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ABSTRACT

A Muacroterrain Landtype Association

Classification Model For The Great Basin

by

Frank L. Dougher, Master of Science
Utah State University. 2002

Major Professor: R. Douglas Ramsey
Department: Geography and Earth Resources

Three Macroterrain Landtype Association classification models were developed to
stratify and categorize Utah’s West Desert. These models approached terrain
segmentation using an energy-flow paradigm from erosional to transitional to
depositional landscapes. One model was developed as a slope-based deterministic model
that used slope-threshold limits to discrimiate between Landtype Assocrations. A second
model was developed as a stochastic. training-data driven supervised classification. using
comparative 7-values to classifv the landscape to the most similar landtype class. The
third model was a probabilistic algorithm, which classified the landscape to the most
probable class based on multiple iterations of the stochastic model. These models were
assessed for performance against Macroterrain Landtype Association classifications from
three independent geographical datasets. The performance assessment involved

calculating model-to-reference agreement. a piecewise assessment of errors for each



Macroterrain Landtype Association class, and a measure of the model-to-reference
performance relative to that performance expected from random chance.

(110 pages)
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INTRODUCTION

Beginning in 1994, the College of Natural Resources (CNR) at Utah State
University (USU) participated in a five-year study of the threatened. endangered and
sensitive (TES) species existing within the Hill Air Force Base (HAFB) Military
Operations Area (MOA). The HAFB TES Project was a cooperative program between
USU. the Department of Defense (DOD). the Bureau of Land Management (BLM), the
Utah Division of Wildlife Resources. and the Jack Berryman Institute (Sharik ef al..
2000). The scope of this study included terrestrial and aquatic invertebrates. mammals.
reptiles. birds, and plants. As most of these data were point-based. an ecological
classification system was developed as an interpolation and extrapolation tool. The
Ecological Classification and Mapping (ECM) system is a modification of the existing
ECOMAP structure developed by the US Forest Service (West ¢f al.. in press).

ECOMAP, as described by McNab and Avers (1994). is a United States
Department of Agriculture (USDA) Forest Service (L'SES) framework for stratifying the
landscape nto hierarchically smaller units of increasing ecological uniformity. At its
upper (coarser) levels. it follows Bailey's Ecoregions classification system. and is
intended to “[provide] field units with an essential tool and scientific basis to plan for and
implement ecosystem management”™ (McNab and Ayers, 1994). Bailey’s original
classification (Table 1) divides the Earth into Domains (Figure 1). Divisions (Figure 2),
and Provinces (Figure 3), based on “regional variations in climate. vegetation. and soil™

(Bailey and Hogg. 1986).



Table 1. Explanation of portion of Ecoregions Map of North America (taken from Bailey
and Hogg. 1986).

9

Lowland ecoregions Highland ecoregions*
100 Polar Domain

120 TUNDRA DIVISION H120 TUNDRA REGIME HIGHLANDS

121 Low-arctic Tundra Province M121 Brooks Range Province

122 High-arctic Tundra Province M122 Northeast Seaboard Mts. Province
130 SUBARTIC DIVISION H130 SUBARTIC REGIME HIGHLANDS

131 Subarctic Parkland Province M131 Alaska Range Province

133 Boreal Forest Province M132 Subarctic Rockies Province

P 133 Yukon-Sitkine Plateau Province
200 Humid Temperate Domain

210HUMID WARM-SUMMER CONTINENTAL H210 HUMID WARM-SUMMER CONTINENTAL REGIME
DIVISION HIGHLANDS
211 Laurentian Mixed Forest Province M211 Columbia Forest Province

P212 Fraser-Nechako Pleateau Province

220 HUMID HOT-SUMMER CONTINENTAL DIVISION
221 Eastern Deciduous Forest Province

230 HUMID SUBTROPICAL DIVISION
231 Outer Costal-plain Forest Province
232 Southeastern Mixed Forest Province

240 HUMID MARITIME DIVISION H240 HUMID MARITIME REGIME HIGHLANDS
241 Willamette-Puget Forest Province M240 Pacific Forest Province

250 SUBHUMID PRAIRIE DIVISION
251 Prairie Parkland Province
252 Prairie Brushland Province
253 Tall-grass Prairie Province
254 Aspen Parkland Province
260 MEDITERRANEAN DIVISION H260 MEDITERRANEAN REGIME HIGHLANDS
261 California Grassland Province (Central Valley) M261 Sieiran Foest Province
M262 Californian Chapparal Province
300 Dry Domain

310 SEMI-ARID STEPPE DIVISION H310 SEMI-ARID STEPPE REGIME HIGHLANDS
311 Great Plains Shortgrass Prairie Province M311 Rocky Mountain Forest Province
312 Palouse Grassland Province M312 Upper Gila Mts. Forest Province
313 Intermountain Sagebrush Province M315 Sierra Madre Occidental Province
314 Mexican Highlands Shrub Steppe Province M316 Sierra Madre Oriental Province
315 Sinaloa Coast Province P313 Colorado Ptateau Province
316 Rio Grande Shrub Steppe Province A314 Wyoming Basin Province
320 ARID DESERT DIVISION H320 ARID DESERT REGIME HIGHLANDS
321 Chihuahuan Desert M321 Baja California Province

322 American Desert Province
(Mojave-Colorado-Sonoran)
400 Humid Tropical Domain

410 TROPICAL SAVANNA DIVISION H410 TROPICAL SAVANNA REGIME HIGHLANDS
411 Everglades Province M412 Sierra Madre del Sur Province
414 Campeche-Yucatan Savanna Province A413 Central Mexico Province
415 Pacific Savanna Woodland Province
420 TROPICAL RAIN-FOREST DIVISION H420 TROPICAL RAIN-FOREST REGIME HIGHLANDS
421 Carribean Coast Rain-forest Province M421 Central American Ranges Province

* Key to letter symbols: H=Highlands: M=Mountains; P=Piateau; A=Altiplane
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Figure 1. ECOMAP Domains and boundaries for HAFB MOA and MLLRA 28b.
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Figure 2. ECOMAP Divisions and boundaries for HAFB MOA and MLLRA 28b.
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Figure 3. ECOMAP Provinces and boundaries for HAFB MOA and MLLRA 28b.
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Figure 4. ECOMAP Sections and boundaries for the HAFB MOA amd MLRA 28&b.



ECOMAP continued this system by further subdividing Bailey's Provinces into
Sections (Figure 4), based on locally dominant geologic materials and landforms (West et
al.. in press). Furthermore, ECOMAP provided guidelines for four additional ecological
subdivisions, in order of coarsest to finest: Subsections. Landivpe Associations.
Landivpes. and Landivpe Phases (McNab and Ayers, 1994). These levels, though loosely
defined in scale and criteria, are left up to local entities to define and delineate both for
the sake of mapping efficiency and to allow local environmental factors. priorities. and
needs to dictate unit delineation. The end result is an eight-level hierarchical
classification (Table 11) system. which could divide ecological systems from continental
scales down to parcels less than 10 acres (McNab and Ayers. 1994).

The ECM group of the HAFB TES Project adopted the basic ECOMAP
framework. but modified the unit nomenclature. scales. and criteria of the four finest
orders of the classification to better suit Great Basin ecosystems. and expanded the
ECOMAP framework by adding two additional levels of classification that would exist
outside the higher-order framework. It was also determined that. as a modification to the
ECOMAP ordering system. each progressively finer layer of the four locally delineated
orders would be delineated from the next higher order by a single determining tactor
(West et al., in press) wherever this was possible. Thus. Bolson Segments [ECOMAP
Subsections] (Figure 5) were delineated from ECOMAP Sections by hydrologic drainage.
Macroterrain Units [Landtype Associations] (Figure 6) were to be delineated from
Bolsons by a classification of landform type; i.e. Mountain Massif, Bajada, or Valley

Bottom. Mesorerain Units [Landtypes] (Figure 7) were subdivided from Macroterrain



Table II. Principal map unit design criteria of ecological units (taken from West et «l., in

press).
ECOLOGICAL PRINCIPAL MAP UNIT DESIGN CRITERIA
UNIT

Domain Broad climatic zones or groups (c.g. dry. humid. tropical).

Division Regional climatic types (Koppen. 1931: Trewartha. 1968).
Vegcetation affinities (e.g. prairie or forest).

Soil order.

Province Dominant potential natural vegetation (Kuchler. 1964).
Highlands or mountains with complex vertical climate-vegetation-soil
zonation.

Section Geomorphic provinee. geologic age. stratigraphy. lithology.
Regional climatic data.
Phases ol soil orders. suborders. or great groups.
Potential natural vegetation.
Potential natural communities (PNC).

Subscection Geomorphic processes. surficial geology. lithology.

Phases of soil orders. suborders. or great groups.
Subregional chimatic data.
PNC-formation or series.

Landtype Association | Geomorphic processess. geologic formation. surficial geology and
clevation.

Phases or soil subgroups, families. or series.

Local chmate.

PNC-series. subseries. plant associations.

Landtype Landform and topography (elevation. aspect. slope gradient and
position).

Phases of soil subgroups. families. or series.

Rock type. geomorphic processes.

PNC-plant associations.

Landtvpe Phase Phases of so1l families or series.
Landform and slope position.
PNC-plant associations or phases.

Units by surficial soil or geology classification. Lastly, Microterrain Units [Landtype
Phases] (Figure 8) were subdivided from Mesoterrain Units by slope position (i.e. ridge.

side slope, or foot slope and channel bottom) wherever topography allowed such

delineation. Furthermore, two more levels. Ecological Sites and Vegetation Stands.
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10
were added to the bottom of the ECM hierarchy, and were delincated independently from
the higher orders by soil survey data and by /i situ classification, respectively (West ¢t
al.. in press).

The delineation of the fifth level of the ECM classification. Macroterrain Units
(Table 11). required the development of a system for classifying landforms from digital
elevation models (DEMs). During the execution of the ECM section of the HAFB TES
Project, three raster-based models were developed to classify the landscape of the HAFB
MOA into the requisite three classes (Figure 6). Significant differences between the
models were noted (Figure 9). but never analyzed. It was determined that further study
should assess the agreement of each model with independent geographic information with
the aim of determining which classification method is most effective for the Great Basin.

This assessment is the focus of this study.

Slope-based Beterministe Model t-Value based Stochastic Model

MO A
uT

Legend

- Erosional
- Transmional
[ ] Depositional

50 0 50

Kilometers

Figure 9. Sample outputs from HAFB ECM Macroterrain Landtype Association
Classification.



PROJECT OBJECTIVES

The primary objective of the this study was to generate a Macroterrain Unit
landtype classification of the Hill Air Force Base Military Operations Area applicable to
the framework of the U.S. Forest Service's ECOMAP ecological classification system,
and to assess the various methods used in the production of this classification. As a part
of a larger ecological classification model being developed by West ef al. (in press). the
methods developed in this study should be applicable throughout the Great Basin.
Furthermore. this study aims to improve our understanding of the use of spatial models in
the classification of topographic landforms and the delineation of topographically
dependant ecological communities.

The specific goals of this study are to:

1) Develop a topography-based model for the separation of a Great Basin landscape
into discreet Macroterrain Units.
2) Develop a supervised classification model to characterize topographic data from a

Great Basin landscape into discrete Macroterrain Units.

3) Assess the agreement of the output of these spatial models with independently

derived geographic data.



STUDY AREAS

Hill Air Force Base. Military Operations Area

Located in predominately in northwestern Utah, and to a lesser extent in
northeastern Nevada, the Hill Air Force Base (HAFB) Military Operations Area (MOA)
covers an area of 4.5 million hectares (17.400 mi*) of what is known in Utah as the West
Desert (Figure 10). The airspace over this area. is restricted for and administered by the

Department of Defense (DOD) for the training of personnel and testing of military

NEVADA

UTAH

o
<)
Figure 10. Location of the HAFB Military Operations Area (MOA) and the Utah Test &
Training Range (UTTR).



materiel (Sharik et «l., 2000). Within the MOA, also referred to as the Range Complex
(Tilton. 1998), are two land parcels owned and administered by HAFB. The northernmost
of these parcels, the Utah Test and Training Range (UTTR) North Range or “Eagle
Range™ (Sharik ¢ «l.. 2000). covers 147,000 ha (566 mi”), and is the primary focus area
for this study. The southernmost UTTR area is the South Unit or “Wendover Range,” and
covers some 230,000 ha (890 miz). this area will be the secondary focus area for this
study. These areas are primarily used by HAFB for bombing and other munitions training
and testing. Additionally, the DOD owns and administers the 321.000 ha (1240 mi’)
Dugway Proving Ground. This area is used by the U. S. Army for testing and training of
biological and chemical warfare systems. Combined. these DOD lands comprise some
15% of the total land area of the HAFB MOA.

By far the largest landowner in the MOA is the Bureau of Land Management
(BLM). With nearly 3 million hectares (1 1.400 mi®) under their administration. the BLM
controls over 63% of the land area of the HAIFB MOA. Other significant landowners in
the MOA include U. S. Forest Service, the Bureau of Indian Affairs, with two
reservations within the MOA. and various Utah state agencies. Approximately 12% of the
MOA is privately owned. including the municipal area around Wendover, Nevada and
East Wendover. Utah.

The elevation in the HAFB MOA ranges from 1.265 m (4,150 1) to 3.677 m
(12.064 1) above sea level. Over 80% of the MOAs area is under 1,850 m (6,00011).
Geologically. the MOA is part of the Basin and Range Province (Hunt, 1974). The

topography of this area is dominated by north-south trending “horst and graben™



mountain ranges and valleys. including the Grassy Mountains, the Deep Creek
Mountains. the Newfoundland Mountains, the Pilot Range, the House Range, the
Confusion Range, the White Valley. and Skull Valley. The area is also marked by the
presence of two major evaporitic basins, the Great Salt Lake Desert and the Sevier Desert.
These broad. mud- and salt-flat basin floors are representative of the interior drainage
systems of the Great Basin. of which MOA is a part.

The MOA is within the temperate, semi-arid climate typical of the Great Basin.
with a lake evaporation rate of over 40 inches per year (Tilton, 1998), but receiving only
some 6 - 10 inches of precipitation per year (Sharik ¢t al., 2000; Tilton, 1998), principally
in the form of ruin or snowfall in the winter months. Evergreen Sub-Desert Shrub is the
dominant vegetation cover type. with barren flats in the basin floors. grass steppes in the

middle altitudes and evergreen woodlands in the higher altitudes.

Central Nevada Basin and Range

The Natural Resources Conservation Service (NRCS) has delineated the United
States into geographically associated areas of similar soil type. climate. water resources
and land use (Soil Survey Staff. 1981) called Major Land Resource Arcas (MLRAS).
These MLRASs are commonly used bounds in soil, vegetation, and natural resource
planning. management. and research (Soil Survey Staff, 1981). One of these resource
arcas. MLRA 28b. was used to delineate the second study area for this work.

MLRA 28b. the Central Nevada Basin and Range resource areu. located

predominately in eastern-central Nevada and to a lesser extent in western-central Utah
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(Figure I'l), covers over 7.8 million hectares (30,170 mi:) of the central Great Basin. The
major industry and land use within this arca is livestock grazing and production of
livestock feed (e.g. hay. grain) with some 1% or less of the total area given over to
irrigated agriculture (Soil Survey Staff, 1981). More than 90% of the land in MLRA 28b
is federally owned (Soil Survey Staff. 1981). With more than 6 million hectares (23,200
mi®). the BLM is the largest landholder in this study site, as it was in the MOA,
administering some 77% of the lands in MLLRA 28b. The U. S. Forest Service administers
nearly 18% or nearly 1.4 million hectares (5.350 mi®) within MLRA 28b. Only about
340.000 hectares (1.300 mi*). or about 4%. of the MLRA is privately owned. and the

remaining 1% of the land is owned or administered by various state and federal agencies.

MLRA 28b
= | Study
Area

UTAH

50 0 50 100 150 200

Kilometers

-
Figure 1'1. Location of MLRA 28b, Central Nevada Basin & Range.



16
Elevations in MLRA 28b range from about 1.450 m (4.760 f1) to over 3.600 m
(11.800 f1). Typical of a Basin and Range landscape, the morphology of MLRA 28b is
dominated by north-south trending “horst and graben™ ranges and valleys. with steep,
rocky mountains and flat, internally drained, basin floors. With only 5 - 25 inches of
precipitation per vear, this temperate, semi-arid landscape supports vegetation types
common in the Great Basin. such as saltbush-greasewood in the lower elevations, and

pinyon-juniper woodlands in the higher altitudes (Soil Survey Staff. 1981).



METHODS

The course of the work in this study can be divided into two separate phases:
model development and model assessment. The model development phase began in 1998,
as a part of the HAFB TES Project. During this phase of the study. the theoretical and
applied structure of the models were developed, as much by trial and error as by any other
method. and Macroterrain Landtype classifications of the HAFB MOA, and the smaller
UTTR North Range subset (Figure 10). were created. The work done in the model
development phase was oriented towards the goal of creating part of a larger hierarchical
land classification system. Piecewise assessment of any particular level of this hierarchy.,
as opposed to the performance of the classification system as a whole. was not a project
priority.

The assessment phase of this study began in 2001. when it was determined that
the methods and results of the Macroterrain level of the HAFB ECM classification
warranted further study. This phase can be viewed as a retrospective assessment of the
landtype models used in the 1998 study. to determine if their application was valid at the
tme. to assess which model performed better in a comparison with pre-existing
eeographical data, to assess their applicability to other parts of the Great Basin, and 1o

determine if further work along these lines would be productive.

Data Set

The initial phase of this study used 90 m (3-arc second) resolution Digital Terrain

Elevation Data (DTED) that was available for the entire HAFB MOA. All DTEDs were



projected to the Universal Transverse Mercator (UTM) coordinate system, zone 12.

Additional work utilized 30 m (1-arc second) resolution United States Geological
Survey (USGS) Digital Elevation Models (DEM) where available due to the superiority
in the representation of the land surface when compared to DTEDs. The DEMs were used
to analyze a small subset of the HAFB MOA and a small subset of MLRA 28b. at greater
resolution than the original treatment. All DEMs were projected to UTM coordinates.
Both raster data sets were analyzed in Arc/Info™ GRID.

Model assessment was performed utilizing three vector-format land
characterization data sets. At 1:500,000 scale. Digital State Geological Maps of both Utah
(Hintz. 1980: Ramsey. 1996) and Nevada (Stewart and Carlson, 1978: Turner and
Bawiec. 1996) were used as the coarsest-scale assessment dataset. These vector data sets
were used in conjunction with USGS geological attribute data (Raines ¢f al.. 1996) to
create 1:500.000 scale landtype association maps based upon surficial geologic material
and landforms for the study areas (Figures 12 and 13). The Digital State Geological Maps
are digitized versions ol pre-existing paper or Mylar geological maps. They were chosen
as an assessment dataset based on the extent of their spatial coverage (completely
covering each respective state). and their extensive use and acceptance as a valid
scientific dataset in the scientific community.

At 1:250,000 scale. the State Soil Geographic (STATSGO) Data Base from the
United States Department of Agriculture (USDA) Natural Resources Conservation
Service (NRCS) was used as the moderate-scale assessment dataset. STATSGO coverage

of Utah and Nevada were obtained along with their ancillary data tables. and were used to
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Figure 13. Geology-based Macroterrain Landtype Association Classification for MLRA
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2
produce 1:250,000 scale landtype association maps of both study areas (Figures 14, 15).
STATSGO is a commonly used dataset in natural resources rescarch and management,
and is popular for it's easy accessibility, widespread coverage (100% of the U.S.) and
associated attribute tables. The SSURGO coverage was used to create 1:24,000 scale
landtype association maps of both study areas (Figures 16, 17). Mapped and compiled on
a county-by-county basis at 1:24.000 scale, the Soil Survey Geographic (SSURGO) Data
Base is the most detailed soil dataset available on a nation-wide scale. While SSURGO
datasets are not as widely available as Geological data or STATSGO data, they are
popular and effective data for natural resources research and management because of their
fine spatial detail, and their associated attribute tables.

Because in the course of assessing the agreement of model outputs with the
independent datasets. errors in registration would be assessed as errors in classification,
efforts were undertaken to ensure the registration of the independent datasets to the DEM
coverages ol the study areas. While it was found that SSURGO was satisfactorily
registered to the DEMs. minor adjustments had to be made to the STATSGO and
Geological coverages. These registration corrections were performed heads-up at
1:24.000 monitor display resolution. and entailed aligning landforms delineated on the
vector coverages with the corresponding landforms as seen in DEM shaded relief images.

as well as co-registered Landsat Thematic Mapper (TM) imagery.
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Maodel Development

The first macroterrain model to be developed for the Hill TES Project was a
slope-based deterministic model. Ideally. the slope of the landscape at any point would be
indicative of that point’s position in the landscape’s energy continuum. Thus. slope

thresholds could be used to delineate the three macroterrains as such:

Mountain Massit slope > 15°
Bajada 15° > slope > 7°
Basin Floor 7° > slope

Analysis of the terrain for this model first involved producing a slope model of the
study area from the elevation data. Application of the model consisted of applying a
reclassification table to the slope model to produce three numerical classes which would
be standard through further phases of this study: 3 (Mountain Massit. or Erosional
Landtype). 2 (Bajada. or Transitional Landtype). and 1 (Basin Floor. or Depositional
Landtype). Early in the implementation of this model, it was observed that though slope
wis 1deally indicative of a location’s position in the energy continuum. this was often not
the case. For example. flat areas at high altutude such as alpine meadows would be
classified as Valley Floor despite their high position in the energy slope. What was
needed was an enforcement of superposition of the Macroterrain Landtype classes. That
is. the model needed rules specifying:

I Mountain Massif cells could not be downslope of Bajada or Valley Floor cells.

2: Bajada cells could not be downslope of Valley Floor cells.

This improvement on the slope-based classification utilized a flow-direction



model generated from the elevation model to enforce superposition. This model was
developed as a GRID-based Arc/Info Macro Language program (AML) called
LTCLASS.AML (Appendix A). All cells in the classification model were given an initial
value of 1 (Valley Floor). All cells of a given threshold slope value or greater were then
classified as 2 (Bajada). these cells were then submitted to the GRID watershed model as
watershed pourpoints. Thus, all cells pouring into (hence up-gradient of) cells of class 2
were similarly classified as Bajada (Figure 18). These steps were then repeated with a
second. higher threshold slope to classify cells as class 3, or Mountain Massif. This
improved method produced the desired internally consistent Macroterrain Landtype units
with no conflicts of superposition.

After the development of the slope-based deterministic model. it was felt that the
classification of landforms could be further improved. The treatment of the data in order
to utilize the GRID watershed model. i.e. filling in the sinks in the DEM to produce a
continuously draining model. put the integrity of the input data and the robustness of the
model itself in question. Furthermore, the model was ill suited to areas of non-
characteristic slope. such as the I-80 levy running several meters above the floor of the
Great Salt Lake Desert for the entire width of the MOA. It was determined that a
supervised classification scheme may be able to distinguish between the three
Macroterrain Landtype classes. Such a model would be automated enough to fit the needs
of the ECM phase of the HAFB TES project. and may not require compromising the

dataset.
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The second model developed for the ECM section of the HAFB TES Project was
a stochastic model, again using slope data. This was a supervised classification model.
such as those often used in remote sensing applications. But instead of imagery iput. as
1s usually the case in remote sensing modeling, this model was designed to classify terrain
data. This model. referred to as STATCLASS (Figure 19), used class-type mask grids to
delineate selected sample areas pre-determined by the user to be representative of each
landform class, much like training data in a supervised classification. According to the N-
value determined by the user, an N-number of random local values would be selected
from the slope grid to be classified, strictly within the boundaries for each class-type
mask. This task was called out by STATCLASS.AML. (Appendix B) to be performed
separately by an independent AML program called RANDSAMP.AMIL. (Appendix C)
(Tilton and Dougher, 1999). which limits the sample area, performs an N-number of
samples. finds the mean and standard deviation of the sample population. and returns
these values to the program which called it out. The mean and standard deviation of these
samples would be determined thus. for each class separately.

The mean and standard deviation of each location (cell) in the grid to be classified
was then calculated using a moving sample window, of a size determined by the user. The
total number of cells in this moving window (e.g. 49 cells in a 7 X 7 window) serves as
the N-value for the grid being classified. These values were stored in a mean value grid

and a standard deviation value grid. Next, the 7-value for each cell in the image was
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calculated for each of the desired classes from the values from the mean and standard
deviation grids and the scalar-value mean and standard deviation from the cell values
sampled from each class-type mask (Equation 1). This provided guantification for each

| X(;I\’/L ) X(‘m“

I: ) hi (1)

U{y’f\‘ll) 18 U('/:l\\

Negio =1 Negy ~ 1
location’s similarity to each of the desired classes. Then. the r-values for each class were
compared for every cell. The model assigns each cell the class with the lowest 7. or least
probability of a mismatch. The model also generates a grid of the selected r-values, so the
user can analyze the strength-of-fit distribution across the classified area.

Upon completion and initial assessment of the r-value stochastic model, two
issues of concern were called to attention. First. that though the output-r grid provided an
excellent view of the spatial relative strength of fit within the classified area, the
determination of the output’s absolute strength of fit. or confidence, was harder to
determine. This is because the 7-statistic in this case was being used not in a typical
Boolean analysis (i.e. the population does or does not match the sample population)
(Weinberg and Schumaker. 1965). but in a series of comparisons. In such an analysis. the
confidence intervals interact in a manner that would be difficult to evaluate. The second
issue of concern is the variation inherent in a classification scheme based upon random
sampling. Though it was an intentional and hard-won aspect of the model, the random
sampling did produce some variation in the output classification. To address these

concerns about the stochastic model, a third model was needed. This model. a

probability-output model referred to as PROBCLASS was essentially an operational
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variation upon the stochastic model, STATCLASS.

The PROBCLASS model (Figure 20) was developed as an iterative version of
STATCLASS. It uses the basic structure of STATCLASS, but performs this stochastic
classification repeatedly for a number of iterations specified by the user (e.g. 100
iterations). The PROBCLASS model uses four AML's (RUNLOOP.AML
ITERCLASS.AML., RANDSAMP.AML., and PROBCLASS.AML) (Appendix D). as
opposed to LTCLASS s one and STATCLASS s two, making it the most complex of the
three models tested. RUNLOOP.AML. controls the classification program
ITERCLASS.AML. calling it to be run the number of specified iterations.
ITERCILASS.AML is a version of STATCLASS.AMI. modified to be run by
RUNLOOP.AMI.for the specified number of iterations. along with associated operational
modifications to allow for non-interactive running. Each iteration of ITERCLASS.AML
make calls to RANDSAMP.AML. for the mean and standard deviation of a random sample
(of constant number N) of the training data. upon which that iteration’s 7-value derived
classification is based. After the iterations are complete. PROBCLASS.AMI. assesses the
number of iterations in which each cell is assigned 1o a particular class and normalizes
this to a real number percentage (i.e. 0-100). This percentage is that cell’s probability of
being assigned the given class with the given data and class-type mask. The probability
grids for each class are then compared and an output classification is produced by
assigning each cell to the class with the highest probability. This model greatly decreases
the random sample-induced variation in the output classification, in comparison to that of

its predecessor, STATCLASS. It also produces a strength of fit measurement. in the form
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of the classification probability, which is informative in both a relative sense, across the

classified area, and in an absolute sense, where one can sec the probability (or the inverse

uncertainty) of the classification as a whole.
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Model Assessment

In the development of the HAFB ECM classification system, there was no intent
to ground truth each level of the classification in a piecewise fashion. Rather. the
performance of the hierarchical classification would be checked as a whole by the bottom
two levels of the classification, which were based on field data (West et al., in press). As
this study 1s an offshoot of that previous effort, it was determined that the assessment of
the performance of the Macroterrain Landtype classification models should not require
ground truthing per se. but that they should be assessed against other geographic data
which might reasonably have been used at this level of the ECM system. had such
modeling techniques been unavailable.

Since the original intent of the ECM svstem was to use the HAFB MOA as a
proving ground to develop a classification system which could be applied throughout the
Great Basin, and in limited areas beyond. as well as offering up a framework
methodology which could be adapted by other managers and rescarchers to local study
arcas (West et al., in press). it was decided that a second study site should be added to the
assessment, in addition to the HAFB MOA site data. This would broaden the basis for the
assessment. while still keeping the work within the bounds of the original intent of the
ECM study.

The bounds for the HAFB MOA North Range study area were determined not by
physical attributes. but by political/ladministrative borders. Coverage of the UTTR North
Range, plus an additional mile-wide buffer along the southeastern margin of the North

Range property line required for a concurrent study, required part or all of 22 1:24.000



USGS quadrangles. It was decided that the outer bounds of these conterminous
quadrangles would form the boundary of the North Range study arca (Figure 10).

It was decided that a subset of MLRA 28b. the Central Nevada Basin and Range.
would serve as a second study site. This area was chosen for its central location within the
Great Basin. for its climate. which is strongly representative of the Great Basin (Soil
Survey Staff, 1981). and for its typical Basin and Range landform morphology and
morphometry. The location of the subset was randomly chosen within the confines of
MLRA 28b and was located in the north-central portion of the MLRA (Figure 11). The
size of the MLRA 28b subset was chosen to be similar, but not equal to. the size of the
HAFB MOA North Range. An area of approximately 50.000 km was deiineated using
natural bounds. rather than political boundaries, as is the case with the North Range.
United States Geological Survey (USGS) Hydrologic Unit Code (HUC) boundaries were
used as the natural bounds for the delineation of the MLRA 28b subset (Seaber ¢r al..
1987) as these bounds are commonly used in natural resource management and research
for delineation ol areas for management planning. and thus would approximate an area
which might be used in a future independent application of these methods.

Having delineated both study areas by their respective means. all further methods
shall be considered identical for the two areas. except where stated otherwise. With the
study arcas delineated. the required input data (see Data Set discussion) were acquired via
various locations on the internet. Discontinuous data tiles (e.g. DEM quadrangles.
SSURGO tiles) were merged together to cover each study area. Other data preparations

were undertaken to assure agreement in units, projections. elc.
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The three Macroterrain Landtype classification models discussed in this work
utilize first order derivative data, based upon elevation. The first order derivative dataset,
flow-direction is used in calculating contributing flow area for the first model,
LTCLASS. Flow-direction was calculated from elevation (DEMs) by the Arc/Info
command FLOWDIRECTION (ESRI, 2000). ESRI (2000) determines the direction of
flow by applying Equation 2:

drop = D:/d *100 (2)

where drop = the index of change in elevation from one cell to another, Az = the change
in elevation, and = distance from one cell’s centerpoint to another. Equation 2 is applied
iteratively to a cell’s eight adjacent neighbors (ESRI, 2000), and the direction in which
the value of drop is greatest is determined to be the flow direction. If drop is the same in
all eight adjacent cells, then the analysis neighborhood is expanded and more iterations of
Equation 2 are applied (ESRIL 2000). The output direction is encoded as an integer from |
— 255, with direction | equivalent to ordinal direction 90°.

The other first order derivative dataset, slope. is used in all three Macroterrain
Landtype classification models. Slope is calculated in degrees (°) from elevation (DEMs)

by the Arc/Info command SLOPE (ESRI, 2000), using Equation 3:
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where Az = the change in elevation, Ax and Ay represent the change in horizontal
position, and ¢ = the degree slope. These equations are calculated for each cell’s eight

conterminous neighbors, and the highest value 6 is determined to be the slope for that



output cell (ESRI, 2000).

Being the simplest and quickest model to run, LTCLASS was the first
Macroterrain Landtype model to be run on both study areas. As was the case in 1998,
when the model was first developed, this was an iterative process. It was decided that the
MLRA 28b study area would be classified first, then those classification criteria would be
verified and fine-tuned using the data from the UTTR North Range, to produce a
comprehensive set of criteria for delineating Great Basin Macroterrain Landtype
Associations.

Several combinations of threshold slopes were tried. starting with the values
derived from the developmental results from the original study: Massif >= 15°, Bajada >=
7°. Basin Floor < 7°. Each LTCLASS output classification was overlain with TM imagery
and a shaded relief grid generated by the Arc/Info command HILLSHADE (ESRI, 2000),
to subjectively match the classification with the topography. Because the resolution of the
data in this study were higher than the data used in the developmental work (30m DEMs
vs. 90m DTEDs). the calculated slope values were quite different at the margins of
landforms, and as a result, the development thresholds of 15% and 7° were not found to be
accurate delineators of the landtypes for the current dataset. After several iterations, an
ordinal series of Massif >= 12° Bajada >= 2° and Basin Floor < 2 was found to match
the topography well enough to proceed.

These same iterative steps were then run using the slope and flow-direction data
for the UTTR North Range. The 2°-slope threshold for discriminating between Basin

Floor and Bajada was found to be a good descriptor for the UTTR North Range, as it was
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for the MLLRA 28b. The 12°-slope threshold for discriminating between Mountain Massif
and Bajada was found to be too high, classifying the lower areas of Mountain Massif as
Bajada. After several iterations. a threshold of 10° slope was found to be an acceptable
delineator of the UTTR North Range’s Massif/Bajada margin. This value was then run
through LTCLASS using the MLRA 28b dataset. and was found to not seriously
deteriorate the subjective quality of the MLRA 28b delineation of the Massif/Bajada

margin. Thus, a final ordinal series of:

Mountain Massif slope > 10°
Bajada 10° > slope > 2°
Basin Floor 2° > slope

was found to be a subjectively acceptable set of criteria for delineating Macroterrain
Landtypes in at least two areas of the Great Basin (Figures 21.22). The further
assessment of LTCLASS as a classification model will assume that these criteria
represent the best-fit possible using this model.

Running the STATCLASS Macroterrain Landtype classification model requires
much more time and preparation than running LTCLASS. Prior to running STATCLASS.
training data must be delineated for cach class. To this purpose. polygon shapefiles were
created in ArcView (Figures 23. 24) using a combination of TM imagery and DEM-based
shaded relief as a visual key. Each polygon in a shapefile delineates an area that is
representative of that class of landtype. For each study area. shapefiles with at least two

polygons were created to delineate representative areas of mountain massif, bajada.
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Figure 23. Example training data polygons for the UTTR.

and basin floor. The pixels delineated by these polygons, or training data, would be used
by STATCLASS to establish the criteria by which each study area would be classified
(Rees, 1999). These shapefiles are then converted into Arc/Info polygon coverages, and
used to subset the study areas’ slope grids with the GRID command POLYGONSELECT.
The result of this step was six training data grids, one of each class (i.e. mountain massif,
bajada, and basin floor) for each study area, within which the value of the training data
would equal the study area slope grid, and the non-training data would have a value of
NODATA.

Along with the slope grid of the study area, the training data grids are all the input

data that are required to run STATCLASS. Upon running the program, the user is
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prompted for these input data, along with the two user-specified criteria for the algorithm,
N , the size of the moving focal-analysis window, and the number of classes. The number
of classes was already determined to be three. The size of the focal window was set at 7 X
7. and the similar sample size N, was rounded up to 50. FOCALMEAN and FOCALSTD

(focal-standard deviation) grids were first produced by STATCLASS using the 7 X 7

Figure 24. Example training data polygons for MLRA 28b.



window. Fifty point-samples were then extracted from each training data grid using
RANDSAMP, and a mean value and standard deviation were computed from those
sample populations. The use of an N-number sample population keeps the degrees of
freedom manageably low in the following r-test, and allows the user greater freedom in
the delineation of training areas by ensuring that all classes are represented equally in the
1 classification. Equation 1 was then used to compare the FOCALMEAN and
FOCALSTD grid values to the mean and standard deviation of each sample population,

resulting in a 7-value output grid for each Macroterrain Landtype class (Figures 25, 26).
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Figure 25. Example class t-Value grids for the UTTR.
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STATCLASS then compared the three 7 grids for each study area, assigning each cell the
class with the lowest 7, and produced an output Macroterrain Landtype classification grid
(Figures 27, 28) and an output final-7 grid (Figures 29, 30).

The same input data sets and criteria (i.e. focal window size, N, and number of
classes) were used for PROBCLASS as were used in STATCLASS, with the additional

criteria of the number of iterations of the classification. The number of iterations was set
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Figure 26. Example class r-Value grids for MLRA 28b.
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at 100, and all other input and criteria remained unchanged. PROBCLASS then ran the
STATCLASS algorithms 100 times, each time using a different randomly generated
sample population, producing 100 Macroterrain Landtype classifications. The
PROBCLASS algorithm then counted the number of times each cell was assigned to each
class (anywhere from 0 to 100) producing three class-probability grids for each study area
(Figures 31, 32). The three class-probability grids were then compared and each cell was

assigned the class with the highest probability (Figures 33, 34).
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In order to compare the Macroterrain Landtype Classifications to independent
data, the independent data must be similarly classified into three Macroterrain Landtypes
(massif, bajada, and basin floor). To classify the Digital State Geological Maps,
formation IDs were used in conjunction with interpretational attribute tables (Raines et

al., 1996) to identify the age and lithology of the geologic units. All surficial units of
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Figure 32. Class probability grids for MLRA 28b.
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Tertiary origin or older were considered bedrock, and thus classified as erosional
(Figure35). Any unit of a purely depositional lithology (e.g. playa [Qp] or water) was
classified as depositional (Figure 35). All other units (e.g. Quaternary alluvium [Qa])
were interpreted individually, largely being classified as transitional (Figure 35), with
some units such as Quaternary basalt [Qb] falling in other classes. Units were given a
numerical code related to their Macroterrain Landtype class (3 = massif, 2 = bajada, 1 =
basin floor), and all boundaries between adjacent polygons of similar class were dissolved
to create final landtype classified geology layers (Figures 12, 13). These vector layers

were then converted to Arc/Info GRID format rasters, with projection and horizontal

Macroterrain Landtype Association
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Figure 35. Detail of Macroterrain Landtype Association classified Geologic units from
MLRA 28b.
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resolution (30m) to match the model outputs, using the numerical landtype code as a grid
value.

Because the STATSGO and SSURGO databases are related to each other, and
because they have a similar attribute database structure, classification of these two
datasets used similar criteria. The primary attribute for classification of these soil datasets
was surficial texture. The tables comp and layer (Soil Survey Staff, 1991; Soil Survey
Staff, 1995) were linked to the spatial attribute table by the common element muid (map
unit ID) and used for delineating this criterion. Records with a unit sequence number
(element Segnum) 1 were selected so that the classification criteria would be applied only
to the dominant or surficial layer of the soil unit (Soil Survey Staff, 1991; Soil Survey
Staff, 1995). This step would be repeated several times as the classification of the
texturel element was an eliminatory process, and the initial selection would have to be
regained for each step of the classification. The first landtype to be classified was
mountain massif, initially selecting for any unit with a texture of bedrock (weathered or
unweathered) from element rexturel in table layer. Further units were added to this
selection by selecting units in which the reported minimum depth to bedrock was 14
inches or less, according to element rockdepl in table comp. A new field was added to the
spatial attribute table for the STATSGO and SSURGO data coverages for landtype code.
and all selected units were given the numerical code 3 to correspond with erosional
landtypes.

The second step of the soil classification was to classify basin floor units. Bajada.

or transitional units, were not classified for directly because the criteria for defining such
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units are much broader and less defined than those for the other two units; bajada would
be classified as everything not mountain massif or basin floor. With no transportation of
sediment, the texture of the depositional basin floor units would be much finer that that of
the other units. Units with reported fine textures such as silt, silt loam, clays, efc. were
selected from element rexturel, as were units reported to be water in element compname
in table comp. The selected units were given a numerical landtype code of 1 to correspond
with depositional landtypes. After this, all units not possessing a landtype code were
classified as code 2, corresponding with transitional landtypes, resulting in complete
landtype classified STATSGO (Figures 14, 15) and SSURGO (Figures 16, 17) layers.
These vector layers were then converted to Arc/Info GRID format rasters, with projection
and horizontal resolution (30m) to match the model outputs, using the numerical landtype
code as a grid value.

With the completion of the landtype classification of the three independent data
sources. the model outputs could now be evaluated. The preliminary analysis of model
results in comparison to the independent data layers would begin with a basic assessment
of map agreement. The Coefficient of Areal Correspondence (Equation 4) provides a

A
_ I B )
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measure of the degree of relation between two areal distributions (Taylor, 1977), such as
the distribution of Macroterrain Landtype units in a mode] output and an independent data

layer. Equation 4 shows the coefficient as being a fraction of the area common to maps A

and B (A U B) where maps A and B classify the landscape similarly (A M B) (Taylor,
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1977). This analysis was performed in ArcView Spatial Analyst v2.0, using the Map
Calculator. Binary identity grids were calculated where true (1) value cells represent cells
with similar values in both grids of a pair, and false (0) value cells represent cells with
dissimilar values. Cells which exist in one grid of a pair but not in the other were
classified as NODATA and eliminated from the analysis. One such analysis was run for
each possible combination of model output and independent data. Further, model outputs
were similarly compared to assess how well the various modeling methods agreed with
each other. The three independent data layers were also compared to each other, to assess
their agreement. In the end, 30 binary identity grids were generated, 15 for each study
area (Figures 37-41), covering every possible combination of the six grid types in the
dataset (LTCLASS, STATCLASS, PROBCLASS, Geology, STATSGO, and SSURGO).
The number of cells of each value (true or false) were then compiled, and Equation 4
could be solved by the number of true cells (A N B) divided by the total number of cells
(A U B) (i.e. number true + number false).

The second phase of the assessment of the agreement between the model outputs
and the independent data was an analysis of the errors in the model classifications
(relative to the independent data) by the construction of error matrices. An error matrix is
an n by n array, where n is the number of classes, wherein the rows of the array represent
the classes in the reference image, and the columns of the array represent the image being
assessed (Campbell, 1987). The value of each cell in the array equals the number of cells
in the study area which have been classified with the values specified by that row and

column. The sum of values in a column represents the total number of cells given that
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class in the image being assessed, and the row totals represent the values of the reference
image classes (Campbell, 1987). The error matrix allows for more than the simple
assessment of areal agreement, like that of the coefficient of areal correspondence
(Equation 4). It allows for the categorical assessment of classification agreement, on a
class by class basis. It also allows for the user to distinguish between errors of
commission (type I error) and errors of omission (type Il error), again on a class by class
basis. The error of commission represents the fraction of the area of a given class of the
model output which has been mis-classed as compared to the reference image (Campbell.
1987; Weinberg and Schumaker, 1965). The error of omission represents the fraction of
the area of a given class of the reference image that was mis-classed in the model output
(Campbell, 1987: Weinberg and Schumaker, 1965). The analysis of such errors illustrate
the performance of the models on a class by class basis, and the assessment of both types
of error is necessary to understand the nature of the classification error. For example, one
model’s classification of bajada could have a very low type Il error (error of omission) by
correctly classifying all areas in the reference image’s bajada area (Campbell. 1987). This
might appear to be a good match for this class, with a high percentage of agreement. But
if the bajada class also has a high type I error (error of commission), indicating that many
cells in the reference image’s massif and basin floor areas have been classified as bajada
in the model’s output, we can determine that the criteria for defining the bajada in the
model were too broad, or that the criteria for massif and basin floor were too narrow
(Campbell, 1987).

The final phase of the model assessment was an analysis of model performance by
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the calculation of kappa (k ) statistics for each model versus each independent dataset.
Kappa quantifies the real agreement between model output and reference dataset over the
amount of agreement one might expect by random chance. The higher the k& value, the
better the model has performed versus chance agreement. Equation 5 (Campbell, 1987)

defines the estimated k (*k hat”) where “Observed” designates the accuracy reported

>

_ Observed - expected

e

|- expected
in the error matrix. or the Coefficient of Areal Correspondence. and “expected™
represents the agreement which can be attributed to chance (Campbell, 1987). Calculation
of “Observed ** had already been performed by this point of the assessment, in the error
matrix. Calculation of the expected chance agreement required the construction of
another set of matrices. The cells of these matrices would contain the values of the
products of the row and column marginals (totals) from the error matrices, resulting in a
nine-cell matrix for a three-class system such as the Macroterrain Landtype
Classification. The expected agreement by chance is the sum of the products of

corresponding marginals (diagonal entries) divided by the sum of all marginal products

A

(Equation 6) (Campbell, 1987). Nine k values were calculated for each study area,

sum of diagonal entries
expected = (6)
grand total

corresponding to all combinations between model outputs and reference datasets. These
values were then assembled into a matrix for assessment of the various models’

performance.



Given these three forms of numerical analysis, the performance of each model
against the three independent datasets was assessed to estimate which reference dataset
was most closely emulated by the given model. The performance of the model
classifications were likewise compared each other to determine which, if any. model

performed best given all three reference datasets.
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As discussed earlier, the preliminary analysis of model performance was done by

calculation of the Coefficients of Correlation for each of the models and reference

datasets versus each of the other datasets. This analysis was performed for each study

area separately by applying Equation 5 to the identity grids (Figures 36-41). Table III

shows the correlation coefficients for the UTTR, wherein we see that the strongest

correlations between model outputs and an independent dataset are the .916 correlation

between STATCLASS and SSURGO, and the .913 correlation between PROBCLASS

and SSURGO. The equivalent performance of STATCLASS and PROBCLASS in the

case of classifying the UTTR is emphasized by the .979 correlation between those two

model outputs, versus their correlation with LTCLASS of .887 and .881 respectively. In

the case of the UTTR, the SSURGO reference dataset had the highest correlation with

each of the three models. Of all three models, LTCLASS had the lowest correlation

coefficient with each of the three independent classifications, having a maximum

correlation of .897 with the SSURGO-based Macroterrain Landtype Association

classification.

Table I11. Correlation Coefficients for the Utah Test and Training Range (UTTR).

LTCLASS |STATCLASS|PROBCLASS| Geology | STATSGO | SSURGO
LTCLASS 0.8871 0.8811 0.7781 0.7752 0.8968
STATCLASS 0.8871 0.9798 0.8032 0.7917 0.9155
PROBCLASS 0.8811 0.9798 0.8057 0.7953 0.9126
Geology 0.7781 0.8032 0.8057 0.8649 0.8365
STATSGO 0.7752 0.7917 0.7953 0.8649 0.8165
SSURGO 0.8968 0.9155 0.9126 0.8365 0.8165
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Figure 36. Classification comparison identity grids for the UTTR.
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Figure 37. Classification comparison identity grids for the UTTR.
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Figure 38. Classification comparison identity grids for the UTTR.
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Figure 39. Classification comparison identity grids for MLRA 28b.
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Figure 40. Classification comparison identity grids for MLRA 28b.
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Figure 41. Classification comparison identity grids for MLRA 28b.
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In Table III we also see the correlation coefficients between the various reference data for
the UTTR. All correlations for Macroterrain Landtype Association classifications were
over 80%, the highest correlation being 86.5% between Geology and the STATSGO
dataset.

Table IV shows the correlation coefficients for the MLRA 28b study area. The
strongest model to reference correlation for this study area was the 0.785 correlation
between PROBCLASS and the STATSGO-based Macroterrain Landtype Association
classification. In this case STATSGO had higher correlation coefficients for two of the
models than either Geology or SSURGO data, with LTCLASS’s highest correlation being
with SSURGO. Again, LTCLASS consistently had the lowest correlation coefficients,
with a 0.522 correlation with Geology being the lowest value in this study. while in the
case of MLRA28b PROBCLASS had consistently higher coefficients of correlation with
the reference data than any of the other models.

In the case of MLRA 28b (Table 1V), the highest correlation between
classifications of independent data was a 0.797 correlation between SSURGO and
STATSGO. The Macroterrain Landtype Association Classification of Geology was most

correlated with that of STATSGO, at 0.779.

Table IV. Correlation coefficients for the Central Nevada Basin and Range (MLRA 28b).

LTCLASS |STATCLASS|PROBCLASS|Geology STATSGO |SSURGO
LTCLASS 0.7448 0.6837 0.5224 0.6230 0.6406
STATCLASS 0.7448 0.8949 0.7074 0.7648 0.7262
PROBCLASS 0.6837 0.8949 0.7482 0.7848 0.7675
Geology 0.5224 0.7074 0.7482 0.7788 0.7251
STATSGO 0.6230 0.7648 0.7848 0.7788 0.7973
SSURGO 0.6406 0.7262 0.7675 0.7251 0.7973
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Error Analysis

The analysis of the accuracy of each model in respect to each class in the
Macroterrain Landtype Association Classification, in comparison to the three independent
datasets, was performed by the construction of an error matrix for each model
output/reference dataset pair. Table V is an error matrix for the slope-based deterministic
model, LTCLASS and the Macroterrain Landtype Association Classification for Geology
for the UTTR. The highest class agreement in this piecewise assessment is the agreement
for the depositional (Basin Floor) class at 94.9%. The highest error of commission (Type
1) is 83.3% for the cells that were classified as erosional (Massif) class in the LTCLASS
model. but were classified as another Landtype Association in the Geology classification.
The highest error of omission (Type II) is 66.9% for cells classified as transitional
(Bajada) from the Geology classification, but classified otherwise in the LTCLASS slope
model for the UTTR.

Table VI shows the error matrix for LTCLASS when compared to STATSGO
data. In this case, the highest agreement is again in the depositional class at 95.7%. The
highest Type I error is in the erosional class at 55.4%. and the highest Type 1l error is in
the transitional class at 68.3%. Table VII shows the error matrix for LTCLASS vs.
SSURGO data for the UTTR. Once again the highest agreement is in the depositional
class at 96.7%, the highest Type I error is in the erosional class at 54.4%. and the highest
Type Il error is in the transitional class at 45.7%. Tables VIII - X show the error matrices

for evaluating the stochastic model. against the three reference datasets for the UTTR.



Table V. LTCLASS vs. Geology error matrix for the UTTR.
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Slope Model
Depositional| Transitional |Erosional| Totals Agreement Typs | Type d
- (%) Error (%) | Error (%)
2 |Depositional 2167325 95506 21604 2284435 94.87 18.10 5.18
§ Transitional 410713 318105 231324 960142 38.18 12.59 66.87
O |Erosional 2876 25369| 275482 303727 90.70 83.27 9.30
Totals 2580914 438980, 528410| 3548304 77.81 22.19 22.19
Table VI. LTCLASS vs. STATSGO error matrix for the UTTR.
Slope Model
- Depositional| Transitional |Erosional| Totals Agrfsor;went E:—r}c/)??"/lb) EIr):)pre(Ol/lo)
8 Depositional 2166856 83300|  14271| 2264427 95.69 19.46 4.31
:: Transitional 428760 292697| 201773 923230 31.70 15.96 68.30
5 Erosional 11860 64084| 313864 389808 80.52 55.42 19.48
Totals 2607476 440081 529908 3577465 T7.52 22.48 22.48
Table VII. LTCLASS vs. SSURGO error matrix for the UTTR.
Slope Model
Depositional| Transitional |Erosional| Totals et L Type I
o (%) Error (%) | Error (%)
8 Depositional 1221003 40206 999 1262208 96.74 4.79 3.26
8 Transitional 60141 145942 62548 268631 54.33 1.7.13 45.67
@ |Erosional 292 5817] 110601| 116710 94.77 54.45 528
Totals 1281436 191965| 174148| 1647549 89.68 10.32 10.32
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Table VIIT compares LTCLASS and the Macroterrain Landtype Association
Classification of Geology for the UTTR. The highest agreement is in the depositional
class at 93.7%. The highest Type 1 error is in the erosional class at 29.6%, and the highest
Type Il error is in the transitional class at 46.52%. In Table IX, STATCLASS vs.
STATSGO data, the depositional class again has the highest agreement at 94.8%, but in
this matrix the highest Type I error falls to the transitional class at 28.6%. The highest
Type Il error is also in the transitional class at 48.5%. In the error matrix for
STATCLASS vs. SSURGO, the highest Type I error is again in the transitional class at
32.2%, but here the highest Type II error falls to the erosional class at 23.4%. Basin floor
(depositional) again had the highest correlation, at 95.3%.

Tables XI-XIII show the error matrices between PROBCLASS and the three
reference datasets. In Table XI, the highest-class correlation between PROBCLASS and
Geology is the depositional class at 92.4%. The highest Type I error is in the erosional
class at 28.0% and the highest Type Il error is in the transitional class at 43.8%. Table
XII, PROBCLASS vs. STATSGO for the UTTR, shows the highest class correlation is in
depositional at 93.5%. the highest Type I and Type 1l errors are both in the transitional
class at 32.6% and 45.5%, respectively. In Table XIII, PROBCLASS vs. SSURGO, the
highest correlation is once again in depositional at 94.4%. The highest Type 1 error is
37.1% for the transitional class, and erosional class has the highest Type I error, at
24.8%.

Tables X1V-XXII show the error matrices for the various Macroterrain Landtype

Association Classification models as applied to the MLRA 28b study area in comparison



Table VIII. STATCLASS vs. Geology error matrix for the UTTR.
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t-Test Model
_ Depositional [Transitional|[Erosional| Totals Agr?c(;or;went E:—r)épr)e(i’lo) ET%)E(E(OI/IO)
D |Depositional 2127522 135288 6833| 2269643 93.74 15.96 6.26
E Transitional 361102 509813| 82442] 953357 53.48 23.40 46.52
O | Erosional 11555 87751] 212694 301600 70.52 29.60 29.48
Totals 2489779 732852 301969| 3524600 80.86 19.14 19.14
Table IX. STATCLASS vs. STATSGO error matrix for the UTTR.
t-Test Model
Depositional {Transitional|Erosional| Totals Agreement), Ty | Tyell
@) (%) Error (%) | Error (%)
8 Depositional 2131567 109979 6084| 2247630 94.84 17.03 5.16
E Transitional 376758 472110 68182 917050 51.48 28.58 48.52
& [Erosional 6122 152083] 228758| 386963 59.12 19.19 40.88
Totals 2514447 734172 303024| 3551643 79.75 20.25 20.25
Table X. STATCLASS vs. SSURGO error matrix for the UTTR.
t-Test Model
o Depositional{Transitional|Erosional| Totals |Agreement ErTr)c/)Fr)EZ‘;o) EIryopre(fl/L)
g Depositional 1203028 59082 98| 1262208 95.31 317 4.69
8 Transitional 39971 215895/ 12765| 268631 80.37 32.18 19.63
@ |Erosional 5 27352 89353 116710 76.56 11.02 23.44
Totals 1243004 302329| 102216| 1647549 91.55 8.45 8.45




Table XI. PROBCLASS vs. Geology error matrix for the UTTR.
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Probability Model

Agreement| Type | Type Il
- Depositional |Transitional|Erosional| Totals (%) Error (%)| Error (%)
2 |Depositional 2110524 167451 6460| 2284435 92.39 15.01 7.61
g Transitional 341996 539455/ 78691| 960142 56.18 27.24 43.82
O |Erosional 877 94113| 208737, 303727 68.73 28.04 a81.27
Totals 2453397 801019 293888| 3548304 80.57 19.43 19.43
Table XII. PROBCLASS vs. STATSGO error matrix for the UTTR.
Probability Model
Agreement| Type | Type Il
o) Depositional [Transitional|Erosional| Totals (%) Error (%)| Error (%)
8 Depositional 2117144 141360 5923| 2264427 93.50 15.94 6.50
E [Transitional 355615 503296| 64319] 923230 54.51 32.63 45.49
t |[Erosional 5261 159865| 224682 389808 57.64 18.02 42.36
Totals 2478020 804521 294924| 3577465 79.53 20.47 20.47
Table XIII. PROBCLASS vs. SSURGO error matrix for the UTTR.
Probability Model
Agreement| Type | Type |l
o Depositional |Transitional|Erosional| Totals (%) Error (%) | Error (%)
g Depositional 1191532 70587 89| 1262208 94.40 2.59 5.60
a Transitional 32724 224283] 11624| 268631 83.49 37.05 16.51
@ |Erosional 0 28944| 87766, 116710 75.20 10.04 24.80
Totals 1224256 323814 99479 1647549 91.26 8.74 8.74
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to the independent geographic datasets. In the error matrices for the deterministic model,
LTCLASS, versus the three reference datasets Geology, STATSGO, and SSURGO
(Tables XIV-XVI), the correlation is always highest for the depositional class, at 99.3%,
96.1% and 89.0%. respectively; the highest Type I error also consistently falls to the
depositional class at 328.7%, 107.6%. and 73.1%, respectively. Type I errors exceeding
100% indicate that more cells were erroneously classified as being depositional (in this
case) than the total number of depositional cells that actually existed in the reference
dataset. The transitional class is consistently underclassified by the model (Type II error)
by 59.6%, 50.3%, and 48.0%. respectively.

In Tables XVII-XIX, the error matrices for STATCLASS vs. the three reference
datasets, we begin to see some variation in the high correlation category. In the error
matrix for STATCLASS vs. Geology (Table XVII) the highest class-correlation is again
in the depositional class at 93.5%. with a high Type I error in the depositional class at
113.9%, and a high Type Il error in the erosional class at 40.9%. But in the STATCLASS
vs. STATSGO error matrix (Table XVIII). the highest agreement between model and
reference class is in the transitional class at 86.3%. The high Type I error for this matrix
is 44.3% for the transitional class. and the high Type Il error is 37.2% for erosional. In
Table XIX, STATCLASS vs. SSURGO for MLRA 28b, the highest class-correlation is
again transitional, at 87.6%. The high Type I error for this matrix is in the transitional
class at 59.8%, and the high Type Il error is 37.0% for the erosional class.

The highest class-correlations for PROBCLASS in MLLRA 28b (Tables XX-XXII)

break down the same as they did in the case of STATCLASS (Tables XVII-XIX), with



Table XIV. LTCLASS vs. Geology error matrix for MLRA 28b.

Slope Model
n Depositional (Transitional|{Erosional| Totals |Agreement ErTr)éee(;o) EIr):Jpre(J/lo)
D |Depositional 552577 3502 257| 556336 99.32| 328.68 0.68
-q°_, Transitional 1724722] 1260935 136869 3122526 40.38 31.48 59.62
O |Erosional 103819 979410| 1411912 2495141 56.59 5.50 43.41
Totals 2381118 2243847| 1549038 6174003 52.24 47.76 47.76
Table XV. LTCLASS vs. STATSGO error matrix for MLRA 28b.
Slope Model
Depositional|Transitional|Erosional| Totals Agreament] Type | Type i
o) (%) Error (%)| Error (%)
8 Depositional 1123384 43571 1781]| 1168736 96.12| 107.64 3.88
':: Transitional 1194462| 1304598| 128495 2627555 49.65 35.77 50.35
& |[Erosional 63571 896232| 1419012 2378815 59.65 5.48 40.35
Totals 2381417| 2244401| 1549288| 6175106 62.30 37.70 37.70
Table XVI. LTCLASS vs. STATSGO error matrix for MLRA 28b.
Slope Model
. . . Agreement| Type | Type |l
& Depositional {Transitional|Erosional| Totals gj‘.’;o) Er%&%) Erryoprg%)
g Depositional 1304756 159380 1686| 1465822 89.01 73.07 10.99
c?) Transitional 1014550, 1200795 95066| 2310411 51.97 44.48 48.03
@ |Erosional 56524 868252 1407694| 2332470 60.35 4.15 39.65
Totals 2375830] 2228427| 1504446 6108703 64.06 35.94 35.94




Table XVII. STATCLASS vs. Geology error matrix for MLRA 28b.
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t-Test Model
Depositional {Transitional|Erosional| Totals Agreement Type | Type
- (%) Error (%)| Error (%)
D |Depositional 516770 35833 221| 552824 93.48/ 113.85 6.52
é Transitional 628819 2357511] 118643 3104973 75.93 33.64 24.07
O |Erosional 570 1008809| 1460425| 2469804 59.13 4.81 40.87
Totals 1146159 3402153| 1579289 6127601 70.74 29.26 29.26
Table XVIII. STATCLASS vs. STATSGO error matrix for MLRA 28b.
t-Test Model
& Depositional | Transitional|Erosional| Totals |Agreement ErTr)ch?T;o) ETr)Z)pril/L)
8 Depositional 885432 279606 1641| 1166679 75.89 22.35 24.11
':t Transitional 258264 2248746| 99689 2606699 86.27 44.25 13.73
'(7) Erosional 2463 873801| 1477959| 2354223 62.78 4.30 37.22
Totals 1146159| 3402153] 1579289 6127601 75.27 24.73 24.73
Table XIX. STATCLASS vs. SSURGO error matrix for MLRA 28b.
t-Test Model
Depositional |Transitional|Erosional| Totals Agresment) | vype | Type I
o (%) Error (%)| Error (%)
g Depositional 938346 520800 952| 1460098 64.27 14.23 35.73
8 Transitional 207509, 2014972 78604| 2301085 87.57 59.79 12.43
@ |Erosional 302 855111| 1458528| 2313941 63.03 3.44 36.97
Totals 1146157| 3390883| 1538084 6075124 72.62 27.38 27.38




Table XX. PROBCLASS vs. Geology error matrix for MLRA 28b.

Probability Model
. . ' Type | Type Il
" Depositional (Transitional|Erosional| Totals |Agreement Error (%)| Error (%
9 |Depositional 513259 41566 326] 555151 92.45| 107.22 755
9 [Transitional 594658| 2222133 300086| 3116877 71.29 21.08 28.71
O [Erosional 582 613933| 1872709 2487224 75.29 12.08 24.71
Totals 1108499 2877632 2173121| 6159252 74.82 25.18 25.18
Table XXI. PROBCLASS vs. STATSGO error matrix for MLRA 28b.
Probability Model
! u ; Agreement| Type | Type ll
- Depositional {Transitional|{Erosional| Totals (%) Error (%)| Error (%)
8 Depositional 866032 298917 3074] 1168023 7415 20.76 25.85
E Transitional 239966 2089200/ 291420 2620586 19,72 30.09 20.28
5 Erosional 2501 489515| 1878627| 2370643 79.25 12.42 20.75
Totals 1108499 2877632 2173121| 6159252 78.48 21.52 21.52
Table XXII. PROBCLASS vs. SSURGO error matrix for MLRA 28b.
Probability Model
» - ; Agreement| Type | Type Il
o Depositional|Transitional|Erosional| Totals (%) Error (%) Error (%)
8 Depositional 918566 540257 5835| 1464658 62.72 12.97 37.28
8 Transitional 189623] 1880770] 238261| 2308654 81.47 42.64 18.53
@ |Erosional 308 444234| 1882524 2327066 80.90 10.49 19.10
Totals 1108497] 2865261] 2126620] 6100378 76.75 23.25 23.25
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agreements of 92.4% for depositional, and 79.7%, and 81.5% for transitional in the
comparisons to Geology, STATSGO, and SSURGO, respectively. In the error matrix for
PROBCLASS vs. Geology (Table XX), the highest Type I error is 107.2% for the
depositional class, and the high Type II error is 28.7% for the transitional class. The high
Type I error for Table XXI (PROBCLASS vs. STATSGO) falls to the transitional class at
30.1%, and the high Type II error is 25.9% for the depositional class. In Table XXII
(PROBCLASS vs. SSURGO), the highest Type I error is 42.6% in the transitional class,

and the high Type Il error is 37.3% for the depositional class.

Performance Analysis

The final method for assessing the model outputs against the independent
geographical datasets was to analyze the actual performance of the models versus the
accuracy one might expect from random chance. To this end, Kappa statistics were
calculated for each model output/reference dataset pair (Campbell, 1987). Table XXIII
presents a summary of the Kappa statistics generated for the UTTR. In this analysis, all
three models performed best in comparison to the SSURGO data. second-best in

comparison to the Geology classification, and marginally worse for the Macroterrain

Table XXIII. Kappa statistics for the UTTR.

Geology |STATSGO|SSURGO
LTCLASS 0.5429 0.5420,  0.7268
STATCLASS 0.6026 0.5861 0.7820
PROBCLASS 0.6007 0.5861 0.7784




77
Landtype Association classification for the STATSGO data. The single best model
performance was STATSCLASS vs. SSURGO data, at 78.2% better than can be expected
by random chance. The worst model performance for the UTTR was LTCLASS vs.
STATSGO, that performed 54.2% better than random. Table XXIV presents a summary
of the Kappa statistics calculated for the MLRA 28b study area. In this analysis, one finds
that the performance of the models versus reference datasets was not as consistent as was
the case in the UTTR study area. Here, though LTCLASS did perform marginally better
for SSURGO data than it did for STATSGO, both STATCLASS and PROBCLASS
performed better in comparison to STATSGO than for any other independent dataset. The
highest performance for the MLRA 28b study area was PROBCLASS vs. STATSGO at
65.9% better than random chance. The lowest Kappa statistic was seen for LTCLASS vs.

Geology, at 29.8% better than random chance.

Table XXIV. Kappa statistics for MLRA 28b.

Geology | STATSGO |[SSURGO
LTCLASS 0.2977 0.4420, 0.4673
STATCLASS 0.5106 0.6069| 0.5767
PROBCLASS 0.5836 0.6591] 0.6398
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DISCUSSION

Model Assessment

By every method of analysis applied in this study, all three models performed
better when applied to the UTTR than they did when applied to MLRA 28b. This is likely
due to the greater homogeneity of the UTTRs landscape, wherein over 75% of the area is
classified as Basin Floor by all three independent geographical datasets; whereas the
landscape of MLRA 28b is much more heterogeneous, and the three Macroterrain
Landtype Association classes are much more evenly represented. This conclusion is
further suggested by the fact that the highest class-agreement in 7 out of 9 total error
matrices for the UTTR (Tables V-XIII) falls to the Basin Floor (depositional) class. This
is only the case for 5 out of 9 error matrices for MLRA 28b (Tables XIV-XXII), three of
which apply to LTCLASS (Tables XIV-XVI), where the over-representation of the Basin
Floor class is evidenced by high Type 1 errors for all three comparisons. While this
landscape-based discrepancy in model performance should be noted, as it may be an issue
in applying these methods to different landscapes. it does not appear to have given a
performance advantage to any one model over the other two.

Based on the three methods of performance analysis applied in this study, the
model which best classifies a landscape’s slope data into Macroterrain Landtype
Associations is the probability-based stochastic model, PROBCLASS. This model’s
average Kappa statistic for its performance against all three independent reference
datasets over both the UTTR and MLRA 28b study areas is 0.6413. The average Kappa

statistic for STATCLASS is 0.6108, and for the slope-based deterministic model,
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LTCLASS, the average Kappa statistic is only 0.5031. Based solely upon these statistics,
and the correlative error and agreement statistics from which Kappa is derived, one would
expect a recommendation that future users apply the PROBCLASS model to their
Macroterrain Landtype Association classifications. But a thorough analysis of the
performance must also take into account the costs of applying a particular method, as well
as the benefits.

PROBCLASS. while it does out-perform STATCLASS by some margin, is an
iterative model that takes a considerable amount of time to prepare and run. While
STATCLASS takes about the same amount of preparation time (2 to 5 hours for
digitizing training sites, efc.) as PROBCLASS, the average run time for STATCLASS
was just over one hour, versus nearly four days for a set of 100 iterations in
PROBCLASS. When classifying large landscape areas, memory space may also prove to
be an issue, as the execution of PROBCLASS requires greater disk space than
STATCLASS by an amount proportionate to the number of iterations. LTCLASS requires
no model preparation other than filling in DEM sinks when desired, and less disk space
than either of the stochastic models. Run time for LTCLASS averaged only about twenty
minutes, much shorter than the other two models. Furthermore, LTCLASS required little
expertise to run, asking only that the user input reasonable slope thresholds for the class
delineation; whereas considerable technical and geomorphic and/or ecologic knowledge
was required in the preparation for and execution of STATCLASS and PROBCLASS.

LTCLASS bore other advantages, owing to its nature as a deterministic model.

Unlike stochastic models that are, in theory, unbiased models, deterministic models such
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as LTCLASS are goal-oriented. Such models can be fine-tuned to apply well to a small
area in ways that stochastic models cannot. For example, an examination of the error
matrices for LTCLASS (Tables V-VII) shows that the error of commission is consistently
highest for the Massif (erosional) class, whereas the error of omission is consistently
highest for the Bajada (transitional) class. This would indicate that Massif is being over-
classed, and Bajada is being under-classed. Thus, the model LTCLASS’s classification
could be adjusted to fit the reference data better by raising the slope threshold which
discriminates between Massif and Bajada. This would decrease the map area classed as
Massif, and increase the area classed as Bajada, without affecting the Basin Floor class.
Whether this “tuneability” is a desirable feature is dependent upon the users’ need for an
“accurate” model versus an “unbiased™ one. Unfortunately, the ability to fine-tune a
model does not necessarily apply to large study areas. The over-classing of Massif in the
UTTR is a direct result of the lowering of the slope threshold to match the needs of
applying the same criteria in the MLRA 28b study area. An adjustment to the criteria to
improve the performance for the UTTR would considerably degrade LTCLASS s

performance for MLRA 28b.

Conclusions

Based on the analyses of the models™ performance, and the above ad hoc
assessment of the various costs and benefits of running the three Macroterrain Landtype
Association Classification models. it is recommended that for most applications in an
ecological classification setting, that STATCLASS be the model applied. While it was

marginally outperformed by PROBCLASS in an overall average (STATCLASS actually
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had a higher average Kappa statistic for the UTTR than did PROBCLASS) its advantages
in speed and disk space appear to outweigh this minor disadvantage. Where a definitive
measure of the confidence of a classification is required, probability grid generated by
PROBCLASS is far superior to the #-value grids generated by STATCLASS in terms of
ease-of-interpretation, and should be considered as the recommended application. The
only circumstances in which LTCLASS would be recommended are those in which a
“quick and dirty” assessment of the Landtype Associations is desired, rather than a full
classification: or any situation in which slope-thresholds are required as classification

criteria.

Suggestions for Further Work

In the years since these models were first developed, other spatial classification
methods such as Classification and Regression Tree (CART) analysis have gained
popularity. Other methods, such as fuzzy-logic classification, were available at the time
of this study, but were deemed to be too complicated to implement for the time frame of
the HAFB TES project. It is suggested that other such methods be explored to determine
their performance in relation to the methods examined in this study.

It is further suggested that additional assessment of the performance of
PROBCLASS versus that of STATCLASS may reveal a greater disparity than that
measured in this study. This is because the performance of STATCLASS is largely
dependent upon a single randomly sampled population from the training data. There is a
chance that the random populations generated in the course of this study better

represented the Macroterrain Landtype Associations than may be expected on average.



An averaging of the assessment statistics from further iterations of STATCLASS may
show that PROBCLASS performs much better than is suggested in this study (relative to

the performance of STATCLASS).
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Appendix A: AML code for LTCLASS
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/* LTCLASS.AML

/* Frank L. Dougher Nov. 11, 1998
/* This aml produces LT masks from entered parameters
/*

/* Run aml once for each class above basal class.

/* Combine Landtype masks with an addition statement.
/* e.g. output = (landtype02 + landtype03 + 1)

&type 'LISTING GRIDS FOR THIS DIRECTORY...\\'

lg

&type '\\'

/* query user for operational variables

&sv slope := [response 'ENTER THE DEGREE-SLOPE GRID <MOASLOPE>'
moaslope]

&sv flowd := [response 'ENTER THE FLOW DIRECTION GRID <MOAFLOWD>'
moaflowd]

&sv degs := [response 'ENTER SLOPE BREAK POINT IN DEGREES']

&sv slpname := [response 'ENTER NAME OF SLOPE MASK']

&sv ltname := [response 'ENTER NAME OF LANDFORM MASK']

&type '\GENERATING SLOPE MASK'

/* remove existing model output
&1if [exists %slpname% -grid] &then kill %slpname% all

/* conditional statement to create slope mask
$slpname% = con((%slope% >= %degs%), 1, 0)

&type '\GENERATING LANDTYPE MASK'

/* remove existing model output
&1f [exists %ltname% -grid] &then kill %ltname$% all

/* watershed function imposes class-superposition
$ltname% = watershed(%flowd%, %slpname%)

&return
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Appendix B: AML code for STATCLASS

88



89

/* STATCLASS.AML

/* Frank L. Dougher Feb. 8, 1999
/*

/* To be run in GRID.

/*

/* This AML will classify a grid into a chosen number of classes
/* by T-test comparison of Std. Dev. and Means of samples of

/* of class archetypes.

/*

/* Running this aml with ANY argument will force the running mode
/* into a dumb-terminal mode for non-Xwindows terminals.

/* argument sets dumb-terminal mode
&args no_menu

&if [null %no_menu%] &then &term 9999
&severity &error &routine exit

/* intro statement

&type

&type

&type

&type This is STATCLASS. This AML will classify an image by statisical
comparison to class-type images.\The image to be classified will have
the focal mean and focal standard deviation calculated, and then
compared to masked images of the class-types.\This program must reside
in the same directory as your data and RANDSAMP.AML\If you do not have
RANDSAMP.AML, please quit and get it before running STATCLASS.AML.\Thank
You .

&type

&type

&type
&sv goon = [query 'Shall we go on' .true.]

&if © %goon% &then &stop

{* get the input grids and variables *X*k&k®E X xRl k¥ REkE®dn L
/ *

/* Select input grid from pop-up menu.

/*
&type Please select the grid to be classified
&if [null %no_menu%] &then &sv in _grid = [getgrid *]
&else
&do
1g
&sv in grid = [response 'in_grid is ']
&end
&type

/* Enter the output grid name, and check to see if it already exists.
/*

&label getout

&sv out_grid = [response 'What would you like to call your classified
output grid' output c]

&1f [exists %out_grid% -grid] &then &type %out_grid% exists.

&if [exists %out_grid% -grid] &then &goto getout

&type

/* Promt user to save t-value output, enter the output grid name,
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/* and check to see if it already exists.

/*
&sv doval = [query 'Do you want a T-value output grid' .false.]
&type
&1f %doval% &then
&do
&label getval
&sv out val = [response 'What would you like to call your T-value

output grid’ output_t]
&1f [exists %out_val% -grid] &then &type %out val% exists.
&1f [exists %out_val% -grid] &then &goto getval

&end
&type
/* Enter width of square focal window.
/*
&sv win _width = [response 'What focal width (square) do you want to use?
0dd number please' 7]
&type
/* Enter N-value.
/*
&sv samp n = [response 'How many samples ''N'' do you want taken from
each class' 50]
&type

/* Select %num class%# of class-type grids from pop-up menu.

/*

&sv num class = [response 'How many classes will this model produce']
&do count = 1 &to %num_class?% &by 1
&type Please select class-type%count#%
&if [null %no_menu%] &then &sv class%count% = [getgrid *]
&else
&do
lg
&sv class%count% = [response 'Class' ]
&end
&type
&end

/* Promt user to save mean and standard deviation output, enter the

/* output grid names, and check to see if they already exist.
/ *
/

&sv gotem = [query 'Do you already have a mean and standard deviation'
.false.]

&1f %gotem% &then &do

&sv saveem = .true.

&end

&else &sv saveem = [query 'Do you want to save the focal mean and

standard deviation at the end of the program' .false.]
&if %saveem% &then

&do
&label getmean
&sv out_mean = [response 'Name of focal mean output' out_mean]

&if © %gotem% &then &do

&1if [exists %out _mean% -grid] &then &type %out mean% exists.
&if [exists %out _mean% -grid] &then &goto getmean
&end
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&label getstdv
&sv out_ stdv = [response 'Name of focal standard deviation output'
out_stdv]
&if © %gotem$% &then &do
&if [exists %out_stdv% -grid] &then &type %out_stdv% exists.
&if [exists %out_stdv% -grid] &then &goto getstdv
&end
&type
&end

/* Start Of Calculations ISR SRR EEEE RS R R SRR SRR EEEEEEEEEEESEES

/*

/* Focal Mean & Standard Deviation
/*

&if * %gotem% &then &do

&type Calculating Focal Mean

&if © %saveem% &then &sv out_mean = [SCRATCHNAME]

$out_mean% = focalmean(%in grid%, rectangle, %win_width%, %win_width%,
nodata)

&type

&type Calculating Focal Standard Deviation

&if © %saveem% &then &sv out_stdv = [SCRATCHNAME]

$out_stdv% = focalstd(%in_grid%, rectangle, %win_width%, %win_width¥,
nodata)

&type

&end

/* Class Statistics

/*
&type Running Stats on Classes
&sv file unit = [open %$out grid%.log openstatus -write]
&do count = 1 &to %num_class% &by 1
&type Class%count%:
&sv temp class = [value class%count%]
&sv temp n = %samp_ n%
&sv nmintest = .false.
&sv nmincount = 1

&do &until %nmintest% or %nmincount% >= 10
&r randsamp.aml %temp class% %temp_n% %win_width%

&sv c%count% mean = %.statmean%

&sv c%count? _stdv = %.statstdv%

&sv c%count% n = %.statn%
&echo &on

nmin_numer = scalar(sqr(2.54 * %.statstdv%)) /* 2.54 is the t-value
for 95% confidence

nmin_denom = scalar(0.05 * %.statmean%) /* 0.05 is remainder for
100% - 95%

nmin = scalar (int ((nmin_numer / nmin_denom) + .5))

[show nmin]
[min 100 %$nmin%]

&sv nmin
&sv nmin

o |l

&1f %nmin% <= [value c%count% n] &then &sv nmintest = .true.
&else &do
&type [quote Running again. c%count% n = [value c%count$%$ _n], n_min
= %$nmin%]
&sv temp_n = %nmin%
&end

&echo &off



&sv nmincount = $nmincount% + 1

&end
&sv writestat = [write %file unit% [quote class%count%_mean = [value
c%count% _mean]]]
&sv writestat = [write %file unit% [quote class%count%_stdv = [value
c¥count%_stdv]]]
&sv writestat = [write %file unit% [quote class%count% n = [value
c%count% nll]
&end
&sv closestat = [close %file unit#%]
&type
/* Create T-value grids
/*
&type Creating T-value grids:
&do count = 1 &to %num_class% &by 1
&type Class %count#%
&sv c_mean = [value c%count% mean]
&sv c_stdv = [value c%count% stdv]
&sv ¢_n = [value c%count%_n]
&sv t%count% out = [SCRATCHNAME]
&sv temp t = [value t%count% out]
DOCELL
siglsg = scalar (sqr (%out_stdv%))

sig2sq = scalar (sgr(%c_stdv%))

mlval = scalar (%out_mean%)
m2val = scalar (%c_mean%)
nlval = scalar (sqr (%win_width%) - 1)
n2val = scalar (¥samp n% - 1)
numer = scalar (abs(mlval - m2val))
denom = scalar (sqrt((siglsqg / nlval) + (sig2sg / n2val)))
Stemp t% = (numer / denom)
END
&end
&type

/*‘k**********‘k***********************************************

/* Classifying the Image

/*
&type Classifying Image
&sv end = %num _class% - 1
&1if %end% < 1 &then &call exit
/*%out_grid% = (%tl_out% / %tl out%)
DOCELL

¢ _num = scalar (0)

&sv tmp_a = [value tl_out]

o _val = scalar (%tmp_a¥%)

&do count = 1 &to %end% &by 1
&sv countb = %count% + 1
&do &while %countb% <= %num_class%

&sv tmp _a = [value t%count% out]
&sv tmp_b = [value t%countb%_out]
if (%tmp_a% <= %tmp_b% & %tmp_a% <= o_val)
begin
c_num = scalar (%$count%)
o val = scalar(3tmp_a¥%)
end

else if (%tmp _b% <= o _val)



begin
c_num = scalar (%countb%)
o_val = scalar (%tmp_b%)
end
&sv countb = %countb% + 1
&end
&end
$out_grid% = (c_num)

&if %doval% &then
$out_val% = o_val

END

&type

/*****'k******************************************************

/* Clean up the scratch files.

/*

&if * %$saveem% &then &call killms

&do count = 1 &to %num_class% &by 1
&sv killme = [value t%count$%_out]

/* kill %killme% all
&sv outtname = %out_val%_%Scount%
rename %killme% %outtname$

&end

/* Output final message and quit.

/*

&type Process all done. Your output is in %out_grid%.
&type

&return

/* Kill the output grids for focal mean and standard deviation
/*
&routine killms
kill %out_mean% all
kill %out_stdv% all
&return

/* Exit from an error condition.
&3
&routine exit
&type ERROR encountered in randsamp.aml: Bailing out
&stop
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Appendix C: AML code for RANDSAMP.AML



/* RANDSAMP .AML

/* Frank L. Dougher Feb. 3, 1999
/*

/* modified from:

/* RANDPOINT.AML

/* Thad Tilton Jan. 8, 1997
/*

/* To be run in GRID.

/*

/* This AML will sample from a grid at a number of random points

/* defined by the user.

/* User defines the number of points, the grid to be sampled from,

/* and an output file (if desired).

&args sampgrd num_pts winsize
&severity &error &routine exit

/* First, get the arguments.

&if [null %$sampgrd%] &then
&do

&type Usage: &r RANDSAMP <in grid> <number of samples> {window_width}

&return
&end

&if * [exists %$sampgrd% -grid] &then

&do

&type %$sampgrd% does not exist.
&return

&end

&if [type %num_pts%] ne -1 &then
&do
&type %num_pts% must be an integer.
&return
&end

&if * [null %$winsize%] &then
&if [type %winsize$%] ne -1 &then
&do
&type %$winsize% must be an integer.
&return
&end

/* Next, the required parameters are obtained and the appropriate

variables
/* are calculated

&describe %sampgrd$%

&sv xmin = %GRD$SXMIN%

&sv ymin = $GRDSYMIN%

&sv xdiff = %GRDSXMAX% - $%$GRDSXMIN%
&sv ydiff $GRDSYMAX% - %$GRDSYMIN%
&sv 1 =1

0}

/* Prompt user to see if they want to use focalmeans in their sampling.

&if [null %$winsize%] &then &sv dofocal = [query 'Do you wish to use

focal window means in your sampling' .false.]



&else
&do
&if $winsize% "= 1 &then &sv a = 2
&else &sv a = 1
&goto start
&end

&if %dofocal% &then &call focalsamps
&else &sv a =1

/* Now, for NUM PTS iterations: generate random points, sample grid
value,
/* test for NODATA, and record good values.
&label start
&type
/*&do 1 = 1 &to %num pts% &by 1
&label sample
&call rand pt
&if %a% = 2 &then

&do
&sv foc_tot = [calc %winsize% * %winsize%]
&sv dx = %GRDSDX%
&SV wmo = %winsize% - 1
&sv dp = [calc %wmo% / 2]
&sv winsampt = 0
&do dpx = -%dp% &to %dp%
&do dpy = -%dp% &to %dp%
&sv dgx = [calc %dpx% * %dx%]
&sv dgy = [calc %dpy% * %dx%)
&sv x = %$x-coord% + %dgx%
&sv y = %Sy-coord% + %dgy%
&sv wsamp = [show cellvalue %$sampgrd% %x% %y%]
&if [type %wsamp%] = 1 &then
&do
&sv winsampt = 0
&goto sample
&end
&sv winsampt = %$winsampt$% + %$wsamp$
&end
&end
&sv sample%i% = [calc %Swinsampt% / %foc_ tot%]
&end

&else &if %a% = 1 &then
&sv sample%i% [show cellvalue %$sampgrd$% $%$x-coord% %y-coord%]
&if [type [value sample%i%]] = 1 &then &goto sample
&sv 1 = %1% + 1
/*&end
&1if %i% le %num_pts% &then &goto sample

/* Caluate statistics for sample set.
&sv sampsum = 0

&sv 1 = 1

&do &while %i% <= %num pts%

&sv sampi = [value sample%i%]
&SV sampsum = %sampsum$ + %sampi%
&sv 1 = %i% + 1

&end
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&sv mean = [calc %sampsum% / %num pts$]

&sv diffsum = 0
&sv i = 1

&do &while %i% <= %num pts%
&sv sampo = [value sample%i%]
dif = scalar(sqr ($sampo% - %$mean$))
&sv diff = [show dif]
&sv diffsum = %$diffsum% + %diff%
&sv 1 = %i% + 1
&end
&sv vari = [calc %diffsum% / %num_pts$%]

sd = scalar (sqgrt (%vari%))
&sv std _dev = [show sd]

/* If the user specified an output filename, print to that file.

/* Otherwise print to screen.
&call out
&return

/

/* prompt user for size of focal window.
&routine focalsamps
&sv a = 2

&sv winsize = [response 'What focal width

Odd number please' 3]
&return

/* a random grid is generated containing random X and Y coordinates in

the VAT

/* within the range specified

&routine rand pt

xc = scalar(rand() * %$xdiff% + %$xmin%)
&sv x-coord [show xc]

yc = scalar(rand() * $ydiff% + %ymin$%)
&sv y-coord [show yc]

&return

/* Print output to screen.
&routine out
&type
&ty—r:,e *****t*SAMPLE*******
&type MEAN: %mean$%
&type STD.DEV.: %std _dev$%
&type N: %$num pts?
&type
&type *******GRID*********
&type GRID MEAN: $GRDSMEAN%
&type GRID STD.DEV. $%$GRDSSTDV%

&type

/* output global variables for statclass.aml

&sv .statmean = %mean$%
&sv .statstdv = %$std_dev%
&sv .statn = %num _pts%

[Fmmm e e e e - routines------—-~---——w-
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do you want to use?



&sv sampi = 00
&return

/* Exit from an error condition.
&routine exit

&type ERROR encountered in randsamp.aml:
&stop

Bailing out
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Appendix D: AML code for PROBCLASS
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/* RUNLOOP .AML
/* Frank L. Dougher Mar. 8, 2002
/*
/* This AML runs ITERCLASS.AML for the number of iterations
/* specified by the variable count.
/*
&sv count = 1
&do &while %count% <= 100
&sv countstring = %count$%
&if %count% <= 99 &then &sv countstring = O%countstring$
&1f %Scount% <= 9 &then &sv countstring = 0%countstring%
&r iterclass.aml nr07c%countstring$
&sv count = %Scount% + 1
&end

/* ITERCLASS.AML

/* Frank L. Dougher Mar. 8, 2002

/*

/* modified from:

/* STATCLASS.AML

/* Frank Dougher Feb. 8, 1999

/*

/* To be run in GRID.

/*

/* This AML will classify a grid into a chosen number of classes
/* by T-test comparison of Std. Dev. and Means of samples of
/* of class archetypes.

&args no_menu

grid

&if [null %no_menu%] &then &term 9999

&severity &error &routine exit

/* get the input grids and variables **kxkkkkkkkkokkk ok ok okk ok ko k ok ok

/*

/* Select input grid from pop-up menu.

/ *
/*&type Please select the grid to be classified
&if [null %no_menu%] &then &sv in_grid = [getgrid *]
&else
&do
e 1g
&sv in_grid = nr_slope
&end
/*&type

/* Enter the output grid name, and check to see if it already exists.
//*

&label getout

&sv out_grid = %no_menu%

&if [exists %out_grid% -grid] &then &type %out grid% exists.

&if [exists %out_grid% -grid] &then &goto getout

/*&type



/* Promt user to save t-value output, enter the output grid name,

/* and check to see if it already exists.

/*

&sv doval = .false.

/*&type

&if %doval% &then
&do

&label getval

&sv out val = [response 'What would you like to call your T-value

output grid" output_t]
&if [exists %out_val% -grid] &then &type

$out_val% exists.

&1f [exists %out_val% -grid] &then &goto getval

&end
&type
/* Enter width of square focal window.
/*
&sv win_width = 7
/*&type
/* Enter N-value.
/*
&sv samp n = 50
/*&type
/* Select %num class%# of class-type grids from pop-up menu.
/*
&sv num_class = 3
&sv classl = sampval
&sv class2 = sampbaj
&sv class3 = sampmas

/* Promt user to save mean and standard deviation output,

/* output grid names, and check to see if they already exist.

/%

&sv gotem = .true.
&1if %gotem% &then &do
&sv saveem = .true.

&end
&if %$saveem% &then
&do

&label getmean
&sv out_mean = area30_07m
&1if © %$gotem$% &then &do
&1if [exists %out mean% -grid] &then &type
&if [exists %out mean% -grid] &then &goto
&end
&label getstdv
&sv out_stdv = area30 07s
&if © %$gotem% &then &do
&1f [exists %out stdv% -grid] &then &type
&if [exists %out stdv% -grid] &then &goto
&end
/* &type
&end

$out_mean% exists.
getmean

$out_stdv% exists.
getstdv

enter the
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/* Start Of Calculations khkhkkkhkhk kA khkhkkhhkhkkkhkhkkkhkdhkohhkdkhkkhkkhkkhokhkxk

/*

/* Focal Mean & Standard Deviation
/*

&if © %$gotem% &then &do

/* &type Calculating Focal Mean

&if © %saveem% &then &sv out mean = [SCRATCHNAME]

$out_mean% = focalmean(%in grid%, rectangle, %win width%, %$win width%,
nodata)

/* &type

/* &type Calculating Focal Standard Deviation

&if © %saveem% &then &sv out stdv = [SCRATCHNAME]

$out_stdv% = focalstd(%in_grid%, rectangle, %win width%, %win width$%,
nodata)

&type

&end

/* Class Statistics

/*
/*&type Running Stats on Classes
/*&sv file_unit = [open %out grid%.log openstatus -write]
&do count = 1 &to %num_class% &by 1
/* &type Class%count%:
&sv temp class = [value class%count%]
&SV temp_n = %samp_n$%
/* &sv nmintest = .false.
/* &sv nmincount = 1

/* &do &until %nmintest% or $%$nmincount$% >= 10
&r randsamp.aml %temp class% %temp n% %win_width$%

&sv c%count%_mean = %.statmean%
&sv c%count%_stdv = %.statstdv?
&sv c%count% _n = %.statn%
/* nmin _numer = scalar(sgr(2.54 * %.statstdv¥)) /* 2.54 is the t-
value for 95% confidence
/* nmin_denom = scalar(0.05 * %.statmean%) /* 0.05 is remainder for
100% - 95%
g* nmin = scalar (int((nmin_numer / nmin_denom) + .5))
/* &sv nmin = [show nmin]
/* &sv nmin = [min 100 $nmin%]
[ * &if %nmin% <= [value c%count%_n] &then &sv nmintest = .true.
/* &else &do
[* &type [quote Running again. c%count% n = [value c%count% _n],
n_min = %nmin%]
/* &sv temp_n = %nmin%
/* &end

/*&echo &off

/* &sv nmincount = %$nmincount$% + 1

/* &end

/* &sv writestat = [write %file unit% [quote class%count% _mean = [value
cscount% _mean]]]

/* &sv writestat = [write %file unit% [quote class%count%_stdv = [value

c%count%_stdv]]]
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/* &sv writestat = [write %file unit% [quote class%count% n = [value
c%count% n]l]]

&end

/*&sv closestat = [close %file unit%]

/*&type

/* Create T-value grids
/*
/*&type Creating T-value grids:
&do count = 1 &to %num class% &by 1
/* &type Class %$count%
&sv c_mean = [value c%count%_mean]
&sv c_stdv = [value c%count%_stdv]
&sv c_n = [value c%count%_n]
&sv t%count% out = [SCRATCHNAME]
&sv temp t = [value t%count% out]
DOCELL
siglsg = scalar(sgr (%out_stdvs))

sig2sq = scalar(sqgr(%c_stdv%))
mlval = scalar (%out_mean%)
m2val = scalar (%c_mean%)
nlval = scalar(sqgr(%win_width%) - 1)
n2val = scalar(%¥samp_n% - 1)
numer = scalar (abs(mlval - m2val))
denom = scalar(sqgrt((siglsqg / nlval) + (sig2sq / n2val)))
$temp t% = (numer / denom)

END

&end

/*&type

/*******‘k****************************************************
/* Classifying the Image
/*
/*&type Classifying Image
&sv end = %num_class% - 1
&if %end% < 1 &then &call exit
/*%out_grid% = (%tl _out% / %tl out%)
DOCELL
c¢_num = scalar(0)
&sv tmp_a = [value tl_out]
o_val = scalar(stmp_a¥%)
&do count = 1 &to %end% &by 1
&sv countb = %count% + 1
&do &while %countb% <= %num_class%
&sv tmp_a = [value t%count%_out]

&sv tmp_b = [value t%countb% out]
if (%tmp_a% <= %Stmp_b% & %tmp_a% <= o_val)
begin
c_num = scalar (¥count%)
o_val = scalar(%tmp_a¥%)
end
else if (%tmp_b% <= o _val)
begin
c_num = scalar (scountb¥%)
o_val = scalar (%tmp_b%)
end
&sv countb = %countb% + 1

&end



&end
$out _grid% = (c_num)
&if %doval% &then
tout_val% =

END

/*&type

/************************************************************

/* Clean up the scratch files.

/*

&if * %saveem?% &then &call killms

&do count = 1 &to %num_class% &by 1
&sv killme = [value t%count%_out]
kill %killme% all

/* &sv outtname = %out_val%_%count$%

/* rename %killme% %outtname%

&end

/* Output final message and quit.
/*

&type Your output is in %out _grid%.
&type

quit

&return

/* Kill the output grids for focal mean and standard deviation

/ *
/
&routine killms

kill %out_mean% all
kill %out_stdvs all

&return

/* Exit from an error condition.
/
/ *

&routine exit

&type ERROR encountered in randsamp.aml:

&stop

Bailing out
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/* PROBCLASS.AML
/* Frank L. Dougher Mar. 10, 2002

/*

&args in_root out_root

grid

/*&sv classlmask = [SCRATCHNAME]
/*&sv class2mask = [SCRATCHNAME]
/*&sv class3mask = [SCRATCHNAME]

&sv classlmask
&sv class2mask
&sv class3mask

$out root%1l
%$out_root%2
Sout_root%3

&sv count = 1
&do &while %count% <= 100
&sv countstring = %$count%

&if %count% <= 99 &then &sv countstring = 0%countstring$%
&1if %Scount% <= 9 &then &sv countstring = 0%countstring%
&if %count% = 1 &then &do
%$classlmask% = con(%in_root%%countstring% == 1, 1, 0)
%class2mask% = con(%in_root%%countstring% == 2, 1, 0)
$class3mask% = con(%in_root%%countstring% == 3, 1, 0)
&end
&else &do
&sv junkmask = [SCRATCHNAME]
rename %classlmask$% %junkmask$%
$classlmask% = (%junkmask$% + con(%in_root%%countstring% == 1, 1, 0))

kill %junkmask% all

rename %$class2mask$% %$junkmask$

$class2mask$% = (%junkmask®% + con(%in_root%%countstring% == 2, 1, 0))
kill %$junkmask% all

rename %class3mask$% %junkmask$%

$class3mask% = (%junkmask% + con(%in_ root%%countstring% == 3, 1, 0))
kill %junkmask% all
&end
&sv count = %count% + 1
&end

R R R R R R R R E R R R R R R R R R RS R R S S SRR R E R SR E R
/

DOCELL

if (%classlmask% > %class2mask% & %classlmask% > %class3mask%)
$out_root%p = %classlmask%

else if ($class3mask% > %class2mask% & %class3mask$% > %classlmask$)
tout root%p = %class3mask$%

else %out root%p = %class2mask?
END
DOCELL

if (%classlmask$% > %class2mask?% & %classlmask% > %$class3mask%)
fout_root%c = 1

else if ($class3mask% > %class2mask$% & %class3mask% >= %classlmask%)
$out_root%c = 3

else %out_root%c = 2
END

&return
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