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ABSTRACT 

Application of Biophysical Data to an Unsupervised Classification to Map 

Ecoregional Boundaries in the Desert Southwest 

by 

Paxton McClurg, Master of Science 

Utah State University, 2002 

Major Professor: Dr. R. Douglas Ramsey 

Program: Geography 

Ill 

An unsupervised classification was applied to continuous biophysical variables in 

an attempt to delineate ecoregional boundaries in the desert southwest. Output was then 

compared with ecoregions delineated by the Natural Resources Conservation Service 

(NRCS), the Environmental Protection Agency (EPA), and the Forest Service at the 

national level. An attempt was made to use the same biophysical variables for input into 

the unsupervised classification as was emphasized by the various agencies with their 

ecoregional classifications at the desert level. Major constraints included data availability 

at such a large study area, data resolution, and data that were continuous. This eliminated 

categorical data such as vegetation type, geology type, or soil texture. The aim of the 

study was to develop a more objective and repeatable approach to identifying self-similar 

geographic regions. 

(90 pages) 
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INTRODUCTION 

The Mojave Desert Ecosystem Program (MDEP) is a multi-agency 

cooperative project primarily overseen by the Department of Defense. The program goal 

is the development and implementation of a database to facilitate collection, storage, 

transfer, sharing, and analysis of information regarding inventories , resource assessments, 

scientific documentation, and land management by federal, state, regional , and local 

agencies and other interested parties (MDEP, 1998). A main objective is to provide land 

managers and resource specialists accurate and standardized data that can be used as a 

tool for informed decision making within the Mojave Desert ecosystem. 

The Mojave Desert Ecosystem Program uses the boundary defined by Bailey 

( 1994) and labeled the "Mojave Desert Section" (Section 322A) as the best 

approximation of the area covered by the Mojave Desert. This boundary was identified at 

a sca le of I :7 million as part of a national ecoregion mapping effort. Becau se of scale 

disparities , it was evident to MDEP managers that section 322A of Bailey's map did not 

adequately cover what was considered to be the entirety of the desert. An arbitrary 50-km 

buffer was added to the boundary to increase the size of the study area and therefore err 

on the side of commission. 

The question that I address in this thesis deals with the issue of scale and 

ecoregion definition. More specifically I deal with the process by which ecoregion 

boundaries can be detected by various definitions and made repeatable . Ecoregion 

boundaries are normally defined using criteria that support various research and 

management agendas, supporting end-user requirements . However, the artistic and scale­

dependent nature of boundary delineation needs a more objective evaluation and process . 



Defining an ecoregion boundary that different government agencies and 

scientific disciplines can agree on has proven to be a difficult task. Many issues come 

into question, such as what mapping criteria should be considered for boundary 

delineation and at which scale? Is it possible to acquire these data? Can the method of 

boundary delineation be duplicated with similar results? 

2 

Over the past two decades, the National Resources Conservation Service (NRCS), 

the Environmental Protection Agency (EPA), and the U.S. Forest Service have developed 

methods to classify ecoregions across the United States. Different criteria and 

combinations of criteria are considered at different levels on a nested hierarchy that range 

from broad scale (only a few regions across the continental U.S.) to fine scale (several 

subregions within one region). In other words, the relationships between biophysical 

criteria (i .e., topography , climate, vegetation, soils, geology) and the landscape vary with 

scale. The Mojave Desert Ecoregion can be defined at a certain level on these nested 

hierarchies and we can see which biophysical criteria were emphasized. The terms 

ecosystem and ecoregion will be used throughout this thesis. Ecosystem refers to the 

abstract, conceptual term that describes a complex of organisms and the biophysical 

environment functioning as a nonspatially defined unit, and ecoregion refers to a more 

concrete boundary identifying a specific geographic area that can include many 

ecosystems. 

There is no overriding definitive solution when delineating ecological boundaries 

across a landscape. These boundaries depend on the objective and scale that a land 

manager or researcher is working. The existing classification schemes can only provide a 
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guideline for recognizing ecological boundaries. Yet, in order to produce a map of 

ecoregions, specific boundary lines have to be drawn either by hand or by computer. This 

brings into question whether or not the map is an accurate (to scale) representation of the 

ecoregions' boundaries. Is it objective or subjective? Is the process repeatable? The 

definitions of these classification schemes provide the "ingredients," but do not provide a 

specific recipe. 

Objectives 

The overall objective of this thesis was to develop a quantitative approach for 

integrating spatial biophysical data to identify self similar geographic regions within the 

desert southwest , with a focus on the Mojave Desert. A second objective was to apply 

various combinations of input data to determine the sensitivity of ecoregion delineation 

given various input parameters , and determine if there are any data that play a key role in 

the identification of the ecoregion. A third objective was to test the effects of scale on 

ecoregion delineation. 

Study Area 

The study area for this thesis is confined to a rectangular area covering the 

southwestern portion of the U.S. It ranges from the Pacific Ocean off San Diego in the 

southwestern comer to central Utah in the northeastern comer and from near Lake Tahoe 

in the northwestern comer to near Phoenix in the southeastern corner. The total area is is 

just over 500,000 square kilometers. 



The landscape ranges in elevation from -83 m to 4500 m and in major climate 

zones from subtropical desert to Mediterranean to various temperate areas at higher 

elevations and latitudes. Vegetation cover consists of barren terrain to sparse Creosote 

Bush to a mixed western Sierra forest. Landforms range from mesas to deep canyons to 

low flat valleys to steep, rugged mountains. Soil climate regimes range from 

aridic /hypertherrnic to frigid/aquic (Miles and Goudey , 1997). 

4 



LITERATURE REVIEW 

Defining Ecoregions 

In the past, different government agencies and individuals have inventoried land 

resources based on their particular scientific discipline with a goal of answering specific 

functional questions (Bailey, 1996). For example, Hammond ( 1970) classified land 

forms, Hunt (1967) classified physiographic regions of the United States, Koppen (1931) 

classified climatic regions of the U.S., and Kuchler (1970) classified potential natural 

vegetation regions of the U.S. More specific to the desert west , Shreve (1942) first 

mapped the four North American deserts based on vegetation , Jaeger ( 1957) modified 

Shreve's boundaries, adding a fifth major desert (Benson and Darrow , 1944), and 

MacMahon ( 1979) modified these desert boundaries once again , adding animal 

distribution to vegetation (Trimble , I 989) (Figure I). 
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Today , land managers acknowledge that such a singular or intuitively multivariate 

focus rarely works because ecoregions are complex integrated systems. Consequently, 

land management agencies are shifting to an integrated , multivariate-based approach. 

This philosophy involves resource users in implementing resource management practices 

and decisions , and in establishing objectives for an area and its associated scale (Smith et 

al. , 1994). With this holistic management approach comes a need for classifying 

ecoregions that meet multipurpose needs of resource managers and at the same time allow 

enough flexibility to meet specific objectives. 

An ecosystem is considered a localized group of interdependent organisms 

together with the physical environment that they depend on. Unique flows of energy and 
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Figure 4. Regional Deserts according to Shreve , Jaeger , and MacMahon (Trimble, 
1989) . 

cycling of materials (nutrients and water) and informational feedbacks and feed forwards 

characterize each ecosystem whose boundaries in space and time are at least partially 

6 

arbitrary. There are many similar ecosystems located within an ecoregion , depending on 

definition and scale. The ecoregion concept brings the biological and physical worlds of 

a number of ecosystems together into a holistic framework within which lands and waters 



can be described, evaluated, and managed (Rowe, 1992). Other definitions for 

ecoreg1ons include: 

1) "A geographic unit of the landscape that includes all natural phenomena 

and that can be identified and surrounded by boundaries" (Bailey, 1996). 
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2) "Are based on the premise that relatively homogeneous areas exist and that 

these areas can be perceived by simultaneously analyzing a combination of 

causal and integrative factors including land surface form, soils, land use, 

and potential natural vegetation" (Omernik, 1987). 

3) "An integrated ecological unit consisting of the living organisms and the 

physical environment (biotic and abiotic factors) in a particular area" 

(Morgan, 1995). 

4) Any area where plants, animals, and other organisms interact with each 

other and their physical environment; boundaries are defined based on 

research or management objectives (Knight, 1994). 

To properly identify ecoregions, Rowe (1992) tells us to take a step back, look at 

the "big picture " of the entire environment, and then simplify and organize it. Knight 

(1994) tells us that organization of ecoregions into a map is based on specific objectives. 

Bailey (1996) tells us that setting ecoregional boundaries involves dividing the landscape 

where the defined mapping criteria exhibit a consistent or significant degree of change 

when compared with adjacent areas. Rowe (1980) states that "the key criteria are not to 

be found simply in the vegetation, in the soil profile , in the topography and geology, in 

the rainfall and temperature regimes , but rather in the spatial coincidences, patterning and 



relationships of these functional components" 

These descriptions lead us to the reality that mapping the earth's surface in a 

holistic sense is an art, not a science. There is no single correct way to delimit ecological 

units and no universal set of unit descriptions (Kaufman, 1997). Nor is there one scale 

with which these units can meet all management objectives. 

8 

What is needed is a classification and mapping system that captures the integrated 

nature of the land's resources (Bailey, 1996), and has the structure and flexibility for 

delineating ecological classes from a continental to a local scale (ECOMAP, 1996). This 

would require a hierarchical system, where one ecosystem may be broken down into 

multiple ecosystems that must fall within its boundaries. A nested hierarchy would allow 

land resources to be more easily managed from a broad scale to a fine scale and at the 

same time allow a better understanding of the relationship between the ecoregions and 

their subregions (ECOMAP , 1996). 

Classification of Eco regions 

In the past few decades, several researchers have used an integrated , hierarchical 

approach to classify ecoregions for geographical scales ranging from global to local 

(ECOMAP, 1996). Three that have received considerable attention by the federal 

government are the Major Land Resource Areas of the United States (MLRA), the 

Ecoregion Framework , and the National Hierarchical Framework of Ecological Units 

(ECOMAP) (McMahon et al., 2001). 

The MLRA was created by the USDA in 1981 and has broken the country into 

204 regions. It is characterized by a particular pattern of soils, geology, climate, water 



9 

resources, and land use (USDA, 1998). At a scale of l :3,750,000, it is part of a hierarchy 

with a parent system that was originally developed for national and regional agricultural 

concerns at a broader scale called land resources regions. The finer scale units in this 

hierarchy are STATSGO (I :250,000) and SURGO (1:24,000) and are more soil specific. 

While MLRA's were created to meet requests for a more integrated resource 

classification scheme, there has been criticism that there is still bias toward agricultural 

applications and the scale is too broad for local land management decisions (Omernik, 

1987). Figure 2 shows MLRA Regions 29 (Southern Nevada Basin and Range) and 30 

(Sonoran Basin and Range) that comprise the general Mojave and Sonoran Desert areas. 

Another classification was developed in 1987 by Jim Omernik for the EPA to 

assist managers with water quality decisions and to understand the relationships between 

watersheds and other land resources . Originally called Ecoregion Framework and then 

revised and renamed Ecoregions of the Conterminous United States, it combines many 

factors such as geology, physiography , vegetation, climate, soils, land use, wildlife , and 

hydrology. The classification is a hierarchical system consisting of four levels, level 1 

being the coarsest and breaking North America into 15 ecological regions. The relative 

importance of each characteristic varies from one ecological region to another regardless 

of the hierarchical level (EPA , 1996). Level 3 (compiled at a scale of l :2.5 million) 

identifies the Mojave area as region 14, Southern Basin and Range (Figure 3) . At this 

particular level, Omernik analyzed four "component " maps (Major Land Uses (Anderson , 

1970), Classes of Land-Surface Form (Hammond, 1970), Potential Natural Vegetation 

(Kuchler, 1970), and soils maps from various sources) together to sketch out regions that 
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Figure 2. MLRA Region 30, Sonoran Basin and Range (Scale- I :3,750,000). 

were relatively homogenous and to tabulate the identified classes of each. Several other 

maps were used for verification of regional accuracy of the component maps and to 

further support ecoregion patterns (Omernik, 1987). 

10 

In 1993, Robert Bailey of the U.S . Forest Service led the development of 

ECOMAP , which states that the primary purpose for delineating "ecological units" is to 

identify land and water areas at different hierarchical levels that have similar capabilities 
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Figure 6. Ecoregions of the Conterminous U.S., Region 14 - Southern Basin and 
Range (Scale - l: 1,250 ,000). 

and potentials for management. The units are developed at various scales by integrating 

multiple components such as climate , physiography , geology , soils , water , and potential 

vegetation (ECOMAP , 1996). ECOMAP states that all components are not equally 

important at all spatial scales. At coarse scales , the important components are largely 

abiotic , while at finer scales both biotic and abiotic components are important 

(ECOMAP , 1996). See Tables l and 2 for a guideline to these ecological units. 

11 



Table 1. Principal map unit design criteria of ecological units Adapted from ECOMAP, 
1996. 

Ecological Unit Principal Map Unit Design Criteria ** 

Domain -Broad climatic zones or groups (e.g., dry, humid , tropical) 

Division -Regional climatic types (Koppen 1931, Trewartha 1968). 
-Vegetational affinities ( e.g., prairie or forest). 
-Soil order. 

Province -Dominant potential natural vegetation (Kuchler 1964). 
-Highlands or mountains with complex vertical climate-
vegetation-soil zonation. 

Section -Geomorphic province , geologic age, stra tigraphy , 
lithology. 
-Regional climatic data. 
-Phases of soil orders, suborders or great groups. 
-Potential natural vegetation. 

Subsection -Geomorphic process , geologic age, stratigraphy, lithology. 
-Phases of soil orders, suborders or great groups. 
-Subregional climatic data . 
-PNV- fomiation of series. 

12 

Landtype Association -Geomorphic process , geologic formation, surficial geology, 
and elevation. 
-Phases of soil subgroup s, families, or series. 
-Local climate. 
-PNV - series, subseries, plant associations. 

Landtype -Landform and topography (elevation, aspect, slope gradient 
and position) . 
-Phases of soil subgroups, families, or series. 
-Rock type, geomorphic process . 
-PNV- plant associations .. 

Landtype Phase -Phases of soil families or series. 
-Landform and slope position . 
-PNV- plant associations or phases. 

*It should be noted that the criteria listed are broad categories of environmental and 
landscape components. 
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Table 2. Map scale and polygon size of ecological units. 

Ecological Unit Map Scale Range General Polygon Size 

Domain 1 :30 million or smaller 1,000,000's of square miles 

Division 1 :30 million to 1 :7.5 100,000's of square miles 
million 

Province 1: 15 million to 1 :5 I 0,000's of square miles 
million 

Section 1:7.5 million to 1:3.5 l ,000's of square miles 
million 

Subsection 1 :3.5 million to I O's to low 1 000's of square 
I :250,000 miles 

Landtype Association I :250,000 to 1 :60,000 high I 00's to l ,000's of acres 

Landtype I :60,000 to I :24,000 I O's to l 00's of acres 

Landtype Phase 1 :24,000 or larger < 100 acres 

The ecoregions at the upper four levels (Table 3) of the nested hierarchy have 

been mapped in "Ecoregions of the United States" (Bailey, 1994). Climatic regimes and 

regional climates are an important boundary criteria at these broad scales. Other factors , 

such as geomorphic process, soils, and potential natural communities, take on equal or 

greater importance than climate at the lower four levels (ECOMAP , 1996). The latest 

sub -ecoregion in this hierarchy to have been mapped at a national level is the "section," 

which is described in "Ecological Subregions of the United States: Section Descriptions" 

(McNab and Avers, 1994) (Table I). 

What makes the ECOMAP classification scheme different from the others is the 

term "ecological units." Ecological units address the spatia l distributions of relatively 



stable associations of potential conditions (ECOMAP, 1996). Classifying ecological 

units is only the first step to mapping ecoregions. The second step is to combine 

ecological units with maps of existing conditions (current vegetation, wildlife , water 

quality, land use) that change readily through time . This second step depends on 

management objectives. The combination provides a means of addressing spatial and 

temporal variations that affect the structural and functional attributes of ecosystems 

(ECOMAP, 1996). 

As mentioned earlier, there is no exact science to defining and mapping 

ecosystems or ecoregions. It depends on the research or management objectives. Once 

these objectives are determined , the goal is to combine stable and dynamic biophysical 

conditions to meet the objectives. Ecosystem boundaries therefore vary according to 

objectives, but the boundarie s of ECOMAP's ecological units are not meant to change. 

They are meant to be the permanent ingredient , or base, for ecoregion classification. 
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Ecoregions based on various objectives allow researchers to compare outcomes 

and come to an understanding of commonalities. To date , there is an ongoing effort 

under the Interagenc y Memorandum of Understanding (McMahon et al., 2001) to develop 

a common spatial framework of ecological units of the United States based on lessons 

learned from past ecoregion mapping efforts. The Interagency goal is to ease the 

exchange of spatial ecological data and information across agency boundaries for a 

common benefit (ECOMAP , 1996). This will significantly contribute to the 

understanding and refinement of each of the existing classifications. ECOMAP's 

ecological units , the EPA's Ecoregion Framework , and the USDA's Land Resource 
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Regions and MLRAs will be used as guides for this effort (McMahon et al., 200 l ). 

The Mojave Desert Ecosystem Program (MDEP) defined the Mojave ecoregion 

according to Bailey's delineation of sectional ecological units. The "Mojave Desert 

Section," labeled 322A, is shown in Figure 4 and is compared to MLRA Region 30 in 

Figure 5 and Omemik 's Region 14 in Figure 6. MDEP added a SO-kilometer buffer to 

Section 322A to include any areas omitted from Bailey's original I :7.5 million scale map 

(Figure 7). This erred on the side of commission, but also had the added effect of 

including areas covered by MLRA and Omernik ecoregions which stretched outside 

Bailey's definition. All three Mojave ecoregions encompass four states: California , 

Nevada, Arizona, and Utah. 

Biophysical Characteristics of the Mojave Desert Ecoregion 

The following are general descriptions of stable /potential biophysical data across 

the Mojave Desert Ecoregion taken from Miles and Goudey ( 1997). The five types of data 

listed are considered to be key factors at the Section level in delineation of ecological 

units 'ccording to Robert Bailey and ECOMAP (see Table 1). They were also used by the 

MLRA and Omernik/EPA Level 3 classifications. 

Geomorphologyllandformltopography: Extensive plains from which isolated mountains 

rise abruptly. Alluvial fans and bajadas surround the mountains, which terminate in dry 

washes and lakes in the basins. Also contains plateaus , playas , basins , and dunes. 

Elevation ranges from 280 feet below sea level to 7900 feet above. 
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Climate: Long and extremely hot summers. Precipitation - 3 to 8 inches, mostly occuring 

as scattered high intesity storms of short duration. Average temperature range : 45 deg. F 

to 77 deg. F. 

Potential natural vegetation: Predominant communities includes Creosote Bush (Larrea 

tridentata), Blackbrush, Greasewood and Saltbush series on basins , plains , and hills; 

Joshua Tree (Yucca brevifolia) series on plains and hills; and Basin Sagebrush, Western 

Juniper and Pinyon Pine (Juniperus-Pinus) series on mountains. 

Soil taxa: Aridisols and Entisols in combination with thermic or hyperthermic soil 

temperature regimes and aridic soil moisture regimes on foothills and valleys. Contains 

areas with salt affected soils. Aridisols and Entisols in combination with thermic or mesic 

soil temperature regimes, and aridic and xeric soil moisture regimes on mountains. 

Geology /lithology/stratigraphy: Cenozoic nonrnarine sedimentary and granitic rocks 

and alluvial deposits , and precambrian rocks of all types . 

Analysis of Section 322A Boundaries 

Section 322A of Bailey's 1994 ecoregion map describes a commonly accepted 

boundary of the Mojave Desert ecosystem, which includes southeastern California, 

southern Nevada, northwestern Arizona, and extreme southwestern Utah (Figure 4). It is 

bounded by the San Andreas and Garlock faults and large mountain ranges to the west 
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and southwest, by the Sonoran Desert to the south and southeast, the Colorado Plateau to 

the east, and the Great Basin to the northeast, north, and northwest. These boundaries 

coincide with changes in the various biophysical data mentioned in the previous section. 

Some boundaries are more evident than others because of dramatic changes in all 

biophysical factors over short distances. The San Andreas Fault and uplift of the San 

Gabriel Mountains is a good example. Other boundaries are not as obvious, such as the 

one between the Sonoran and Mojave Deserts, where both sides of the boundary line 

contain similar climate, topography, vegetation, and soils. 

According to ECOMAP's classification, the biophysical changes that occur across 

various boundaries between the Mojave and other ecoregions do range in significance 

across the nested hierarchy. The division between the Mojave and the mountain ranges to 

the west is at the domain level (humid and dry) on the hierarchy (Table 2). 

The separation between the Mojave ecoregion and the Great Basin and Colorado 

Plateau ecoregions is at the division level on the hierarchy, which is attributed to a shift in 

regional climate , vegetational affinities, and soil orders. Vegetation changes, coincidental 

with change in precipitation, are a good indicator of transition from the Great Basin to the 

Mojave. An example is on the Nevada Test Site north of Mercury , Nevada. Creosote 

Bush communities dominate where the annual rainfall is less than 7.25 inches , while Big 

Sagebrush and Shadscale are more abundant where rainfall is more than 7.25 inches 

(MacMahon , 1992). This abrupt change identifies the division between a temperate 

(Great Basin) and subtropical desert (Mojave) . This boundary separates Divisions 320 

(Tropical/Subtropical Desert) and 340 (Temperate Desert) in the hierarchy (Bailey, 
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1996). 

The division between the Mojave and the Sonoran Deserts is at the section level 

on the hierarchy, which is attributed to changes in geomorphology, geology, regional 

climate, soil orders and suborders, and potential natural vegetation (ECOMAP, 1996). 

None of these changes are as evident as with the other boundaries. According to the 

descriptions of Section 322b (Sonoran Mojave Desert Section) by Miles and Goudey 

(1997), geomorphology, landforms , topography , geology, soil taxa, and precipitation are 

about the same as in Section 322a. The key difference is lower average elevation (250 -

4400 feet), resulting in higher average temperatures and longer growing seasons, which in 

tum result in greater vegetation species diversity among Creosote Bush communities, 

including several succulents. 

Another subtropical desert region south of Section 322a and southwest of Section 

322b is labeled Section 322c (Sonoran Colorado Desert Section) according to ECOMAP 

(1996), also called the Colorado Desert in other classification scheme according to 

Benson and Darrow (1944). On the average , it is characterized by lower elevations, 

higher average temperatures, and less precipitation than Sections 322a and 322b (Miles 

and Goudey , 1997). 

Comparison of Section 322A with MLRA 
Region 30 and Omernik's Region 14 

Topographically, the Mojave's landforms are similar to those of the Great Basin 

to the north and the Sonoran Desert to the south. Within another classification scheme, 

these three deserts fall within the larger Basin and Range Physiographic Province (Hunt , 
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1967), which consists of widely separated low mountain ranges and desert plains (Miles 

and Goudey, 1997). In the Great Basin, the mountain ranges tend to be higher, closer 

together, and mostly run north-south. Elevation generally decreases from the Great Basin 

in the north to the Sonoran in the south, with the Mojave in between. 

As evident in Figure 5, Section 322A is divided by MLRA's 29 and 30. Number 

29 is labeled "Southern Nevada Basin and Range" and falls in the northern part of Section 

322A. Number 30 is labeled "Sonoran Basin and Range" and includes most of 322A. It 

also includes all of 322B, the Sonoran Section, meaning it combines the different 

characteristics of the Mojave and the Sonoran Deserts into one. This classification most 

closely resembles the American Semi-Desert and Desert Province (322), devised by 

Robert Bailey and used by ECO MAP (See Table I). 

With the exception of the northwestern boundary in Nevada and a small area to 

the east in extreme western Arizona, Omernik's Region 14 ( Southern Basin and Range) 

closely resembles Section 322A (Figure 6). In addition to differences in biophysical 

criteria used for input, some discrepancies in delineated boundary lines between Omernik, 

Bailey , and MLRA may be due to difference in mapping scale. As mentioned 

previously, Omernik's classification was compiled for the entire U.S. at a scale of I :2.5 

million, Bailey's classification was at a scale of 1 :7.5 million, and MLRA at a scale of 

I :3.75 million. By using ECOMAP's biophysical criteria and hierarchical structure, 

another boundary definition was compiled for the state of California by the U.S. Forest 

Service and the Natural Resources Conservation Service (NRCS) at a scale of 

approximately 1: 1 million (Figure 8). In order to refine the section lines at a finer scale, a 
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"bottom-up" methodology was used . Subsections (see Table I) were classified using 

ST A TSGO polygon boundaries along with the other biophysical criteria. The boundary 

lines at finer scales were then used up the hierarchy to refine the section, province, 

division, and domain boundaries. 

Multivariate Clustering Techniques 

While the concept of ecoregions existing in nested spatial hierarchies defined by 

factors operating at multiple scales has been well described by Bailey /ECOMAP and 

Omernik/EPA, the mechanisms and data for implementing these ideas have been less 

clear. These classification s generally require numerou s, subjective decisions on the 

relative importance of different data layers , and often the boundaries have been defined 

by consensus. This approach is not nece ssarily repeatable, and the derived unit s may not 

relate mechani stically to the ecological proce sses that define and characterize ecoregions. 

The deve lopment of well-defined criteria, standardized data , and robust analytical 

methods can improve the repeatability and interpretability of ecological classifications, 

and remove much of the subjectivity invol ved in delin eat ing ecoregion boundaries (Host 

and Polzer , 1996). 

Image classification is a well known form of custom grouping, based on reflection 

characteristics, which results in the delineation of similar areas within an image 

(Hargrove and Luxmoore, 1997). The Arclnfo function ISOCLUSTER uses a clustering 

technique on sampled subsets of cells to develop reflectance signatures for subsequent 
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Figure 11. Section 322a at 1 :7.5 million and I : I million (CA only) 



image analysis and classification. However, the technique has rarely been applied to 

primary, non-spectral data outside traditional image classification (Hargrove and 

Luxmoore, 1997). 
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Omi et al. (1979) used multivariate map clustering on primary variables, including 

steepness, drainage, precipitation , and fault density to delineate fire management planning 

zones in the Angeles National Forest in California. Hargrove and Luxmoore (1997) used 

a spatial clustering technique to identify patches in the Southeast which are similar with 

regard to temperature, precipitation, elevation, and various soil characteristics . Host et. al 

( 1996) combined GIS with multivariate statistical analyses to integrate climatic, 

physiographic , and edaphic databases and produce a classification of regional landscape 

ecoregions in northwestern Wisconsin. Both Host et al. ( 1996) and Hargrove ( 1997) used 

a principal component analysis to remove correlations among input variables, and 

standardized the data to reduce the dimensionality (Hargrove, l 997). Host et al. (1996) 

and Hargrove and Luxmoore (1997) both applied a K-means cluster analysis to identify 

the relationship among the clusters and to aggregate similar clusters (Host et al., 1996). 
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METHODS 

The objectives of this thesis were met by applying an unsupervised classification 

to stable biophysical data that the USDA, Omernik, and Bailey used in their 

classifications. Arc Grid's Isocluster was used to generate biophysical clusters and a 

maximum likelihood classification algorithm was applied to the resulting biophysical 

signature file to produce a grid representing the spatial distribution of each cluster. A 

comparison of the frequency distribution of biophysical clusters within es tab I ished 

Mojave ecoregion boundaries as defined by ECOMAP, EPA, and MLRA and the 

frequency of the same clusters falling outside these boundaries was made. Contiguity 

and homogeneity of the classes within each boundary was observed. A cluster analysis to 

identify biophysical cluster similarity was applied to the signature file , using a 

dendrogram tree for output. 

The five types of data (geomorphology /landform/topography , climate, potential 

vegetation, soils, lithology /stratigraphy) mentioned in the literature review were not easily 

available for input. A significant limitation was that the Isocluster algorithm required 

continuous raster data . Since expressing soil type , geology, landform , and land cover as 

interval/ratio data was beyond the scope of this thesis , these data were not considered for 

input. As a surrogate to land cover, a normalized difference vegetation index (NOVI) 

generated from NOAA-AVHRR imagery was used. These data represent the 

"greenness" of the vegetation in quantitative terms , rather than the vegetation type itself. 

A I-km resolution digital elevation model (DEM) was used as the elevation data source. 



Climate was represented by annual temperature and precipitation data interpolated 

between weather stations . 
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A second limitation was that available data were restricted by the large size of the 

study area. High-resolution biophysical data covering the entire study area are not 

available . The minimum resolution available for NDVI , DEM , and the climate data was 

I km, which defined the output grid resolution. 

When comparing this input data with the five stable biophysical characteristics in 

the literature review or with the map criteria for the Section in Table 1, it is obvious that 

only a small portion of relevant data for this study was used as input. 

Data Sources 

Elevation 

Elevation data were acquired from NOAA' s global land one-km base elevation 

(GLOBE) Project. DEM data representing a large portion of the western US and the 

eastern Pacific were downloaded from GLOBE's web site. 

Vegetation 

A normalized difference vegetation index (NDVI) calculated from NOAA's 

A VHRR satellite imagery, I-km resolution , was extracted from the USGS A VHRR IO­

day composite database collected between 1990 and 1994. These data consist of 

approximately 21 10-day periods for each year representing the amount of 

photosynthetically active vegetation for that period of time . Similar time periods for 

each year were averaged together to generate a yearly average NDVI response curve for 



each of the 21 periods. NDVI values were converted to a fractional index (0 - I 00%) 

which represents the fraction of ground covered by vegetation. The following equation 

was used to make this conversion: 

Fractional Index(%)= ((NDVI - Global Minimum) / (Global Maximum - Global Min .))2 * 100 

The 21 10-day periods define the growth curve of vegetation within the study 

area. To reduce these data into meaningful parameters, this dataset was summarized by 

extracting maximum greenness and minimum greenness, which were chosen to show 

the maximum and minimum range of fractional vegetation for any given area. 

Climate 
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Eighteen year nom1al annual precipitation and maximum temperature data, 1-km 

resolution, were acquired from University of Montana ' s Numerical Terradynamics 

Simulation Group . The method used to generate these data was based on the spatial 

convolution of a truncated Gaussian weighted filter , using inputs such as DEM ' s and 

observations of maximum temperature , minimum temperature, and precipitation from 

ground-based meteorological stations (Thornton et al. , 1997) . Minimum temperature was 

omitted because of its high correlation with maximum temperature when averaged over 

such a time period. All data were converted to Arc Grid format , clipped to the study area , 

and projected to UTM , zone 11, datum NAD83 . 

Standardization 

Before the various biophysical grids could be combined for a multivariate 

analysis , their data ranges were standardized. Differences in grid values between layers 
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were due to different units of measurement. For example , measurement units of elevation 

(meters), NDVI (index) , and climate (degrees celsius or millimeters) cannot be directly 

compared. All grids were standardized to a scale of O - l 00 ( floating value carried to 

three places) using the following matrix algebraic equation in ArcGrid : 

Z = (X - oldmin) * (newmax - newmin) I (oldmax - oldmin) + newmin 

where: 
Z = the output grid with new data ranges 
X = the input grid 
oldmin = the minimum value of the input grid 
oldmax = the maximum value of the input grid 
newmin = the desired minimum value for the output grid 
newmax = the desired maximum value for the output grid (Arcinfo Help) 

After standardization, grids were combined into a single file (layer stack) for input to an 

unsupervised classification algorithm. 

Correlation Between Data 

A correlation matrix between all biophysical variables was generated to 

understand the relationships between input variables. This matrix identified variables 

that were highly correlated and therefore provided redundant information. Variable pair s 

with correlation coefficients above .90 were identified and one variable was eliminated 

from the analysis. Of all biophysical data layers, only maximum temperature and 

elevation were correlated above 90% (91 %). Therefore maximum temperature was 

removed from further analysis (See Tables 3 - 5). 

Variables 

To understand the effects and contribution of various biophysical variables for 



ecosystem delineation, inputs and clustering methodology were varied in the following 

ways: 

- Convolution filtering of the data 

- Vary the number ofrequested clusters 

- Vary the combinations of layers of data 
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In addition to the original 1-km data, a convolution filter was used to generalize 

local variation to try to understand the effect of scale on the analysis. If ecoregions are, 

in part, a geographical construct based on local environmental variability, the use of focal 

statistics should help in the automated identification of these areas. To help characterize 

the spatial variability of the study area, a simple focal mean and focal standard deviation 

(variance) function was employed to help detem1ine local variability of biophysical data 

layers. The focal mean function produced an output file whose pixel values were the 

result of a convolution of all pixels within the defined focal area. Each output pixel was a 

mean of the surrounding input pixels. The focal standard deviation (STD) function 

operated in the same manner , but calculated local STD. This generated a new set of 

output pixels that provided local context. For instance, local variance in elevation 

allowed the clustering algorithm to consider not only elevation, but also a measure of 

topographic change. 

Two sizes of focal statistical filters were used to evaluate the effect of spatial 

scale. The first was a 3 X 3 area (9 sq km) and the second a 13 X 13 area ( 169 sq km) . 

Larger areas were experimented with, but it was determined that spatial integrity was lost. 

Another variable considered was the number of output clusters requested from the 
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Isocluster algorithm. Five, 10, and 15 classes were requested in order to examine the 

differences in the distribution of output cluster on the output map along with their spatial 

size and homogeneity. Outputs were compared with the three present ecoregion 

boundaries in order to determine if there were any relationships between the number of 

classes requested and the map scale and polygon size of those classifications. 

Another variable was the combination of layers used for input in the Isocluster. 

Multiple combinations were possible from elevation, vegetation, precipitation, and 

maximum temperature. To meet the objectives of this thesis , various combinations of 

layer and function substitution were used to evaluate the influence each layer had on the 

output. 

When considering these variables and the three types of data used for input , there 

were 78 possible different combinations of data that could have been stacked in ArcGrid 

for preparation as input layers into the Isoclu ster algorithm (see Input below) . 

Input for Isoclus ter algorithm 

Four individual layer stacks treated at three spatial sca les simulated with 

convolution filtering were used for input into the lsocluster algorithm and maximum 

likelihood classification. For each of these combinations, groups of five , 10, and 15 

clusters were generated. In total , 78 combinations were compared to determine the best 

combination of biophysical data at various scales to delineate the Mojave boundary . 

I) No smoothing filter (original data) 
- Elevation , NDVI maximum , NDVI minimum , Precipitation 
- Elevation, NDVI maximum, NDVI minimum 
- Elevation, Precipitation 



- NDVI maximum, NDVI minimum, Precipitation 

2) 3 X 3 and l 3X 13 Smoothing filter 
a)Focal Mean 
- Elevation, NDVI maximum, NDVI minimum, Precipitation 
- Elevation, NDVI maximum, NDVI minimum 
- Elevation, Precipitation 
- NDVI maximum, NDVI minimum, Precipitation 

b)Focal Mean and Focal Standard Deviation 
- Elevation, NDVI maximum, NDVI minimum, Precipitation 
- Elevation, NDVI maximum, NDVI minimum 
- Elevation, Precipitation 
- NDVI maximum, NDVI minimum , Precipitation 
* Elevation 
* NDVI maximum , NDVI minimum 
* Precipitation 
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* . It was desirable to understand how one biophysical data type alone influenced 
the cluster output, so a simple layer combination of its focal mean and focal 
variance was used for input in the lsocluster. 

Unsupervised Classification 

An unsupervised classification generates statistical clusters of grid cells (pixels) in 

a multi-stack raster set based on similarities between the stack layers. The algorithm 

generates class means and covariance matrices based on image statistics. Unsupervised 

classification is point oriented and has no regard for the spatial contiguity of the pixels 

that define each cluster. Following cluster generation, clusters are assigned to information 

classes based on posteriori information (Jensen , 1996). 

Arc Grid's command MLCLASSIFY (maximum likelihood) used the signature 

file generated by ISOCLUSTER to produce an output raster file that represented the 

spatial distribution of the unsupervised clusters . All a posteriori probabilities of cell 
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assignment were evaluated to understand cell assignments and the spatial homogeneity of 

the clusters. For the various combinations of input variables discussed above, two 

classification schemes were chosen that met the assumptions and constraints of Mojave 

ecoregion delineation. All pixels with an a posteriori probability higher than .75 or .9 

were assigned to a landscape class. Cells with lower confidence were assigned to a "null 

data" value. 

Dendrogram of Similarity 

Dendrograms of statistical clusters generated through the ISOCLUSTER 

algorithm were generated to visually evaluate similarity between spectral classes. All 

dendograms were produced using the euclidian distance between each pair of classes in 

the signature file using the following formula : 

Dmn = sqrt ( I, ( µ m; - µ n;) 2 
) 

where Dmn is the Euclidean distance between the means of classes m and n 

(Arc /Info Help Manual). 

Comparing Classes with Existing Boundari es 

The frequency of each cluster was generated for all cells falling inside and outside 

the established Mojave boundary. This was used to provide a quick estimation of 

cluster /ecoregion association . 

Assumptions and Constraints 

As mentioned in the literature review , due to scale differences and variances in 
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interpretation, boundary definitions of any given ecoregion can vary widely, making it 

difficult to have a purely objective process of classifying ecoregions. However, there 

tends to be a general agreement on the characteristics that are common to specific 

ecoregions. As with any scientific process, assumptions and constraints must exist and 

they must be consistent. The following assumptions are made here in order to evaluate the 

various outputs of this study: 

1) The three boundary delineations from ECOMAP, the EPA, and the MLRA will 

be used as guidelines to determine the general area that our Mojave Ecoregion 

will fall in. We expect to find our Mojave cluster at least within the Dry 

Domain, according to Bailey's classification. Also , any previous geographic 

knowledge of the regions will be applied. For example , valleys such as the San 

Joaquin and Death Valley , the Los Angeles Basin, bodies of water such as the 

Salton Sea and Lake Mead, and high mountains such as the Sierra Nevada, will 

be used to help identify the characteristics of that particular cluster. 

2) Clusters cannot be considered "Mojave Desert" if the same clusters are found 

in large homogenous areas in both the Dry and Humid Domains . 

3) The fewest number of clusters and layers that allow a homogenous Mojave 

Ecoregion to be uniquely identified according to assumption I will take 

precedence. In other words, the simplest classification scheme will be favored . 

4) In an effort to save time, NDVI maximum and minimum layers (correlation of 

.80 < r < .90) will always be considered together in the Isocluster. They will not 

be treated as separate layers. 



RESULTS 

Figures 9-13 show Z-normalized input variables of elevation, maximum NOVI, 

minimum NOVI, precipitation, and average temperature. The Z statistic was used to 

standardize input values to the same numeric scale. 
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Tables 3 - 5 show correlation coefficients between the various input layers. Table 

3 represents all original data, Table 4 represents mean and variance data across a 3 X 3 

smoothing filter, and Table 5 represents mean and variance data across a 13 X 13 

smoothing filter. Elevation and maximum temperature were highly correlated ( r > .90) 

and NOVI maximum and minimum values are somewhat correlated ( .80 < r > .90). 

Maximum temperature was eliminated from further analysis, but elevation used since it 

represents an input variable to calculate maximum temperature 

Figures 14 - 23 and Tables 6 - 14 represent the classification results from the 

Isocluster and maximum likelihood algorithms. Note that all inputs mentioned in the 

methods section are not included in these results. These figures and associated tables 

summarize the results of the process of adding and taking away variables mentioned in 

the methods section. Some results meet the assumptions /constraints and some do not. 

Classification results are displayed by expressing the signature file from the Isocluster 

in 3 different ways and presented in the figures below : I) A biophysical signature graph. 

2) An image of the maximum likelihood classification . 3) A similarity dendrogram tree of 

the signature statistics. 
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Figure 12. Z-va lue norm alized elevation data. 
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Figure 13. Z-value normalized NDVI maximum. White = Highest percent vegetation 
greenness 
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Figure 14. Z-value normalized NOVI minimum. White = Highest percent vegetation 
greenness . 
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Figure 15. Z-value normalized precipitation data. White = Higher values of annual 
precipitation. 
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Figure 16. Z-value normalized maximum temperature 
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Table 3. Correlation of original data (after standardizing): NDVI max and min values, 
elevation, precipitation, and maximum temperature. 
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Layers NDVI Min Elevation NDVI Max Precip. Max. Temp. 

NDVI Min 1.00 0.17 0.80 0.51 -0.27 

Elevation 0.17 1.00 0.12 0.47 -0.93 

NDVI Max 0.80 0.12 1.00 0.61 -0.28 

Precip. 0.51 0.47 0.61 1.00 -0.58 

Max. Temp. -0.27 -0.93 -0.28 -0.58 1.00 

The goal of using color image outputs was to use specific colors to identify 

biophysical clusters that best represent the desert regions discussed, and more specifically 

the Mojave . In order to be consistent with cluster comparison between classifications, a 

simple color coding scheme was developed, based on geographic location. Warm colors 

were chosen to represent clusters found predominantly within the existing desert 

boundaries (i.e . MLRAs 29 and 30, Divisions 320 and 340, Region 14) and cooler colors 

were chosen to represent clusters that were more prevalent outside the existing desert 

boundaries . There were several outputs where small warm colored clusters were found 

outside the desert boundaries and small cool colored clusters were found within the desert 

boundaries. An effort was made to assign colors to clusters so that contrast between 

neighboring clusters was clearly visible. Clusters that were obviously well known bodies 

of water , such as the Salton Sea and Lake Mead , and any pixels assigned to that cluster 

were colored a deep blue. Clusters that were obviously high mountain ranges, such as the 

Sierra Nevada, and any pixels assigned to that same cluster were colored a light purple . 



43 

Table 4. Correlation of the mean s and standard deviations across a 3X3 filter of NOVI 
max and min, elevation , precipitation , and maximum temperatur e. 

Layers NOVI NOVI Elev NOVI Elev NOVI Precip Precip Ma x Max 
Max Min STD Min. Mean Max STD Mean Temp Temp 
STD STD Mean Mean Mean STD 

NOVI 
Max 1.00 0.76 0.06 0.02 -0.02 0.13 0.20 0.16 -0.07 0. 16 
STD 

NOVI 
Min 0.76 1.00 0.1 1 -0.08 -0.09 0.04 0. 19 0.10 0.02 0. 19 
STD 

Elev 
0.06 0. 11 1.00 0.20 0.40 0.19 0.64 0.37 -0.39 0.74 

STD 

NOVI 
Min. 0.02 -0.08 0.19 1.00 0.18 0.81 0.33 0.52 -0.27 0.07 
Mean 

Elev 
-0.01 -0.09 0.39 0. 17 1.00 0.12 0.32 0.47 -0.92 0.32 

M ean 

NOVI 
Max 0.14 0.04 0.19 0.8 1 0. 12 1.00 0.38 0.62 -0.28 0.07 
Mean 

Precip 
0.20 0.19 0.64 0.33 0.32 0.38 1.00 0.63 -0.4 1 0.76 

STD 

Prccip 
0.16 0.10 0.37 0.52 0.47 0.62 0.63 1.00 -0.58 0.28 

Mean 

Ma x 
Temp -0.07 0.02 -0.39 -0.27 -0.92 -0.28 -0.4 1 -0.58 1.00 -0.35 
Mean 

Max 
Temp 0. 16 0.19 0.74 0.07 0.32 0.07 0.76 0.28 -0.35 1.00 
STD 



Table 5. Correlation of the means and standard deviations across a 13Xl3 filter of 
NDVI max and min , elevation, precipitation, and maximum temperature. 

Layers Elev NDVI NDVI Precip Elev NDVI NDVI Precip Max 
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Max 
Mean Max Min. Mean STD Max Min STD Temp Temp 

Mean Mean STD STD Mean 

Elev 
1.00 0.11 0.18 0.45 0.41 -0.02 -0.16 0.35 -0.92 0.32 

Mean 

NDVI 
Max 0.11 1.00 0.83 0.66 0.13 0.20 0.10 0.43 -0.27 0.00 

Mean 

NDVI 
Min 0.18 0.83 1.00 0.57 0.15 0.07 -0.03 0.37 -0.28 0.01 

Mean 

Precip 
0.45 0.66 0.57 1.00 0.31 0.23 0.17 0.70 -0.57 0.24 

Mean 

Elev 
0.41 0.13 0.15 0.31 1.00 0.09 0.16 0.6 1 -0.39 0.82 

STD 

NDVI 
Max -0.02 0.20 0.07 0.23 0.09 1.00 0.83 0.35 -0.12 0.27 
STD 

NDVI 
Min -0.16 0.10 -0.03 0.17 0.16 0.83 1.00 0.32 0.03 0.33 
STD 

Precip 
0.35 0.42 0.37 0.70 0.61 0.35 0.32 1.00 -0.47 0.66 

STD 

Max 
Temp -0.92 -0.27 -0.28 -0.57 -0.39 -0.12 0.03 -0.47 1.00 -0.37 
Mean 

Max 
0.32 0.00 0.01 0.23 0.82 0.27 0.33 0.66 -0.37 1.00 

Temp 



These colors that were assigned to consistent geographic shapes and locations were 

based on assumptions /constraints number 1 from methods. 
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A summary of figures is listed below. Figures consist of a maximum likelihood 

classification along with a graph of the biophysical signature, and a similarity dendrogram 

tree from that particular signature in the previous figure. 

Figures Explanation 

14 - 19 Original, standardized data. No smoothing filter has been applied. 

20- 25 3 X 3 focal mean filter has been applied. 

26 - 31 3 X 3 focal mean and standard deviation filter has been applied. 

32 - 33 13 X 13 focal mean and standard deviation filter has been applied. 

34 - 37 3 X 3 focal mean and STD filter applied, with a post eriori confidence 
interval 

38 - 39 Histograms that compare clusters with boundaries from Omernik, Bailey, 
and USDA 

Figures 14 -19 show various cluster outputs with original, standardized data for 

input. Figure 14 shows the results of elevation and precipitation at 5 classes. Notice that 

clusters 1 and 2 (yellow and orange) occur frequently within the existing desert 

boundaries, and the San Joaquin Valley and Los Angeles Basin (Humid Domain 

according to Bailey). Comparing Figure 14 with Figure 9 Uust elevation), there is a 

striking resemblance in boundaries , indicating that precipitation may have had no 

influence in this Isocluster classification. According to the signature graph, cluster S's 

precipitation mean is very different from the others' , indicating that precipitation only 

makes a difference within the Sierra Nevada. 
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Figure 17. 5 classes; Original data ; Elevation , precipitation 



Distances between Pairs o f Combined Classes 
( in the se qu ence of merging ) 

Remaini n g Merged 
Class Class 

1 
3 
1 
1 

DIS TANCE 

2 
4 
3 
5 

Be tween -Class 
Dist a nce 

14. 517733 
17 . 433896 
28 . 9440 73 
46 . 3165 4 0 

0 5 . 1 10 . 3 15. 4 20 . 6 25.7 30 . 9 36 46.3 
1----- -- 1-------1------- 1------- 1------ -1---- --- 1--- ---- 1---

c 2 -- ----- --- -- --- -- ----1 

L 1 - --- ---- ------ --- ---- 1 

A 4 -- --- -- - --- --- ------ ----- -1 

s 3 ---- ------ ------ -- --------1 
1- ---------------
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s 5 ------- - ------------- - ------ --- - --- -- -- --------- - - - ------ ---- -

1-------1-------1------- 1-------1---- ---1-------1- -- ----1---
0 5 . 1 10 . 3 15 . 4 20 . 6 25 . 7 30.9 36 46 . 3 

Figure 15. 5 Cla sses; Original data ; Elevation , Annual Precipitation 

Figure 16 show s the result s of maximum and minimum greenne ss and precipitation at 10 

classes. While we cannot directly compare cluster outputs with those in Figure 14, do 

notice that when NDVI is used as input , warm color s can only be found within the Dry 

Domain and cool color s dominate the Humid Domain . This is due to the major difference 

in percent vegetation cover between these 2 domain s_. When comparing Figure 16 with 

Figures l O and 11 (NOVI max and NOVI min data) , it appears that once again 

precipitation does not make any difference , except that it reinforces the uniqueness of the 

Sierra Nevada. 

Notice in Figure 16 that a cluster which represents large bodies of water (Lake 

Mead and Salton Sea) is evident ( cluster I) . Other areas that are also classified as cluster 
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1 are located in large, flat valleys with salty soils and very sparse vegetation. This makes 

sense considering that NDVI data represents vegetation cover and these areas have no or 

minimal vegetation. According to the signature graph, this cluster has a very low mean 

for maximum and minimum greenness. 

Finally, notice in Figure 16 the "cool colored islands" that are found within the 

existing desert ecoregions. One of the clusters is the Spring Mountains, west of Las 

Vegas. These mountains rise to as high as 11,000 feet and contain a forest zone. Another 

one is in the Salton Sea area (Imperial Valley) and is due to irrigated agriculture. The 

other noticeable one is found along the Colorado River on the California/Arizona border 

and is also due to irrigated agricu lture. According to the signature graph, these 

agricultural clusters have a very high mean NDVI maximum value and very low mean 

NDVI minimum value, which represents their seasonality. These agricultural areas are 

classified as Region 31 Imperial Valley by MLRA , which uses land use as biophysical 

criteria for ecoregion classification. 

Figure 18 shows the results of maximum and minimum greenness and elevation at 

10 classes. Notice that there is minimal yellow and orange (clusters 2 and 4) found in the 

Humid Domain and in the Temperate Desert Division (340). For the first time, we can 

see homogenous clusters that fall within the existing Mojave ecoregion boundaries, but 

are not found anywhere else in large quantities. 
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Figure 16. 10 classes; Original data ; NDVI min ., NDVI max ., precipitation 
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Distances between Pairs of Combined Classes 
(in the sequence of merging) 

C DISTANCE 
L 
A 

Remaining 
Class 

2 
2 
5 
5 
5 
2 
9 
1 
1 

Merged 
Class 

3 
4 
6 
7 
8 
5 

10 
2 
9 

Between-Class 
Distance 

5.710004 
9.737386 

10.251266 
14.490613 
18.103658 
22.129355 
31.757681 
34.417327 
42.875825 

50 

S 0 4.8 9.5 14.3 19.1 23 . 8 28.6 33 . 3 38.0 
s 1-------1-------1-------1-------1-------1-------1-------1-------1---1 

4 ---------------

7 -----------------------

8 -----------------------------

1 --------------------------------------------------------

1: ::::::::::::::::::::::::::::::::::::::::::::::::::::1-------------
1-------1----- --1------ - 1-------1---- ---1-------1---- ---1-------1---
0 4.8 9.5 14.3 19.1 23.8 28.6 33 . 3 38.0 

Figure 17 . 10 classes ; Original data; NDVI max. and min ., Annual precipitation . 
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Figure 18. 10 classes; Original data; Elevation, NDVI max ., NDVI min. 
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Distances between Pairs of Combined Classes 
(in the sequence of merging) 

C DISTANCE 
L 
A 

Remaining 
Class 

6 
2 
5 
9 
5 
3 
2 
2 
1 

Merged 
Class 

7 
4 
6 

10 
9 
8 
5 
3 
2 

Between-Class 
Distance 

12 . 479653 
12.888732 
15. 942413 
22 . 724071 
23.317463 
27 . 472421 
29 . 032209 
31.818696 
42.704389 
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S 0 4.7 9.5 14.2 19.0 23.7 28.5 33.2 38.0 
s l-------1-------1-------1-------1-------1-------1-------1-------1--1 

5 -------------------------

1: :::::::::::::::::::::::::::::::::::::1-

: ::::::::::::::::::::1-------------------------- --------------

: :::::::::::::::::::::::::::::::::::::::::::::1------
1 -------------------------------------------------------------------

1-------1-------1-------1-------1-------1-------1-------1-------1--1 
0 4.7 9.5 14 . 2 19.0 23.7 28.5 33.2 38.0 

Figure 19. 10 classes; Original data; Elevation, NDVI max. and min. 
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Figures 20 - 25 show cluster outputs with a 3 X 3 mean filter applied to input 

data. Figure 20 shows the results of maximum and minimum greenness and elevation at 5 

classes. Notice that yellow dominates what we perceive as the Mojave and Sonoran 

Deserts, or MLRA 30, Division 320, and Province 322. It's evident from the shape of 

the Salton Sea that large bodies of water were included in this cluster. The dendrogram in 

Figure 21 shows that all clusters have large distances between their means. 

Figure 22 is the same as Figure 20, but with precipitation added as an input variable. 

Once again, precipitation appears to add no new infom1ation to the results , except to the 

uniqueness of the Sierra Nevada. 

Figure 24 shows the results of maximum and minimum greenness and elevation at 

IO classes. Notice that when compared to Figure 18 (original data), boundaries are 

smoother and several small "islands" are gone. Overall, most orange and yellow is found 

within the Tropical/Subtropical Division (Division 320), as in Figure 18. 

Figures 26 - 31 show cluster outputs with a 3 X 3 mean and variance filter applied 

to the input data. Figure 26 shows the results of maximum and minimum greenness and 

elevation at IO classes. Notice the similarities between these results and those in Figure 

24. The key difference is that the Grand Canyon has been classified with a unique cluster 

along with some steep mountain ranges in the northwest portion of Section 322A. In 

Figure 24, the Grand Canyon was included within the Mojave and some of the steep 

mountains were classified the same as the Great Basin. The dendrogram in Figure 27 

reinforces that cluster 7 is very unique from its neighbors. The signature graph in Figure 

26 indicates that cluster 7 has the highest elevation variance among all the clusters . 
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Figure 20. 5 classes ; 3 X 3 mean filter ; Elevation , NDVI max ., NDVI min. 
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Distances between Pairs of Combined Classes 
(in the sequence of mergin g ) 

C DISTANCE 
L 
A 

Remain ing 
Class 

3 
3 
1 
1 

Me rg e d 
Class 

5 
4 
2 
3 

Betwee n- Cl ass 
Distance 

24 . 498 14 2 
24 . 803848 
30 . 504596 
31 . 598643 

55 

S 0 3 . 5 7.0 10 . 5 14 . 0 17 . 6 21.1 24.6 28.0 
s 1---- --- 1----- -- 1-- --- -- 1-------1-- -- -- - 1------ -1-------1-- ----- 1--- 1 

: :::::::::::::::::::::: : :::::::::::::::::::::::::::::::
1
1----------1_ 

: ::::: :::::::::::::::: ::::::::::::::::::::: :::::::::::::::::: :::::1-I 
1-------1-------1------- 1-------1-------1-------1-------1-------1---1 
0 3 . 5 7 . 0 10 . 5 14.0 17 . 6 21 . 1 24.6 28.0 

Figure 21. 5 classes; 3 X 3 mean filter ; Elevation , NOVI max. and min . 

Figure 28 shows the results of elevation mean and variance . Elevation alone , 

when local variance is included , doe s a good job of identifying Mojav e and Sonoran 

Ecoregions (Orange and Yellow) when compared to existing published bound aries . 

Using local variance along with local mean elevation allows the separation of areas with 

not only different elevation ranges , but also areas with variable terrain. This cleanly 

separates areas such as the Grand Canyon , the Panamint Range near Death Valley, and 

the San Gabriel mountains from the desert landscape. 
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Figure 22. 5 classes; 3 X 3 mean filter; Elevation, NDVI max .and min ., annual 
precipitation 
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Distances between Pairs of Combined Classes 
(in the sequence of merging) 

C DISTANCE 
L 
A 

Remaining 
Class 

3 
1 
1 
1 

Merged 
Class 

4 
3 
2 
5 

Between-Class 
Distance 

20.542669 
31 . 416416 
33.054882 
48.749898 
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S 0 5.4 10.8 16.2 21.7 27 . 1 32.5 37.9 43 . 0 
s 1-------1-------1-------1-------1-------1-------1-------1-------1---1 

1 ---------------------------------------------

2 -------- - - - ------------------------------------

5 -------------------------------------------------------------------

1-------1-------1-------1-------1-------1-------1-------1-------1---1 
0 5.4 10.8 16.2 21.7 27.1 32.5 37.9 43 . 0 

Figure 23. 5 classes; 3 X 3 mean filter; Elevation, NOVI max . and min. , annual 
precipitation . 

Figure 30 shows the results of maximum and minimum greenness and elevation at 

15 classes. Notice that the two clusters that dominated the Mojave and Sonoran ( orange 

and yellow colors) in Figure 26 have been broken into 3 clusters: light blue , orange, and 

yellow (light blue is a cool color, but is used for better contrast). Yellow seems to occupy 

the low , flat salty valleys and the interiors of the Salton Sea and Lake Mead , orange 

seems to occupy the low to medium elevation basins (including in the Sonoran), and light 

blue seems to occupy the higher elevations and fringes around Province 322 or MLRA 

30. The published ecoregion boundaries roughly match this output with particular 
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Figure 24. 10 classes; 3 X 3 mean filter; Elevation , NDVI max ., NDVI min . 
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Distances between Pairs of Combined Classes 
(in the sequence of merging) 

Remaining 
Class 

6 
2 
3 
9 
6 
2 
2 
2 
1 

Me rged 
Class 

7 
5 
4 

10 
9 
3 
6 
8 
2 

Between - Class 
Distance 

13 . 071608 
15 . 540868 
17 . 626170 
21 . 800702 
23.203045 
26.467776 
32.272215 
30. 281131 
73 . 511075 

C DISTANCE 
L 
A 
S 0 8.2 16.3 24.5 32.7 40.8 49.0 57 . 2 
s 1-------1-------1---- --- 1-------1-------1 --- ----1-------1 

7 -----------1---------
6 -----------

1: ::::::::::::::::::::1-

: ::::::::::::::1--------­

: ::::::::::::::::1----- --
8 ---- - - - -------------------- -

1 - ----------------- - - - - - ---------------- - - -- -------------

1-------1-------1------- 1-------1-------1--- --- - 1------- 1 
0 8.2 16 . 3 24 . 5 32.7 40 . 8 49.0 57.2 

Figure 25. 10 classes; 3 X 3 mean filter; Elevation, NDVI max. , NDVI mm. 
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regard to ECO MAP . The black line is Bailey's Section 322A boundary (1 :7.5 million) 

and the dark blue line is Section 322A subdivided into subsections by the NRCS and U.S. 



60 

FS for the state of California (1: 1 million). Only IO of the 15 clusters that are 

geographically located in the desert regions and their neighboring regions are presented in 

the signature graph because 15 would have been extremely difficult to create and read in 

ArcView. 

Figures 32 and 33 shows the results of a cluster output with a 13 X 13 mean and 

variance filter applied to maximum and minimum greenness and elevation at l O classes. 

Except for more smoothed lines and more small islands eliminated, these results are 

basically the same as with a 3 X 3 mean and variance filter. The signature graphs are 

basically the same too. Notice that the Salton Sea and Lake Mead seem to be expanding 

beyond their natural boundaries with a 13 X 13 filter. This is an indication that 

smoothing data over a 169 sq km area begins to break down the spatial integrity of a 

landscape's boundaries . A general idea of the ecoregion boundaries is there , but all detail 

is lost. 

Figures 34 - 37 show the results of applying an a posteriori confidence interval to 

the maximum likelihood classifications of the Isocluster signature files. Figures 34 and 

35 are the same results as from Figure 26 (3X3 mean and variance; elev , ndvimax , 

ndvimin) , but at 75% and 90% confidence intervals. There appears to be a great deal 

more homogeneity of clusters at 75% than at 90%. Remember that any pixel assignment 

probabilities of less than . 75 or .9 are considered unacceptable and colored black. Notice 

that all of the Death Valley area is colored black. 
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Figure 26. 10 classes; 3 X 3 mean and variance filter; Elevation, NDVI max.and min. 



Distances between Pairs of Combined Classes 
(in the sequence of merging) 

C DISTANCE 
L 
A 

Remaining 
Class 

2 
3 
6 
6 
2 
2 
2 
2 
1 

Merged 
Class 

5 
4 
8 
7 
6 
3 
9 

10 
2 

Between-Class 
Distance 

15.818327 
17 . 783783 
18 . 443534 
25 . 938591 
27 . 354496 
32 . 545682 
35 . 032975 
42 . 133025 
74 . 014025 
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S 0 8.2 16.4 24 . 7 32.9 41.1 49.3 57.6 66 . 0 
s 1-------1-------1-------1-------1-------1-------1-------1-------1---1 
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Figure 27. 10 classes; 3 X 3 mean and variance filter ; Elevation , NDVI max . and min. 
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Figure 28. 5 classes; 3 X 3 mean and variance filter; Elevation 



Distances between Pairs of Combined Classes 
( i n the sequence of merging) 

Remai n ing 
Class 

1 
4 
3 
1 

Mer g ed 
Class 

2 
5 
4 
3 

Between - Class 
Distance 

15.885284 
24.109776 
24 . 722642 
31 . 292164 
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C DISTANCE 
L 
A 
S 0 3.5 7 . 0 10 . 4 13.9 17 . 4 20.9 24 . 3 28.0 
s 1-- --- --1------ - 1------ - 1---- ---1--- ---- 1--- -- -- 1-------1----- --1--- 1 

: ::: :::::::::::: ::::::: :::::::::::::1------------------------------­

: ::::::::::::::::::::::: ::: ::::::::::::::::: :::::::::::11-----------
1-------1-------1-------1-------1-------1--- ----1-------1-------1---1 
0 3 . 5 7 . 0 10.4 13.9 17 . 4 20 . 9 24 . 3 28 . 0 

Figure 29. 5 classes; 3 X 3 mean and variance filter ; Elevation 

Figure s 36 and 37 are the results of all possible data input for thi s thesis at a 3X3 

mean and variance filter and at 75% and 90% confidence interval s. Precipitation and 

maximum temperature have been added , even though it has been shown that max . temp . 

is very correlated with elevation and that precipitation adds no new information to the 

classification. The point of adding these variables was to see how proportional cluster 

homogeneity was with the number of variables . The figures show that there was an 

increa se in homogeneity . 
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Figure 30. 15 classes; 3 x 3 mean and variance filter , Elevation , NOVI max., 
NOVI min . NRCS and U.S. FS subsections for California. 
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Distances between Pairs of Combined Classes (in the sequence of merging) 

Remaining 
Class 

8 
3 
8 
4 
3 
8 
2 
8 
2 
2 

11 
2 
2 
1 

Merged 
Class 

9 
6 

10 
5 
7 

12 
3 

13 
4 
8 

15 
14 
11 

2 

Between-Class 
Distance 

12.819007 
14.919721 
16.103442 
17.613090 
19 . 973312 
20 . 977999 
22 . 058275 
24 .4 79444 
27.760006 
30.541638 
33.335528 
36.226317 
40 . 844560 
81.188140 

C DISTANCE 
L 
A 
S 0 9.0 18.0 27 . 1 36.1 45.1 54.1 63.1 72.0 
s 1---- ---1-------1-------1-------1-------1-------1-------1------ - 1---1 

10 -------------

12 -----------------

13 --------------------

7 ----------------

2 ------------------

14 -------------------------------

:: :::::::::::::::::::::: ::::::1------
1 -------------------------------------------------------------------

1-------1-------1-------1-------1-------1-------1-------1-------1---1 
0 9 . 0 18.0 27.1 36.1 45.1 54.1 63.1 72.0 

Figure 31. 15 classes; 3 x 3 mean and variance filter; Elevation , NDVI max., NDVI min. 
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Figure 32. 10 classes ; 13 X 13 mean and variance filter ; Elevation , NDVI max ., 
NDVI min . 
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Distances between Pairs of Combined Classes 
(in the sequence of merging) 

C DISTANCE 
L 
A 

Remaining 
Class 

6 
5 
2 
2 
2 
2 
2 
2 
1 

Merged 
Class 

7 
6 
4 
5 
8 
9 
3 

10 
2 

Between-Class 
Distance 

16.529332 
16.936582 
17.639746 
30.160794 
35. 381376 
36 . 834515 
37 . 068158 
43 . 623888 
76.915334 
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S 0 8.5 17.1 25.6 34.2 42 . 7 51.3 59.8 68.4 
s 1-------1-------1-------1-------1-------1-- --- --1-------1-------1---1 

7 --- - ----------

6 ---- - ---------

5 --------------

4 ---------------1-----------
2 ---------------

8 --------------------------------

9 ---------------------------------

3 ---------------------------------

10 ---------------------------------------

1 ------------------------------------------ --- ----------------------

1-------1-------1------ - 1-- -----1-------1-------1-------1-------1- --1 
0 8.5 17 . 1 25.6 34.2 42 . 7 51.3 59.8 68.4 

Figure 33. 10 classes; 13 X 13 mean and variance filter; Elevation, NDVI max., NDVI 
mm. 
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Figures 38 and 39 show histograms comparing the classification output with 

ECOMAP (Bailey), the EPA (Omernik) and the USDA boundaries. Only those outputs 

that met all assumptions /constraints were analyzed with this comparison. . Comparing 

the figures shows that eliminating pixels with less than 75% confidence greatly reduced 

the frequency of orange clusters (perceived to be Mojave) found outside the 3 existing 

classification boundaries. Keep in mind when comparing the 3 that MLRA Region 30 

includes much of the Sonoran Desert (yellow), while Omemik's Region 14 and Bailey's 

Section 322a do not. 
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Figure 34. IO classes at 75% confidence; 3 X 3 mean and variance filter; 
Elevation, NDVI max. , NDVI min. 
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Figure 35. 10 classes at 90% confidence; 3 X 3 mean and variance filter ; 
Elevation , NDVI max ., NDVI min 
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Figure 36 . l O classe s at 7 5% confidence ; 3 X 3 mean and variance filter ; 
Elevation , NDVI max. , NDVI min ., annual precipitation , and 
annual max . temperature 
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Figure 37. l O classes at 90% confidence; 3 X 3 mean and variance filter; 
Elevation, NOVI max., NOVI min. , annual precipitation, and 
annual max. temperature 
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ECOMAP (Robert Bailey) Section 322a 

HISIOIIS!I Of10d ll Ut S ll ll"' OOfff.;JXJ 1111-,&. H ll"lira. ; l:lrtDlk>n. IDYI .. ai . & 

""'· 
""Ill 
... 111 

ollllll 

:m111 

""Ill 

,., 111 

, 111111 

•• D, ., 
•• D, 

•• . , 
•• D, 

EPA (Jim Omernik) Region 14 
H110gra11 (J( 10 ccauu atlS'I c0 1t.J XJ•u 1 &unuct ; f1tutkl1 . NDVlaar . 

""""' 
'5000 

40000 

35000 

:nooo 
25000 

aJDDD 

15000 

10000 

!l!OO 

& fflll 

Rtg1011, 

USDA MLRA Region 30 

1u io1 , _ of 1Dda u u a ll ft 00f"tf •• J XJ "'un & 11• 1..--c:r . E1t11a11on. IO VI •• 

., 
0 2 ., ., 
G s 

•• ., 
•• D, 

" 

•• 
0 , ., 
•• D, 

•• . , 
II, 

1,1o1,- of10d llUU 1117ft conr ~3>0ffltll'l & 11•Mra : Etlllllbn , II V1 ·­

&min 

HIJIOglHI Of 10 ClilUU at JS 'i. co 11.: J XJ IIIU I &ua,,uc1 ; f1tuat1 1, NOVI 

,0000 

'5000 

IOOOD 

>SOOD 

:moo 
25000 

arooo 
lSOOO 

10000 

!l!DO 

•ax, 11111 

111,io,,_ of1 Dda u u 1111ft. oo nl' ., 3XJ "'tS'I & 11a1ira , E lr11111t1;>n, l tV I 

Figure 38. IO classes at 75% confidence; 3X3 mean & variance; Elevation, 
NDVI max & min 
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ECOMAP (Robert Bailey) Section 322a 
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Figure 39. 10 classes; 3X3 mean & variance filter; Elevation , NDVI max ., NDVI 
mm. 
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DISCUSSION 

All outputs identify to some degree self similar geographic regions within the 

desert southwest. However, only a few of the outputs identified cohesive and identifiable 

boundaries when compared to existing sources. There were some common trends among 

the various combinations of outputs. In order to simplify this discussion , these trends are 

surnmarized based on the following variables. 

Layers 

ND VI - Whether it was with original data , a 3X3 mean filter , a 3X3 mean and variance 

filter , a 13X 13 mean filter , or a 13X 13 mean and variance filter , the absence of maximum 

and minimum greenness always resulted in large areas of the lower San Juaquin Valley 

and surrounding foothills receiving the same clas sification as within existing boundaries. 

This violates assumption/constraint number 2 since the San Joaquin Valley is located 

entirely in the Humid Temperate Domain of Bailey's classification. (Figure 14). Notice 

also that there are no bodies of water (Lake Mead and Salton Sea are absent) or 

agricultural areas (around Salton Sea) . The absence of NOVI data input shows us that 

elevation and annual precipitation at 1 km resolution alone cannot distingui sh between 

valleys in the desert regions and the San Joaquin Valley . 

Elevation - This variable is a powerful surrogate for many ecological factors. Depending 

on scale , relationships tend to change in complexity from simple (small scale) to 

complex (large scale) . With all class sizes and smoothing filter combinations , the 



77 

absence of elevation resulted in no discemable desert regions between Divisions 320 and 

340 of Bailey's classification (Figure 16). Clusters presumed to be the Great Basin, the 

Mojave, and the Sonoran deserts are merged into one group. This does not necessarily 

violate assumption/constraint number 2, since these areas do fall under the same domain. 

But it does give identical classifications within the temperate desert (Great Basin -

Division 320) and tropical/subtropical deserts (Division 340 and MLRA region 30) . 

When comparing Figure 16 with Figure 28, which uses elevation alone as input, it is 

obvious that elevation is the dominant feature among the three biophysical layers that 

distinguishes the Great Basin from the Mojave and the Sonoran. 

Precipitation - With all class sizes and smoothing filter combinations, precipitation made 

little difference in the classification results within Divisions 320 and 340, due to its low 

frequency in these environment s. See Figure s 20 - 23 for an example . According to the 

dendrogram similarities , it made the most difference in the Sierra Nevada , which receives 

the highest annual precipitation in the whole study area. 

Number of Classes Requested 

5 - Most of the combinations requested at 5 classes resulted in a homogenous 

classification within the Province 322 or MLRA region 30 (Figure 20 - 23). Notice that 

there is no unique Mojave region between the yellow and red (Great Basin) clusters. 

According to the similarity dendrograms, the yellow cluster (1) is very unique from the 

other classified regions . If we were attempting to classify just Province 322 or MLRA 
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region 30, we could use almost any of the layer combinations at 5 classes. The exception 

is a combination of only elevation and precipitation, which classifies an orange cluster 

within the existing boundaries, but also classifies the same cluster to pixels in the 

foothills surrounding the San Joaquin Valley, as in Figure 14. 

10 - Except for the absence of elevation, requesting l O classes tended to result in a 

uniquely classified Mojave. With the absence ofNDVI as input, the San Joaquin Valley 

was also classified along with the Mojave, violating assumption/constraint number l .  

Adding precipitation made little difference in the spatial distribution or homogeneity of 

the output. See Figures 16, 17, 18, 19, 24, 25, 26, 27, 32 and 33 for examples of 10 

classes. Similarity dendrograms of these iterations show high similarities between what 

we perceive as the Mojave and Sonoran clusters (often 2 and 4, or 2 and 5). 

15 - Requesting 15 clusters often gave similar results as the l O cluster outputs, with 

slightly more variability. There was no perceived improvement in the classification when 

one moved from 10 to 15 clusters. 

Assumption/constraint number 3 states that the simplest classification scheme that 

identifies a unique Mojave will take precedence. l O classes met this constraint with all 

combinations. Output with 15 classes could be useful when trying to classify ecoregions 

at a finer scale (i.e. finer than ECOMAP's sections). For example, the NRCS and U.S. 

FS delineations of subsections in the California part of the Mojave closely coincide with 

the regions classified in Figure 30. 
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Original data vs. Smoothing filters (means and variances) 

There were generally few differences between the output classifications of 

original data and mean values across 3X3 and l 3X 13 smoothing filters. The biggest 

difference was that the class boundaries were not as detailed as with the raw data, which 

was expected. Also, some small areas (islands) within the predicted Mojave that received 

a different classification with the original data were smoothed away with the filters, 

making the definition of the Mojave more homogenous. 

Adding variance to the mean values across the smoothing filters also made little 

difference in the output classifications, except in areas with steep slopes and large 

elevation changes. The two most prominent of these areas are the Grand Canyon and the 

steep mountain ranges in the northwest part of Section 322a (i.e. Panamint Range). 

When observing the output from focal mean only (Figure 24), notice that the Grand 

Canyon is classified the same as the Mojave (orange) and the Panamint Range is 

classified the same as the Great Basin (red). When observing the output from focalmean 

and focalstd (Figure 26), notice that the Grand Canyon and the steep mountain ranges are 

classified together as a unique class that is not similar to any other classes according to 

the similarity dendrogram. 

When comparing these two areas with the 3 classifications from ECOMAP, the 

EPA, and the USDA, notice that Section 322a includes all the steep mountain ranges in 

the northwest, but doesn't include the Grand Canyon. Omernik's region 14 includes the 

steep mountain ranges and a small portion of the Grand Canyon (lower section). MLRA 

region 30 does not include most of the steep mountain ranges, but does include all of the 
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Grand Canyon (in the study area). The MLRA boundary lines seem to coincide more 

closely to the output from original data or focal mean filters at 5 or 10 classes (Figures 18 

- 25). It's evident that the advantage of adding variance to the input is to distinguish

areas that differ spatially from our definition of the Mojave (see biophysical descriptions 

in literature review). If we base our assumption/constraints just on ECOMAP's division 

boundaries, than this is necessary. Otherwise, the simpler classification scheme is to leave 

out variance and accept the Grand Canyon as part of the Mojave classification, as it 

appears the USDA has done with MLRA region 30. 

Summary of Results {Choosing a Favorite) 

If variance is left out, there are a number of outputs from 10 classes that could 

meet our qualifications for a unique Mojave ecoregion, from original data, a 3X3 filter, or 

a l 3X 13 filter. Assumption/constraint number 2 requires that we use NOVI as input and 

assumption/constraint number 3 requires us to drop precipitation as input, since it adds no 

more information. 

If we choose to use variance, we eliminate the original data as input since the 

variance is based on a smoothing filter applied to that data. But we do open the 

opportunity to consider just one data layer by itself, such as elevation. In Figure 28, the 

mean and variance of elevation across a 3 X 3 filter was used as input and 5 classes were 

requested. Notice the similarities between this output and the output in Figure 26. The 

Grand Canyon and the steep ranges in the northwest have a different classification from 

the Mojave and both figures show a large area of homogeneity. But Figure 28 cannot be 
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considered because, as with other classifications without NDVI as input, clusters defining 

the Mojave are also found in the Humid Temperate Domain in non-desert California. As 

with the other classifications, it's evident that if we want to distinguish between the Great 

Basin, Mojave, and Sonoran at 1 km resolution, elevation is the dominant factor when 

compared to greenness and climate. And adding the variance of elevation across an area 

helps us distinguish between the Mojave and the Grand Canyon. This very simple input 

from 5 classes could meet the main objective of this thesis and may be very satisfactory 

for a land manager who only wants a general idea of where to draw the boundary lines 

between the deserts. However, if we want to be consistent with the various nested 

hierarchies of ecoregion classification (in this example, ECOMAP's), elevation alone 

cannot discern between the low lying deserts and the San Joaquin Valley and Los Angeles 

Basin. Greenness from NDVI must be added to the input to separate the two domains. 

Figures 26 and 32 show us the results of combining elevation and NOVI 

greenness and their variances. Notice that except for agricultural areas, there are very few 

cells in the two different domains that are assigned the same classification. Also notice 

that the Grand Canyon and steep mountains in the northwestern part of Section 322a have 

a different classification from the Mojave. These two classification schemes meet all the 

assumptions and constraints set in this thesis. 

When comparing these classifications with the 3 ecoregions boundaries delineated 

by ECOMAP, the EPA, and the USDA (Figures 38 and 39), most orange classified cells 

fall within one of the three. Notice in Figures 26 and 32 that a rather large area in the 

northwest comer of Omernik's (EPA) classification consists ofred cells, which we 
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assume contains Great Basin characteristics. This was the case with all the various 

classifications from Isocluster. Other input data besides topographic, NOVI, or climate 

must account for this. Also notice that there is an area of orange in the northeast that falls 

outside the boundaries of Section 322a and Region 14, but falls inside ( except for a 

narrow finger) MLRA region 30. This was consistently the case with all various 

classifications from Isocluster. Finally, there is a rather large area of orange cells in the 

southeast comer that consistently fell outside all existing ecoregion boundaries. This is 

the only appreciable area in question when addressing the main objective of this thesis. 

Maximum Likelihood Confidence 

We must keep in mind that all images in the figures so far assume that grid cells 

are assigned to the correct and best class from the signature file. Figures 34 and 35 

represent the same output as from Figure 26, but at 75% and 90% confidence intervals. 

When comparing the output from 75% with the output from 90%, notice that there is 

more homogeneity among the orange cells and most cells in general. Notice that most of 

the area outside the southeast comer of the existing ecoregion boundaries is no longer 

classified as orange. It is classified as null data because the a posteriori probability 

assignment of these cells to any class is below 75%. Notice that the area outside the 

north and east boundaries of Region 14 and Section 322a is assigned orange at 75% and 

90% confidence. MLRA region 30 came the closest to matching this area. We must keep 

in mind that the 3 Mojave ecoregion classifications presented in this thesis were compiled 

at different scales and used some different criteria for input. 
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Finally, notice that there is a rather large dark area that would normally 

encompass Death Valley in all the figures. One might assume that any of the biophysical 

data representing Death Valley would be easily associated with Mojave Desert 

characteristics. But Death Valley is much lower, much drier, and much less vegetated 

than average Mojave biophysical data. Death Valley is an anomaly (or an island) in the 

Mojave, no different than the Spring Mountains. 

Figures 36 and 37 represent all possible data input for this thesis at 75% and 90% 

confidence. While it has been shown that maximum temperature is so highly correlated 

with elevation that it should not be used and that precipitation makes no difference in the 

output, Figures 36 and 37 show us that more layers reinforce the cell assignment 

confidence calculated by maximum likelihood. Notice in Table 38 that a larger number 

of orange cells occur within at least one of the Mojave Ecoregion boundaries, while there 

are very few orange cells outside. Figures 36 and 37 give us also more visual confidence 

that there is a large homogenous region of orange between regions of red and yellow, 

meeting the main objective of this thesis. 
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CONCLUSIONS 

While the number of variables and number of outputs for this thesis could be 

overwhelming, the overall objective remained simple: to quantitatively identify a Mojave 

ecoregion unique in biophysical characteristics from its neighboring regions. 

Quantitatively does not necessarily imply objectively. While this method may have been 

more objective than those used by Robert Bailey, Jim Omernik, and the USDA, 

subjectivity, bias, and assumptions were still necessary. Any ecoregion definition 

depends on the users' objectives and the scale they are working with. 

One of the key factors that makes the methods used in this thesis more objective 

than those used by Bailey, Omernik, or the USDA is that the similarities in the clustered 

regions can be quantitatively measured. Also, these methods can be repeated and quickly 

modified, as demonstrated with the large number of variables. 

The methods used in this thesis were a means of providing quick answers to 

"what if' questions. Adding and taking away variables such as number of classes, focal 

mean, focal standard deviation, and the input data itself was a process to help understand 

associations between these variables and the classifications of known landscapes and 

features. It was obvious from this thesis that elevation and its variance is a dominant 

factor in identifying known landscapes and features across the Basin and Range, the 

Southwest, and possibly the whole West. But this probably would not be the case east of 

the Rockies (except the Appalachians). There is probably some other stable biophysical 

variable that dominates there, such as climate or a derivative of NOVI. 

Contrary to assumption/constraint numbers 1 and 2, a classification is not 
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necessarily a "throw-away" just because it falls in two very different ecoregions, such as 

Bailey's domains. The areas may be unique, but not according to I km elevation and 

NOVI data that has been smoothed with a 3X3 filter. And even if they are identical in 

several biophysical characteristics, if the majority of their neighbors are different from 

them but similar to each other, then they will be classified along with their neighbors. 

This was the case with many "islands" in this thesis at levels lower within the hierarchy. 

Also, maybe the user could care less that a cluster falls in two different domains. Maybe 

for his or her objectives, a simple classification scheme, such as elevation mean and 

variance, is satisfactory. And maybe they will work at a scale where it doesn't matter if 2 

neighboring clusters are combined together as one. 

Future research regarding the methods of this thesis could consist of 

experimenting with derivatives from NOVI and climatic data, particularly regarding time. 

For example, the maximum and minimum greenness values from 21 different NOVI 

periods were used as input in this thesis. What about the time period itself? Instead of 

asking what was the maximum value, we could ask when was the maximum value (i.e.­

spring bloom)? One could logically guess that maximum greenness would occur in the 

Mojave Desert earlier than in the Great Basin. The same goes with precipitation. Instead 

of using one value for precipitation that represents a whole year, one could extract which 

month (or time period) does maximum and minimum precipitation occur. This would 

help distinguish between eastern parts of the Sonoran Desert, which receives monsoonal 

rains in August, and the Mojave Desert which receives most of its precipitation in the 

winter. Temporal data such as these must be treated differently from interval-ratio data, 
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which was the type of data used in this thesis. Other data that needs to be treated 

differently, but could be very useful, is soils, geology, and landfonn. These data were not 

included in this thesis because they aren't interval/ratio data. 

Other further research regarding the methods of this thesis could consist of 

quantifying the relationship between the scale of the study area, the scale and size of the 

sought after ecoregion (i.e. Section), the resolution of the data, the number of classes 

requested in the unsupervised classification, and the number of layers of input data. 
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