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ABSTRACT 

A Macroterrain Landtype Association 

Classification Model For The Great Basin 

by 

Frank L. Dougher, Master of Science 

Utah State niversity. 2002 

Major Professor: R. Douglas Ramsey 

Department: Geography and Earth Re-,ources 

Ill 

Three Macroterrain Landtype Association clas-,ification models were developed to 

stratify and categorize tah · s West Desert. The-,e models approached terrain 

-,egmentation u-,ing an energy-flow paradigm from ero-,ional to transitional to 

depositional landscape'>. One model wa:-. de\'elopcd as a slope-ba<;ed deterministic model 

that used slope-threshold limits to discriminate between Landtype Associations. A second 

model was developed a:-. a :-.tochastic. training-data clriYen supervised lassification. using 

comparati\'e /-value:-. to cla sify the lands ape to the most similar landtype cl,1ss. The 

third model was a probabilistic algorithm, which classified the landscape to the mo:-.t 

probable class based on multiple iterations of the stochastic model. These models were 

assessed for performance against Macroterrain Landtype Association classifications from 

three independent !!,eographical data:-.cts. The performance assessment involved 

calculating model-to-reference agreement, a piecewise assessment of errors for each 



Macroterrnin Land type Association class, and a measure of the mod I-to-rd rence 

performance relative lo that performance expected from random chance. 
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INTRODUCTION 

Beginning in 1994, the College of Natural Resources (CNR) at Utah State 

University (USU) participated in a five-year study of the threatened. endangered and 

sensitive (TES) sp cies existing within the Hill Air Force Base (HAFB) Military 

Operations Area (MOA). The HAFB TES Project was a cooperative program between 

USU. the Department of Defense (DOD), the Bureau of Land Management (BLM), the 

Utah Di\'ision of Wildlife Resources, and the Jack Berryman Institute (Sharik et al., 

2000). The scope of this study included terrestrial and aquatic invertebrates. mammals. 

reptiles. birds, and plants. As most of the:-,c data were point-based. an ecological 

classification system was developed as an interpolation and extrapolation tool. The 

Ecological Classification and Mapping (ECM) :-.ystem is a modification of the existing 

ECO 1AP structure developed by the US Forc:-.t Service (West et ol., in press). 

ECOMAP, a:-. described by McNab and Ayers ( 1994 ). is a nited States 

Department or Agriculture (USDA) Forest Service ( SFS) framework for stratifying the 

land:-.cape into hierarchically smaller units or increasing ecological uniformity. At its 

upper (coarser) lc,els. it follov;s Bailey's Ecoregions clas:-.ification sy:-.tem. and is 

intended to "[pro\'idc] field units with an essential tool and scientific ba is to plan for and 

implement ecOS)Stem m,rnagement"· (McNab and Ayers. 199-l). Bailey's original 

classification (Table I) divides the Earth into Donwins (Figure 1 ). Di1·isio11s (Figure 2), 

and Pml'inces (Figure 3), based on "regional variations in climate, ,·egetation, and soir· 

(Bailey and Hogg, 1986). 



Table 1. Explanation of portion of Ecoregions Map of North America (taken from Bailey 

and Hogg, 1986). 

Lowland ecoregions 

120 TUNDRA DIVISION 

121 Low-arctic Tundra Province 
122 High-arctic Tundra Province 

130 SUBARTIC DIVISION 

131 Subarctic Parkland Province 
133 Boreal Forest Province 

Highland ecoregions· 

100 Polar Domain 

H120 TUNDRA REGIME HIGHLANDS 

M121 Brooks Range Province 
M 122 Northeast Seaboard Mts. Province 

H130 SUBARTIC REGIME HIGHLANDS 

M131 Alaska Range Province 
M 132 Subarctic Rockies Province 
P133 Yukon-Sitkine Plateau Province 

200 Humid Temperate Domain 

210 HUMID WARM-SUMMER CONTINENTAL 
DIVISION 

211 Laurentian Mixed Forest Province 

H210 HUMID WARM-SUMMER CONTINENTAL REGIME 
HIGHLANDS 

M211 Columbia Forest Province 
P212 Fraser-Nechako Pleateau Province 

220 HUMID HOT-SUMMER CONTINENTAL DIVISION 

221 Eastern Deciduous Forest Province 

230 HUMID SUBTROPICAL DIVISION 

231 Outer Costal-plain Forest Province 
232 Southeastern Mixed Forest Province 

240 HUMID MARITIME DIVISION 

241 Willamette-Puget Forest Province 

250 SUBHUMID PRAIRIE DIVISION 

251 Prairie Parkland Province 
252 Prairie Brushland Province 
253 Tall-grass Prairie Province 
254 Aspen Parkland Province 

260 MEDITERRANEAN DIVISION 

H240 HUMID MARITIME REGIME HIGHLANDS 

M240 Pacific Forest Province 

H260 MEDITERRANEAN REGIME HIGHLANDS 

261 California Grassland Province (Central Valley) M261 S1e1ran Foest Province 

310 SEMl·ARID STEPPE DIVISION 

311 Great Plains Shortgrass Prairie Province 
312 Palouse Grassland Province 
313 lntermounta1n Sagebrush Province 

M262 Californian Cl1apparal Province 

300 Dry Domain 

314 Mexican Highlands Shrub Steppe Province 
315 Sinaloa Coast Province 

H310 SEMI-ARID STEPPE REGIME HIGHLANDS 

M311 Rocky Mountain Forest Province 
M312 Upper Gila Mts. Forest Province 
M315 Sierra Madre Occidental Province 
M316 Sierra Madre Oriental Province 
P313 Colorado Plateau Province 

316 Rio Grande Shrub Steppe Province 

320 ARID DESERT DIVISION 

321 Chihuahuan Desert 
322 American Desert Province 

(Mojave-Colorado·Sonoran) 

A314 Wyoming Basin Province 

H320 ARID DESERT REGIME HIGHLANDS 

M321 BaJa California Province 

400 Humid Tropical Domain 

410TROPICAL SAVANNA DIVISION 

411 Everglades Province 
414 Campeche· Yucatan Savanna Province 
4 15 Pacific Savanna Woodland Province 

420 TROPICAL RAIN-FOREST DIVISION 

H410TROPICAL SAVANNA REGIME HIGHLANDS 

M412 Sierra Madre del Sur Province 
A413 Central Mexico Province 

H420TROPICAL RAIN-FOREST REGIME HIGHLANDS 

421 Carribean Coast Rain-forest Province M421 Central American Ranges Province 

• Key to letter symbols: H=Highlands; M=Mountains; P=Plateau; A=Altiplane
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Figure l. ECOMAP Domains and boundaries for I-IAFB MOA and MLRA 28b. 
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Figure 2. ECOMAP Divisions and boundaries for HAFB MOA ;.md MLRA 28b. 
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Figure 3. ECOMAP Provinces and boundaries for HAFB MOA and MLRA 28b. 
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Figure 4. ECOMAP Section� and boundarie� for the HAFB MOA amcl MLRA 28b. 
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ECOMAP continued this system by further subdividing Bailey's Provinces into 

Sections (Figure 4), based on locally dominant geologic materials and landforms (West et 

al .. in press). Furthermore, ECOMAP provided guidelines for four additional ecological 

subdivisions, in order of coarsest to finest: Subsections, Landtype Associations, 

Londtypes. and Landtype Phases (McNab and Ayers, l 994). These levels, though loosely 

defined in scale and criteria, are left up to local entities to define and delineate both for 

the sake of mapping efficiency and to allow local environmental factors. priorities. and 

needs to dictate unit delineation. The end result is an eight-level hierarchical 

classification (Table II) system. which could divide ecological systems from continental 

scales down lo parcels less than IO acres (McNab and Ayers. 1994 ). 

The ECM group of the HAFB TES Project adopted the basic ECOMAP 

framework. but modified the unit nomenclature. scales. and criteria of the four finest 

orders of the classification to better suit Great Basin ecosystems. and expanded the 

ECOMAP framework by adding two additional lc\"l�ls of classification that would exist 

outside the higher-order framework. It was also determined that, as a modification to the 

ECOMAP ordering system. each progressively finer layer of the four locally delineated 

orders would be delineated from the next higher order by a single determining factor 

(West ct al., in press) whereYer this was possible. Thus. Bolson Segments [ECOMAP 

Subsections] (Figure 5) were delineated from ECOMAP Sections by hydrologic drainage. 

Macroterrain Units [Landtype Associations] (Figure 6) were to be delineated from 

Bo/sons by a classification of landform type; i.e. Mountain Massif, Bajada, or Valley 

Bottom. Mesoterain Units [Landtypes] (Figure 7) were subdivided from Macroterrain 



Table IT. Principal map unit design criteria of ecological units (taken from West et al., in 

press) 
ECOLOGICAL PRINCIPAL MAP UNIT DESIGN CRITERIA 

UNIT 
Domain 

Di, ision 

Prcl\ i nee 

Section 

Subsection 

Broad climatic zones or groups (e.g. dry. humid. tropical). 

Regional climatic types ( Koppen. 193 I: Trcwartha. 1968 ). 
Vegetation affinities (e.g. prairie or forest). 
Soi I order. 

Dominant potential natural vegetation ( Kuchler. 196-+ ). 
Highlands or mountains with complex vertical climate-vegetation-soil 
70nation. 

Gcomorphic province. geologic age. stratigraphy. lithology. 
Regional climatic data. 
Phases of soi I order,. suborders. or great groups. 
Potential natural , cgetntion. 
Potential natural communities (PNC). 

Geomnrphic processes. surficial geology. lithology. 
Phases of soil orders. suborders. or great groups. 
Subregional climatic data. 
PNC-formation or scriL'S. 

Landt) pc Association Gcomorphic processes,. geologic formation. surficial gcolog) and 
elc, at ion. 

Landt) pc 

Landtypc PhasL' 

Ph,1>cs or soil subgroups. families. or series. 
Local climate. 
PNC-series. suhseries. plant as!->ociations. 

Land form and topogr:1phy (clc, at inn. a,pcct. slope gradient and 
position). 
Pha,es of soil subgroups. families. or series. 
Roe k type. geomnrph ic proccs,es. 
PNC-plant associations. 

Phases of soi I l"ami I ics or ,cries. 
Land form and sin pl' position. 
PNC-plant associations or pha,es. 

Units by surficial soil or geology classification. Lastly, Microterroin Units lLandtype 

Pha�es] (Figure 8) were subdivideJ from Mesoterrain Units by slope position (i.e. ridge. 

side slope, or foot slope and channel bottom) wherever topography allowed such 

delineation. Furthermore, two more levels. Ecological Sites and Vegetation Stands, 

6 
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were added to the bottom of the ECM hierarchy, and were delineated independently from 

the higher orders by soil survey data and by in situ classification, respectively (West et 

of .. in press). 

The delineation of the fifth level of the ECM classification. Macroterrain Units 

(Table 11). required the development of a system for classifying landforms from digital 

elevation modcb (DEMs). During the execution of the ECM section of the HAFB TES 

Project. three raster-based models were developed to classify the landscape of the HAFB 

MOA into the requisite three classes (Figure 6). Significant differences between the 

models were noted (Figur 9). but never analyzed. lt was determined that further study 

should assess the agreement of each model with independent geographic information with 

the aim of determining which classification method is most effective for the Great Basin. 

This assessment is the focus of this study. 

el 
NV 

UT 

Legend 

- Erosional 
- Transrt,onal 
CJ Depositional 

50 50 

Kilometers 

Slope-based Determin1stc Model t-\lalue based Stochastic Model 

Figure 9. Sample outputs from HAFB ECM Macroterrain Landtype Association 

Classification. 
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PROJECT OBJECTIVES 

The primary objective of the this study was to generate a Macroterrain Unit 

landtype classification of the Hill Air Force Base Military Operations Area applicable to 

the framework of the U.S. Forest Service's ECOMAP ecological classification system, 

and to assess the various methods used in the production of this classification. As a part 

of a larger ecological classification model being developed by West et of. (in press). the 

methods developed in this study should be applicable throughout the Great Basin. 

Furthermore. this study aims to improve our understanding of the use of spatial models in 

the classification of topographic landforms and the delineation of topographically 

dependant ecological communities. 

The specific goals of this study arc to: 

I) Develop a topography-based model for the separation of a Great Basin landscape

into discreet Macroterrain Units.

2) Develop a super\'ised classification model to characterize topographic data from a

Great Basin landscape into discrete Macrotcrrain Units.

1) Asses" the agreement of the output of these spatial models with independently

deri\'cd geographic data.
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STUDY AREAS 

Hill Air Force Base. Militory Operations Area 

Located in predominately in northwestern Utah, and to a lesser extent in 

northeastern Nevada, the Hill Air Force Base (HAFB) Military Operations Area (MOA) 

covers an area of4.5 million hectares (17,400 mi
2
) of what is known in Utah as the West 

Desert (Figure I 0). The airspace over this area, is restricted for and administered by the 

Department of Defense (DOD) for the training of personnel and testing of military 

IDAHO 

NEVADA 

UTTR 
Study 
Area 

UTAH 

l 
I 

\ 

l 

Kilometers 

Figure J 0. Location of the HAFB Military Operations Area (MOA) and the Utah Test & 

Training Range (UTTR). 
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materiel (Sharik et al., 2000). Within the MOA, also referred to as the Range Complex 

(Tilton, 1998), are two land parcels owned and administered by HAFB. The northernmost 

of these parcels, the Utah Test and Training Range (UTTR) North Range or "Eagle 

Range" (Sharik et al., 2000), covers 147,000 ha (566 mi\ and is the primary focus area 

for this study. The southernmost UTTR area is the South Unit or "Wendover Range," and 

covers some 230,000 ha (890 mi2 ), this area will be the secondary focus area for this 

study. These areas are primarily used by HAFB for bombing and other munitions training 

und testing. Additionally, the DOD owns and administers the 321.000 ha ( 1240 m?) 

Dugway Proving Ground. This area is used by the U.S. Army for testing and training of 

biological and chemical warfare systems. Combined. these DOD lands comprise some 

150( or the total land area of the HAFB MOA. 

By far the largest landowner in the MOA is the Bureau of Land Management 

(BLM). With nearly 3 million hectares ( J J ,400 mi2
) under their administration. the BLM 

controls over 6301 or the land area of the 1-IAFB MOA. Other significant landowners in 

the MOA include U.S. Forest Service, the Bureau of Jndian Affairs. with two 

reservations within the MOA. and various Utah state agencies. Approximately J 2% of the 

MOA is privately owned. including the municipal area around Wendover, Ne\'ada and 

East Wendm·cr. Utah. 

The elevation in the HAFB MOA ranges from l .265 m (4, 150 ft) to 3.677 m 

( 12.064 ft) above sea level. Over 80% of the MOA ·s area is under l ,850 m (6,000ft). 

Geologically. the MOA is part of the Basin and Range Province (Hunt, 1974). The 

topography of this area is dominated by north-south trending "horst and graben" 
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mountain ranges and valleys, including the Grassy Mountains, the Deep Creek 

Mountains. the Newfoundland Mountains, the Pilot Range, the I louse Range, the 

Confusion Range, the White Valley, and Skull Valley. The area is also marked by the 

presence of two major evaporitic basins, the Great Salt Lake Desert and the Sevier Desert. 

These broad. mud- and salt-flat basin floors are representative of the interior drainage 

systems of the Great Basin, of which MOA is a part. 

The MOA is within the temperate, semi-arid climate typical of the Great Basin. 

with a Jake evaporation rate of over 40 inches per year (Tilton. 1998). but receiving only 

:-.ome 6 - IO inches of precipitation per year (Sharik et o/., 2000; Tilton. 1998), principally 

in the form of rnin or snowfall in the winter months. Evergreen Sub-Desert Shrub is the 

dominant vegetation cover type. with barren flats in the basin floors. grass steppes in the 

middle altitudes and evergreen woodlands in the higher altitudes. 

Ce111ro/ N<'1·w/u Rusin ond Range 

The Natural Resources Conservation Service (NRCS) has delineated the United 

States into geographically associated areas of similar soil type. climate. water resources 

and land use (Soil Sur\'ey Staff, 1981) cal led Major Land Resource Areas (MLRAsJ. 

These MLRAs are commonly used bounds in soil, vegetation. and natural resource 

planning. management. and research (Soil Survey Staff, 1981 ). One or these resource 

areas. MLRA 28b. was used to delineate the second study area for this work. 

M LRA 28b. the Central Nevada Basin and Range resource area. located 

predominately in eastern-central Nevada and to a lesser extent in western-central Utah 
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(Figure J 1 ), covers over 7 .8 million hectares (30, 170 mi2 ) of the central Great Basin. The 

major industry and land use within this area is livestock grazing and production of 

livestock feed (e.g. hay. grain) with some I% or less of the total area given over to 

irrigated agriculture (Soil Survey Staff, 198 l ). More than 90% of the land in MLRA 28b

is federally owned (Soil Survey Staff. 1981 ). With more than 6 million hectares (23,200

mi2
). the BLM is the largest landholder in this study site, as it was in the MOA, 

administering some 777< of the lands in MLRA 28b. The U.S. Forest Service administers 

nearly l 817r or nearly I..+ million hectares (5,350 mi2
) within MLRA 28b. Only about 

3-l0.000 hectares ( 1,300 mi\ or about 4%, of the MLRA is privately owned. and the 

remaining 17< or the land is owned or administered by various state and federal agencies. 

NEVADA 

IDAHO 

UTAH 

MLRA 28b 
Study 
Area 

J 
50 0 50 100 150 200 

Kilometers 

Figure l I. Location or MLRA 28b, Central evada B:1sin & Range. 



Elevations in MLRA 28b range from about I ,450 m (4,760 ft) to over 3.600 m 

( I 1,800 ft). Typical of a Basin and Range landscape, the morphology of MLRA 28b is 

dominated by north-south trending "horst and graben .. ranges and valleys, with steep, 

rocky mountains and flat, internally drained, basin tloors. With only 5 - 25 inches of 

precipitation per year, this temperate, semi-arid landscape support" vegetation types 

common in the Great Basin, such as saltbush-greasewood in the lower elevations, and 

pinyon-juniper woodlands in the higher altitudes (Soil Survey Stall I 98 I). 

16 
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METHODS 

The course of the work in this study can be divided into two separate phases: 

model development and model assessment. The model development pha!->e began in 1998, 

as a part of the HAFB TES Project. During this phase of the study, the theoretical and 

applied structure of the models \�.:ere developed, as much by trial and error as by any other 

method, and M.1croterrain Landtype classifications of the HAFB MOA, and the smaller 

UTTR North Range subset (Figure I 0). were created. The work done in the model 

development pha!->e v. as oriented towards the goal of creating part of a larger hierarchical 

land classification !system. Piecewise as!->essrnent of any particular level of this hierarchy, 

a!-> opposed to the performance of the classi rication system as a whole, was not a project 

priority. 

The a!->sessmcnt phase of this study began in 200 l, when it was determined that 

the methocb and results of the Macroterrain le\ el of the HAFB EC 1 cl..h!->ification 

warranted further study. This pha!->e can be viewed as a retrospective w,sessmcnt of the 

landtype models used in the 1998 !->Ludy. tn determine if their application was valid at the 

time. to as:ess which model performed better in a comparison with pre-existing 

geographical data. to assess their applicability to other parts of the Great Basin. and 10

determine if further work along these lines would be productive. 

Doto Set 

The initial phase of this study used 90 rn (3-arc second) resolution Digital Terrain 

Elevation Data (DTED) that was available for the entire HAFB MOA. All DTEDs \>.:ere 
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projected to the Universal Transverse Mercator (UTM) coordinate system, zone J 2. 

Additional work utilized 30 m (]-arc second) resolution United States Geological 

Survey (USGS) Digital Elevation Models (DEM) where available due to the superiority 

in the representation of the land surface when compared to DTEDs. The DEMs were used 

to analyze a small subset of the HAFB MOA and a small subset of MLRA 28b. at greater 

resolution than the original treatment. All DEMs were projected to UTM coordinates. 

Both raster data sets were analyzed in Arc/lnfo 1 �1 GRID.

Model asse-,sment was performed utilizing three \'ector-format land 

characterization data -,ct'>. At I :500,000 -,cale. Digital State Geological Maps of both Utah 

(Hintz. 1980: Ramsey. 1996) and Nevada (Stewart and Carlson, 1978; Turner and 

Bawiec, 1996) were used as the coarsest-scale assessment dataset. The-,c vector data sets 

were used in conjunction with USGS geological attribute data (Raines <'I of .. 1996) to 

create J :500.000 -,calc landtype association maps ba-,ed upon surficial geologic material 

and landfonm for the ...,,udy areas (Figures 12 and I]). The Digital State Geological Maps 

arc digitized versions or pre-existing paper or Mylar geological map-,. They were chosen 

a-; an assessment data:-.et based on the extent of their spatial CO\'erage (completely 

covering euch re-;pccti\'e state). and their exten-,ive w,e and acceptance a:-. a ,·alid 

-,cientific daw-,et in the scientific community. 

At I :250,000 scale. the State Soil Geographic (STATSGO) Data Ba'.-.c from the 

United States Department of Agriculture (USDA) Natural Resources Con:-.ervation 

Service ( TRCS) was u-,ed as the moderate-'.-.cale a-,scssment dataset. STATS GO coverage 

of Utah and Nevada were obtained along with their ancillary data tables. and were used to 
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Figure 12. Geology-based Macrotcrrain Land type Association Classi rication for the UTTR. 
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Figure J 3. Geology-based Macroterrain Landtype Association Classification for MLRA 

28b. 
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produce I :250,000 scale landtype association maps of both study areas (Figures 14, I 5). 

STATSGO is a commonly used dataset in natural resources research and management, 

and is popular for it's easy accessibility, widespread coverage ( I 00% of the U.S.) and 

associated attribute tables. The SSURGO coverage was used to create 1 :24,000 scale 

Iandtype as<.,ociation maps of both study areas (Figures J 6, 17). Mapped and compiled on 

a county-by-county basis at l :24,000 scale, the Soil Survey Geographic (SSURGO) Data 

Base is the most detailed soil dataset available on a nation-wide scale. While SSURGO 

datasets are 1101 as widely available as Geological data or ST A TSGO data, they are 

popular and effective data for natural resources research and management because of their 

fine spatial detail, and their associated attribute tables. 

Because in the course of assessing the agreement of model outputs \,vith the 

independent datasets, errors in registration would be assessed as errors in classification, 

efforts were undertaken to ensure the registration of the independent datasets to the DEM 

CO\'erages of the "tudy areas. While it was found that SSURGO was satisfactorily 

registered to the DEMs, minor adjustments had to be made to the ST ATSGO and 

Geological coverages. These registration corrections were performed heads-up al 

I :24,000 monitor display resolution. and entailed aligning landforms delineated on the 

vector coverages with the corresponding landforms as seen in DEM shaded relief images. 

as well as co-registered Landsat Thematic Mapper (TM) imagery. 
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Figure J 5. STATSGO-based Macroterrain Land type Association Classification for 

MLRA 28b. 

23 



• 
.. 

5 

Legend 
Mountain Massif 

Bajada 

D Basin Floor

0 5 10 

Kilometers 

Figure 16. SSURGO-hasecl Macroterrain Lancltype Association Classification for the UTTR. 
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Model Del'e!opment 

The first macroterrain model to be developed for the Hill TES Project was a 

!:>lope-based deterministic model. Jdeally. the slope of the landscape at any point would be 

indicative of that point's position in the landscape's energy continuum. Thus. slope 

thresholds could be used to delineate the three macroterrains as such: 

Mountain Massif 

Bajada 

Basin Floor 

slope> l 5° 

I 5° > slope > 7° 

7° > slope 

Analysis of the terrain for this model first involved producing a slope model of the 

study area from the elevation data. Application of the model consisted of applying a 

reclassification tahle to the slope model to produce three numerical classes which would 

be standard through further phases of this study: 3 (Mountain Massif, or Erosional 

Landtype). 2 (Bajada. or Trnnsitional Landtype). and I (Basin Floor. or Depositional 

Landtype). Earl) in the implementation of this model, it was observed that though slope 

wJs ideally indicative or c1 location·s position in the energy continuum. this was often not 

the case. For example. flat areas at high altitude such as alpine meadows would be 

classified a<-; Valley Floor despite their high position in the energy slope. What was 

needed was an enforcement of superposition of the Macroterrain Landtypc classes. That 

is, the model needed rules specifying: 

I: Mountain Massif cells could not be downslope of Bajada or Valley Floor cells. 

2: Bajada cells could not be dovmslope of Valley Floor cells. 

This improvement on the slope-based classification utilized a flow-direction 
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model generated from the elevation model to enforce superposition. This model was 

developed as a GRID-based Arc/Tnfo Macro Language program (AML) called 

LTCLASS.AML (Appendix A). All cells in the classification model were given an initial 

value of 1 (Valley Floor). All cells of a given threshold slope value or greater were then 

classified as 2 (Bajada), these cells were then submitted to the GRID watershed model as 

watershed pourpoints. Thus, all cells pouring into (hence up-gradient of) cells of class 2 

were similarly classified as Bajada (Figure 18). These steps were then repeated with a 

second. higher threshold slope to classify cells as class 3, or Mountain Massif. This 

improved method produced the desired internally consistent Macroterrain Lancltype units 

with no conrlicts of superposition. 

After the development of the slope-based deterministic model, it was felt that the 

classification or landforms could be further improved. The treatment of the data in order 

to utilize the GRID watershed model. i.e. filling in the sinks in the DEM to produce a 

continuously draining model. put the integrity of the input data and the robustness of the 

model itself in question. Furthermore, the model was ill suited to areas of non

characteristic slope. such as the 1-80 levy running several meters above the noor of the 

Great Salt Lake Desert for the entire width of the MOA. lt was determined that a 

supervised classification scheme may be able to distinguish between the three 

Macroterrain Landtype classes. Such a mode] would be automated enough to fit the needs 

or the ECM phase of the HAFB TES project. and may not require compromising the 

dataset. 
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The second model developed for the ECM section of the HAFB TES Project was 

a stochastic model, again using slope data. This was a supervised classification model, 

such as those often used in remote sensing applications. But instead of imagery input, as 

is usually the case in remote sensing modeling, this model was designed to classify terrain 

data. This model. referred to as STATCLASS (Figure 19), used class-type mask grids to 

delineate selected sample areas pre-determined by the user to be representative of each 

landform class, much like training data in a supervised classification. According to the N

value determined by the user, an N-number of random local values would be selected 

from the slope grid to be classified, strictly within the boundaries for each class-type 

mask. This task w'-1s called out by STATCLASS.AML (Appendix B) to be performed 

separately by an independent AML program called RANDSAMP.AML (Appendix C) 

(Tilton and Dougher, 1999). which limits the sample area, performs an N-number of 

samples, finds the mean and standard deviation of the sample population. :md returns 

these value'> to the program which called it out. The mean and standard deviation or these 

samples would be determined thus. for each class separately. 

The mean and standard deviation of each location (cell) in the grid to be classified 

was then calculated using a moving sample window, of a size determined by the user. The 

total number of cells in this moving window (e.g. 49 cells in a 7 X 7 window) serves as 

the N-value for the grid being classified. These values were stored in a mean value grid 

and a standard deviation value grid. Next, the !-value for each cell in the image was 



Training 
Data Masks f-------� 

<
A 

> 
v Value 

()Model 
Function 

[J 
I 

Raster Data 
Fil 

-

Per-class 
I-Value 
Grids 

Slope 
Grid 

Sorts grids for 

Focal-mean 
Grids 

Sample 

Focal
Standard 
Deviation 

Grids 

lowest I -Value )----l•I Output t-j 

Macroterrain 
Landtype 

Association 

Value Grid 

Figure 19. Logical Diagram of STATCLASS model. 

30 



calculated for each of the desired classes from the values from the mean and standard 

deviation grids and the scalar-value mean and standard deviation from the cell values 

sampled from each class-type mask (Equation I). This provided quantification for each 

1 = ------.==l=X=<=;R='l='J =-=X=c'="'=·' =I =
' 0 

O"<;RI/J + O"c-·ta,, 

N( ;Rlf) - J NC/a11 - J

(I) 
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location·s similarity to each of the desired classes. Then. the /-values for each class were 

compared for every cell. The model assigns each cell the class with the lowest t, or least 

probability of a mismatch. The model also generates a grid of the selected /-values, so the 

user can analyze the strength-of-fit distribution across the classified area. 

Upon completion and initial assessment of the /-value stochastic model, two 

issues or concern were called to attention. First, that though the output-/ grid provided an 

excellent view of the spatial relative strength of fit within the classified area, the 

determination of the output"s absolute strength of fit. or confidence, was harder to 

determine. This is because the H,tatistic in this case was being used not in a typical 

Boolean analysis (i.e. the population docs or does not match the sample population) 

(Weinberg and Schumaker. 1965). but in a series of comparisons. ln such an analysis. the 

confidence intervals interact in a manner that would be difficult to evaluate. The second 

issue of concern is the variation inherent in a classification scheme based upon random 

sampling. Though it was an intentional and hard-won aspect of the model, the random 

sampling did produce some variation in the output classification. To address these 

concerns about the stochastic model, a third model was needed. This model. a 

probability-output model referred to as PROBCLASS was essentially an operational 
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variation upon the stochastic model, STATCLASS. 

The PROBCLASS model (Figure 20) was developed as an iterative version of 

ST A TCLASS. lt uses the basic structure of ST A TCLASS, but performs this stochastic 

classification repeatedly for a number of iterations specified by the user (e.g. I 00 

iterations). The PROBCLASS model uses four AML's (RUNLOOP.AML 

JTERCLASS.AML, RANDSAMP.AML, and PROBCLASS.AML) (Appendix D), as 

opposed to LTCLAss·s one and STATCLASS"s two, making it the most complex of the 

three models tested. RUNLOOP.AML controls the classification program 

ITERCLASS.AML. calling it to be run the number of specified iterations. 

JTERCLASS.AML is a version of STATCLASS.AML modified to be run by 

RUNLOOP.AML for the specified number of iterations. along with associated operational 

modifications to allow for non-interactive running. Each iteration of JTERCLASS.AML 

make calls to RANDSAMP.AML for the 111ean and standard deviation of a random sa111plc 

(of con'>tant number N) of the training data. upon which that iteration's /-value derived 

classification is based. After the iterations are complete, PROBCL4SS.AML assesses the 

number of iterations in which each cell is assigned to a particular class and normalizes 

this to a real number percentage (i.e. 0-100). This percentage is that cell's probability of 

being assigned the given class with the given data and clas�-type mask. The probability 

grids for each class are then compared and an output classification is produced by 

as'>igning each cell to the class with the highest probability. This model greatly decreases 

the random sample-induced variation in the output classification. in comparison to that of 

its predecessor, STATCLASS. It also produces a strength of fit measure111ent, in the form 



33 

of the classification probability, which is informative in both a relative sense, across the 

classified area, and in an absolute sense, where one can see the probability (or the inverse 

uncertainty) of the classification as a whole. 

Training 
Data Masks 

(1) # 
Macroterrain 

Grids 

Macroterrain 
Landtype 

Association 

Slope 
Grid 

# of 
iterations 

Sums
0 occurence of 

each class 

Figure 20. Logical Diagram of PROBCLASS model. 
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Mode/ Assessf//en t 

In the development of the HAFB ECM classification system, there was no intent 

to ground truth each level of the classification in a piecewise fashion. Rather, the 

performance of the hierarchical classification would be checked as a whole by the bottom 

two levels of the classification, which were based on field data (West et al .. in press). As 

this study is an offshoot or that previous effort, it was determined that the assessment of 

the performance of the Macroterrain Landtype classification models should not require 

ground truthing per se, but that they should be assessed against other geographic data 

which might reasonably have been used at this level of the ECM system. had such 

modeling techniques been unavailable. 

Since the original intent or the ECM system was to use the HAFB MOA as a 

rmwing ground to develop a classification system which could be applied throughout the 

Great Basin. and in limited areas beyond. as well as offering up a framework 

methodology which could be adapted by other managers and researchers to local study 

areas (West el of., in press). it was decided that n second study site should be added to the 

a-,sessment. in addition to the HAFB MOA site data. This would broaden the basis for the 

assessment, while still keeping the work within the bounds of the original intent of the 

ECM study. 

The bounds for the HAFB MOA North Range study area were determined not by 

physical attributes. but by political/administrative borders. Coverage of the UTTR North 

Range, plus an additional mile-wide buffer along the southeastern margin of the North 

Range property line required for a concurrent study, required part or all of 22 I :24.000 



USGS quadrangles. lt was decided that the outer bounds of these conterminous 

quadrangles would form the boundary of the North Range study area (Figure I 0). 
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lt \.\'as decided that a subset of MLRA 28b. the Central Nevada Basin and Range, 

would serve as a second study site. This area was chosen for its central location within the 

Great Basin. for its climate, which is strongly representative of the Great Basin (Soil 

Survey Staff, 1981 ), and for its typical Basin and Range land form morphology and 

111oq1hometry. The location of the subset was randomly chosen within the confines of 

MLRA 28b and was located in the north-central portion of the MLRA (Figure 11 ). The 

size of the MLRA 28b subset was chosen to be similar, but not equal to. the size of the 

HAFB MOA North Range. An area of approximately 50.000 km \,Vas delineated using 

natural bounds. rather than political boundaries, as is the case with the North Range. 

United States Geological Survey (USGS) Hydrologic Unit Code (HUC) boundaries were 

used as the natural bounds for the delineation of the MLRA 28b subset (Seaber et of .. 

1987) as these bounds are commonly used in natural resource management and research 

for deline,-1tion of areas for management planning. and thus would approximate an area 

which might be used in a future independent application of these methods. 

Having delineated both study areas by their respective means. all further methods 

shall be considered identical for the two areas. except where stated otherwise. With the 

study areas delineated. the required input data (see Data Set discussion) were acquired via 

various locations on the internet. Discontinuous data tiles (e.g. DEM quadrangles. 

SSURGO tiles) were merged together to cover each study area. Other data preparations 

were undertaken to assure agreement in units, projections, etc. 
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The three Macrot errain Landtyp e classification model s discussed in this work 

utilize first order derivative data , based upon elevation. The first order derivative datas et. 

flow-directi on is used in calculating contributing flow area for the first mode l, 

L TCLASS . Flow-direction was calculated from elevation (DEMs) by the Arc/lnfo 

command FLOWDTRECT10N (ESRl , 2000). ESRT (2000) determines the direction of 

flow by applying Equation 2: 

droJJ = D -::,/d * l 00 (2) 

where drop= the index of change in elevation from one cell to another, !1z = the change 

in eleva tion. and d = distance from one celr s centerpoint to another. Equation 2 is applied 

iteratively to a cell's eight adjacent neighbors (ESRl, 2000), and the direc tion in which 

the value of drop is grea test is determined to be the flow direction. If drop is the same in 

all eight adjacent ce lls, then the analysis neighborhood is expand ed and more iterations of 

Equatio n 2 arc app lied (ESR l. 2000). The output d irection is encoded as an integer from l 

- 255. with direction l equ ivalent to ord inal direct ion 90°. 

The other first order deri\'atiYc dataset, slope. is used in all three Macroterrain 

Landtype classification models . Slope is calcula ted in degrees (0
) from elevat ion (DEMs) 

by the Arc/In fo comman d SLOPE (ES RL 2000). using Equation 3: 

(3) 

where t,,,z = the change in eleva tion. !1x and !1y represent the cha nge in horizo ntal 

position. and(-)= the degree slope. These equations are calculated for eac h celrs eight 

con terminous neighb ors . and the highest value 8 is determined to be the slope for that 
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output c II (ESRJ, 2000). 

Being the simplest and quickest model to run , LTCLASS was the first 

Macroterrain Landtype model to be run on both study areas. As was the case in 1998, 

when the model was first deve loped , this was an iterative process. It was decided that the 

MLRA 28b study area would be classified first. then those classification criteria would be 

verified and fine-tuned using the data from the UTTR North Range, to produc e a 

comp rehensive set of cr iter ia for delineating Great Basin Macroterrain Landtype 

Associa tions. 

Several combi nations of threshold slopes were tried. starting with the values 

derived from the developmental results from the original study: Massif>= J 5°, Bajada >= 

7°. Basin Floor< 7°. Each LTCLASS output class ification was ove rlain with TM imagery 

and a shaded relief grid gene rated by the Arc/Info comma nd HILLSHAD E (ESRJ, 2000) , 

to subject ively match the classifica tion with the topograp hy. Because the reso lution of the 

data in this study were higher than the data used in the developmental work (30m DEMs 

vs. 90111 DTEDs). the calc ulated slope values were quite different at the margins of 

landforms. and as a result, the development thresho lds of 15° and 7° were not found to be 

accurate delineators of the landtypes for the current dataset. After severa l iterations. an 

ordinal series of Massif>= 12°. Bajada >= 2°. and Basin Floor< 2 was found to match 

the topog raphy well enough to proceed. 

These same iterative steps were then run using the slope and flow-direction data 

for the UTTR North Range. The '.2°-slope threshold for discriminating between Basin 

Floor and Bajada was found to be a good descriptor for the UTTR North Range , as it was 
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for the MLRA 28b. The 12°-slope threshold for discriminating between Mountain Massif 

and Bajada was found to be too high, classifying the lower areas of Mountain Massif as 

Bajada. After several iterations. a threshold of 10° slope was found to be an acceptable 

delineator of the UTTR North Range's Massif/Bajada margin. This value was then run 

through LTCLASS using the MLRA 28b dataset. and was found to not seriously 

deteriorate the subjective quality of the MLRA 28b delineation of the Massif/Bajada 

margin. Thus, a final ordinal series of: 

Mountain Massif 

Baj ad a 

Basin Floor 

slope> 10° 

10° >slope> 2° 

2° > slope 

was found to be a subjectively acceptable set of criteria for delineating Macroterrain 

Landtypes in at least two areas of the Great Basin (Figures 21. 22). The further 

as-.;essment of LTCLASS as a classification model will assume that these criteria 

represent the best-fit possible using this model. 

Running the STATCLASS Macroterrain Landtype classification model requires 

much more time and preparation than running LTCLASS. Prior to running STATCLASS. 

training data must be delineated for each class. To this purpose. polygon shapefiles were 

created in Arc View (Figures 23. 24) using a combination of TM imagery and DEM-based 

shaded relief as a visual key. Each polygon in a shapefile delineates an area that is 

representative of that class of landtype. For each study area. shape files vvith al least two 

polygons were created to delineate representative areas of mountain massif, bajada. 
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Figure 21. L TCLASS output Macroterrain Landtvpc Association map or the UTTR. 
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Figure 22. LTCLASS output Macroterrain Landtype Association map of MLRA 28b. 
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Figure 23. Example training data polygons for the UTTR. 
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and basin floor. The pixels delineated by these polygons. or training doto , would he used 

by STA TC LASS to establish the criteria by which each study area would he classified 

(Recs, 1999). These shapefiles arc then converted into Arc/Info polygon coverages. and 

used to subset the study areas· slope grids with the GRID comm,rnd POL YGONSELECT. 

The result of this step was six training data grids , one of each class (i.e. mountain massif. 

bajada. and basin floor) for each study area. within which the value of the training data 

would equal the study area slope grid. and the non-training data would have a value of 

NODA TA. 

Along with the slope grid of the study area, the training data grids are all the input 

data that are required to run STATCLASS . Upon running the program. the user is 
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prompted for these input data, along with the two user-specified criteria for the algorithm, 

N, the size of the moving focal-analysis window, and the number of classes. The number 

of classes was already determined to be three. The size of the focal window was set at 7 X 

7. and the similar sample size N, was rounded up to 50. FOCALMEAN and FOCALSTD 

(focal-standard deviation) grids were first produced by STATCLASS using the 7 X 7 

Figure 24. Example training data polygons for MLRA 28b. 
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window. Fifty point-samples were then extracted from each training data grid using 

RANDSAMP , and a mean value and standard deviation were computed from those 

sample populations. The use of an N-number sample population keeps the degrees of 

freedom manageably low in the following /-test , and allows the user greater freedom in 

the delineation of training areas by ensuring that all classes are represented equally in the 

t classification. Equation I was then used to compare the FOCALMEAN and 

FOCALSTD grid values to the mean and standard deviation of each sample population . 

resulting in a /-value output grid for each Macroterrain Landtype class (Figures 25, 26). 

Basin Floor t-Value 
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CJ 51-100 
- 101-200 
- 201-341 

Figure 25. Example class /-Value grids for the UTTR. 
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STATCLASS then compared the three t grids for each study area, assigning each cell the 

class with the lowest t, and produced an output Macroterrain Landtype classification grid 

(Figures 27, 28) and an output final-t grid (Figures 29, 30). 

The same input data sets and criteria (i.e. focal window size , N, and number of 

classes) were used for PROBCLASS as were used in STATCLASS , with the additional 

criteria of the number of iterations of the classification. The number of iterations was set 
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Figure 26. Example class t-Value grids for MLRA 28b . 
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Figure 27. STATCLASS output Macroterrain Landtype Association map of the UTTR. 
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Figure 28. STATCLASS output Macroterrain Landtype Association map of MLRA 28b. 
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Figure 29. STATCLASS ou tput t-Valuc map for the UTTR. 
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Figure 30. STATCLASS ou tpm t-Value map for MLRA 28b. 
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at I 00 , and all other input and criteria remained unchanged. PROBCLASS then ran the 

STATCLASS algorithms l 00 times, each time using a different randomly generated 

sample population, producing I 00 Macroterrain Land type classifications. The 

PROBCLASS algorithm then counted the number of times each cell was assigned to each 

class (anywhere from Oto I 00) producing three class-probability grids for each study area 

(Figures 3 I , 32). The three class-probability grids were then compared and each cell was 

assigned the class with the highest probability (Figures 33. 34). 

Figure 3 1. Class probability grids for the UTTR. 
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In order to compare the Macroterrain Landtype Classifications to independent 

data, the independent data must be similarly classified into three Macroterrain Landtypes 

(massif , bajada, and basin floor). To classify the Digital State Geological Maps, 

formation IDs were used in conjunction with interpretational attribute tables (Raines et 

al., l 996) to identify the age and lithology of the geologic units. All surficial units of 

Baj.ada Probability 
- 81-100 
LJ 61-80 

LJ " · 60 
- 21 - 40 · ··20 

Butn Floor Probability • • ,.,oo 
0 61 ·80 

-- 41 -60 

- 21-40 · ··20 

Figure 32. Class probability grids for MLRA 28b. 
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Figure 34. PROBCLASS output Macroterrain Land type Association map of MLRA 28b. 
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Tertiary origin or older were considered bedrock , and thu s classified as eros ional 

(Figure35). Any unit of a purely depositional lith o logy (e.g. playa [Qp] or water) was 

classified as depositional (Figure 35). All other units (e.g. Quaternary alluvium [Qa]) 

were interpreted individually , largely being c lassified as transitional (Figure 35), with 

some units such as Quaternary basalt [Qb] falling in other classes. Units were given a 

numerical code related to their Macroterrain Landtype c lass (3 = massif , 2 = bajada, I = 

basin floor ), and all boundaries between adjacent polygons of similar class were dissolved 

to create final landtype classified geology layers (Figures 12, 13 ). These vector layers 

were then converted to Arc/Info GRID format rasters, with projection and horizontal 

Figure 35 . Detail of Macro terrain Landtype Association classified Geologic units from 
MLRA 28b. 
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resolution (30m) to match the model outputs, using the numerical landt ype code as a gr id 

value. 

Because the STATSGO and SSURGO databases are related to eac h other, and 

because they have a similar attribute database structure, classification of these two 

datasets used similar criteria. The primary attribute for cla ssification of these soil datasets 

was surficial texture. The tables comp and layer (Soil Survey Staff, 1991; Soil Survey 

Staff, 1995) were linked to the spatial attribute table by the common element muid (map 

unit ID) and used for delineating this criterion. Records with a unit sequence number 

(element Seq1111111) I were selected so that the classification criteria would be applied only 

to the dominant or surficial layer of the soil unit (Soil Survey Staff, I 991; Soil Survey 

Staff, 1995). This step would be repeated several times as the classification of the 

1ex111re I element was an eliminatory process, and the initial selection would have to be 

regained for each step of the classification. The first landtype to be classified was 

mountain massif, initially selecting for any unit with a texture of bedrock (weathered or 

unweathered) from element lext11rel in table layer. Further units were added to this 

selection by selecting units in which the reported minimum depth to bedrock ,,vas 14 

inches or less. according to element rockdepl in table comp. A new field was added to the 

spatial attribute table for the STATSGO and SSURGO data coverages for landtype code. 

and all selected units were given the numerical code 3 to correspond with erosional 

landtypes. 

The second step of the soil classification was to classify basin floor units. Bajada, 

or tran siti onal unit s, were not classified for directly because the criteria for defining such 
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units are much broader and Jess defined than those for the other two units; bajada would 

be classified as everything not mountain massif or basin floor. With no transportation of 

sediment, the texture of the depositional basin floor units would be much finer that that of 

the other units. Units with reported fine textures such as silt, silt loam, clays, etc. were 

selected from element texture}, as were units reported to be water in element co111pna111e 

in table comp. The selected units were given a numerical Jandtype code of I to correspond 

with depositional Jandtypes. After this, all units not possessing a Jandtype code were 

classified as code 2. corresponding with transitional Jandtypes, resulting in complete 

Jandrype classified STATSGO (Figures 14. I 5) and SSURGO (Figures J 6, 17) layers. 

These vector layers were then converted to Arc/Info GRJD format rasters, with projection 

and horizontal resolution (30111) to match the model outputs, using the numerical landtypc 

code as a grid value. 

With the completion of the Jandtype classification of the three independent data 

sources. the model outputs could now be evaluated. The preliminary analysis of model 

results in comparison to the independent data layers would begin with a basic assessment 

of map agreement. The Coefficient of Areal Correspondence (Equation 4) provides a 

c = .\ 

A I B 

/\ U B 
(4) 

measure of the degree of relation between two areal distributions (Taylor , 1977), such as 

the distribution of Macroterrain Landtype units in a model output and an independent data 

layer. Equation 4 shows the coefficient as being a fraction of the area common to maps A 

and B (AU B) where maps A and B classify the landscape similarly (A n B) (Taylor, 
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1977). This ana lysis was performed in ArcView Spatia l Ana lyst v2.0 , using the Map 

Calcu lator. Binary identity grids were calculated whe re true (I) value ce lls represent ce lls 

with similar values in both grids of a pair. and false (0) va lue cells represent cells with 

dissimilar values . Cells which exist in one grid of a pair but not in the other were 

classified as NODATA and eliminated from the analysis. One such analysis was run for 

each possible combina tion of model output and independent data. Fur ther , model outputs 

were similarly compared to assess how well the various modeling methods agreed with 

each other. The three independent data layers were also compared to each other. to assess 

their agreement. In the end. 30 binary identity grids were generated, 15 for each study 

area (Figures 37-41 ), cover ing every possible combination of the six grid types in the 

dataset (LTCLASS , STATCLASS, PROBCLASS, Geology, STATSGO, and SSURGO). 

The number of cells of each value (true or false) were then compiled , and Equation 4 

could be solved by the number of true cells (A n B) divided by the total number of cells 

(AU B) (i.e. number true+ number false). 

The second phase of the assessment of the agreement between the model outputs 

and the independent data was an analysis of the errors in the model classifications 

(relative to the independent data) by the constructi on of error mutrices. An error matrix is 

an 11 by II array. where 11 is the number of classes. wherein the rows of the array represent 

the classes in the reference image , and the columns of the array represent the image being 

assessed (Campbell, 1987). The value of each cell in the array equals the number of cell s 

in the study area which have been classified with the values specified by that row and 

column. The sum of values in a column represents the total number of cells given that 
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class in the im age be ing assessed, and the row tota ls rep resent the va lues of the refe rence 

image classes (Campbe ll , 1987). The erro r matrix allows fo r more than the simple 

assessment of areal agreement. like that of the coeff ici ent of areal correspo nd ence 

(Equation 4). Jt allows for the catego rical assessmen t of classification agreement, on a 

class by class basis. 1t also allows for the user to distinguish between errors of 

commission (type I error) and errors of omissio n (type IJ error), again on a c lass by class 

basis. The error of commission represents the fraction of the area of a g iven c lass of the 

model output which has been mis-classed as compared to the reference im age (Campbe ll, 

1987; Weinberg and Schumaker , J 965). The error of omiss ion represents the fraction of 

the area or a given class of the reference image th at was mis-classed in the model output 

(Campbe ll. 1987: Weinberg and Schumaker, 1965). The analysis of such errors illustrate 

the performance or the models on a class by c lass basis , and the assessment of both types 

of error is necessary to understand the nature of the classification error. For example. one 

modcJ"s classification of bajada could have a very low type 11 error (error of omission) by 

correctly classifying all areas in the reference image's bajada area (Campbell. 1987). This 

might appear to be a good match for this class, with a high percentage of agreement. But 

if the ha_jada class also has a high type I error (error of commission). indicating that many 

cells in the reference image's massif and basin floor areas have been classified as bajada 

in the model"s output , we can determine that the crite ria for defining the bajada in the 

model ,1o,1e1-c too broad. or that the criteria for massif and basin floor were too narrow 

(Campbell , 1987). 

The final phase of the model assessme nt was an analysis of model pe rforma nce by 



57 

the calculation of koppo ( k) statistics for each model versus each independent dataset. 

Kappa quantifies the real agreement between model output and reference dataset over the 

amount of agreement one might expect by random chance. The higher the k value, the 

better the model has performed versus chance agreement. Equation 5 (Campbell, 1987) 

defines the estinwted k ("k hat") where "Observed'" designates the accuracy reported 

' k 
Observed - expected 

I - expected 
(5) 

in the error matrix. or the Coefficient of Areal Correspondence. and ·'expected·· 

represents the agreement which can be attributed to chance (Campbell, 1987). Calculation 

of "Observed ·· had already been performed by this point of the assessment. in the error 

matrix. Calculation of the expected chance agreement required the construction of 

another set of matrices. The cells of these matrices would contain the values of the 

products of the row and column marginals (totals) from the error matrices. resulting in a 

nine-cell matrix for a three-class system such as the Macroterrain Landtypc 

Classification. The expected agreement by chance is the sum of the products of 

corresponding marginals (diagonal entries) divided by the sum of all marginal products 

A 

(Equation 6) (Campbell , 1987). Nine k values were calculated for each study area. 

sum of diagonal entries 
expected = 

grand total 
(6) 

corresponding to all combinations between model outputs and reference datasets. These 

values were then assembled into a matrix for assessment of the various models· 

performance. 



Giv en these thr ee form s of num erica l anal ysis, the perform ance of eac h mod el 

aga inst the thr ee independent data sets was assesse d to es timat e whi ch reference datase t 

was mos t close ly emul ated by the give n model. Th e perfo rm ance of the model 

class ifica tions we re likew ise co mpar ed eac h other to determin e whi ch, if any, model 

performe d bes t give n al I three reference datase ts. 
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RESULTS 

Preliminary Analysis 

As discussed earlier, the preliminary analysis of model performance was done by 

calculation of the Coefficients of Correlation for each of the models and reference 

datasets versus each of the other datasets. This analysis was performed for each study 

area separately by applying Equation 5 to the identity grids (Figures 36-41 ). Table III 

shows the correlation coefficients for the UTTR, wherein we see that the strongest 

correlations between model outputs and an independent dataset are the .916 correlation 

between STATCLASS and SSURGO, and the .913 correlation between PROBCLASS 

and SSURGO. The equivalent performance of ST A TCLASS and PROBCLASS in the 

case of classifying the UTTR is emphasized by the .979 correlation between those two 

model outputs, versus their correlation with L TCLASS of .887 and .881 respectively. In 

the case of the UTTR, the SSURGO reference dataset had the highest correlation with 

each of the three models. Of all three models, L TCLASS had the lowest correlation 

coefficient with each of the three independent classifications, having a maximum 

correlation of .897 with the SSURGO-based Macroterrain Landtype Association 

classification. 

Table UI. Correlation Coefficients for the Utah Test and Training Range (UTTR). 
LTCLASS STATCLASS PROBCLASS GeolOQY STATSGO SSURGO 

LTCLASS 0.8871 0.8811 0.7781 0.7752 0.8968 
STATCLASS 0.8871 0.9798 0.8032 0.7917 0.9155 
PROBCLASS 0.8811 0.9798 0.8057 0.7953 0.9126 
Geoloav 0.7781 0.8032 0.8057 0.8649 0.8365 
STATSGO 0.7752 0.7917 0.7953 0.8649 0.8165 
SSURGO 0.8968 0.9155 0.9126 0.8365 0.8165 
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Figure 36. Classifica tion comparison identity grids for the UTTR. 
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Figure 37 . Classification comparison identity grids for the UTTR . 
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Figure 38. Classification comparison identity grids for the UTTR . 
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Figure 39. Classification comparison identity grids for MLRA 28b. 
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Figure 40 . C lass ifica tio n co mp ariso n identit y grids fo r MLR A 28 b. 
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PROBCLASS vs. Classified Geology PROBCLASS vs. Classified STATSGO 

Legend 
- Classifications Disagree 
- Classifications Agree 

20 0 20 40 60 80 100 

Kilometers 

PROBCLASS vs. Classified SSURGO 

Classified STATSGO vs. STATCLASS vs. PROBCLASS 

Classified SSURGO 

Figure 4 1. Classifica tion compa rison identity grids for MLRA 28b. 
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ln Table JI] we also see the correlation coefficients between the various reference data for 

the UTTR. All correlations for Macroterrain Landtype Association classifications were 

over 80%, the highest correlation being 86.5% between Geology and the STATSGO 

dataset. 

Table JV shows the correlation coefficients for the MLRA 28b study area. The 

strongest model to reference correlation for this study area was the 0.785 correlation 

between PROBCLASS and the STATSGO-based Macroterrain Landtype Association 

classification. ln this case ST ATSGO had higher correlation coefficients for two of the 

models than either Geology or SSURGO data, with LTCLASS's highest correlation being 

with SSURGO. Again. LTCLASS consistently had the lowest correlation coefficients, 

with a 0.522 correlation with Geology being the lowest value in this study. while in the 

case of MLRA28b PROBCLASS had consistently higher coefficients of correlation with 

the refer ence data than any of the other models. 

In the case o r MLRA 28h (Tab le IV), the highest correlation between 

classifications or independent data was a 0.797 correlation between SSURGO and 

STATSGO. The Macroterrain Land type Association Classification of Geology was most 

corre lated with that of STATSGO, at 0.779. 

T1ble TV Correhtion coefficients for the Central Nevada B·1sin ·rnd Rana e (MLRA ?Sb) ( L L , L "' -
LTCLASS STATCLASS PRO BC LASS Geoloqy STATSGO SSURGO 

LTCLASS 0.7448 0.6837 0.5224 0.6230 0.6406 

STATCLASS 0.7448 0.8949 0.7074 0.7648 0.7262 

PRO BC LASS 0.6837 0.8949 0.7482 0.7848 0.7675 

Geoloqy 0.5224 0.7074 0.7482 0.7788 0.7251 

STATSGO 0.6230 0.7648 0.7848 0.7788 0.7973 

SSURGO 0.6406 0.7262 0.7675 0.7251 0.7973 
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Error Analysis 

The analysis of the accuracy of each model in respect to each class in the 

Macroterrain Landtype Association Classification, in comparison to the three independent 

datasets. was performed by the construction of an error matrix for each model 

output/reference dataset pair. Table Vis an error matrix for the slope-based deterministic 

model , LTCLASS and the Macroterrain Landtype Association Classification for Geology 

for the UTTR. The highest class agreement in this piecewise assessment is the agreement 

for the depositional (Basin Floor) class at 94.9 % . The highest error of commission (Type 

I) is 83 .3% for the cells that were classified as erosional (Massif) class in the LTCLASS 

modeL but were classified as another Landtype Association in the Geology classification. 

The highest error of omission (Type JJ) is 66.9 % for cells classified as transitional 

(Bajada ) from the Geology classification. but classified otherwise in the LTCLASS slope 

model for the UTTR. 

Tahle VJ shows the error matrix for LTCLASS when compared to STATSGO 

data. In this case. the highest agreement is again in the depositional class at 95.7 % . The 

highest Type l error is in the erosional class at 55.4 o/c. and the highest Type lJ error is in 

the transitional class at 68.3 %. Table Vfl show s the error matrix for LTCLASS vs. 

SSURGO data for the UTTR. Once again the highest agreement is in the depositional 

class at 96.7 % , the highest Type Terror is in the erosional class at 54.4 % , and the highest 

Type 11 error is in the transitional class at 45.7 o/c. Tables Vl11 - X show the error matrices 

for evaluating the stochastic model. against the three reference datasets for the UTTR. 
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T bl V LTCLASS a e vs. G I . f h UTTR eo ogy error matnx ort e 
Slope Model 

Depositional Transitional Erosiona l Totals 
Agreement Type I Type II 

>, (%) Error(%) Error( %) 
O') Depositional 2167325 95506 21604 2284435 94.87 18.10 5.13 0 
0 Transitional 410713 318105 231324 960142 33.13 12.59 66.87 Cl) 
c.., 

Erosional 2876 25369 275482 303727 90.70 83.27 9.30 
Totals 2580914 438980 528410 3548304 77.81 22.19 22.19 

Table Vl. LTCLASS vs. ST A TSGO error matrix for the UTTR. 
Slope Model 

Depositional Transitional Erosional Totals 
Agreement Type I Type II 

0 (%) Error( %) Error(%) 
c.., 

Depositional 2166856 83300 14271 2264427 95.69 19.46 4.31 en 
I- Transitional 428760 292697 201773 923230 31.70 15.96 68.30 <{ 
I-

Erosional 11860 64084 313864 389808 80.52 55.42 19.48 en 
Totals 2607476 440081 529908 3577465 77.52 22.48 22.48 

Table VJl. LTCLASS vs. SSURGO error matrix for the UTTR. 
Slope Model 

Depositional Transition al Erosiona l Total s 
Agreeme nt Type I Type II 

0 (%) Error(%) Error( %) 
c.., Depositional 1221003 40206 999 1262208 96.74 4.79 3.26 a: 
::::> Transitional 60141 145942 62548 268631 54.33 17.13 45.67 en en Erosional 292 5817 110601 116710 94.77 54.45 5.23 

Totals 1281436 191965 174148 1647549 89.68 10.32 10.32 
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Tabl e VlJl co mpares LTCLASS and the Macrot errain Landtyp e Association 

Classificati on of Geology for the UTTR . The highest agreement is in the depos itional 

class at 93.7 %. The highest Type I error is in the eros ional class at 29 .6%. and the highest 

Type Il error is in the transitional class at 46.52 %. ln Table IX, STA TCLASS vs. 

STATSGO data. the depositional class again has the highest agreement ar 94.8 %. but in 

this matrix the highest Type l error foils to the transitional class at 28.6 %. The highest 

Type TI erro r is also in the transitional class at 48.5%. In the error matrix for 

STATCLASS vs. SSU RGO, the highest Type I error is again in the transitional class at 

32.2%. but here the highest Type TI error falls to the eros ional class at 23.4 1.«. Bas in floor 

(depositional) aga in had the highest correlation, at 95.3%. 

Tables Xl-XJlJ show the error matrices between PROB CLASS and the three 

refere nce datasets. In Tab le XI, the highest-class correlation betwee n PROBCLASS and 

Geology is the depos itional class at 92.4 17c. The highest Type l error is in the eros ional 

class at 28.0o/c and the highest Type II error is in the transitional class at 43.8 %. Table 

XII. PROBCLASS vs. STATSGO for the UTTR, shows the highest class cor relation is in 

depos itional at 93.5 %. the highest Type l and Type ll errors are both in the transi tional 

class at 32.69'r and 45.5 1.«. respec tively. In Table Xlll , PROBCLASS vs. SSU RGO. the 

highest correlation is once again in depos itional at 94.4 o/c. The highes t Type l error is 

37. l % for the transitional class, and eros ional class has the highest Type JJ error. al 

24.8 %. 

Tables XJV-XX ll show the error matrices for the various Macro terrain Landtype 

Assoc iation Class ification models as applied to the MLR A 28b study area in comparison 
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Table VJll ST A TCLASS vs Geoloo-y erro r matrix for the UTT R '. ,.., 
t-Test Model 

Depos itional Transitiona l Erosional Totals 
Agreement Type I Type II 

> (%) Error (%) Error (%) 
O') Depos itional 2127522 135288 6833 2269643 93.74 15.96 6.26 0 
0 Transitional 361102 509813 82442 953357 53.48 23.40 46.52 Cl) 

(.!) Erosiona l 1155 87751 212694 301600 70.52 29 .60 29.48 
Totals 2489779 732852 301969 3524600 80.86 19.14 19.14 

Table JX. STATCLASS vs. STATSGO error matrix for the UTTR. 
t-Test Model 

Depositional Transitional Erosional Totals 
Agreement Type I Type II 

0 (%) Error (%) Error (%) 
(.!) Depositional 2131567 109979 6084 2247630 94.84 17.03 5.16 en 
f- Transitional 376758 472110 68182 917050 51.48 28.58 48.52 <t 
f- ·--· 
en Erosional 6122 152083 228758 386963 59.12 19.19 40.88 

Totals 2514447 734172 303024 3551643 79.75 20.25 20.25 

Table X. STATCLASS vs. SSURGO error matrix for the UTTR. 
t-Test Model 

Depositional Transitional Erosional Totals Agreement 
Type I Type II 

0 Error( %) Error (%) 
(.!) Depositional 1203028 59082 98 1262208 95.31 3.17 4.69 a: 
::, 
en Transitional 39971 215895 12765 26863 1 80.37 32.18 19.63 
en Erosional 5 27352 89353 116710 76.56 11.02 23.44 

Totals 1243004 302329 102216 1647549 91.55 8.45 8.45 
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Table XI PROBCLASS vs Geolooy error matrix for the UTTR < .. 'M 

Probability Model 
Agreement Type I Type II 

>, Depositional Transitional Erosional Totals (%) Error(%) Error( %) 
Cl Depositional 2110524 167451 6460 2284435 92.39 15.01 7.61 0 
0 Transitional 341996 539455 78691 960142 56.18 27.24 43.82 Q.) 
c., 

Erosional 877 94113 208737 303727 68.73 28.04 31.27 
Totals 2453397 801019 293888 3548304 80.57 19.43 19.43 

Table XII. PROBCLASS vs. STATSGO error matrix for the UTTR. 
Probability Model 

Agreement Type I Type II 

0 Depositional Transitional Erosional Totals (%) Error( %) Error( %) 
c., 

Depositional 2117144 141360 5923 2264427 93.50 15.94 6.50 (/) 
I- Transitional 355615 503296 64319 923230 54.51 32.63 45.49 ct 
I-

Erosional 5261 159865 224682 389808 57.64 18.02 42.36 (/) 

Totals 2478020 804521 294924 3577465 79.53 20.47 20.47 

Table XIlJ. PROBCLASS vs. SSURGO error matrix for the UTTR. 
Probability Model 

Agre ement Type I Type II 

0 Depositional Transitional Erosional Totals (%) Error(%) Error (%) 
c., Depositional 1191532 70587 a: 89 1262208 94.40 2.59 5.60 
::::> 
(/) 

Transitional 32724 224283 11624 268631 83.49 37.05 16.51 
(/) Erosional 0 28944 87766 116710 75.20 10.04 24.80 

Totals 1224256 323814 99479 1647549 91.26 8.74 8.74 
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to the independent geograp hic datasets. ln the error matrices for the deterministic model , 

LTCLASS, versus the three reference datasets Geology, STATSGO , and SSURGO 

(Tables XIV-XV]), the correlation is always highest for the depositional class, at 99.3 %. 

96.1 % and 89.0 %. respectively; the highest Type J error also consistently falls to the 

depositional class at 328.7 %, I 07 .6%. and 73.1 %, respectively. Type J errors exceeding 

I 00% indicate that more cells were erroneously classified as being depositional (in this 

case) than the total number of depositional cells that actua lly existed in the reference 

dataset. Th transitional class is consistently underclassified by the model (Type TT error) 

by 59.6 7c, 50.3 %, and 48.0 %. respectivel y. 

Jn Tables XVll-XJX, the error matrices for STA TCLASS vs. the three reference 

datasets. we begin to see some variation in the high correlation category. Jn the error 

matrix for STATCLASS vs. Geology (Table XVI]) the highest class-correlation is again 

in the depositional class at 93.57c. with a high Type l error in the depositional class at 

I I 3.9CJr. and a high Type lT error in the erosional class at 40 .9%. But in the STATCLASS 

vs. STATSGO error matrix (Table XVlil). the highest agreement between model and 

reference clas<., is in the transitional class at 86.3 7c. The high Type I error for this matrix 

is 44 .3% for the transitional class. and the high Type IJ error is 37.27c for erosional. ln 

Table XIX. STATCLASS vs. SSURGO for MLRA 28b, the highest class-correlation is 

again transitional , at 87.6%. The high Type J error for this matrix is in the transitional 

class at 59.8%. and the high Type JI error is 37.0 % for the erosional class. 

The highest class-correlations for PROBCLASS in MLRA 28b (Tables XX-XXII) 

break down the same as they did in the case of STATCLASS (Tables XVJJ-XJX) , with 
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Table XIV LTCLASS vs Geolooy error matrix for MLRA 28b ,,..., 

Slope Model 

Depositional Transitional Erosional Totals Agreement 
Type I Type II 

>, Error{ %) Error{ %) 
c, Depositional 552577 3502 257 556336 99.32 328.68 0.68 0 
0 Transitional 1724722 1260935 136869 3122526 40.38 31.48 59.62 (1) 

c:i Erosional 103819 979410 1411912 2495141 56.59 5.50 43.41 
Totals 2381118 2243847 1549038 6174003 52.24 47.76 47.76 

Table XV. LTCLASS vs. STATSGO error matrix for MLRA 28b. 
Slope Model 

Depositional Transitional Erosional Totals 
Agreement Type I Type II 

0 {%) Error( %) Error( %) 
c:i Depositional 1123384 43571 1781 1168736 96.12 107.64 3.88 (/) 
..... Transitional 1194462 1304598 128495 2627555 49.65 35.77 50.35 <I: ..... 

Erosional 63571 896232 1419012 2378815 59.65 5.48 40.35 (/) 

Totals 2381417 2244401 1549288 6175106 62.30 37.70 37.70 

Table XVI. LTCLASS vs. STATSGO error matrix for MLRA 28b. 
Slope Model 

Depositional Transitional Erosiona l Totals 
Agreement Type I Type II 

0 (%) Error( %) Error( %) 
c:i Depositional 1304756 159380 1686 1465822 89.01 73.07 10.99 a: 
::> 
(/) 

Transitional 1014550 1200795 95066 2310411 51.97 44.48 48.03 
(/) Erosional 56524 868252 1407694 2332470 60.35 4.15 39.65 

Totals 2375830 2228427 1504446 6108703 64.06 35.94 35.94 
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T bl XVII ST A TCLASS a e vs. G . f MLRA 28b eo ogy error matn x or 
t-Test Model 

Depos itional Transitional Erosional Totals 
Agreement Type I Type II 

>, (%) Error(%) Error( %) 
Cl Depositional 516770 35833 221 552824 93.48 113.85 6.52 0 
0 Transit ional 628819 2357511 118643 3104973 75.93 33.64 24.07 Cl) 

(!) Erosiona l 570 1008809 1460425 2469804 59.13 4.81 40.87 
Tota ls 1146159 3402153 1579289 6127601 70.74 29 .26 29.26 

Table XVllJ. STATCLASS vs. STATSGO error matrix for MLRA 28b. 
t-Test Model 

Depositional Transitional Erosional Tota ls Agreement 
Type I Type II 

0 Error( %) Error( %) 
(!) Depositional 885432 279606 1641 1166679 75.89 22.35 24.11 (/) 
..... Transitional 258264 2248746 99689 2606699 86.27 44.25 13.73 <( 
..... 

Erosional 2463 873801 1477959 2354223 62.78 4.30 37.22 CJ) 

Totals 1146159 3402153 1579289 6127601 75.27 24.73 24.73 

Table XIX. STATCLASS vs. SSURGO error matrix for MLRA 28b. 
t-Test Model 

Depositional Transitional Erosional Totals 
Agreement Type I Type II 

0 (%) Error (%) Error( %) 
(!) Depositional 938346 520800 952 1460098 64.27 14.23 35.73 c: 
:::> 
(/) 

Transitional 207509 2014972 78604 2301085 87.57 59.79 12.43 
(/) Erosional 302 855111 1458528 2313941 63.03 3.44 36.97 

Totals 1146157 3390883 1538084 6075124 72.62 27.38 27.38 
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T bl XX PROB CLASS a e vs. G J . f MLRA 28b eo ogy error matnx or 
Probability Model 

Deposi tional Transitional Erosional Totals Agreem ent 
Type I Type II 

>, Error (%) Error (%) 
C) Depositional 513259 41566 326 555151 92.45 107.22 7.55 0 
0 Transitional 594658 2222133 300086 3116877 71.29 21.03 28.7 1 Q.) 
c., 

Erosional 582 613933 1872709 2487224 75.29 12.08 24.7 1 
Totals 1108499 2877632 2173121 6159252 74.82 25.18 25.18 

Tab le XXl. PROBCLASS vs. STATSGO error matrix for MLRA 28b. 
Probability Model 

Depositional Transitional Erosiona l Totals 
Agreement Type I Type II 

0 (%) Error( %) Error( %) 
c., Depositional 866032 298917 3074 1168023 74.15 20.76 25.85 (j) 
f- Transitional 239966 2089200 291420 2620586 79.72 30.09 20.28 ~ 
f-

Erosional 250 1 489515 1878627 2370643 79.25 12.42 20.75 (j) 

Totals 1108499 2877632 2173121 6159252 78.48 21.52 21.52 

Table XXll. PROBCLASS vs. SSURGO error matrix for MLRA 28b. 
Probability Model 

Depositional Transitional Erosional Totals 
Agreement Type I Type II 

0 (%) Error( %) Error( %) 
c., Depositional 918566 540257 5835 1464658 62.72 12.97 37.28 a: 
::, 
Cl) 

Transitional 189623 1880770 238261 2308654 81.47 42.64 18.53 
Cl) Erosional 308 444234 1882524 2327066 80.90 10.49 19.10 

Totals 1108497 2865261 2126620 6100378 76.75 23.25 23.25 
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agreemen ts of 92.4% for depositional , and 79.7 %, and 8 1.5% for transitional in the 

comparisons to Geology , STATSGO, and SSURGO, respectively. In the error matrix for 

PROBCLASS vs. Geology (Table XX) , the highest Type I error is l 07.2% for the 

depositional class, and the high Type IT error is 28.7% for the transitional class. The high 

Type I error for Table XXl (PROBCLASS vs. STATSGO) falls to the transitional class at 

30. l %. and the high Type IT error is 25.9% for the depositional class. ln Tab le XXTT 

(PROBCLASS vs. SSURGO), the highest Type I error is 42.6% in the transitional class, 

and the high Type II error is 37.3% for the depositional class. 

Perj(Jr/11(11/('C Anol_\'Si.1· 

The final method for assessing the model output s against the independent 

geographical datasets was to analyze the actual performance of the models versus the 

accuracy one might expec t from random chance. To this end, Kappa statistics were 

calculated for each model output/referenc e dataset pair (Campbe ll. 1987). Table XXJJI 

presents a summary of the Kappa statistics genera ted for the UTTR. In this analysis. all 

three models performed best in comparison to the SSURGO data. second-best in 

compar ison to the Geology classification. and marginally worse for the Macroterrain 

Table XXIII. Kappa statistics for the UTTR. 

Geoloav STATSGO SSURGO 
LTCLASS 0.5429 0.5420 0.7268 

STATCLASS 0.6026 0.5861 0.7820 
PROBCLASS 0.6007 0.5861 0.7784 
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Landtype Association classification for the STATSGO data. The single best model 

performance was STATSCLASS vs. SSURGO data , at 78.2 % better than can be expected 

by random chance. The worst model performance for the UTTR was LTCLASS vs. 

STATSGO, that perform ed 54.2 % better than random. Tabl e XXIV pres ents a summar y 

of the Kappa statistics calc ulated fo r the MLRA 28b stud y area. ln thi s analysis, one finds 

that the performanc e of the models versus refer ence dataset s was not as consistent as was 

the case in the UTT R study area. Here, though LTCLASS did perform mar ginally better 

ror SSURGO data than it did for STATSGO. both STATCLASS and PROBCLASS 

performed better in compa rison to STA TSGO than for any other indepe ndent dataset. The 

highes t perfo rman ce for the MLRA 28b stud y area was PROBCLASS vs. STATSGO at 

65 .9% better than rand om chance. Th e lowes t Kappa statistic was seen for LTCLASS vs. 

Geology. at '.29.87< better than rand om chance. 

Tab le XXJY. Kappa stati:--tics for MLRA '.28b . 

Geoloqy STATSGO SSURGO 

LTCLASS 0.2977 0.4420 0.4673 

STATCLAS S 0.5 106 0.6069 0.5767 

PROBCLASS 0.5836 0.6591 0.6398 
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DISCUSSION 

Model Assessment 

By every method of analysis app lied in this stud y, all thr ee models performed 

better when app lied to the UTTR th an they did when app lied to MLRA 28b. This is likely 

due to the grea ter homogeneity of the UTTR 's landscape, w here in over 75 % of the area is 

classified as Basin Floor by all three ind ependent geographical datasets; whereas the 

landscape of MLRA 28b is much more heterogeneous, and the three Macroterrain 

Lmdtype Association classes are much more evenly represented. This conclusion is 

further suggested by the fact that the highest class-agreement in 7 out of 9 total error 

matr ices for the UTTR (T:ib les V-Xlll) fa lls to the Basin Floor (deposit iona l) class. This 

is only the case for 5 out of 9 error matrices for MLRA 28b (Tab les XJV-XXII) , three of 

which apply to LTCLASS (Tables XIV-XVI). where the over-representation of the Basin 

Floor class i:-. evidenced by high Type l errors for all three compari:-.ons. While thi:-. 

landscape-based discrepancy in model performance should be noted, as it may be an issue 

in applying these methods to different landscapes , it does not appear to have given a 

performance advantage to any one model O\'er the other two. 

Based on the three methods of performance analysis applied in this study. the 

model which best classifies a landscape's slope data into Maeroterrain Landtype 

Associations is the probability-based stochastic model , PROBCLASS. This model's 

average Kappa statistic for its performance against all three independent reference 

datasets over both the UTTR and MLRA 28b study areas is 0.6413. The average Kappa 

stat istic for STATCLASS is 0.6108, and for the slope-based deterministic model, 
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LTCLASS, the average Kappa statistic is only 0.5031. Based solely upon these statistics, 

and the correlative error and agreement statistics from which Kappa is derived, one would 

expect a recommendation that future users apply the PROBCLASS model to their 

Macroterrain Landtype Association classifications. But a thorough analysis of the 

performance must also take into account the costs of applying a particular method, as well 

as the benefits. 

PROBCLASS, while it does out-perform STATCLASS by some margin. is an 

iterative model that takes a considerable amount of time to prepare and run. While 

STA TCLASS takes about the same amount of preparation time (2 to 5 hours for 

digitizing training sites, etc.) as PROBCLASS, the average run time for STATCLASS 

was just over one hour, ver:-,us nearly four days for a set of I 00 iterations in 

PROBCLASS. When classifying large landscape areas, memory space may also pro\'e to 

be an issue. as the execution of PROBCLASS requires greater disk :-,pace than 

ST A TC LASS by an amount prnport ion ate to the number of iterations. LTCLASS require:-. 

no model preparation other than filling in DEM sinks when desired. and less disk space 

than either of the stochastic models. Run time for LTCLASS averaged only about twenty 

minutes , much :-,honer than the other two modeb. Furthermore, LTCLASS required little 

expertise to run. asking only that the user input reasonable slope thresholds for the class 

delineation; whereas considerable technical and geomorphic and/or ecologic knowledge 

was required in the preparation for and execution of STATCLASS and PROBCLASS. 

LTCLASS bore other adv:rntages, owing to its nature as a deterministic model. 

Unlike stochastic models that are, in theory, unbiased models, deterministic models such 
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as LTCLASS are goa l-orient ed. Such models ca n be fine-tun ed to appl y well to a small 

area in ways that stoc hasti c models cannot. For exa mpl e, an exa minati on of the error 

matrices fo r LT CLASS (Tabl es V-Vll ) shows that the e rror of commission is consistently 

highest for the Massif (eros ional ) class. whereas the error of omi ss ion is co nsistentl y 

highest for the Bajada (tra nsitiona l) class. This would indicate that Massif is being ove r

classed, and Bajada is being und er-c lassed. Thus, the model LT CLASS 's classification 

cou ld be adjus ted to fit the refere nce data better by raisi ng the slope thr es hold which 

discr imin ates between Massif and Bajada. This wou ld decrease the map area classed as 

Massif, and increase the area classed as Bajada, w ithout affecting the Basin Floor c lass. 

Whether this " tun eab ility" is a desirable feature is dependent up on the users' need for an 

"accurate .. model versus an "u nbi ased'' one. Unfo rtunat e ly, the abi lity to fine-tune a 

model does not necessarily apply to large study areas. The over-classing or Massif in the 

UTTR is a direc t result of the lower ing of the s lope thr eshold to match the needs of 

applying the same criteria in the MLRA 28b study area. An adjustment to the criter ia to 

improve the performance for the UTTR wo uld considerab ly degrade LTCLASS's 

performance for MLRA 28b. 

Co11c/11sions 

Based on the analyses of the models' performance , and the ahovc od hoc 

assessment of the various cos ts and benefits or running the thr ee Macroterrain Landtype 

Association Classificat ion models. it is recommended that for most app lica tions in an 

eco log ica l classifica tion set tin g, that STATCLASS be the mode l applied. While it was 

marginally outperformed by PROBCLASS in an overall average (STA TCLASS actually 
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had a higher average Kapp a s tatis tic for the UTTR than did PROBCLASS ) its advantag es 

in spee d and disk space appear to outweigh this min or di sadvantag e. Wher e a definitive 

measure of the co nfid ence of a cla ss ificati on is req uir ed, probabilit y grid ge nera ted by 

PROBCLASS is far superi or to th e t-va lue grid s ge nera ted by STATCLASS in term s of 

ease -of- interpr etati o n , and should be considered as the reco mm end ed applicati o n. The 

only c ircum stances in which LTCLASS wo uld be reco mmend ed are those in which a 

·'q uick and dirty"' assessme nt of the Landtype Associa tions is desired, rather than a full 

classification: o r any si tu ation in w hich slope- thr es hold s are required as classification 

criteria. 

Sugges t ions for F11 rt her Work 

In the years since these models were first developed. o ther spa tial c lass ificat ion 

me thods '>Lich as Classification and Regress ion Tree (CA RT ) ana lysis have gai ned 

popularity. Other methods , such as fuzzy-logic classification, were ava ilable at the time 

of this study. but were deemed to be too complicated to implement fo r the tim e frame of 

the HAFB TES project. It is suggested that other such methods be explored to determine 

their performance in relation to the methods examined in thi s study. 

lt is further sugges ted th at addi t ional assessment of the performance of 

PROBCLASS versus that of STA TCLASS may reveal a greate r disparity than th at 

measured in thi s stud y. This is because the performance of STATCLASS is lar ge ly 

dependent upon a sing le randomly samp led population from the trainin g data. There is a 

chance that the random populations gene rated in the course of this study better 

represented the Macroterrain Landt ype Associations th an may be expected on average. 
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An averaging of the assessment statistics from further iterations of STA TCLASS may 

show that PROBCLASS performs much better than is suggested in this study (relative to 

the performance of ST A TCLASS). 
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Appendix A: AML code for LTCLASS 



/ * LTCLASS.AML 
/ * Frank L. Dougher Nov. 11, 1998 
/ * This aml produces LT masks from entered parameters 
/ * 
/* Run aml once for each class above basal class. 
/* Combine Landtype masks with an addition statement. 
/ * e.g. output= (landtype02 + landtype0 3 + 1) 

&type 'LISTING GRIDS FOR THIS DIRECTORY ... \\ ' 
lg 

&type ' \\ ' 

/ * query user for operational variables 
&sv slope .- [response 'ENTER THE DEGREE-SLOPE GRID <MOASLOPE> ' 
moaslope) 
&sv flowd .- [response 'ENTER THE FLOW DIRECTION GRID <MOAFLOWD> ' 
moaflowd) 
&sv degs := [response 'ENTER SLOPE BREAK POINT IN DEGREES'] 
&sv slpname := [response 'ENTER NAME OF SLOPE MASK') 
&sv ltname := [response 'ENTER NAME OF LANDFORM MASK') 

&type ' \G ENERATING SLOPE MASK' 

/ * remove existing model output 
&if [exists %slpname% -grid] &then kill %slpname% all 

/ * conditional statement to create slope mask 
%slpname % = con((%slope% >= %degs%), 1, 0) 

&type ' \ GENERATING LANDTYPE MASK' 

/ * remove existing mo del out put 
&if [exists %ltname% -grid] &then kill %ltname% all 

/ * watershed function imposes class-superposit ion 
%ltname% = watershed(%flowd%, %slpname%) 

&return 
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Appendix B: AML code for STATCLASS 



/* STATCLASS.AML 
/* Frank L. Dougher Feb . 8, 1999 
/* 
/*Tobe run in GRID. 
/ * 
/ * This AML will classify a grid into a chosen number of classes 
/ * by T-test comparison of Std. Dev. and Means of samples of 
/ * of class archetypes. 
/ * 
/ * Running this aml with ANY argument will force the running mode 
/ * into a dumb-terminal mode for non-Xwindows terminals. 

/ * argument sets dumb-terminal mode 
&args no_menu 
&if [null %no menu%) &then &term 9999 
&severity &error &routine exit 

/ * intro statement 
&type 
&type 
&type 
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&type This is STATCLASS. This AML will classify an image by statisical 
co mparis on to class-type images. \ The image to be classified will have 
the focal mean and focal standard deviation calculated, and then 
co mpared to masked images of the class-types . \ This program must reside 
in the same directory as your data and RANDSAMP.AML\If you do not have 
RANDSAMP.AML, please quit and get it before running STATCLASS.AML . \ Thank 
You . 
&type 
&type 
&type 
&sv goon [quer y 'Shall we go on ' .true.) 
&i f A %goon % &then &stop 

/ * get the input grids and var iabl es ************************* 
/ * 

/ * Select input grid from pop-up me nu. 
/ * 
&type Please se lect the grid to be classified 

&if [null %no_menu%) &then &sv in grid [getgrid *) 
&else 

&do 
lg 
&sv in grid 

&end 
&type 

[re s p onse 'in_grid is ') 

/ * Enter the output grid name , an d check to see if it already exists. 
/ * 
&label getout 
&sv out_grid = [resp ons e 'What would you like to ca ll your classified 
output grid' output c) 
&if [exists %out_grid% -grid) &then &type %out grid% exists. 
&if [exists %out_grid% - grid) &then &goto getout 
&type 

/ * Promt user to save t-value output, enter the output grid name, 



/* and c heck to see if it already exists. 
/* 
&sv doval = [query 'Do you want a T-value output grid' .false.) 
&type 
&if %doval% &then 

&do 
&label getval 
&sv out_val = [response 'What would you like to call your T- va lue 

output grid' output t) 
&if [exists %out val% -grid) &then &type %out val% exists. 
&i f [exists %out val% -grid) &then &goto getval 

&end 
&type 

/ * Enter width o f square focal window . 
/ * 
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&sv win width= [response 'What focal width (square) do you want to use? 
Odd number please' 7) 

&type 

/ * Enter N-value. 
/ * 
&sv samp n = [response 'How many samp le s ''N'' do you want taken from 
each class ' 50] 
&type 

/ * Se l ect %num class%# o f class-type grids from pop-up menu. 
/ * 
&sv num_class = [response 'How many classes will this model produce'] 
&do count= 1 &to %num_ class% &by 1 

&type Please select c l ass-type%count% 
&if [null %no_menu%) &then &sv class%count% [getgrid *) 
&else 

&do 
lg 
&sv class%count% 

&end 
&type 

&end 

[response ' Class' 

/ * Promt user to save mean and standard deviation output, enter the 
/ * output grid names, and check to see if they already exist. 
/ * 
&sv gotem 
. false . ) 

[query ' Do you already have a mean and standard deviation ' 

&if %gotem% &then &do 
&sv saveem = .true. 

&end 
&else &sv saveem = [query ' Do you want to save the focal mean and 
standard deviation at the end of the program' .false.) 
&if %saveem% &then 

&do 
&label getmean 
&sv out mean= [response 'N ame of focal mean output' out_mean] 
&if A %gotem% &then &do 

&if [exists %out mean% -grid) &then &type %out mean% exists. 
&if [exists %out mean% -grid) &the n &goto getmean 

&end 



&label getstdv 
&sv out stdv = [response ' Name of focal standard deviation output ' 

out stdv) 
&if A %gotem% &then &do 

&if [exists %out stdv% -grid) &then &type %out stdv% exists. 
&if [exists %out stdv% -grid) &then &goto getstdv 

&end 
&type 

&end 

/* Start of calculations************************************* 
/* 

/* Focal Mean & Standard Deviation 
/* 
&if A %gotem% &then &do 

&type Calculating Focal Mean 
&if A %saveem% &then &sv out mean [SCRATCHNAME) 
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%out mean% focalmean(%in_grid%, rectangle, %win_width%, %win_width%, 
nodata) 

&type 
&type Calculating Focal Standard Deviation 
&if A %saveem% &then &sv out stdv = [SCRATCHNAME) 
%out stdv% focalstd(%in_grid%, rectangle, %win_width%, %win_width%, 

nodata) 
&type 

&end 

/ * Class Statistics 
/ * 
&type Running Stats on Classes 
&sv file unit [open %out_grid%.log openstatus -write) 
&do count= 1 &to %num_class% &by 1 

&type Class%count%: 
&sv temp class= [value class%count%) 
&sv temp_n = %samp n% 
&sv nmintest = .fal se . 
&sv nmincount = 1 
&do &until %nmintest% or %nmincount% >= 10 

&r randsamp.aml %temp_class% %temp_n% %win width% 
&sv c%count% mean= %.statmean% 
&sv c%count% stdv = %.statstdv% 
&sv c%count% n = %.statn% 

&echo &on 
nmin_numer = scalar(sqr(2.54 * %.statstdv%)) 

:or 95% confidence 
/ * 2.54 is the t-value 

nmin_denom = scalar(0.05 * %.statmean%) / * 0 . 05 is remainder for 
100% - 95% 

nmin = scalar(int( (nmin numer I nmin denom) + .5)) 
&sv nmin = [show nmin) 
&sv nmin = [min 100 %nmin%) 
&if %nmin% <= [value c%count% n) &then &sv nmintest = .true. 
&else &do 

&type [quote Running again. c%count% n [value c%count%_n), n min 
%nmin%) 

&sv temp_n 
&end 

&echo &off 

%nmin% 



&sv nmincount = %nmincount% + 1 
&end 
&sv writestat = [write %file unit% [quote class%count% mean 

c%count% mean]]] 
&sv writestat = [write %file unit% [quote class%count% stdv 

c%count%_stdv]JJ 

[value 

[value 

&sv writestat 
c%count%_n]JJ 
&end 

[write %file unit% [quote class%count% n = [value 

&sv closestat 
&type 

[close %file_unit%] 

/* Create T-value grids 
/* 
&type Creating T-value grids: 
&do count= 1 &to %num class% &by 1 

&type Class %count% 
&sv c_mean = [value c%count%_mean] 
&sv c stdv = [value c%count% stdv] 
&sv c n = [value c%count%_n] 
&sv t%count% out= [SCRATCHNAME] 
&sv tempt= [value t%count% out] 

DOCELL 
siglsq = scalar(sqr(%out_stdv%)) 
sig2sq = scalar(sqr(%c_stdv%)) 
mlval scalar(%out mean%) 
m2val scalar(%c_mean%) 
nlval scalar(sqr(%w1n width%) - 1) 
n2val scalar(%samp_n% - 1) 
numer scalar(abs(mlval - m2val)) 
denom scalar(sqrt (( siglsq / nlval) + (sig2sq I n2val) ) ) 
%tempt%= (numer I denom) 

END 
&end 
&type 

/ ************************************************************ 
/ * Classifying the Image 
/ * 
&type Classifying Image 
&sv end= %num class% - 1 
&if %end% < 1 &then &c all exit 
/ *%out grid%= (%tl out % I %tl out% ) 
DOC ELL 

c_num = scalar(O ) 
&sv tmp_a = [value tl out] 
o_val = scalar(%tmp a%) 
&do count= 1 &to %end% &by 1 

&sv countb =%count%+ 1 
&do &while %countb% <= %num class% 

&sv tmp_a = [value t%count%_out] 
&sv tmp_b = [value t%countb% out] 
if (%tmp_a% <= %tmp_b% & %tmp_a% <=oval) 

begin 
c num 
oval 

end 

scalar(%count%) 
scalar(%tmp a%) 

else if (%tmp b% <=oval) 
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begin 
c num 
oval 

end 

scalar(%countb%) 
scalar(%tmp b%) 

&sv countb = %countb% + 1 
&end 

&end 
%out_grid% (c_num) 
&if %doval% &then 
%out val% 

END 
&type 

oval 

/ ************************************************************ 

/ *Cleanup the scratch files. 
/ * 
&if A %saveem% &then &call killms 
&do count= 1 &to %num_class% &by 1 

&sv killme = [value t%count% out] 
/ * kill %killme% all 

&sv outtname = %out va l% %count% 
rename %killme% %outtname% 

&end 

/ * Output final message and quit. 
/ * 
&type Process all done . Your output is in %out_grid%. 
&type 

&ret urn 
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/ *---------------- - ---------- --rout ines---------------------------------

/ * Kill the output grids for focal mean and standard deviation 
/ * 
&routine killms 

kill %out mean% all 
kill %out stdv% all 

&return 

/ * Exit from an error condition. 
/ * 
&routine exit 

&type ERROR encountered in randsamp . aml : Bailing out 
&stop 
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Appendix C: AML code for RANDSAMP.AML 



/* RANDSAMP.AML 
/ * Frank L. Dougher Feb. 3 , 1999 
/ * 
/ * modified from: 
/ * RANDPOINT. AML 
/ * Thad Tilt on Jan . 8, 1997 
/ * 
/ *Tobe run in GRID. 
/ * 
/ * This AML will sample from a grid at a number of random points 
/ * defined by the user . 
/ * User defines the number of points, the grid to be sampled from, 
/ * and an output file ( if desired) 

&args sampgrd num_pts winsize 
&severity &error &routine exit 

/* First, get the arguments. 

&if [null %sampgrd %] &then 
&do 
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&type Usage: &r RANDSAMP <in_grid > <number of samp l es> {window_width} 
&return 

&end 

&if A [exi sts %sampgrd % -grid] &then 
&do 

&type %sampgrd% does not exist. 
&return 

&end 

&if [type %num_pts%] ne -1 &then 
&do 

&type %num_pts% must be an integer. 
&return 

&end 

&if A [null %winsize%] &then 
&if [type %winsize%] ne -1 &then 

&do 
&type %winsize% must be an integer. 
&re turn 

&end 

/ * Next, the required parameters are obtained and the appropriate 
variables 
/ * are calculated .. 

&describe %sampgrd% 
&sv xmin = %GRD$XMIN % 
&sv ymin = %GRD$YMIN% 
&sv xdiff %GRD$XMAX% - %GRD$XMIN% 
&sv ydiff = %GRD$YMAX% - %GRD$YMIN% 
&sv i = 1 

/ * Prompt user to see if they want to use focalmeans in their sampling. 
&if [null %win size%] &then &sv dofocal = [query ' Do you wish to use 
focal window means in your sampling ' . false . J 



&else 
&do 

&if %winsize% A 1 &th en &sv a 2 
&else &sv a 1 
&goto start 

&end 

&if %dofocal% &then &call focalsamps 
&else &sv a 1 

/ * Now, for NUM PTS iterations: generate random points, sample grid 
value, 
/ * test for NODATA, and record good values. 
&label start 
&type 
/ *&do i = 1 &to %num_pts% &by 1 

&label sample 
&call rand_pt 
&if %a%= 2 &then 

&do 
&sv foe tot = [calc %winsize% * %winsize%] 
&sv dx = %GRD$DX% 
&sv wmo = %winsize% - 1 
&sv dp = [calc %wmo% I 2] 
&sv winsampt = O 

&do dpx = -%dp% &to %dp% 
&do dpy = -%dp% &to %dp% 

&sv dgx [calc %dpx% * %dx%] 
&sv dgy [calc %dpy% * %dx%] 
&sv x = %x-coord% + %dgx% 
&sv y = %y-coord% + %dgy% 
&sv wsamp [show cellvalue %sampgrd% %x% %y%] 
&if [type %wsamp%) = 1 &then 

&do 
&sv winsampt = O 
&goto sample 

&end 
&sv winsampt = %winsampt% + %wsamp% 

&end 
&end 

&sv sample%i% 
&end 

[calc %winsampt% / %foe tot%] 

&else &if %a%= 1 &then 
&sv sample%i% [show cellvalue %sampgrd% %x-coord% %y-coord%) 

&if [type [value sample%i%]] = 1 &then &goto sample 
&sv i = %i% + 1 

/ *&end 
&if %i% le %num_pts% &then &goto sample 

/* Caluate statistics for sample set. 
&sv sampsum = 0 
&sv i = 1 
&do &while %i% <= %num pts% 

&sv sampi = [value sample%i%] 
&sv sampsum 
&sv i = %i% + 

&end 

%sampsum% + %sampi% 
1 
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&sv mean= [calc %sampsum% I %num_pts%) 

&sv diffsum = 0 
&sv i = 1 

&do &while %i% <= %num_pts% 
&sv sampo = [value sample%i%) 

dif = scalar(sqr(%sampo% - %mean%)) 
&sv diff = [show dif) 
&sv diffsum %diffsum% + %diff% 
&sv i = %i% + 1 

&end 

&sv vari [calc %diffsum% I %num_pts%) 
sd = scalar(sqrt(%vari%)) 
&sv std dev = [show sd) 

/ * If the user specified an output filename, print to that file . 
/* Otherwise print to screen. 

&call out 

&return 
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/*-- ---------------------------routines---------------------------------

/ * prompt user for size of focal window. 
&routine focalsamps 

&sv a= 2 
&sv winsize = [response 'What focal width (square) do you want to use? 

Odd number please' 3) 
&retur n 

/ * a random grid is generated containing random X and Y coordinates in 
che VAT 
/ * within the range specified 
&routine rand_pt 
xc = calar(rand() * %xdiff% + %xmin%) 

&sv x-coord [show xc) 
ye= scalar(rand() * %ydiff% + %ymin%) 

&sv y-coord [show ye) 
&return 

/ * Print outp ut to screen. 
&routine out 

&type 
&type *****•*SAMPLE******* 
&type MEAN: %mean% 
&type STD.DEV.: %std dev% 
&type N: %num_pts% 
&type 
&type *******GRID********* 
&type GRID MEAN: %GRD$MEAN% 
&type GRID STD.DEV. %GRD$STDV% 
&type 

/ * output global variables for statclass.aml 
&sv .statmean = %mean% 
&sv .statstdv = %std dev% 
&sv .statn = %num_pts% 



&sv sampi 00 
&return 

/ * Exit from an error condit i on. 
&routine exit 

&type ERROR encountered in randsamp.aml: Bailing out 
&stop 
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Appendix D: AML code for PROBCLASS 



/ * RUNLOOP.AML 
/ * Frank L. Dougher Mar . 8 , 2002 
/ * 
/ * This AML runs ITERCLASS.AML for the number of it e rati on s 
/* speci fi ed by the variab l e count . 
/* 
&sv count= 1 
&do &while %count%<= 100 

&sv countstring = %count% 
&if %count%<= 99 &then &sv countstring = O%countstring% 
&if %count%<= 9 &then &sv countstring = 0%coun t string% 
&r iterclass . aml nr07c%countstring% 
&sv count= %count%+ 1 

&end 

/ * 
/ * 
/ * 
/ * 
/* 
/ * 
/ * 
/ * 
/ * 

ITERCLASS.AML 
Frank L. Dougher 

modified from: 
STATCLASS .AML 
Frank Dougher 

To be run in GRID. 

Mar. 8, 2002 

Feb. 8 , 1999 

/ * 
/ * 
/ * 

This AML will classify a grid into a chosen number of classes 
by T-test comparison of Std. Dev. and Means of samples of 
of class archetypes . 

&args no menu 
grid 
&if [null %no_menu%) &then &term 9999 
&severity &error &routine exit 

/ * get the input grids and variables******* ******* *********** 
/ * 

/ * Select input grid from pop-up menu . 
/ * 
/ *&type Please select the grid to be classified 

&if [null %no_menu%) &then &sv in_grid [getgrid *) 
&else 

&do 
/ * lg 

&sv in_grid 
&end 

/ *&type 

nr_slope 

/ * Enter the output grid name, and check to see if it already exists . 
/ * 
&label getout 
&sv out grid= %no menu% 
&if [exists %out_grid% -grid) &then &type %out _ grid% exists. 
&if [exists %out_grid% -grid) &then &goto getout 
/ *&type 
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/* Promt user to save t-value output , enter the output grid name, 
/ * and c he c k to see if it already exists. 
/* 
&sv doval = .fal se. 
/ *&type 
&if %dova l % &then 

&do 
&label getval 
&sv out_val = [response 'What would you lik e to call your T-value 

output grid' output t) 
&if [exists %out val% -grid) &then &type %out val% exists. 
&if [exists %out val% -grid) &then &goto getva l 

&end 
&type 

/ * Enter width of square focal window. 
/ * 
&sv win width= 7 
/ *&type 

/ * Enter N-value. 
/ * 
&sv samp n = 50 
/ *&type 

/ * Select %num_class%# of class-type grids from pop-up menu. 
/* 
&sv num class= 3 
&sv classl sampval 
&sv c lass 2 sampbaj 
&sv class3 sampmas 

/ * Promt user to save mean and standard deviation output, enter the 
/ * output grid names, and check to see if they already exist. 
/ * 
&sv gotem 
&if %gotem% 

&sv saveem 
&end 

.true. 
&then &do 
= .tru e. 

&i f %saveem% &then 
&do 

&label getmean 
&sv out mean= area30 07m 
&if A %gotem% &then &do 

&if [exists %out mean% -grid) &then &type %out mean % exists. 
&if [exists %out_mean% -grid) &then &goto getmean 

&end 
&label getstdv 
&sv out stdv = area30 07s 
&if A %gotem% &then &do 

&if [exists %out stdv% -grid) &then &type %out stdv% exists . 
&if [exists %out stdv% -grid) &t hen &goto getstd v 

&end 
/ * &type 

&end 
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/* Start of calculations************************************* 
/* 

/* Focal Mean & Standard Deviation 
/* 
&if A %gotem% &then &do 
/* &type Calculating Focal Mean 

&if A %saveem% &then &sv out mean= [SCRATCHNAME) 
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%out mean%= focalmean(%in_grid%, rectangle, %win_width%, %win width% , 
nodata) 
/* &type 
/* &type Ca lculating Focal Standard Deviation 

&if A %savee m% &then &sv out stdv = [SCRATCHNAME) 
%out stdv% focalstd(%in_grid%, rectangle, %win width%, %win width%, 

nodata) 
&type 

&end 

/ * Class Statistics 
/* 
/ *&type Running Stats on Classes 
/*&sv file_unit = [open %out grid%.log openstatus -write) 
&do count= 1 &to %num class% &by 1 
/* &type Class%count%~ 

&sv temp_class = [value class%count%) 
&sv temp n = %samp n% 

/ • &sv nmintest = .false. 
/ * &sv nmincount = 1 
/ * &do &until %nmintest% or %nmincount% >= 10 

&r randsamp.aml %temp_class% %temp_n% %win width% 
&sv c%count% mean= %.statmean% 
&sv c%count% stdv = %.statstdv % 
&sv c%count% n = %.statn% 

/ • nmin_numer = scalar(sqr( 2 .54 * %.statstdv%)) / * 2.54 is the t-
value for 95% confidence 
/ * nmin denom = scalar(0.05 * %.statmean% ) / * 0 . 05 is remainder for 
100% 
/ * 
/ * 
/ * 
I * 
/ * 

- 95% 
nmin = scalar(int ( (nmin_numer / nmin denom ) + .5)) 
&sv nmin = [show nmin] 
&sv nmin = [min 100 %nmin%] 
&if %nmin% <= [value c%count%_n] &then &sv nmintest = .true. 
&else &do 

I * &type [quote Running again . c%count% n [value c%count% n] 
n min = %nmin% J 
/ * &sv temp n %nmin% 
/ * &end 

/*&echo &off 
/ * &sv nmincount = %nmincount% + 1 
/ * &end 
/ * &sv writestat [write %file unit% [quote class%count% mean [value 
c%count%_mean]]] 
/ * &sv writestat [write %file unit% [quote class%count% s td v [value 
c%count% stdv)]] 



/* &sv writestat 
c%cou n t%_n] J J 
&end 
/*&sv closestat 
/*&type 

[wri t e %fi l e unit% [quote c l ass%count% n 

[c l ose %fi le_unit% ] 

/ * Create T-value grids 
/ * 
/ *&type Creating T-value grids: 
&do count= 1 &to %num c l ass% &by 1 
/ * &type Class %count% 

&sv c_mean = [value c%count%_mean] 
&sv c stdv = [value c%count% stdv] 
&sv c_n = [value c%count%_n] 
&sv t%count% out= [SCRATCHNAME] 
&sv temp_t = [value t%count%_out] 

DOCELL 
siglsq = scalar(sqr(%out stdv%)) 
sig2sq = scalar(sqr(%c stdv%)) 
ml val scalar(%out _ mean%) 
m2val scalar(%c_mean%) 
nlval scalar(sqr(%win width%) - 1) 
n2val scalar(%samp_n% - 1) 
numer scalar(abs(mlval - m2val)) 
denom scalar(sqrt((siglsq / nlval) + (sig2sq / n2val))) 
%temp_t% = (numer / denom) 

END 
&end 
/ *&type 

/ ~********~************************************************** 
/ * Classifying the Image 
/* 
/*&type Classifying Image 
&sv end= %num class% - 1 
&if %end%< 1 &then &call exit 
/ *%out_gr id% = (%tl_out % I %tl out%) 
DOC ELL 

c_num = scalar(O) 
&sv tmp a= [value tl out] 
o_val = scalar(%tmp_a%) 
&do count= 1 &to %end% &by 1 

&sv countb =%count%+ 1 
&do &while %countb% <= %num c lass% 

&sv tmp a= [value t%count%_out] 
&sv tmp_b = [value t%countb%_out] 
if (%tmp_a% <= %tmp_b% & %tmp_a% <= o_val) 

begin 
c num 
oval 

end 

scalar ( %count%) 
scalar(%tmp_a%) 

else if (%t mp_b% <= o_val) 
begin 

c num 
oval 

end 

scalar (%countb%) 
s ca 1 a r ( % t mp_ b % ) 

&sv countb = %countb% + 1 
&end 
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[va lu e 



&end 
%out grid%= (c_num) 
&if %doval% &then 
%out val% 

END 
/ *&type 

ova l 

/ ************************************************************ 

/ *Cleanup the scratch files. 
/ * 
&if A %saveem% &then &call killms 
&do count= 1 &to %num_class% &by 1 

&sv killme = [value t%count% out] 
kill %killme% all 

/* &sv outtname = %out val% %count% 
/ * rename %killme% %outtname% 
&end 

/ * Output final message and quit. 
/ * 
&type Your output is in %out_grid%. 
&type 

quit 

&return 
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/ *-----------------------------routines---------------------------------

/ * Kill he output grids for focal mean and standard deviation 
/ * 
&routine killms 

kill %out mean% all 
kill %outs dv% all 

&return 

/ * Exit from an error condition. 
/ * 
&routine exit 

&type ERROR encountered in randsamp.aml: Bailing out 
&stop 



/* PROBCLASS.AML 
/* Fr ank L . Dou g h er 
/* 

Mar. 10, 2002 

&args in root out root 

grid 

/ *&sv classlmask 
/ *&sv class2mask 
/ *&sv class3mask 

&sv classlmask 
&sv class2mask 
&sv class3mask 

&sv count= 1 

[ SCRA TCHNAME] 
[ S CRA TCHNAME] 
[SCRATCHNAME] 

%out root%1 
%out root%2 
%out root%3 

&do &while %count%<= 100 
&sv countstring = %count% 
&if %count%<= 99 &then &sv countstring = O%countstring% 
&if %count%<= 9 &then &sv countstring = O%countstring% 
&if %count%= 1 &then &do 

%classlmask% 
%class2mask% 
%class3mask% 

&end 
&else &do 

con(%in_root%%countstring% 
con(%in _ root%%countstring% 
con(%in_root%%countstring% 

&sv junkmask [SCRATCHNAME] 
rename %classlmask% %junkmask% 

1, 1, 0) 
2, 1, 0) 
3, 1, 0) 
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%classlmask% = (%junkmask% + con(%in root%%countstring% 
kill %junkmask% all 

1, 1, 0)) 

rename %class2mask% %junkmask% 
%class2mask% = (%junkmask% + con(%in_root%%countstr1ng% 
kill %junkmask% all 
rename %class3 mask% %junkmask% 
%class3mask% = (%junkmask% + con(%in_root%%countstring% 
kill %junkmask% all 

&end 
&sv count= %count%+ 1 

&end 
/*** ********************************************************* 

DOC ELL 

2, 1, 0)) 

3, 1, 0)) 

if (%classlmask% > %class2mask% & %classlmask% > %class3mask%) 
%out root%p = %classlmask% 

else if (%class3mask% > %class2mask% & %class3mask% > %classlmask%) 
%out root%p = %class3mask% 

else %out root%p = %class2mask% 
END 
DOC ELL 

if (%classlmask% > %class2mask% & %classlmask% > %class3mask%) 
%out root%c = 1 

else if (%class3mask% > %class2mask% & %class3mask% >= %classlmask%) 
%out root%c = 3 

else %out root%c = 2 
END 

&return 
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