, many deer returned to 

urban areas before the general hunting season. Therefore , hunting season dates may need 

to be changed if urban deer are to be targeted . Moreover , because urban and rural deer 

intermixed on a common summer range, the only option for selective management of 

urban deer may be to harvest them on transitional ranges during periods of fall migration . 
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Table 2-1 . Minimum convex polygon (MCP, 95%) home ranges and dispersion metrics for deer wintering in urban and 

rural areas of Cache Valley, Utah, 1995 and 1996. 

1995 1996 

Urban Rural Urban Rural 

Metric i SD n i SD n i SD n x SD 

MCP (ha) 275 140 11 1095 365 11 299 179 10 1172 636 

Nearest neighbor ( m) 106 33 11 359 74 11 104 40 10 335 95 

Dispersion indexb 0.033 0.006 11 0.053 0.007 11 0.036 0.016 10 0.050 0.007 

8Denotes the distance from 1 location to its nearest neighboring location , averaged across all locations . 

bDenotes the nearest neighbor value divided by the spatial extent of x- and y-coordinates ; smaller values indicate 

a more clustered distribution . 

n 

11 

11 

11 



Table 2-2 . Metrics indicating the degree of overlap between mule deer home range 

locations during the winters ( 1 J anuary-15 March) of 1995 and 1996 in Cache 

Valley, Utah . 

Distance between 

Study area Deer ID yearly centroids (m)3 MR.PP P-valueb 

Urban 1510 502 0.0033 

1531 548 0.0221 

1551 198 0.1184 

1980 243 0.1173 

2605 601 0.0002 

2625 496 0.0141 

2703 909 0.0005 

2760 810 0.0041 

Rural 1165 786 0.0222 

1357 311 0.6797 

1455 1844 0.0040 

1525 353 0.4257 

1545 1286 0.0122 

1565 672 0.2821 

2717 472 0.2998 

2726 578 0.4043 

2736 496 0.1800 

3£quals the mean UTM from 1995 locations minus the mean UTM from 1996 locatio 

bA significant value (P < 0.05) indicates that UTMs from 1995 and 1996 are not from 

the same probability distribution . 
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Table 2-3 . Mark-resight estimates of population size for muie deer living in a 32-km2 

urban area and a 42-km2 rural area of Cache Valley, Utah. 
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Area Year Minimum number Estimate (95% CI) Sighting occasions 

Urban 1994 116 149 (136-166) 6 

Urban 1995 108 161 (136-200) 3 

Rural 1995 229 336 (275-452) 3 
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Figure 2-1. Seasonal ranges of 17 radio-telemetered mule deer wintering in an urban area 

and 141 radio-telemetered mule deer wintering in a rural area of Cache Valley Utah, 1994-

1996. 1One of the rural deer could not be located on summer range . 
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Figure 2-2. Timings of spring and fall migration for deer wintering in urban and rural 

areas of Cache Valley , Utah . Circles are median dates , and lines represent ranges. 

Sample sizes are in parentheses. 
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Figure 2-3 . Representative examples of how radio-telemetered deer dispersed their 

movements on urban and rural winter ranges of Cache Valley , Utah , January-March 1995 

and 1996. Note that the locations of the urban deer encompass a smaller area, and are more 

clustered relative to those of the rural deer. 
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Figure 2-4 . Fawn :doe ratios of mule deer wintering in a 32-km 2 urban area and a 42-km 2 

rural area of Cache Valley , Utah . 
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Figure 2-5 . Time-specific hypothesis of the net energetic gains by migratory and non­

migratory mule deer using urban and rural winter ranges , and high-elevation summer 

ranges of Cache Valley , Utah . Qualitative differences in energy curves correspond to 

dissimilar behaviors and demographics of deer in each area. These differences may be 

influenced by risks or forage, both of which manifest themselves as net energetic gains . 

Crossovers between energy curves (urban versus summer and rural versus summer) 

indicate when migrations should occur . 



CHAPTER3 

FRACTAL ANALYSIS OF MOVEMENT PATHWAYS: 

A REVISED METHODOLOGY AND 

AN ENERGETIC INTERPRETATION 
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Abstract: Fractal analysis of animal movement pathways has become increasingly popular 

in the recent literature . By describing a pathway ' s space-filling attributes over multiple 

resolutions of analysis, a fractal dimension (D) indexes how animals respond to habitat as 

a function of scale. Accordingly, D has been used as a tool for assessing 1) how different 

species respond to habitat , and 2) how landscape heterogeneity influences an animal's 

"scale(s) ofresponse ." The use of fractal analysis has been criticized , however , because 

estimates ofD may be based on fallacious interpretations of a pathway's scale-invariant 

properties . In this chapter, I show that the most common technique used to calculate D, 

the divider method , is likely to produce erroneous results , thereby invalidating inferences 

regarding how animals respond to habitat. After showing that other existing techniques 

are also problematic , I introduce a technique , the slider method, that solves some of the 

problems inherent to analyzing pathway data . I then use this technique to assess how D 

changes as a function of resolution (8) for mule deer (Odocoileus hemionus) movements 

in urban and rural areas . This technique shows that the relationship ofD versus 8 

increased monotonically for pathways of urban and rural deer , and that D at asymptote 

was nearly identical for urban and rural pathways . However , the 8 at which asymptotic D 

was reached, referred to here as 8*, was finer for rural pathways than urban pathways. 

Based on these findings, I hypothesize that the value ofD at asymptote (-1.3) represents 



an intrinsically driven movement pattern that allows animals to sample the resources in 

their home ranges while minimizing their energetic expenditures. At 8s finer than 8', 

response to habitat is, in part , driven by animals cuing in on resources or landscape 

patterns, particularly in the animal' s most immediate surroundings . Accordingly, it is at 

these fine 8s that habitat heterogeneity must be measured. 

INTRODUCTION 
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Movement is the means by which mobile animals find resources and avoid risks 

(e.g., predators , stressful thermal conditions) . By moving, however , animals incur 

energetic expenditures. Movement patterns are thus likely to result from behavioral 

interactions with habitat in which animals attempt to balance several factors affecting their 

fitness. Clearly, the outcomes of these interactions will be manifested in the distributional 

and demographic composition of populations (Levin 1992, Wiens 1995, Turchin 1998). 

In the words of Taylor and Taylor (1983, p.181) : "Without movement the individual has 

no behavior and the population has no cohesion so that distribution in space is isolated 

from distribution in time and there is no survival." Not surprisingly, studies of animal 

movement have an extensive history in the ecological sciences . 

At the heart of these studies is the analysis of movement pathways , which, 

conceptually , represent the signatures to how animals interact and respond to habitat. 

That is, movement pathways reveal how resources are encountered or sampled, and how 

much energy is expended traversing across a given landscape . 

To describe and analyze movement pathways, researchers have recently employed 

an approach based on fractal analysis (Dicke and Burrough 1988, Crist et al. 1992, With 
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1994, Wiens et al. 1995 , Nams 1996, Etzenhouser et al. 1998, McIntyre and Wiens 1999) . 

In its simplest interpretation, a fractal dimension (D) indexes the degree of space-fill or 

tortuosity of a movement pathway (Mandelbrot 1983, Dicke and Burrough 1988) . 

Conceptualizing the surface upon which an animal travels as 2-dimensional, D can 

theoretically range from 1, which indicates the pathway is a straight line, to 2, which 

indicates the pathway is so convoluted that it visits all points in a portion of 2-dimensional 

space. The pathways of real organisms will lie between these theoretical possibilities . 

Usually , the calculation of D for any pattern or object is accomplished by 

performing a multiple resolution (8) analysis , where 8 is the degree ofrefinement (e .g ., 

ruler size, box size) at which the pattern or object is measured . As such , fractal analysis 

has been widely accepted as a solution for describing and comparing the properties of 

different-sized patterns or objects (Sugihara and May 1990, Johnson et al. 1995, Milne 

1997) . The analysis takes the general form : 

P = k8<P(t5) (1) 

where Pis some property (e.g ., length , shape , distribution) of the object or pattern at a 

given 8, k is a prefactor to the power law, and the exponent </>(6) is a simple function of 8. 

In most cases, k and </>(6) are calculated empirically by linear regression oflogarithmically 

transformed data (P and 8) in equation 1; k is the y-intercept , and </>(6) is the slope of the 

line, such that </>(6) = D . If there is a strong fit to the regression , the pattern or object is 

considered to be statistically self-similar across a specified range of 8s, and in a generic 

way is dubbed as being "fractal" (Anvir et al. 1998) . A true fractal , in a purely 

mathematical sense, would require the pattern or object to be self-similar over many 
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orders of magnitude (Mandelbrot 1983) . For ecological systems, however, the primary 

concern is that D is calculated over the orders of magnitude pertinent to the organisms or 

precesses in question (Milne 1997, Tsonis et al. 1998, Ritchie and Olff 1999). 

Because fractal analysis explicitly incorporates multiple 8s, several researchers 

have suggested that D of a movement pathway may identify an animal's "scale of 

response" to a landscape (Crist et al. 1992, With 1994, Wiens et al. 1995, McIntyre and 

Wiens 1999). That is, when a pathway appears "fractal" over a biologically relevant range 

of os, D represents a scale-invariant index of how an animal perceives and responds to 

habitat. Smaller values ofD imply that animals perceive and respond to habitat at a coarse 

grain, where grain is the scale (i.e., size of area) at which the animal views and measures 

the landscape . Larger values ofD, conversely, imply that response occurs at a fine grain, 

e.g., animals perceive the landscape as if it consists of many small, proximal patches 

(Levin 1992, Ritchie 1998) . 

The scale of response concept has several touted applications . First, D can be 

used to assess similarities or differences in how various species respond to habitat 

heterogeneity (landscape structure and resource patchiness) in a way that is independent 

of body size, physiology, diet, life history, and vagility (Wiens et al. 1995) . Similarities in 

D among species may indicate that movement patterns, and thus responses to habitat, are 

influenced by a common set of processes or constraints . Second, D can be used to assess 

how a species changes its scale of response when habitat heterogeneity changes (With 

1994, Etzenhouser et al. 1998, McIntyre and Wiens 1999). As such, it provides a starting 

point for experimental and theoretical investigation into how animals will respond to 
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different landscapes . Along these same lines, it has been proposed that shifts in D at 

different ranges of 8 may indicate a concomitant shift in the processes responsible for the 

movement pattern (Crist et al. 1992, Johnson et al. 1992, With 1994). For instance, the 

various habitat components to which an animal responds (e.g., forage versus hiding cover) 

may exhibit different spatial patterns (distributions) at a given grain of perception. If so, 

an animal must adopt multiple scales of response to effectively use these components 

(Morrison et al. 1992, Nams 1996). 

Essential to the scale ofresponse concept is that estimates of D, and changes in D, 

must accurately portray a movement pathway ' s tortuosity or space-filling attributes over 

the biologically relevant range of 8s. That is, the technique used to calculate D must 

correctly identify whether the pathway is "fractal" over this range, or whether D changes 

as a function of 8. In these regards , Turchin (1996) has questioned the use of fractal 

analysis because estimates of D in past studies appeared to be based on fallacious 

interpretations of a pathway ' s scale-invariant properties , i.e., D was not constant across all 

8s of analysis, but appeared to increase as a function of 8. 

In this chapter , I argue that the most common technique used to calculate D, the 

divider method , tends to erroneously inflate the value of D for most movement pathways . 

Moreover , the inflation ofD is exacerbated at large divider sizes, giving the false 

impression that D increases as a function of 8. This flaw thus suggests that any inferences 

regarding an animal' s scale( s) of response may be dubious when the divider method is 

used. To determine if this flaw is rectified with other existing techniques, I also examine 2 

additional methods that have been used to calculate D of movement pathways : the 
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Vfractal (Nams 1996) and the Katz-George method (Bascompte and Vila 1997) . Upon 

demonstrating that these techniques are also problematic, I then introduce a technique, the 

slider method, that solves some of the problems inherent to analyzing pathway data. This 

technique is essentially a modification of the box-counting procedure (Hastings and 

Sugihara 1993) of calculating D of spatial patterns. 

For illustration, I use the slider and divider methods to analyze the movement 

pathways of mule deer living in urban and rural areas of Cache Valley, Utah. This 

example highlights the problems with the divider method, and shows that the 2 methods 

produce fundamentally different D versus 8 relationships . Based on the D versus 8 

relationship obtained via the slider method, I propose that deer movements are a function 

of 1) habitat heterogeneity in the 2 areas at fine 8s of analysis, and 2) a common process 

that allows deer to maximize use of their home ranges while minimizing energetic 

expenditures . This interpretation adds interesting and potentially valuable insight to the 

scale of response concept. 

PROBLEMS WITH DIVIDER-D AND 
OTHER EXISTING METHODS 

The Divider Method 

Implementation of the divider method is accomplished by "stepping" dividers (8s; 

rulers, circles) of different lengths over the movement pathway (Dicke and Burrough 

1988, Klinkenburg 1994). Dis then calculated from the equation 

p = kfJl-D_ (2) 

To determine if the tortuosity of the pathway is constant or changes across 8, D 
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can be estimated piecemeal from the regression of log (P) verus log (8) over several 

narrow ranges of 8 (Nams 1996), or the residuals for the entire regression (finest 8 to 

coarsest 8) can be examined to identify trends across all 8s of analysis (Milne 1997) . 

Note, however , that Dis based on characterization of the whole pathway at each range of 

8s; the pathway is not partitioned into pieces . 

The divider method can overestimate D of movement pathways in 3 ways. The 

first, dubbed the "remainder effect," exaggerates D of nearly all linear data, and results 

from the fact that a non-integer number of steps (dividers) is generally required to cover a 

line (Aviles et al. 1987, Klinkenburg 1994) . These fractional step lengths tend to get 

larger as a function of 8, but they need to be retained in the calculation ofD to maintain 

consistency across different 8s; rounding causes additional problems (Klinkenburg 1994) . 

The second source of overestimation is an exacerbation of the remainder effect and results 

when movement pathways double-back on themselves , e.g ., an animal walks along a trail , 

then turns around and walks the trail in the opposite direction . The divider method 

mistakes this behavior as increased tortuosity , when in actuality , the pathway has not 

changed. As the divider is "stepped " along a pathway , it searches for the nearest 

intersection point. If this intersection is 180° in the reverse direction , the remaining 

segment of the pathway in the forward direction is not added to the total path length . On 

average , remaining segments increase with divider size, leading to an artificially steep 

relationship between log (P) and log(8), thus inflating D at larger divider lengths (Table 3-

1 ) . The third source of overestimation occurs when pathways consist of patchy 

movements in localized areas (i.e., the pathway circles around and crosses over the top of 
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itself) followed by relatively linear movements between patches (Fig. 3-1). In this 

scenario, which is likely common for most movement pathways, small dividers detect 

tortuosity in localized patches, but larger dividers step over these patches, again leading to 

an artificially steep negative relationship between log (P) and log (o). If movements inside 

these patches are extensive, the slope of the log-log plot can become so steep that D 

exceeds 2. This, of course, is theoretically impossible, as D of a spatial pattern cannot 

exceed its embedding dimension (Feder 1988). The embedding dimension, in this case, is 

the 2-dimensional plane upon which the animal travels. 

The Vfractal Method 

The Vfractal method (Nams 1996) is based on dividing a movement pathway into 

pairs of steps. Each step is a straight line of length 8_ Because a pathway will normally 

have curvature, each pair of steps forms a V. Each V, in tum, describes how convoluted 

the pathway is by 1) the degree of the angle in the notch of the V, or 2) the distance 

between the outer points of the 2 steps. Nams (1996) derives 4 different estimators ofD 

that can be obtained from these Vs. 

The main advantage of these estimators is that each V gives a separate estimate of 

D for that part of the pathway (the divider method characterizes the whole path, not 

pieces of it). Therefore, by combining Vs, variance estimates of a pathway's tortuosity at 

different os can be obtained. Unfortunately, it is easy to see that this method suffers from 

some of the same problems plaguing the divider method; Vs confuse pathways that 

double-back on themselves as increased tortuosity, and Vs at fine os will recognize patchy 

movements while Vs and coarser os will completely step over these patches. Our 
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The Katz-George Method 

Bascompte and Vila (1997) used the fractal index of Katz and George ( 1985) to 

characterize movement pathways . The index is defined as: 
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D= Log (n) (3) 

Log (n) + Log (d/L) 

where n is the number of steps , L is the total path length ( sum of step segments), and dis 

the planar diameter (greatest distance between any 2 points) . Although this index is 

computed easily, one of its main shortcomings is that it does not calculate D over different 

8s. Instead , D is simply computed at the J at which the steps (path segments) were 

measured , and the estimated D represents an average for the entire pathway . 

Consequently, it is impossible to determine if D is constant or changes as a function 8. 

Another drawback is that D can range from 1 to infinity, which makes interpreting the 

index in 2- or 3-dimensional landscapes perplexing . 

A NEW METHOD: SLIDER-D 

In attempt to overcome the problems associated with existing techniques , I 

modified the box-counting method (Mandelbrot 1983, Hastings and Sugihara 1993) of 

calculating D to handle pathway data . This method is implemented by covering a pathway 

with a set of square boxes of side length 8 (Fig. 3-2) . Within each box, there are 4 cells of 

side length 8/2. The number of boxes and cells containing a piece of the pathway are 

summed and D at a given 8 is calculated as : 



53 

D= (4) 
Ln [l/(o/2)] - Ln [1/o] 

where N0 is the number of boxes in the grid containing a piece of the pathway, and N012 is 

the number of cells in the grid containing a piece of the pathway, such that N012 2'. 2N0. 

Like the divider method, this method calculates D based on characterization of the whole 

pathway, not pieces of it. To compute D at different 8, the box size of the grid is varied. 

Note that with slight modification and rearrangement, equation 4 is a discrete 

version of the box-counting algorithm, which is given by: 

P= k8-D 
' 

(5) 

where Pis path length measured by the number of boxes occupied by the pathway, and J 

is box size. The objective of performing discrete analyses (i.e., at each 8) is to illuminate 

the shape of the D verus 8 relationship. 

To handle pathway data , the slider method makes 2 modifications to the classic 

box-counting procedure . The first modification consists of 2 steps . First, each box is 

positioned in such a way that the maximum length of the pathway is covered . Second, the 

box is slid vertically and horizontally until the fewest number of cells are occupied while 

simultaneously maintaining maximum path length coverage . For linear pathways, this will 

entail abutting box boundaries . But for convoluted pathways, this modification may entail 

overlapping box boundaries, i.e, moving boxes over the top of each other (Fig. 3-2) . The 

purpose of this modification is to ensure that the pathway is covered by the fewest number 

of boxes, which is a fundamental prerequisite of fractal analysis (Mandelbrot 1983). 
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The second modification requires that the cells containing a piece of the pathway 

be counted only once while the pathway is contained within a box (Fig . 3-2) . This means 

that the pathway can circle around in a box infinitely, passing through each cell many 

times; but, the maximum cell count for that box cannot exceed 4. This modification is 

intuitive because once a pathway occupies all space in a portion of 2-dimensional plane, 

further movements cannot drive the pathway into the next dimension . In essence , this 

modification cures the patchy movement problem that plagues the divider method . With 

these 2 modifications , the slider method can of effectively measure all types of pathways 

(Fig. 3-3). 

Because the slider method only considers the number of boxes and cells occupied 

by a pathway , interpretation ofD is restricted to the pathway ' s space-filling attributes . 

The divider method , on the other hand, attempts to measure the actual length of the 

pathway, and interpretation ofD therefore relates to pathway tortuosity . Although this 

distinction may seem subtle , as the 2 measures are likely highly correlated , I propose that 

the slider method may be more useful because commensurate box-counting procedures 

can be used to measure landscape patterns or resource distributions to which movements 

may be associated (LoehJe and Li 1996, Ritchie 1998) . The divider method is only 

applicable with line data . 

A CASE STUDY: ANALYSIS OF DEER 
MOVEMENTS USING THE SLIDER AND 
DIVIDER METHODS 

To evaluate the results of the slider and divider methods for animals using free­

ranging environments, and to examine the D versus 8 relationship over 2-3 orders of 
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magnitude, I analyzed the movement pathways of mule deer in urban and rural areas of 

Cache Valley, Utah . The habitat components to which deer used in each area exhibited 

markedly different spatial distributions (see Chapter 4). Moreover, housing, roads and 

fences in the urban area probably altered the complexity of the landscape relative to that in 

the rural area . Consequently , these 2 areas afforded a unique opportunity to test if 

landscape pattern influenced D of deer movements across a range of 8s. 

Study Areas 

The urban and rural areas were situated along the west base of the Wasatch 

Mountains , approximately 100 km north of Salt Lake City, and were used primarily by 

migratory mule deer during winter (November-April) . The urban area was contained 

within the City of Logan and surrounding residential communities . The rural area was 

centered 15 km north of the urban area . Elevation (- 1500 m) and climate were similar in 

both areas . Snow depths ranged from 5 to 40 cm during periods of data collection 

(January-March, 1997 and 1998), and temperatures were also similar, ranging from -20 to 

6 C0
• 

Residential housing (0 . 15-8.0 houses/ha) dominated the urban landscape , and 

vegetation was diverse, consisting of exotic and native species as well as plowed crop 

fields. The rural area, in contrast , was characterized by a more open landscape . 

Vegetation consisted of crop fields in a rangeland dominated by big sagebrush (Artemesia 

tridentata) , bitterbrush (Purshia tridentata), cheatgrass (Bromus tectorum), and crested 

wheatgrass (Agropyron desertortum). Ravines and north-facing slopes contained patches 

of big-toothed maple (Acer grandidentatum) . 
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Field Methods and Data Analyses 

I collected mule deer pathway data from January to March, 1997 and 1998 by 1) 

following deer trails in the snow, and 2) plotting the movements of telemetered deer on 

aerial photographs (scale= 1: 1000) . These 2 techniques allowed us to capture the essence 

of deer movement pathways from fine ( 4 m) to coarse ( 600 m) cis. My objective was to 

collect snow trail data at a large enough extent , and telemetry data at high degree of 

accuracy , so the cis used to calculate D from these 2 collection procedures overlapped . 

To collect snow trail data , I walked along tracks at 1-m step increments and 

recorded Cartesian coordinates at locations where the bearing of the pathway changed by 

> 3° from the previous bearing (Fig . 3-4) . I measured bearings to the nearest 1 ° with a 

hand-held compass . I selected trails in multiple regions throughout each study area to 

provide representative samples of deer movements in these areas . I followed trails until 

300 coordinates were recorded, or until trails could not be identified (e .g., they were lost 

in other tracks). To ensure trails adequately sampled the movements of deer in each area , 

I did not analyze trails with < 30 coordinate locations, or trails that were < 50 min extent 

(distance between 2 outermost coordinates) . 

To collect telemetry data , I recorded the locations of telemetered deer as Universal 

Transverse Mercator coordinates (UTMs) every 2-60 min. (Fig . 3-4) ; shorter time 

intervals were used when deer were active ( e .g ., dawn and dusk) , whereas longer intervals 

were used when deer were resting (e.g ., middle of the day) . I determined the locations of 

telemetered animals by either 1) observing them visually, and pinpointing their UTMs on 

aerial photographs, or 2) circling the areas from which their radio signals emanated (radii 
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of search were 20-50 m for urban deer and 50-90 m for rural deer) , and estimating their 

UTMs as the center of these areas . Circling radio-signals was required when deer were in 

thick cover, and could not be seen without disturbing them . During these times, and 

during visual observations , I was exceedingly careful not to alarm deer, thus allowing their 

movement behaviors to be as natural as possible . This was less of a problem in the urban 

area, as I could more readily approach deer in a vehicle. Consequently , the search radii 

for deer in thick cover were shorter in the urban area than the rural area. 

The deer I followed did not associate with each other , and their home ranges did 

not overlap during winter . Their movements thus encompassed different regions of each 

study area. I recorded the locations of telemetered deer for up to 48 hr, or as long as they 

could be followed (i.e., deer occasionally traveled into areas that were inaccessible) . To 

ensure telemetry pathways adequately sampled the movements of deer in each area, I did 

not analyze pathways with < 50 coordinate locations , or pathways that were < 1 km in 

extent. 

I analyzed urban and rural movement pathways using the slider and divider 

methods . For snow trail data , I set the finest & (minimum box size) of analysis at 3 m, 

which was 3 times the 8 at which data were collected . For telemetry data , I set the finest 

& of analysis equal to 3 times the coarsest & at which data were collected . This value 

averaged 160 m for urban pathways and 260 m for rural pathways . The coarsest & 

(maximum box size) of analysis for snow trail and telemetry analyses was set at 1/4 the 

extent of each pathway, where extent was defined as the distance between the 2 outermost 

coordinates of a pathway . After setting the coarsest 8 for each pathway , D was then 
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calculated at os equal to 1/6, 1/8, 1/12 ... the extent of each pathway, until the finest o was 

achieved . To ensure the results from the slider and divider methods were commensurate, I 

estimated D via the divider method as the slope of the line created by the 2 points of o and 

o/2, i.e., the same points used in the slider method . 

Although one may think the difference in minimum o for urban and rural telemetry 

pathways would inherently influence their D values, it does not. Because D of a pathway 

is calculated at a box size ~ 3 times the distance between the farthest apart consecutive 

coordinate locations at its finest o, boxes essentially ignore the "shape" of the pathway 

that would exist if viewed at an even finer o. Therefore, if one measured ( collected the 

Cartesian coordinates of) a pathway in which points were x and 2x distance apart , 

calculation of D at a box size of 6x would produce the same D for the pathway measured 

at x and 2x . 

For the slider method, I analyzed each pathway 2 times at each o. Each analysis 

entailed placing the starting box at the beginning or ending of the pathway . The mean of 

these 2 analyses was used to represent D at each o. For the divider method, I analyzed 

each pathway 100 times. Each analysis involved randomly shifting the starting point of the 

divider, before it was walked forwards and backwards across the pathway . The mean of 

these 100 replications was used to represent D at each o. I used the computer program 

FRACTAL 3.0 (Nams, NSAC, pers . comm.) to perform the divider method calculations. 

The results of the slider method show that D increased monotonically as a function 

of o for both urban and rural pathways. To evaluate the shape of these curves, I used non­

linear regression (DUD method, SAS Inc. 1988) to fit the equation: 
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D = (6) 

to the observed patterns . Dmax is the D value (y-axis) at saturation and 8112 is the 8 (x-axis) 

at 0.5 saturation . To compare statistically the increase in Das a function of cS between 

urban or rural pathways , I used a sampling-with-replacement bootstrapping procedure . 

Ninety randomly selected estimates ofD were used for each bootstrapping replicate, and 

30 replications were preformed. I used t-tests to determine if the cS at which 50 and 95% 

of the asymptote was achieved differed between urban and rural pathways . I refer to 95% 

saturation as cS*, or the cS at which D reached asymptote . 

Because telemetry pathways of urban deer were measured at a greater precision 

than those of rural deer, the pattern of D versus cS contained many D estimates at cSs of 

160-260 m for urban telemetry pathways but none for rural telemetry pathways . To 

compensate for this discrepancy , and thus make comparisons between urban and rural 

movements valid, I removed all estimates of D within this range before fitting equation 6 

to the D versus 8 relationships . 

Because several estimates ofD were derived from each pathway , the 

bootstrapping comparisons between urban and rural pathways were not necessarily based 

on independent samples . Therefore , I used an additional test to determine whether urban 

or rural pathways were more space-filling at 8s prior to asymptotic D. This test consisted 

of 2 parts . The first was to determine the mean linear distance between sequential 

coordinate locations for each snow trail pathway . Means for each pathway were then 

used as independent samples to compare whether urban or rural deer walked a greater 
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straight-line distance before turning. The second part was to detennine the mean turning 

angle between sequential coordinate locations for each snow trail pathway . Means for 

each pathway were then used as independent samples to compare whether urban or rural 

deer turned more sharply. I used t-tests to detennine if distances between turns and angle 

of turns differed for urban and rural deer. These comparisons were useful because the 

asymptotic relationships ofD versus o were revealed largely by snow trail pathways. 

Results 

After discarding pathways that did not meet the criteria of minimum extent and 

minimum coordinate locations, I analyzed 12 urban snow trails (7 from 1997, and 5 from 

1998), and 12 rural snow trails (6 from 1997, and 6 from 1998), as well as telemetry 

pathways of 11 urban deer (7 from 1997, and 4 from 1998), and 6 rural deer ( 4 from 

1997, and 2 from 1998). Absolute length (summed distance between sequential 

coordinate locations) of pathways averaged 406 m (SD= 201) for urban snow trails, 704 

m (SD= 290) for rural snow trails, 4717 m (SD= 1652) for telemetry pathways of urban 

deer, and 4532 m (SD= 1651) for telemetry pathways of rural deer. Pathway extents 

(distance between outermost coordinate locations) averaged 233 m (SD= 103) for urban 

snow trails, 425 m (SD= 264) for rural snow trails, 1401 m (SD= 601) for telemetry 

pathways of urban deer, and 1894 m (SD= 362) for telemetry pathways of rural deer. 

Combined, there were 147 estimates ofD for urban pathways, and 130 estimates ofD for 

rural pathways. 

The divider method produced patterns of D versus o that increased linearly for the 

pathways of urban and rural deer (Fig. 3-5) . The slider method, in contrast, produced 
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patterns of D versus 8 that increased monotonically toward asymptote for pathways of 

both urban and rural deer (Fig. 3-6) . Nonlinear regression revealed that the asymptote of 

D was 1.318 for urban pathways and 1.302 for rural pathways (Fig. 3-7). Bootstrapping 

indicated that the asymptote ofD was approached at finer 8s for rural pathways than 

urban pathways (n = 30, p < 0.01) ; 50% saturation occurred at a 8 of 34 m for urban 

pathways and 17 m for rural pathways , and 95% saturation occurred at a 8 of 110 m for 

urban pathways and 57 m for rural pathways (Fig. 3-7). 

That rural pathways were more space-filling, and therefore should have 

approached asymptotic D, at finer 8s was corroborated by the comparisons between 

turning frequencies and turning angles of snow trail pathways for urban and rural deer. 

Urban deer made turns > 3° every 7.25 m (n = 12, SE= 0.45), whereas rural deer did so 

every 3.62 m (n = 12, SE= 0.20) . These distances differed statistically (t = 7.96, df = 22, 

P < 0.0001) . The turning angles of snow trail pathways did not differ (t = 0.95, df= 22, P 

= 0.36), however , as the mean turning angle was 33.1 m (n = 12, SE= 1.40) for urban 

deer and 35 .1 m (n = 12, SE= 1.66) for rural deer. 

Discussion of Results 

Comparison of Slider and Divider Methods . --The D versus 8 relationships 

produced by the slider and divider methods exhibited some similarities, but differed in their 

overall appearance . Both methods showed that D was lowest at fine 8s of analysis, thus 

indicating that movement pathways were most linear and least space-filling at 8s 

approaching deer body size. Both methods also showed that D was not constant across all 

8 of analysis ( 4 - 600 m), but tended to increase over a range of 8s. Specifically, the slider 
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method showed that D increased over a finite range of 8s (- 4 - 100 m), but remained 

relatively constant at 8s coarser than this range (- 100 - 600 m). That is, D appeared to 

asymptote when movement pathways were analyzed via the slider method. The divider 

method , in contrast, showed that D increased across all 8s. 

A visual inspection of deer movement pathways reveals why D continued to 

increase at coarse 8s ( - 100 - 600 m) when the divider method was used . As pathways 

increased in extent, they were more likely to double-back on themselves, and to exhibit 

concentrated movements in localized areas, i.e., they were characterized by patchy 

movements . Neither of these movement behaviors increases the amount of new space 

occupied by a pathway, but they do increase the number oftimes a space is reoccupied . It 

is these movement behaviors that cause the divider method to erroneously inflate the value 

ofD . The slider method , on the other hand, does not consider these movement behaviors 

an increased source of space-fill, and therefore likely provides a more realistic portrayal of 

the D versus 8 relationship . 

Interpretation of the Slider Method Results .-- The nonlinear relationships ofD 

versus 8 indicate clearly that the space-filling attributes of deer movement pathways were 

not self-similar across all 8s within an animal' s home range . As such, interpretations of 

deer responses to habitat across these 8s will be invalid if self-similarity is assumed . 

However, the shape of the D versus 8 relationships does suggest that the space-filling 

attributes of deer movements became self-similar once 8 coarseness reached a certain level 

(8.), i.e., once D achieved asymptote . Interestingly, the asymptotic values ofD were 

nearly identical for the pathways of urban (1.318) and rural (1 .308) deer, thus indicating 
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that their space-filling attributes were equivalent from intermediate (I 00 m) to coarse (600 

m) 8s of analysis. Why would D of deer movement pathways asymptote, and why would 

the asymptotes of pathways for urban and rural deer converge to a common value? 

One hypothesis that simultaneously addresses these questions is that habitat 

characteristics (e.g., resource distributions, landscape complexity) to which deer 

responded caused 1) movement pathways to become scale-invariant over the 8s defining 

the asymptotic portion of the D versus 8 relationships, and 2) the pathways of urban and 

rural deer to be equally space-filling. This hypothesis is untenable for several reasons . 

First, the different habitat types which deer selected and avoided in each area exhibited 

markedly different spatial patterns across the landscape (see Chapter 4). Moreover, the 

spatial patterns of these types were not fractal over the range of 8s defining the asymptotic 

portion of the D versus 8 relationships . Second, the home ranges of rural deer were 

approximately 4 times larger than those of urban deer (see Chapter 2) . Therefore, rural 

deer likely integrated information regarding habitat characteristics over larger areas than 

urban deer. Third, man-built structures (houses , roads , fences) in urban settings likely 

altered the complexity of the landscape from the perspective of deer using these habitats. 

Given that habitat characteristics inadequately address these questions, a logical 

deduction is that a behavioral process or mechanism explains why D of movement 

pathways was asymptotic, and why the pathways of urban and rural deer converged to a 

common value ofD . That is, a D-value of -1 .3 may reflect the way deer respond to the 

world, regardless of habitat characteristics. Deer are "programmed" to traverse the 
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landscape in such a way that the space-filling attributes of their movements will achieve 

this value . 

Why would such an intrinsic process exist? I propose the answer to this question 

relates to the trade-off animals face between accessing resources and minimizing the 

energetic expenditures of traveling . Animals that are confined to a home range must meet 

their energetic and nutritional needs within a predefined space . While searching for the 

resources that satisfy these needs, however , it behooves animals to move in such a way 

that their energetic expenditures are minimized . AD-value of -1.3 may represent the 

optimal movement geometry by which animals can sample different regions of space, and 

thus all resources , in their home ranges , while simultaneously minimizing energy 

consumption . 

That a D-value of - 1.3 represents an optimal movement geometry is supported by 

the fractal transport models derived by West et al. (I 997) . These models demonstrate that 

shunting material throughout a surface or volume is optimally achieved by distribution 

networks that obey 1/4-power scaling. In 2-dimensional systems, this scaling relationship 

predicts that a network will have D-value of 1.33 (B . Enquist , pers . comm.) . Therefore , 

when a vascular system in a plant or animal is viewed in 2 dimensions (i.e., a cross 

section), a fractal-like branching system with a D of 1.33 will require the least amount of 

energy (e .g ., hydrodynamic resistance) to supply the entire organism with material (blood , 

water, nutrients) . A branching system with a D > 1.33 will supply the entire organism 

with material, but resistance also increases . On the other hand, a branching system < 1.33 

will not supply the entire organism with material. Not surprisingly, the models by West et 
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al. ( 1997) conform well with observations of living systems when D of networks are 

measured via the box-counting procedure . For instance, Fitter and Stickland (1992) 

reported that D of plant roots grown between 2 plates of glass (which is effectively a 2-

dimensional system) was indistinguishable from 1. 3 3. 

In this vein , I propose that movement pathways with a D of - 1.3 wilJ alJow 

animals to use the least energy to access resources within their home ranges . Movements 

with a D < 1.3 would prevent animals from sampling alJ regions of their home ranges , i.e., 

movements are too linear . Movements with a D > 1.3 would consume more energy than 

was necessary to sample these regions . 

At cSs finer than o· (the cS at which asymptotic D was effectively achieved) , D 

increased as a function of cS coarseness for pathways of both urban and rural deer . A 

potential explanation for these patterns is that deer could more readily detect the 

immediate surroundings of their habitats at finer perceptual cSs, i.e., localized areas of the 

landscape were within deer scales of detection and response . As such , deer walked more 

directly , as they could discern resources , or lack thereof, and respond to landscape 

structure (e.g ., barriers to movement) within these localized areas . As the area of 

perception expanded , however , deer were less capable of differentiating their 

surroundings, and D of movement pathways approached the intrinsically driven value of 

1.3. 

Studies by Gross et al. (1995) bolster this argument by demonstrating that 

movement paths of foraging bighorn sheep (Ovis canadensis) most closely approximated 

simulations based on nearest neighbor rules-of-thumb when plants were within short 
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detection distances, i.e., when plants were close to the animal. As detection distances 

increased, however, and plants were not within view, these simulations became less 

predictive. Conversely, simulations based on random walks predicted poorly the lengths 

of foraging paths, but predictions improved as a function of detection distance. At short 

detection distances, random walk simulations of path length were 30 times greater than 

observed path lengths. At long detection distances, simulated path lengths were only 3-4 

times longer than observed path lengths. Interestingly, D of a random walk will approach 

a value of2.0 at coarse 8s of analysis. This value is 3-4 times larger than the optimal 

movement geometry characterized by a D-value of 1.3 (i.e., [2.0-1.0]/[1.3-1.0] = 3.33) . 

Gjven that movement decisions at 8s finer than c5• were affected by the ability of 

deer to differentiate their surroundings, it might be expected that habitat characteristics 

would have their greatest effect on movement pathways at these 8s. Animals should 

respond to the distribution of resources and landscape complexity (e.g ., barriers, 

topography) at these fine 8s, and animals exposed to different characteristics should move 

differently. For example, movement barriers tend to reduce a landscape's dimensionality, 

i.e., they make a 2-dimensional environment more linear (Milne 1992, Ritchie 1998); 

pathways should become less space-filling as a result . Similarly, resources that comprise 

small, isolated patches should linearize movements (Bell 1991) . 

In my study, the pathways of rural deer were, on average, more space-filling than 

those of urban deer at fine 8s (4 - 60 m) of analysis. Consequently, c5• was achieved at a 

relatively finer 8 for rural pathways . These differences in D at fine 8s likely resulted from 

disparate habitat characteristics in the 2 study areas . Specifically, fencing and housing may 
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have linearized the urban landscape, thereby constraining deer movements. In addition, 

within localized areas (e.g., areas< 60 x 60 min extent), forage shrubs in the rural area 

were clumped within specific topographic regions, whereas shrubs in the urban area 

consisted largely of isolated patches in yards. Accordingly, the different movement 

patterns exhibited by urban and rural deer at fine 8s may have, in part, arisen from animals 

attempting to sample the forage in their respective habitats . 

SYNOPSIS AND HYPOTHESES 

Understanding movement patterns is crucial for developing mechanistic 

explanations of how animals encounter and interact with resources on a landscape . These 

explanations, in turn, will contribute to the development of faithful models of population, 

community, and ecosystem dynamics (Johnson et al. 1992, Milchunas and Lauenroth 

1993, Gross et al. 1995). A logical first step to understanding movement patterns is to 

describe them in a meaningful way. Clearly, to be meaningful, such descriptions must 

consider explicitly the effects of scale, i.e., the size of a pathway as defined by its grain and 

extent (With 1994) . Fractal analysis accounts for the effects of scale by measuring 

movement pathways over multiple 8s. 

In this chapter , I used a modified methodology to estimate D of deer movement 

pathways. The results of this analysis suggest that movement patterns might be governed 

by a behavioral process that allows animals to "cover" the different regions of habitat 

space in the most energetically effective way. Assuming this hypothesis is tenable, it is 

conceivable that the movements of other species would also be governed by similar 
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behavioral processes . If so, an ensuing question is under what landscape or resource 

conditions would movement pathways not exhibit average D values of - 1.3? 

One such circumstance might occur when resource distributions are highly 

fragmented, i.e., resources are characterized by a D value< 1.3. In such a scenario, it 

would behoove animals to adopt more linear movement pathways, so they could walk 

directly to resource patches . Ward and Saltz (1994) showed that Dorcas gazelles (Dorcas 

gazella) foraging on lilies in the Negev Desert exhibited such a pattern. In their study 

area , lily patches were separated by large expanses of barren terrain . Gazelle foraging 

paths were correspondingly characterized by a series of short moves within patches, 

interspersed with long, straight moves between patches. In this scenario , between-patch 

movement pathways may have been guided by memory or olfaction . 

Pathways may also deviate from a D value of 1.3 when the landscape is perceived 

as linear. For instance, pathways of animals using only corridors for travel will exhibit D 

values equaling that of the corridor. Alternatively, the landscape may be so structurally 

complex that animals must follow topographic contours , passages through dense 

vegetation, or trails . In the latter scenario, D of movement pathways may be greater or 

less than 1.3. 

To test these hypotheses, D of movement pathways would need to be calculated 

for various resource distributions and landscape settings under free-ranging conditions . 

Most other studies that have calculated D of movement pathways were conducted in 

artificially bounded systems (Wiens et al. 1995, Etzenhouser et al. 1998, McIntyre and 

Wiens 1999), and it is therefore unknown whether animal movements were influenced by 
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system boundaries . Consequently , the results from past studies cannot be used to support 

or reject these hypotheses . In addition, most previous studies have used the divider 

method to calculate D of movement pathways . This method will likely yield unreliable 

results . Finally, most studies have measured pathways that are short relative to an 

animal's daily movements . D has therefore been calculated over a narrow range of fine os. 

Based on this study , D will not be constant at these fine o of analysis, perhaps because 

habitat is within the animal's scale of detection and response , and movements represent a 

sensory-driven behavior toward resource distributions and landscape structure . 

This latter conclusion is important because it suggests that the effects of habitat 

heterogeneity will only influence movements at fine os. Accordingly, the o at which 

movements patterns become intrinsically driven (i.e., o") may represent the coarsest oat 

which landscape heterogeneity and resource patchiness should be measured . 
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Table 3-1. How the divider method overestimates the fractal dimension of straight-line 

movement pathways when pathways double-back on themselves. 

Fractal dimension 

Range of resolutions 
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(as a fraction of path length extent) 1 Pass 1 Round-trip 3 Round-trips 

0.01 to 0.32 1.0 1.039 1.081 

0.01 to 0.02 1.0 1.007 1.011 

0.02 to 0.04 1.0 1.011 1.023 

0.04 to 0.08 1.0 1.032 1.059 

0.08 to 0.16 1.0 1.061 1.082 

0.16 to 0.32 1.0 1.164 1.261 



4m 

Resolution (m) 

0.50 - 1.00 
0.75 - 1.50 
1.00 - 2.00 
1.50 - 3.00 
2.00 - 4.00 

Divider D 

1.19 
1.44 
1.98 
2.04 
2.31 

Xoco.so-4.00) = 1.78 (r2=0.91) 

Figure 3-1. Simulated example of how the divider method can erroneously inflate the 

fractal dimension (D) of a patchy movement pathwa y. Note that the estimate of D tends 

to increase as a function of divider width (resolution) . Note also that the method can 

actually force D beyond the 2-dimensional surface in which the pathway is embedded . 
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Figure 3-2. Slider method calculations of D at 2 resolutions for 2 hypothetical 

movement pathways . Dis accurately determined by simultaneously counting the fewest 

number of boxes (N6) and cells (N612) that can be occupied by the pathway . Each box is 

positioned in such a way that 1) the greatest length of the pathway is covered, and 2) the 

fewest number of cells are occupied . When the end of a pathway is approached, a box is 

counted in the reverse direction if the remaining path segment is too short to occupy ~ 2 

cells, e.g., o = 2 of A. If the pathway can pass through the intersection of the 4 cells in 

box, only 2 cells are counted, e.g ., o = 2 of A 



77 

A B 

N=92 

C 

N= 155 N = 164 

Fractal Dimension 

0 A B C D 

EJ 1.03 1.20 1.36 1.76 

rn 1.04 1.32 1.20 1.82 

Figure 3-3 . Slider method estimates ofD for 4 hypothetical movement pathways at 2 

resolutions (drawn to scale). N is the number of coordinates used to derive the pathway. 

Pathway Dis a random walk. 
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Snow trail data Telemetry data 

Urban 

350 m 1800m 

Figure 3-4. Mule deer movement pathways determined by following trails in the snow 

and by locating telemetered animals every 2-60 minutes in urban and rural areas of Cache 

Valley , Utah . 
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Figure 3-5. Fractal dimension (D), calculated via the divider method, versus resolution (o) 

for mule deer movement pathways in urban and rural areas of Cache Valley, Utah . Each 

point represents an estimate ofD at a given 6 for a snow trail or a telemetry pathway. 
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Figure 3-6. Fractal dimension (D), calculated via the sweeper method, versus resolution (o) 

for mule deer movement pathways in urban and rural areas of Cache Valley , Utah . Each 
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Figure 3-7 . Nonlinear regression fit to the asymptotic relationships ofD versus resolution 

(o) for movement pathways of urban and rural deer in Cache Valley , Utah . 



CHAPTER4 

SCALE-DEPENDENT PATTERNS OF HABITAT USE: AN 

EXAMPLE WITH URBAN AND RURAL MULE DEER 
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Abstract: Animals ' patterns of habitat use are often scale-dependent . Therefore , the study 

of these patterns should consider explicitly how animals use habitat space, and how scale­

dependent use relates to different habitat components . I address these scaling issues by 

developing a 2-staged methodology for analyzing patterns of habitat use . In stage 1, 

animal locations are compared to random locations using information fractal dimensions 

(IFDs) . These comparisons reveal the degree to which animal locations uniformly fill 

space across a range of resolutions (6s) on a landscape . In stage 2, the classic index of 

"use vs. availability" is combined with a ratio of IFDs for animal locations vs . random 

locations that characterizes the spatial associations between animal locations and habitat 

types . This procedure thus reveals how correspondence between animal locations and 

habitat types changes with 6. I used this methodology to examine patterns of habitat use 

by mule deer (Odocoileus hemionus) living in urban and rural areas of Cache Valley, Utah . 

Urban deer locations were highly space-filling at fine 6s of analysis, but highly fragmented 

and aggregated at coarse 6s. Conversely, rural deer locations were less space-filling at 

fine 6s, and less fragmented and aggregated at coarse 6s. Relationships between animal 

locations and different habitat types revealed why these patterns occurred. Urban deer 

locations were strongly associated with concealment vegetation, which was highly 

fragmented (i.e., a low IFD), across all cSs of analysis. Thus, highly aggregated patterns of 

space use corresponded to fragments of escape cover. Rural deer locations, on the other 
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hand , were most strongly associated with shrubby vegetation at fine os, and south-facing 

slopes at coarse os. Both of these habitat types exhibited a relatively higher IFD than 

urban concealment vegetation, and both indexed habitat components associated with 

forage . This methodology thus enabled me to link patterns of space use with patterns of 

habitat type use while explicitly incorporating the effects of spatial pattern and scale. 

INTRODUCTION 

The analysis of animal-habitat relationships is a pervasive theme in ecology , and 

understanding these relationships is central to wildlife management and conservation . 

Conceptually, animal-habitat relationships represent an interface between the behavior of 

individuals and population-level phenomena . In other words , how animals interact with 

habitat influences their probability of finding food and mates or avoiding risks and stressful 

thermal conditions. These interactions, in turn , affect the demographic variables of birth 

and death . Accordingly , wildlife-relationships form the underpinnings to the mechanistic 

explanations of many ecological processes , including population and community dynamics 

(Holt 1987, Levin 1992, Block and Brennan 1993, Wiens et al. 1993). 

In general , animal-habitat relationships are studied from 2 perspectives : habitat 

selection and habitat use. Selection refers to the behavioral processes by which individuals 

choose habitat components, and is often considered to be based on hierarchical decisions 

made by the animal (Johnson 1980, Senft et al. 1987, Morrison et al. 1992) . Use is the 

manifestation of these processes , and represents the pattern of habitat exploitation and 

avoidance on a landscape at either an individual or population level (Hall et al. 1997). For 

clarity, I refer to habitat components as specific resources or areas of a landscape that 
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allow animals to achieve some goal, e.g ., to obtain energy or nutrients, to warm or cool 

themselves , or to avoid risks. This term differs from habitat type, which I use later to 

mean a human-imposed description of an area containing particular vegetative or physical 

attributes. Habitat types may contain one or several habitat components, and are often 

used as indices to these components . 

Like many ecological disciplines, the study of animal-habitat relationships is 

complicated by the effects of scale (Morris 1987, Wiens 1989, Orians and Wittenberger 

1991, Milne 1997) . Here , scale refers to size of some landscape feature as determined by 

1) the grain (finest 8) at which it is measured by a researcher or perceived by an organism, 

and 2) its extent (see definitions in Turner and Gardner 1991). 

The effects of scale on animal-habitat relationships are important to consider for 3 

reasons . First , morphology , sensory capabilities, and memory dictate the perceptual realm 

(finest to largest 8s of perception) over which an animal can respond to habitat (Kotliar 

and Wiens 1990, Morrison et al. 1992, Havelka 1995, Ritchie 1998). As such, habitat 

selection can only occur within this realm. Second, a habitat component to which an 

animal responds may not be distributed fractally . Accordingly , patterns of use are likely to 

change across 8 in correspondence with the distribution of this component. Third, the 

various habitat components that are important to animals (e.g ., food vs. hiding cover) may 

exhibit different distributions. Therefore , patterns of use may change at different 8s as 

exploitation is directed toward these various subsets of habitat. 

To comprehend the effects of scale on patterns of habitat use, researchers have 

commonly employed 1 of 2 approaches . The first is to vary the unit of measurement ( e.g ., 
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box size) at which habitat use and habitat type availability are computed, whereby box size 

is supposed to index the 8 at which animals perceive and respond to habitat. A 

fundamental problem with this approach, however, is that the number of habitat types 

contained within a box tends to increase as a function of box size. Therefore, it becomes 

increasingly difficult to determine the types to which animals are using at coarse 8s of 

analysis; many types may occur in boxes where animal locations are present or absent, 

regardless of whether animals are actually exploiting or avoiding these types . 

The other approach is to partition patterns of habitat use into a predefined 

hierarchy, e.g ., home ranges within a landscape, activity areas within a home range, and 

sites for specific behaviors within an activity area . This approach is appealing because 

several studies have indicated that animals may select areas containing habitat components 

sequentially, from large to small extents (Hutto 1985, Senft et al. 1987, Morrison et al. 

1992). However, this approach assumes that the researcher knows a priori the 

components to which animals respond at each hierarchical level, and the organisrnically 

defined 8s at which to measure these components . 

In this chapter, I develop a 2-staged methodology for assessing animal patterns of 

habitat use that explicitly incorporates the effects of scale. The aim of the first stage is to 

determine how the spatial patterns of animal locations change across a range of 8s, thereby 

indexing scale-dependent use of habitat space. The aim of the second stage is to assess 

the degree of correspondence between animal locations and different habitat types as a 

function of 8. These 2 stages are interrelated because patterns of space use should, in 

part, be explained by the correspondence between animal locations and habitat types. 
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Both stages of this methodology use IFDs (Scheuring and Riedi 1994, Johnson et 

al. 1995, Loehle and Li 1996) to incorporate the effects of scale. In doing so, this 

methodology preserves the grain at which animal locations and habitat types are measured 

throughout all os of analysis. As such, this methodology ensures that no information is 

lost , and that use of different habitat types is based on whether animal locations are 

actually inside or outside these types, as o coarseness increases . 

THE INFORMATION FRACTAL 
DIMENSION 

The IFD is related to the fractal dimension (Mandelbrot 1983) calculated via the 

box-counting method (Hastings and Sugihara 1993) in that it indexes the degree of space 

filled by a spatial pattern . It differs from the box-count fractal dimension by accounting 

for the intensity (density or frequency) at which a pattern occurs in different regions of 

space (i.e., its degree of aggregation) ; a box-count fractal dimension only considers 

whether the pattern is present or absent in space . As such, the IFD can deal with non­

binary maps containing multiple observations per cell or pixel. Specifically, the IFD 

quantifies the deviat ion from spatial uniformity of the probabilities of occurrence of a 

spatial function (Loehle and Li 1996). 

To calculate an IFD at discrete os, a spatial pattern is covered with a grid of square 

boxes of side length oL. Within each box, there are 4 cells of side length ou2 . The number 

of points (pixels, x-y coordinates) that fall within each cell and box are summed and the 

IFD is computed as : 
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K1,12 K0 

IFD= 
L P,{ol2J Ln P,ro12J -L P,cOJ Ln P,roJ 
lll2~ I I, • I (1) 

Ln [1/(<5/2)] - Ln [1/<5] 

where K0 and Ko12 are, respectively, the number of boxes or cells containing ~ I point. P; 

is the relative frequency of points contained within a given cell or box, and is given by: 

N; 
P= I M (2) 

L,N; 
i =l 

Here, N1 is the number of points or pixels (e.g., habitat measured at 8 grain) in a given cell 

or box, and Mis the total number of points or pixels in the spatial pattern. Note that only 

non-empty boxes are used to calculate P, . AJso note that M remains constant across all 8s. 

To compute IFDs at different 8s, the box size of the grid is varied (Loehle and Li 1996). 

For 2-dimensional maps, the IFD ranges from Oto 2, representing a gradient of 

spatial patterns from sparsely distributed (i.e., highly fragmented) to uniform plane-filling, 

in which every cell of a box contains an equal number of points (Fig. 4-1 A-o)- In general, 

at any given 8, the IFD behaves like the box-count fractal dimension and increases with 

the proportion of space occupied, but, for a given proportion, larger values tend to reflect 

space-filling dispersion within boxes (Fig . 4-11_1). IFD departs from the classic box-count 

dimension when patterns deviate from uniformity (compare Fig. 4-lE to 4-la and Fig. 4-ly 

to 4-lJ. That is, for patterns that are more aggregated in some cells than others, the IFD 

will be less than that derived from a binary map characterized by presence/absence data . 
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In the first stage of analysis, IFDs computed from animal point locations are 

compared to those computed from an equal number of random locations across a range of 

8s of interest. These comparisons index the degree to wruch animal locations uniformly 

fill space, thereby revealing the 8s at wruch they are most fragmented and aggregated , and 

most dispersed and evenly distributed (i.e., uniformly space-filling). A relatively 

fragmented spatial pattern (low IFD) indicates that only isolated patches of the landscape 

are used at a given 8, or much of the space at that 8 is avoided . And an aggregated spatial 

pattern means that use is clustered in some areas more than others . Conversely, a 

uniformly space-filling pattern (rugh IFD) indicates that areas of the landscape are utilized 

fully at a given 8, and use is evenly concentrated in these areas . 

These comparisons are relative because the quantitative differences between IFDs 

computed from animal and random locations will change with sample size. However , 

determining the 8s at wruch animal locations are relatively fragmented or uniformly space­

filling will generally be unaffected by sample size, given that animal locations are drawn 

from a common distribution (Fig . 4-2) . Trus is so because the function ofIFD vs. 8 for a 

truly random pattern is based solely on the number of points in the pattern (Fig . 4-3) ; 

hence, IFDs should be equal across 8 if boxes of different sizes were standardized by the 

number of points they could potentially contain . As such, this function represents a 

"sample-specific" reference for indexing the space-filling uniformity of point locations . 
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The random function of IFD vs . 8 also provides conservative guidelines for 

establishing the number of locations needed to identify the 8s at which animal locations are 

most fragmented and aggregated or uniformly space-filling . First , the random function 

should be near 2 ( e.g ., 1. 9) at coarse 8s of analysis, thus ensuring that animal locations 

could occupy most portions of a 2-dimensional space if their distribution was determined 

by chance alone . Second , there should be enough locations to guarantee that the IFD at 8 

grain exceeds 0, as values of 0 indicate that the space-filling attributes of a random pattern 

could not be detected . Note that these guidelines should be met while safeguarding 

against spatial autocorrelation among animal locations . This safeguard is necessary 

because the objective of the analysis is to determine how animal locations are distributed 

in a given habitat space over a finite interval of time . Autocorrelation among locations 

may bias space use patterns towards specific regions of the study area (White and Garrot 

1990) . 

Stage 2--Correspondence Between Animal 
Locations and Habitat Types 

The second stage of analysis is to assess the degree of correspondence between 

animal locations and habitat types at the 8s of interest. This assessment consists of 2 

steps . The first step relates the proportion of animal locations contained within a habitat 

type (Qz) to the proportion of the study area occupied by that type (Z). This relationship 

takes the form Qz/Z , which, in itself, represents the underlying basis upon which classic 

"use vs. availability" indices are calculated (see Alldredge and Ratti 1986, 1992; White 

and Garrot 1990; McClean et al. 1998 for reviews) . That is, QzlZ represents proportional 
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habitat type use vs . habitat type availability, and only accounts for the relative abundances 

of animal locations and investigator-defined habitat types . When this ratio equals 1, 

animals are considered to exhibit a neutral response to a given habitat type. When Q/ Z is 

greater than 1, habitat type use is considered to exceed that expected by chance alone, 

whereas the opposite is deemed true when Q/ Z is less than 1. 

If the distribution of habitat types and animal locations do not change with 8 or if 

animal locations are random , this ratio is sufficient to assess use vs . availability. These 

scenarios are unlikely to exist in heterogeneous habitats , however. Therefore , the second 

step needed to assess correspondence is to determine the degree to which animal locations 

associate spatially with a given habitat type . It is these spatial associations that will likely 

change with 8. 

Assessment of these spatial associations can be accomplished by calculating 2 

ratios . The first is based on the IFD of animal locations contained within a habitat type 

(Jc
1
, ) vs. the IFD of all animal locations (Ji). This ratio (lc

1
/ 11) reveals the degree to which 

animal locations uniformly disperse (fill the space) in a habitat type relative to the degree 

to which they disperse throughout the entire landscape . The second ratio is based on the 

IFD of random locations that fall inside a habitat type (Jr
1
, ) vs. the IFD of all random 

locations (Jri). This ratio Or
1
/ Jri) reveals the expected dispersion within a habitat type 

relative to that on the entire landscape, given that the spatial patterns of habitat use are 

explained by chance alone . 

The difference between these 2 ratios (lc
1
/ 11 - f 7

1
/ Ir, ) indexes the degree to which 

animal locations associate spatially to a given habitat type . A positive association (a value 



greater than 0) occurs when deviations from space-filling uniformity of animal locations 

are explained more by habitat type distribution than that expected by chance . 

These 2 steps are combined , and an index of correspondence , R, is defined as: 
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(3) 

which , in effect, weights the classic use vs. availability index by the spatial associations 

between animal locations and a given habitat type . Specifically, when there is a positive 

spatial association between animal locations and a habitat type , R will exceed Q/ Z. When 

there is a negative association , R will be less than Q/ Z (Fig . 4-4) . 

By explicitly incorporating these spatial associations , R reveals how 

correspondence between animal locations and habitat types changes with 8. As such, R is 

useful for detecting the 8s at which correspondence to a single habitat type is highest or 

lowest (Fig 4-5) , e.g., R will be highest at the 8 in which animal locations most closely 

match habitat type distribution . When more than 1 habitat type is considered , R also 

provides insight into how use might be directed toward these different types at different 

8s. This latter application is particularly valuable because habitat types are likely to 

overlap each other , or one type might be nested within the other (Fig . 4-6) . 

It is important to note that R is always based on observations made at 8 grain , and 

that changes in R across 8 result from changes in the density and dispersion of animal 

locations inside a habitat type relative to all animal locations . Consequently , ascertaining 

the accuracy at which animal locations should be measured, and the 8 at which habitat 

types should be classified is not a trivial task. A fundamental requirement of this analysis 
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is that 8 grain and the accuracy of animal locations are fine enough to coincide with a 

species' immediate perceptual realm (e .g ., visual range), thus ensuring that R reflects what 

animals can actually detect from any point location. 

AN EXAMPLE WITH DEER IN URBAN 
AND RURAL HABITATS 

I employed this 2-staged methodology to examine the patterns of habitat use of 

mule deer living on urban and rural winter ranges in northern Utah. The objectives of the 

study were to determine how deer in each area used habitat space, and how 

correspondence between animal locations and various habitat types changed as a function 

of 8. Embedded within the latter objective, I wanted to answer 2 questions : 

1) how does R differ from the classic index of use vs. availability, and 2) do different 

habitat types become more or less important relative to each other as 8 changes? 

Study Areas 

The urban and rural areas were situated along the west base of the Wasatch 

Mountains in the Cache Valley, approximately 100 km north of Salt Lake City, and were 

used primarily by migratory mule deer during winter (November-April) . The urban area 

was contained within the City of Logan and surrounding suburban communities. The rural 

area was centered 15 km north of the urban area. Elevation (- 1500 m) and climate were 

similar in both areas. Snow depths ranged from 5 to 40 cm during periods of data 

collection (January-March, 1995 and 1996), and temperatures were also similar, ranging 

from -20 to 6 C0
• 

Residential housing (0.15-8 .0 houses/ha) dominated the urban landscape, and 
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vegetation was diverse, consisting of exotic and native shrubs as well as cultivated fields. 

The rural area, in contrast, was characterized by a more open landscape. Vegetation 

consisted of grain and alfalfa fields in a rangeland dominated by big sagebrush (Artemesia 

tridentata), bitterbrush (Purshia tridentata), cheatgrass (Bromus tectorum), and crested 

wheatgrass (Agropyron desertortum). Ravines and north-facing slopes contained patches 

of big-toothed maple (Acer grandidentatum) . The rural area exhibited a slightly more 

diverse topography than the urban area, containing several hilly areas with north- and 

south-facing slopes of< 30°. 

Methods 

Deer Locations. --I recorded the locations of 10 radio-telemetered urban deer and 

10 radio-telemetered rural deer ( all adult does) from 1 January to 15 March , 1995 and 

1996. These deer were part of a larger sample of tagged deer in each area ( see chapter 

II), and were selected because they were rarely observed together. As such, I assumed 

their movements were unrelated . Their home ranges were dispersed , but relatively 

contiguous and overlapping throughout each area. By combining the locations from these 

animals, I was able to increase the range of os over which patterns of habitat use were 

measured on each winter range . 

I located each deer every 3 days (resulting in 25 locations/deer/winter) during 1 of 

3 time intervals : 1) dawn or dusk, which included the hour before and after sunrise, or the 

hour before and after sunset, 2) the day, 1000-1600, and 3) the night, 2200-0400. 

Approximately 50% of these locations were during the dawn/dusk interval, 25% from the 

day, and 25% from the night. These intervals were designed to capture the full spectrum 
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of deer activity patterns and thus provide an adequate description of habitat use . I 

determined most locations (80%) by following radio signals in vehicles or on foot until 

animals were seen. When a deer was sighted, I used a hand-held global positioning system 

(GPS ; mean error= 46 m, SE= 6.4 m) to estimate my location, and added the directional 

distance from the GPS unit to the deer to estimate the deer's location . Direction was 

determined with a hand-held compass(± 2°) , and distance was estimated visually. 

Sighting distances were always < 200 m for urban and rural deer. When I could not see a 

radio-telemetered deer (e.g., when it was too dark or when deer were in thick cover) , I 

determined its location by circling the areas from which its radio signals emanated (radii of 

20-50 m for urban deer and 50-100 m for rural deer) , and plotted its position on a USGS 

1 :24,000 topographic map. I recorded all deer locations as Universal Transverse 

Mercator coordinates (UTM) , which were rounded off at 10 m. 

Stage 1 Ana/yses .--J calculated the IFDs across o for the combined 1995 and 1996 

locations of the 10 radio-telemetered deer in each study area (n = 500) . I compared deer 

IFDs to random IFDs by scattering 500 random points within each study area . The 

rectangular boundaries of each study area were demarcated by the outermost x- and y­

coordinates of all deer locations . These 2 areas were of similar extent , thus aUowing 

useful comparisons between patterns of space use for urban and rural deer. Not all 

regions in each study area were accessible to deer (e.g ., fenced areas, or areas preempted 

by large buildings) . Therefore, I excluded random points that fell in these regions, and 

added other random points until sample size reached 500. Because slightly different 

patterns may arise from different sets of random points, I calculated IFDs for 30 different 
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sets of 500 random points, and averaged the results at each 8. 

For both deer and random locations , the coarsest 8 of analysis equaled 1/3 the 

extent of each study area . This meant that IFDs were calculated with 9 boxes and 36 cells 

at the coarsest 8. IFDs at 8s of 1/4, 1/6, 1/8 ... the extent of each study area were then 

calculated until box size approached 100 m. For each calculation, I rotated the grid of 

boxes surrounding the study area 18 times (5° per rotation) and computed separate 

estimates of the IFD for each rotation . I then used the estimate that covered the spatial 

pattern with the fewest boxes to represent the "true" IFD at each 8 (Mandelbrot 1983). 

It is worth noting that the measurement precision of urban and rural deer locations 

differed approximately 20% of the time. Specifically, there was a greater error associated 

with rural deer locations when deer positions were determined by circling the areas from 

which radio signals emanated. This difference in precision may have potentially caused the 

IFDs of rural deer locations to be lower than those of urban deer at fine 8s of analysis, 

thereby invalidating any comparisons . To determine if this was the case, I added 50-100 

m of random error to the affected locations of urban deer. By doing so, the error for 

urban and rural deer locations was equal. This increase in error had no effect on the IFDs 

of urban deer locations . 

Stage 2 Analyse s.--! determined the degree of correspondence between deer 

locations and 4 habitat types in the urban area and 6 habitat types in the rural area . Types 

in the urban area included : 1) cultivated fields, which during winter could be described as 

large areas devoid of vegetation, 2) regions of high housing density(> 4 houses/ha), 3) 

concealment vegetation , and 4) shrubby vegetation . Types in the rural area included: 1) 
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cultivated fields, 2) south-facing slopes ( 150-210° from magnetic north, with an angle of 

slope > 15° ), 3) north-facing slopes (330-30° from magnetic north, with an angle of slope 

> 15° ), 4) concealment vegetation , 5) shrubby vegetation, and 6) stands of grass , i.e., 

open grassy areas with no shrubs or trees . I defined concealment vegetation as areas of 

vegetation that could hide the location of a standing deer from an observer situated 20 m 

or more away in any direction . I defined shrubby vegetation as areas containing shrubs or 

small trees (at densities > 10/ha) that could be browsed by deer . Overall , these different 

habitat types were easily measured , and were believed to differ with respect to foraging 

opportunities , thermal conditions , and risk potential during winter. 

I demarcated the boundaries of different habitat types on aerial photographs (scale : 

1 :660) while ground-trothing each study area . I then recorded the presence of each 

habitat type at a box size (o grain) of I-ha , whereby boxes centered on UTM coordinates 

100 m apart . At least 25% of a box needed to be filled by a type for the box to be 

considered "occupied ." A box could contain none to several habitat types . I determined 

the proport ions of habitat occupied by each type (Z) by summing all I-ha boxes containing 

a type . I then computed the o-by-o IFDs for 1) animal locations inside each type (Jc
1
,) , 2) 

all animal locations (11) , 3) random locations that fell in each type each type (J,12) , and 4) all 

random locations (J,i). As in stage 1, IFDs were based on estimates that covered the 

spatial pattern with the fewest number of boxes . Finally, the degree of correspondence , R, 

between animal locations and different habitat types was computed via equation 3. 

Results 

Stagel .--Visually, the distributions ofurban and rural deer locations differed 
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markedly (Fig . 4-7) . Urban deer locations appeared relatively clustered , as many regions 

of the study area received heavy use while other regions received little or no use . 

Conversely , rural deer locations were more spread out , occupying most regions of the 

study area . The 8-by-8 comparisons between deer lFDs and random lFDs quantified these 

patterns of space use , revealing the cis at which deer locations were most fragmented and 

aggregated , and most uniformly space-filling (Fig. 4-8) . 

Notably , urban deer locations were most uniformly space-filling from 100 to 400 

m. At this range of cis, the lFDs of deer locations exceeded those of random locations by 

approximately 0.5 of a dimension, indicating that certain patches of the landscape were 

utilized fully by deer at this range of cis, and that use was evenly concentrated in these 

patches . At the other extreme , urban deer locations were most fragmented and 

aggregated from 2000 to 3000 m, indicating that patterns of habitat use corresponded 

most closely to isolated patches of the landscape at this range of cis. Rural deer locations, 

on the other hand, were most uniformly space-filling from 400 to 600 m, and most 

fragmented and aggregated at 3300 m. 

Because the urban and rural study areas were of similar size, the functions of IFD 

vs. 8 for random locations in the 2 study areas were nearly identical (Fig . 4-8) . As such, 

meaningful comparisons between patterns of space use for urban and rural deer could be 

drawn . For instance , urban deer locations were far more space-filling than rural deer 

locations at fine cis of analysis (100-300 m). At coarse cis (800-3000) , however , urban 

deer locations were markedly more fragmented and aggregated than those of rural deer. 

Stage 2.--The 4 urban and 6 rural habitat types occupied from 5 to 32 % of the 
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available habitat space (Figs . 4-9 and 4-10) , and exhibited a variety of spatial patterns , 

which overall , were not self-similar across all 8s of analysis (Tables 4-1 and 4-2). Deer 

locations occurred within all of the habitat types in each area, but Q/ Z varied 

considerably among types (Tables 4-3 and 4-4) . The index of correspondence, R, 

calculated via equation 3, revealed 1) how the 8-by-8 spatial associations between deer 

locations and each habitat type affected the classic index of use vs . availability , and 2) the 

8s at which patterns of habitat use corresponded most positively and negatively with the 

different habitat types (Tables 4-3 and 4-4) . 

In particular , the distribution of urban deer locations corresponded most positively 

to concealment vegetation at all 8s of analysis (Table 4-3) . Moreover , the degree of 

correspondence between deer locations and concealment vegetation was far greater than 

that estimated by the classic index of use vs. availability (Qj Z) throughout this range of 

8s. Correspondence between deer locations and areas containing shrubby vegetation was 

also greater than that expected by chance at all 8s of analysis . And interestingly , R was 

noticeably larger than Q/ Z only at an intermediate range of 8s (300-1200 m) . Also of 

interest is that correspondence between deer locations and regions of high-housing density 

was less than that expected by chance at fine (200-600 m) and coarse (1500-3000 m) 8s of 

analysis, but greater than that expected by chance from 600 to 1200 m. Correspondence 

between deer locations and cultivated crop fields was far less than that expected by chance 

at all 8s of analysis , and this result was most evident at fine 8s. 

In the rural area , deer locations corresponded most positively to areas containing 

shrubby vegetation at relatively fine 8s of analysis (200-625 m), and south-facing slopes at 
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intermediate to coarse 6s of analysis (625-3300 m; Table 4-4). In concordance with these 

patterns, R for shrubby vegetation was noticeably greater than Q/Z at fine 6s, whereas R 

for south-facing slopes was noticeably greater than Q/Z at coarse 6s and less than Q/Z 

at fine 6s. As in the urban area, correspondence between rural deer locations and 

cultivated crop fields was far less than that expected by chance at all 6s of analysis, and 

negative correspondence was most evident at fine 6s. Finally, deer locations corresponded 

positively, albeit weakly, to concealment vegetation, grass stands, and north-facing slopes 

in the rural area. R for these 3 habitat types differed negligibly from Q/Z. 

Interpretation and Discussion of Results 

Stage 1.--A fundamental finding of the comparisons between deer and random 

IFDs was that both urban and rural deer locations were most uniformly space-filling at 

relatively fine 6s, and most fragmented and aggregated at relatively coarse 6s. The first 

part of this finding has a simple explanation. Most landscapes are heterogeneous , whereby 

some areas differ structurally or functionally from other areas (Kolasa and Rollo 1991 ). 

Consequently , at fine 6s, the relatively high space-filling nature of deer locations likely 

reflected high internal utilization of certain areas of the landscape (e.g ., patches containing 

habitat components) that differed from other areas. 

The second part of this finding has 2 potential explanations . The first is that the 

same patches utilized fully by deer at fine 6s may have exhibited a fragmented distribution 

at coarse 6s. Therefore, if these same patches largely influenced patterns of habitat use at 

all 6s, the distribution of deer locations would have coincided with the fragmented 

distribution of these patches at coarse 6s. An alternative explanation is that patterns of 
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habitat use may have been largely influenced by a different set of patches at coarse 8s, and 

these patches exhibited a distribution more fragmented than that expected by chance at 

these 8s. In either case, the distribution of deer locations appeared to be explained by the 

internal availability of certain landscape patches at relatively fine 8s, and the degree to 

which these or other patches were fragmented at relatively coarse 8s. 

Although these patterns of space use were qualitatively similar for deer in urban 

and rural areas, they differed quantitatively . Specifically, differences between the IFDs 

computed from deer and random locations indicated that the internal utilization of 

landscape patches in the urban area was highest from 100 to 400 m. In contrast , the 

internal utilization of landscape patches in the rural area was highest from 400 to 600 m. 

These findings thus suggest that the landscape patches most utilized by urban deer at fine 

8s were considerably smaller and more isolated than those most utilized by rural deer. 

That the IFDs of urban deer locations were only greater than those of rural deer from 100 

to 400 m supports this inference. 

At intermediate to coarse 8s (600-3000 m), the IFDs of urban deer locations were 

much lower than those of rural deer locations . Therefore , a plausible hypothesis is that the 

landscape patches most utilized by urban deer at coarse 8s were also more fragmented 

than those most utilized by rural deer. Moreover , it might be expected that the landscape 

patches most utilized by urban deer at coarse 8s would be most fragmented (i.e., 

characterized by a relatively low IFD) at 2250 mas this is the oat which the IFD of urban 

deer locations was lowest . For this same reason, it might be expected that the patches 

most utilized by rural deer at coarse os would be most fragmented at 3300 m. 
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Stage2 . --The 8-by-8 relationships between animal locations and various habitat 

types helped illuminate the patterns of space use observed in stage 1. That is, the index of 

correspondence, R, revealed why urban deer used relatively small landscape patches at fine 

8s, and why their patterns of space use were relatively fragmented and aggregated at 

coarse 8s. 

In the urban area , deer locations corresponded most positively with concealment 

vegetation at all 8s of analysis, suggesting that patterns of habitat use were influenced 

primarily by habitat components that reduced risk exposure (see Chapter 2). Moreover, R 

for concealment vegetation was greater than the classic index of use vs . availability (Q/Z) 

across this range of 8s . This result indicated that there was a positive spatial association 

between animal locations and concealment vegetation from 8s finer than a deer ' s 

immediate perceptual realm to os encompassing the home ranges of several individuals . In 

other words, the distribution of concealment vegetation appeared to have as much of an 

effect on the location of specific activity areas as it did on the areas demarcating home 

ranges . 

It is not surprising, therefore , that urban deer locations were most uniformly space­

filling from 100 to 400 m, as it was throughout this range of 8s that the IFDs of 

concealment vegetation were lowest. In particular, at a 8 of approximately 200 m, the 

IFD of concealment vegetation was only 0.89, which meant that patches of it were, on 

average , so small and isolated that they occupied areas less than 100 m across. At 

intermediate to coarse 8s, patches of concealment vegetation were also highly fragmented . 

Accordingly, these same patches of concealment vegetation that largely influenced 
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patterns of habitat use at fine 8s, also caused patterns of habitat use to be fragmented and 

aggregated at coarse 8s. Notably, it is easy to see that like deer locations, the IFD of 

concealment vegetation was most fragmented at 2250 m (Table 4-2) . 

Also in the urban area, regions containing shrubby vegetation were used more than 

that expected by chance at all 8s. This result was expected because shrubs generally 

comprise the bulk of forage biomass eaten by Rocky Mountain mule deer during winter 

(Wallmo and Regelin 1981). What R revealed, however, was that there was a positive 

spatial association between deer locations and the distribution of shrubby vegetation only 

at 8s ranging from 300 to 1200 m, and this association increased with 8 coarseness 

throughout this range . A likely explanation for this pattern is that at 8s coarser than the 

size of patches fully occupied by concealment vegetation (i.e., 200 m), deer roamed their 

home ranges in search of forage . The farther they roamed, the more their point locations 

corresponded to the distribution of forage . However , as 8 approached the size of deer 

home ranges , which in the urban area averaged 275 ha (see Chapter II) , observed patterns 

of habitat use were no longer affected by the foraging movements of individuals. 

Accordingly, the spatial associations between deer locations and shrubby vegetation 

diminished at these coarse 8s. 

The degree of correspondence between deer locations and high-density housing 

across 8 also appeared to coincide with deer movements within home ranges, as R 

increased from 200 to 1200 m. In this case, however, R indicated that areas containing 

high-density housing were used less than that expected by chance across most 8s. Given 

that patterns of habitat use were largely influenced by risk avoidance, this result was 
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anticipated because the potential risks to urban deer ( e.g., harassment by people and dogs, 

collisions with automobiles) were likely most prevalent in areas of dense housing . 

However , these areas also possessed valuable forage, and they overlapped considerably 

with areas containing shrubby vegetation. Therefore, as deer increased their movements in 

search of forage and away from concealment vegetation, more and more point locations 

occurred within areas of high-density housing . Accordingly, the spatial associations 

between deer locations and high-density housing increased until 8 approached the extent 

of movements within home ranges. At the coarsest of these 8s (i.e ., 700-1200 m), R 

actually indicated that areas of high-density housing were used more than that expected by 

chance. 

Finally, the minimal use of crop fields by urban deer was also expected because 

these areas consisted of bare ground during winter, and thus provided no forage or cover. 

Again, however, R tended to increase with 8 coarseness until 8 approached the size of 

deer home ranges . As argued above , this result probably reflected the movements of 

individuals within their home ranges. That is, the farther deer moved beyond areas 

containing concealment vegetation, the more likely they were to travel across barren crop 

fields in search of forage . 

In the rural area, the high degree of correspondence between deer locations and 

shrubby vegetation at all 8s suggests that patterns of habitat use were influenced strongly 

by habitat components that increased energy or nutrient intake, i.e., forage availability. 

However, it was only at fine 8s (200 - 625 m) that the distribution of shrubby vegetation 

appeared to affect these patterns, as the spatial associations between deer locations and 
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this habitat type were negligible at coarser &s. What this means is that the distribution of 

shrubby vegetation likely affected the location of specific feeding areas within home 

ranges, but not home range areas themselves, which averaged 1100 ha for rural deer (see 

Chapter 2) . 

The high degree of correspondence between rural deer locations and south-facing 

slopes across all &s also infers that forage availability largely influenced patterns of habitat 

use in the rural area . This inference is logical because emerging forbs and grass, which 

constitute important winter foods of Rocky Mountain mule deer (Wallmo and Regelin 

1981 ), as well as shrubs are often most accessible on south-facing slopes during winter. 

Interestingly, the spatial associations between rural deer locations and south-facing slopes 

were positive only at an intermediate to coarse range of &s (625-3300 m), and R increased 

throughout this range . This result thus suggests that the distribution of south-facing 

slopes had its greatest effect on patterns of habitat use at &s corresponding to foraging 

areas the size of deer home ranges . 

This result is also the mirror image of that pertaining to the spatial associations 

between rural deer locations and shrubby vegetation . As such, it suggests that rural deer 

patterns of use were directed toward 2 different, yet partially overlapping features of the 

landscape, each at different range of &s. The values of R for shrubby vegetation and 

south-facing slopes corresponded to this switch in deer patterns of habitat use . 

These patterns of habitat use directed toward shrubby vegetation at fine &s and 

south-facing slopes at coarse &s accounted for the space-filling uniformity of rural deer 

locations. That is, deer locations were most uniformly space-filling at about 600 m, which 
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coincided with the coarsest 8 at which there was a strong spatial association between 

locations and shrubby vegetation. Not surprisingly, the 1FD of shrubby vegetation in the 

rural area at 600 m was much greater than that of concealment vegetation in the urban 

area. This explains why rural deer locations were dispersed (highly space-filling) within 

larger landscape patches than urban deer locations, i.e., 600 vs. 300 m. At coarse 8s, the 

1FD of south-facing slopes was lowest at 3300 m, thus coinciding with the 8 at which rural 

deer locations were most fragmented. Note, however, that the lFDs of south-facing 

slopes were higher that the lFDs of concealment vegetation in the urban area at coarse 8s. 

This difference illuminates why rural deer locations were less fragmented than urban deer 

locations at these coarse 8s. 

SUMMARY 

A fundamental goal of wildlife-habitat studies is to determine how and why animals 

distribute themselves the way they do on a landscape. By pursuing this goal, researchers 

hope to improve their grasp of the relationships between habitat characteristics , the 

behavior of individuals, their survival and reproduction, and ultimately population 

dynamics across space and time . In this chapter , I proposed a 2-staged methodology for 

analyzing wildlife-habitat relationships . The first stage describes the distribution of animal 

locations on a landscape, and the second stage provides a starting point for gaining insight 

into the underlying basis for these distributions . Unlike previous approaches, this 

methodology explicitly incorporates the effects of spatial pattern and scale . In the 

example given, this methodology showed that the effects of pattern and scale did indeed 

influence deer-habitat relationships in both urban and rural areas. 
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As proposed , this methodology does not achieve its full potential. In particular, 

assessing the degree of correspondence between animal locations and habitat types was 

based on presence/absence data for each type . This procedure is the crudest way to 

classify habitat, as in all likelihood, each habitat type will vary quantitatively with respect 

to the characteristics used to define it. To overcome this shortcoming , these 

characteristics within each type can be ranked at the 8 at which habitat types are 

measured , i.e., 8 grain or pixel size. Ranked pixels can then be used to weight the 

expected probabilities of animal locations occurring in each type. 

LITERATURE CITED 

Alldredge , J. R., and J. T. Ratti . 1986. Comparison of some statistical techniques for 

analysis ofresource selection . Journal of Wildlife Management 50 :157-165 . 

_ ____,and __ . 1992 . Further comparison of some statistical techniques for analysis 

ofresource selection . Journal of Wildlife Management 56 : 1-9. 

Block , W. M ., and L.A. Brennan . 1993. The habitat concept in ornithology : theory and 

applications. Pages 35-91 in D . M . Power , editor. Current ornithology . Volume 

11. Plenum Press , New York , New York , USA. 

Hall, L. S., P . R . Krausman , and M . L. Morrison . 1997. The habitat concept and a plea 

for standard terminology . Wildlife Society Bulletin 25 : 173-182 . 

Hastings , H. M ., and G. Sugihara . 1993. Fractals : a user ' s guide for natural sciences . 

Oxford University Press , New York , New York , USA. 

Havelka , M . 1995 . A question of scale: the effects of environmental heterogeneity on 

populations . COENSOSES 12:83-87 . 



107 

Holt, R. D . 1987 . Population dynamics and evolutionary processes: the manifold roles of 

habitat selection . Evolutionary Ecology 1:331-347 . 

Hutto, R. L. 1985 . Habitat selection by nonbreeding, migratory land birds . Pages 455-

476 in M . L. Cody, editor. Habitat selection in birds. Academic Press, New 

York, New York, USA 

Johnson, D . H . 1980. The comparison of usage and availability measurements for 

evaluating resource preference . Ecology 61 :65-71. 

Johnson, G.D ., A Templeman, and G. P . Patil. 1995 . Fractal based methods in ecology : 

a review of analysis at multiple scales. COENOSES 10:123-131. 

Kolasa , J., and C. D . Rollo . 1991 . The heterogeneity of heterogeneity : a glossary . Pages 

1-23 in J. Kolasa and S. T. A Pickett, editors. Ecological heterogeneity. 

Springer-Verlag, New York, New York, USA 

Kotliar, N. B . and J. A Wiens . 1990 . Multiple scales of patchiness and patch structure : 

a hierarchical framework for the study of heterogeneity . Oikos 59:253-260. 

Levin, S. A 1992 . The problem ofpattern ,and scale in ecology. Ecology 73 :1943-

1967. 

Loehle, C., and B. L. Li. 1996 . Statistical properties of ecological and geological fractals . 

Ecological Modeling 85 :271-284 . 

Mandelbrot, B . B . 1983 . The fractal geometry of nature. Freeman Press, San Francisco, 

California, USA 

McClean , S. A, M. A Rumble, R . M. King, and W . L. Baker. 1998. Evaluation of 

resource selection methods with different definitions of availability. Journal of 



108 

Wildlife Management 62 : 793-801 . 

Milne , B.T. 1997 . Applications of fractal geometry in wildlife biology. Pages 32-69 in J. 

A. Bissonette , ed . Wildlife and landscape ecology . Springer-Verlag , Inc. , New 

York, New York, USA. 

Morris , D . W . 1987 . Ecological scale and habitat use . Ecology 68 :362-369 . 

Morrison , M . L., B . J. Marcot , and R. W. Mannan . 1992 . Wildlife-habitat relationships : 

concepts and applications . University of Wisconsin Press , Madison , Wisconsin , 

USA. 

Orians , G . H. , and J. F . Wittenberger. 1991. Spatial and temporal scales in habitat 

selection . American Naturalist 137 : S29-S49. 

Ritchie , M . E . 1998 . Scale-dependent foraging and patch choice in fractal environments . 

Evolutionary Ecology 12:309-330 . 

Senft , R. L. , M . B. Coughenour , D . W. Bailey , L. R. Rittenhouse , 0. E . Sala, and D . M . 

Swift . 1987 . Large herbivore foraging and ecological hierarchies . Bioscience 

37 :789- 799 . 

Scheuring, A, and R . H. Riedi . 1994 . Applications of multifractals to the analysis of 

vegetation pattern . Journal of Vegetation Science 5:489-496 . 

Turner , M . G ., and R . H . Gardner. 1991. Quantitative methods in landscape ecology : an 

introduction . Pages 3- 14 in M . G. Turner , and R . H. Gardner , editors . 

Quantitative methods in landscape ecology . Springer-Verlag New York , New 

York , USA. 

Wallmo , 0 . C., and W . L. Regelin . 1981 . Rocky Mountain and Intermountain habitats . 



109 

Pages 387-421 in O.C. Wallmo , editor . Mule and black-tailed deer ofNorth 

America . University of Nebraska Press, Lincoln , Nebraska , USA. 

White , G. C., and R. A. Garrot. 1990. Analysis of wildlife radio-tracking data . Academic 

Press , New York , New York , USA. 

Wiens, J. A. 1989. Spatial scaling in ecology . Functional Ecology 3 :385-397 . 

-~ N . C. Stenseth , B. Van Horne , and R. A. lms . 1993. Ecological mechanisms and 

landscape ecology . Oikos 66 :369-380 . 



110 

Table 4-1 . Information fractal dimensions of 4 habitat types on an urban mule deer 

winter range of Cache Valley, Utah. 

IFD 

Crop High-density Concealment Shrubby 

Resol. (m) field housing vegetation vegetation 

187 1.54 1.44 0.89 1.30 

281 1.62 1.55 1.03 1.44 

375 1.65 1.70 1.05 1.56 

562 1.69 1.68 1.26 1.60 

750 1.65 1.70 1.30 1.67 

1125 1.65 1. 71 1.29 1.67 

1500 1.52 1.58 1.28 1.60 

2250 1.51 1.75 1.23 1.59 

3000 1.59 1.50 1.29 1.48 
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Table 4-2 . Information fractal dimensions of 6 habitat types on a rural mule deer 

winter range of Cache Valley, Utah . 

IFD 

Crop South North Concealment Shrubby Grass 

Resol. (m) field slope slope vegetation vegetation stand 

208 1.65 1.46 1.45 1.15 1.50 1.42 

312 1.70 1.35 1.42 1.28 1.50 1.45 

417 1.74 1.56 1.48 1.35 1.59 1.45 

625 1. 71 1.49 1.50 1.37 1.59 1.54 

833 1.66 1.48 1.30 1.37 1.59 1.51 

1250 1.72 1.54 1.26 1.40 1.65 1.59 

1660 1.68 1.48 1.28 1.39 1.70 1.55 

2500 1.75 1.54 1.33 1.48 1.72 1.59 

3333 1.75 1.31 1.30 1.42 1.65 1.48 



Table 4-3 . Degree of correspondence (R, caiculated via eqn. 3) between mule deer 

locations and 4 habitat types on an urban winter range of Cache Valley, Utah, 

1995-1996 . Numbers in parentheses represent proportional habitat type use vs. 

habitat type availability, which, unlike R do not account for the spatial associations 

between animal locations and habitat types at each resolution of analysis. 

RI 

Crop High-density Concealment Shrubby 

field housing vegetation vegetation 

Resol. (m) (0 . 16) (0 .97) (7 .98) (2 .65) 

187 0.01 0.58 11.80 2.58 

281 0.02 0.68 10.7 1 3.36 

375 0.03 0.74 11.04 3.78 

562 0.04 0.88 10.71 3.82 

750 0.06 1.14 11. l 0 3.83 

1125 0.07 1.20 11.25 3.87 

1500 0.11 0.88 10.81 2.80 

2250 0.09 0.87 10.45 2.70 

3000 0.07 0.82 10.38 2 .55 

1 A value > 1 indicates that the habitat type was used more than that expected 

by chance, whereas the opposite is true if a value is < 1. 
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Table 4-4. Degree of correspondence (R, calculated via eqn . 3) between mule deer 

locations and 6 habitat types on a rural winter range of Cache Valley, Utah, 1995-1996 . 

Numbers in parentheses represent proportional habitat type use vs. habitat type 

availability, which, unlike R do not account for the spatial associations between 

animal locations and habitat types at each resolution of analysis. 

RI 

Crop South North Concealment Shrubby Grass 

field slope slope vegetation vegetation stand 

Resol. (m) (0.53) (2.61) (1.22) (1.36) (2.27) (1.63) 

208 0.11 2.08 1.30 1.53 3.06 1.16 

312 0.24 2.07 1.23 1.55 2.93 1.36 

417 0.41 2.32 1.22 1.31 2.86 1.85 

625 0.42 2.80 1.25 1.23 2.80 1.85 

833 0.41 2.87 1.14 1.39 2.30 1.86 

1250 0.41 3.08 1.21 1.50 2.30 1.91 

1660 0.48 3.20 1.23 1.50 2.37 1.92 

2500 0.55 3.35 1.28 1.49 2.36 1.70 

3333 0.55 3.45 1.30 1.50 2.29 1.65 

1 A value > 1 indicates the habitat type was used more than that expected by 

chance, whereas the opposite is true if a value is < 1. 
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Figure 4- 1. Information fractal dimensions of various spatial patterns . A-H are for a 

resolution(<>) of 2 units, and I and J are for c>s of 2 and 4 units . A-Band 1-J are based 

on presence/absence data, and E-H are based on intensity data, i.e., ~ 1 point per cell. 
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Figure 4-2 . Simulation showing that changes in sample size do not affect the qualitative 

interpretation of the relative differences between IFDs computed from animal and random 

locations. In this simulation, 60% of animal locations cluster in 3 patches and 40% are 

distributed randomly around these patches . Note that the function ofIFD vs. o for animal 

and random locations changes quantitatively with sample size, but animal locations remain 

most uniform space-filling at a o of 3x, and most fragmented and aggregated at a o of 6x. 
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Figure 4-3. IFD vs. o for a various number (N) ofrandom locations (A) distributed within 

a landscape space (B) . Note that the function ofIFD vs. o changes predictably with the 

number oflocations . Also note that IFDs approach, but do not achieve, a value of 2 

because random points are not stacked evenly in space . 
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Figure 4-4 . Demonstration of how the spatial associations between animal locations and a 

single habitat type affect the classic index of use vs. availability (Q)Z) . Shaded areas are 

the grains of habitat space occupied by the habitat type , and numbers are the number of 

times animal locations occur in each grain of habitat space . Note that Q)Z suggests that 

use of the habitat type by both distribution A and B equals that expected by chance alone. 

Clearl y, howe ver, animal locations in A match the distribution of the habitat type , whereas 

those in B do not. The value of R (eqn . 3) accounts for these spatial associations . 
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Figure 4-5. Demonstration of how the degree of correspondence (R) between simulated 

animal locations and a habitat type changes with o. In A, o grain of habitat and accuracy 

of animal locations are measured at 1 unit. In B, they are measured at 2 units. Note that R 

equals the classic index of use vs. availability (QJ Z) at a o of 2, and is highest at a o of 4; 

these patterns can be detected visually. Note also that changing o grain does not affect R . 
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Figure 4-6. Simulation that shows how R detects changes in use of 2 habitat types, 1 of 

which is nested within the other, at 3 Os of analysis . At a o of 2, use is most strongly 

directed toward habitat type 1, and at a o of 4 use switches to habitat type 2. 
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Figure 4-7 . Distribution of 500 point locations from 10 mule deer (50 locations/deer) with 

overlapping home ranges in an urban (A) and a rural (B) area of Cache Valley, Utah . 
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Figure 4-8 . IFDs computed from 500 deer locations (IO deer, 50 locations/deer) and 500 

random locations on an urban winter range (A), and a rural winter range (B) in Cache Valley , 

Utah . The analyses show that both urban and rural deer locations are most uniformly space­

fil ling at fine os of analysis , and most fragmented and aggregated at coarse os of analysis . 

Comparisons between the 2 analyses reveal that urban deer locations are far more uniformly 

space-filling at fine os (I 00 - 400 m), and more fragmented at coarse os (800 - 3000 m). 
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Figure 4-9 . Distribution of (A) concealment vegetation, (B) shrubby vegetation, (C) high­

density housing, and (D) crop fields on an urban mule deer winter range of Cache Valley, 

Utah . Q2 = the proportion of animal locations (see Fig . 4-7) in each habitat type, and Z = 

the proportion of the study area occupied by that type . 
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Figure 4-10 . Distribution of (A) concealment vegetation, (B) shrubby vegetation, (C) crop 

field, (D) grass stand, (E) south-facing slope, and (F) north-facing slope on a rural mule 

deer winter range of Cache Valley, Utah . Q2 = the proportion of animal locations in each 

habitat type (see Fig . 4-7), and Z = the proportion of the study area occupied by that type . 
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CHAPTERS 

SYNTHESIS AND INTEGRATION OF RESEARCH FINDINGS 

The time-specific hypothesis of deer net energetic gains developed in Chapter 2 

suggests strongly that the urban habitat was inferior to the rural habitat during my study. 

That is, this hypothesis implies that migratory and nonmigratory deer using the urban 

winter range were energetically deprived relative to their rural counterparts. Moreover, 

the potential disparities in forage conditions on urban and rural winter ranges could not 

comprehensively explain the different behavioral and demographic characteristics of urban 

and rural deer. Therefore , it is likely that risks played a large role in reducing the relative 

quality of the urban habitat. Specifically, risks in the urban area appeared to have a large 

impact on deer spatial and temporal behaviors . Changes in behavior , in tum , acted as a 

self-imposed constraint on the ability of deer to access forage and perhaps the amount of 

time they spent foraging . This constraint manifested itself as inferior demographic 

characteristics of urban deer . 

The scale-dependent patterns of habitat use identified in Chapter 4 corroborate the 

hypothesis that risks played a dominate role in the behaviors of urban deer . Patterns of 

space use by urban deer were explained largely by the distribution of concealment 

vegetation , which consisted of relatively small patches that were highly fragmented 

throughout the urban area. Consequently , the distribution of hiding cover had as much of 

an effect of the locations of specific activity areas as it did on the location of home ranges . 

Therefore , by restricting their patterns of habitat use to areas that provided refuge from 

risks, urban deer did not fully utilize the resources in the urban habitat. Patterns of habitat 
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use by rural deer , on the other hand, appeared to be unaffected by risks . Instead, rural 

deer made full use of the rural landscape . 

Although the spatial and temporal behaviors and patterns of habitat use differed 

between urban and rural deer , the results of Chapter 3 indicated that the fractal dimensions 

of their movement pathways converged to a common value of approximately 1.3. For 

both urban and rural deer this value was achieved once pathways exceeded 80 m. This 

finding thus suggests that risk avoidance by urban deer did not influence how they 

responded to habitat , i.e., the way they moved when searching for resources. For 

instance, urban deer did not walk in a straight line when traveling between areas of 

concealment vegetation . Instead , it appears that perceived risks in the urban area forced 

deer to minimize 1) the extent of their movements (i.e., home range size), and 2) the 

amount of time each day was spent in areas not containing concealment vegetation . The 

latter conclusion can be inferred because the sampling regimes used to estimate patterns of 

habitat use were similar for urban and rural deer (Chapter 4) . 

On a more conceptual note , the fractal dimensions of deer movement pathways 

observed in Chapter 3 have potentially profound implications for the study of animal 

spatial ecology . First , it is quite remarkable that the fractal dimensions of movement 

pathways for both urban and rural deer converged to a common value of - 1.3. This value 

is remarkable because urban and rural deer patterns of habitat use were influenced largely 

by different habitat components, and these components exhibited markedly different 

distributions on the landscape (Chapter 4) . Therefore , given that habitat heterogeneity 

could not explain the similarities in urban and rural deer movements, I surmised that the 
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observed patterns reflected an intrinsically driven mechanism that allows animals to sample 

the resources in their home ranges while minimizing energetic expenditure . Although this 

hypothesis seems like a stretch, it is easy to conceptualize how such an optimal movement 

geometry could have evolved through natural selection . Clearly, this hypothesis warrants 

further investigation . 

Also, a question of theoretical and practical importance to the field of spatial 

ecology is: Can observations of movements at fine resolutions be used to explain animal 

patterns of habitat use on a landscape? Although I did not set out to specifically address 

this question, cursory interpretation of my results might lead one to conclude that 

movement pathways and observed patterns of habitat use on a landscape are unrelated . 

This conclusion is easily drawn because patterns of habitat use by urban and rural deer 

were clearly different from each other , but their movement pathways appeared similar. 

Upon contemplating this question, however , I believe that correspondence between 

movements and patterns of habitat use could not have been determined with the methods I 

used . Measurement of deer movement pathways was purely a function of space . On the 

other hand, measurement of deer patterns of habitat use incorporated both space and time, 

i.e., the likelihood that a deer would be located in a specific area was influenced by how 

much time the animal spent in that area . Therefore , before these 2 concepts can be linked, 

measurements of deer movements will need to incorporate a temporal element. 

Overall, my research provides a preliminary assessment of I) how and why urban 

winter ranges differ from rural winter ranges , and 2) how urban and rural deer respond to 

and use their respective habitats . As such, my research findings can be used to make 
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informed decisions regarding the management of urban mule deer (Chapter 2). In 

addition, my research endeavors involved developing new techniques for assessing how 

animals respond to habitat across scale (Chapter 3), and how patterns of habitat use 

change as a function of scale (Chapter 4) . These techniques , and the results that they 

produce , open several new avenues of research that should help ecologists start thinking 

about how the behaviors of individuals influence population-level phenomena . 

Specifically, these techniques provide the means of incorporating scale into how animals 

search for and detect resources, and how resource and landscape patterns influence animal 

distributions . 
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