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ABSTRACT

Detecting Malicious Campaigns in Crowdsourcing Platforms

by

Hongkyu Choi, Master of Science

Utah State University, 2017

Major Professor: Kyumin Lee, Ph.D.
Department: Computer Science

Crowdsourcing systems enable new opportunities for requesters with limited funds to

accomplish various tasks using human computation. However, the power of human com-

putation is abused by malicious requesters who create malicious campaigns to manipulate

information in web systems such as social networking sites, online review sites, and search

engines. To mitigate the impact and reach of these malicious campaigns to targeted sites,

we propose and evaluate a machine learning based classification approach for detecting ma-

licious campaigns in crowdsourcing platforms as a first line of defense, and build a malicious

campaign blacklist service for targeted site providers, researchers and users.

Specifically, we (i) conduct a comprehensive analysis to understand the characteristics

of malicious campaigns and legitimate campaigns in crowdsourcing platforms, (ii) propose

various features to distinguish between malicious campaigns and legitimate campaigns, (iii)

evaluate a classification approach against baselines, and (iv) build a malicious campaign

blacklist service. Our experimental results show that our proposed approaches effectively

detect malicious campaigns with low false negative and false positive rates.

(37 pages)
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PUBLIC ABSTRACT

Detecting Malicious Campaigns in Crowdsourcing Platforms

Hongkyu Choi

Crowdsourcing sites such as Mechanical Turk and Crowdflower provide a marketplace

where requesters create tasks and recruit workers, who may perform certain tasks in order

to get financial compensation. Anyone in the world can be a requester and/or a worker

as long as he/she has the Internet connection. Crowdsourcing creates a new way to solve

various tasks by using “human computation power”. However, crowdsourcing has been mis-

used by malicious requesters and unethical workers for account generation, search engine

optimization, content and link generation, ad posting and spam mailing, and social net-

work linking. It creates new threats to the Web system. The consequences of the malicious

tasks are receiving spam emails and spam messages from online social networks, polluted

social links by fake link farming, and irrelevant search results because of manipulated web

page link structure. Eventually, these have degraded the information trustworthiness on the

Web. To solve this problem, we build a predictor that detects whether campaign/task in

crowdsourcing sites is malicious or not so that malicious campaigns/tasks can be removed

by crowdsourcing site providers as soon as they are created. In particular, we (i) ana-

lyze characteristics of malicious and legitimate campaigns; (ii) extract commonly available

features from four crowdsourcing sites; and (iii) build predictors and evaluate their perfor-

mance. Our experimental results show that our predictors are more effective and robust

compared with several baselines. In the end, we design and build a malicious campaign

blacklist service, which provides users with various information.
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CHAPTER 1

INTRODUCTION

Crowdsourcing platforms such as Mechanical Turk (MTurk) and Crowdflower provide

a marketplace where requesters recruit workers and request the completion of various tasks.

Since anyone in the world can be a worker, the labor fees are relatively low, and workers

are available at virtually all hours of the day. Due to these benefits, requesters have used

crowdsourcing platforms for various tasks such as labeling datasets [1, 2], searching a boat

from satellite images to find a lost person [3], proofreading a document [4], and adding

missing data [5].

However, some requesters abuse crowdsourcing platforms by creating malicious cam-

paigns to manipulate search engines, write fake reviews, and create accounts for additional

attacks [6–10]. Using crowdsourced manipulation, malicious requesters and workers can

potentially earn hundreds of millions of dollars [11,12]. As a result, crowdsourced manipu-

lation threatens the foundation of the free and open web ecosystem by reducing the quality

of online social media, degrading trust in search engines, manipulating political opinion,

and ultimately compromising the security and trustworthiness of cyberspace [13–15].

Prior research [14, 15] has identified the threat of malicious campaigns by quantifying

their prevalence in several crowdsourcing platforms. Specifically, a large collection of loosely-

moderated crowdsourcing platforms serves as launching pads for these malicious campaigns.

Unfortunately, there is a significant gap in (i) our understanding of how to detect malicious

campaigns at the source (i.e., crowdsourcing platforms), which would mitigate their im-

pact and reach before they influence targeted sites, and (ii) building a malicious campaign

blacklist service which provides various functions (e.g., searching malicious campaigns by a

keyword search and grouping relevant malicious campaigns by various categories/goals) to

targeted service providers, researchers and users.
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Hence, in this thesis we aim to automatically predict and detect malicious campaigns

in crowdsourcing platforms, and build a malicious campaign blacklist service by answer-

ing following research questions: What kind of malicious campaigns exist in crowdsourcing

platforms? Can we find distinguishing patterns/features between malicious campaigns and

legitimate campaigns? Can we develop a statistical model that automatically detects ma-

licious campaigns? Can we build a malicious campaign blacklist service providing various

functions?

To answer these questions, we make the following contributions:

• First, we collect a large number of campaigns from popular crowdsourcing platforms:

MTurk, Microworkers, Rapidworkers, and Shorttask1. Then, we cluster malicious cam-

paigns to understand what types of malicious campaigns exist in crowdsourcing plat-

forms.

• Second, we analyze characteristics of malicious campaigns and legitimate campaigns in

terms of their market sizes and hourly wages. Then, we propose and evaluate various

features for distinguishing between malicious campaigns and legitimate campaigns, and

we visualize each feature to concretely illustrate the differing properties for malicious

and legitimate campaigns.

• Third, we develop a predictive model, and evaluate its performance against baselines

in terms of accuracy, false positive rate and false negative rate. To our knowledge, this

is the first study to focus on detecting malicious campaigns in multiple crowdsourcing

platforms.

• Finally, we build a malicious campaign blacklist service as a repository and retrieval

service.

The rest of this thesis is organized as follows. After reviewing the related work in

the next chapter, we describe the dataset and ground truth on campaign types. Then we

introduce the characteristics of malicious and legitimate campaigns. After that, we present

1MTurk, Microworkers, Rapidworkers and Shorttask represent www.mturk.com, microworkers.com,
rapidworkers.com, and shorttask.com, respectively.
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our proposed features for building malicious campaign classifiers. The following chapter

reports the experimental results on real-world datasets with performance and robustness of

the model. In the next chapter, we propose a malicious campaign blacklist service. Finally,

the last chapter concludes the thesis.



4

CHAPTER 2

RELATED WORK

Since the emergence of crowdsourcing platforms (e.g., MTurk and Crowdflower), re-

searchers have studied how to use crowd wisdom. Wang et al. [16] hired workers to iden-

tify fake accounts in Facebook and Renren. Workers have identified improper tasks in a

Japanese crowdsourcing site [17] and proofread documents in near-real time [4]. Other re-

searchers were interested in analyzing the demographics of workers [18] and quantifying the

evolution of campaigns/tasks in MTurk [19]. Ge et al. analyzed a supply-driven crowd-

sourcing marketplace regarding key features that distinguish “super sellers” from regular

participants [20].

Another research topic is to measure the quality of workers and outcomes (and deter-

mining how to control that quality). Due to the openness of these crowdsourcing systems,

anyone can be a worker. Consequently, workers might be lazy or dishonest and seek money

by quickly completing tasks with low quality answers. Venetis and Garcia-Molina [21] pro-

posed three scoring methods such as gold standard, plurality answer agreement, and Task

Work Time to filter low quality answers. A machine learning technique was applied to

detect low quality answerers [22]. Soberón et al. [23] showed that adding open-ended ques-

tions (i.e., explanation-based techniques) into tasks was useful for identifying low quality

answers.

With the rising popularity of crowdsourcing systems, malicious campaigns and tasks

have been created by some requesters. To understand the problems, Motoyama et al. [14]

introduced possible web service abuse in Freelancer.com. Wang et al. [15] analyzed two

Chinese crowdsourcing platforms and found that up to 90% of campaigns are malicious

campaigns. Lee et al. [13] found that social networking sites and search engines were mainly

targeted by malicious campaigns. Researchers began analyzing crowdsourced manipulation
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and the characteristics of workers in targeted sites such as Facebook and Twitter. Fayazi et

al. [24] proposed a reviewer-reviewer graph clustering approach based on a Markov Random

Field to identify workers that posted fake reviews on Amazon. Song et al. [25] proposed a

crowdsourced manipulation detection method to detect target objects such as a post, page,

and URL on Twitter.

In contrast to this previous research, we collected a large number of campaigns from four

crowdsourcing platforms, analyzed characteristics of malicious campaigns and legitimate

campaigns, developed predictive models to automatically identify malicious campaigns, and

built a malicious campaign blacklist service. Our research will complement existing research

base.
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CHAPTER 3

DATASETS

In a crowdsourcing platform, there are two types of users – (i) a requester and (ii) a

worker. A requester is a user who creates a campaign with detailed instructions for one or

more tasks. Each task is then performed by one worker. If the requester is satisfied with

the worker’s outcome, the requester will approve it, and compensation (i.e., money) will be

passed to the worker by the crowdsourcing platform.

To collect a dataset, we developed a crawler for four popular crowdsourcing plat-

forms: Amazon Mechanical Turk (MTurk), Microworkers, Rapidworkers, and Shorttask.

The crawler collected campaign listings and detailed campaign descriptions. We ran the

crawler for 3 months between November 2014 and January 2015, and it collected 23,220

Fig. 3.1: A list of campaigns
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Fig. 3.2: A campaign description

campaigns consisting of 3,356,153 tasks1. Figure 3.1 shows a list of campaigns and Figure 3.2

represents a sample campaign description in Microworkers. The campaign description con-

tains the number of available tasks, compensation for each task, estimated time to complete

a task, and task instructions that describe what a worker is supposed to do.

As we mentioned earlier, our ultimate goal is to understand characteristics of malicious

campaigns and legitimate campaigns, and build a predictive model to automatically predict

a campaign’s class to either a malicious campaign or a legitimate campaign. We define a

malicious campaign as one that requires workers to manipulate information in targeted sites

such as social media sites and search engines. For example, a malicious campaign might

require workers to post fake reviews on Amazon [6], artificially create backlinks to boost a

1A campaign contains multiple tasks, and each task is assigned to one worker.
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Table 3.1: Datasets

Types of Campaigns Number of Campaigns

Malicious Campaigns 5,010

Legitimate Campaigns 18,210

Total 23,220

specific website’s search engine ranking, or “Like” a specific Facebook page (as shown in

Figure 3.2).

Using this definition, two annotators manually labeled each campaign in our dataset as

a malicious campaign or a legitimate campaign, based on the campaign description. When

the two annotators disagreed about a particular campaign’s label, a third annotator labeled

the campaign. The annotators made the same labeling decision on 23,079 out of 23,220

campaigns, achieving 99.4% agreement.

Table 3.1 shows the number of malicious and legitimate campaigns in our collected

dataset. 5,010 of the 23,220 campaigns (21.6%) were malicious campaigns, and each cam-

paign contained 145 tasks on average. Overall, the malicious campaigns contained about

800K tasks. Thus, it is important to understand and analyze how malicious campaigns are

different from legitimate campaigns so that we can build models to automatically detect

malicious campaigns and develop a malicious campaign blacklist service.
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CHAPTER 4

ANALYZING MALICIOUS CAMPAIGNS AND LEGITIMATE CAMPAIGNS

Now we turn our attention to analyzing characteristics of malicious campaigns and

legitimate campaigns in the crowdsourcing platforms.

4.1 Tasks and market sizes

First, we calculated the number of tasks associated with malicious campaigns and le-

gitimate campaigns, and then, we measured the market sizes for malicious and legitimate

campaigns. To estimate the market size for a collection of malicious and legitimate cam-

paigns, we used the following equation:

MarketSize(C) =

n∑
i=1

r(i) ∗ count(i) (4.1)

where C is a set of malicious or legitimate campaigns {c1, c2, c3...cn} in crowdsourcing

platforms, n is the number of malicious or legitimate campaigns, r(i) is the reward (i.e.,

compensation) per task for campaign i, and count(i) is the number of tasks associated with

campaign i.

As shown in Table 4.1, the malicious tasks for the four crowdsourcing platforms amounted

to 45% of the entire market size, while the number of malicious tasks only represented 24%

Table 4.1: Statistics for tasks and market sizes of malicious campaigns and legitimate
campaigns.

Number of Tasks Market Sizes

Malicious 798,796 $148,911

Legitimate 2,557,357 $179,696

Total 3,356,153 $328,607
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of the total campaign tasks. This analytical result reveals that the reward per malicious

task is much higher than the reward per legitimate task.

4.2 Hourly wages

Next, we concretely evaluate if the hourly reward for malicious campaigns is actually

higher than the hourly reward for legitimate campaigns. A campaign’s description contains

estimated time to complete (ETC) information and a reward per task. We calculated the

hourly wage for each campaign using reward per task∗60
ETC because ETC’s unit of measurement

is a minute. Figure 4.1 shows box plots for hourly wages in legitimate and malicious

campaigns. The median hourly wage in malicious campaigns ($2.48) is larger than the

median hourly wage in legitimate campaigns ($1.88). One explanation for this result is

that malicious requesters provide higher rewards to workers so that they can attract these

workers, who may have ethical concerns about these malicious campaigns/tasks.

Fig. 4.1: Box plots for hourly wages in legitimate campaigns and malicious campaigns.
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4.3 Requesters and workers

Next, we analyze the characteristics of requesters and workers. In particular, we are in-

terested in answering the following research questions: what is the geographic distribution of

requesters? How much do requesters typically spend on campaigns? What is the geographic

distribution of workers, and how many tasks do workers typically complete? Fortunately,

the Microworkers platform publicly discloses location information of requesters and workers

as well as compensation data.

We analyzed our Microworkers dataset, which consists of 3,971 campaigns that were

created by 518 distinct requesters. The top 5 originating countries for requesters in our

dataset is US (51.7% of all requesters), UK (6.2%), Canada (4.2%), Bangladesh (3.9%),

and India (3.3%). We can clearly see that many requesters originate from English-speaking

countries. This observation also suggests that most campaigns target Western websites

(where the majority of the user base is also English-speaking). As shown in Figure 4.2, US,

UK and Canada requesters created 3,472 campaigns (87.4% of all campaigns), and they

spent $116,684 (85.6% of the market size). In the figure, the size of a circle represents the

Fig. 4.2: The number of campaigns created by requesters in each country and the total cost
of the campaigns.



12

Fig. 4.3: The number of tasks performed by workers in each country and their total earnings.

number of campaigns created in a given country, and the color of the circle represents the

amount spent by requesters in that country.

To investigate characteristics of workers, we randomly collected 3,261 workers’ profiles.

Based on this data, the top 5 originating countries for workers is Bangladesh (33.7%), US

(11.9%), India (9.8%), Nepal (5.6%), and Sri Lanka (4.5%). Unlike the requesters, most of

the workers are from developing countries. Figure 4.3 shows the number of tasks performed

by workers in each country as well as the earnings for workers in each country. Interestingly,

US workers earned $364,067 (44% of the market size) by performing 1,633,344 tasks (33.4%

of the total), and Bangladesh workers earned $128,099 (15.6%) by performing 927,894 tasks

(19%). This suggests that US workers receive significantly higher earnings than Bangladesh

workers ($0.22/task vs. $0.14/task).

4.4 Clustering malicious campaigns

To investigate characteristics of malicious campaigns associated with specific goals, we
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clustered the campaigns based on their goals and targeted sites. From 5,010 malicious

campaigns, we extracted a title from each campaign and tokenized it by unigram. Then, we

removed stop words and measured term frequency-inverse document frequency (TF-IDF).

Now, each campaign is represented as a vector based on TF-IDF. Given a list of vectors,

we used a k -means clustering algorithm to cluster the vectors (i.e., campaigns). To obtain

the optimal number of clusters, we experimented with k values in the range of 2 through

10, and we measured Sum of Squared Error (SSE) for each value. Figure 4.4 shows how

SSE was changed as we increased the k value from 2 to 10. When k was incremented from

7 to 8, the curve flattened, which means 7 is the optimal number of clusters.

After clustering the malicious campaigns, we investigated every cluster and found ob-

jectives for the campaigns in each cluster as shown in Table 4.2. The median values for

time, reward, and hourly wage are presented in the table. The goals for most of the cam-

paigns were to manipulate content on social networking sites (e.g., Google Plus, Twitter,

Yahoo Answer and Facebook) and manipulate search engine results by searching a specific

keyword and clicking a certain web page link. “Download and install a new application”

Fig. 4.4: Sum of squared error obtained by increasing the number of cluster
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campaigns provided workers with larger compensation per hour than the other campaigns.

To identify the sites that were targeted the most by malicious campaigns, we extracted

a list of the top 500 companies from Alexa, and we searched for each of those company

names (and company hostnames) in malicious campaign descriptions. Table 4.3 shows

the five most targeted sites. Nine hundred and two (18%) malicious campaigns targeted

Google. Social networking sites such as Twitter, Instagram, Facebook, and Youtube were

also targeted frequently.

Table 4.2: Goals and median values of malicious campaign clusters.

Campaign Goal |Malic. C.| % ETC(min) Reward $/hour

Social network associated (Review,
Link, Share, Retweet and Like)

2,987 60 33.5 $0.45 $2.13

Search and click 863 17 8 $0.22 $2.65

Search and visit 654 13 5 $0.21 $3.85

Add a comment 197 4 8 $0.31 $2.91

Register in a forum and post a mes-
sage

168 3 12 $0.35 $1.02

Create a new pin at Pinterest 96 2 3 $0.11 $2.20

Download and install a new applica-
tion

45 1 12.5 $0.81 $4.50

Average 12 $0.35 $2.75

Table 4.3: The five most targeted sites by malicious campaigns and their corresponding
median values.

|Malic. C.| % Reward ETC(min) $/hour

Google 902 18 $0.21 6.0 2.3

Twitter 600 12 $0.16 7.5 1.9

Instagram 210 4 $0.13 6.5 1.0

Facebook 154 3 $0.35 7.0 3.0

Youtube 153 3 $0.20 9.5 2.2
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4.5 Real-world impact of malicious campaigns

Thus far, we’ve identified important characteristics of malicious campaigns. Now, we

need to determine if malicious campaigns have any real-world impact on targeted sites and

if existing security algorithms/systems can detect manipulations in the targeted sites. To

investigate these issues, we tracked 29 malicious campaigns targeting Facebook in which

workers manipulated Facebook Likes. We collected daily snapshots of the malicious cam-

paigns from crowdsourcing platforms and daily snapshots of the targeted Facebook pages.

The 29 malicious campaigns consisted of 8,268 tasks, each task required adding one fake

Like. Out of 8,268 fake Like, 7,160 of the Likes were successfully attributed to the target

pages when we checked those pages later, which means only 1,108 (13.4%) of the fake Likes

were deleted by the Facebook security team.

Figures 4.5 and 4.6 show examples of the malicious campaigns manipulating the number

of Facebook Likes. Figure 4.5 shows the campaign description containing a total number

of tasks, the number of available tasks, and task instructions for workers. Eight hundred of

the campaign’s tasks were completed within 4 days although it had 7 days duration.

Figure 4.6 shows the number of completed tasks reported to a requester and the number

of fake Likes completed by workers for the targeted Facebook page. We can clearly observe

Fig. 4.5: Actual task description targeting on Facebook Like.
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(a) Trend of task completion after task posting.

(b) Changes in the number of Likes in Facebook page.

Fig. 4.6: Consequence of manipulating the number of Likes in Facebook.

that the middle and right figures show similar temporal patterns. Out of 800 Likes, 741

Likes remained on the Facebook page, which means Facebook only labeled 59 (7%) Likes

as “fake” Likes.

This example and the previous analysis (for 29 fake liking campaigns) show that mali-

cious campaigns have a real-world impact on targeted sites, and current security systems are

unable to detect most of the manipulated content. The previous work [11] also confirmed

that Twitter’s safety team only detected 24.6% of fake followers. These results motivated us

to investigate an automated approach for detecting malicious campaigns in crowdsourcing

platforms using predictive models.
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CHAPTER 5

FEATURES

In this chapter, we describe proposed features for building malicious campaign classi-

fiers. To build a universal classifier which can be applied to any crowdsourcing platform

regardless what information is available, we proposed and extracted commonly available fea-

tures across the four crowdsourcing platforms. Our proposed features are reward, number

of tasks, estimated time to complete (ETC), hourly wage, number of URLs in task instruc-

tion, Number of URLs in task instruction
Number of words in task instruction , number of words in a task title, number of words in

task instruction, and text features extracted from task title and task instruction.

To avoid the overfitting problem by removing features that are too similar [26,27], we

measured the Pearson correlation coefficient of each pair of the first 8 features excluding text

features (we conducted another feature selection for the text features). Table 5.1 presents

Table 5.1: Pearson correlation coefficient results for 8 features excluding text features.

reward |tasks| ETC
hourly

wage |URLs|
|URLs| /
|words|

|words|
in title

|words| in
instruction

reward 1

|tasks| -.021* 1

ETC .316* -.021* 1

hourly
wage

.084* -.005 -.061* 1

|URLs| .005 -.017* -.107* .059* 1

|URLs| /
|words| -.088* -.001 -.137* .127* .366* 1

|words| in
title

.298* -.003 .263* -.043* -.049* -.225* 1

|words| in
instruction

.408* -.020* .049* .010 .088* -.180* .334* 1

*Correlation is significant at the 0.01 level (2-tailed).
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the correlation coefficient of each pair. The number of word in task instruction and reward

had the highest correlation among the pairs, achieving 0.408. Since 0.408 represented no

significant correlation, we kept all of the first 8 features.

From task title and task instruction, we extracted text features as follows: (i) first, we

removed stopwords from the title and task instruction, and then, we applied stemming to

them; (ii) second, we extracted unigrams, bigrams, and trigrams from the text; (iii) third,

we measured χ2 values for the extracted unigram, bigram, and trigram features [28]; (iv)

finally, we only used text features with positive χ2 values. Through this process, we used

thousands of text features.

Next, Figure 5.1 shows cumulative distribution functions (CDFs) on hourly wage for

malicious campaigns and legitimate campaigns. Interestingly, requesters for 80% of the

legitimate campaigns paid less than one dollar to each worker in terms of hourly wage,

while requesters for 10% of the malicious campaigns paid the same hourly wage to workers.

This suggests that performing malicious campaigns was more profitable, which is consistent

with our previous results.

Malicious campaigns also contain a larger number of tasks than most legitimate cam-

paigns, and malicious campaigns have shorter ETC than legitimate campaigns. Task in-

structions in malicious campaigns contain more URLs than legitimate campaigns, which

Fig. 5.1: CDF of hourly wage by legitimate and malicious campaigns.
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Fig. 5.2: CDF of the number of tasks by legitimate and malicious campaigns.

Fig. 5.3: CDF of estimated time to complete by legitimate and malicious campaigns.

suggests that malicious campaigns require workers to access external websites (potentially

targeted sites) more often.

Finally, malicious campaigns have shorter titles and task instructions than legitimate

campaigns. This observation might indicate that some of the legitimate campaigns are

more complicated to perform and require longer ETC. Overall, the CDFs illustrate distinct

differences between malicious campaigns and legitimate campaigns.
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Fig. 5.4: CDF of the number of URLs by legitimate and malicious campaigns.

Fig. 5.5: CDF of the number of words in title by legitimate and malicious campaigns.

Fig. 5.6: CDF of the number words in task instruction by legitimate and malicious cam-
paigns.
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CHAPTER 6

EXPERIMENTS

In the previous chapter, we observed that malicious campaigns and legitimate cam-

paigns have different characteristics. In this chapter, we build classifiers to detect malicious

campaigns by exploiting these differences. First, we build malicious campaign classifiers

and compare their performance with baselines. Then, we further evaluate robustness of our

classification approach.

6.1 Detecting malicious campaigns

As we mentioned in chapter 3, we collected campaign descriptions for 3 months between

November 2014 and January 2015. The dataset consists of 18,210 legitimate campaigns

and 5,010 malicious campaigns. We built and tested statistical models with 10-fold cross

validation. We compared the performance of three classification algorithms: Naive Bayes,

J48, and Support Vector Machine (SVM).

We compared our statistical models/classifiers with following baselines: (i) majority

selection approach which always predicts a campaign’s class as the majority instances’ class

(i.e., a legitimate campaign in the dataset); (ii) URL-based filtering approach which classifies

a campaigns as a malicious campaign if its description contains at least one URL whose

host name is one of top K sites; and (iii) principal component analysis (PCA) approach,

an unsupervised machine learning technique, inspired from the previous work [29]. In PCA

approach, we projected campaigns (using the same features with our classifiers) onto the

normal and residual subspaces to classify malicious and legitimate campaigns. The space

spanned by top principal components is the normal subspace and the remaining space is

known as residual subspace. From our dataset, we achieved 85% variance from the top 35

principal components out of 1,835 components. We computed L2 norm and set the squared
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Table 6.1: Classification results.

Approach Accuracy FPR FNR

Majority Selection 78.4% 1 0

URL-based filtering@100 72.4% 0.708 0.157

URL-based filtering@500 72.3% 0.688 0.164

URL-based filtering@1000 71.9% 0.635 0.183

PCA - 12% threshold 85.2% 0.999 0.031

our Naive Bayes 89.0% 0.044 0.147

our J48 99.1% 0.023 0.058

our SVM 99.2% 0.019 0.055

prediction error as the threshold value to find the malicious campaigns. We changed the

threshold value from 1% to 50% by 1% increment each time to get the best classification

result. Campaigns, whose L2 norm was greater than the threshold value, were classified as

malicious campaigns.

To evaluate the performance of classifiers, we used following evaluation metrics: accu-

racy, false positive rate (FPR) and false negative rate (FNR). FPR means malicious cam-

paigns were misclassified as legitimate campaigns while FNR means legitimate campaigns

were misclassified as malicious campaigns.

In experiments, we ran majority selection approach, URL-based filtering approach

at top 100, 500 and 1000 sites, PCA approach, and our three classification approaches

(Naive Bayes, J48 and SVM). Table 6.1 shows experimental results of the baselines and our

classification approaches. Majority selection approach achieved 78.4% accuracy, 1 FPR and

0 FNR, URL-based filtering@100 achieved 72.4% accuracy, 0.708 FPR and 0.157 FNR, and

PCA approach with 12% threshold (only reporting the best result) achieved 85.2% accuracy,

0.999 FPR and 0.031 FNR. Overall, our SVM-based classifier significantly outperformed

the other approaches, achieving 99.2% accuracy, 0.019 FPR and 0.055 FNR, and balancing

between low FPR and low FNR.
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6.2 Robustness of our proposed approach

In the previous experiment, we learned SVM classifier achieved the best prediction

results for detecting malicious campaigns. Now, we analyze (i) how much training data we

need to achieve a high prediction rate and (ii) whether a predictive model (i.e., a classifier)

would remain robust over time.

To investigate these issues, we split the dataset chronologically based on weeks (i.e.,

the 3 month data was split into 12 weeks). Then, we trained a SVM classifier using the first

week of data, and we used the classifier to test the data for each of the next weeks. Next,

we added the following week’s data (e.g., the second week of data) into the training set and

tested the data for each of the next weeks. Incrementally, we added each week’s data to

the training set until the training set included data for the first 11 weeks.

Figures 6.1 and 6.2 show experimental results for macro-scale and micro-scale views

of our approach1. In particular, Figure 6.1 shows experimental results of the 2nd week to

the 12th week in a macro-scale view. When we used the first week data as a training set

1We did not show FPR and FNR lines because of the limited space.

Fig. 6.1: A macro-scale view between the 2nd and 12th weeks.
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and applied a classifier to each of the following weeks, the classifier achieved low accuracy.

However, when we added one more week of data to a training set (i.e., the training set

contained the first and second week of data), the classifier achieved significantly high ac-

curacy. Note that 7th testing week’s classification results were slightly lower than earlier

testing weeks because there were very small number of legitimate campaigns posted in the

7th week (e.g., 62% malicious campaigns and 38% legitimate campaigns in the 7th testing

week vs. 11% malicious campaigns and 89% legitimate campaigns in the 6th testing week).

We conjecture that the 7th week is a week containing Christmas and New Year holidays,

so very less number of legitimate campaigns were created while almost same number of

malicious campaigns was created compared with the 6th week.

Figure 6.2 shows experimental results in a micro-scale view by removing the first week

training result (i.e., the classifier that was only trained with a single week of data). Based

on this figure, we clearly observe that a SVM classifier based on data for the first 2 weeks

achieved high accuracy even though the performance was up and down over time. Overall,

the lowest accuracy, highest FPR and highest FNR among all the cases were 93.4%, 0.19,

0.03, respectively. Based on these experimental results, we conclude that two weeks of data

is enough to build an effective predictive model for identifying malicious campaigns. We

also conclude that our proposed classification approach consistently and robustly worked

well over time.

Fig. 6.2: A micro-scale view between the 3rd and 12th weeks.
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CHAPTER 7

BUILDING A MALICIOUS CAMPAIGN BLACKLIST SERVICE

So far we learned that our proposed classification approach can detect malicious cam-

paigns accurately and effectively. In practice, crowdsourcing platform providers can identify

malicious campaigns in near-real time by using our approach when malicious requesters cre-

ate malicious campaigns. As we learned from the previous study [15], some crowdsourcing

platform providers may not be willing to remove these malicious campaigns because they

may lose their revenue like commission from the malicious requesters if they filter/remove

these malicious campaigns. In this case, unfiltered malicious campaigns would affect tar-

geted services and targeted service providers, and eventually online users would get manip-

ulated information. To protect these victims in targeted services side, we designed and built

a web service-based malicious campaign blacklist which provides users (e.g., administrators

of targeted sites or researchers) with various information such as campaign descriptions and

statistical time-line charts.

The core component of the malicious campaign blacklist service is the malicious cam-

paign classifier that we built and tested in the previous chapter. A current version of our

blacklist service1 supports a keyword search, group retrieved relevant malicious campaigns

by various categories (so that users can further access a specific category), and visualizes

a statistical time-line chart showing how many relevant malicious campaigns have been

generated/detected over time.

Figure 7.1 shows a snapshot of our blacklist service, given a search keyword “google”.

In this example, the blacklist service retrieved relevant malicious campaigns and showed the

most relevant results in the first page. Simultaneously, it grouped the malicious campaigns

and showed names of clusters/categories in the left pane with the number of subcategories

1Our malicious campaign blacklist service will be released in public soon.



26

for better navigation. It also showed a trend of related malicious campaigns.

Fig. 7.1: A malicious campaign blacklist service.
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CHAPTER 8

CONCLUSION

In this thesis, we analyzed characteristics of malicious campaigns and legitimate cam-

paigns. The median hourly wage in malicious campaigns ($2.48) was larger than the median

hourly wage in legitimate campaigns ($1.88), tempting workers to perform malicious cam-

paigns in targeted sites such as social networking sites, online review sites, and search

engines. To measure the real-world impact of malicious campaigns, we selected Facebook

Liking campaigns and found that Facebook caught only 13% fake likes. This suggests

that current defense systems in targeted sites are inadequate and potentially undetected

malicious campaigns are deteriorating information quality and trust.

To overcome this problem, we proposed features which were distinguished between ma-

licious campaigns and legitimate campaigns. Then, we built malicious campaign classifiers

based on the features for mitigating the impact and reach of the malicious campaigns to

targeted sites. Our classifiers outperformed the baselines – majority selection, URL-based

filtering and PCA approaches –, achieving 99.2% accuracy, 0.019 FPR and 0.055 FNR.

By using the classifier, we built a malicious campaign blacklist service that provides a

keyword search, retrieves relevant malicious campaign descriptions, groups these campaigns

by various categories for better navigation, and shows a trend of relevant malicious cam-

paigns. The blacklist service will help targeted service providers, researchers and users to

understand what kind of malicious campaigns have been running under the targeted ser-

vices and which information is manipulated, and potentially mitigate the impact of these

malicious campaigns in the target sites as well.
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