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ABSTRACT 
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This research investigated the successional status of treeline whitebark pine (Pinus 

albicaulis) populations on 14 stands in central Idaho and used empirical statistical models 

to determine the principal factors affecting recruitment and mortality. The longest lived 

whitebark pines from four additional high-elevation sites were used to develop a tree-ring 

chronology to reconstruct over 1,000 years of average April-May temperature. 

The assessment of stand structures using size-frequency distributions generally 

provides evidence that treeline whitebark pine populations are currently self-sustaining in 

areas of low to nonexistent incidence of white pine blister rust ( Cronartium ribicola). 

However the presence of subalpine fir (Abies lasiocarpa) in all size classes on sample plots 

suggests potential replacement of, or codominant climax with whitebark pine. 

Inference from Poisson regression models suggests that stand structure variables 

are important to whitebark pine establishment, which may be constrained by interference 

competition and available growing space. Subalpine fir establishment appears to be 

constrained by distance to seed source at lower elevations and by favorable site 

water-balance effects on northly aspects. 
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Inferences from logistic regression models calibrated from pre-epidemic stand 

conditions and post-epidemic mortality levels surrounding a historic mountain pine beetle 

(Dendroctonus ponderosae) outbreak suggest that density and tree size variables are 

significant predictors of stand and individual tree attack. The significance of the predictor 

variables in these models corroborates the susceptible host characteristics identified in 

other pine-mountain pine beetle system risk assessments. 

A composite whitebark pine tree-ring chronology from 24 trees from four sites was 

used to develop a 1028-year long reconstruction of spring temperature for the 

Sawtooth-Salmon River region of central Idaho. The chronology was calibrated against 

Ketchum and New Meadows, Idaho US Historical Stations, April-May average monthly 

temperature using half-sample calibration-verification tests for the period that contained 

historic climate data, 1909-1992. The chronology accounted for 41 % of the variability in 

the climatic data and successfully simulated medium to high frequency trends. A 19th 

century cold period coincides with the "Little Ice Age." Neither the instrumental nor the 

proxy temperature records show evidence of warming in the 20th century. 

(175 pages) 
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CHAPTER 1 

INTRODUCTION 

High-elevation, treeline forests are an important component of the vegetation in 

the northern Rocky Mountains (Daubenmire 1943, Steele et al. 1981, 1983, Peet 1988). 

These forests are composed of a few species of subalpine conifers that range across 

successional types and vary from closed-storied stands to open-storied stands to 

krummholz forms. Upper treeline forests constitute small areas on landscape scales, but 

occur on the highest elevations that support trees growing in an upright form. They are 

critical for watershed protection (Farnes 1990), are considered sensitive indicators of 

global climate change (LaMarche and Stockton 1974, Ross 1990, Stevens and Fox 1991), 

and provide habitat for wildlife at the upper limit of forested vegetation. Heat and site 

water constraints are the most common limitation to upper treeline, but biotic factors 

affect the abundance and distribution of species as well (Tranquillini 1979, Lloyd 1997). 

In the cold, dry mountain ranges of central Idaho the upper timberline is 

dominated by whitebark pine (Pinus albicaulis Engelm.). This long-lived pine occurs on 

harsh, rocky, exposed sites and at elevations above 2, 700 meters, and is generally the only 

species that provides shade to delay snow melt through the early summer. Temperature 

reconstructions from whitebark pine tree rings exceed 1,000 years (Biondi et al. 1999, 

Chapter 4) and provide baseline information for studying climatic variability. Whitebark 

pine is a keystone species (Paine 1969, Krebs 1994, Lanner 1996) of critical importance to 

wildlife species dependent on its nutritious seeds. Recreationists value whitebark pine as 

an aesthetic component of treeline landscapes. 

Regional attention to whitebark pine population levels has been stimulated by 

reports that current environmental conditions have led to higher rates of mortality than 

establishment (Arno 1986, Keane et al. 1990, Keane and Arno 1993, Keane et al. 1994). 



Recognized factors causing whitebark pine decline in the northern Rocky Mountains 

include an exotic fungus, white pine blister rust ( Cronartium ribicola), infestation of 

whitebark pine by mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: 
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Scolytidae), and successional replacement by shade tolerant species as a result of fire 

suppression (Arno and Hoff 1989, Keane et al. 1990, Morgan and Bunting 1990, Kendall 

and Arno 1990, Keane and Arno 1993). Current research efforts have focused primarily on 

the exotic blister rust fungus, which has been responsible for severe pine mortality and 

reduced cone crops in whitebark pine over much of its northern distribution (Keane et al. 

1994). 

Conservation of species such as whitebark pine that are threatened by 

environmental change requires understanding the processes determining population and 

community structure. Ecological status and trends must be assessed; is the population 

stable or self sustaining, increasing or decreasing? Abiotic and biotic factors influencing 

life history characteristics, including disturbances, must be be identified and the degree 

that they affect populations investigated (Schemske et al. 1994). In the following section I 

present the background biology of whitebark pine that was eloquently summarized by 

Arno and Hoff (1989). In the last section I present a conceptual model that serves as a 

framework to address questions of self-sustainability and motivates the discussion of biotic 

factors affecting whitebark pine. 

BACKGROUND 

Whitebark pine is a slow growing, long-lived, stone pine (subgenus Strobus, section 

Strobus, subsection Cembrae) of high-elevation forests and timberlines of the northwestern 

United States and southwestern Canada. It is one of five stone pines worldwide and the 

only stone pine in North America. The northern distribution limit is in the Canadian 

Coastal Mountains of British Columbia and its southern limit is in the California Sierra 
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Nevada Mountains. The distribution of whitebark is split between the inland Rocky 

Mountain Ranges and the Coastal Ranges of the Cascade, and Sierra Nevada. It occupies 

harsh, cold sites characterized by rocky, poorly developed soils and snowy, wind-swept 

exposures (Arno and Hoff 1989). Throughout its range, whitebark pine may occur as a 

climax alpine species, including a krummholz form in communities above tree line, or as a 

seral species or climax co-dominant with subalpine fir (Abies lasiocarpa (Hook.) Nutt.). 

Other common tree associates in the Northern Rockies are lodgepole pine (Pinus contorta 

Doug!.), Engelmann spruce ( Picea engelmannii Parry), and less commonly mountain 

hemlock ( Tsuga mertensiana (Bong.) Carr.) and alpine larch (Larix lyallii Par!.) (Arno 

and Hoff 1989). 

Whitebark pine seeds are not wind dispersed; they develop in indehiscent cones 

that are harvested by Clark's nutcrackers (Nucifraga columbiana). Nutcrackers cache or 

consume seeds and those not retrieved from caches may germinate and become established 

as seedlings (Lanner 1980, Tomback 1978, 1982, Hutchins and Lanner 1982). Corvids, 

such as Clark's nutcracker and other Nucifraga spp., have evolved with Cembrae pines 

over centuries and are critical components in pine regeneration dynamics, ultimately 

responsible for the geographic range, spacing, successional status, and genetics of the 

stone pines (Hutchins and Lanner 1982, Lanner 1982, Tomback 1982, Lanner 1996). Red 

squirrels ( Tamiasciurus hudsonicus) also harvest cones and store them in middens. Black 

bears ( Ursus americana) and the endangered grizzly bear ( Ursus arctos horriblis) raid 

these middens for the energy-rich food that the seeds provide (Kendall 1983, Mattson and 

Jonke! 1990). 

The most serious threat to the persistence of whitebark pine is white pine blister 

rust, an exotic fungus native to Eurasia that was introduced to the west coast of the 

United States and Canada in the early 20th century (Hoff et al. 1980, Hoff and Hagle 
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1990, Hoff et al. 1992, Tomback et al. 1995, Smith 1997, Smith and Hoffman 2000). In 

northwestern Montana, environmental conditions favorable to the propagation of white 

pine blister rust have resulted in severe pine mortality and reduced whitebark pine cone 

crops (Arno 1986, Kendall and Arno 1990, Mattson and Jonke! 1990, Keane and Arno 

1993, Keane et al. 1994). Decline of whitebark pine populations on 20-year 

remeasurement plots in northwestern Montana showed 42% mortality rate over the 

measurement period (Keane and Arno 1993). The threat of local extinction of whitebark 

pine from blister rust is possibie in the mesic northwestern range of whitebark pine partly 

because humid weather enhances fungus spore dissemination (Arno and Hoff 1989). The 

geographic spread of blister rust to the south and ea.stern range of whitebark pine, 

including Yellowstone National Park is expected to have devastating effects on the species 

and the wildlife dependent on its nutritious seed, particularly the grizzly bear (Keane and 

Arno 1993). It appears that it is only a matter of time and favorable weather conditions 

before it spreads throughout the pine's distribution. Research efforts are concentrated on 

rust resistance and documenting rates of decline and spread of blister rust (Hoff and Hagle 

1990, Hoff et al. 1992, Keane and Arno 1993, Kendall and Keane 2000). Areas with low to 

nonexistent blister rust are currently the only areas where the natural variability of factors 

affecting whitebark pine populations may be assessed. 

Mountain pine beetles are the most common natural damaging agents of 

whitebark pine and are responsible for mortality of mature trees (Arno 1970, Ciesla and 

Furniss 1975, Arno 1986, Arno and Hoff 1989, Bartos and Gibson 1990, Perkins and 

Swetnam 1996): As a phytophagous, cambial-feeding insect of western conifers, mountain 

pine beetle is recognized as an aggressive forest insect responsible for large timber losses, 

and as an integral component of forest ecosystem dynamics for its role in stand thinning, 

redistribution of resources for regeneration, and for fuel load enhancement (Peterman 



1978, Romme et al. 1986). Mountain pine beetles may kill trees previously weakened by 

blister rust (Keane and Arno 1993). 
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Stand-replacing fires adjacent to treeline whitebark pine stands have historically 

spread to high-elevation stands either as small spot fires resulting in the death of small 

clumps of trees, or as larger stand-replacing fires when fuel conditions and intensity 

permit (Arno and Hammerly 1984, Murray 1996). Lightning strikes are common in 

treeline stands, resulting in the death of one to several trees. Mean fire return intervals in 

seral whitebark pine stands range from 50 to 300 years (Arno 1986, Arno and Hammerly 

1984) and on rocky treeline sites events may exceed 350 years (Barrett 1994, Romme 

1982). Gap producing disturbances resulting in the death of a few trees, such as those 

caused by lightning strikes or spot fires, occur on shorter time intervals (Watt 1947, Arno 

1986, Pickett and White 1985). On lower elevation, less harsh sites, fire suppression of the 

last 80 years has favored the successional replacement of shade intolerant whitebark pine 

by shade tolerant species such as subalpine fir (Arno and Hoff 1989, Murray 1996 ). Only 

on treeline stands, where understory fuels are generally insufficient to carry wildfire, and 

where environmental conditions are generally limiting for establishment of competitors do 

whitebark pine populations appear to be self-sustaining. 

A south-central Idaho study area was chosen for this research because field surveys 

from 1995-1997 showed that white pine blister rust was only present in low amounts 

(Smith 1997, Smith and Hoffman 2000, Perkins pers. observ.). Accordingly, its effects as a 

confounding factor in studying treeline whitebark pine dynamics are currently negligible. 

However, many stands in this region experienced high mortality of large diameter trees in 

a widespread mountain pine beetle epidemic between 1920 and 1940 (Arno 1970, Ciesla 

and Furniss 1975, Arno 1986). Therefore a mixture of mountain pine beetle-disturbed and 
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nondisturbed stands was sampled to provide a comparison of the effects of disturbance on 

successional dynamics, recruitment and mortality. 

CONCEPTUAL FRAMEWORK 

The dynamics of the treeline whitebark pine populations are a consequence of the 

interactions among abiotic and biotic factors that enhance or mitigate population levels. 

Abiotic factors include the site heat and water balance, radiation loads, and nutrient 

availability. Principal biotic factors are Clark's nutcracker, mountain pine beetle, and 

more shade tolerant tree species. Whitebark pine populations are promoted by Clark's 

nutcracker; seeds not consumed or retrieved from caches may become established as 

seedlings. This is a positive effect for trees and nutcrackers (Fig. 1-1). Mountain pine 

beetles feed on and kill trees and reduce whitebark pine population levels. Thus, 

whitebark pine has a positive effect on mountain pine beetles and mountain pine beetles 

have a negative effect on whitebark pine (Fig. 1-1). Description of high elevation 

whitebark pine forests as a system is appealing because it provides a conceptual model to 

integrate information from the parts to make inferences about the whole. The integrity of 

the system depends upon whitebark pine's relative stability and self sustainability as 

represented by the tree in Figure 1-1. The functional components that influence the whole 

are represented by the nutcracker and beetle in Figure 1-1. This simple schematic 

represents a complex system and serves to highlight the interactions affecting a unique, 

long-lived species that is endangered primarily because of human activities. 

In the second chapter I quantitatively describe the successional status of treeline 

whitebark pine stands by fitting the frequently used reverse-J or negative exponential 

distribution (Leak 1964, 1965, Whipple and Dix 1979, Parker 1988) to whitebark pine size 

class data. This distribution is the theoretical ideal for a self-perpetuating population and 

may imply a stable size distribution, a necessary but not sufficient assumption of some 
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demographic models. I measure the departure from the theoretical distribution using the 

coefficient of determination R2 . The objective of this chapter is represented by the tree in 

Fig. 1-1. 

In the third chapter, I use generalized linear models (McCullagh and Nelder 1989) 

and generalized additive models (Hastie and Tibshirani 1990) (log-linear regression) to 

predict whitebark pine and subalpine fir seedling density as a function of stand structure 

and environmental site variables. Prediction of seedling density is useful in its own right, 

but more importantly these models elucidate ecological mechanisms related to recruitment 

success. The objective of this chapter is represented by the nutcracker in Fig. 1-1. 

In the fourth chapter, I use a generalized linear model (logistic regression) to 

explain the probability of mountain pine beetle attack and death of whitebark pine as a 

function of tree and stand-level variables. Again the model is useful for prediction and 

identifies susceptibility characteristics of whitebark pine that are common to other pine 

species. The objective of this chapter is represented by the beetle in Fig. 1-1. 

In the fifth chapter I present a spring temperature reconstruction from whitebark 

pine tree rings. The long-lived individuals (mean age equals 430 years) that constitute the 

chronology have survived disturbances or lived on extreme sites where the return interval 

of disturbances has left them intact. Their usefulness for a climate reconstruction is 

caused by their sensitivity to site heat and water constraints on high-elevation treeline 

sites. The objective of this chapter is again represented by the tree in Fig. 1-1. 

Finally in the last chapter I summarize the implications of these interacting inputs 

and outputs to conjecture what processes are structuring treeline whitebark pine 

populations. 
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Fig. 1-1. Schematic representation of the whitebark pine system with principal 

biotic components, Clark's nutcracker and mountain pine beetle. The arrows connecting 

the variables represent the direction of effect and rates of change between the biotic state 

variables of the system. 
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CHAPTER 2 

STAND STRUCTURE AND SUCCESSIONAL STATUS OF TREELINE WHITEBARK 

PINE STANDS 

Abstract. Diameter distributions from 14 treeline whitebark pine (Pinus 

albicaulis Englem.) stands in central Idaho were analyzed for successional status. Nine 

stands had experienced widespread mortality during a mountain pine beetle 

(Dendroctonus ponderosae) (Coleoptera: Scolytidae), epidemic ca. 1930 and five were 

unaffected by mountain pine beetles. Reconstructed stand structures prior to the ca. 1930 

mountain pine beetle epidemic for the attacked (disturbed) and nonattacked 

(undisturbed) stands were compared to current (1998) stand structures. Size class 

distributions were compared to negative exponential and multimodal forms indicating 

self-sustaining climax status. Inspection of the direction of change of stand structure 

reveals that three of the undisturbed stands have destabilized and two show little change, 

as assessed by goodness of fit to the negative exponential curve. Four of the disturbed 

stands increased in stability and three showed little change. Only two disturbed stands 

decreased in stability. Thus mountain pine beetle infestations may be beneficial for 

maintaining the self-replacing status of treeline stands. Lags in recruitment following 

disturbance may be expected after mortality of large diameter cone-producing trees. The 

presence of subalpine fir in all size classes suggests a successional replacement of 

whitebark pine by subalpine fir or potential codominant status. 

INTRODUCTION 

On time scales of decades to thousands of years, treeline forests are generally 

considered self-perpetuating, stable, and representative of the edaphic and climatically 

limited climax (Clements 1928, 1936, Daubenmire 1943, Whittaker 1953, 1975, Veblen 
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1986, Peet 1988). By definition , a climax plant community or population is self-replacing 

in the absence of disturbance and returns to the same end community following 

disturbance (Clements 1936, Daubenmire 1943, Whittaker 1953, Hall et al. 1995). 

Stability is intrinsically linked to the climax theme because a balance between inputs 

(births) and outputs (deaths) is maintained resulting in a stable or steady state 

population. Fluctuations about the average or changes in absolute abundance of 

population levels are accepted in this framework as long as the relative proportions of 

classes are maintained. Cycles may also be considered steady state as long as they are 

regular and without trend (Pielou 1977). 

On treeline sites in the northern Rocky Mountains , whitebark pine (Pinus 

albicaulis Engelm.) occurs in nearly pure , single species stands and is considered the 

climax species (Weaver and Dale 1974, Steele et al. 1981, 1983, Arno 1986, Peet 1988, 

Arno and Hoff 1989). It is classified as intermediate to intolerant of shade (Amo and Hoff 

1989) and is considered drought tolerant (Arno and Hoff 1989, Tomback et al. 1993). 

Whitebark pine is considered to be better adapted to the harsh conditions found on 

treeline sites than its principal codominant and competitor, subalpine fir ( Abies lasiocarpa 

(Hook.) Nutt.) (Arno and Hoff 1989, Callaway 1998). It conforms to the life history 

patterns of other long-lived pines , investing heavily in roots and stems as juveniles, 

maturing later, and typically forming open-canopied stands (Platt et al. 1988, Arno and 

Hoff 1989). Its importance has been recognized for watershed protection (Farnes 1990, 

Arno and Hoff 1989), as a mutualist with Clark 's nutcracker (Nucifraga columbiana) - its 

seed dispersal agent (Lanner 1980, Tomback 1982, Hutchins and Lanner 1982, Lanner 

1982)-and has been called a keystone species of subalpine ecosystems (Lanner 1996). 

Mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Scolytidae) is the most 

common natural damaging agent, killing mature trees in endemic and epidemic 
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infestations (Ciesla and Furniss 1975, Arno 1986, Arno and Hoff 1989, Bartos and Gibson 

1990, Perkins and Swetnam 1996). Wind-throw, wildfire, lightning, and other pathogens 

(Hoff and Hagle 1990) also kill trees. 

Considerable research in the Rocky Mountains has focused on the successional 

status of moderately tolerant and shade tolerant subalpine species such as Engelmann 

spruce (Picea engelmannii Parry) and subalpine fir and shade intolerants such as 

lodgepole pine (Pinus contorta Doug!.) and limber pine (Pinus fiexilis James) (Hanley et 

ai. 1975, Whipple and Dix 1979, Peet 1981, Johnson and Fryer 1989, Knowles and Grant 

1983, Parker and Peet 1984, Parker 1988, Veblen 1986). The successional status of treeline 

forests of whitebark pine has received less attention (but see Parker 1988 and Snethen 

1980) for several reasons . First, research efforts on whitebark pine have focused primarily 

on the exotic white pine blister rust fungus ( Cronartium ribicola) responsible for 

considerable mortality, and reduced cone crops over much of its northern distribution 

(Hoff et al. 1992, Keane and Arno 1993, Keane et al. 1994). Whitebark pine decline has 

severe consequences to the wildlife dependent on its nutritious pine nuts , including the 

Clark's nutcracker , red squirrel ( Tamiasciurus hudsonicus) (Reinhart and Mattson 1990), 

black bear ( Ursus americanus) , and endangered grizzly bear ( Ursus arctos horriblis) 

(Kendall 1983, Arno 1986, Mattson and Jonke! 1990, Kendall and Arno 1990, Mattson et 

al. 1993, Keane and Arno 1993). Second, research in the last decade has demonstrated the 

positive effects of fire on whitebark pine recruitment (Tomback et al. 1993) and on stand 

dynamics with simulation models (Keane et al. 1990). On stands where whitebark pine is 

seral, it is increasingly being replaced by shade tolerant subalpine fir because of fire 

suppression (Arno 1986, Morgan and Bunting 1990, Keane et al. 1994). Information on 

the effects of fire are critical to management activities focusing on conservation and 

restoration of the species and again research has been prioritized here. Finally, whitebark 



pine is not generally a species of commercial interest; historically there has been little 

concern about stand structure and successional dynamics of this high-elevation pine. 
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The biological integrity of high-elevation ecosystems , particularly biodiversity and 

watershed protection, and the importance of whitebark pine to endangered species have 

raised both scientific and public awareness of the need to understand the processes 

affecting whitebark pine populations. Therefore, the purpose of this research was to 

determine the successional status of whitebark pine forests near treeline through analyses 

of stand structure . It appears that only on treeline stands and in areas with low to 

nonexistent incidence of blister rust is whitebark pine self-perpetuating as the climax 

species. 

Forest researchers characterize stand structure and interpret successional status 

using both age and size class frequency distributions (Knowles and Grant 1983, Hanely et 

al. 1975, Whipple and Dix 1979, Veblen 1986, Lorimer 1980). Age-frequency distributions 

capture the time-varying mortality and recruitment rates to the extent that estimates of 

pith dates and decomposition schedules allow (Lloyd 1997). Ideally they yield the most 

information on time-defined successional status , evenness of age classes , and provide the 

resolution to compare with historical environmental conditions (Veblen 1986). For 

instance, age-based dendrochronological methods have enabled researchers to reconstruct 

both establishment and mortality rates on 100 year to millennium scales and compare 

them to climatic variations and disturbance (Lloyd 1997, Villaba and Veblen 1997). 

Size , as a proxy for age , is an easier variable to obtain , may be more closely related 

to endogenous stand dynamics such as growth release following disturbance (Peet 1981) , 

may be a better indicator than age of reproductive capacity (Harper 1967, 1977), and 

historically has been the variable of interest for commercial timber values ( de Liocourt 

1898, Reineke 1933, Leak 1964, Knowles and Grant 1983). For these first three reasons, 



particularly ease of measurement and the effects of mountain pine beetle disturbance 

(Chapter 4, Perkins and Swetnam 1996) I chose to use size frequency distributions. 
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Independent of whether age or size variables are used for structural analyses, the 

frequency distribution that characterizes a stable, self-replacing all-aged population is 

known as the reverse-J , inverse-J , or J-shaped probability distribution (Leak 1965). It is a 

negative exponential function, y = ae-rx, where e is the base for natural logarithms, x 

represents the size or age class variable on a continuous scale and y is the number of trees 

per age or size class. The constants a and r are positive and reflect the structure of the 

population distribution. 

To evaluate stand structure and successional status of treeline whitebark pine 

populations , I focused on the following questions: (1) Is there evidence that whitebark 

pine are self-perpetuating populations as evinced by negative exponential diameter 

distributions? (2) Is there evidence of a negative exponential diameter distribution prior 

to a large-scale disturbance , a mountain pine beetle epidemic of ca. 1930? (3) How does 

the mountain pine beetle epidemic change the shape of the size-frequency distribution? 

( 4) In the 70 years since the mountain pine beetle epidemic , has stand structure attained 

a semblance of pre-disturbance form? (5) Is there evidence of successional advance 

(encroachment) of subalpine fir on high-elevation sites? 

This work is intended to serve as a framework for understanding the processes 

structuring treeline whitebark pine populations . A quantitative description of the current 

stand structure is expected to be useful for silvicultural management decisions for 

restoration and conservation of the species. 
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METHODS 

Study Area 

A central Idaho study area was chosen because field surveys from 1995-1997 

showed that white pine blister rust was only present in low amounts (Smith 1997, Smith 

and Hoffman 2000, Perkins pers. observ.). Accordingly , its effects as a confounding factor 

in characterizing stand structure are currently negligible. However, many of these stands 

experienced high mortality of large diameter trees in a widespread mountain pine beetle 

epidemic between 1920 and 1940 (Arno 1970, Ciesla and Furniss 1975, Arno 1986). 

Evidence of the epidemic is still apparent 70 years later with ghost forests of persistent 

snags. Not all high-elevation stands were attacked in this epidemic (Chapter 4) ; therefore 

a mixture of attacked and nonattacked stands was sampled to provide a comparison of the 

effects of disturbance on successional dynamics. 

Fourteen treeline whitebark pine stands located within the Sawtooth National 

Recreation Area , the Sawtooth National Forest, and the Challis National Forest were 

sampled during the field season of 1998 (Fig. 2-1). Stands were locate d in six mountain 

ranges within the study area. Four sites were located near summits in the White Clouds 

Mountains (WC), three in the Headwater Mountains (HW), two in the Smoky Mountains 

(SM), three in the Salmon River Mountains (SR), one in the Boulder Mountains (BM), 

and one in the Sawtooth Mountains (SW) (Fig. 2-1) . The Headwater Mountains are not 

identified in Fig. 2-1; they were considered either part of the Sawtooth or Smoky 

Mountains and form the divide between the Salmon and Big Wood rivers. Elevations 

ranged from 2,700 to 3,000 m (8,800 to 9,800 ft). Stand names and physical site attributes 

are summarized in Table 2-1. 

Sample stand selection criteria were: (1) whitebark pine was the dominant species 

with composition greater than or equal to 60% of total basal area; (2) stand elevations 
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were bet ween 2,700 m (8,800 ft ) and an upp er edaphic tr eelin e bord ering an unveg etat ed 

rock ridgetop ; (3) stand extent was as large an area as possibl e with homogeneous 

structure , constant aspect and slop e; ( 4) tree form was upright (krummholz form trees 

were not sampled) ; (5) mountain pine beetle attacked and nonattacked stands within the 

same watershed were chosen whenever possible. The last criterion was relevant to 

objectives characterizing host susceptibility in Chapter 4. Here the importance of 

disturbed stands was for assessing structural patterns following disturbance. Beyond these 

criteria , selection of sites was restrict ed by access within a day . Aerial photographs and 

ground reconnaissance or both were us ed to identify potential stands . Attacked and 

nonattacked stands were differentiated by abundance of whitebark pine snags with visible 

J-shaped adult beetle galleries and lack of fine limbs . The first criterion , adult galleries, 

had been used previously to determine beetle attack (Perkins and Swetnam 1996) and the 

second , no fine limbs , was a consistently observed characteristic of trees killed in the 

1920-1940 period. Stands compos ed of~ 15% beetl e-killed snag s were consid ered attacked 

stands ; stands composed primarily of living whit ebark pines with few beetl e killed trees 

were con sidered nonattacked stands . These were readily identifiable on aerial photographs. 

Selected stands often extended below 2,700 m (8,800 ft) but were not sampled below this 

elevation because in this geographic region their character was distinctly seral succeeding 

to subalpine fir . Implicit in the near-treeline criterion is the idea that these stands 

represent the climax whitebark pine community (Whittaker 1975, Steele et al. 1981) . 

The study area in the central Idaho region is semiarid with an averag e annual 

precipitation of 82 cm (32 in.) and ranges from less than 38 cm (15 in.) in the southern 

section and valleys to greater than 152 cm (60 in.) on some mountain peaks. Most 

precipitation falls as snow and rain during winter and spring ; at elevations above 2, 700 m , 

most precipitation falls as snow. Annual temperatures range from average minimum of 
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-6° C (22° F) to average maximum of 8° C ( 46° F) with a mean of 2° C (36 °F) (Steele et 

al. 1981). Extreme cold temperatures of -34° to -47° C (-30° to -50° F) are recorded 

from December through February (Steele et al. 1981). Winds redistribute snow around 

whitebark pine trees to form snowdrifts that may linger until July and occasionally 

August. Granitic bedrock of the Sawtooth and Idaho Batholiths forms the core of the 

study area, with Tertiary volcanic and sedimentary forms on southerly and easterly ranges 

(Williams 1961) . 

Across the study area, tree associates are lodgepole pine , subalpine fir, Douglas-fir 

(Pseudotsuga menziesii Mirbel Franco) , and Engelmann spruce. Habitat types are in the 

PIAL/ABLA or PIAL series (Steele et al. 1981). Landscape vegetation mapping on the 

Sawtooth National Forest identified 4.1 % of the land area as climax whitebark pine 

vegetation (Redmond et al. 1997). 

Field Collections 

Seven to ten 0.04-ha (1/10 acre) plots with a nested 0.008-ha (1/50 acre) subplot 

were established randomly on each site, except for one site , RRB, which only had three 

plots. For each plot, elevation , aspect, slope , location coordinates, the presence of old 

wood, and charcoal were recorded. On each 0.04-ha plot , the diameter at breast height 

(DBH , 1.5 m (4.5 ft .) above ground surfac e) and species of all trees 2: 10.2 cm (4.0 in) 

DBH were recorded; on each 0.008-ha plot th e DBH and species of all trees less than 10.2 

cm DBH ( 4 in.) were recorded. Additionally , the first trees north and south on a 

clockwise arc from plot center were cored with an increment borer for age determination. 

To maximize the precision of age estimates, trees were cored close to ground level, 

generally 30-35 cm (12-14 in.) from the ground surface. Individual trees were recorded as 

attacked and killed by mountain pine beetles versus not attacked. 
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Analyses 

To reconstruct the stand structure prior to the mountain pine beetle epidemic, the 

diameter of trees ca. 1930 (DBH30) was estimated from the subset of cored trees as: 

DBH30 = DBH98 - 2 * RI 

where DBH98 was the diameter at breast height recorded in 1998 and RI was the radial 

increment measured to the nearest 0.25 cm (0.10 in.) along the increment core from the 

1930 through the 1998 annual ring . A least squares regression was used to calculate the 

DBH30 of all live trees sampled as: 

DBH30 =(a+ bv'DBH98) 2 

The regression was significant (p < 0.001) with 53% of the variability in DBH30 explained 

by DBH98 (Table 2-2). The regression model was thus considered adequate to reconstruct 

diameters of trees that survived the ca. 1930 epidemic. The model fit and evidence of the 

random distribution of model errors are shown in Fig. 2-2. 

For both the pre-epidemic and 1998 stand structure analyses, average abundances 

were normalized to a per ha basis, and will be referred to as densities in this paper. 

Reconstructed diameters ca. 1930 and 1998 sample diameters were used to generate 

standard stand-level forest metrics (Husch et al. 1982) including basal area (m 2/ha) , trees 

per ha (tph), mean basal area (mba), quadratic mean diameter (dq), and stand density 

index (sdi) (Reineke 1933, Long and Daniel 1990). Sampled 1998 diameters were also used 

to generate local density metrics including basal area per 0.04 ha of live and dead trees 

(lbplt and dbplt) and and live and dead trees per 0.04 ha (ltplt and dtplt). The 0.04 ha 

basis reflects the local area environment of trees on subplots. 
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Size-Age Relation ships and Size Freq·uency Di stributions 

Linear regressions of age against size hav e proven useful for inference of trends 

related to age structure. The problems associated with size as a surrogate for age are well 

known. Trees have differential growth rates related to environmental and autogenic effects 

(Smith et al. 1997). Nonetheless I assessed the variability in age that could be explained 

by diameter using a least squares regression. Local density metrics as well as DBH were 

included as independent variables. To maximize the precision of age estimates , only 

increment cores from sample trees that included the pith or were within ten years of the 

pith were used in regression analyses. Curvature of rings on cores was compared with 

concentric circles on a plastic template to estimate the number of annal rings to the pith. 

Size-frequency histograms and distributions were calculated for the two p rincipal 

species, whitebark pine and subalpine fir. Douglas-fir and lodgepole pine were present in 

small amounts , so their distributions are not reported. All size frequency distributions 

were plotted over 5-cm diameter classes. Seedlings density was generally two orders of 

magnitude greater than pole size or dominant tree density so densities were transformed 

to the natural logarithm scale and plotted against the midpoints of the diameter classes . 

Because the tree densities were transformed to the logarithm scale, the negative 

exponential curve was fitted in the natural log scale using least squares regression (Hett 

1971). I used the coefficient of determination (R 2) to measure the departure from the 

idealized stable size distribution (reverse-J) (Parker 1988). 

RESULTS 

The effect of the mountain pine beetle disturbance of the 1920-1940 period is 

reflected in the changes in tree density on the sampled stands (Table 2-3). Basal area 

(ba30), trees per ha (tph30) , mean basal area (mba30), quadratic mean diameter (dq30), 
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and stand density index (sdi30) were all lower in nonattacked than attacked stands . The 

implications of these differences to host susceptibility characteristics of whitebark pine are 

discussed in Chapter 4. The nonattacked stands have continued to increase in basal area 

and density , while most of the attacked stands have not reached their pre-1930s stocking 

levels. Across all sites charcoal remnants, down log remnants and old, pre-epidemic snags 

were observed. 

Size-Age Relationships 

Regression analysis with age as a function of diameter and local density metrics 

revealed that only diameter was significantly correlated (p::; 0.001) with age. Local basal 

area and trees per 0.04 ha did not reduce the variability in the regression sufficiently to 

retain them as predictors in a multiple regression. This is not surprising because 

individuals occur in open-canopied stands near treeline with mean basal areas of 18 m2 /ha 

(80 ft 2 /acre) (Table 2-2). The regression equation was: 

Age= -47.6329 + 42.5113 JDBH 

with 55% of the variability in age explained by DBH (Table 2-4). The model fit is shown 

in Fig. 2-3. 

Size-Frequency Distributions 

Size frequency distributions of both pre-mountain pine beetle epidemic (ca. 1930) 

and current (1998) stand structures revealed two patterns: (1) a negative exponential 

(reverse-J) distribution and (2) a multimodal distribution. Whitebark pine seedling 

densities are high on all sites (Appendix A) . The natural log transform of the frequencies 

for each size class appears in Fig. 2-4 for the undisturbed stands and in Fig. 2-5 for the 

mountain pine beetle disturbed stands. The straight line fit of the logarithmic 
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transformation of the negative exponential distribution suggests a self-perpetuating 

population (R 2 2: 0.90) on six of of the 14 stands prior to the beetle epidemic (Table 2-5, 

Figs. 2-4, 2-5). Of these six stands, two (AVL and BGH) were subsequently attacked and 

four (AND, ASO, CRS, NRR) were not. Two of the four undisturbed stands, CRS and 

NRR, have since departed from a previous stable size distribution. The two attacked 

stands that exhibited stable size distributions before the epidemic (AVL and BGH) have 

not significantly departed from the negative exponential distribution in the 70 years since 

the disturbance (Fig. 2-5). 

Prior to the epidemic eight stands were characterized by the multimodal 

distributions (Parker 1988). Coefficients of determination ranged from 0.50 to 0.88 for the 

idealized fit to the negative exponential distribution (Figs. 2-4, 2-5). The multimodal 

distribution may be described as modification of Whipple and Dix's (1979) bimodal 

distribution (Parker 1988). This distribution is associated with (1) a high number of 

seedlings and saplings, and (2) with two or more size classes with higher density than 

adjacent smaller and larger classes. Such distributions indicate episodic or pulse 

recruitment , usually following a disturbance, and may achieve an all-aged, self-replacing 

population over time (Whipple and Dix 1979). Of the eight stands characterized by 

multimodal distributions , seven were attacked and one was not (Table 2-5 and Fig. 2-4, 

2-5). The nonattacked stand (BLP) showed little change in size structure (Fig. 2-4) since 

the outbreak while four of the seven stands (ABK, BLK, RRB , and TLK) increased in 

approaching a stable size distribution with the BLK distribution showing the best fit to 

the stable size distribution with an R2 = 0.97. Two of the attacked stands departed 

(GOA and SIL) further from the stable size distribution and one showed little change 

(TWP) (Fig. 2-5). On attacked stands, BGH, BLK, GOA, SIL, TLK, and TWP, the 

pre-epidemic reconstructed distributions are skewed right to include the large diameter 
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trees that were attacked by beetles (Chapter 4). This is manifest by the less negative 

slope of the straightline fit to the transformed negative exponential curve (Appendix B). 

Recruitment densities for whitebark pine are currently higher than those of 

subalpine fir (Fig. 2-4) on 12 out of 14 stands. Average whitebark pine densities across all 

sites for the 2.5- and 7-cm size class are 1346 and 116 per ha (545 and 47 per acre) as 

compared to 728 and 27 per ha (295 and 11 per acre) for subalpine fir (Appendix A). For 

the 1998 assessment, a depression in the density of the the 7-cm diameter class is evident 

on four of the nonattacked stands and to lesser extent on most of the attacked stands. 

Subalpine fir is generally present in all size classes, with abundance decreasing 

with size (Fig. 2-4, third column). On three stands , CRS, NRR , and GOA, subalpine fir 

seedling densities exceed whitebark pine seedling densities. On sites ABK, GOA and to a 

lesser extent NRR, subalpine fir occurs in all size classes and appears to be codominant 

with whitebark pine (Fig. 2-4). Subalpine fir canopy dominants on these three stands 

share equivalent size classes with the dominant whitebark pines. 

All stands are uneven or all-aged stands as inferred from size-age relations and 

diameter distributions. The variability in size class abundances appears to be greater in 

the current assessment than in the pre-epidemic assessment primarily due to the 

depression in the sapling (7 cm) size class (Fig. 2-4, center column). 

DISCUSSION 

The quantitative assessment of stand structures generally provides evidence that 

treeline whitebark pine populations are currently self-sustaining. Negative exponential 

and multimodal diameter distributions , with high abundances in the seedling class are 

reported for both pre-epidemic and current conditions . 

Current whitebark pine seedling densities are high. With the assumptions of a 

typical survivorship curve, and analogous death-rate curves, seedlings in the smallest size 
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class would be expected to sustain the greatest mortality in the transition to the next size 

class, as there is a decreasing risk of death with age or size (Harcombe 1987, Deevey 1947, 

Pearl 1928). An alternative "U-shaped mortality curve " (Goff and West 1975, Harcombe 

1987) also exhibits high mortality in the early size class, levels out for vigorous overstory 

trees, and shows increasing mortality in larger size classes . The first part of either of these 

curves likely describes the survivorship function of small size class whitebark pine. No 

inference of recovering or increasing densities is possible because of the usual difficulties of 

static life-table data {Harper 1977, Caswell 1989, Gotelli 1995, Ross et al. 1982). 

On the nonattacked stands a depression in the densities of whitebark pines is 

evident in the 6-cm diameter class {Fig.3). From the age-size regression I estimated that 

these individuals established as cohorts approximately 40 to 70 years ago (Fig. 2-2) and 

overlap the period of the 1930's drought. This period is also concurrent with mountain 

pine beetle epidemic {Arno 1970, Ciesla and Furniss 1975, Perkins and Swetnam 1996). 

Seedling establishment may have been limited by drought conditions and above average 

summer temperatures {Biondi et al. 1999) and/or by low seed availability because of the 

widespread beetle-caused mortality of mature cone bearing trees. However , the depression 

is also ap arent in the six cm subalpine fir seedling class. This may be evidence that "safe 

site" conditions (Harper 1977, Tomback et al. 1993) for both species were more limited by 

climatic variables than life history characteristics. In previously burned sites in 

northwestern Montana, Tomback et al. {1993) found high levels of of whitebark pine and 

subalpine fir recruitment from 1977 to 1985. They attributed the synchronous pulse of 

recruitment to environmental site conditions. Rather than high levels of recruitment , my 

finding of low levels of levels of recruitment may also be related primarily to 

environmental site variables. Differentiating among possible mechanisms responsible for 

this period of low recruitment is difficult and requires further research. 
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Stability has had a long and arguable association with the concept of climax 

(Mcintosh 1980, West et al. 1981, Davis 1981, Pielou 1991, Hall et al. 1995 and references 

therein). If stability is the ability to recover from disturbance, and refers to stable size, 

reverse-J, negative exponential, and self-replacing size distributions as defined here , it 

appears that treeline stands of whitebark pine are stable. In fact , it appears that the 

mountain pine beetle disturbance may enhance stability. Inspection of the direction of 

change of stand structure (Table 2-5) reveals that of the undisturbed stands, four of which 

were stable before the epidemic, three have destabilized and two show little change as 

assessed by goodness of fit to the negative exponential curve. Of the disturbed stands , 

four increased in stability , three decreased in stability , and two showed little change. Thus 

mountain pine beetle infestations may be beneficial for maintaining the self-replacing 

status of treeline stands. This is not surprising : while beetles reduce the absolute 

abundance of large diameter cone-bearing trees , the newly available growing space, and 

increased radiation may provide suitable caching sites for Clark 's nutcracker and 

subsequent whitebark pine regeneration (see Chapter 3). Additionally , advance 

regeneration is released and survivors of the disturbance may be expected to increase in 

size. Implicit in this explanation of regeneration is that sufficient cone-bearing trees with 

viable seed are available to be cached. This is generally not problematic because 

nutcrackers will fly. distances of up to 22 km (Vander Wall and Balda 1977, Tomback 1978, 

1982, Hutchins and Lanner 1982) carrying seeds to cache in openings. Reproductive 

survivors of the epidemic were the likely seed sources for post-epidemic recruitment. 

Additionally, in younger, nonattacked stands, time lags until individuals become 

reproductive likely resulted in pulse recruitment. This explanation also assumes low 

variability in environmental conditions with respect to the generation time of trees. 
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Mechanistically this explanation is the same as the Romme et al. (1986) suggestion that 

mountain pine beetles regulate primary productivity in lodgepole pine forests. 

The most recent beetle disturbance of ca. 1930 has been preceded by other beetle 

infestations. The oldest cross-dated death date of a whitebark pine killed by mountain 

pine beetles in this area before the ca. 1930 epidemic is 1819; two other trees that were 

probable beetle-kills died in 1887 and 1730 (Perkins and Swetnam 1996). Although there 

was only one tree per date for all three past events, it is reasonable to suggest that 

mountain pine beetle infestations are recurrent and cyclical in this species as they are in 

other hosts (Chapter 4). In this work , old remnant down logs and snags that were older 

than the ca. 1930 beetle-killed snags, and that did not have fire scars or charcoal may be 

indirect evidence of previous beetle-caused mortality. Further dendroecological and 

palynological research is needed to identify the magnitude, extent, and frequency of past 

mountain pine beetle infestations. 

Stand-replacing fires adjacent to whitebark pine stands have historically spread to 

high-elevation stands either as small spot fires resulting in the death of small clumps of 

trees , or when fuel conditions and intensity permit, as larger stand-replacing fires (Arno 

and Hammerly 1984). Lightning strikes are also common and generally kill one to several 

trees. Wildfire charcoal remnants found on all sites are evidence that wildfire disturbances 

are affecting climax treeline whitebark pine forests either by stand-replacing events at 

mean fire return intervals ~ 350 years (Barrett 1994, Romme 1982); 50 to 300 years (Arno 

1986, Arno and Hammerly 1984); or on shorter intervals as gap-producing disturbances 

(Watt 1947, Arno 1986, Pickett and White 1985). Wildfires are infrequent in 

high-elevation subalpine ecosystems (Agee 1993); however, they are important and 

understudied processes affecting stand structure of treeline whitebark pine forests . 
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Although this work supports previous observations of whitebark pine as 

self-sustaining and as the climax dominant on cold, dry sites of the northern Rockies 

(Weaver and Dale 1974, Arno and Hoff 1989, Peet 1988, Steele et al. 1981) , the presence 

of subalpine fir in all size classes suggests potential replacement of whitebark pine by 

subalpine fir or codominant status with whitebark pine. Successional replacement of 

whitebark pine by fir is possible , particularly in the absence of of fire. Facilitation of 

subalpine fir by whitebark pine likely explains the co-occurrence of these species on 

abiotically stressed sites (Callaway 1998). 

While temperature is most strongly associated with limiting physical treeline 

(Wardle 1974, LaMarche 1974, LaMar che and Stockton 1974, Tanquillini 1979, Stevens 

and Fox 1991) and species composition, it appears that disturban ces are equally 

important in maintaining self-sustaining treeline whitebark pine populations. 
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Table 2-1. Physical site attributes of sampled whitebark pine stands. Sites are: NRR = North 

Railroad Ridge, BLP = Blackman Peak, ASO = Assout Basin , CRS = The Cross , 

AND = Anderson Peak , BLK = Blackman Peak Beetle Kill, ABK = Anderson Peak Beetle 

Kill, SIL= Silver Peak, AVL = Avalanche Peak, TLK = Titus Lake Peak, GOA= Goat, 

TWP= Twin Peaks, BGH = Big Hill , RRB = Railroad Ridge Beetle Kill. 

Mountain Elevation Aspect Slope Stand Longitude Latitude Number 
range Site (meters) (deg) (deg) status (UTM) (UTM) of plots 

WC NRR 2800 23 10 non-attacked 0695400 4891300 10 
WC BLP 2900 180 30 non-attacked 0687900 4880700 10 
SR ASO 2900 75 30 non-attacked 0707900 4927500 7 
HW CRS 2700 290 20 non-attacked 0683800 4861100 10 
SM AND 2900 300 15 non-attacked 0691700 4849500 7 

WC BLK 3000 200 30 attacked 0688800 4880500 8 
SM ABK 2900 320 20 attacked 0691600 4849300 7 
BL SIL 2800 260 30 attacked 0698000 4855400 7 
HW AVL 2700 180 17 attacked 0683800 4861800 10 
HW TLK 2900 290 20 attacked 0683300 4858100 8 
SW GOA 2700 125 30 attacked 0657900 4893700 8 
SR TWP 2900 180 20 attacked 0700300 4940400 8 
SR BGH 2900 240 20 attacked 0707200 4927800 8 
WC RRB 2900 135 25 attacked 0695600 4890300 3 c...:, 
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Table 2-2. Regression statistics for reconstructed diameter at breast height ca. 1930, 

n = 153, R2 = 0.53. 

Estimator SE T-Stat p > T 

Slope 1.08337 0.08337 12.3005 0.0001 

Intercept -2.2921 0.29047 -4.95125 0.0001 
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Table 2-3. Stand summary metrics for whitebark pine. The first five rows of the table are stands that were not 

attacked by mountain pine beetles ca. 1930. Abbreviations are ba30= basal area (m 2 /ha) ca. 1930, tph30 

= trees/ha, mba30 = mean basal area, dq30 = quadratic mean diameter (cm), sdi30 = stand density index, 

babk = basal area. of beetle killed whiteba.rk pine, and tphbk = trees killed by beetle/ha. Abbreviations 

are the sa.me for the 1998 equivalent metrics. 

Site ba30 tph30 mba30 dq30 sdi30 babk tphbk ba98 tph98 mba98 dq98 sdi98 

NRR 3.4 178 0.05 15 33 0 0 26.6 640 0.10 23 221 
BLP 3.9 195 0.05 16 38 0 0 29.2 687 0.11 23 241 
ASO 4.6 27 0.41 46 30 0 0 12.9 642 0.05 16 123 
CRS 5.1 210 0.06 18 47 0 0 26.6 477 0.14 27 208 
AND 6.7 289 0.06 17 63 0 0 39.5 714 0.14 26 309 

ABK 13.1 403 0.08 20 114 12.2 338 11.0 289 0.09 22 93 
SIL 14.0 272 0.13 26 111 11.5 188 11.0 158 0.17 30 83 
AVL 16.3 356 0.11 24 132 10.6 143 28.9 506 0.14 27 226 
TLK 16.5 195 0.21 33 119 14.7 101 16.8 454 0.09 22 143 
GOA 18.4 124 0.37 44 119 16.8 59 8.5 136 0.15 28 64 
TWP 21.6 257 0.21 33 156 20.4 183 9.2 249 0.09 22 78 
BLK 26.4 316 0.21 33 190 25.3 249 9.6 343 0.07 19 87 
BGH 32.1 479 0.17 29 242 30.3 380 12.4 331 0.09 22 106 
RRB 50.3 889 0.14 27 393 46.8 734 15.4 222 0.17 30 115 

vJ 
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Tabl e 2-4. Regression statistics for the age-diam ete r relationship 

of whitebark pine. n = 87, R 2 = 0.55. 

Estimator SE T-Stat p>T 

Slope -47.6329 18.3289 -2.59878 0.0110273 

Intercept 42.5113 4.18629 10.1549 0.0001 
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Table 2-5. Coefficients of det ermination for 

the natural log fit of the negative 

exponential to the midpoints of 

whitebark pine diameter classes. 

Site 

AND 
ASO 
BLP 
CRS 
NRR 

ABK 
AVL 
BGH 
BLK 
GOA 
RRB 
SIL 
TLK 
TWP 

Stand 1930 
status R2 

nonattacked 0.93 
nonattacked 0.99 
nonattacked 0.88 
nonattacked 0.96 
nonattacked 0.92 

attacked 0.61 
attacked 0.93 
attacked 0.93 
attacked 0.76 
attacked 0.73 
attacked 0.50 
attacked 0.82 
attacked 0.69 
attacked 0.80 

1998 
R2 

0.72 
0.94 
0.85 
0.27 
0.46 

0.76 
0.87 
0.91 
0.97 
0.59 
0.68 
0.63 
0.84 
0.79 
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Fig. 2-1. Central Idaho study area and sampled whitebark pine sites. 
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and center column) from the five undisturb ed stands . Points are midpoints of 5 cm 
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diameter size classes. The straight line is th e regression fit to the natural log frequency of 

midpoints of the size classes. The right column is the same 1998 whitebark pine size class 

data plotted as a histogram (dark grey bars) with subalpine fir (light grey bars). 
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45 

natural log frequency of midpoints of the size classes . The right column is the same 1998 

whitebark pine size class data plotted as a histogram (dark grey bars) with subalpine fir 

(light grey bars). 
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CHAPTER 3 

PREDICTIVE MODELS OF SEEDLING RECRUITMENT OF WHITEBARK PINE 

AND SUBALPINE FIR IN TREELINE STANDS IN CENTRAL IDAHO 

Abstract. The influ ence of environmenta l factors and stan d str ucture on 

whitebark pine (Pinus albicaulis Engelm.) and subalpine fir (Abies lasiocarpa (Hook.) 

Nutt .) seedling density was analyzed with generalized linear and generalized additive 

models. Whitebark pine seedling densities on treeline stands in central Idaho were 

negatively correlated with the density of live trees (per 0.04 ha) and dead tree basal area 

(m 2/ha), and positively correlated with density of dead trees (per 0.04 ha) (p :S 0.001) . 

Subalpine fir seedling densities were negatively correlated with elevation and positively 

correlated with northerly aspects (p :S 0.001) . Stand structure variables appear to be 

more important for whitebark pine establishment which may be constrained by 

interference competition and available growing space. Subalpin e fir establishment appears 

to be influenc ed by distance to seed source at lower elevations and by favorable site 

water-balance effects on northerly aspects . 

INTRODUCTION 

Seedling recruitment, the establishment of new individuals in a plant community, 

affects community composition, succession and population dynamics . Following 

disturbance , the species that become established define the initial conditions of the 

successional trajectory. On high-elevation treeline sites in the northern Rocky Mountains , 

whitebark pine (Pinus albicaulis Engelm.) is considered the climax dominant and is 

generally self-replacing (Chapter 2). Natural disturbances including wildfire , mountain 

pine beetle (Dendroctonus ponderosae) (Coleoptera: Scolytidae) infestations, avalanches, 

and windthrow reduce site biomass, which increase radiation loads, and provide growing 
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space for shade intolerant whitebark pine seedlings. For whitebark pine , seedling 

recruitment also depends on: (1) the productivity and periodicity of seed crops (Weaver 

and Dale 1974, Weaver and Forcella 1986) ; (2) the population levels of Clark 's nutcracker 

(Nucifraga columbiana ) and their caching behavior and retrieval of whitebark pine seeds 

(Tomback 1978, 1982, Lanner 1980, Hutchins and Lanner 1982, Tomback et al. 1990); (3) 

the probability of viable seed germinating (McCaughey and Weaver 1990, McCaughey 

1993); (4) and the 'safe site' (Harper 1977) conditions of the environment (McCaughey 

and Weaver 1990). 

The influence of site conditions on whitebark pine and subalpine fir (Abies 

lasiocarpa (Hook.) Nutt.) seedling recruitment is investigated in this paper. 

Environmental site variables and stand structure characteristics were used as independent 

variables in generalized linear models (GLM - McCullagh and Nelder 1989) and generalized 

additive models (GAM-Hastie and Tibshirani 1990) to predict both whitebark pine and 

subalpine fir seedling density. Identification of variables associated with high seedling 

density is expected to be useful for restoration and conservation activities and for 

understanding ecological mechanisms structuring whitebark pine communities at upper 

treeline. 

Background 

Whitebark pine is a stone pine (subgenus Strobus, section Strobus, subsection 

Cembrae) of subalpine forests and timberlines of the northwestern United States and 

southwestern Canada. It is one of five stone pines worldwide and the only stone pine in 

North America. Whitebark seeds are not wind dispersed; they develop in indehiscent 

cones that are harvested by nutcrackers and squirrels (Arno and Hoff 1989, Reinhart and 

Mattson 1990). Nutcrackers cache or consume seeds and those not retrieved from caches 

may germinate to become seedlings (Launer 1980, Tomback 1978, 1982, Launer 1996) . 
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Corvids, such as Clark's nutcracker and other Nucifraga spp., have evolved with Cembrae 

pines over centuries and are critical components in pine regeneration dynamics, ultimately 

responsible for the geographic range, spacing, successional status, and genetics of the 

stone pines (Hutchins and Lanner 1982, Lanner 1982, Tomback 1982, Lanner 1996). Red 

squirrels ( Tamiasciurus hudsonicus) also cut cones from trees and bury them in middens , 

but little regeneration results from their caching activities (Lanner 1996) . Nutcrackers 

cache and recover whitebark pine seeds year-round from forest floor sites, burns, along 

meadow edges, in clearcuts , above treeline and on rocky outcrops (Hutchins and Lanner 

1982). A preference for caching on south slopes and in openings has been documented 

(Vander Wall and Balda 1977, Tomback et al. 1993). Nutcrackers may fly up to 22 km 

from source seed trees to cache seeds (Vander Wall and Balda 1977, Tomback 1978, 1982). 

While nutcrackers are the primary regulator of seed distribution, environmental site 

conditions are the primary factors limiting successful establishment. 

Regional attention to whitebark pine population levels has been stimulated by 

reports that current environmental conditions have led to higher rates of mortality than 

establishment (Arno 1986, Keane et al. 1990, Keane and Arno 1993, Keane et al. 1994). 

Recognized factors causing whitebark pine decline in the northern Rocky Mountains 

include an exotic fungus, white pine blister rust ( Cronartium ribicola), infestation of 

whitebark pine by mountain pine beetle , and successional replacement by shade tolerant 

species as a result of fire suppression policies (Arno and Hoff 1989, Keane et al. 1990, 

Morgan and Bunting 1990, Keane and Arno 1993, Kendall and Arno 1990). Blister rust 

acts as a confounding factor in seedling establishment dynamics (Tomback et al. 1995) so 

that natural variability of factors affecting recruitment in treeline communities is best 

assessed in areas of low blister rust incidence. 
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While white pine blister rust is the most common exotic threat to whitebark pine , 

mountain pine beetle is the most common natural damaging agent that kills trees (Arno 

and Hoff 1989). Mountain pine beetles devastated whitebark pine forests in a widespread 

epidemic of the 1920-1940s from southern Canada to northern Wyoming (Arno 1970, 

Ciesla and Furniss 1975, Arno and Hoff 1989), Throughout its northern Rocky Mountain 

distribution, a high percentage of whitebark pine dominants was killed (Arno 1986). In 

central Idaho a dendrochronologically determined maxima of beetle-caused mortality 

occurred in 1930 (Perkins 1995, Perkins and Swetnam 1996) where stands with large 

diameter trees and high basal area were generally more likely to be attacked (Chapter 4). 

However, not all whitebark pine stands were attacked in this epidemic; a mosaic of 

disturbed and nondisturbed stands exists across the high-elevation landscape in this 

region (Chapter 4). In disturbed stands, the structural characteristics, such as the 

abundance, size , and spacing of beetle-killed snags , are different from stands that were not 

disturbed. Such differences are expected to affect microsite characteristics and the success 

of seedling establishment. 

The principal codominant with whitebark pine on treeline sites in the northern 

Rocky Mountains is subalpine fir. Facilitation of subalpine fir by whitebark pine may 

explain the co-occurrence of these species on high-elevation, abiotically stressed sites 

(Callaway 1998). Large subalpine fir are 2- 4 times more aggregated with live and dead 

whitebark pine than are seedlings (Callaway 1998). Winter snowpack likely protects 

seedlings from wind and blowing ice and snow, but once trees grow above the average 

snow depth they become increasingly vulnerable to winter damage without the protection 

of larger whitebark pine. Subalpine fir was present in all size classes on climax whitebark 

pine stands in central Idaho (Chapter 2). Potential increases in abundance may occur in 

the absence of fire and with climate change. 
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Th e assessment of stand stru cture characteristics and environm ental site variabl es 

in relation to subalpine fir and whit ebark pine seedling densities is expected to be useful 

for evaluating establishment potential of these species on high elevation sites. The use of 

the GLM and GAM methods is intended to enhance understanding of biotic and abiotic 

mechanism affecting seedling recruitment and, secondly, to serve the purpose of prediction 

(Hilborn and Mangel 1997). 

METHODS 

Study Area 

A central Idaho study area was chosen because field surveys from 1995-1997 

showed that white pine blister rust was only present in low amounts (Smith 1997, Smith 

and Hoffman 2000, Perkins pers. observ .). Accordingly , its effects as a confounding factor 

of whitebark pine regeneration is curr ently negligible . However , many of these stands 

experienced high mortality of large diameter tr ees in the widespread mountain pine beetle 

epidemic between 1920 and 1940 (Ciesla and Furniss 1975, Arno 1986) . Eviden ce of th e 

epidemic is still appar ent 70 years later with ghost forests of persistent snags. Because not 

all high-elevation stands were attacked in this epidemic ( Chapter 4), a mixture of attacked 

and nonattacked stands was sampled to provide a comparison of the effects of disturbance 

on recruitment succ ess. 

Fourteen treeline whitebark pine stands located within the Sawtooth National 

Recreation Area, the Sawtooth National Forest , and the Challis National Forest were 

sampled during the field season of 1998 (Fig. 2-1) . Stands were located in six mountain 

ranges within the study area. Four sites were located near summits in the White Clouds 

Mountains (WC), three in the Headwater Mountains (HW) , two in the Smoky Mountains 

(SM) , three in the Salmon River Mountains (SR) , one in the Boulder Mountains (BM) , 
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and one in the Sawtooth Mountains (SW) (see Fig. 2-1). The Headwater Mountains are 

not identified in Fig. 2-1; they were considered either part of the Sawtooth or Smoky 

Mountains and form the divide between the Salmon and Big Wood rivers . Elevations 

ranged from 2,700 to 3,000 m (8,800 to 9,800 ft). Stand names and physical site attributes 

are summarized in Table 2-1. 

Sample stand selection criteria were the following: (1) whitebark pine was the 

dominant species with composition greater than or equal to 60% of total basal area ; (2) 

stand elevations were between 2,700 m (8,800 ft) and an upper edaphic treeline bordering 

an unvegetated rock ridgetop; (3) stand extent was as large an area as possible with 

homogenous structure, constant aspect and slope; ( 4) tree form was upright (krummholz 

form trees were not sampled); (5) mountain pine beetle attacked and nonattacked stands 

within the same watershed were chosen whenever possible . The last criterion was relevant 

to objectives characterizing host susceptibility in Chapter 4. Here the importance of 

disturbed stands was for assessing structural differences as related to recruitment densities 

following disturbance. Beyond these criteria, selection of sites was restricted by access 

within a day. Aerial photographs and ground reconnaissance or both were used to identify 

potential stands. Attacked and nonattacked stands were differentiated by abundance of 

whitebark pine snags with visible J-shaped adult beetle galleries and lack of fine limbs. 

The first criterion, adult galleries, had been used pr eviously to determine beetle attack 

(Perkins 1995, Perkins and Swetnam 1996) and the second , no fine limbs , was a 

consistently observed characteristic of trees killed in the 1920-1940 period. Stands 

composed of~ 15% beetle-killed snags were considered attacked stands; stands composed 

primarily of living whitebark pines with few beetle killed trees were considered 

nonattacked stands. These were readily identifiable on aerial photographs. Selected stands 

often extended below 2,700 m (8,800 ft) but were not sampled below this elevation 



be cause in this geographic region their chara cter was distinctly seral. Implicit in the 

near-treeline criterion is the idea that these stands represent the climax whitebark pine 

community (Whittaker 1975, Steele et al. 1981). 
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The study area in central Idaho region is semiarid with an average annual 

precipitation of 82 cm (32 in.) and ranges from less than 38 cm (15 in.) in the southern 

section and valleys to greater than 152 cm (60 in .) on some mountain peaks. Most 

precipitation falls as snow and rain during winter and spring ; at elevations above 2, 700 

meters, most precipitation falls as snow. Annual temperatures range from average 

minimum of -6° C (22° F) to average maximum of 8° C ( 46° F) with an mean of 2° C 

(36° F) (Steele et al. 1981). Extreme cold temperatures of -34° to -47° C (-30° to -50 ° 

F) are recorded from December through February (Steele et al. 1981). Winds redistribute 

snow around whitebark pine trees to form snowdrifts that may linger until July and 

occasionally August . Granitic bedrock of th e Sawtooth and Idaho Batholiths forms the 

core of the study area , with Tertiary volcanic and sedimentary forms on southerly and 

easterly ranges (Williams 1961). 

Across the study area , tre e associat es are lodgepole pine ( Pin us contorta Dougl.) 

subalpine fir, Douglas-fir (Ps eudotsuga m enziesii (Mirbel) Franco) , and Engelmann spruce 

(Picea engelmannii Parry) . Habitat types are in the PIAL/ ABLA or PIAL series (Steele 

et al. 1981, 1983). Landscape assessm ent on th e Sawtooth National Forest and Sawtooth 

National Recreation Area identified 3.8% of th e area as climax whitebark pine vegetation 

(Redmond et al. 1997). 

Field Collections 

Seven to ten 0.04-ha (1/10 acre) plots with a nested 0.008-ha (1/50 acre) subplot 

were established randomly on each site , except for one site (RRB) which only had three 

plots . For each plot , elevation , aspect , slope, and location coordinates were recorded. On 
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each 0.04-ha plot, the diameter at breast height (DBH , 1.5 m (4.5 ft) above ground 

surface) and species of all trees 2'. 10.2 cm (4.0 in) were recorded; on each 0.008-ha plot 

the DBH, height, and species of all trees less than 10.2 cm DBH ( 4 in) were recorded. In 

total 109 plots were sampled. Individual trees were recorded as attacked and killed by 

mountain pine beetles versus not attacked. 

Analyses 

Basal area for the local per 0.04 ha (1/10 acre) of live and dead trees (lbplt and 

dbplt), and density of live and dead trees per 0.04 ha (ltplt and dtplt) were calculated from 

basic sample data and employed to characterize the local canopy structural components 

surrounding the smaller seedling plot . Aspect (deg) was transformed to aspect value (av) 

as: av= cos(aspect - 30). Aspect values range from -1 to 1; an aspect value of zero 

represents WNW (300 deg) and ESE (120 deg) aspects while an aspect value of 1 

represents NNE (30 deg) aspects and -1 represents SSW (210) aspects. Aspect values of 

zero are similar in terms of site radiation loads and site water balance during the growing 

season. 

Environmental site variables aspect value (av), slope ( sl), and elevation (el); 

structural characteristics (ltplt, dtplt, lbplt, dbplt); stand disturbance status (attacked or 

not attacked by mountain pine beetles); and site were assessed as independent variables in 

both generalized linear and generalized additive models to predict seedling densities. 

Because the response variable is a count 2'. 0 of seedlings, the models were fit as a Poisson 

regression. The generalized linear Poisson model (GLM) is written: 

so that 
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The general form for a GLM is: 

n 

g(µ) =a+ rF x =a+ L/3iXi 
i=l 

where g(µ) is the link function that relates the mean of the response variable to the 

predictors , a is the intercept or constant term , ,BT is the vector of regression ( or slope) 

coefficients, and x is the vector of independent variables. General additive models 

(GAMs) were compared to the GLMs because nonlinearities in the response could be 

extracted in a non-parametric, data-driven manner . Thus these models allow the data to 

determine the shape of the response curve, but reduce the degrees of freedom to fit the 

model and are less parsimonious. 

The general form for a GAM is: 

n 

g(µ) =a+ L f;(x;) 
i =l 

The GAM is a sum of non-parametric smoothing functions f;(x;) developed for smoothing 

scatterplots (Yee and Mitchell 1991), where a and g(µ) are as above for the Poisson 

regression. Analyses of deviance methods (Hastie and Pregibon 1992) were used to 

determine the most parsimonious model and to test for significance of all parameters. To 

approximate the general linear model goodness of fit statistic , the coefficient of 

determination , R2 , for the Poisson regression models , a quasi R2 was calculated as : 

1 - (residual deviance/null deviance) (Yee and Mitchell 1991) . 

RESULTS 

Whitebark pine seedling density was negatively correlated with ltplt, d/yplt, and 

positively correlated with dtplt . The GLM model for whitebark pine seedling density (µw) 

1s: 

_ e(2 .99942-0 .034181tplt-l.41723dbplt+o .o8638dtplt) µw -
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with a quasi R 2 of 0.30. 

Subalpine fir seedling density is negatively correlated with elevation and positively 

correlated with northerly aspects. The GLM model for subalpine fir seedling denisty (µ8 ) 

1s: 

µs = e(25 .25753-0.0025lel+0 .98764av) 

with a quasi R 2 of 0.45. The contribution of the independent variables to the predicted 

whitebark pine densities is shown in Fig. 3-1 and similarly for subalpine fir in Fig. 3-2. 

Analyses of deviance of the model predictors with the chi-square test statistic (Venables 

and Ripley 1999) demonstrated statistical significance (p ~ 0.001) for all terms included in 

the models. 

As expected, the GAMs achieved a lower residual deviance than the GLMs 

although at a cost of higher residual degrees of freedom. The GAM model for whitebark 

pine seedling density (with the same predictors as the GLM) reduced the residual 

deviance from 670.90 to 525.49 , with a reduction of 9 degrees of freedom and raised the 

quasi R 2 from 0.30 to 0.45 (Table 3-1). The GAM model for subalpine fir seedling density 

reduced the residual deviance from 706.12 to 660.62, with a reduction of 6 degrees of 

freedom and raised the quasi R2 from 0.45 to 0.49 (Table 3-1). 

Seedling density decreases strongly from O to 20 live trees per plot and decrease 

more slowly beyond 20 (Fig. 3-3). For the whitebark pine GAM , when dfrplt and dtplt are 

held at their mean (solid line Fig. 3-3 upper left) , the effect of density of live trees is 

higher than when they are held at their minimum (stippled line Fig. 3-3 upper left). At 

their maximum values (dotted line Fig. 3-3 upper left), the effect of the density of live 

trees is reduced. Seedling density decreased strongly from O to 0.6 m2 dead basal area per 

plot and decreased more slowly beyond 0.6 basal area. When ltplt and dtplt are held 

constant at the three levels, seedling density is highest when dead tree basal area is low 
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(Fig. 3-3 upper right). Seedling density increases strongly from Oto~ 15 dead trees per 

plot and decreases less strongly beyond 15 trees. Fig. 3-3 (lower left) shows the greatest 

difference in the effects of the density of dead trees with respect to constant mean and 

maximum ltptl and dbplt on seedling density. At the maximum number of live trees and 

the maximum dead tree basal area (dotted line) there are almost no seedlings, i.e. there is 

almost no contribution of density of dead trees to the predicted seedling density. However 

at mean levels of the ltplt and dbplt seedling density increases significantly with dead tree 

density. The minimum level is not plotted because when dead tree basal area is at its 

minimum , i.e. zero, the number of dead trees must also be zero. 

Plots of the contribution of elevation to subalpine fir seedling abundance while 

holding aspect value at its mean (westerly aspect), minimum (southerly aspect), and 

maximum (northeasterly aspect) revealed that seedling densities were highest on lower 

elevation sites (Fig. 3-4) on northeasterly aspects (Fig. 3-4). This is the same result as 

shown in the parametric log-linear model. 

Evidence of the random distribution of residuals and the 95% confidence limit for 

the GAM models is shown in Figs. 3-5 and 3-6. As the number of samples decreases, the 

confidence interval widens . Comparisons of the fitted GLM and GAM for both species 

models revealed little difference in the shape of the response curves (Fig. 3-1 vs 3-3 and 

Fig. 3-2 vs 3-4). The slight irregularities of the GAMs are not distinct departures from 

the general shape of the GLMs and are likely sampling effects. 

The models presented above are parsimonious and general, but they do not 

explain a high degree of deviance. The inclusion of site as a categorical variable showed 

that differences among sites were significant and improved the goodness of fit for both 

species models. For the whitebark pine log-linear model, the residual deviance was 

reduced from 671 to 394 and the quasi R 2 increased from 0.30 to 0.59. For the subalpine 
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fir log-linear model , the residual deviance was reduced from 706 to 535 and the quasi R2 

increased from 0.45 to 0.59. Similar reductions in deviance are shown when seedling 

density is modeled by the GAMs (Tab le 3-1) . The addition of site to the subalpine fir 

models confounded the response to aspect value. With elevation and aspect value as the 

only independent variables, subalpine fir density was positively associated with 

northwesterly to northeasterly aspects. When site was added, seedling densities were 

positively associated with southwesterly as well as northerly aspects. Sites ABK (NW 

aspect) and SIL (SW aspect) had higher abundances of whitebark pine seedlings and sites 

GOA (SE aspect) and NRR (NE aspect) had higher abundances of subalpine fir seedlings 

than all other plots and likely contribute to the confounding effects of site as a predictor 

variable (Figs. 3-7 and 3-8). 

DISCUSSION 

Stand structure variables , live trees per per plot (ltplt), dead trees per plot (dtplt) 

and dead basal area per plot ( dbpl t), were the best predictors of seedling density for 

whitebark pine. Environmental site variables, aspect value (av) and elevation (el) were 

the best predictors of seedling density for subalpine fir. Disturbance history (whether the 

stand was attacked by mountain pine beetles or not) , was not a significant predictor 

variable for either species. 

The assessment of whitebark pine seedling densities in climax treeline whitebark 

pine stands supports previous work that whitebark pine recruitment is higher on open 

sites (Tomback 1978, Arno 1986, McCaughey and Weaver 1990, Tomback et al. 1990, 

1993, Arno 1986). Inverse correlations with stand structure variables (ltplt, dlJ,plt) may be 

explained by biotic and abiotic mechanisms: low whitebark pine seedling densities may be 

attributed in part to interference competition for light and below ground resources with 

live trees, and to shading from the large diameter snags. Shading from both live and dead 
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trees reduces incident radiation and lowers ambient air temperatures on already cool 

high-elevation sites, thus limiting growth. However, shade cast by some dead trees (the 

positive association with dtplt) may be beneficial to seedling establishment by reducing 

evapotranspiration. McCaughey (1993) found that seedling establishment was enhanced 

by partial shade in experimental plots. Another explanation is that dead trees serve as 

landmarks and visual cues for nutcrakers to retrieve seeds from caches (Vander Wall 1982, 

Balda and Kami! 1989, Kami! and Jones 1997) Snags are also used by nutcrackers to wipe 

the pine cone resin off their bills (pers. obser. , Tomback 1982) and a behavioral preference 

for caching in stands with some dead snags is reasonable. 

The result that subalpine fir seedling density was negatively correlated with 

elevation suggests that habitat is unsuitable or that proximity to seed source at lower 

elevations is important to recruitment success. This is not surprising nor is the fact that 

recruitment densities are higher on northerly aspects where cool and moist conditions are 

favorable to seedling germination. More interesting is the lack of facilitation of subalpine 

fir seedlings by whitebark pine as measured by stand structural variables. This result 

supports Callaway 's (1998) findings that seedlings may be protected from blowing snow 

and ice while trees are small and below the snow surface, and do not require facilitation . 

Site confounds the response of subalpine fir seedling density to aspect value and is 

not easily interpreted. Multivariate interactions between site variables are common in 

ecological systems. Unmeasured variables ar e likely correlated with sit es. Expanding the 

set of potential predictor variables to include amount of bare mineral soil , type of 

substrate, and amount and type of understory vegetation (McCaughey and Weaver 1990, 

McCaughey 1993, Tomback et al. 1993) may reveal associations of environmental 

variables significant to recruitment success that were not considered here. 
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For the subalpine tree species and the set of predictor variables used in this 

analysis, the parametric GLM models are more parsimonious and are preferred over the 

GAM models. While the GAM models produced a better fit as determined by the 

goodness of fit statistic, the overall shape of the non-parametric curves did not reveal any 

significant improvements over the log-linear GLM. Both species models were calibrated 

from treeline sites in the geographic area of central Idaho , and require validation with 

independent data outside the region. 
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Table 3-1. Summary statistics of Poisson regr essions GLMs and GAMs. Abbreviations: 

wb = whitebark pine , sf= subalpine fir , df = degrees of freedom displayed in parenthesis. 

Model 

GLMs 

wb = f (ltplt , db-plt, dtplt) 
sf= f(el , av) 
wb = f (ltplt , db-plt, dtplt , site) 
sf= f(el, av, site) 

GAMs 

wb = f (s(ltplt) , s (db-plt), s (dtplt)) 
sf= f(s( el) + s(av)) 
wb = f(s(ltplt) , s(dbplt) , s (dtplt) , sit e)) 
sf= f (s(el) , s(av) , site) 

Null 
deviance 

958 (108) 
1294 (108) 
958 (108) 
1294 (108) 

958 (108) 
1294 (108) 
958 ( 108) 
1294 (108) 

Residual Quasi 
deviance R 2 

671 (105) 0.30 
706 (106) 0.45 
394 (92) 0.59 
535 (93) 0.59 

524 (96) 0.45 
661 ( 100) 0.49 
329 (83) 0.66 
494 (87) 0.62 
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Fig. 3-1. Log-linear model of seedling densities of whitebark pine . Each frame 

shows the contribution of each of the independent variables to the predicted seedling 

density while holding the other variables constant at their mean. The log-linear equation 

is µw = e(2.99942-0 .03418/tplt-l.41723dbplt+0.08638dtplt) 
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Fig . 3-2. Log-linear model of seedling densities of subalpine fir showing the 
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contribution of each of the independent variables to the predicted seedling density while 

holding the other variables constant at their mean. The log-linear equation is 

µ
8 

= e(25.25753-0 .00251el+0.98764av) 
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variables at their mean (solid line), minimum (stippled line) and maximum (dotted line). 
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Fig. 3-4. Generalized additive model of subalpine fir seedling densities. The solid 

line represents the contribution of one independent variable while holding the other 

variable at its mean (solid line) , minimum (stippled line) and maximum (dotted line). 
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CHAPTER 4 

PREDICTIVE MODELS OF MOUNTAIN PINE BEETLE ATTACK ON 

WHITEBARK PINE 

Abstract. Stand-level and tree-level data collected from whitebark pine 
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( Pin us albicaulis Engelm.) stands in central Idaho were used to develop statistical models 

to estimate the probability of attack and mortality of whitebark pine caused by mountain 

pine beetle ( Dendroctonus ponderosae) ( Coleoptera: Scolytidae) . Logistic regression 

models were calibrated from pre-epidemic stand conditions and post-epidemic mortality 

levels resulting from a historic widespread mountain pine beetl e outbreak that occurred 

from 1920-1940. Basal area (m2/ha) and SDI (stand density index) were significant 

predictors of stand attack(p ~ 0.001). Tree diameter, basal area per plot , trees per plot , 

and number of stems in a tree clump were significant predictors of individual tree attack 

(p ~ 0.001) . The models may be used to estimate anticipated cumulative mortality in 

currently or potentially infested whitebark pine stands. Predictor variables selected by the 

models corroborate the susceptible host characteristics identified in other mountain pine 

beetle-caused pine mortality systems. This work presents evidence of the generality of 

host susceptibility characteristics across pine species and over elevation gradients. 

INTRODUCTION 

Regional attention to white bark pine ( Pin us albicaulis Eng elm.) population levels 

has been stimulated by reports that current environmental conditions have led to higher 

rates of mortality than establishment (Arno 1986, Keane et al. 1990, Keane and Arno 

1993, Keane et al. 1994). Recognized factors causing whitebark pine decline in the 

northern Rocky Mountains include an exotic fungus, white pine blister rust ( Cronartium 

ribicola), infestation of whitebark pine by mountain pine beetle (Dendroctonus 
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ponderosa e) (Coleoptera: Scolytidae) , and successional replac ement by shade tolerant 

species as a result of fire suppression policies (Arno 1986, Arno and Hoff 1989, Keane et 

al. 1990, Morgan and Bunting 1990, Keane and Arno 1993, Kendall and Arno 1990, Hoff 

and Hagle 1990) . Historically the principal natural mortality agent of whitebark pine was 

the mountain pine beetle (Ciesla and Furniss 1975, Arno 1986, Arno and Hoff 1989, 

Bartos and Gibson 1990, Perkins and Swetnam 1996). As a phytophagous , 

cambial-feeding insect of western conifers, it is recognized as an aggressive forest insect 

responsible for large timber losses , and as an integral component of forest ecosystem 

dynamics for its role in stand thinning and redistribution of resources for regeneration 

(Amman 1977, Peterman 1978, Romme et al. 1986). While host susceptibility 

characteristics of economically valuable western pines have been described and used in risk 

and hazard rating systems (Cole and Amman 1980, Stevens et al. 1980, McGregor et al. 

1981, Schmid and Mata 1992, Shore and Safranyik 1992) and in models of mortality and 

attacks (Cole et al. 1976, Schenk et al. 1980, Cole and McGr egor 1983, Anhold and 

J enkins 1987, Powell et al. 1996, Negron et al. 1999) littl e qu antit a tive information about 

the host susceptibility char act eristic s of whit ebark pin e has been documented . 

There are several reasons for the lack of research on mountain pine 

beetle - whitebark pine interactions . First , research efforts have focused primarily on the 

exotic blister rust fungus responsible for severe pine mortality and reduced cone crops in 

whitebark pine over much of its north ern distribution (Arno 1986, Keane et al. 1994). 

Whitebark pine is a keystone species in this region (Launer 1996) and a mutualist with 

Clark 's nutcracker (Nucifraga columbiana), its seed dispersal agent (Launer 1980, 

Tomback 1982, Hutchins and Lanner 1982, Launer 1982). Its decline has severe 

consequences for the wildlife dependent on its nutritious pine nuts, including the red 

squirrel ( Tamiasciurus hudsonicus) (Reinhart and Mattson 1990), black bear ( Ursus 
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americanus) , and endangered grizzly bear ( Ursus arctos horriblis) (Kendall 1983, Arno 

1986, Mattson and Jonke! 1990, Kendall and Arno 1990, Mattson et al. 1993). The second 

reason for the lack of research on pine beetle - whitebark pine relations is that the cause of 

death is confounded in regions of high blister rust incidence. Trees may be killed by either 

blister rust or mountain pine beetle , or they may be weakened by blister rust , fire , and 

other pathogens and subsequently killed by mountain pine beetle (Keane and Arno 1993, 

Smith 1997, Smith and Hoffman 2000). Finally, whitebark pine is not generally a species 

of commercial interest; hence there has been little concern about the loss of timber volume 

from beetle-caused mortality. 

The natural variability of host selection by mountain pine beetle and mortality 

levels sustained by whitebark pine populations are important for understanding natural 

disturbance related population dynamics. Therefore, this research was initiated to analyze 

the tree-level and stand-level host susceptibility characteristics of whitebark pine and to 

use this information to develop predictiv e models of probability of attack by mountain 

pine beetl e. 

Mountain pine beetle devastated whitebark pine forests in a widespread epidemic 

of the 1920-1940s from southern Canada to northern Wyoming (Arno 1970, Ciesla and 

Furnis 1975, Arno and Hoff 1989). Throughout its northern Rocky Mountain distribution , 

a high percentage of whitebark pine dominants was killed (Arno 1986) . In central Idaho a 

dendrochronologically determined maxima of beetle-caused mortality occurred in 1930 

(Perkins and Swetnam 1996) where large diameter trees were attacked more frequently 

than small trees and the duration of the outbreak in whitebark pine was 8-12 years. These 

characteristics are also typical of infestation in the most common host, lodgepole pine 

(Roe and Amman 1970, Cole and Amman 1980). 
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The work presented here used a logistic regression model calibrated from 

pre-epidemic stand conditions and post-epidemic mortality levels of ca. 70 years ago. The 

dry cold climate of central Idaho favors the persistence of beetle-killed snags, such that it 

was possible to reconstruct pre-epidemic stand structure using forest metrics as 

independent variables. Beetle-killed trees that were alive before the epidemic and trees 

that are still alive were used in the reconstruction. The model's usefulness is to estimate 

anticipated cumulative mortality in currently or potentially infested whitebark pine 

stands. Predictor variables in the model also corroborate susceptible host characteristics 

identified in other beetle-caused pine mortality systems. 

Results from this research are expected to provide resource specialists with 

quantitative information useful for reducing mountain pine beetle-caused mortality in 

high-elevation whitebark pine communities. 

METHODS 

Study Area 

A central Idaho study area was chosen because field surveys from 1995-1997 

showed that white pine blister rust was only present in low amounts (Smith 1997, Smith 

and Hoffman 2000, Perkins pers. observ.). Accordingly, blister rust effects as a 

confounding factor in determining cause of tree mortality in this region are currently 

negligible. Fourteen treeline whitebark pine stands located within the Sawtooth National 

Recreation Area, the Sawtooth National Forest, and the Challis National Forest were 

sampled during the field season of 1998. Stands were located in six mountain ranges 

within the study area. Four sites were located near summits in the White Clouds 

Mountains (WC), three in the Headwater Mountains (HW), two in the Smoky Mountains 

(SM), three in the Salmon River Mountains (SR), one in the Boulder Mountains (BM), 
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and the one in the Sawtooth Mountains (SW) (Fig. 2-1). The Headwater Mountains are 

not identified in Fig. 2-1; they were considered either part of the Sawtooth or Smoky 

Mountains and form the divide between the Salmon and Big Wood rivers. Elevations 

ranged from 2700 to 3000 m (8800 to 9800 feet). Stand names and physical site attributes 

are summarized in Table 2-1. 

Sample stand selection criteria were : (1) whitebark pine was the dominant species 

with composition greater than or equal to 60% of total basal area; (2) stand elevations 

were between 2680 m (8800 ft) and an upper edaphic treeline bordering an unvegetated 

rock ridgetop ; (3) stand extent was as large an area as possible with homogeneous 

structure, constant aspect and slope; ( 4) paired mountain pine beetle attacked and 

unattacked stands within the same watershed were chosen whenever possible; and (5) tree 

form was upright (krummholz form trees were not sampled). Beyond these criteria, 

selection of sites was restricted by access within a day. Aerial photographs and ground 

reconnaissance or both were used to identify potential stands. Attacked and nonattacked 

stands were differentiated by abundance of whitebark pine snags with visible J-shaped 

adult beetle galleries and lack of fine limbs. The first criterion, adult galleries, had been 

used previously to determine beetle attack (Perkins and Swetnam 1996) and the second, 

no fine limbs, was a consistently observed characteristic of trees killed in the 1920-1940 

period. Stands composed of~ 15% beetle-killed snags were considered attacked stands; 

stands composed primarily of living whitebark pines with few beetle killed trees were 

considered nonattacked stands. These were readily identifiable on aerial photos. Selected 

stands often extended below 2,680 m (8,800 ft) but were not sampled below this elevation 

because in this geographic region their character was distinctly seral, complicated by the 

successional advance of subalpine fir (Abies lasiocarpa (Hook.) Nutt.). Implicit in the 



near-treeline criterion is the idea that these stands represent the climax whitebark pine 

community (Whitaker 1975, Steele et al. 1981, 1983). 

Field Sampling 
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Seven to ten 0.04-ha (1/10 acre) plots were established randomly on each of the 

attacked and nonattacked stands , except for one site, RRB, which only had three plots. 

For each plot, elevation, aspect , slope, and location coordinates were recorded. On each 

plot, diameter at breast height (DBH, 1.5 m [4.5 ft above ground surface]) and species of 

trees ~ 10.2 cm ( 4.0 in) were recorded. Additionally, the first trees north and south on a 

clockwise arc from plot center were cored with an increment borer for age determination 

and measured with a clinometer for height. To maximize the precision of age estimates, 

trees were cored close to ground level, generally 30-35 cm (12-14 in.) from the ground 

surface. Individual trees were recorded as attacked and killed versus not attacked; stands 

were recorded as attacked (~ 15% mortality) vers'Us not attacked. 

Analyses 

To reconstruct the stand structure prior to the mountain pine beetle epidemic, the 

diameter of trees ca. 1930 (DBH30) was estimated from the subset of live cored trees as: 

DBH30 = DBH98 - 2 * RI 

where DBH98 was the diameter at breast height recorded in 1998 and RI was the radial 

increment measured to the nearest 0.25 cm (0.10 in.) along the increment core from the 

1930 through the 1998 annual ring. Trees with reconstructed DBH30 less than 10.2 cm 

(4.0 in.) were not used in further analyses and reduced the sample size to 134 trees. From 

this subset a regression model was used to calculate the DBH30 of all live trees sampled: 

DBH30 =(a+ b./ D BH98) 2 



79 

The regression equation, standard diagnostics and plots of residuals versus predicted 

values were calculated using the software Mathematica ver. 3.0 (Wolfram 1996) (see Table 

2-2 and Fig. 2-2). Diamet ers of beetle killed trees that died in the epidemic and were 

recorded in 1998 were used in ca. 1930. The reconstructed diameters were then used to 

generate standard forest metrics (Husch et al. 1982) including basal area of the tree ca. 

1930 (batr30), basal area per 0.04 ha ca. 1930 (baplt30) , and trees per 0.04 ha ca. 1930 

(tplt30). The number of stems in a tree clump was also recorded because tree regeneration 

initiates from Clark 's nutcracker seed caches (Lanner 1980, 1982, Hutchins and Lanner 

1982, Tomback 1982) . The 0.04 ha basis reflects the local area environment of a tree and 

the number of stems reflects the more immediate biomass arrangement of the caching site. 

The latter was anticipated as a potential predictor variable reflective of th e spatial 

component of beetle movement from stem to stem. Stand-lev el attributes including stand 

density index , SDI (sdi) (Reineke 1933, Long and Daniel 1990) , quadratic mean diamet er 

( dq), basal area ( ba) , and mean basal area ( mba) were calculated ca . 1930 and 1998 for all 

14 stands (Husch et al. 1982, Avery and Burkhart 1994). 

Stand-level and tree-level metrics were tabulated with physical site attributes for 

two fundamental analyses: (1) Stand-level metrics were used for a stand-level logistic 

regression model to explain the probability of attack as a function of stand-level variables . 

(2) Tree-level metrics constituted the set of indep endent variables used in a 10-fold 

cross-validated logistic regression model for probability of individual tree attack given that 

the stand was attacked. 

The utility of logistic regression to describe a discrete event as a function of 

independent site and stand variables is well established for forest tree mortality (Hamilton 

1974, Hamilton and Edwards 1976, Hamilton 1986, Berryman 1986). In logistic regression 

the dependent or response variable , tree survivorship status (tsts), is dichotomous taking 
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the values of zero or one. The response distribution for logistic regression is the binomial 

distribution established through a logit link function that relates the log of the odds of 

attack with the linear predictor of independent variables (Hastie and Pregibon 1992). The 

model can be expressed as: 

where p is the probability of attack , x1, x2 ... xn are the predictor variables and bo, b1 ... bn 

are coefficients determined in the logistic regression. The model is then back transformed 

to generate probabilities of attack as: 

Logistic regression employing 10-fold cross validation was accomplished with 

S-PLUS (MathSoft 1999). Analyses of deviance methods (Hastie and Pregibon 1992) were 

used to search for a parsimonious model and to identify the significance of parameters. To 

approximate the general linear model goodness of fit statistic (the coefficient of 

determination , R2 ) for the logistic regression model , a quasi R2 was calculated as: 

1 - (residual deviance/null deviance) (Cutler pers. comm.). To avoid the bias inherent 

in using the same data to develop and test th e model , and to account for within-site 

dependencies , the analyses were 10-fold cross-validated as follows. Trees in each of the 

attacked stands were partitioned into ten segm ents. One segment was withheld and the 

remaining nine were used to calibrate the model. The 10th segment was then used to test 

the prediction against the known status to validate the model. This was repeated 10 times 

for each site leaving out each segment in turn . The predictions of the 10 independently 

verified models were compared to the actual survivorship status for each tree in a 

contingency ( cross-tabulation) table. Percent correctly predicted , percent error of 

omission, and percent error of commission were calculated as well as bias of the models . 



Bias describes the model 's errors in a directional sense with respect to actual and 

predicted attacks. A negative value indicates a tendency to underpredict and a positive 

value indicates a tendency to overpredict attacks. From a managerial perspective, over 

prediction of beetle attacks is less problematic than underprediction. For a 

cross-tabulation of the form: 

Predicted 
Actual False True 
False a c 
True b d 

Bias is calculated as: 

( c + d) - ( b + d) 

(b + d) 

Differences in the significance of the independent variables across stands were 
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explained by a qualitative interpretation of size-frequency distributions ca. 1930. Finally , 

trees in all stands were pooled and the 10-fold cross-validation assessment of the logistic 

model was repeated to see if the pooled model was significantly worse than the 

stand-specific models. 

RESULTS 

The least squares regression for reconstructed diameter ca. 1930 was significant 

(p < 0.001) with 53% of the variability in DBH30 explained by DBH98 (see Table 2-2). 

The regression model was thus considered adequate to reconstruct diameters of trees that 

survived the ca. 1930 epidemic. The model fit and evidence of the random distribution of 

model errors are shown in Fig. 2-2. 



82 

Stand-Level Model 

Nine stands met the criteria for attacked and five stands met the criteria for 

nonattacked stands (Table 2-1). Attacked and nonattacked paired stands were located 

adjacent to each other for stands ABK and AND , BLK and BLP , and AVL and CRS. 

Stands ASO and BGH and RRB and NRR were also paired but were separated by a ridge 

and not adjacent (Fig. 2-1). 

Differences in nonattacked versus attacked stands are apparent in Table 4-1. Basal 

area (ba30), trees per ha (tph30), mean basal area (mba30), quadratic mean diameter 

(dq30) and stand density index (sdi30) before the outbreak were lower on unattacked as 

compared to attacked stands (Table 4-1). On attacked stands, approximately 60-400 

trees/ha were killed by mountain pine beetles . Site RRB was a small stand with only 

three plots; trees killed by beetles per ha is likely overestimated at 734. 

The implication of having paired stands is that they generally experienced the 

same beetle pressure and that structural rather than environmental site variables would 

differentiate susceptibility. This was shown with basal area (ba30) and stand density index 

(sdi30) as the only significant predictors in logistic regression models. Both stand density 

index and basal area are positively correlated with beetle attack (p ::; 0.001). These two 

models explained stand attack perfectly for the 14 stands : 

ln(p/(l - p)) = -76.9344 + 0.8840 sdi30 

ln(p/(l - p)) = -64.9297 + 6.5671 ba30 

The probability of correctly predicting 14 out of 14 stands was 0.002 calculated 

using the probability mass function of a binomial random variable (Ross 1976). 
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Tree-Level Model 

Analyses of the pooled tree-level data set identified four significant (p < 0.001) 

independent variables: diameter ca . 1930, (dbh30), basal area 0.04 ha ca. 1930 (baplt30) , 

trees per 0.04 ha ca. 1930 (tplt30) , and number of stems in a tree clump (nstms). 

Analyses of deviance of the model predictors with the chi-square test statistic (Venables 

and Ripley 1999) demonstrated statistical significance (p < 0.001) for all four variables in 

the 10-fold cross-validation models. Results from cross-validation models were 

cross-tabulated with observed tree attacks on each stand in contingency tables (Appendix 

C). The mean of the percent of trees correctly predicted was 90%. Number correctly 

predicted , errors of omission and commission, and bias are tabulated in Table 4-2. Models 

from two stands tended to slightly underpredict tree mortality but generally all bias 

metrics were close to zero (Appendix C). 

Analyses of the coefficients of the independent variables revealed that dbh30 was 

the most consistently significant (p < 0.001) on all nine sites , followed by nstms on seven 

sites, baplt30 on five sites , and tplt30 on two sites (Table 4-3) . The difference in the 

significance of the predictors may be explained in part by size frequency distributions 

(Fig. 4-1) and stand summary metrics (Table 4-1) . For instance, on the Goat site (GOA) 

the quadratic mean diameter was large at 43. 7 cm ( 1 7. 2 in .) with a low stocking of 124 

trees per ha (50 trees per acre) . With few large diameter trees , nearly all of which were 

selected by beetles, the contribution of baplt30 and tplt30 as predictors was negligible 

(Fig . 4-1). On Anderson Peak (ABK) , beetles selected small diameter trees (there were no 

large ones) and nstms was significant with intermediate significance for tplt30. On two 

stands, Titus Lake Peak (TLK) and Big Hill (BGH) , all four predictors are significant; 

both stands are dominated by the abundance of large diameter trees at high to moderate 



84 

stocking levels (Fig. 4-1). Local basal area was significant on AVL, BGH, BLK, TLK, and 

TWP stands that lost small as well as large diameter trees (Fig 4-1). 

The cross tabulation for the pooled data set of all trees across all sites dropped to 

85% correct in predicting tree fate (Table 4-4). The logistic equation for the pooled data 

set was: 

ln(p/l - p) = -6.0167 + 0.1954 dbh30 + 0.0944 baplt30 + 0.0668 tplt30 + 0.5792 nstms 

The quasi R2 was 0.44. The contribution of diameter ca. 1930 (dbh30) and number of 

stems (nstms) to the model fit is shown in Fig. 4-2. The bias was 0.011, indicating a 

potential to slightly overpredict tree mortality. 

DISCUSSION 

It has been well established that tree size, age, and stand density are factors 

correlated with tree mortality (Yoda et al. 1963, Lee 1971, Hamilton and Edwards 1976, 

Hamilton 1986). For the whitebark pine-mountain pine beetle system, that tree diameter 

and basal area were positive significant predictors in the logistic models is not surprising 

and is consistent with mountain pine beetle-host susceptibility characteristics identified by 

others (Amman et al. 1977, Cole and Amman 1980, Stevens et al. 1980, Berryman 1982, 

Shore and Safranyik 1992, Schmid and Mata 1992, Olsen et al. 1996). Stand-level 

characteristics associated with attack are also qualitatively similar to other mountain pine 

beetle-pine host systems. For instance, whitebark pine stands with basal areas below 7 

m2 /ha (30 ft 2/acre) and average diameters below 18 cm (7 in.) were not attacked in the 

early 20th century epidemic. These characteristics are similar to susceptibility 

characteristics found in lodgepole pine stands where host basal areas below 18 m2 /ha (80 

ft 2 /acre) and diameters less than 20 cm (8 in.) are seldom attacked (Cole and Amman 

1969, Amman et al. 1977) and in ponderosa pine stands where thresholds for attack are 
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28 m 2 /ha (120 ft 2/acre) for basal area and 25 cm (10 in .) at DBH (Sartwell and Stevens 

1975). This work presents evidence of the generality of host susceptibility characteristics 

across pine species and over elevation gradients. 

The significance of number of stems (nstms) as positively correlated with 

individual tree attack implicates distance between stems as a spatial constraint related to 

the probability that mountain pine beetles will attack a tree. Whitebark pine trees with 

multiple stems in clumps are more likely to be attacked than single stems. Donnegan and 

Rebertus (1999) also found that mortality of mid-successional stage limber pine (Pinus 

fiexilis James) was correlated with its clumped pattern. The nstms variable indirectly 

incorporates a spatial component identified by Bentz et al. (1993) as needed to improve 

risk/hazard rating systems and by Powell et al. (1996) to incorporate dispersal effects. 

Mitchell and Preisler ( 1991) used a logistic regression spat ial analysis of lodgepole pine 

attack by mountain pine beetles and found that among small diameter classes spatial 

relationships among trees and tree size were the most important covariates. Their 

explanation may capture the variability I could not explain with the significance of the 

four independent variables. 

High elevations are generally associated with decreasing beetle-caused mortality 

levels because of unfavorable heat balance for beetle development (Amman 1973). 

However, elevation is not correlated with beetle attack of trees or stands during the 

epidemic conditions of the ca. 1930 outbreak. This may be explained in part by the 

narrow elevation band ~ 300 m ( 1,000 ft) of the study area and by the concurrent above 

average departures in summer temperatures during the widespread "dust bowl drought" 

years (ca. 1930) (Finklin 1988, Perkins and Swetnam 1996, Biondi et al. 1999) Warm 

temperatures would likely have favored successful brood development, beetle survivorship, 

and successful attacks (Reid and Gates 1970, Amman 1972, 1973, Bentz et al. 1991, 
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Logan and Bentz 1999) . The infestation also occurred at the start of the longest sustained 

low growth period for the last 200 years as represented in whitebark tree-ring width 

chronologies (Perkins 1995, Perkins and Swetnam 1996) . This growth suppression likely 

reflects poor growing conditions for trees, low tree vigor and may support the 

plant-drought stress hypothesis (Mattson and Haack 1987), which suggests that 

water-stressed individuals are more susceptible to damaging agents than 

non-water-stressed individuals. 

The logistic regression models presented here explain the probability of whitebark 

pine tree attack by mountain pine beetle based on tree and stand-level characteristics 

calibrated in the pre-epidemic phase of a historic outbreak . Bentz et al. (1993) in their 

review of four risk and hazard rating systems note that the population phase (beginning, 

increasing, or declining) is important for a risk model's ability to accurately predict 

mortality. Because the reconstructed DBH at 1930 was the foundation for calculating 

pre-epidemic stand conditions and the assessment of mortality was post-epidemic, the 

model may be suited for estimates of cumulative mortality anticipated in mountain pine 

beetle epidemics. Both the tree- and stand-leve l models are limited to whitebark pine in 

the geographic area of central Idaho, and require verification with independent data 

outside the region. 
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Table 4-1. Stand summary metrics ca. 1930. The first five rows are stands that were 

not attacked by mountain pine beetle. ba30 = basal area ( n.2 /ha) tph30 = trees 

per ha , mba30 = mean basal area, dq30 = quadratic mean diameter (cm), 

sdi30 = stand density index , babk = basal area of trees killed by 

mountain pine beetles, tphbk = trees killed by mountain pine beetles/ha. 

Site ba30 tph30 mba30 dq30 sdi30 babk tphbk 

NRR 3.4 178 0.05 15 33 0 0 
BLP 3.9 195 0.05 16 38 0 0 
ASO 4.6 27 0.41 46 30 0 0 
CRS 5.1 210 0.06 18 47 0 0 
AND 6.7 289 0.06 17 63 0 0 

ABK 13.1 403 0.08 20 114 12.2 338 
SIL 14.0 272 0.13 26 111 11.5 188 
AVL 16.3 356 0.11 24 132 10.6 143 
TLK 16.5 195 0.21 33 119 14.7 101 
GOA 18.4 124 0.37 44 119 16.8 59 
TWP 21.6 257 0.21 33 156 20.4 183 
BLK 26.4 316 0.21 33 190 25.3 249 
BGH 32.1 479 0.17 29 242 30.3 380 
RRB 50.3 889 0.14 27 393 46.8 734 
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Table 4-2. Number of trees correctly predicted (attacked or not 

attacked), errors of omission and commission, and bias. 

Percentages are in parentheses. 

Errors of Errors of 
Site Correct om1ss10n commission Bias 

ABK 114 (91) 4 (3) 7 (6) 0.028 
AVL 130 (90) 7 (5) 7 (5) 0 
BGH 148 (93) 5 (3) 7 (4) 0.008 
BLK 86 (83) 6 (6) 11 (11) 0.061 
GOA 39 (95) 1 (2.5) 1 (2.5) 0 
RRB 99 (87) 4 (3) 11 (10) 0.071 
SIL 61 (80) 7 (9) 8 (11) 0.018 
TLK 64 (98) 1 (2) 0 (O) -0.030 
TWP 77 (95) 3 (4) 1 (1) -0.036 
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Table 4-3. Significance table of the four independent 

variables used in the tree-level logistic 

regression model. 0 = significant (p < 0.001), 

1 = not significant (p > 0.1), .5 = 0.001 < p < 0.1. 

Site dbh30 nstms baplt30 tplt30 

ABK 0 0 1 .5 
AVL 0 0 0 1 
BGH 0 0 0 0 
BLK 0 1 0 1 
GOA 0 1 1 1 
RRB 0 0 1 .5 
SIL 0 0 1 .5 
TLK 0 0 0 0 
TWP 0 0 0 1 



Tabl e 4-4. Cross-tabulations of logistic model 

prediction versus actual tree survivorship 

status. x2 = 349.70 , df = 1 , (p :S 0.0001 ) 

Correctly pr edicted = 84%, errors of omission = 8%, 

errors of commission= 8%, bias = 0.011. 

Predict ed 

Actual False True Row total 

False 194 75 269 

True 68 573 641 

Col. total 262 648 910 

95 
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ca. 1930. Solid bars are live , nonattacked trees and hatched bars are trees attacked and 

killed by mountain pine beetles. 
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CHAPTER 5 

A SPRING TEMPERATURE RECONSTRUCTION FROM 

WHITEBARK PINE TREE RINGS 
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Abstract. A high-elevation whitebark pine (Pinus albicaulis Engelm.) tree-ring 

chronology was used to develop a 1028-year long reconstruction of spring temperature for 

the Sawtooth-Salmon River region of central Idaho. The chronology was developed using 

53 measurement series from 24 trees collected on four sites, and spans the interval A.D. 

965 to 1992. Series were selected from live and dead trees for continuous long segment 

lengths and high inter-series correlation within and between the sites. The chronology was 

calibrated against Ketchum and New Meadows, Idaho US Historical Stations, April-May 

average monthly temperature using half-sample calibration-verification tests for the period 

that contained historic climate data , 1909-1992. The chronology accounted for 41 % of the 

variability in the climatic data and successfully simulated medium to high frequency 

trends. Below average departures from mean spring temperatures occurred ca. 1080-1150, 

1260-1460, and 1720-1925. The 19th century cold period coincides with the "Little Ice 

Age." The warmest interval ca . 965-1080 is greater in magnitude than any other period in 

the reconstruction and is concurrent with the "Medieval Warm Period." Neither the 

instrumental nor the proxy temperature records show evidence of warming in the 20th 

century . 

INTRODUCTION 

Inferences about paleoclimatic variability from tree-ring chronologies have been 

constrained by the length of the chronologies and the spatial network of chronology sites. 

Millennium length chronologies have been increasingly sought to quantify the spatial and 

time varying properties of climate variables of the distant past (Bradley and Jones 1995, 



Biondi et al. 1999). In response to the need for paleoclimatic information this research 

was initiated to (1) construct a millennium-length tree-ring chronology for the 

northwestern U.S. and (2) reconstruct temperature using a calibration equation that 

relates tree-ring indices of annual growth to temperature. 
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Four previously published whitebark pine (Pinus albicaulis Engelm.) chronologies 

from the Sawtooth-Salmon River region of centra l Idaho were long and well replicated, 

and had demonstrated dendroclimatic potential (Perkins and Swetnam 1996) . The 

dominant climate signal from response function and corre lation analyses (Guiot 1990) was 

spring temperature (Perkins and Swetnam 1996). Annual ring-width growth was inversely 

correlated with average monthly May temperature from the Idaho central mountains 

(NOAA climate division 4) instrumental record (NCDC, Asheville, North Carolina) 

(Perkins and Swetnam 1996). Because all four sites showed a similar climate signal, it was 

reasonable to construct a composite chrono logy using the longest ring-width series from 

both living and dead trees at each site. The standardized composite chronology was then 

calibrated against instrumental climate data from sites that were geographically proximal 

to chronology site elevations. 

The addition of this 1000-year spring temperature reconstruction is expected to be 

integrated with other regional paleoclimatic information to enhance understanding of 

climate variability on spatial as well as temporal scales in the northern Rocky Mountains. 

METHODS 

The composite chronology was developed from ring-width series from four 

previously published central Idaho whitebark pine chronologies (Fig. 5-1). Details about 

site descriptions, field collections, chronology development and crossdating characteristics 

can be found in Perkins (1995) and Perkins and Swetnam (1996). Individual trees selected 

for the composite chronology had long and continuous ring-width series from both live and 
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dead trees. Each series was chosen for long segment length (Cook et al. 1995) , high 

interseries correlations (r ~ 0.43) with their respective master site chronologies, and high 

interseries correlations across sites ( r ~ 0.43) for the composite chronology. Additionally, 

trees living between A.D. 800-1300 were selected to increase sample size in the early part 

of the chronology. Crossdating was verified for the composite chronology with the quality 

control crossdating program COFECHA to ensure measured series were accurately dated 

(Holmes 1983). Crossdating is accomplished when cores from the same tree and from 

different trees within a stand share a common pattern of wide and narrow annual rings or 

other diagnostic features. The synchroneity of these patterns allows assignment of an 

exact calendar year to each tree ring (Douglass 1941, Fritts 1976). The COFECHA 

algorithm calculates running correlation coefficients between a single series and a master 

composite that excludes the series being tested. Crossdating was confirmed if the highest 

significant correlation occurred at the dated position. 

Three important steps characterize a dendroclimatic reconstruction (Fritts 1976, 

1991, Bradley and Jones 1995) : (1) standardization or detrending of the tree ring 

parameter ; (2) calibration of the site chronology with with instrumentally recorded 

climate data and the production of the reconstruction with the calibration equations; (3) 

verification of the reconstruction from an independent period not used in the initial 

calibration. 

After crossdating was verified , each series was standardized to remove 

nonstationary time domain trends (Fritts 1976, Cook 1985, 1987). The standardization of 

the tree ring width series removes the biological age trend of the tree, non-climatic and 

individualistic disturbance effects , and normalizes the tree ring series to a common mean 

where the relative variance is emphasized (Fritts 1976, Holmes et al. 1986). Generally, 

widely spaced, open-canopied trees can be detrended with simple exponential or linear 
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functions to remove the biological age trend and still preserve the long frequency 

variations desirable for climate reconstructions (Fritts 1976). Smoothing splines have been 

commonly used to detrend forest interior ring-width series because of competition and 

endogenous disturbance patterns manifest in the tree-ring series (Cook 1985, 1987). In 

this study a 32-year smoothing spline (Reinsch 1967 , Cook and Peters 1981) was chosen 

for detrending because individual trees showed asynchronous periods of above and below 

average growth due in part to intra.specific competition between multiple stems and by 

mechanical damage to stems within clumps. Whitebark pine trees commonly grow in a 

multiple stem form because tree regeneration initiates from Clark's nutcracker (Nucifraga 

columbiana) seed caches (Tomback 1978, Lanner 1980, Hutchins and Lanner 1982, 

Tomback 1982). In the multiple stem form, growth rings often lack circuit uniformity and 

grow away from the tree centerline. 

Division of the observed ring-width values by the expected value from the 

smoothing spline function produced the index values for each series. The indices were then 

averaged for all measured series to produce a master ring-width index for each year. 

Standardization with the 32-year smoothing spline preserved 50% of the amplitude 

frequency response at the 32-year wavelength but lost all variance at the 60-year 

frequency. As a result of this standardization method , high to medium frequency 

variations are preserved and long frequency trends are lost. Detrending and development 

of the final master chronology were performed with procedures in the computer program 

ARSTAN (Cook 1985). The STANDARD chronology from the ARSTAN output was used 

for all analyses. 

Response function and correlation analyses (Guiot 1990, Fritts et al. 1990 ) from 

the four previously published chronologies had shown a significant inverse relationship 

with average monthly May temperature from the Idaho-central mountains (division 4) 
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instrumental record (NCDC, Asheville , North Carolina) (Perkins and Swetnam 1996). To 

investigate climate-tree growth relations on smaller, local scales, the five nearest US Idaho 

historical weather stations with approximately 100 years of continuous climate data were 

selected: Challis, Cambridge, Ketchum, Mackay, and New Meadows. Climate variables 

investigated were monthly mean temperature and monthly total precipitation by 

individual station , regionalized monthly mean temperature and monthly total 

precipitation from Idaho climate division 4 (Central Mountains), and Idaho division 4 

Palmer Drought Severity Index (PDSI). A 20-month period of meteorologic data from 

previous May through following December was analyzed to detect autocorrelation effects. 

Investigation of climate-growth response was accomplished using PRECONK 

(Fritts et al. 1991, Fritts and Shashkin 1995) while SAS correlation routines (Schlotzhauer 

and Littell 1987) were used to identify months in which temperature and precipitation had 

significant effects on annual ring width growth. The analysis of tree ring growth and 

climate variables followed standard dendrochronological methods (Fritts 1976, 1991, Cook 

and Kairiukstis 1990) of correlation coefficients and response functions. Response function 

analysis regresses principal components (eigenvectors) of climate variables upon the 

master index chronology to calculate a set of coefficients (weights) that correspond to the 

original set of climate variables. A bootstrap method provides confidence intervals for the 

response coefficients (Guiot 1990). 

The climate variable with the most significant response function and correlation 

coefficients was used for reconstruction. For the calibration and verification steps of the 

reconstruction, the period of climatic observations (1909-1992) was divided into 

half-sample subsets. Each half-period was calibrated with a regression model and then 

verified on the half withheld from the calibration. Studentized residuals and Cook's d 

were the diagnostics used to identify outliers that adversely affected the model. 
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Verification tests included correlation analyses, reduction of error (RE) tests, the product 

mean test, and the sign products test (Fritts 1976, Fritts et al. 1990) 

After verification, the entire instrumental period was used to develop a new 

regression equation to maximize the number of observations and therefore the degrees of 

freedom used to calculate model significance (Briffa et al. 1990). The final step was to 

apply the transfer equation to the chronology to predict the past average April-May 

temperature for the period A.D. 965 - 1992. 

RESULTS 

Crossdating/Standardization 

The composite chronology was composed of 53 series from 24 trees and was 1267 

years in length (Table 5-1, Fig. 5-2). Four trees from Railroad Ridge (RRR), eight trees 

from Sandpass (SDP), six trees from Twin Peaks (TWP) , and six trees from Upper Sand 

Pass (UPS) comprised the final chronology. The strength of the crossdating was reflected 

by a high interseries correlation of 0.55 (Table 5-1). The mean sensitivity of 0.22, a 

measure of the relative change between adjacent ring widths (Douglass 1936) , reflects the 

low year-to-year variance typical of Rocky Mountain conifers near treeline (LaMarche and 

Stockton 1974, Fritts and Shatz 1975). Mean segment length was 457 years , of substantial 

length to mitigate the effects of the "segment length curse" (Cook et al. 1995). The 

"curse" is related to the fact that the maximum resolvable wavelength in the climate 

reconstruction is only as long as the ring-width series itself, and chronologies composed of 

short overlapping segments may be expected to represent variable climatic, site, age, and 

stand structure conditions. 
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Climate-Growth Relations 

The most significant relationship between climate and tree-growth was an invers e 

relationship with April and May temperature for the single climate stations New 

Meadows , Ketchum , and Cambridge . The highest Pearson correlation coefficients 

(p < 0.0001 ) occurred with the STANDARD chronology. Although the correlation 

coefficients with Cambridge and New Meadows were approximately equal, New Meadows 

and Ketchum were selected as potential predictor variables because they were the closest 

in elevation and distance to the chronology sites (Fig 5-1). Ketchum and New Meadows 

station data were averaged to create a spring temperature variabl e for average April-May 

temperature. This variable improved the correlation coefficients from the individual 

months to produce the strongest regional temperature signal (Table 5-2). 

Calibration/V erification 

A simple linear regr ession was calculat ed on half-sampl e subsets for th e periods 

1909-1950 and 1951-1992. Verification of th e calibration equation for each subset withh eld 

from the calibration period was perform ed using program VFY of the International 

Tree-Ring Data Bank Program Library (Holmes 1992). Initial regression models indicated 

that only 21 % to 34% of the variance in climate could be explained by tree growth. 

Outlier observations identified using Cook 's d and Studentized residuals were removed 

from the calibration model and significantly improved the correlations. After removal of 

outlier years 1910, 1914, 1920, 1925, 1940, and 1948, the F-values , the ratio of model to 

error variance , were statistically significant (p < 0.0001) with improved R2 values of 0.37 

and 0.41. 

All verification diagnostics on both half periods were statistically significant 

(p < 0.05) with the exception of the product means test for the late period calibration. A 
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possible explanation is that the period calibrat ed in 1951-1992 was a recovery growth 

period (above average growth) but was verified during the suppressed growth period of 

the 1930's drought and concurrent mountain pine beetle epidemic (below average growth) 

(Ciesla and Furniss 1975, Arno and Hoff 1989, Perkins and Swetnam 1996) The 

non-parametric sign test indicates that the number of similarities in the sign of departures 

between climate and ring-width indices was larger than the number of dissimilarities 

(Fritts 1976). The reduction of error statistic was positive, indicating that the calibration 

model provides a better estimate of climate on the verification period than the mean of 

the calibration period (Fritts 1976) . 

After the double calibration and verification on the half-period subs ets , th e full set 

1909-1992, less five missing station values and outliers , was used for the simple least 

square regression. The first order linear equation (transfer function) relating ring-width 

index to average April-May temperature was: 

Yt = -7 .78Xt + 14.95 

where Yt was the predicted spring t emperatur e (° C) and x 1 was the standard ring-width 

index at year t (n = 73) (Table 5-2). The R2 for the full set regression was 0.41 , retaining 

the same level of variance explained as the half-set model (Table 5-3). The instrumental 

mean temperature of 7.28 ° C was substitut ed for the five missing station values in years 

1957, 1978, 1983, 1984, and 1992 for the plot of observ ed and expect ed values (Fig . 5-3) . 

The observed versus predicted spring temperatur e valu es reveal generally 

synchronous agreement in periods 1911-1920, 1927-1938, 1945-1970, and 1973-1981. The 

effects of outliers and missing values in periods of poor agreement , 1982-1992 and 

1920-1925, were also evident (Fig. 5-3). Although the composite chronology spanned the 

interval A.D. 726-1992, only the period A.D . 965-1992 was used for the reconstruction 
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because there were fewer than three trees from A.D. 726-965. Reconstructed temperature 

was converted to standard deviation units (z-scores) to provide an objective method to 

detect the magnitude of temperature deviation (Grissino-Mayer 1995), and smoothed with 

a 50-year smoothing spline to detect longer frequency trends (Grissino-Mayer 1995) and 

facilitate visual comparisons with other temperature reconstructions (Fig. 5-5). 

DISCUSSION 

The reconstruction of average April-May temperature shows high variability on 

annual to decadal scales with oscillations close to the mean (Fig. 5-4). The length and 

magnitude of the climate anomalies discussed here are influenced by the chrono logy 

standardization procedure and care must be used in their interpretation ( Cook and 

Kariukstis 1990). The smoothed reconstruction reveals low-frequency departures for up to 

200 years for cool periods interspersed with higher frequency, decade-scale oscillations for 

warm periods (Fig. 5-5). 

The most striking departure from the mean in the smoothed reconstruction is the 

above-average warm period beginning in 965 and persisting for over 100 years until about 

1080. The expectation is that the amplitude of departure from the mean would decrease 

with an increase of samples. However , the trees in this period come from three different 

sites (RRR, SDP, TWP), so endogenous stand influences on the ring widths may be 

averaged out and inference about warmth is not unreasonable. From 1080 to 1250, three 

additional periods of persistent (> 10 year) warming occurred. These as well as the initial 

10th century warming are concurrent with the "Medieval Warm Period " (Lamb 1977, 

Williams and Wigley 1983, Briffa et al. 1992) , beginning around A.D . 900 and lasting 

until ca. 1450. This period is reported to be highly variable in length and magnitude with 

asynchronous periods of warming and cooling differentiated by region, species used in 

reconstructions , and methodology. Such variability is apparent in the early "Medieval 
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Warm Period " of 965-1080 being followed by cool years between 1090-1150. More samples 

are needed to clarify the climate response in the early period of the reconstruction. Other 

notable warm periods shown in the smoothed reconstruction are centered around 14 70, 

1510, and 1710 and are 10-20 years in duration. 

Toward the present , a period of average or just below average temperature lasted 

for 200 years starting ca. 1260 and ending ca. 1460. Another 200-year cool period 

occurred from ca. 1725-1925 (Fig. 5-5). This period falls within the "Little Ice Age," ca. 

1400-1900 (Lamb 1977, Grove 1988, Briffa et al. 1992, Bradley and Jones 1995). The 

"Little Ice Age" is of disputed duration, characterized by geographic variability and 

anomalous warm-cool oscillations in an otherwise widely recognized period of glacial 

advance (Pielou 1991, Bradley and Jones 1995). In North America, the 19th century is 

generally acknowledged as the coldest (Jones and Bradley 1995), and the spring 

temperature reconstruction supports this for central Idaho . Neither the instrumental nor 

the proxy temperature records show evidence of warming in th e 20th century. While th e 

1930's drought was a period of above average summer temperatures, April-May 

temperatures were cool. 

Comparisons of the average April-May temperature reconstruction with other 

temperature reconstructions from western North America generally reveal similarities with 

the 19th and 20th centuries broadly consistent with the Little Ice Age. Graumlich and 

Brubaker (1986) reconstructed annual temperature from conifers at timberline from the 

Cascade Mountains of Washington and reported a cool period from 1860-1900, which 

agrees with the spring temperatures reported here. Other periods, including a significant 

20th century warming trend were notably dissimilar . In a nearby reconstruction of July 

temperature from arid-site Douglas-firs (Pseudotsuga menziesii) and whitebark pines 

(Biondi et al. 1999), continuity between spring and summer temperature was seen around 
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1150, 1420, 1600, 1660-1725 , and the 1940s (Fig . 5-6) . Similarities in cool periods were 

not apparent. Luckman and others (1997) reconstructed summer temperature from 

densiometric and ring width ana lyses of subalpine conifers near the Columbia Icefield , 

Alberta, Canada. The cold periods 1650-1690, and the first half of the 19th century, were 

notably similar between their reconstruction and this one. Additionally there were 

segments of overlap in the cold periods around 1220, 1260, 1280, and 1330. Their reported 

warm period from 1350-1440 agrees with the summer temperature from the 

Douglas-fir/whitebark chronology (Biondi et al. 1999) but is markedly different from the 

average to slightly below average departure of spring temperature in this reconstruction. 

Spring temperature appears to have littl e seasonal persistence with summer temperatures. 

CONCLUSIONS 

High elevation and northern latitude tree ring chronologies from the northern 

hemisphere have proven utility for summer temperature reconstruction (LaMarche 1974, 

LaMarche and Stockton 1974, Briffa et al. 1990, 1992, 1998, Graumlich 1993, Luckman et 

al. 1997, Biondi et al. 1999). Heat and water constraints on conifer physiology at upper 

treeline have been well studied (Wardle 1974, Tranquillini 1979). Carbon assimilation is 

limited by the length and magnitude of warm temperatures during the growing season and 

by water availability to plants . Thus temperature and precipitation are two of several 

environmental variables that interact in a complex , nonlinear manner to constrain tree 

distribution, affect tree growth, and provide the biological justification for 

dendroclimatology (Fritts 1976). On high-elevation sites in the northern hemisphere, 

annual tree ring growth of conifers is generally positively correlated with with spring 

and/or summer temperature (LaMarche and Stockton 1974, Graumlich and Brubaker 

1986, Peterson et al. 1990, Luckman et al. 1997) and winter and spring precipitation 

(Kienast and Schweingruber 1986, Peterson et al. 1990, Graumlich 1993). 
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Inverse correlations of growth with spring temperature are less common but have 

also been reported. LaMarche and Stockton (1974) noted both inverse correlations with 

spring temperature and positive correlations with summer temperature in near-treeline 

bristlecone pine (Pinus longaeva D.K. Bailey and P. aristata Engelm.) tree ring series 

from the Colorado Front Range and Great Basin , Nevada. They suggested that the 

inverse relationship is explained by the loss of photosynthates from respiration on warm 

spring days . 

Biondi (1993) investigated the climatic response of European beech (Fagus 

sylvatica L.) in the mountains of central Italy and reported that annual ring-width growth 

was inversely correlated with April temperature, and positively correlated with December 

precipitation. His interpretation is that adequate winter snowfall coupled with cool springs 

slowed rates of snow melt and provided sufficient water for trees during the dry growing 

season. Perkins and Swetnam (1996) also suggested that whitebark pine annual ring 

growth may be favored by cool springs and delayed snow melt , a site water-balance effect. 

Another possible explanation for below average ring-width growth with warm 

spring temperatures, is that radiation loads are enhanced by light reflected off the snow 

surface at high elevations, thereby raising ambient air temperatures and resulting in early 

onset of photosynthesis and transpiration. Water may be unavailable to roots at still low 

soil temperatures, resulting in dessication , xylem cavitation, reduced photosynthate, and 

subsequent reduced annual ring growth (Fritts 1976, LaMarche and Sto ckton 1974, 

Tranquillini 1979) Graumlich (1991) also found an inverse correlation between lodgepole 

pine (Pinus contorta Dougl.) growth and April temperature but suggested it was not 

easily interpretable. The physiological explanations for above average ring-width growth 

with cool spring temperatures and below average growth with warm temperatures require 

further research to clarify the relationship of tree growth, spring heat budgets and site 
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water availability. Precipitation varies widely within the central Idaho region and with 

elevation (Emmett 1975, Steele 1981). Including snowpack measurements from elevations 

near the site chronologies as a potential predictor variables may improve the climate 

reconstruction from these high-elevation trees as well as provide insights to the 

ecophysiological processes affecting whitebark pine. 

Lowered sensitivity of high-latitude tree growth to summer temperatures has been 

reported in recent decades (Briffa et al. 1998). Thus spring temperature reconstructions 

may become increasingly important for detecting past climate variability. The spring 

temperature reconstruction presented here is among the longest climate reconstructions in 

North America and is expected to be useful for testing climate simulation models and 

enhancing the spatial and temporal network of proxy climate data. 
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Table 5-1. Crossdating statistics. 

Time interval AD 726-1992 

Chronology length 1267 years 

Number of trees 24 

Number of cores (series) 53 

Mean segment length 467 years 

Series inter-correlation 0.55 

Average mean sensitivity 0.22 

Mean standard deviation 0.18 mm 



Tabl e 5-2. Pearsons 's correlation coefficients for Idaho US 

historical weather stations and spring temperatur e. 

April May April-May 

Ketchum -0.42 -0.34 -0.4 7 

New Meadows -0.42 -0.36 -0.48 

Ketchum-New Meadows -0.49 

117 



Tabl e 5-3. Calibration statistics for average April-May 

temperature and tree growth for the periods 1909-1950, 

1951-1992 and 1909-1992. 

Period Slope Intercept F-value p > F R2 

1909-1950 -6. 96 

1951- 1992 -5.77 

1909- 1992 -7. 78 

14.68 

12.77 

14.95 

21.2 0.0001 0.37 

22.5 0.0001 0.41 

49.14 0.0001 0.41 
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Tabl e 5-4. Results of verification tests betw een observed and pr edicted temperature 

between 1909-1950 and 1951-1992. 

Calib. 
period 

1909- 1950 

1951- 1992 

Verif. 
period 

1951- 1992 

1909-1950 

Correl. 
coeff. 

0.53 

0.45 

Reduction Product means 
of error test 

0.87 2.55 

0.18 * 1.15 

Signs 
test 

13 

13 
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Fig . 5-6. Comparison of reconstructed average April-May and July temperatures 

from tree rings from central Idaho. 



CHAPTER 6 

CONCLUSION 

126 

The traditional definition of plant population or community stability , 

self-perpetuation in the absence of disturbance , often applied to shade tolerant climax 

dominants , is not appropriate for the cold , dry environments of treeline wher e shade 

intolerant whitebark pines occur. Although these are often called climax , and are 

sustainable high-elevation forests , they are so because of the stabilizing influences of 

disturbances. I have used another common definition of stability, the ability of 

populations or communities to recover from disturbance to the same pre-disturbance 

association , and have used as a metric the stable size , reverse-J , or negative exponential 

distribution as evidence of self-sustainability. It appears that treeline stands of whitebark 

pine are currently self-perpetuating or stable . 

This self-replacing state may be explained in part by past mountain pine beetle 

infestations (Chapter 4). Mountain pine beetles attack large-diameter trees in high-density 

stands creating gaps (openings) and providing growing space for recruitment (Chapter 3) . 

Thus beetles , as disturbance agents , act as a negative feedback regulatory mechanism to 

maintain self-perpetuating whitebark pine forests . Reproductive survivors of the ca. 1930 

mountain pine beetle epidemic are the seed sources for the next generation of trees . 

Clark's nutcrackers disperse the heavy non-winged whitebark pine seeds across 

landscapes and are the principal agent of whitebark pine establishment. However , 

local-scale stand structural variables affect seedling establishment much as they do 

wind-dispersed intolerant pines. Live overstory trees have a negative effect on seedling 

establishment probably as a consequence of belowground interference competition for 

patchy and limited nutrients and water , and aboveground interference for light. Large 

dead trees also have a negative effect on establishment, but few smaller dead trees may 



cast enough shade to reduce evapotranspiration, increase long wave radiation 

re-emittance, and create favorable microsite conditions for seed lings, thereby positively 

affecting establishment. 
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As a result of this research, the conceptual model (Fig. 1-1) has been expanded 

(Fig . 6-1). The addition of the seedling whitebark pine represented schematically by the 

small scraggly tree is positively affected by Clark 's nutcracker, but negatively affected by 

large live trees (Fig. 6-1). Establishment depends on open canopy conditions, such as 

those created by mountain pine beetles or fire . Thus the net effect of mountain pine beetle 

on seedling establishment is positive ( signs of arrows: - * - = +, Fig . 6-1). 

The addition of subalpine fir to the schematic ( fir tree silhouette Fig. 6-1) 

represents the potential successional trend toward subalpine fir as a codominant. Large 

shade tolerant subalpine fir will replace intolerant whitebark (negative interaction) (Fig. 

6-1). Whitebark pine facilitate intermediate to mature subalpine fir (positive interaction) 

and the effect of mature whiteba.rk pine on subalpine fir establishment appears to be 

negligible (no interaction) (Chapter 3 and Fig. 6-1). 

The conceptual model summarizes the direction of influence of the dispersal agent 

Clark's nutcracker; a primary disturbance a.gent, mountain pine beetle; and the principal 

competitor, subalpine fir, on treeline populations of whitebark pine. This system approach 

incorporates interactions of biotic factors and indirectly abiotic factors structuring 

whitebark pine populations. The identification and direction of influence of these factors 

result from the empirical statistical models used in this research (Chapter 3 and 4). Their 

predictive power is robust in statistical terms and may be useful for management activities 

involving conservation and restoration of whitebark pine. 
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MOUNTAIN PINE BEETLE DISTURBANCE 

Large diameter whitebark pine in dense stands are more susceptible to mountain 

pine beetles attacks and mortality than are small trees and stands with low basal areas 

(Chapter 4). Thus , as whitebark pine stands mature they become susceptible to 

infestation by mountain pine beetles (Chapter 4). The gaps created by death of overstory 

trees may be beneficial to whitebark pine recruitment (Chapter 3) in areas of low white 

pine blister rust , but this effect would be reversed with the spread of blister rust . 

Beetle-caused mortality of mature cone-bearing trees, especially those with natural blister 

rust resistance, is expected to be devastating to whitebark pine populations (Chapters 

1-5). Thinning practices should be evaluated critically with respect to blister rust 

presence and mountain pine beetle population levels. Rust-resistant and vigorous trees 

may be treated with an insecticide to give them temporary protection from beetle attack. 

Tree-level and stand-level susceptibility characteristics of whitebark pine are 

similar to other pines that are attacked by mountain pine beetles (Chapter 4). While the 

qualitative generalization is similar , the quantitative thresholds are different (Chapter 4). 

As a management strategy for other pines. reduction of basal area, group selection, and 

thinning of stands have reduced basal areas and impr oved individual tree vigor , thereby 

lowering the risk of individual tree and stand attack. This may be recommended for 

whitebark pine as well , but needs experimental field verification. 

SUCCESSIONAL STATUS 

While this work corroborates that upper treeline whitebark pine stands in central 

Idaho are self-sustaining, a cautious interpretation is advised. Whitebark pine's principal 

competitor, subalpine fir, is present in all size classes, suggesting potential replacement of 

whitebark pine or codominant status with whitebark pine. Patchy, low to moderate 
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severity fires would enhance whitebark pine populations by killing subalpine fir and 

opening the sites for regeneration. Alternatively, with downslope fuel build-up , increased 

fuel loading from the fall of large ca. 1930 beetle-killed snags , and projected global 

warming , the likelihood of lethal stand replacing high-elevation wildfires increases. Thus 

the potential for whitebark pine conversion to non-for ested, alpine parklands over 

centennial time frames is as reasonable as successional replacement of whitebark pine by 

subalpine fir in the absence of stabilizing disturbances. 

The restoration of fire to these high-elevation forests is recommended , but this is 

not a simple management issue. Loss of blister rust-resistant individuals and trees of high 

dendrochronological value is possible . Alternatively , without periodic fire to create 

openings for seedling establishment , and thin stands, other shade tolerant species such as 

subalpine fir will replace whitebark pine. One advantage of prescribed fire in these 

habitats is that they are remote and rocky. Patchy, low severity fires would be expected 

and are less threatening to humans. Although there would be a temporary loss of 

aesthetic values, primarily to recreationists , on decadal to centennial scales the species 

would have the best chance to perpetuate its elf. 
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Fig. 6-1. Revised schematic representation of the whitebark pine system with 

principal biotic components, Clark 's nutcracker mountain pine beetle, and subalpine fir. 

The arrows connecting the variables represent the direction of effect and rates of change 

between the biotic state variables of the system. 



131 

APPENDICES 



APPENDIX A. 

DENSITIES OF WHITEBARK PINE AND SUBALPINE FIR LISTED 

BY DIAMETER CLASSES 
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ABK 1930 

mdpt w30freq 

2.54 134. 086 

7.62 144.671 

12.7 127.029 

17 . 78 127.029 

22 . 86 119.971 

27.94 59.9857 

33.02 14 . 1143 

ABK 1998 

mdpt wfreq 

2.54 4481.29 

7.62 158.786 

12.7 59.9857 

17. 78 74 . 1 

22.86 88.2143 

27.94 35.2857 

33.02 28.2286 

38.1 3.52857 

AND 1930 

mdpt w30freq 

2.54 222.3 

7.62 229.357 

12.7 165 . 843 

17.78 67.0429 

22.86 38.8143 

27.94 10.5857 

33. 02 10 . 5857 

w30logfreq w30relfreq w30 c umfreq 

4.89848 0.184466 134 . 086 

4.97447 0.199029 278.757 

4 . 84441 0.174757 405.786 

4 . 84441 0.174757 532.814 

4.78725 0.165049 652.786 

4. 09411 0.0825243 712.771 

2.64719 0.0194175 726.886 

wlogfreq wrelfreq wc umfreq 

8.40767 0 . 909091 4481 . 29 

5.06756 0.0322119 4640.07 

4 . 09411 0 . 0121689 4700 . 06 

4.30542 0.0150322 4774 .1 6 

4.47977 0.0178955 4862 . 37 

3.56348 0.0071582 4897 . 66 

3.34033 0.00572656 4925 . 89 

1.26089 0.00071582 4929. 41 . 

w30logfreq w30relfreq w30cumfreq 

5.40403 0.298578 222.3 

5.43528 0.308057 451.657 

5 .11104 0.222749 617.5 

4. 20533 0.0900474 684 . 543 

3.65879 0. 0521327 723.357 

2 . 35951 0 . 014218 733.943 

2.35951 0 . 014218 744.529 

a freq a log freq 

1358 . 5 7.21414 

52.9286 3.96894 

84.6857 4.43895 

49.4 3 . 89995 

10.5857 2.35951 

7.05714 1.95404 

0 0 

0 0 

arelfreq 

0.869074 

0.03386 

0.0541761 

0. 0316027 

0.00677201 

0.00451467 

0 

0 

acumfreq 

1358.5 

1411.43 

1496.11 

1545.51 

1556 . 1 

1563.16 

0 

0 

..... 
c.,.;, 
c.,.;, 



AND 1998 

mdpt wfreq wlogfreq wrelfreq wcumfreq 

2.54 846 . 857 6.74153 0 . 530973 846 .857 

7.62 35.2857 3 . 56348 0 . 0221239 882.1 43 

12.7 137.614 4. 92445 0 .0 86283 2 1019 . 76 

17.78 105.857 4 . 66209 0 . 0663717 11 25.6 1 

22.86 176.429 5.17292 0 . 110619 1302 . 04 

27.94 123.5 4.81624 0.0774336 1425 . 54 

33 . 02 81.1571 4.39639 0.050885 1506.7 

38.1 42.3429 3.7458 0.0265487 1549.04 

43 . 18 24.7 3.2068 0.0154867 1573.74 

48.26 7. 05714 1. 95404 0.00442478 1580.8 

53 . 34 7.05714 1. 95404 0 . 00442478 1587.86 

58.42 7. 05714 1.95404 0.00442478 1594.91 

ASO 1930 

mdpt w30freq w30logfreq w30relfreq w30 c umfreq 

2.54 790.4 6 . 67254 0 . 814545 790.4 

7.62 151 . 729 5.02209 0.156364 942 .12 9 

12.7 21.1714 3 . 05265 0.0218182 963.3 

ASO 1998 

mdpt wfreq wlogfreq wrelfreq wcumfreq 

2.54 1376 . 14 7.22704 0.580357 1376 .14 

7.62 352.857 5.86606 0 . 14881 1729. 

12.7 370 . 5 5.91485 0.15625 2099.5 

17.78 158.786 5.06756 0 . 0669643 2258 .2 9 

22.86 91.7429 4.51899 0.0386905 2350.03 

27 . 94 21.1714 3 . 05265 0.00892857 2371 . 2 

a freq a log freq 

7 2 3 .357 6 . 5839 

1 0 

49 . 4 3.89995 

42 . 3429 3 . 7458 

17.6429 2.87033 

10.5857 2 . 35951 

14 . 1143 2.64719 

0 0 

0 0 

0 0 

0 0 

0 0 

a freq a log freq 

211.714 5 .3 5524 

1 0 

35.2857 3 . 56348 

0 0 

0 0 

0 0 

arelfreq 

0.843621 

0. 00116626 

0. 0576132 

0.0493827 

0.0205761 

0.0123457 

0 . 0164609 

0 

0 

0 

0 

0 

arelfreq 

0.857143 

0 . 00404858 

0.142857 

0 

0 

0 

ac umfreq 

723. 357 

724 .3 57 

773.757 

816.1 

833.743 

844.329 

858 . 443 

0 

0 

0 

0 

0 

acumfreq 

211.714 

212 . 714 

248. 

0 

0 

0 

...... 
v, 
,p.. 



AVL 1930 

mdpt w30freq w30logfreq w30relfreq w30cwnfreq 
2.54 222.3 5.40403 0.310345 222 .3 
7.62 130. 91 4.87451 0.182759 353.21 
12 . 7 125.97 4.83604 0.175862 479 .1 8 
17.78 69.16 4 . 23642 0.0965517 548.34 
22.86 54.34 3.99526 0.0758621 602.68 
27.94 49.4 3.89995 0.0689655 652 . 08 
33.02 29.64 3 . 38912 0. 0413793 681 . 72 
38.1 14. 82 2.69598 0.0206897 696.54 
43.18 2.47 0.904218 0.00344828 699.01 
48.26 7.41 2.00283 0.0103448 706.42 
53.34 4.94 1.59737 0.00689655 711.36 
58.42 2.47 0 . 904218 0.00344828 713 . 83 
63.5 2.47 0 . 904218 0.003448 2 8 716.3 

AVL 1998 

mdpt wfreq wlogfreq wrelfreq wcumfreq a freq a log freq arelfreq acwnfreq 
2.54 1494 . 35 7 . 30945 0 . 699422 1494.35 901 .5 5 6.80412 0.960526 901.55 
7.62 135 . 85 4.91155 0.0635838 1630.2 12.35 2. 51366 0. 0131579 913. 9 
12.7 116 . 09 4.75437 0.0543353 1746.29 14.82 2.69598 0.0157895 928.72 
17. 78 76.57 4 . 33821 0.0358382 1822.86 2.47 0.904218 0. 00263158 931.19 
22.86 93.86 4.5418 0.0439306 1916.72 1 0 0.00106542 932 . 19 
27 . 94 96.33 4.56778 0.0450867 2013.05 1 0 0.00106542 933.19 
33.02 32 . 11 3.46917 0.0150289 2045.16 1 0 0.00106542 934.19 
38.1 39.52 3.67681 0.0184971 2084.68 1 0 0.00106542 935.19 
43 . 18 24.7 3.2068 0 .0 115607 2109.38 2.47 0.904218 0. 00263158 937.66 
48.26 14.82 2.69598 0.00693642 2124.2 2.47 0.904218 0. 00263158 940.13 
53.34 7.41 2 . 00283 0.00346821 2131 .61 1 0 0.00106542 941. 13 
58 . 42 4.94 1.59737 0 . 00231214 2136.55 1 0 0.00106542 942.13 
63 . 5 0 0 0 0 1 0 0.00106542 943 .13 
68.58 0 0 0 0 2.47 0.904218 0.00263158 945.6 

....... 
w 
er, 



BGH 1930 

mdpt w30freq w30logfreq w30relfreq w30cumfreq 
2.54 324 . 188 5 . 78132 0 . 35 324 . 188 
7.62 104.975 4 . 65372 0 . 113333 429 . 163 
12.7 67 . 925 4.2184 0.0733333 497 . 088 
17.78 111.15 4.71088 0.12 608 .2 38 
22.86 61.75 4.12309 0.0666667 669.988 
27.94 64.8375 4.17188 0.07 734.825 
33.02 64 . 8375 4.17188 0.07 799 . 663 
38.1 46.3125 3 . 83541 0.05 845 . 975 
43.18 33 . 9625 3.52526 0 . 0366667 879.938 
48.26 15.4375 2.7368 0.0166667 895.375 
53.34 12.35 2.51366 0. 0133333 907.725 
58.42 9.2625 2.22597 0.01 916 . 988 
63.5 3.0875 1.12736 0.00333333 920 . 075 
68.58 3.0875 1 . 12736 0.00333333 923 . 162 
73.66 3.0875 1.12736 0.00333333 926.25 

BGH 1998 

mdpt wfreq wlogfreq wrelfreq wcumfreq a freq alogfreq arelfreq acwnfreq 
2.54 833.625 6.72578 0.647482 833.625 1 0 0.0404858 1 
7.62 123 . 5 4.81624 0 . 0959233 957.125 1 0 0.0404858 2 
12.7 123.5 4.81624 0 . 0959233 1080 . 63 9.2625 2 . 22597 0.375 11.2625 
17 . 78 80.275 4.38546 0.0623501 1160. 9 6 . 175 1.82051 0 . 25 17.4375 
22.86 46 . 3125 3.83541 0.0359712 1207 . 21 1 0 0.0404858 18.4375 
27.94 30.875 3.42995 0.0239808 1238.09 3 . 0875 1.12736 0.125 21.525 
33.02 15.4375 2.7368 0.0119904 1253.53 3 . 0875 1.12736 0.125 24.6125 
38.1 27 . 7875 3.32459 0.0215827 1281 .3 1 1 0 0.0404858 25.6125 
43.18 3.0875 1.12736 0.00239808 1284 . 4 3.0875 1.12736 0.125 28.7 
48.26 3.0875 1.12736 0.00239808 1287 . 49 0 0 0 0 

....... 
w 
0) 



BLK 1930 

mdpt w30freq w30logfreq w30relfreq w30cumfreq 

2 . 54 370.5 5. 91485 0 . 47619 370 .5 

7.62 89.5375 4.49466 0 .115079 460.038 

12 . 7 58.6625 4. 0718 0.0753968 518.7 

17 . 78 37.05 3.61227 0.047619 555.75 

22.86 67.925 4.2184 0.0873016 623.675 

27.94 40 .1375 3. 69231 0 . 0515873 663. 813 

33.02 15.4375 2.7368 0.0198413 679.25 

38.1 33.9625 3.52526 0.0436508 713.212 

43.18 21.6125 3.07327 0.0277778 734.825 

48.26 9.2625 2.22597 0.0119048 744.088 

53. 34 18.525 2. 91912 0.0238095 762.612 

58.42 1 0 0.00128526 763. 613 

63.5 9.2625 2.22597 0.0119048 772.875 

68.58 1 0 0.00128526 773.875 

73.66 1 0 0.00128526 774.875 

78.74 6.175 1. 82051 0.00793651 781.05 

BLK 1998 

mdpt wfreq wlogfreq wrelfreq wcumfreq a freq alogfreq arelfreq acumfreq 

2.54 849.063 6. 74413 0.577731 849 . 063 123.5 4.81624 0.784314 123.5 

7.62 277.875 5.62717 0.189076 1126.94 15 . 4375 2 . 7368 0.0980392 138. 938 

12.7 166.725 5 . 11635 0.113445 1293.66 15 . 4375 2.7368 0.0980392 154.375 

17.78 92.625 4.52856 0.0630252 1386.29 1 0 0.00635072 155.375 

22.86 33.9625 3.52526 0. 0231092 1420.25 3.0875 1.12736 0.0196078 158.463 

27.94 24.7 3.2068 0.0168067 1444.95 0 0 0 0 

33. 02 9.2625 2.22597 0.00630252 1454 . 21 0 0 0 0 

38.1 9.2625 2.22597 0.00630252 1463.48 0 0 0 0 

43.18 6.175 1.82051 0.00420168 1469.65 0 0 0 0 

....... 
w 
-.j 



BLP 1930 

mdpt w30freq w30logfreq w3 0 relfreq w30c umfreq 

2 . 54 484.12 6.18233 0 . 525 4 6 9 484.1 2 

7.6 2 214 . 89 5. 37013 0 . 233244 699 . 01 

12.7 140.79 4.94727 0 . 152815 839 . 8 

17.78 49.4 3.89995 0.0536193 889 . 2 

22.86 12.35 2. 51366 0 . 0134048 901.55 

27 . 94 9 . 88 2 . 29051 0 . 0107239 911 . 43 

33.02 2.47 0.904218 0.00268097 913 . 9 

38.1 2.47 0.904218 0.00268097 916.37 

43 . 18 2 . 47 0.904218 0.00268097 918 . 84 

48.26 1 0 0 . 00108541 919 . 84 

53 . 34 1 0 0 . 00108541 920.84 

58.42 2 . 47 0.904218 0 . 00268097 923.31 

BLP 1998 

mdpt wfreq wlogfreq wrelfreq wcumfreq a freq a log freq arelfreq acumfreq 

2.54 506.35 6 . 22723 0.388994 506 . 35 49 . 4 3 . 89995 0.645161 49.4 

7.62 111 . 15 4 . 71088 0 . 085389 617 . 5 12 . 35 2 . 51366 0 . 16129 61 . 75 

12 . 7 180 . 31 5 . 19468 0 .1385 2 797 . 81 7 . 41 2.00283 0.0967742 69 . 16 

17.78 143.26 4.96466 0. 110057 941 . 07 2 . 47 0 . 904218 0 . 0322581 71 . 63 

22 . 86 150 . 67 5.01509 0 . 11575 1091.74 4 . 94 1 . 59737 0 . 0645161 76 . 57 

27.94 113. 62 4.73286 0 . 0872865 1205 . 36 0 0 0 0 

33.02 49 . 4 3.89995 0.0379507 1254.76 0 0 0 0 

38.1 29.64 3 . 38912 0 . 0227704 1284.4 0 0 0 0 

43.18 4.94 1 . 59737 0 . 00379507 1289.34 0 0 0 0 

48.26 9.88 2.29051 0. 00759013 1299.22 0 0 0 0 

53.34 1 0 0 . 000768232 1300 . 22 0 0 0 0 

58 . 42 2 . 47 0.904218 0 . 00189753 130 2 .69 0 0 0 0 

...... 
w 
OJ 



CRS 1930 

mdpt w30freq w30logfreq w30relfreq w30 c umfreq 

2.54 165.49 5 . 10891 0 . 308756 165.49 

7 . 62 158.08 5 . 0631 0 . 294931 323 . 57 

12.7 108 . 68 4.68841 0 . 202765 432 . 25 

17.78 59 . 28 4.08227 0 . 110599 491.53 

22.86 24 . 7 3.2068 0 . 0460829 516.23 

27.94 12 . 35 2 . 51366 0 . 0230415 528.58 

33.02 7.41 2.00283 0.0138249 535.99 

CRS 1998 

mdpt wfreq wlogfreq wrelfreq wcumfreq a freq alogfreq arelfreq acumfreq 

2.54 1160. 9 7.05695 0.708899 1160 . 9 1197.95 7.08837 0.971944 1197.95 

7.62 1 0 0.000610646 1161.9 1 0 0. 000811339 1198.95 

12.7 76.57 4 . 33821 0 . 0467572 1238 . 47 17 . 29 2. 85013 0.0140281 1216.24 

17 . 78 86.45 4 . 45957 0 . 0527903 1324.92 7 . 41 2.00283 0.00601202 1223.65 

22.86 116. 09 4 . 75437 0 . 0708899 1441.01 9 . 88 2 . 29051 0.00801603 1233 . 53 

27 . 94 79 . 04 4 . 36995 0.0482655 1520.05 0 0 0 0 

33.02 54 . 34 3 . 99526 0.0331825 1574.39 0 0 0 0 

38.1 34.58 3.54328 0.0211161 1608 . 97 0 0 0 0 

43.18 9.88 2.29051 0 . 00603318 1618.85 0 0 0 0 

48.26 12.35 2. 51366 0 . 00754148 1631 . 2 0 0 0 0 

53 . 34 2 . 47 0.904218 0 . 0015083 1633 . 67 0 0 0 0 

58 . 42 4 . 94 1. 59737 0 . 00301659 1638 . 61 0 0 0 0 

GOA 1930 

mdpt w30freq w30logfreq w30relfreq w30cumfreq 

2.54 61. 75 4 . 12309 0 . 294118 61.75 

7 . 62 21. 6125 3 . 07327 0.102941 83 . 3625 

12 . 7 21.6125 3.07327 0.102941 104 . 975 

17.78 18.525 2. 91912 0 . 0882353 123 . 5 

22 . 86 18.525 2.91912 0.0882353 14 2 .025 ...... 
w 
CD 



27.94 6. 175 1. 82051 0 . 0294118 148.2 

33.02 9.2625 2.22597 0.0441176 157 . 463 

38. 1 9.2625 2 . 22597 0.0441176 166.725 

43.18 6.175 1.82051 0. 0294118 172 . 9 

48 . 26 9.2625 2.22597 0.0441176 182.163 

53.34 6 .175 1.82051 0.0294118 188 . 338 

58.42 3.0875 1.12736 0. 0147059 191 . 425 

63.5 1 0 0.00476304 192 . 425 

68.58 6.175 1.82051 0. 0294118 198 .6 

73.66 1 0 0.00476304 199.6 

78.74 3.0875 1.12736 0.0147059 202 . 688 

83.82 1 0 0.00476304 203 . 688 

88.9 1 0 0.00476304 204 .688 

93.98 3 . 0875 1 . 12736 0.0147059 207.775 

99 . 06 6 . 175 1 . 82051 0. 0294118 213 . 95 

GOA 1998 

mdpt wfreq wlogfreq wrelfreq wc umfreq a freq a log freq arelfreq acumfreq 

2 . 54 787.313 6.66863 0.775076 787 . 313 1883.38 7.54082 0.844875 1883.38 

7.62 92. 625 4.52856 0. 0911854 879 . 938 200.688 5.30175 0.0900277 2084.06 

12 . 7 43.225 3.76642 0.0425532 923 .163 95 . 7125 4. 56135 0.0429363 2179.78 

17.78 6.175 1. 82051 0.00607903 929.338 21.6125 3.07327 0.00969529 2201.39 

22.86 21.6125 3.07327 0 . 0212766 950.95 15 . 4375 2.7368 0.00692521 2216.83 

27.94 15.4375 2.7368 0.0151976 966 .38 8 9.2625 2.22597 0.00415512 2226.09 

33.02 18.525 2 . 91912 0.0182371 984.913 3.0875 1.12736 0. 00138504 2229.18 

38.1 12. 35 2. 51366 0.0121581 997 .263 0 0 0 0 

43.18 12 . 35 2. 51366 0.0121581 1009.61 0 0 0 0 

48.26 6 . 175 1. 82051 0 . 00607903 1015.79 0 0 0 0 

...... 

.;::. 
0 



NRR 1930 

mdpt w30freq w30logfreq w30relfreq 

2 . 54 296 . 4 5 . 69171 0.409556 

7.62 239.59 5 . 47893 0 . 331058 

12.7 111 . 15 4. 71088 0.153584 

17 . 78 54.34 3.99526 0 . 0750853 

22.86 19 . 76 2.98366 0.0273038 

27 . 94 2.47 0.904218 0 . 00341297 

NRR 1998 

mdpt wfreq wlogfreq wrelfreq 

2 . 54 456.95 6.12457 0 . 412027 

7.62 12. 35 2.51366 0 . 0111359 

12.7 130. 91 4.87451 0.11804 

17 . 78 195 .13 5.27367 0 . 175947 

22 . 86 133 . 38 4.8932 0 . 120267 

27 . 94 91. 39 4 . 51514 0 . 0824053 

33.02 39.52 3.67681 0 . 0356347 

38 . 1 29.64 3 . 38912 0 . 0267261 

43.18 17 . 29 2 . 85013 0.0155902 

48 . 26 2 . 47 0.904218 0.00222717 

w30cumfreq 

296 . 4 

535 . 99 

647 . 14 

701.48 

721. 24 

723.71 

wc umfreq a freq 

456.95 2383.55 

469.3 1 

600.21 22.23 

795 . 34 12 . 35 

928. 72 7.41 

1020 . 11 4 . 94 

1059 . 63 1 

1089 . 27 2 . 47 

1106 . 56 2.47 

1109. 0 3 0 

alogfreq arelfreq 

7 . 77635 0 . 978702 

0 0.000410607 

3.10144 0 . 00912779 

2.51366 0.00507099 

2.00283 0 . 0030426 

1 . 59737 0 . 0020284 

0 0 . 000410607 

0 . 904218 0.0010142 

0 . 904218 0.0010142 

0 0 

acumfre q 

2383 . 5 5 

2384.55 

2406 . 78 

2419 . 13 

2426 . 54 

2431 . 48 

2432 . 4 8 

2434 . 95 

2437 . 42 

0 

...... 

.I:>­..... 



RRB 1930 

mdpt w30freq w30l o gfreq 
2.54 107 . 033 4 . 67314 
7.62 98.8 4 . 5931 
12.7 107.033 4.67314 

17.78 181.133 5 . 19923 
22 . 86 222.3 5 . 40403 

27 . 94 156.433 5 . 05263 

33 . 02 156 . 433 5.05263 

38.1 57.6333 4 . 0541 

43.18 16 . 4667 2 . 80134 

48 . 26 41.1667 3 . 71763 

53.34 8 . 23333 2 . 10819 

RRB 1998 

mdpt wfreq wlogfreq 

2.54 494 . 6 . 20254 
7 . 62 123.5 4 . 81624 
12.7 41 . 1667 3 . 71763 

17 . 78 41.1667 3 . 71763 
22 . 86 24 . 7 3.2068 
27 . 94 24.7 3 . 2068 

33. 02 24 . 7 3 . 2068 

38.1 32 . 9333 3.49449 
43.18 24.7 3.2068 

48.26 1 0 
53.34 8.23333 2 . 10819 

w30r elfreq w30cumfreq 

0 . 0928571 10 7.033 

0 . 0857143 2 05.833 
0. 0928571 312 . 867 

0 . 157143 494. 

0 . 192857 716.3 

0 . 135714 872 . 733 

0.135714 1029.17 

0 . 05 1086.8 

0 . 0142857 1103.27 

0 . 0357143 1144.43 

0.00714286 1152 . 67 

wrelfreq wcumfreq a freq 

0 . 588235 494 . 0 
0 . 147059 617. 5 0 
0 . 0490196 658 . 667 0 
0 . 0490196 699 . 833 0 
0 . 0294118 724 . 533 0 
0.0294118 749.233 0 
0 . 0294118 773 . 933 0 
0 . 0392157 806.867 0 
0 . 0294118 831.567 0 
0.00119076 832.567 0 
0.00980392 840 . 8 0 

alogfreq 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

arelfreq acumfreq 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

...... 

.i:­
~ 



SIL 1930 

mdpt w30freq w30logfreq w30relfreq w30curnfreq 
2.54 77 . 6286 4.35194 0 . 2 77 . 6286 
7.62 42 . 3429 3.7458 0.109091 119.971 
12.7 45 . 8714 3.82584 0.118182 165.843 
17.78 59.9857 4.09411 0.154545 225 . 829 
22.86 56.4571 4 . 03348 0.145455 282.286 
27.94 59.9857 4.09411 0 . 154545 342.271 
33.02' 14.1143 2.64719 0.0363636 356 . 386 
38.1 14 . 1143 2. 64719 0.0363636 370 . 5 
43.18 7 . 05714 1 . 95404 0.0181818 377 . 557 
48.26 7 . 05714 1. 95404 0.0181818 384.614 
53 . 34 3.52857 1. 26089 0 . 00909091 388.143 

SIL 1998 

mdpt wfreq wlogfreq wrelfreq wc umfreq a freq a l o g freq arelfreq acumfreq 
2 . 54 3052 . 21 8 . 02362 0.940217 3052 . 21 617 . 5 6 . 42568 0.892857 617.5 
7 . 62 35 . 2857 3.56348 0 . 0108696 3087 . 5 1.5 0.405 0.00144592 618.5 
12.7 35.2857 3.56348 0.0108696 3122.79 24 . 7 3 . 2068 0.0357143 643 . 2 
17.78 10.5857 2 . 35951 0 . 00326087 3133. 37 17 . 6429 2 . 87033 0.0255102 660 . 843 
22 . 86 31. 7571 3 . 45812 0.00978261 3165 .13 24.7 3.2068 0.0357143 685.543 
27.94 24.7 3 . 2068 0 . 0076087 3189 .8 3 1. 5 0 . 405 0.00144592 686.543 
33 . 02 35.2857 3.56348 0 . 0108696 3225 .11 3.52857 1. 26089 0.00510204 690.071 
38.1 3.52857 1. 26089 0.00108696 3228.64 3.52857 1.26089 0.00510204 693.6 
43 . 18 1 0 . 0 . 000308044 3229.64 0 0 0 0 
48.26 14.1143 2.64719 0.00434783 3243 .7 6 0 0 0 0 
53.34 1 0 0.000308044 3244.76 0 0 0 0 
58.42 1 0 0.000308044 3245.76 0 0 0 0 
63.5 1 0 0 . 000308044 3246 . 76 0 0 0 0 
68.58 3 . 52857 1.26089 0.00108696 3250.29 0 0 0 0 

...... 
,p.. 
v-' 



TLK 1930 

mdpt w30freq w30logfreq 

2 . 54 376.675 5 . 93138 

7 . 62 157.463 5.05919 

12.7 74.1 4.30542 

17.78 12 . 35 2.51366 

22.86 27.7875 3.32459 

27.94 21.6125 3.07327 

33.02 15.4375 2 . 7368 

38.1 9.2625 2 . 22597 

43.18 12.35 2 . 51366 

48.26 6.175 1.82051 

53.34 9.2625 2.22597 

58.42 3.0875 1.12736 

63.5 15.4375 2.7368 

TLK 1998 

mdpt wfreq wlogfreq 

2.54 1096.06 6.99948 

7.62 61. 75 4.12309 

12.7 145.113 4.97751 

17. 78 104.975 4 . 65372 

22.86 104.975 4.65372 

27.94 61.75 4.12309 

33 . 02 12.35 2. 51366 

38.1 3.0875 1.12736 

43.18 15 . 4375 2.7368 

48.26 3 . 0875 1.12736 

53.34 1 0 

58.42 3.0875 1 . 12736 

w30relfreq w30cumfreq 

0 . 508333 376.675 

0.2125 534.138 

0.1 608.238 

0.0166667 620.588 

0.0375 648.375 

0 . 0291667 669.988 

0.0208333 685.425 

0 . 0125 694.688 

0.0166667 707 . 038 

0.00833333 713.213 

0 . 0125 722.475 

0.00416667 725. 563 

0.0208333 741. 

wrelfreq wcumfreq 

0.680077 1096 . 06 

0.0383142 1157. 81 

0.0900383 1302.93 

0.0651341 1407.9 

0.0651341 1512.88 

0.0383142 1574.63 

0.00766284 1586.98 

0. 00191571 1590.06 

0.00957854 1605.5 

0.00191571 1608. 59 

0.000620472 1609.59 

0.00191571 1612.68 

a freq alogfreq 

586.625 6.37439 

30.875 3.42995 

15.4375 2.7368 

40 .1375 3.69231 

24.7 3.2068 

12.35 2. 51366 

6.175 1.82051 

3.0875 1.12736 

3.0875 1.12736 

0 0 

0 0 

0 0 

arelfreq 

0. 811966 

0.042735 

0.0213675 

0.0555556 

0.034188 

0.017094 

0.00854701 

0.0042735 

0.0042735 

0 

0 

0 

acumfreq 

586.625 

617 . 5 

632.938 

673.075 

697. 775 

710.125 

716.3 

719 . 388 

722.475 

0 

0 

0 

,...... 

""" """ 



TWP 1930 

mdpt w30freq w30logfreq 

2.54 175.988 5.17041 

7 . 62 55.575 4.01773 

12.7 74.1 4.30542 

17.78 52.4875 3.96058 

22 .8 6 21. 6125 3.07327 

27.94 12.35 2. 51366 

33.02 12.35 2.51366 

38.1 12.35 2 . 51366 

43.18 30.875 3.42995 

48.26 15 . 4375 2 . 7368 

53.34 9.2625 2.22597 

58.42 6.175 1 . 82051 

63.5 6.175 1.82051 

68.58 6 . 175 1.82051 

TWP 1998 

mdpt wfreq wlogfreq 

2.54 1420.25 7 . 25859 

7.62 123.5 4.81624 

12.7 108.063 4. 68271 

17.78 27.7875 3.32459 

22.86 40 .1375 3.69231 

27.94 49.4 3.89995 

33.02 15 . 4375 2.7368 

38.1 9.2625 2.22597 

w30re l freq w30cumfreq 

0.358491 175 . 988 

0.113208 231. 563 

0.150943 305.663 

0.106918 358.15 

0.0440252 379.763 

0.0251572 392.113 

0 . 0251572 404.463 

0 . 0251572 416.813 

0. 0628931 447.688 

0.0314465 463 . 125 

0 . 0188679 472.388 

0.0125786 478.563 

0.0125786 484 . 738 

0.0125786 490 . 913 

wrelfreq wcumfreq 

0.791738 1420.25 

0.0688468 1543.75 

0.060241 1651.81 

0.0154905 1679.6 

0 . 0223752 1719 . 74 

0.0275387 1769 . 14 

· 0.00060585 1784.58 

0.00516351 1793.84 

a freq alogfreq 

169.813 5.13469 

46 . 3125 3.83541 

18.525 2 . 91912 

21.6125 3.07327 

3.0875 1.12736 

9.2625 2.22597 

3.0875 1.12736 

3.0875 1.12736 

arelfreq 

0 . 617978 

0.168539 

0.0674157 

0 . 0786517 

0. 011236 

0.0337079 

0. 011236 

0. 011236 

acumfreq 

169.813 

216.125 

234.65 

256.263 

259.35 

268. 613 

271.7 

274.787 

...... 
~ 
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APPENDIX B. 

DIAGNOSTICS FOR THE NATURAL LOG FIT OF A NEGATIVE 

EXPONENTIAL FUNCTION TO THE MIDPOINTS OF 5-CM 

DIAMETER CLASSES 
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ABK 1930 

ParameterTable -> Estimate SE TStat ?Value 

1 5.51294 0 . 438055 12.585 0.0000562461 

x -0.0602626 0.0213914 -2 . 81714 0.0372336 

RSquared -> 0.613491, AdjustedRSquared -> 0 . 536189, 

EstimatedVariance -> 0.330646, 

ANOVATable -> 

Model 

DF 

1 

SumOfSq 

2.6241 

MeanSq 

2 .6 241 

FRatio 

7.9363 

Error 5 1. 653 23 0.330646 

Total 6 4.27733 

ABK 1998 

ParameterTable -> Estimate 

1 7.17591 

x -0 .1 40798 

SE 

0.754345 

0.0322127 

TS tat 

9 . 51277 

-4 .37087 

RSquared -> 0.760999, AdjustedRSquared -> 0.721166, 

EstimatedVariance -> 1.12468, 

ANOVATable -> 

Model 

Error 

Total 

DF 

1 

6 

7 

SumOfSq 

21.4866 

6 .7481 

28.2347 

MeanSq 

21.4866 

1.12468 

FRatio 

19.1045 

?Value 

0 . 0372336 

PValue 

0. 0000769513 

0.00471456 

?Value 

0.00471456 

AND 1930 

ParameterTable -> Estimate SE TS tat ?Value 

-6 

1 6 .1 6838 0.297228 20.7531 4.81005 10 

x -0 .117 67 0.0145144 -8.10711 0.000463083 

RSquared -> 0 . 929304, AdjustedRSquared -> 0 . 915165 , 

EstimatedVariance - > 0.152224, 
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ANOVATable -> DF SurnOfSq MeanSq FRatio PValue 

Model 1 10.005 10.005 65 . 7253 0.000463083 

Error 5 0.761119 0.152224 

Total 6 10.7661 

AND 1998 

ParameterTable -> Estimate SE TS tat PValue 

-7 

l 6.0205 0.481804 12.4957 1.99466 10 

x -0.0687723 0.0137013 -5.01938 0 . 000522214 

RSquared -> 0.715862, Adjusted.RSquared -> 0.687448, 

EstimatedVariance -> 0.692771, 

ANOVATable -> 

Model 

Error 

Total 

ASO 1930 

DF 

1 

10 

11 

SurnOfSq 

17.4538 

6 . 92771 

24 . 3815 

MeanSq 

17.4538 

0.692771 

FRatio 

25 .1 942 

PValue 

0.000522214 

?arameterTable -> Estimate SE TStat PValue 

1 7.63068 0.157264 48 . 5214 0.0131185 

x -0.356288 0.01812 69 -19 .6553 0.0323614 

RSquared -> 0 . 997418, Adjusted.RSquared -> 0.994836. 

EstimatedVariance -> 0.0169591, 

ANOVATable -> DF SumOfSq Meansq · FRatio PValue 

Model 1 6.5518 6 . 5518 386.329 0 . 0323614 

Error 1 0 .0 169591 0 . 0169591 

Total 2 6 . 56876 

ASO 1998 

ParameterTable -> Estimate SE TS tat PValue 

1 7.48256 0.330757 22 . 6226 0.0000226125 

x -0 . 144884 0. 0188611 -7.68164 0.00154452 
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RSquared -> 0.936516, AdjustedRSquared -> 0.920645, 

EstimatedVariance -> 0 . 160657, 

ANOVATable -> 

Model 

Error 

Total 

AVL 1930 

DF 

1 

4 

5 

SumOfSq 

9.48001 

0.64263 

10 . 1226 

MeanSq 

9.48001 

0.160657 

FRatio 

59.0076 

PValue 

0.00154452 

ParameterTable -> Estimate SE TStat PValue 

-10 

1 5.68855 0.256625 22.1667 1 . 7681 10 

-7 

x -0.0799211 0.00673557 -11.8655 1 .30 604 10 

RSquared -> 0.927532, AdjustedRSquared -> 0.920944, 

EstimatedVariance -> 0.213083, 

ANOVATable -> 

Model 

Error 

Total 

AVL 1998 

ParameterTable -> 

1 

x 

DF SumOfSq MeanSq 

1 JO. JO. 

11 2.34391 0.213083 

12 32.3439 

Estimate SE 

6.2885 0 .3 3027 

-0 . 0776187 0.00939209 

FRatio 

140.791 

TS tat 

19.0405 

-8 . 26427 

RSquared -> 0 . 872283, AdjustedRSquared -> 0 . 859511 , 

EstimatedVariance -> 0.325527, 

PValue 

-7 

1 . 30604 10 

PValue 

-9 

3 . 46859 10 

-6 
8 . 84796 10 

149 



ANOVATable -> DF SurnOfSq MeanSq FRatio PValue 

-6 
Mode l 1 22 . 2329 22 . 2329 68.2982 8.84796 10 

Error 10 3.25527 0.325527 

Total 11 25 . 4882 

BGH 1930 

ParameterTable -> Estimate SE TS tat 

1 5 . 68855 0.256625 22.1667 

x -0. 0799211 0.00673557 -11. 8655 

RSquared -> 0.927532, AdjustedRSquared -> 0 . 920944, 

EstimatedVariance -> 0 . 213083, 

ANOVATable -> DF SurnOfSq MeanSq FRatio 

Model 1 JO . JO. 140.791 

Error 11 2 . 34391 0 . 213083 

To tal 12 32.3439 

BGH 1998 

ParameterTable -> Estimate SE TS tat 

1 6 . 33002 0.351754 17.9956 

x -0 . 106201 0.0120082 -8.84401 

RSquared -> 0 . 90721 , AdjustedRSquared -> 0 . 895612 . 

EstimatedVariance -> 0.307001, 

ANOVATable -> 

Model 

Error 

Total 

DF 

1 

8 

9 

SurnOfSq 

24.0125 

2 . 45601 

26.4685 

MeanSq 

24 .0 125 

0.307001 

FRatio 

78.2165 

PValue 

-10 

1 . 7681 10 

-7 

1.30604 10 

PValue 

-7 

1.30604 10 

PValue 

-8 

9 .326 64 10 

0.0000210692 

PValue 

0 .0 000210692 
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BLK 1930 

ParameterTable -> Estimate SE TS tat PValue 

1 5.2831 0.427657 12 . 3536 

-9 

6.43712 10 

-6 
x -0 . 0615133 0 . 00911768 -6.74659 9.37072 10 

RSquared -> 0.764771, AdjustedRSquared -> 0 .7 47969, 

EstimatedVariance -> 0.729416, 

ANOVATable -> DF SumOfSq MeanSq FRatio PValue 

-6 

Model 1 33 . 2004 33 . 2004 45.5165 9.37072 10 

Error 14 10. 2118 0. 729416 

Total 15 43 .4123 

BLK 1998 

ParameterTable -> Estimate SE TS tat PValue 

-9 

1 6.66624 0.208552 31 . 9643 7.58386 10 

-6 
x - 0 .1213 93 0.00791299 -15.34 1 1.20557 10 

RSquared -> 0 .971116 , AdjustedRSquared - > 0.9 66989, 

EstimatedVariance -> 0.0969528, 

ANOVATable -> DF SumOfSq MeanSq FRatio PValue 

-6 

Model 1 22 . 8174 22 . 8174 235 .3 46 1.20557 10 

Error 7 0 . 678669 0 . 0969528 

Total 8 23 . 4961 

BLP 1930 

ParameterTable -> Estimate SE TS tat PValue 

-7 

1 5.80483 0 . 461557 12.5766 1 . 87668 10 

-6 

x -0 .11165 0.0131256 -8 . 50631 6.8519 10 

RSquared -> 0.878578, Adjusted.RSquared -> 0.866436. 
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Estima t edVariance -> 0.635771, 

ANOVATable -> DF SumOfSq MeanSq FRatio PValue 

-6 
Model 1 46.0027 46.0027 72.3574 6.8519 10 

Error 10 6 . 35771 0 . 635771 

Total 11 52.3605 

BLP 1998 

ParameterTable -> Estimate SE TS tat 

1 6.59457 0.43869 15.0324 

x -0.0989948 0.0124753 -7.93527 

RSquared -> 0.862955, AdjustedRSquared -> 0.84925, 

EstimatedVariance -> 0.574333, 

ANOVATable -> 

Model 

DF 

1 

SumOfSq 

36.165 

MeanSq 

36.165 

FRatio 

62 .96 86 

Error 10 5.74]]] 0. 574]]3 

Total 

CRS 1930 

ParameterTable -> 

1 

x 

11 41.9083 

Estimate SE TS tat 

5.79677 0.211637 27.3902 

-0 . 111774 0.0103348 -10.8153 

RSquared -> 0.959007, AdjustedRSquared -> 0 . 950808, 

EstimatedVariance -> 0.0771769, 

PValue 

-8 

3.42445 10 

0.0000126424 

PValue 

0.0000126424 

PValue 

-6 

1.2138 10 

0. 000117253 

ANOVATable -> 

Model 

DF 

1 

SumOfSq 

9.02749 

MeanSq 

9 .0 2749 

FRatio 

116 . 971 

PValue 

0. 000117253 

Error 5 0.385884 0.0771769 

Total 6 9.41337 
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CRS 1998 

ParameterTable -> Estimate 

1 4.98734 

x -0.0547482 

SE 

1.00995 

0.0287206 

TS tat 

4.93819 

-1.90623 

RSquared -> 0.266524, AdjustedRSquared -> 0.193177, 

EstimatedVariance -> 3.04405, 

ANOVATable -> 

Model 

Error 

Total 

GOA 1930 

ParameterTable -> 

1 

x 

OF 

1 

10 

11 

SumOfSq 

11. 0612 

30.4405 

41.5017 

Estimate SE 

MeanSq 

11. 0612 

3.04405 

3 . 36821 0.314004 

-0 .0 315884 0.00535473 

FRatio 

3.63372 

TS tat 

10 . 7267 

-5 . 89916 

RSquared -> 0.659091, AdjustedRSquared -> 0.640152, 

EstimatedVariance -> 0.492068, 

ANOVATable -> 

Model 

Error 

Total 

GOA 1998 

OF 

1 

18 

19 

SurnOfSq 

17 .124 

8 . 85722 

25.9812 

Mean Sq 

17 .1 24 

0 . 492068 

ParameterTable -> Estimate SE 

0.629693 1 5.08587 

x -0 . 0728249 0 . 0214966 

FRatio 

34 . 80 0 1 

TS tat 

8.07673 

-3.38774 

RSquared -> 0 . 589255, AdjustedRSquared -> 0.537911 , 

EstimatedVariance -> 0 . 983831, 

PValuP. 

0.000588748 

0 . 0857365 

PValue 

0.0857365 

PValue 

3.00255 10 

-9 

0. 000013 8644 

PValue 

0. 0000138644 

PValue 

0 . 000040765 7 

0 . 00953178 
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ANOVATable -> DF SurnOfSq MeanSq FRatio 

Model 1 11.2912 11.2912 11 . 4768 

Er::or 8 7.87065 0.983831 

To cal 9 19.1619 

NRR 1930 

ParameterTable -> Estimate SE TS tat 

1 6 . 71554 0.489281 13. 7253 

x -0 .1 80759 0.0279008 -6.47862 

RSquared -> 0.912991, AdjustedRSquared -> 0 . 891239, 

Esti.matedVariance -> 0 . 35156, 

ANOVATable -> 

Model 

Error 

Total 

NRR 1998 

DF 

1 

4 

5 

SumOfSq 

14.7558 

1 . 40624 

16.1621 

MeanSq 

14 . 7558 

0.35156 

FRatio 

41 . 9725 

PValue 

0 . 00953:!.78 

PValue 

0.000163247 

0 . 00292555 

PValue 

0.00292555 

ParameterTable -> Estimate SE TStat ?'lalue 

1 5.63555 0.76238 7.39205 0.00007677 7 5 

x -0.0682695 0.0260263 -2.6231 0.0305033 

RSquared -> 0.462389, AdjuscedRSquared -> 0 . 395188, 

Esti.matedVariance -> 1.44213, 

ANOVATable -> 

Model 

Error 

Total 

RRB 1930 

ParameterTable -> 

1 

x 

DF 

1 

8 

9 

SurnOfSq 

9.9228 

11. 5371 

21 . 4599 

Estimate SE 

MeanSq 

9.9228 

1.44213 

5.53184 0.472022 

-0 .0 439937 0.0146459 

FRatio 

6 . 88065 

TS tat 

11. 7194 

-3.00383 

PValue 

0 . 0305033 

PValue 

9 . 41657 10 

0.0148638 

-7 
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RSquared -> 0.500637, AdjustedRSquared -> 0.445153 , 

EstimatedVariance -> 0.608908, 

ANOVATable -> 

Model 

Error 

Total 

RRB 1998 

ParameterTable -> 

l 

x 

DF 

1 

9 

10 

SumOfSq 

5.49416 

5.48017 

10 . 9743 

Estimate SE 

MeanSq 

5.49416 

0.608908 

5.43886 0.556041 

-0.0746519 0.0172528 

FRatio 

9.02298 

TS tat 

9.7814 

-4.32694 

RSquared -> 0.675353, AdjustedRSquared -> 0.639281, 

EstimatedVariance -> 0.844968, 

ANOVATable -> 

Model 

Total 

SIL 1930 

ParameterTable -> 

l 

x 

DF 

l 

9 

10 

SumOfSq 

15.8198 

7.60471 

23.4245 

Estimate SE 

MeanSq 

15.8198 

0.844968 

4. 77213 0.295081 

-0.0581922 0.00915578 

FRat:io 

18. 7224 

TS tat 

16 . 1722 

-6.35579 

RSquared -> 0 . 817799, AdjustedRSquared -> 0.797555, 

EstimatedVariance -> 0.237964, 

ANOVATable -> 

Model 

Total 

DF 

1 

9 

10 

SumOfSq 

9 . 61281 

2.14167 

U.. 7545 

Mean Sq 

9 . 61281 

0.237964 

FRatio 

40.3961 

PValue 

0.0148638 

PValue 

-6 

4.29965 10 

0.00191365 

PValue 

0 . 0019!365 

PValue 

5.85888 10 

0.00013197 

PValue 

0. 00013197 

-8 

155 



SIL 1998 

ParameterTable -> 

1 

x 

Estimate 

5.22824 

-0. 0776712 

SE TS tat 

0.700916 7 . 45915 

0 . 0170809 -4.54725 

RSquared -> 0.632774, AdjustedRSquared -> 0 . 602172 , 

EstimatedVariance -> 1 . 7129, ANOVATable -> 

Model 

Error 

Total 

DF 

1 

12 

13 

SumOfSq 

35.4184 

20 . 5548 

55.9732 

MeanSq 

35 . 4184 

1. 7129 

TLK 1930 

ParameterTable -> Estimate 

1 4.89192 

x -0.055911 

SE 

FRatio 

20.6774 

0.43214 

0. 0113423 

PValue 

0.000669368 

TS tat 

11 . 3202 

-4.92943 

RSquared -> 0.688379 , AdjustedRSquared -> 0 . 66005 , 

EstimatedVariance -> 0 . 604225, 

ANOVATable -> 

Model 

Error 

Total 

TLK 1998 

DF 

1 

11 

12 

SumOfSq 

14 . 6823 

6.64648 

21 . 3287 

MeanSq 

14 . 6823 

0. 604225 

FRatio 

24.2993 

PValue 

-6 

7.6409 10 

0.000669368 

PValue 

-7 

2.11347 10 

0 . 00045007 

PVa.!.ue 

0 . 00045007 

ParameterTable -> Estimate SE TStat PValue 

-7 

1 6.29332 0.492681 12.7736 1 . 62002 10 

x -0 . 101027 0 . 0140107 -7 . 21073 0.0000288927 

RSquared ~> 0 . 838696 , AdjustedRSquared -> 0 . 822565, 

EstimatedVariance -> 0.724405, 
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ANOVATable -> DF SumOfSq MeanSq FRatio PValue 
Model 1 37.6651 37.6651 51. 9946 0.0000288927 

Error 10 7.24405 0.724405 

Total 11 44.9092 

'!WP 1930 

ParameterTable -> Estimate SE TS tat PValue 

-10 
1 4.55075 0.261893 17.3764 7.15424 10 

x -0 . 0437648 0 . 00638219 -6.85734 0.0000175384 

RSquared -> 0.79669, AdjustedRSquared -> 0.779747, 

EstimatedVariance -> 0.239138, 

ANOVATable -> 

Model 

DF 

1 

SumOfSq 

11.245 

MeanSq 

11 .2 45 

FRatio 

47.0232 

Error 12 2.86965 0 . 239138 

Total 13 14.1147 

'!WP 1998 

ParameterTable -> Estimate 

1 6 . 3466 

x -0 . 111563 

SE 

0.544321 

0 . 0232441 

TS tat 

11. 6597 

-4.79963 

RSquared -> 0.793363 , AdjustedRSquared -> 0.758924, 

EstimatedVariance -> 0.5856, ANOVATable -> 

Model 

Error 

Total 

DF 

1 

6 

7 

SumOfSq 

13 . 4901 

3.5136 

17.0037 

MeanSq 

13. 4901 

0 . 5856 

FRatio 

23.0364 

PValue 

0 . 00300189 

PValue 

0.0000175384 

PValue 

0 . 0000239842 

0.00300189 
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APPENDIX C. 

DIAGNOSTICS FOR WHITEBARK PINE AND SUBALPINE FIR 

SEEDLING GLM AND GAM MODELS 
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Call: glm(formula = pial - ltpt + dbaten + dtpt, family 

Deviance Residuals: 

Min lQ Median 3Q Max 

-5.701555 -1 . 935282 -0.4477544 1 . 262667 10.20418 

Coefficients: 

Value Std. Error t value 

(Intercept) 2 . 99942709 0 . 065182169 46 . 01607 

ltpt -0 . 03518273 0.003228502 -10 . 89754 

dbaten -1.41723270 0 . 113880846 -12.44487 

dtpt: 0 . 08638178 0.007067160 12.22298 

(Dispersion Parameter for Poisson family taken to be l 

Null Deviance: 958 . 1448 on 108 degrees of freedom 

Residual Deviance: 670.9011 on 105 degrees of freedom 

Number of Fisher Scoring Iterations: 4 

Correlation of Coefficients: 

ltpt dbaten 

0.1198787 

(I ntercept: ) 

lt:pt: -0.8208116 

dbat:en -0.1894943 

dtpt -0.1082170 0.0345843 -0 . 8665570 

poisson, data seedmet ) 

Call: gam(formula 

seedmet) 

Deviance Residuals: 

pial - s (lt pt ) + s(dbaten) + s(dtpt), family poisson, data 

Min lQ Median 3Q Max 

-5.390737 -1.742824 -0 .5 106744 1.001389 6.694528 
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(Dispersion Parameter for Poisson family taken to be l 

Null Deviance: 958.1448 on 108 degrees of freedom 

Residual Deviance: 524.4952 on 96.00785 degrees of freedom 

Number of Local Scoring Iterations: 3 

DF for Terms and Chi-squares for Nonparametric Effects 

Df Npar Df Npar Chisq P(Chi) 

(Intercept) 1 

s(ltpt) 1 3 21.6054 7.90034e-05 

s(dbaten) 1 3 58 . 2233 O.OOOOOe+OO 

s (dtpt) 1 3 173.2858 O.OOOOOe+OO 

Call: glm ( formula 

Deviance Residuals: 

abla - el+ av, family poisson, data seedmet ) 

Min lQ Median 3Q Max 

-5.319722 -2.132915 -1.201543 0.5955277 6.06268 

Coefficients: 

Value St::l.. Er::-o::- t value 

(Int ercept:) 25 . 257530226 1.2890586418 19.59378 

el -0 . 002511292 0.0001405334 -17.86971 

av 0.987644262 0.0585393888 16.87145 

(Dispersion Parameter for Poisson family taken to be 1 

Null Deviance: 1294.101 on 108 deg::-ees of freedom 

Residual Deviance: 706.1208 on 106 degrees of freedom 

Number of Fisher Scoring Iterations: 5 

Correlation of Coefficients: 

( Intercept:) 

el -0 . 9995789 

el 

av 0 . 2921415 -0.2969827 

Call: gam(formula = abla - s(el) + s l av), family= poisson, data 

Deviance Residuals : 

Min lQ Median 3Q Max 

-5.455446 -2.212471 -0.9677311 0.8702807 5.903295 

seedmet l 
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(Dispersion Parameter for Poisson family taken to be l 

Nu ll Deviance : 1294 .1 01 on 108 degrees of freedom 

Residual Deviance : 660 . 6156 on 100 . 2373 degrees of freedom 

Number of Local Scoring Iterations : 4 

DF for Terms and Chi-squares for Nonparametric Effects 

( Intercept) 

s(el ) 

Df Npar Df Npar Chisq 

l 

l 

P (Chi) 

s (av) l 

2 . 9 

2.9 

30.67450 0.00000081 7 1 

16.92066 0.0006592348 
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APPENDIX D. 

CROSS-TABULATIONS OF ACTUAL NUMBER OF MOUNTAIN 

PINE BEETLE ATTACKS AND PREDICTED NUMBER OF 

ATTACKS BY STAND 
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Actual Predicted 
ABK False True Row Total 
False 12 7 19 
True 4 102 106 
Col. Total 16 109 125 

I bias = 0.028 1 

Actual Predicted 
AVL False True Row Total 
False 79 7 86 
True 7 51 58 
Col. Total 86 58 144 

I bias= o 

Actual Predicted 
BGH False True Row Total 
False 20 7 27 
True 5 128 133 
Col. Total 25 135 160 

I bias = 0.008 1 

Actual Predicted 
BLK False True Row Total 
False 10 11 21 
True 6 76 82 
Col. Total 16 87 103 

I bias = 0.061 1 

Actual Predicted 
GOA False True Row Total 
False 20 1 21 
True 1 19 20 
Col. Total 21 20 41 

~lb_ias~=_O__._~~~-,L-~ __ J 
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Actual Predict ed 
RRB False True Row Total 
False 5 11 16 
True 4 94 98 
Col. Total 9 105 114 

I bias = 0.011 1 

Actual Predicted 
SIL False True Row Total 
False 15 8 23 
True 7 46 53 
Col. Total 22 54 76 

I bias = 0.018 1 

Actual Predicted 
TLK False True Row Total 
False 32 0 32 
True l 32 33 
Col. Total 33 32 65 

I bias = -0.030 1 

Actual Predicted 
TWP False True Row Total 
False 23 1 24 
True 3 54 57 
Col. Total 26 55 81 

I bias = -0.036 1 
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