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ABSTRACT 

Determining the Factors That Control Respiration 

and Carbon Use Efficiency in Crop Plants 

by 

Jonathan M. Frantz, Doctor of Philosophy 

Utah State University, 2003 

Major Professor: Dr. Bruce Bugbee 

Department: Plants, Soils, and Biometeorology 

In the literature on plant respiration, there are two viewpoints concerning the 

111 

source ofrespiratory control: supply (photosynthate availability) or demand (temperature 

dependent) limitations. While different studies indicate the primary dependency for 

respiration is either the supply or demand side, the two paradigms cannot both be true. 

The relative importance of each paradigm may depend on a number of factors including 

period of time during which respiration is measured, phase of plant development, 

environmental conditions, and species. 

Studies were performed using continuous C02 gas-exchange instrumentation to 

monitor short- and long-term changes in whole canopies of lettuce, tomato, soybean, and 

rice in response to changes in light and temperature during vegetative growth. 

Respiration in all crops was less sensitive to temperature than previously reported. This 

is likely due to large amounts of temperature-insensitive growth respiration as a fraction 



of total respiration during early growth. Carbon use efficiency (CUE) decreased with 

warm night temperatures, but the change was too small to decrease the final dry mass or 

carbon gain after night temperatures decreased. Canopies with constant day/night 

temperature had the same CUE, in elevated C02 (1,200 µmol moJ- 1), regardless of

temperature. In ambient C0
2 

( 400 µmo! mol- 1), CUE decreased significantly when

temperatures were above 32C. 

Applying shade initially decreased CUE because of low photosynthesis and high 

IV 

respir�tion. After about 1,2 days, co/1?pie
1
s acflima\eq, p�sed o? �ecoverx of qJE. > 1 >

Different species acclimated to shade to different extents, but no interaction was evident 

between light and shade stress. These data were used to predict changes in 

photosynthesis, respiration, and carbon use efficiency given light, temperature, and C0
2

concentrations. 

(180 pages) 
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CHAPTER 1 

INTRODUCTION 

Plant respiration has been studied far less than animal respiration. Studies on 

human and mammalian respiration assist in diagnosing disease, understanding nutritional 

requirements, and determining some behavior patterns. Just as an understanding of the 

factors that determine respiration rates in animals help in understanding many aspects of 

animal physiology, understanding the factors that determine respiration in plants may 

help predict carbon balance in plants, assist in determining stress affects, and help predict 

yield. Since more is known about respiration in animal systems, plant research could 

benefit by understanding the factors known to affect respiration rates in animals and 

gaining familiarity with some of the techniques used to study these factors. Insight could 

be gained on how plants could be studied most effectively . 

While the literature discussing control of animal respiration focuses on the animal

environment interface , some general characteristics help to determine the oxygen demand 

for a given animal. These characteristics are 1) external oxygen supply, 2) species, 3) 

activity level of the animal, 4) size of animal, and 5) temperature of the environment 

(Dejours, 1981 ). Each of these are analogous to characteristics that determine the 

respiration rate of crop plants. 

Animals inhabit a wide range of environments. Occasionally, animals encounter, or 

in some instances desire, hypoxic or anoxic conditions, which can limit the availability of 

oxygen for respiring cells. When this occurs, animals either seek more aerobic 

environments or adapt their metabolism to produce some energy anaerobically. In crop 



plants, the external oxygen supply is rarely limiting. ill flooded soils, rootzones can 

become hypoxic and so must cope with either obtaining oxygen from the shoot via 

aerenchyma, or activate enzymes that can allow respiration to occur anaerobically and 

produce smaller amounts of ATP. 

2 

Species and activity level can have a large affect determining the metabolic rate in 

animals (Cameron, 1989) . For a given size of animal, different species have different 

amounts of muscle tissue, skeletal mass , and diet as well as different capabilities for 

activity. All of these will determine their oxygen needs through basic "maintenance" 

requirements to sustain life and requirements to begin and sustain different levels of 

activity. Similarly, different plant species of the same size have different metabolic 

requirements , which correspond to their growth rates (Lambers et al. , 1998). For 

example, a com plant will have higher respiration rates than a native grass species of the 

desert southwest. The reason for this is that com has been bred for fast growth across a 

finite growing season in a virtually stress-free environment, while the grass is adapted for 

survival in a hot , dry environment. 

There is a strong relationship between the size of an animal and its total respiration 

rate (Dejours, 1981 ). This makes sense because the more muscle mass, for example, the 

more oxygen the animal would need to allow the muscle to work. ill plants, there is a 

similar relationship (Enquist et al., 1998). The more leaf, root, and meristematic tissue , 

the larger the oxygen requirement for maintenance and growth. Generally, long-term 

productivity of a group of plants can be predicted based on some measure of size (height, 

mass , stem diameter) because of the relationship between productivity and light 



interception (Enquist et al., 1999). On shorter time scales (vegetative phase of growth), 

the relationship may not hold (Niklas and Enquist, 2001). 

3 

Finally, temperature strongly influences the respiration rate in animals, although this 

relationship depends on the species (Cameron , 1989) . In ectotherms (also known as 

"cold-blooded animals"), increasing temperature raises the metabolic rate, with a Q10 of 

approximately 2. The increase in metabolism is associated with increased protein 

turnover and enzymatic reactions, but also usually coincides with an increase in activity 

for the animal. Therefore, it is difficult to separate the behavioral response to a rise in 

temperature from a biochemical response. In homeotherms (also known as "wann

blooded animals") , the metabolic response to temperature is very different. Any 

deviation from the core body temperature will increase the metabolic rate. This is 

believed to be caused by an increase in heat generation through respiration during a 

decrease in temperature and an increase in cooling (more circulation, sweating, etc.) when 

the temperature increases . 

Plants have a temperature response that is similar to ectotherms (Q 10 of about 2). 

These studies in both plants and animals were conducted in short-term experiments 

lasting a few hours across a wide range of temperatures, the importance of which will be 

discussed later. 

The literature about respiration control in animals focuses on aspects that are 

primarily external to the animals. Respiration control for animals means maintaining a 

homeostatic oxygen concentration within the cells and supply to the cells (Dejours, 

1981 ). That is, control of respiration is when animals perceive the environment and then 
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either reflexively modify their association with that environment or use their locomotive 

abilities to move to a more suitable environment to maintain their oxygen supply. Plants, 

unlike animals, are unable to actively seek better environments in which to grow. 

Consequently, control of respiration has been thought to be maily dependent on the 

surrounding environment. 

Most studies investigating oxygen consumption in animals are conducted by 

measuring the amount of 0 2 that is dissolved in blood, blood pressure, and/or surgically 

investigating oxygen status on live organisms. In a few cases, gas exchange 

measurements can be made by recording the oxygen concentration of each breath for 

different activities. While each of these techniques for measuring the gas-exchange 

capabilities of resting animals is straightforward , difficulties arise when active animals 

need to be studied in si tu (i.e., diving ducks, hibernating mammals , flying birds , or 

migrating fish) . Plant respiration has been studied in far less detail than animal 

respiration. This is partly because it is difficult to study plant respiration during a 24-h 

period because of photosynthesis in the light. The rate of 0 2 consumption or C0 2 

generation in live tissue in the light cannot be measured because photosynthesis is giving 

off oxygen and taking up C0 2 at the same time . A further complication is 

photorespiration whereby ribulose-1,5-bisphosphate is oxygenated to form one 

phosphoglyceric acid (PGA, C3) and one phosphoglycolate (C2) molecule rather than 2 

PGA molecules during carboxylation . Because of these technical problems, the control 

of respiration is poorly understood in plants. 

In the literature on plant respiration , there are two viewpoints concerning the source 
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of respiratory control: supply (photosynthate availability) or demand (temperature 

dependent) limitations (Amthor, 1989). While different studies indicate the primary 

dependency for respiration is either the supply or demand side, the two paradigms cannot 

both be true. The relative importance of each paradigm may depend on a number of 

factors including period of time in which respiration is measured, phase of plant 

development , environmental conditions, and species. These two viewpoints and the 

methods for calculating carbon use will now be discussed in more detail. 

Calculating Carbon Use Efficiency 

Central to my research is the determination of carbon use efficiency (CUE, also 

known as growth efficiency or respiration efficiency). Using gas-exchange data collected 

during a 24-h period , CUE will be quantified according to Figure 1-1 and the 

accompanyin g equations . These calculations assume that respiration rates are identical in 

the day and night (Dewar et al., 1998). It is difficult to get estimates of day-time 

respiration rates, and these estimates depend on the method used. An average value 

obtained from two methods indicated that day-time respiration rates in leaves are as much 

as 55% lower than night-time respiration rates (Villar et al., 1994). Furthermore, 

cyanide-resistant respiration of photosynthetic cells in the light suggests that the 

mitochondrial electron transport chain does not function at all or at the same level as in 

the dark, which would decrease dark respiration rates in the light (Azc6n-Bieto and 

Osmond, 1983). Baker et al. (1972) estimated day-time respiration by temporarily 

placing leaves in darkened chambers during the light period, and daytime rates were 
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reported to have exceeded night-time rates by 20 to 25%. Meristematic cells and roots, 

however, increase their respiration rates in the light, which could offset a decrease in dark 

respiration in photosynthetic cells in the light (Robson and Parsons, 1981; Monje and 

Bugbee, 1996). Even if the day and night respiration rates are not identical, CUE changes 

by only 10% if daytime respiration rates are 50% different from night time respiration 

rates (Monje and Bugbee , 1998). Therefore, the assumption that daytime respiration rates 

are the same as night-time respiration rates is fairly robust, and from this point, this 

assumption will drive the calculation of CUE as written in Figure 1-1. 

Supply 

Numerous studies indicate that respiration rate is highly correlated with carbon 

substrate availability, which is determined by photosynthetic rate (McCree, 1974; 

Coggeshall and Hodges, 1980; Moser et al., 1982; Azcon-Beito et al., 1983; Azcon-Bieto 

and Osmond , 1983; Stitt et al., 1990; Krapp et al., 1991; Geiger et al., 1998; Robemtz and 

Stockfors, 1998). Increasing photosynthetic rate increases the substrate concentrations 

for a whole plant (Stitt et al., 1990; Smart et al., 1994; Robemtz and Stockfors, 1998). 

This substrate is correlated with increased amount and activity of glycolytic enzymes, the 

first steps in respiration (Stitt et al., 1990; Krapp et al., 1991; Geiger et al., 1998). 

Respiration rate was positively correlated with the nonstructural carbohydrate 

concentration in leaves of several different species (Azcon-Bieto and Osmond, 1983; 

Azcon-Bieto et al., 1983). To obtain an estimate of the nonstructural carbohydrate supply 

of these leaves, samples of similar sized and aged leaves were destructively harvested and 
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carbohydrates were extracted. Interestingly, pea leaves (Pisum sativum) behaved slightly 

different than wheat (Triticum aestivum L.) and spinach (Spinacia oleracea) leaves . Pea 

carbohydrate concentration did not change significantly during the course of 5 to 7 hours 

of darkness while that of wheat and spinach decreased substantially. This suggested that 

pea leaves were strong "sinks" for carbohydrate compared to other species or that they 

rapidly mobilized their own starch reserves. Coinciding with the constant carbohydrate 

concentration in pea leaves was an approximately constant respiration rate throughout the 

night. Exogenous applications of sugar to plant tissue also can stimulate respiration, as 

measured by leaf-segment gas-exchange (Krapp et al., 1991; Hill and Rees, 1995). 

Unfortunately, individual leaf segments or organs of a plant are not representative of 

whole plant respiration (McCree and Amthor , 1982). Therefore, evidence obtained from 

plant parts when used to describe whole-plant and community dependencies for 

respiration control must be accepted with caution. 

Daytime photosynthetic rates of leaf segments or whole leaves have been correlated 

with respiration rates in a variety of species (Azc6n-Bieto and Osmond , 1983; Azc6n

Bieto et al., 1983; Thomas and Griffen, 1994; Baxter et al., 1995; Robemtz and 

Stockfors , 1998). A leaf or leaf segment was placed within a darkened cuvette and 0 2 

consumption and/or C0 2 generation were measured for short (minutes to hours) periods 

of time. The rate ofrespiration was strongly correlated to the rate of prior C0 2 

assimilation in the light period. 

Only a few studies have attempted to show a correlation between carbohydrate 

supply and respiratory control using whole plants (McCree and Troughton, 1966; Wilson 
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et al., 1978; McCree , 1982). In these studies, whole-plant dark respiration rates were 

positively correlated to daytime photosynthetic rates . Plants were placed in the dark for 

brief periods (up to 30 min) in the daytime, and these respiration rates were positively 

correlated to photosynthetic rates immediately previous to the dark treatment. When 

plants were shaded , causing a reduction in photosynthetic rates as well as carbohydrate 

content, nighttime respiration rates decreased , which resulted in a constant ratio of daily 

photosynthesis to respiration (McCree and Troughton , 1966). Nighttime respiration rates 

were higher in longer photoperiods and lower in shorter photoperiods, which resulted in a 

constant ratio of daily photosynthesis to respiration. The longest night-time respiration 

rate measurement in these studies was 6 to 15 hours, depending on the photoperiod . 

Demand 

Respiration rates typically increase with temperature (McCree and Amthor , 1982; 

Labate and Leegood, 1989; Roberts et al., 1992; Wheeler et al., 1993; Smith and Wu, 

1994; Maier et al., 1998) until the temperature reaches about 35 to 40C. Respiration rates 

generally plateau at the next 5 to 1 OC, and then fall (Roberts et al., 1992). These rates 

coincide with changes in protein turnover rates and rates of enzymatic reactions (McCree 

and Amthor, 1982; Roberts et al., 1992). During the increase phase, respiration has a Q10 

of between 1.7-2.5, which means that respiration approximately doubles for every lOC 

increase in temperature (McCree and Amthor, 1982; Johnson and Thomley, 1985). To 

experimentally determine this value, temperature is changed during the course of a few 

hours during a dark period, usually for single plants or leaves, and respiration rates are 
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measured across a range of temperatures (Crawford and Huxter, 1977; Alexander et al., 

1995). The extent of temperature dependency and the range of temperatures at which 

respiration is affected changes slightly for different crops as does the value of Q10• These 

techniques clearly indicate that temperature influences respiration rates. The short-term 

nature of the studies, however, do not provide any indication of how plant tissue might 

adapt to a particular temperature and the resulting increase or decrease the rates of 

physiological processes. 

There have been several attempts at correlating maintenance respiration requirement 

to N content or protein content (Ryan et al., 1996; Dewar, 1996). It is believed that N 

status is a reflection of protein amount and therefore an indirect measure of amount of 

protein that would need to be maintained . As a result, the higher the N content, the 

higher the maintenance . 

Several longer-term studies have been conducted during the course of a single 

extended dark period (Macduff and Jackson, 1992; Lee and Titus, 1993). These studies 

demonstrated that large differences in respiration rates occurred in the first 24 to 48 hours 

of a dark period, depending on temperature. However, the respiration rates tended to 

become equal as pools of carbohydrates were exhausted. These studies indicate that the 

extent of temperature dependency depends on carbohydrate concentration (Azc6n-Bieto 

and Osmond, 1983). 

Because these studies only investigate a single night period, they fail to address how 

a reduction in night temperature and a concomitant decrease in respiration rates influence 

photosynthetic rate the following day. If respiration rate decreases, insufficient protein 
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repair and maintenance respiration might occur during the night period, which may 

reduce photosynthesis the following day. An ideal system to determine the factors that 

control respiration would be able to measure long-term gas exchange of whole canopies, 

measure multiple canopies simultaneously, and be able to manipulate and 

control environmental conditions in each canopy separately. 

Duration 

Even though several studies investigated respiratory rates during long-term 

darkness , none of these studies continued their assessment for a subsequent day period to 

determine the effect of a nighttime enviromnental changes on photosynthetic rates and 

carbon use during the following day. It is hypothesized that lower night respiration rates, 

brought on by either an increase in temperature during the night or shade during the day, 

will lower the growth the subsequent day. Conversely, decreasing the night-time 

respiration rate will decrease the following day's photosynthetic rate. Therefore, CUE 

will remain close to a constant value regardless of night-time environment. 

Research Objectives 

The objective of this research was to understand the effect of temperature and light 

on respiration and the long-term control of carbon use efficiency. Specifically, I 

examined the effects of: 

1. The role of temperature 

Hypothesis 1: Respiration will double for every 1 OC rise in temperature. 
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Hypothesis 2: Warmer night temperatures will decrease photosynthesis on 

subsequent days because of reduced respiratory efficiency, and cooler night 

temperatures will increase photosynthesis on subsequent days because of improved 

respiratory efficiency. 

Hypothesis 3: Carbon use efficiency will be similar in plants grown at constant day 

and night temperatures across a range of 21 C to 3 SC. 

Hypothesis 4 : Carbon use efficiency will be similar in plants grown with SC 

day/night difference in temperature across a range of 21C to 35C. 

2. The role of substrate availability 

Hypothesis 5: Elevated C0 2 will increase carbohydrate supply and decrease 

temperatur e sensitivity, whereas ambient C0 2 will decrease the supply of 

carbohydrates and increase temperature sensitivity. 

Hypothesis 6: Shade will decrease night respiration because of decreased 

carbohydrate supply . 

Hypothesis 7: Photosynthesis will immediately decline with low light, but 

respiration will require more time (days) to return to balance with photosynthesis. 

3. Species 

Hypothesis 8: Starch accumulators will be more sensitive to shade than sucrose 

accumulators because starch is a more stable storage carbohydrate causing 

respiration rates to remain high for longer and cause CUE to be lower. 

4. Acclimation 

Hypothesis 9: Carbon use efficiency will acclimate back to pretreatment values in 
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the days following a temperature change. 

Hypothesis 10: Carbon use efficiency will acclimate back to pretreatment levels 

after shade is applied because respiration will decline due to lower carbohydrate 

supply. 

Hypothesis 11: Cooler temperatures will slow carbohydrate mobilization, which 

will slow the rate of respiratory and CUE acclimation to low light. 

Hypothesis 12: In long tenn studies, the maintenance respiration coefficient will be 

relatively insensitive to temperature due to lower respiratory demand, and 

growth respiration coefficient wi 11 decrease with lower light. 
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Figure 1-1. Diagram for calculating carbon use efficiency from a single day's C0 2 gas-

exchange data. 
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CHAPTER2 

NIGHT TEMPERATURE HAS A MINIMAL EFFECT ON RESPIRATION AND 

GROWTH IN RAPIDLY GROWING PLANTS I 

Abstract 

17 

Carbon gain depends on efficient photosynthesis, adequate respiration, and adequate 

respiration. The effect of temperature on photosynthetic efficiency is well understood . In 

contrast, respiration is widely accepted to double with each 1 OC increase in temperature 

(a 100% increase), but this relationship is derived from short-term (hours) measurements 

in mature organisms. These short-term data are then used to extrapolate across whole life 

cycles to predict the influence of temperature on plant growth. In this study, night 

temperature was altered from 17 to 34C in young, rapidly growing plant communities for 

up to 20 days. The day temperature was maintained at 25C. C0 2 gas-exchange was 

continuously monitored in 10 separate chambers to quantify the effect of night

temperature on respiration, photosynthesis, and the efficiency of carbon gain ( carbon use 

efficiency). Total respiration increased only 20 to 46% for each 1 OC rise in temperature. 

This change resulted in only a 2 to 12% change in carbon use efficiency, and there was no 

significant effect on cumulative carbon gain or dry mass. No change in the sensitivity of 

respiration was observed even after 20 days of treatment. These findings indicate that 

whole-plant respiration ofrapidly growing plants is lower than commonly reported for 

excised, mature plant tissue. 

'Coauthored by Bruce Bugbee. 
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Introduction 

Plants have evolved in an environment that provides cooler nights than days. 

Researchers and controlled environment users often provide these conditions for plant 

growth, but the reasons behind this from a carbon gain perspective are not clear. 

Respiration may be inefficient on warm nights and inadequate on cool nights. Cool nights 

would reduce growth if there was not enough respiration to meet the maintenance and 

growth needs for the subsequent day. During warm nights, too much carbon may be 

inefficiently respired or predominately used on maintenance rather than on growth, 

thereby reducing growth rates. McCree and Amthor (1982) found that a constant 20C 

day/night temperature increased growth rate slightly due to improved carbon balance of a 

stand of white clover (Trifolium repens) when compared to a stand grown in 30C days 

and 1 OC nights. They suggested that the warm day temperature increased the rate of 

substrate use, while low respiration at night was insufficient to offset the day-time carbon 

loss. 

Respiration is typically measured across short intervals (minutes or hours) on fully 

expanded leaves, leaf disks, or mature plant parts (Alexander et al., 1995; Crawford and 

Huxter, 1977; Bunce, 1991; Roberts et al., 1992; Labate and Leegood, 1989; Maier et al., 

1998), and these measurements are used to predict plant growth. Unfortunately, it is 

extremely difficult to find a representative leaf. Leaves poorly represent whole plant 

respiration because the measurements do not include roots, stems, flowers, or meristems, 

and most measurements are made on mature organs that may not reflect plants with high 
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growth rates. Rarely, whole plants are measured, but even then, these measurements may 

not represent healthy plants because the respiration measurements are summed from 

excised roots and shoots, and are done for only a few hours (Tjoelker et al., 1999). 

Groups of whole plants (communities, plant stands) are also important to measure 

because side lighting issues from single plants makes extrapolation from single plants to 

whole communities complex. 

There is general acceptance (based on measurements of mature tissue) of an 

exponential rise of respiration with temperature, and short-term studies typically indicate 

a respiratory Q,0 of at least 2 (Lomander et al., 1998; Burton et al., 1996; Bustan and 

Goldschmidt, 1998). Unfortunately, this easy-to-use temperature correction tennis used 

to correct total respiration measurements for differences in temperature without an 

understandin g of what the Q,0 sensitivity should apply to in the measurement. 

Classically, respiration has been divided into a "growth" component and a 

"maintenance" component. The growth respiration coefficient ( or efficiency of 

biosynthesis) has long been considered temperature insensitive (Penning de Vries et al., 

1974), but maintenance respiration is considered temperature dependent (McCree, 1974). 

McCree (1974) described the growth portion as a function of daily photosynthesis and the 

maintenance portion as a function of existing biomass . Both types of respiration occur 

simultaneously in an actively growing plant. The theory behind this model has been 

supported in recent reviews (Arnthor, 2000; Cannell and Thornley, 2000; Thomley and 

Cannell, 2000) . If a large fraction ofrespiration is of the "growth" type, and if the 

efficiency of growth ( or amount of growth respiration per unit growth) is temperature 
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insensitive, then a growing plant will be relatively less temperature sensitive and have a 

lower Q10 than a single, mature-excised leaf or root. This calls into question the practice 

of using measurements of respiratory sensitivity based on mature tissue to describe the 

carbon balance of plants that are still rapidly growing. 

Amthor (2000) suggested that respiration may be less temperature sensitive during 

the long term. There is evidence that species acclimate to temperature and when 

compared at their growth temperatures, they have similar respiration rates (Q 10 is 1), or 

their temperature sensitivity is less than that predicted by short-term responses (Q 10 less 

than 2) (Arnone and Korner, 1997). There is, however, great species variability in how 

much acclimation occurs. Larigauderie and Komer (1995) found that some species 

acclimated to some degree, but others had long-term values of Q,0 up to 5.5. The degree 

of acclimation was related to genus, which strongly suggests a genetic component to 

temperature acclimation. 

Iflow Q 10 values are calculated, does it indicate acclimation? Tjoelker et al. (2001) 

review many short-term studies and suggest that Q10 decreases as the measurement 

temperature increases. This tendency is easily explained mathematically when one 

considers that an exponential rise in respiration with temperature is more of a 

convenience in describing respiratory response to temperature rather than an exact 

behavior ofrespiration. Tesky and Will (1999) and Percival et al. (1996) observed a 

lower temperature sensitivity for whole plants than for leaves, but they attributed this to 

their choice of species rather than a fundamental physiological mechanism. Further 

confusing the matter, Griffin et al. (2002) argue that Q 10 should actually be higher on a 
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whole plant basis than lower due to a reduction in the likelihood of becoming 

carbohydrate limiting during measurement at warm temperatures. 

In addition to measuring respiration rates, it is useful to get a measure of whole-

plant respiratory efficiency and carbon conservation. A widely used parameter for this is 

the ratio of net carbon gain (net photosynthesis - dark respiration) in a 24-h period to the 

total carbon fixed during the light period (P,rross) (Amthor, 1989). This ratio, called carbon 
0 

use efficiency (CUE), is a measure of the efficiency of incorporation of fixed carbon into 

new biomass. The term integrates all growth and respiratory processes in a plant during a 

24-h period. CUE should be affected by temperature and growth rates. Understanding 

environmental effects on respiration is critical to understanding CUE. 

Surprisingly, some studies have found that CUE changes little during a plant's life 

cycle in spite of large differences in temperature and growth rates. Gifford (1994) 

reported an average CUE (calculated from his R:P ratio) of 0.58 to 0.60 for several 

species and sizes of plants across a wide range of environments, which calls into question 

the temperature sensitivity of CUE. Monje and Bugbee (1998) found a CUE for wheat 

(Triticum aestivum L.)of 0.59 to 0.61 except for the first and final week of the life cycle. 

Dewar et al. (1998) modeled CUE of mature canopies and suggested it should be constant 

because stored reserves should buffer short-term changes in substrate availability. 

We examined both the short-term (days) and long-term (weeks) effects of 

temperature on respiration, net photosynthesis, and CUE of groups of whole plants. We 

minimized the effect of temperature on photosynthesis by maintaining a constant daytime 

temperature , and we minimized temperature effects on photorespiration by growing the 
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plants at elevated C0 2• We also minimized the effect of temperature on leaf expansion by 

studying groups of plants and imposing temperature treatments when canopies were 

uniform. We hypothesized that changing night temperature would exert a strong 

influence on night respiration and that change would result in differences in 

photosynthetic rates of the subsequent day. Furthermore, we hypothesized that altered 

night respiration would result in a change in CUE, but that both respiration and CUE 

would acclimate to their pre-treatment levels. 

Materials and Methods 

Experimental Setup and Design 

Three studies were conducted to compare night-temperature effects across three 

crops : lettuce (Latuca saliva L. 'Grand Rapids'), tomato (Lycopersicum esculentum Mill. 

'Red Robin') and soybean (Glycine max (L.) Merrill 'Hoyt') . Seedlings were transplanted 

four to seven days after imbibition into a 10-chamber, computer-controlled gas-exchange 

system (Figure 2-1 ). Temperature within each chamber was controlled with a chilled 

water coil and small heaters. System details and calibration procedures were described 

previously (van Iersel and Bugbee, 2000). Lettuce and tomato were grown at constant 

25C, and soybeans were grown at a constant 20C until canopy closure. Daytime 

temperatures remained at these temperatures for the duration of the trial. Temperatures 

were measured with an aspirated, type-E (0.5 mm diameter, 24-AWG) thermocouple, and 

were maintained within ±0.2C of the set point. Groups of whole plants or plant 

communities were studied and arranged at the following densities: lettuce at 106 plants 
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m-2, tomato at 80 plants m-2, and soybean at 35 plants m-2• 

Night temperatures were controlled across a l 7C range from 17 to 34C. 

Temperature treatments were maintained for 13 days until harvest on Day 29 for lettuce, 

for 20 days until Day 36 for tomato, and for 15 days until Day 34 for soybeans . 

Treatments extended into flowering for tomato and soybeans. Control plants had 

constant day/night temperature . All days are after transplanting. 

Relative humidity was maintained between 60 and 80%, but varied much less 

among the chambers for any given day because the daytime environments were similar 

( data not shown) . A photosynthetic photon flux (PPF) of 600 µmo! m-2 s-1 (±5% among 

chambers) was provided by water-filtered, high pressure sodium lamps. The photoperiod 

was 16-h for lettuce and tomato, and 12-h for soybeans. Reflective material was wrapped 

around each chamber and was adjusted daily to the top of the canopy to minimize side 

lighting (Figure 2-1 ). C0 2 was controlled at 1,200 µmo] moJ-1 for the duration of all the 

studies. These studies were conducted at elevated C0 2 for three reasons: 1) to minimize 

photorespiration, 2) to minimize the effect that vapor pressure deficit differences would 

have on photosynthesis if there were differences between chambers on a given day, and 3) 

to increase photosynthesis and thus help insure that the plants did not become 

carbohydrate limited at the higher temperatures . Temperature responses likely would be 

smaller if the plants were carbohydrate limited by ambient C0 2• Separate hydroponic 

systems were enclosed in each chamber so that root respiration was included with the 

shoot. Hydroponic solution was bubbled with the same air as that used for the shoot 

environment. 
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Manual adjustment of pH on a daily basis resulted in a one pH unit day-to-day 

range. The pKa of carbonate is 6.2, which means that 50% of the carbon dissolved in the 

water is in the carbonate form and 50% is C0 2. Due to the limitations of our pH control 

method, a one pH unit range during the day has the potential to cause significant fluxes in 

and out of the nutrient solution. For this reason, the pH of the hydroponic solution was 

maintained between 4 and 5, which forces between 90 and 99% of the C0 2 out of 

solution. 

Calculations 

Carbon use efficiency (CUE) is a calculated term that measures how efficiently 

plants can incorporate the carbon fixed during the day into biomass gain . It is used instead 

of percent respiration because : 1) it is an efficiency parameter that can easily fit within 

models , and 2) it incorporates differences in photoperiod automatically , whereas percent 

respiration does not. Using P net (net photosynthesis , mol C mgroun/ d-1
) and R,, (night-time 

respiration , mol C mgroun/ nighr'), daily carbon gain (DCG) can be calculated as: 

DCG = pnel - R,, 

Cumulative carbon gain (CCG) is the running total of DCG. 

P gross is a calculated term that reflects the net C fixed (P net) and the amount of C that 

is simultaneously being respired. Because day-time respiration (RJ can not be measured 

directly, P gross is expressed as the sum of Pnet and some percentage of R,,. Some studies 

have indicated that Rd in leaves can be higher during the day due to their higher daytime 

carbohydrate content (Azcon-Bieto et al., 1983; Azcon-Bieto and Osmond, 1983). Other 



studies indicate daytime Rd is lower due to light -inhibition of respiration (Sharp et al., 

1984; Wang et al., 2001). Monje and Bugbee (1996) found that root respiration, at a 

constant temperature , is increased in the day presumably due to increased carbohydrate 

supply . The common approach for whole plants is to assume that the rate of Rd and R,, 

(µmol mground-2 s-') are equal when temperatures are constant. In a 12-h photoperiod, Rd 

(mol C mgroun/ d-1
) then equals Rn. In a 16-h light I 8-h dark photoperiod, Rd= R,, * 2. 
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In these equations, respiration assumes a positive value (i.e., mass respired) . P.,'Toss (mo] C 

m.,'Tound-2 d-1
) can , therefore , be calculated as: 

p !,,'TOSS = p net + Rd 

Plants were grown in constant day/night temperatures until treatments were applied. 

Treatment effects were express ed as a percent of their initial value, then normali zed to the 

control in the following manner : 

(posttreatment a dayb I pretreatment a value) ...,... 

(posttreatment controI dayb I pretr eatment valuecontroI) x 100(%) 

where posttreatment a indicates the posttreatment value of parameter a (i .e., CUE , P ne t, 

Rdark), dayb indicates the day after treatment, pretreatmenta value is the value of the 

parameter of interest on the day before treatments began, posttreatment comroI dayb is the 

posttreatment value of the parameter of interest on the same posttreatment day, and 

pretreatment value controI is the pretreatment value of the parameter of interest the day 

before treatments began . Temperature effects through time are measured in the 

numerator, and the effects relative to the control and through time are accounted for by 

normalizing to the denominator. Finally, the Y-intercept was adjusted to facilitate 



comparisons of slopes among treatments . 

To compare our temperature sensitivities to the literature and to calculate the Rd 

from R,, to determine P gross• Q 10 values are reported . The R,, of plants in different 

temperatures were used to calculate two Q10 values (one from control temperature to 

coolest temperature and one from the control temperature to the warmest temperature) 

using the temperature response function: 

(R,.T - R,.contro l) 

Q _ (T - co ntro l T I I 0) 
,o - e 

In this study, the temperature response was not obviously exponential, and so was 

explained statistically with linear regression. 

Statistical Analys is 

A randomi zed block design was used with five treatments in each of two blocks , 
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giving two replicates at each temperature . Occasionally , temperature control at the low or 

high treatments was not perfect. This caused us to use linear regression analysis and treat 

temperature as a continuous variable rather than as discrete treatments. Slopes of lines 

were compared to see if their slopes were equal using the test statistic ( ( slope a - slope b) 

- 0)/(variance of slope a) = t (degrees of freedom of slope a) (Neter et al., 1996). 

Results 

Lettuce 

Night respiration increased 2.0% per degree C (F = 440.0, df = 9, P < 0.0001; 
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Figure 2-2A, 2-3A). After 13 days of treatment, the slopes did not differ significantly 

from one another indicating no acclimation to temperature. The average CUE was 0.62 

the day before treatments were imposed (Figure 2-2B). Net photosynthesis was not 

sensitive to night temperature (F = 0.41 , df = 9, P = 0.54; Figure 2-3B). The CUE values 

for the coolest night temperatures were about 2% higher than the control values and the 

warmest were about 2% lower than the control values for all days after treatments were 

applied (F = 31.5, df = 9, P = 0.0005; Figure 2-3C). The sensitivity of CUE to 

temperature did not change during the 13 days of treatment based on comparison of 

slopes (P 0.35 , df = 8). There was no difference in final dry mass (F = 1.19, df = 9, P = 

0.31) or in CCG (F = 0.23 , df = 9, P = 0.64) after treatments were imposed (Table 2-1). 

Tomato 

Night respiration increased 2.7% per degree C with warmer nights (F = 185.2, df = 

9, P < 0.0001 ; Figure 2-4A and 2-5A) . This caused the CUE to be slightly higher with 

cooler nights and lower with warmer nights (F = 35.8 , df = 9, P < 0.0003; Figure 2-4B 

and 2-5C). After 20 days of temperature treatment , there was no difference in the 

sensitivity of CUE or respiration to altered night temperature (P = 0.48, df = 8). Net 

photosynthesis was not affected by the altered night temperatures (F = 0.47, df = 9, P = 

0.57; Figure 2-5B). There were no differences in the final dry mass (F = 0.43, df = 9, P = 

0.53) of the treatments or in CCG (F = 0.28, df = 9, P = 0.61) after treatments began 

(Table 2-1 ). 
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Soybean 

Soybean was the most sensitive of the three crops studied. Respiration increased 

4.0% per degree C (F = 164.3, df = 9, P < 0.0001; Figure 2-6A and 2-78). Carbon use 

efficiency changed after the night temperatures were changed because respiration changed 

(Figure 2-68, 2-7 A, and 2-7C). With no change in photosynthesis, the decrease in 

respiration resulted in an increase of CUE of 3% relative to the control and a decrease of 

12% relative to the control at the highest temperature (F = 27.3, df = 9, P < 0.0008; 

Figure 2-7C). Net photosynthesis was not affected by the altered night temperatures (F = 

0.056, df= 9, P < 0.82; Figure 2-78). No acclimation occurred after 15 days of 

treatment (P = 0.29, df = 8). No differences in final dry mass (F = 0.0035, df= 9, P = 

0.95) were observed between treatments or in the CCG (F = 1.09, df = 9, P = 0.33) after 

treatments began (Table 2-1). 

Differential Temperature Effects 
Among Species 

The effect of temperature on respiration and CUE differed among species (Figure 2-

SA and 2-88). Soybean respiration was significantly more sensitive than lettuce (t = 

6.34, df = 8, P < 0.001), and had more CUE sensitivity than lettuce (t = 2.91, df = 8, P < 

0.025), but all three species were much less sensitive than commonly believed . Lettuce 

respiration was significantly less sensitive than tomato (t = 3.418, df = 8, P < 0.025), and 

CUE was marginally significantly different (t = 1.64, df = 8, P ~ 0.08). The average Q10 

for whole plant respiration of lettuce was 1.20, tomato was 1.36, and soybean was 1.46, 

with lower Q10 values for warmer temperatures (Table 2-1 ). 



Discussion 

Current Paradigm: Respiration has a Q10 

of about 2 

The third edition of a popular plant physiology textbook states that respiration 
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typically doubles for every 1 OC rise in temperature between 10 and 30C (Taiz and Zeiger, 

2002), and this is a common approximation for respiration response to temperature based 

on short-term (minutes or hours) measurements made on mature plant parts. However, 

values of Q10 for respiration in plants, animals, and microbes are reported from 1.2 to 4 

(Urmeneta et al., 1998; Neven, 1998; Boone et al., 1998; Quinlan and Lighton , 1999; 

Lariguderie and Komer, 1995; Chapman and Thurlow, 1998; Nielsen et al., 1999). Some 

have speculated that the range in Q,0 values is the result of acclimation to temperature, or 

simply a result of measurement temperature . Because the growth coefficient for 

respiration is believed to not differ with temperature, it stands to reason that if a large 

fraction of the respiration is growth respiration, the temperature sensitivity for total 

respiration would be less than values obtained from mature (not growing) tissue. In our 

studies, small, rapidly growing plants were used, which suggests that a large fraction of 

the respiration is likely growth respiration, and could explain the low Q10 values obtained 

in this study. 

Studies that report low values for Q10 have all had some degree of growth of the 

organism, which would result in a temperature-insensitive growth component included in 

the respiration measurements, though they do not separate growth and maintenance 

components (Ogawa and Takano, 1997; Percival et al., 1996; Urmenta et al., 1998). The 
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studies that have less growth have values of2 to 2.5 (Maier et al., 1998; Quinlan and 

Lighten, 1999; Neven, 1998), regardless of the organism. Models and modeling literature 

do an excellent job of separating growth and maintenance respiration and assigning the 

temperature sensitive portion only to the maintenance fraction. Unfortunately, studies 

investigating the effect of temperature on respiration too often fail to divide respiration 

into its component parts and , as a result, conclude that a given species may have an 

unusually low temperature sensitivity. 

If we assume that the Q 10 for maintenance respiration is between 2 and 2.2, 

maintenance and growth coefficients can be calculated. Assuming all of the measured 

temperature sensitivity was due to maintenance respiration, the maintenance coefficient is 

0.03 to 0.04 mo! C respired per mo! of C in biomass per day, which is a typical value 

(Amthor, 1989) . It follows that the remainder of the respiration is due to growth , which 

results in a conversion efficiency (sometimes referred to as Yg) of 0.85 to 0.95 mol C in 

growth per mol substrate , which is a realistic value based on estimates of Penning de 

Vries et al. (1974) . These calculations also indicate that 34 to 50% of the respiration is 

growth respiration, which is a reasonable value for these young plants (van Iersel and 

Seymour, 2000). 

Current Paradigm: Cool night 
temperatures improve growth 

McCree and Amthor (1982) found that growth rate was improved by 15% at a 

constant 20C compared to 30/1 OC day/night due to improved carbon balance. They 

attributed the growth improvement to excessive dark respiration during the day and only 
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slightly reduced night-time respiration, but they used ambient C0 2 and photorespiration at 

30C would thus be significantly increased compared to 20C. This would decrease 

photosynthetic efficiency and reduce growth in the warmer day temperature treatment. 

They also used a 20C difference between day and night. This extreme change in 

temperature may have affected water relations, leaf expansion, and chilling injury in 

addition to respiration so the direct effect of night temperature on growth is not clear from 

their study. 

In theory, respiration may be inadequate on cool nights and excessive on warm 

nights , but our studies do not indicate a statistically significant advantage of either warm 

or cool nights on final dry mass or on cumulative carbon gain after treatments were 

applied. There was a statistically significant effect of temperature on night respiration, as 

expected, but , surprisingly, there was no significant effect on P net· Because the carbon 

flux in P net is typically 4 to 5 times larger than dark respiration in growing plants, changes 

in dark respiration have only a small effect on CUE. The relatively small variation 

between replicate chambers in Pn et dominated the effect of the small, but statistically 

significant, differences in CUE on growth . If experimental error in P net was eliminated, 

the growth effects would have been determined by the night temperature effect on CUE, 

which was less than 0.5% per degree C in lettuce and tomatoes, and less than 1 % per 

degree C in soybeans. These effects do suggest a small advantage of cool night 

temperatures that might be statistically significant in a study with many replicate 

chambers, but our data indicate that cool nights are biologically insignificant. 



Current Paradigm: Respiration and CUE 
acclimate to temperature changes 

Although both respiration and CUE were influenced by temperature, neither 

returned to pre-treatment levels after treatments began. Several studies reported 

respiratory acclimation or adaptation to changes in temperature , and some back to 
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pre-treatment levels (Spencer and Wetzel, 1993; Illeperuma et al., 1998; Larigauderie and 

Komer, 1995). Gifford (1995) found that CUE returned to the pre-treatment level within 

four days . The initial change in CUE in our study was similar to Gifford (1994), but he 

altered both day and night temperature and grew his plants in ambient C0 2, so changes in 

photorespiration may have complicated the results. 

Tjoelker et al. (1999) argue that a lower Q10 than that obtained from short-term 

measurements indicates acclimation to temperature . Detached plants were used in that 

study, so one could argue that a lower Q10 was more a result of measuring dead plant parts 

rather than acclimation. Still , a lower Q10 suggests a decrease in temperature sensitivity , 

so did the plants in our study acclimate? Ideally , both short and long-term measurements 

of temperature sensitivity on a plant could be compared. However, making those 

measurements on the same plants would compromise the integrity of any 'constant night 

temperature' treatment, as used in this study . If the only requirement for acclimation is a 

lower Q10 (than expected), then these plants acclimated . However, the temperature 

sensitivity did not change during the entire treatment period (up to 20 days), so any 

acclimation must have occurred during the first day only and not acclimated any more. 

This seems unlikely. 
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Another possibility is that the low Q10 was due to substrate limitation; if there is no 

substrate to respire, then respiration cannot increase with temperature. These plants were 

grown in 1,200 µmo] C0 2 mo1-1 with relatively high light (34.5 mol photons m-2 d-1
). 

Previous studies done in similar environments indicated ample carbohydrate supply 

(Smart et al., 1994). If anything, the plants in this study should have been more sensitive 

to temperature than an average greenhouse grown or field grown plant. The fact that they 

had such small sensitivities suggests that other mechanisms are at work (i.e., growth 

respiration is a large fraction of total respiration). 

It is unlikely that decreases in daytime respiration compensated for increases in 

night respiration. For example, the night respiration of soybean increased from 1.0 to 1.4 

mo! C m-2 nighr 1 when the night temperature was increased from 20 to 30C. The 

day-time respiration would need to decrease by 75% for CUE to remain the same. There 

was no effect of temperature on P net so this should result in a 12% decrease in P &'Toss· Also, 

this type of change would indicate an uncoupling of temperature and respiration during 

the day as well as a decrease in respiration with an increase in carbohydrate supply, which 

contradicts the literature (Azc6n-Bieto and Osmond, 1983; Azc6n-Bieto et al., 1983; 

Moser et al. 1982; Monje and Bugbee, 1996). While a 75% reduction in day-time 

respiration may be possible in single leaves, there is no evidence on a whole plant level 

that this occurs . Furthermore, this type of acclimation seems unlikely, and there is no 

known reason why this would occur. 

Dewar et al. (1998) developed a mechanistic model for mature leaves or canopies of 

CUE to explain why constant short-term (days) CUE is often observed in many species 
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and environmental conditions. In this model , stored reserves and available carbohydrate 

for growth and respiration are balanced across several days. The balance of these pools is 

nearly steady when averaged across several days so brief fluctuations (minutes or hours) 

in environments are not believed to affect the balance. The model was tested in variable 

light conditions, but variation in temperature was not modeled. The pool of carbohydrate 

available for growth and respiration is typically large enough to negate small, temporary 

changes in the environment and the result is constant CUE . Furthermore , the synthesis of 

starch and proteins is maintained in an approximately steady state during these temporary 

fluctuations , so while the plant may grow at different rates in response to more or less 

light, it should have identical growth efficiency. That does not mean, however, that CUE 

should also remain constant. 

The crops in our study developed in one environment, which was suddenly changed 

for the duration of the study. The pools of carbohydrate available for growth and 

respiration may have been permanently altered, thereby resulting in a new CUE value. It 

is possible that the new biomass (carbohydrate, lipids, proteins) was also affected by this 

change and, as a result , the CUE changed. 

CUE has been modeled to be a function of conversion efficiency (Y g), the 

maintenance coefficient, and relative growth rate (RGR) (Thomley and Johnson , 2000). 

According to this model, CUE should decrease as RGR decreases. However, because the 

model uses a hyperbolic-type equation similar to the Michaelis-Menton enzyme kinetics 

equation, RGR can vary greatly without substantial change in CUE. Interestingly , 

Thomley and Cannell (2000) ignore the RGR:CUE relationship and state that one of the 



results from mechanistic analyses of respiration and growth should be a constant CUE. 

Applicability to Ambient C0 2 

Environments 

There is concern that physiological studies, and especially respiration studies, can 

not be applied to most situations if the studies were done in elevated C0 2• One of the 

primary reasons this study was performed in elevated C0 2 was to minimize the 

probability of respiration becoming substrate limited in warm temperatures. Reduced 
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carbohydrate availability in lower C0 2 would likely make the temperature response even 

smaller than what we measured. 

Some previous studies suggested that elevated C0 2 inhibited respiration. For 

example, Amthor et al. (1992) initially reported a 20 to 30% reduction in dark respiration 

when C0 2 was doubled. However, no theoretical basis for the effect of C0 2 on dark 

respiration has been found. Recent studies indicated that the direct effect of C0 2 on dark 

respiration is statistically insignificant and appears to be biologically unimportant. 

Amthor (2000) used an improved gas exchange chamber and found that the apparent 

direct effect of C0 2 on respiration resulted from leaks in the original chamber. Indeed, 

using five gas exchange measurement approaches, he consistently found that respiration 

was insensitive to short-term changes in C0 2 concentration. Similarly, Burton et al. 

(1996) initially reported a significant inhibition of root respiration in elevated C0 2, but 

later re-did the tests and found that once leaks were sealed, no C0 2 effect was observed 

(Burton and Pregitzer, 2002). It is even questionable whether there is a long-term effect of 

elevated C0 2 on specific respiration rates. Monje and Bugbee (1998) compared specific 
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respiration rates at high and low C0 2 (1,200 vs. 400 µmol mol -1
) and found a small 

difference during the first 6 days of growth , but no difference during the remainder of the 

life cycle. 

In summary, respiration had a much lower Q10 than is commonly used in studies 

investigating the effect of temperature on respiration . Whole plant respiration is 

relatively insensitive to temperature in young plants because total respiration consists of a 

large fraction of total respiration. In light of this, the present work validates models that 

divide respiration into a non-temperature sensitive growth component and a temperature-

sensitive component. No change in the sensitivity ofrespiration to temperature was 

observed even after 20 days of treatment. Because of the lack of acclimation of 

respiration to temperature through time , CUE also did not adapt. We believe this is the 

first long-tenn study to demonstrate continuously altered CUE as a result of 

environmental changes. 
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Table 2-1. Final dry mass (in g per m2 ground area), curnmulative carbon gain (CCG) 

after treatment initiation, and respiration sensitivity to temperature, as measured by Q10 

for each species. Data are the average of two groups of plants in separate chambers. Q10 

was higher at cooler temperatures and lower in warmer temperatures. There was no 

effect of temperature on final dry mass in any species (P>0.32), nor on CCG (P>0.59). 

Crop Night Final plant mass CCG after treatment Sensitivity to 
temp. initiation temperature 

(C) (g m-2) (mol C m-2) (Q10) 

18.2 476.8 13.8 
1.22 

Lettuce 20 466.7 14.3 to 

25 483.7 13.5 1.19 

30 493.0 13.9 

31.3 490.5 13.8 

18 768.3 22.8 
1.38 

Tomato 20 730.8 20.8 to 

25 740.0 21.8 1.34 

30 784.1 23.0 

31.5 751.6 22.4 

17 901.0 22.8 
1.61 

Soybean 20 881.3 23.2 to 

25 927.5 23.0 1.40 

30 842.8 23.6 

32 879.8 23.1 
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Figure 2-1. The ten-chamber gas-exchange system. There are five chambers on each side 

of a walk-in growth chamber. Each chamber has a reflective skirt wrapped around the 

outside to minimize side lighting. 
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Figure 2-2. Net photosynthesis, night respiration (A), and carbon use efficiency (B) for 

lettuce. Data points are the average of two chambers for a given temperature. Carbon 

exchange rates are per unit ground area . Temperature treatments were initiated on Day 
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Figure 2-3. Effect of temperature on night respiration (A), photosynthesis (B), and 

carbon use efficiency (C) for lettuce. Data are shown relative to the control for the first 

and last day of treatment. The slopes are not statistically different from one another 

(lowest P value 0.35, df = 8) indicating no acclimation to temperature. 
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Figure 2-5. Effect of temperature on night respiration (A), photosynthesis (B), and 

carbon use efficiency (C) in tomato . Data are shown relative to the control for the first 

and last day of treatment. The slopes are not statistically different from one another 

(lowest P value 0.48, df = 8) indicating no acclimation to temperature. 
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Figure 2-6 . Net photosynthesis , night-time respiration (A), and carbon use efficiency (B) 

for soybean . Data points are the average of two chambers for a given temperature . 

Carbon exchange rates are per unit ground area. Temperature treatments were initiated 

on Day 18. 
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Figure 2-7 . Effect of temperature on night respiration (A), photosynthesis (B), and 

carbon use efficiency (C) in soybean . Data are shown relative to the control for the first 

and last day of treatment. The slopes are not statistically different from one another 

(lowest P value 0.29, df = 8) indicating no acclimation to temperature . 
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Figure 2-8. Effect of temperature on respiration (A) and carbon use efficiency (B) in 

soybean, lettuce , and tomato relative to the control. Soybean respiration was significantly 

more temperature sensitive than tomato (t = 4.05, df = 8, P < 0.005), and tomato 

respiration is significantly more sensitive than lettuce (t = 3.418, df = 8, P < 0.025). 

Soybean CUE was significantly more sensitive to temperature than tomato (t = 2.04, df = 

8, P < 0.05), and tomato CUE was marginally more sensitive to temperature than lettuce 

(t = 1.64, df = 8, P - 0.08). Data are normalized to the control temperature (25C in lettuce 

and tomato , and 20C in soybean). 
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The effect of day/night temperature on photosynthesis, respiration and the balance 

between the two has not been well studied. It has been hypothesized that growth responses 

to temperature may be the result of differences in carbohydrate supply and demand. 

Therefore, C0 2 concentration may influence the effect of temperature. Using whole canopy 

C0 2 gas exchange , four trials were run to test the effect of constant temperature, or a SC 

day/night temperature difference at two C0 2 concentrations (ambient or 400 µmol mo1·1 and 

elevated or 1,200 µmol moJ-1
) in lettuce (Latuca sativa) communities. Temperature greatly 

influenced the rate of leaf emergence and expansion , which resulted in different levels of 

radiation capture. Concentration of C0 2 had a minor effect on radiation capture, with 

canopies grown in higher C0 2 concentrations reaching canopy closure about three days 

earlier than ambient C0 2-grown canopies. Canopy photosynthetic efficiency ( quantum 

yield) decreased with increasing temperature in ambient C0 2 canopies, but increased with 

temperature in elevated C0 2. Carbon use efficiency was not affected by temperature in 

elevated C0 2, but decreased at the highest temperature in low C0 2 . Canopies tended to 

respond to the average daily temperature rather than high or low temperature during a 24-h 

period for carbon gain, radiation capture, quantum yield, and carbon use efficiency. 

2Coauthored by Bruce Bugbee . 
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Introduction 

Plants evolved in environments that have warm daytime and cool night-time 

temperatures. Often , users of controlled environment chambers or greenhouses control 

temperature to simulate natural temperature fluctuations. Commercially , growers have 

reversed this to provide warm night temperatures and cool day temperatures to reduce 

plant height in the greenhouse floriculture industry. This practice is called DIF (Erwin 

and Heins, 1990; Kaufmann et al., 2000). Given the common experimental and 

environmental conditions as well as the commercial importance of maintaining warmer 

nights than days, the effect of day/night temperature on growth has not been well studied. 

It has been hypothesized that cool night temperatures conserve carbon for the plant 

through a reduction in respiration in response to temperature. McCree and Amthor 

( 1982) published one of the only papers on the metabolic effects of altered day/night 

temperature. They found that growth of a stand of white clover (Trifolium repens) at a 

constant 20C day/night temperature was slightly improved compared to a canopy grown 

at 30C days and 1 OC nights. They suggested that warm day temperatures increased the 

rate of substrate use, while low respiration at night was insufficient to offset the daytime 

carbon loss. 

Other factors may influence plant growth besides respiration . Sometimes called the 

determinants of growth, radiation capture efficiency, photosynthetic efficiency ( quantum 

yield), and respiration efficiency ( carbon use efficiency) all potentially play a significant 

role in the determination of plant growth. In spite of their importance, these factors are 
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rarely measured together and on a whole plant or canopy basis. 

Leaf expansion rate and, therefore, radiation capture, is greatly influenced by 

temperature (Faust and Heins, 1994; Clifton-Brown and Jones, 1997) and along with leaf 

emergence rate, provide a plant the means to effectively capture light as it develops from 

a seedling. The temperature optimum for leaf expansion differs for different crops. 

Cotton (Gossypium spp.), a warm-season crop, has a temperature optimum for leaf 

expansion of about 31 C (Reddy et al., 1993), while broccoli (Brassica oleracea L. italica) 

has an optimum of only 21C (Olesen and Grevsen, 1997). Lettuce (Latuca saliva) is 

considered to be a cool-season crop, and while the temperature optimum for leaf 

expansion and radiation capture is not known, the optimum for growth is reportedly 19 to 

23C day and 7 to 11 C night (Swaider et al., 1992). The optimum for leaf expansion is 

hypothesized to be in the same range. 

Quantum yield (QY) is a measure of how efficient the photosynthetic machinery is 

at fixing C0 2 with available light. Photorespiration, a competing reaction that fixes 0 2 

instead of C0 2, increases with temperature for C3 crops, and reduces QY in warmer 

temperatures in ambient C0 2• Photorespiration can be significantly reduced at [C0 2] of 

1,200 µmol moi-1 so that electron transport becomes the rate limiting factor in C0 2 

fixation. The potential rate of electron transport continues to increase up to 30 to 35C 

(Farquhar et al., 1980). Therefore, the temperature optimum for QY of C3 species should 

increase several degrees under elevated C0 2 (Harley and Tenhunen, 1991; Long, 1991 ). 

A useful and widely used indicator of whole-plant respiratory efficiency is the ratio 

of net carbon gain (net photosynthesis - dark respiration) in a 24-h period to the total 
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carbon fixed during the light period (P grosJ (Amthor, 1989). This ratio, called carbon use 

efficiency (CUE), is a measure of the efficiency of incorporation of fixed carbon into new 

biomass. The term integrates all growth and respiratory processes in a plant during a 24-h 

period. 

Surprisingly, some studies have found that CUE changes little during a plant's life 

cycle despite large differences in temperature and growth rates. Gifford (1994) reported 

an average CUE of0.58 to 0.60 for several species and sizes of plants. Monje and 

Bugbee (1998) found a CUE for wheat of 0.59 to 0.61 except for the first and final week 

of the life cycle. Dewar et al. ( 1998) modeled CUE and suggested it should be constant 

because stored reserves should buffer short-term changes in substrate availability . In 

Chapter 2 we altered only night temperatures in elevated C0 2 and found that CUE was 

minimally affected due to a much smaller respiration response to temperature than 

previously reported . 

In this study, I examined the long-term (weeks) effects of temperature on radiation 

capture efficiency , photosynthetic efficiency, and CUE. I also examined how C0 2 

influences each of these factors . I hypothesized that temperature would influence 

radiation capture with the optimum temperature being about 25C. Elevated C0 2 would 

not influence the rate of leaf expansion , but would improve the photosynthetic efficiency, 

thereby, shifting the optimum temperature a few degrees warmer. Finally, I hypothesized 

that CUE would remain constant regardless of the treatment. 
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Materials and Methods 

Experimental Setup and Design 

Lettuce (Latuca sativa L. 'Grand Rapids') seedlings were germinated on blotter 

paper and transplanted four days after imbibition into a 10-chamber gas-exchange system 

(van Iersel and Bugbee, 2000). Each chamber is 0.5 x 0.4 x 0.9 (L x W x H). Seedlings 

were arranged uniformly within each chamber at a density of 106 plants m-2• Separate 

hydroponic systems fit entirely inside each chamber. Hydroponic solution was bubbled 

with the same air as that used in the shoot environment. A single mass-flow controller 

maintained the C0 2 set point to within 2% for the duration of each trial. Two trials were 

maintained at 400 µmo! moi-1 and two at 1,200 µmol mo1-1
• The 1,200 µmol moJ-1 C0 2 

level was used as the elevated C0 2 treatment because photorespiration would be 

considerably reduced and respiration would not be limited by carbohydrate supply in 

those trials. The elevation of Utah State University is about 1,500 m above sea level. 

Manual adjustment of pH on a daily basis resulted in a one pH unit day-to-day 

range . The pKa of carbonate is 6.2, which means that 50% of the carbon dissolved in the 

water is in the carbonate form and 50% is C0 2• Due to the limitations of our pH control 

method, a one pH unit range during the day has the potential to cause significant fluxes in 

and out of the nutrient solution. For this reason, the pH of the hydroponic solution was 

maintained between 4 and 5, which forces between 90 and 99% of the C0 2 out of 

solution. 

Two trials were conducted with constant day/night temperatures of 21.5, 25, 30, 
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32.5, and 35C, and two trials were conducted with different day/night temperatures of 

21/18, 26/21, 29/24, 32/27, and 35/30C. Temperatures of the root zone solution were the 

same as the average daily temperature. Temperatures were measured with aspirated type 

E (0.25mm diameter) thermocouples. Air temperature control was within ±0.2C of the 

set point, and root temperatures were within ±0.5C of the set point. Relative humidity 

was controlled to between 60 and 80%. PPF was provided by water-filtered, high

pressure-sodium lamps that provided 600 µmo] m-2 s-1 (±5% between chamber variability) 

for a 16-h photoperiod . As the canopy grew taller , reflective material wrapped around 

each chamber was raised to the top of the canopy to reduce side lighting. Tipbum (Ca 

deficiency localized at the meristem) was observed in all trials, but was not severe 

because of the intermediate PPF used in these trials as well as the selection of 'Grand 

Rapids' cultivar (Appendix A). 

Ground cover was measured daily until 100% cover using a digital camera. Images 

were processed with software to discriminate between leaf color and ground cover 

(Klassen et al., In press). Pixels that were determined to be leaf were counted, and this 

number was divided by the total number of pixels for the ground area. Resulting canopy 

cover errors were corrected as described by Klassen et al. (In press). Days to canopy 

closure, therefore, is the number of days from transplanting until 100% ground cover. 

Chlorophyll content was estimated with a portable clamp-on chlorophyll meter 

(Minolta Model SP AD-502). The SP AD values were converted to chlorophyll 

concentration (mg chlorophyll m-2 leaf) using the equation described in Monje and 

Bugbee (1992). 
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Calculations 

Carbon use efficiency is a calculated term that measures how well plants can 

incorporate the carbon fixed during the day into biomass gain . Using the measured C0 2 

exchange rates of P net (net photosynthesis, mol C m-2 d-1
) and R,, (night-time respiration, 

mol C m-2 nighr'), daily carbon gain (DCG) can be calculated as: 

DCG = p net - R,,. 

P gross is a calculated term that reflects the net C fixed (P neJ and the amount of C that 

is simultaneously being respired. Because day-time respiration (RJ can not be measured 

directly, P gross is expressed as the sum of Pnet and some percentage of R,,. Some studies 

found that Rd in leaves can be higher during the day due to their higher daytime 

carbohydrate content (Azc6n-Bieto et al.,1983; Azc6n-Bieto and Osmond , 1983). Other 

studies indicated that daytime Rd is lower due to light inhibition of respiration (Sharp et 

al., 1984). Monje and Bugbee (1996) found that root respiration, at a constant 

temperature, is increased in the day presumably due to increased carbohydrate supply. 

The common approach is to assume that the rate of Rd and R,, (µmol mgroun/ s-1
) are equal 

when temperatures are constant. In a 12-h photoperiod, Rd (mol mgroun/ d-1
) then equals 

R,,. In a 16-h light I 8-h dark photoperiod, Rd= R,, * 2. In these equations, respiration 

assumes a positive value (i.e., mass respired) . P gross (mol C mground-2 d-1
) can, therefore, be 

calculated as: 

p gross = p net + Rd 

CUE is the ratio of carbon gained per day to total carbon fixed, or: 
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CUE = DCG I p b'TOSS" 

Sensitivity analysis of CUE to changes in Rd to calculate P gross indicated that Rd can 

change as much as 50% higher or lower, which can result in changes of CUE from 0.65 to 

0.575, or from 0.65 to 0.73, respectively. Therefore, the assumption of constant day and 

night respiration rate has little impact on the calculated value of CUE . Furthermore, 

changes in CUE relative to the control are more important than absolute changes to CUE 

with shade application. To calculate the Rd from R,, to determine P gross, Q,0 values of 1.2 

were used for total respiration , as reported for lettuce in Chapter 2. 

Statistical Analysis 

A randomized block design was used with five treatments in each of two blocks, 

giving two replicates at each temperature . Occasionally, temperature control at the low or 

high treatments could not be duplicated , so linear regression analysis was used to treat 

temperature as a continuous variable rather than as discrete treatments . Temperature 

control of the root zone was lost occasionally , which resulted in at least a 7C difference 

between the root zone and shoot temperature. In those cases, the data were discarded . 

Average PPF absorption was analyzed with ANOVA and Tukey ' s comparison of means 

to find treatment differences in average amount of light absorbed . 

Results 

400 µmo! moZ-1 C0 2, Constant Temperature 

Data from both 32.5C treatment and one of the 35C treatments were discarded due 
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to lack of control of root zone temperatures. With the remaining chambers, growth rates 

clearly differed among the different temperature treatments (Figure 3-1 A). The 21.5C 

and 35C treatments had the lowest final photosynthetic and respiration rates per unit 

ground area. The highest gas exchange rates were obtained in the treatments with average 

daily temperatures of 30C. 

Three of the determinants of yield (PPF absorption , QY, and CUE) are summarized 

in Figure 2. There was a strong influence of temperature on radiation capture (Figure 3-

2A) . The 30 and 25C treatments both reached near maximum PPF absorption on Day 

21. Conversely , the 35C treatment never reached that amount of PPF absorbed . Because 

radiation capture is a determinate of growth, the different magnitude of ground cover 

contributed to the different growth rates. Averaged across the 26 days after transplanting , 

temperature had a significant effect on average daily PPF absorbed (F = 91.75 , df = 3, P = 

0.011 ; Figure 3-2B). Based on Tukey ' s comparison of means , the 35C treatment was 

significantly lower (P < 0.05) than the 21.5C , 25C, and 30C treatments , and the 21.5C 

treatment was lower than the 30C treatment. 

Although the 21.5C treatment nearly reached canopy closure by the end of the trial, 

it still had about half the photosynthetic rate as the 25 and 30C treatments. Chlorophyll 

content is strongly related to temperature (Appendix A). The 21.5C treatment had 

chlorophyll contents between 2.6 and 7.6 mg chlorophyll m-2 leaf , which is extremely 

low. As a result , the digital imaging technique to estimate absorbed PPF probably over

estimated the amount of light a single leaf can absorb when chlorophyll content was low. 

Correcting for this, QY decreased significantly with warmer temperature (slope = -.0010; 
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F = 14.62, df = 33, P = 0.0006; Figure 3-2D), so while the plants in the cooler 

temperatures had efficient photosynthesis, they may not have absorbed enough light to 

have high growth rates . There was a tendency for QY to increase for all treatments near 

the end of the trial (lowest significance: F = 19.99, df= 3, P = 0.021; Figure 3-2C). 

Values of CUE reached about 0.55 for all temperature treatments except the 35C 

treatment (Figure 3-2E). There was a significant effect of temperature on CUE (F = 

118.46, df = 3, P < .001; Figure 3-2F) with the warmest treatment having a value of about 

0.3 ( ±0.12 std dev .) during the last 11 days of the trial. The CUE of the 21.5C treatment 

was significantly different from the other treatments, based on Tukey's comparison of 

means (P<0.001), and the 35C treatment was lower than all other treatments . The 25C 

and 30C did not differ significantly from one another (P = 0.28). 

1,200 µmo! mot' C0 2 , 

Constant Temperature 

The highest growth rates occurred in the 30C and 32.5C temperature treatments, and 

the lowest occurred in the 35C and 21.5C treatments (Figure 3-lB). The coolest and 

warmest temperatures (21.5 and 35C, respectively) had the lowest final photosynthetic 

and respiration rates per unit ground area. All final growth rates were higher than the 

similar temperature treatments in the 400 µmol mol"1 C0 2 trial. 

Temperature significantly affected radiation capture (F = 10.04, df= 5, P = 0.043; 

Figure 3-3A and 3-3B). The 30C treatment reached maximum PPF absorption (about 33 

mol absorbed m·2 d-1
) by Day 17, which was four days faster than that observed in the 400 

µmol mo1·1 C0 2 trial. Conversely, the 35C treatment reached a maximum of 10 mol 
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photons absorbed m-2 d-1
, but only differed significantly from the 32.5C treatment (P < 

0.05). Averaged across the 24 days after transplanting, the 25 and 30C treatments had the 

highest daily PPF absorbed (Figure 3-3B). 

Increasing temperature significantly increased QY (slope= 0.0024; F = 244.0, df = 

63, P < 0.0001; Figure 3-3C and 3-3D). The 23C, 30C, and 35C treatments changed 

significantly with time (lowest F = 11.22, df = 10, P = 0.0074), but the other treatments 

did not (P at least 0.57). This analysis suggests that the 35C treatment was 

photosynthesizing efficiently, but lacked leaf area to have high photosynthetic and growth 

rates. 

Values of CUE were eventually similar in all temperature treatments (Figure 3-3E). 

Temperature did not affect CUE (F = 0.72, df = 23, P = 0.41; slope= -0.0003; Figure 3-

3F), and all treatments maintained an average CUE of 0.62 with a standard deviation of 

0.02 during the final ten days of growth. 

400 µmo! moZ-1 C0 2 , Day/Night 
Temperature Differential 

Data from one of the 32/27C treatments were discarded due to lack of control over 

its root zone temperatures. With the remaining chambers, growth rates were similar in 

the different temperatures with the exception of the 35/30C treatment (Figure 3-1 C). 

That treatment had the lowest final photosynthetic and respiration rates per unit ground 

area. 

Temperature had a strong influence on radiation capture (F = 34.4, df = 4, P = 

0.008; Figure 3-4A). The 32/27C treatment reached near maximum PPF absorption on 
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Day 21. Conversely, the 35/30C treatment never reached that amount of PPF absorbed. 

Averaged across the 24 days after transplanting, the 32/27C treatment was significantly 

higher than either the 29/24C or the 35/30 C treatment (P < 0.05; Figure 3-4B). 

The QY decreased as temperature increased (slope= -0.0015, F = 47.62, df= 61, P 

< 0.0001; Figure 3-4D), but the 35/30C treatment never absorbed enough light to have 

high growth rates. Because of higher QY and lower PPF absorbed per day, the 

photosynthetic rates were similar in all treatments except the 35/30C treatment. There 

was a tendency for QY to increase for all treatments at the end of the trial (lowest F value 

= 5.13, df= 22, P = 0.034; Figure 3-4C). 

Values of CUE reached about 0.62 for all treatments (Figure 3-4E). There was a 

statistically significant effect of temperature on CUE (F = 9.65, df= 61, P = 0.0029), but 

the slope was only -0.0016 (Figure 3-4F) with the 35/30C treatment having a value of 

about 0.60 ( ± 0.011 std. dev.) during the last seven days of the trial. 

1,200 µmo! mot 1 C0 2 , Day/Night 
Temperature Differential 

Lettuce growth differed substantially in the different temperatures (Figure 3-lD). 

The 23/l 8C and 35/30C treatments had the lowest final photosynthetic and respiration 

rates per unit ground area. The highest gas exchange rates were obtained in the 

treatments with average daily temperatures of 27 or 30C. 

Temperature significantly influenced radiation capture (F = 45.03, df = 4, P = 0.001; 

Figure 3-5A). The 29/24C and 32/27C treatments reached near maximum PPF 

absorption by Day 16. Conversely, the 35/30C treatment never reached that amount of 
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PPF absorbed. The different magnitudes of ground cover likely contributed to the 

different growth rates. Averaged across the 24 days after transplanting, the 29/24C and 

32/27C treatments were significantly greater than the 35/30C and 23/ 18C treatments (P < 

0.05; Figure 3-5B) . 

The 23/18C and 35/30C treatments had similar photosynthetic rates per unit ground 

area (Figure 3-lD) , but had different rates of canopy closure with the 23/18C treatment 

reaching maximum absorption after 22 days and the 35/30C treatment not reaching that 

level. Canopy QY was higher with temperature as observed in the other high C0 2 trial 

(slope= 0.0015 ; F = 86.68, df = 28, P < 0.0001; Figure 3-5D) . Canopy QY changed 

significantly through time for the 29/24C and the 32/27C treatments (highest F value = 

6.28, df = 20, P = 0.021; Figure 3-5C), but not for the other treatments (highest F value= 

0.94, df = 17, P = 0.35). 

Values of CUE were stable and similar in all treatments after Day 9, and all 

temperature treatments had a similar CUE of 0.64 (±0.017 std. dev.) after that (Figure 3-

5E). Temperature did not influence CUE (F = 1.85, df = 108, P = 0.18; slope= 0.0005; 

Figure 3-5F). 

Discussion 

Surprisingly little information is available concerning the effect of day and night

time temperature on carbon gain. McCree and Amthor (1982) reported that improved 

carbon balanced led to increased growth rate of plants (about 15%) when grown at a 

constant 20C compared to growth at 30/ 1 OC day/night. This was attributed to excessive 
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dark respiration during the day and only slightly reduced night-time respiration. In our 

studies, carbon gain was not greater with cool night-time temperature and warm day-time 

temperatures. This is similar to the results of Chapter 2 where daily carbon gain was not 

affected by either cooler or warmer night-time temperatures. 

Improved PPF absorption coincided with greater final mass and absolute growth 

rates in this study. Temperature played a significant role in determining the rates of leaf 

expansion and emergence (deduced from digital images of ground cover through time), 

and as a consequence, the amount of light captured. 

The high C0 2 treatments hastened canopy closure and maximum light interception 

by about three days. However, these plants were grown hydroponically, so it is unlikely 

the plants experienced water stress. Therefore, partial stomata! closure due to high C0 2 

was not believed to lead to better water relations and improved leaf expansion. High C0 2 

led to faster growth rates perhaps because they were not substrate limited for growth. 

This may have been the primary reason for hastened canopy closure and improved light 

interception. 

Once light was intercepted, QY was higher in elevated C0 2 and was lower in 

ambient C0 2, as expected. The values of QY were about the same as those calculated 

from Wheeler et al. (1994) for groups oflettuce plants grown in 1,000 µmol mo1-1 C0 2 in 

lower light. Photorespiration should increase with an increase of temperature from 20C 

to 35C in ambient C0 2, causing QY to decrease from about 0.065 to about 0.057 

(Farquhar et al., 1980; Long, 1991). In the ambient C0 2 trials in this study, QY decreased 

from 0.04 mo! C fixed per mol photons absorbed to about 0.03 mol C fixed per mol 
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photons absorbed at the warmest temperature, which is about the same magnitude as that 

predicted from the model of Farquhar et al. (1980) . Few studies have investigated 

quantum yield on a whole plant or whole canopy basis in elevated C0 2 across a range of 

temperatures. Photosynthetic models predict that while the oxygenation reaction of 

Rubsico should increase with temperature, electron transport would increase and peak 

about 30 to 35C (Farquhar et al., 1980; Jordan and Ogren, 1984). If elevated C0 2 

minimizes photorespiration , then the QY should increase with temperature as electron 

transport becomes the limiting factor of photosynthesis. The magnitude of increase in 

QY for plants grown in high C0 2 in high temperatures in this study confirms the 

biochemical models on a whole plant basis , even at relatively high light. The observed 

increase was large enough that in spite of large differences in moles of photons absorbed 

between the warmest and coolest treatments in high C0 2, their photosynthetic rates were 

similar at the end of the trial. 

Carbon use efficiency has been modeled to be a function of growth conversion 

efficiency , the maintenance coefficient, and relative growth rate (RGR) (Thomley and 

Johnson, 2000). According to this model , CUE should decrease as RGR decreases . 

However, because the model uses a hyperbolic-type equation similar to the Michaelis

Menton enzyme kinetics equation, RGR can vary greatly without a substantial change in 

CUE. Indeed, RGR varied considerably across all the treatments for the high-C0 2 

treatments, yet CUE was about the same. It is possible that CUE was the same across all 

temperatures in the high C0 2 treatment because the plants acclimated by altering the 

growth conversion efficiency or the maintenance coefficient with high temperatures. If 
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this were the case, why did the ambient-C0 2 treatment not adjust, resulting in constant 

CUE? CUE represents the balance between carbohydrate supply and demand. High C0 2 

grown plants are known to accumulate sugars and starch relative to those grown under 

ambient C0 2, and because of this, demand for carbohydrate in growth and maintenance 

may have never exceeded carbohydrate supply. With increasing temperature, 

maintenance respiration probably increased because protein turnover, ion leakage, and 

membrane repair likely increased. Exactly how much maintenance respiration increased 

is unclear. Given the length of time these plants were exposed to their respective 

temperatures and the range of temperatures in which these canopies grew , the Q 10 for 

maintenance respiration is probably between 1.2 and 1.5. These values suggest that 

demand for carbohydrates may have varied for plants in the different temperatures , and 

resulted in different values of CUE. 
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Figure 3-2. Three determinants of yield expressed on both a time and a temperature basis 

for lettuce canopies grown in 400 µmol mo1·1 C0 2 with constant temperatures. 
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Figure 3-3. Three determinants of yield expressed on both a time and a temperature basis 

for lettuce canopies grown in 1,200 µmol mo1·1 C0 2 with constant temperatures . 
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CHAPTER4 

ACCLIMATION TO SHADE: PHOTOSYNTHESIS, RESPIRATION, 

AND CARBON USE EFFICIENCY 3 

Abstract 
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Photosynthesis, respiration, and the balance between the two change in response to 

the environment. Surprisingly few studies have examined how quickly and how 

completely plants acclimate to the environment on a whole plant or canopy basis. 

Canopies of tomato (Lycopersicon esculentum Mill.) and lettuce (Latuca saliva L.) were 

subjected to a range of shade after canopy closure in a growth chamber. Photosynthesis, 

respiration, and carbon use efficiency (ratio of carbon gain to carbon fixed) were 

measured for up to 18 days after shade was applied. Canopies of lettuce and tomato did 

not immediately acclimate, in contrast to popular growth models, and the two species 

acclimated in different ways. Lettuce grown in 80% shade never completely acclimated, 

whereas tomato acclimated after 12 days. Both species had more efficient photosynthesis 

(higher canopy quantum yield) after shade application. Tomato and lettuce were able to 

adjust relative growth rate, C partitioning, or growth or maintenance respiration to 

maintain carbon use efficiency, but did so at a much slower rate than currently modeled. 

Introduction 

Daily light levels change by an order of magnitude during the growing season, but 

3Coauthored by Bruce Bugbee. 
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little is known about how quickly and completely photosynthesis and respiration respond 

to shade . Respiration is considered to be both supply (carbohydrate content) and demand 

dependent (sensitive to temperature and type of biomass) (Amthor, 1989). While the 

relationship between respiration and temperature is generally well described, a strong 

correlation between respiration and carbohydrate content has been established in several 

studies (Azc6n-Bieto and Osmond, 1983; Moser et al., 1982; Azc6n-Bieto et al., 1983). 

The data are, however, typically based on short-term measurements made on plant parts 

rather than whole plants or plant communities (Geiger et al., 1998; Hill and ap Rees , 

1995). For example, Sims and Pearcy (1991) investigated leaf C0 2 gas-exchange upon 

transfer from low to high and from high to low light and found that leaf respiration 

reached steady state levels within one week. Other studies reported no relationship 

between the amount of light a leafreceives and its subsequent respiration (Groninger et 

al., 1996). Only a few studies have investi gated whole-plant or whole-community gas 

exchange (Percival et al. , 1998; Wheeler et al., 1993), and the relationship between 

respiration and carbohydrate status on a whole-plant basis was not clear. 

High photosynthetic rates increase carbohydrate content in leaves. For example , 

Ayari et al. (2000) indicated that leaf concentrations of starch , sucrose, and hexose varied 

with amount of light , photosynthetic rates, and leaf position . Carbohydrate content also 

can vary within a leaf in a wheat (Triticum aestivum L.) canopy with vertical leaves as a 

function of incident photosynthetic photon flux (PPF) and position in a canopy (Smart et 

al., 1994). Because carbohydrate content varies within a plant and within a leaf, 

respiration rates within different plant parts also may vary . Even if a representative leaf 
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could be chosen, the leaf is not likely to represent the respiration of other plant parts. 

Monje and Bugbee (1996) saw increased root respiration during the day, probably due to 

increased carbohydrate supply to the roots. Meristems are also likely to have much 

higher respiration rates because they are a strong sink for carbohydrates in a growing 

plant. This underscores the importance of measuring whole plant gas-exchange when 

attempting to determine the influence of PPF on plant growth rather than relying on single 

leaf measurements . 

Many studies have investigated the long-term effects of shade on plant growth and 

yield (Sanchez et al., 1989; Barbour et al., 1994; Egli , 1997) . It is generally accepted that 

growth is reduced in nearly direct proportion to the decrease in PPF. However, there is a 

poor understandin g of how whole plant respiration , photosynthesis , and the balance 

between the two acclimate in response to shade . The models that permit imposition of 

shade indicate immediate acclimation and little difference in response among species (J. 

Cavazzoni, personal communication). 

In this study , we used a 10-chamber gas-exchange system that permitted continuous 

monitoring of the growth of groups of whole plants before and after shade. I 

hypothesized that application of shade would immediately reduce photosynthesis, but 

respiration would respond more slowly because of stored carbohydrates. To test the 

effects of carbohydrate status, lettuce (Latuca sativa L. ), a low starch accumulator 

(Forney and Austin, 1988) was compared to tomato (Lycopersicon esculentum Mill.), a 

starch accumulator (Hocking and Steer, 1994) . It was hypothesized that species 

differences would exist in both response to shade and rate of acclimation to shade . 
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Materials and Methods 

Experimental Design 

Two trials were conducted, each with a different species. Lettuce (Latuca saliva L. 

cv. 'Grand Rapids') and tomato (Lycopersicon esculentum Mill. cv. 'Micro-Tina') were 

germinated and transplanted after five days into a 10-chamber gas-exchange system 

previously described by van Iersel and Bugbee (2000). Lettuce was grown at a density of 

106 plants m-2, and tomato was grown at a density of 88 plants m-2• For each trial, shade 

treatments were arranged in a randomized incomplete block design and analyzed using 

linear regression. Both blocks contained a control (zero shade) and high shade (about 

80% reduction in PPF) treatment, but the amount of shade for the other three canopies in 

each block was not identical. ANOV A was performed on data to test for significant 

differences between chambers before treatments were applied . Slopes of lines were 

compared to see if their slopes were equal using the test statistic ((slope a - slope b) -

0)/(variance of slope a) = t (degrees of freedom of slope a) • 

Plant Growth Environment 

Each chamber in the gas-exchange system was 0.5 x 0.4 x 0.9 m (L x W x H) and 

fully enclosed a hydroponic tub. Both crops were grown at constant 25C day/night 

temperature including the roots. Chamber temperature was controlled to within ±0.2C of 

set point, and C0 2 was controlled to within ±2% of a set point of 1,200 µmo! moi-1
• 

Elevated C0 2 was used to ensure that photosynthesis would be limited by light rather than 

C0 2. Root-zone temperature was maintained by activating flexible heat-stripping 
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wrapped around the outside of the hydroponic tubs when the temperature fell below the 

set point. Hydroponic solution was bubbled with the same C0 2-enriched air as that used 

in the canopy. The C0 2-gas-exchange of each of 10 different whole canopies was 

monitored once every 10 minutes throughout the trial. 

The manual adjustment of pH on a daily basis resulted in a 1 pH unit day-to-day 

range. The pKa of carbonate is 6.2, which means that 50% of the carbon dissolved in the 

water is in the carbonate form and 50% is C0 2• Due to the limitations of our pH control 

method, a l pH unit range during the course of the day has the potential to cause 

significant fluxes in and out of the nutrient solution. For this reason, the pH of the 

hydroponic solution was maintained between 4 and 5, which forces between 90 to 99% of 

the C0 2 out of solution. Relative humidity was maintained between 60 and 85% for the 

duration of the trials. The photosynthetic photon flux (PPF) was provided by water

filtered HPS lamps that provided a PPF of 600 µmol m-2 s-1 (±5%) for lettuce and 650 

µmol m-2 s-1 (±5%) for tomato. Both trials were run using a 16-h photoperiod to provide 

35.6 mol photons per m2 per day for lettuce and 37.4 mol photons per m2 per day for 

tomato. 

Shade was applied after canopies closed, which occurred about 16 days after 

transplanting for lettuce and 20 days after transplanting for tomato. Shade was applied 

using a variable amount of neutral-density window screening (10-mesh) postitioned on 

the top of the chambers that reduced PPF by 50% with each complete layer of window 

screening. Less than 50% shade was obtained using smaller pieces of screening that 

made incomplete layers of screen. PPF was measured twice weekly with a line-quantum 
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sensor (Model LQSV-ELEC, Apogee Instruments, Inc., Logan, UT) that averaged PPF 

across the top of the canopy. Shade cloth was adjusted twice weekly to maintain shade to 

original shade level. A range of shade from O to 80% shading was obtained in each trial. 

Shade continued until a typical cropping duration for lettuce, which was 9 days after 

shade application. Shade continued for tomatoes for 18 days after canopy closure. 

Reflective material was wrapped around each chamber and was adjusted daily to the top 

of the canopy to minimize side lighting. All days are after transplanting . 

Calculations 

Carbon use efficiency (CUE) is a calculated term that measures the amount of 

carbon incorporated into the plants divided by the total amount of carbon fixed in 

photosynthesis. Essentially, it is a term describing how well plants can incorporate the 

carbon fixed during the day into biomass gain and can be calculated as: 

CUE = DCG I p gross 

where P gross is gross photosynthesis and DCG is daily carbon gain. Using the measured 

C0 2 exchange rates of Pnet (net photosynthesis , mol C m·2 d-1
) and~ (night-time 

respiration, mol C m-2 nighr'); night is the night period following the photosynthesis 

period, which together make up one 24-h period), daily carbon gain (DCG) can be 

calculated as: 

DCG=Pn et-~ 

where P gross is a calculated term that incorporates both the net C fixed (P neJ and the C that 

is simultaneously being respired. Because day-time respiration (RJ can not be measured 
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directly, P gross is calculated as the sum of Pnet and some percentage of night-time 

respiration rate. Previous studies have indicated that Rd increases during the day in intact 

plants due to higher carbohydrate content (Azc6n-Bieto and Osmond, 1983), or can be 

lower due to some type of light-inhibition ofrespiration in leaves (Atkin et al., 2000; 

Sharp et al., 1984). Monje and Bugbee (1996) found that root respiration, at a constant 

temperature, is increased in the day presumably due to increased carbohydrate supply. 

The common approach for whole plants is to assume that the rate of Rd and~ (µmol 

mground-2 s-1
) are equal when temperatures are constant. In a 12-h photoperiod , Rd (mol 

mgroun/ d-1
) then equals~- In a 16-h light/8-h dark photoperiod , Rd= ~* 2. In these 

equations, respiration assumes a positive value (i.e., mass respired). P gross can, therefore, 

be calculated as: 

p gross = p net + Rd 

Sensitivity analysis of CUE to the assumption of Rd to calculate P gross indicates that Rd can 

change by as much as 50% higher or lower than~ and change CUE by only 0.08 or 12% 

(assuming a typical CUE of 0.65). Therefore, the assumption of constant day and night 

respiration rate has little impact on the calculated value of CUE. Small changes in CUE 

can be important on a day-to-day basis, but relative changes are more important than 

absolute values. Furthermore, changes in CUE relative to the control are more important 

than absolute changes to CUE upon shade application . 

After treatments were imposed, data were expressed as a percent of their initial 

value, then normalized to the control in the following manner: 
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(Posttreatmenta dayb I Pretreatmenta value) -=-

(Posttreatmentcontrol dayb I pretreatment value controi) 

where posttreatment a indicates the posttreatment value of parameter a (i.e., CUE, Pnet, and 

~), dayb indicates the day after treatment, pretreatment a value is the value of the 

parameter of interest on the day before treatments began, posttreatment control dayb is the 

posttreatment value of the parameter of interest on the same posttreatment day, and 

pretreatment value control is the pretreatment value of the parameter of interest the day 

before treatments began. By doing this transformation , effects of shade on a given 

canopy can be assessed in the numerator , and the effects relative to the control and natural 

development can be assessed in the denominator. 

Quantum yield (QY) was calculated for each canopy after canopy closure. Incident 

PPF was measured and 95% of that was assum ed to be absorbed . The P gross for the day 

period (mol C m-2 d-1
) was then divided by total photons absorbed (mol photons 

m-2 d-1
) to give QY (mol C fixed per mol photons absorbed) . 

Results 

Lettuce 

Canopy gas exchange did not differ significantly across canopies during the 16 days 

of growth prior to shade treatment in the lettuce trial (P = 0.985, Figure 4-lA). Values of 

Pnet decreased immediately after applying the shade treatments with a 76% decrease 

occurring in PPF of 150 µmol m-2 s-1
• Values of Pnet increased from initial post-shade 
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values in all treatments by 0.25 mol C m-2 d-1
• The relative increase in the control (high-

light) was about 12%, whereas the relative increase in the low-light treatment was 75% 

(Figure 4-2A). Night-time respiration also decreased by 0.11 % for each µmol m-2 s-1 

decrease in PPF with a reduction of about 50% when PPF was reduced by 450 µmol m-2 s-

1 (Figure 4-lA). Respiration did not change after the initial posttreatment reduction. 

Carbon use efficiency (CUE) was similar before treatments were applied (P = 0.152, 

Figure 4-1 C). During the three days before shade was applied, the CUE averaged 0.62 

with a standard deviation of less than 0.012. These differences are likely due to small 

differences in the rate of canopy fill, PPF absorption, and side-lighting, and were not 

consistent among canopies. With shade application, the CUE sharply decreased in 

proportion to decreases in PPF. The largest decrease was in the 150 µmol m-2 s-1 

treatment, which declined to a CUE of about 0.4. The next day, CUE began to increase 

with subsequent days exhibiting smaller increases as CUE approached pretreatment 

values. Beyond about 3 days, differences among treatments were not as obvious so data 

were normalized to pretreatment levels and expressed as a percent of control (Figure 4-

3A). Values of CUE dropped to about 50% of control values at the lowest PPF, but 

gradually recovered to near pretreatment levels. There was a significant difference in the 

temperature sensitivity of the relative CUE on Day 2 and Day 3 (t = 3.51, df = 8, P < 

0.005), indicating some recovery after the second day. There was no additional recovery 

after the third day. The trial ended after nine days of shade treatment. Although 

decreases in total root and shoot mass were detected, no change in the percent of root 

mass occurred (Figure 4-5A and 4-5B). 
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Pretreatment QY averaged 0.048 mol C fixed per mol photons absorbed (Figure 4-

4A). QY improved on the initial day of shade with decreasing PPF (F = 13.74, df = 9, P 

= 0.006). Subsequent days resulted in significant increases in QY with lower light 

(lowest t = 2.54, P < 0.025) until Day 3 when no further changes occurred . A maximum 

QY of 0.076 was measured at the lowest PPF. 

Tomato 

Tomato canopy closure occurred on Day 18 and shade was applied two days later. 

Gas exchange did not differ significantly among canopies before shade application (P = 

1.0, Figure 4-lB). Immediately after shade was applied, Pnet and R,1 decreased with lower 

PPF. Pnet declined 75% in the 190 µmol m-2 s-1 treatment. Pnet slowly increased after 

shade was applied, as was seen in the lettuce trial (Figure 4-2B). Pnet increased 

proportionally more in the lowest light treatments up to more than a doubling of initial 

shade p net rates. 

Values of CUE did not differ significantly prior to shade application (P = 0.838) and 

averaged 0.64 with a standard deviation of 0.02. As for lettuce , CUE was normalized to 

pretreatment levels and standardized as a percentage of the control (Figure 4-3B) . The 

day after shade application, CUE was nearly O in the 190 µmol m-2 s-1 treatment, 

indicating that the low-light canopy neither gained nor lost mass during the initial 24-h of 

shade. Most of the recovery occurred after only 2 days, with the lowest PPF recovering to 

nearly 80% of pretreatment and control values. Subsequent days resulted in varied 

incremental increases in CUE (comparing Day 2 and Day 12, t = 5.66, df = 8, P < 0.001); 
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after 12 days, all canopies reached control and pretreatment values. 

Shade treatments were continued for 18 days. Flowering occurred on Day 27 so the 

treatment period included both the end of the vegetative phase and the beginning of the 

reproductive phase. Plants set fruit in all treatments, and correlations between fruit mass 

and PPF were statistically significant (Figure 4-5A). Shoot and root mass decreased with 

increasing shade, but did so in a manner that changed the proportion of root mass at 

harvest. The percentage of roots in lower light was roughly half of the high-light controls 

(Figure 4-5B) . 

The pretreatment QY averaged about 0.05 mol C fixed per mol photons absorbed 

(Figure 4-2B) . There was no significant increase in QY for any of the treatments until 

after the second day of shading (Day 3 F = 22.57, df= 9, P = 0.0014). Values ofQY 

increased significantly between Day 3 and Day 12 (t = 5.1, df = 8, P < 0.0005), indicating 

photosynthetic acclimation to reduced PPF. A maximum QY of about 0.08 was 

measured at the lowest PPF after Day 12. 

Discussion 

In our studies, shade was applied during the vegetative phase. For tomato, the 

shade treatment extended into flowering and fruit set. Zhao and Oosterhuis (1998) 

suggested that plants can compensate for early shade stress if the stress is removed before 

anthesis by making broader, thinner leaves and increasing chlorophyll content. However, 

the ability of a plant to compensate appears to be species dependent (Mbewe and Hunter, 

1986). 
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Lower light caused C allocation to shift from roots to shoots in tomato, but not in 

lettuce. While most species tend to follow a general allocation pattern, they can shift this 

pattern in response to the environment (Enquist and Niklas, 2002). Stoller and Myers 

(1989) reported that some weed species were better able to acclimate to shade stress by 

shifting their root:shoot ratio in favor of more shoots. Weed species that were less able to 

make this switch were poorer competitors and less able to adapt to shade. Lower light 

usually reduces transpiration rate, so fewer roots are needed to supply the water necessary 

for transpiration. Tomato may have shifted C allocation from roots as a way to grow 

more leaf area, and tomato may have a better ability to adjust than lettuce. 

Reduced PPF immediately decreased P net in both species. For both species, we 

observed a near 1: 1 ratio in amount of shade in relation to reduced P ner· This ratio is 

analogous to canopy light response curves (Bugbee, 1992; Westgate , 1999), but differs 

from /ea/light response curves (Bunce, 1991). Canopies tend to light saturate at much 

higher PPF than single leaves due to multiple leaflayers causing mutual shading . Net 

photosynthesis increased proportionately more in the low light treatment for both species. 

Some of this shift may have resulted from greater light absorption, but the change is 

likely to be small after canopy closure and should have been accounted for with 

standardization of the data relative to the control. 

Thornley and Johnson (1990) described CUE as a function ofrelative growth rate 

(RGR = mol new C per mol existing C per time), maintenance respiration (rm), and 

growth respiration (rg) in the following manner: 

1 I CUE= 1 + rg +rm* 1 I RGR 
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Therefore, a change in CUE should be the result of a change in RGR, rg, or rm. It is 

difficult to separate growth and maintenance respiration reliably and non-destructively, 

but RGR can easily be measured with gas exchange . Reduced PPF reduced RGR in both 

species so a change in CUE can be explained simply by reduced RGR. However , RGR 

was lower in the low-light tomato canopy than the high-light control canopy, yet had the 

same CUE . This suggests that either rg or rm acclimated so that CUE returned to 

pretreatment levels . The Thomley and Johnson (1990) approach assumes steady-state 

growing conditions , and in our study, PPF was changed before a new steady-state 

condition was reached . Mobilization of C may have occurred in response to shade , 

making it difficult to determine the extent to which rg or rm may have acclimated to shade. 

The differences in acclimation of CUE between lettuce and tomato suggest that species 

may have different capacities to acclimate rg and rm under stress. The differences in 

acclimation may also be partly due to differences in C allocation from the roots to shoots . 

Because root growth was reduced proportionally more in tomatoes than lettuce, reducing 

root growth may have reduced the maintenance cost for tomato. 

If carbohydrate supply was equal to demand for both growth and maintenance 

processes, the CUE should have been unaffected by shade . That is, a reduction in 

photosynthesis should have resulted in an equal reduction in respiration, and, therefore, 

CUE should have remained constant. In this study, shade decreased CUE for both 

species, indicating respiration rates are dependent on carbohydrate concentration, as other 

studies have shown (Azc6n-Bieto and Osmond, 1983; Moser et al., 1982; Azc6n-Bieto et 

al., 1983). The differences in CUE response between species (starch accumulator vs. a 
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non-accumulator) suggests that plants can access carbon that was fixed on previous days. 

This is referred to in models as remobilization or redistribution . While these reserves 

may be used during stress, rg and rm may have been slow to adapt because carbohydrate 

was present, while RGR immediately decreased. As a result, the canopies did not gain 

mass with the same efficiency as before the stress. This concept was suggested by Kiniry 

et al. (1992) who reported reductions in the ability of maize (Zea mays) and sorghum 

(Sorghum bicolor) to tap stored reserves when stress occurred during the grain filling 

period . 

Both tomato and lettuce acclimated at least partially to shade, however. Most of the 

change in CUE from initial shade levels to "normal" levels occurred after 3 days 

indicating a fast, but not instantaneous response to reduced PPP. Values of QY for 

lettuce increased rapidly immediately after shade application and reached steady values 

after three days. This indicates that not only did respiration decline with decreasing 

carbohydrate content to balance CUE, but that photosynthesis became more efficient. 

Improved efficiency may have been the result of reallocation of resources from Rubsico 

to light-harvesting complexes and/or the tendency to increase QY under low light. 

Tomato also had such a response , but QY acclimation in tomato was delayed by two days. 

This may be the result of starch accumulation in the leaves reducing photosynthetic 

efficiency (feedback inhibition) until adequate time had passed for respiration to use the 

carbon stores . Values of QY approached its maximum at low PPP, as is typical under 

these conditions (Lal and Edwards, 1995). The QY measured in the low-PPP canopies 

approached 0.08 mol C per mol photons, which is below the theoretical limit (0.083 to 
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0.111) for a C3 species (Lal and Edwards, 1995; Bjorkman, 1981 ). 

Lettuce failed to completely readjust its CUE under extremely low PPF, suggesting 

some limits to low PPF tolerance in lettuce. The PPF obtained following shade 

application was definitely above the light compensation point for canopy photosynthesis 

as indicated by the positive daily carbon gains and positive CUE, but it may have been 

lower than was necessary to meet growth and maintenance requirements. Lettuce is 

commonly grown in growth chambers at about 300 to 400 µmol m·2 s·' (Hammer et al., 

1978), and canopies receiving that amount of light completely acclimated (based on CUE 

returning to pretreatment values) after 3 days. The failure of CUE in lettuce to 

completely acclimate based on CUE values under low-light conditions suggests that 

carbohydrate supply did not completely meet demand for growth and maintenance. 

Because CUE in tomato did completely acclimate by returning to pretreatment levels, 

both growth and maintenance requirements were apparently met either because tomato 

plants are inherently more efficient or because they are better able to acclimate to shade. 

Presumably, the mobilized carbon is initially in the form of starch (Penning de Vries et 

al., 1989), but in lower light (more than 50% shade) leaves may begin to adapt by 

converting from "sun" leaves to "shade" leaves. Shade leaves were able to increase their 

chlorophyll per unit area and leaf thickness when transferred from 40 µmol m·2 s·' PPF to 

1200 µmol m·2 s·' (Kamaluddin and Grace, 1992). Although little evidence exists 

concerning cell wall degradation as an acclimation to shade (Kephart and Buxton, 1993), 

Allard et al. (1991) concluded that both anatomical and physiological processes are 

modified to adapt to reduced PPF. 
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Studies have reported values of CUE of about 0.6 for a wide range of species, stages 

of development , and plant sizes (Monje and Bugbee , 1998; Gifford, 1994; Gifford, 1995). 

While this study did not specifically address the idea of plants actively maintaining their 

CUE at some value, these data seem to suggest that a CUE of about 0.6 is maintained 

regardless of PPF. In a recent paper, Barford et al. (2001) examined carbon budgets of an 

entire forest and provided evidence suggesting that whole ecosystem CUE is about 0.6 as 

well. Amthor (1989) reported values of CUE for many species that ranged from 0.03 to 

0.85, which were based on several different methods of calculating CUE . 

Dewar et al. (1998) hypothesized that a constant CUE was the result of a plant 

averaging C mobilization rates in response to average variations in its environment. 

Their model was constructed assuming both growth and maintenance demands were met 

under such steady-state conditions , so this concept may not be applicable under extremely 

low light or under conditions where photosynthate supply does not meet the demand. The 

model of Dewar et al. (1998) is useful in describing why the plant communities in this 

study achieved their new steady-state values of CUE after a few days and provides a 

conceptual understanding of why CUE changed when PPF was suddenly changed from 

previous steady-state levels. The rate at which the plants return to steady state conditions 

depends upon the species. 
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CHAPTERS 

ACCLIMATION OF TOMATO TO HIGH AND LOW 

TEMPERATURE AND LIGHT 4 

Abstract 
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Plants experience fluctuating light and temperature, and species acclimation defines 

both their ecological niches and optimal growth ranges. Interactions between light and 

temperature may be evident because of covariance of photosynthesis and respiration with 

these parameters. It is, therefore, important to determine the effect of a change in light 

and temperature on respiration and carbon use efficiency both separately and together. 

Separating respiration into growth and maintenance components and tissue analysis 

revealed that carbon use efficiency has the capacity to acclimate to changes in light 

through a reduction in the maintenance coefficient , an increase in the growth coefficient , 

and relatively less partitioning of Nin protein. Temperature had no significant effect in 

determining either maintenance or growth coefficients . These data suggest that carbon 

use efficiency can be maintained at a high level provided 

carbohydrate supply can meet respiratory demand, even in low light. 

Introduction 

Plants experience fluctuating light and temperature during the course of a single day 

and across the growing season . How species acclimate to such fluctuations through time 

4Coauthored by Bruce Bugbee. 
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helps define both their ecological niches and optimal growth ranges. Photosynthesis and 

respiration, which define biomass gain, are influenced by light and temperature. 

Temperature effects photosynthetic efficiency or quantum yield , and light affects both 

rate and efficiency of photosynthesis . Respiration has long been reported to increase 

exponentially with temperature , while light either decreases respiration through 

photoinhibition (Atkin et al., 2000; Sharp et al., 1984) or stimulates respiration through 

increased carbohydrate supply (Azc6n-Bieto and Osmond, 1983; Moser et al., 1982). 

Photosynthesis is much better understood than plant respiration . Respiration is 

classically divided into growth and maintenance fractions (McCree, 1974) , with different 

processes categori zed under either growth or maintenance depending on particular 

definitions used by authors (see Amthor, 2000 for complete discussion of different 

assumptions of growth and maintenance respiration). The divisions between growth and 

maintenance processes are somewhat arbitrary given that there is no biochemical 

distinction between ATP pools for growth or maintenance. In this study, we use the 

growth-and-maintenance-respiration paradigm as defined by Amthor (2000) . Growth is, 

therefore, assumed to be dependent on the type of biomass being synthesized and growth 

rate , while maintenance respiration is influenced by temperature and plant size. Most 

values in the literature for maintenance respiration are usually below 5% of existing 

biomass per day (Lavigne and Ryan, 1997; Ryan et al., 1995; Adu-Bredu et al., 1996), 

while growth respiration is in the range of 0.13 to 0.43 mol C0 2 respired per mol carbon 

in the new biomass , depending on plant composition (Amthor , 2000). 

Carbon use efficiency (CUE) is a calculated term that describes the relationship 
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between photosynthesis and respiration, and can be thought of as the efficiency of mass 

accumulation in plants. It is a ratio of the mass gained after a full 24-h period (net 

photosynthesis minus night respiration , or daily carbon gained, DCG) to carbon fixed 

during the day (gross photosynthesis, P gross) . Because it is a ratio , it is less sensitive to a 

change in either DCG or P gross; however, it provides insight concerning how effective the 

plant is at preserving the carbon fixed during the day. 

Although detailed models describing environmental influence on photosynthesis 

and respiration are available, the models typically predict that CUE is insensitive to 

changes in light or temperature, both of which influence photosynthesis and respiration in 

different ways. In fact, limited variation in CUE is recommended as an 'unforced 

outcome of mechanistic models ' (Cannell and Thronley , 2000) . In the model of Dewar et 

al. (1998) that describes carbon and light use efficiencies at the whole leaf and plant level, 

constant CUE was the result of stored reserves and available substrate for growth and 

respiration being balanced across several days. The pool of carbohydrate available for 

growth and respiration is typically large enough to negate small temporary changes in the 

environment , and the result is constant CUE. The model was tested only for variable 

light conditions. V aiiations in temperature were not modeled in that study, but were 

tested previously (Chapter 2). In those studies, CUE increased when night temperature 

decreased. The resulting change in CUE was caused by a one-time temperature change 

for the duration of the study, which resulted in permanent changes in carbohydrate pools 

available for growth and respiration . This resulted in a new CUE value. 

In Chapter 4, lower light decreased CUE by as much as 80% of pretreatment values. 
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Values of CUE eventually returned to at or near pretreatment levels, depending on the 

species tested. Using the model of Dewar et al. (1998) to explain the results, 

carbohydrate pools presumably adapted to new steady-state levels, thereby allowing CUE 

to return to steady levels. Interestingly, lettuce did not return to pretreatment levels, but 

to a new lower steady value. The model of Dewar et al. (1998) was constructed assuming 

non-limiting conditions , and if those conditions are not met, then new carbohydrate 

supply (i.e., lower light) does not meet the demand (i.e., existing biomass) and CUE may 

adapt lower. It is not known how altering both light and temperature will influence CUE. 

The purpose of this study was to investigate the influence of light and temperature 

on the growth of tomato (Ly copersicum esculentum Mill.). I wanted to evaluate why 

there may be no change in CUE, or if there is a change , how and why it changes. 

Furthermore , interactions between light and temperature may be evident because of the 

co-variance of photosynthesis and respiration with these parameters . Because I also 

wanted to examine the growth , stress, and subsequent recovery from a more mechanistic 

basis, I separated respiration into growth and maintenance components . In doing so, 

insight hopefully will be gained into existing models used for predicting crop yield and 

the underlying processes driving those models . 

Materials and Methods 

Experimental Design 

Seeds of tomato ('Micro-Tina') were germinated and transplanted after five days 

into gas-exchange system chambers at a density of 106 plants m·2. High densities were 

used to obtain rapid canopy closure. Additionally, the dwarf tomato cultivar 'Micro-



102 

Tina' was used so that full-sized plants would fit inside the gas-exchange chambers. 

Shade treatments were arranged as a complete block design and analyzed using two-way 

ANOV A (light and temperature) and linear regression. Both blocks contained a single 

control chamber (photosynthetic photon flux was 300 µmol m-2 s-1 for the duration of the 

trial), two with low PPF (80 µmol m-2 s-1
) or high PPF (about 600 µmol m-2 s-'). Slopes 

of lines were compared to see if their slopes were equal using the test statistic ( ( slope a -

slope b) - 0)/(variance of slope a) = t (degrees offree dom of slope a) (Neter et al., 1996). 

Plant Growth Environm ent 

A 10-chamber open gas-exchange system was used that was described previously by 

van Iersel and Bugbee (2000). Each chamber is 0.5 x 0.4 x 0.9 m (L x W x H) and fully 

enclosed a hydroponic tub. After transplanting , five chambers contained plants grown at 

20C day/night temperature , and five chambers were grown at 30C day/night temperature. 

Chamber temperature was controlled to within ±0.2C of set point , and C0 2 was 

controlled to within ±2% of 1,200 µmol mol-1. The concentration of C0 2 was elevated to 

ensure that photosynthesis would be limited by light rather than C0 2• Root-zone 

temperature was maintained by activating flexible heat-stripping wrapped around the 

outside of the hydroponic tubs when the temperature fell below the set point. Hydroponic 

solution was bubbled with the same C0 2-enriched air as that used in the canopy. The 

C0 2 exchange of each of 10 different whole canopies was monitored once every 10 

minutes. 

Manual adjustment of pH on a daily basis resulted in a 1 pH unit day-to-day range . 

The pKa of carbonate is 6.2, which means that 50% of the carbon dissolved in the water 
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is in the carbonate form and 50% is C0 2• Due to the limitations of our pH control 

method, a 1 pH unit range during the day has the potential to cause significant fluxes in 

and out of the nutrient solution. For this reason, the pH of the hydroponic solution was 

maintained between 4 and 5, which forces between 90 and 99% of the C0 2 out of solution 

(Monje and Bugbee, 1998). Relative humidity was maintained between 60 and 85% for 

the duration of the trials. The photosynthetic photon flux (PPF) was provided by water

filtered HPS lamps that initially provided 300 µmol m ·2 s-1 (±5%) for all chambers until 

canopy closure. Both trials were run using a 16-h photoperiod to initially provide 17.28 

mo! photons per m2 per day. 

Shade was applied two days after canopies closed, which occurred 16 days after 

transplanting for the canopies at 30C and 24 days after transplanting for the canopies at 

20C. Shade was applied using a neutral-density window screening (10-mesh) positioned 

on the top of the chambers that reduced PPF by 50% with each complete layer of window 

screening and an opaque black plastic draped over the tops of the chambers for low light 

treatments. The PPF was measured twice weekly with a line-quantum sensor (Model 

LQSV-ELEC, Apogee Instruments, Inc., Logan, UT) that averaged PPF across the top of 

the canopy. Shade cloth was adjusted at those times to maintain shade to original shade 

level, and shading continued for 20 days after shade application. Side lighting was 

reduced by wrapping each chamber in a reflective curtain and adjusted so that the top of 

the curtain was level with the top of the canopy. 

Calculations 

The ratio of carbon gained per day to total carbon fixed is CUE, which is defined as: 
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CUE = DCG I p gross 

where DCG is daily carbon gain and P gross is gross photosynthesis. Using the measured 

C0 2 exchange rates of P net (net photosynthesis, mol C m·2 d-1
) and R,, (night-time 

respiration, mol C m·2 nighr 1
; night is the dark period following the photosynthesis 

period, which together make up one 24-h period), DCG can be calculated as: 

DCG = pn et - R,, 

where P net is net photosynthesis and R,, is night respiration. Gross photosynthesis (P gross) 

is a calculated term that incorporates both the net C fixed (Pn eJ and the C that is 

simultaneously being respired. Because day-time respiration (RJ can not be measured 

directly, P gross is calculated as the sum of P net and some percentage of night-time 

respiration rate. Different studies have indicated that Rd can remain high during the day 

due to higher carbohydrate content during the day (Azc6n-Bieto and Osmond, 1983), or 

can be lower due to some type of light-inhibition ofrespiration (Atkin et al., 2000; Sharp 

et al., 1984). I assumed that Rd is occurring at the same rate as R,,, as is often assumed 

for whole plants, so that Rd would be defined as: 

R,, * (time in light)/(time in darkness). 

Thus , for a 16-h photoperiod, Rd= R,, * 2. In these equations, respiration is designated as 

a positive value (i.e., mass respired) . Therefore, P gross can be calculated as: 

Sensitivity analysis of CUE to changes in Rd indicates that Rd can change by as 

much as 50% higher or lower than R,, with a resulting change in CUE of only 0.08 or 12% 

(assuming a typical CUE of 0.65). Therefore , the assumption of constant day and night 



respiration rate has little impact on the calculated value of CUE. Changes in CUE 

relative to the control are more important than absolute changes to CUE with shade 

application. 
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Quantum yield (QY) was calculated for each canopy after canopy closure. The PPF 

incident upon the canopies was measured and 95% of that was assumed to be absorbed. 

The P gross for the day period (mol C m-2 d-1
) was then divided by total photons absorbed 

(mol photons m-2 d-1
) to give QY (mol C fixed per mol photons absorbed). 

After treatments were imposed, data were expressed as a percent of their initial 

value, then normalized to the control in the following manner: 

(Posttreatment a dayb I Pretreatment a value) --:-

(Posttreatment control dayb I pretreatment valuecontroi) 

where posttreatment a indicates the posttreatment value of parameter a (i.e., CUE, Pnet, and 

R,) , dayb indicates the day after treatment , pretreatment a value is the value of the 

parameter of interest on the day before treatments began , posttreatment controI dayb is the 

posttreatment value of the parameter of interest on the same posttreatment day, and 

pretreatment valuecontrol is the pretreatment value of the parameter of interest the day 

before treatments began . By doing this transfonnation, treatment effects on a given 

canopy are accounted for in the numerator , and the effects relative to the control and 

ontogeny can be 

assessed in the denominator. 

Plant Tissue Analysis 

Upon harvesting, tomato plants were separated into leaves, stems, roots, and fruit (if 
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present). Tissue was weighed and dried in an forced-air oven at 80C for 72 hours. Dry 

biomass was subsequently weighed, ground, and subsampled for analysis. Samples 

weighing 0.2 g were analyzed for percent C, H, and N with a LECO analyzer (Utah State 

Plant and Soils Analysis Laboratory), and samples of 1.0 g were used for analysis of other 

nutrients (ICP analysis, Plant and Soils Analysis Laboratory, Utah State University). 

Nitrate was analyzed with a 0.2 g sample placed in a 50-ml solution of 0.05 M Ali{S0 4) 3. 

The tissue and solution were shaken four times during the 1-h extraction period. The 

solution was measured with a N0 3- selective and an associated reference electrode (Model 

930700 and Model 900200 Thermo Orion, Beverly, MA). The readings were then 

converted from volts to N0 3--N from a previous calibration curve. 

Growth and Maint enance Estimates 

The model of Hesketh et al. (1971) was used to separate respiration into growth and 

maintenance components . This model is based on the classic respiration model made 

popular by McCree (1974) where respiration is a linear function of biomass amount and 

new growth: 

R=cW+mG 

where R is total respiration, c is some fraction of existing biomass (W) devoted to 

maintaining existing biomass, and m is some fraction of new biomass (G) devoted to 

growth respiration. If both sides are divided by W: 

R/W = cW/W + mG/W 

the equation simplifies to: 

specific respiration= c + m*RGR 



107 

or specific respiration, which is a linear function of relative growth rate (RGR) times the 

growth coefficient plus the maintenance coefficient. Using C0 2 continuous gas exchange 

measurements from whole plants permitted an estimation of specific respiration and RGR 

during plant canopy growth. 

Results 

Large differences in the rate of canopy closure occurred between the two 

temperature treatments. As a result, the number of days required for canopy closure 

differed between temperatures . The warmer treatment reached canopy closure on Day 16, 

while the cooler treatment reached canopy closure eight days later. The different 

temperatures also caused different development rates; the warm treatment required only 

about 25 days for canopies to initiate flowering , and the cool canopies required about 35 

days for the first flower to appear. 

3 OC Treatment 

Photosynthetic rate decreased from 0.74 mol C fixed m·2 d-1 to 0.12 mol C fixed m·2 

ct·' (84% reduction) the initial day after reducing PPF from 300 to 80 µmol m·2 s·' (73% 

shade) (Figure 5-lA) . Photosynthesis increased from 0.76 to 1.47 mol C m·2 ct·' (93% 

increase) the initial day after increasing PPF from 300 to 600 µmol m·2 s·' (100% 

increase). On subsequent days, photosynthetic rate slightly increased relative to initial 

pretreatment values and relative to the control in the shaded canopies (t = 2.6, df = 8, P < 

0.025 from Day 1 to Day 2; t = 3.77, df = 8, P < 0.005 from Day 2 to Day 12), and 

slightly decreased relative to initial pretreatment values and control in the high light 
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environment (Figure 5-2A). 

Respiration rate decreased from -0.11 mol C respired m-2 nighr' to -0.055 mol C 

respired m-2 nighr' (50% reduction) the initial day after reducing PPF from 300 to 80 

µmol m-2 s-1 (73% shade) (Figure 5-lA). Respiration increased from -0.11 mol C respired 

m-2 nighr' to -0.17 mol C respired 111-
2 nighr' (52% increase) the initial day after 

increasing PPF from 300 to 600 µmol m-2 s-1 (100% increase). On subsequent days, 

respiration rate continued to decrease relative to initial pretreatment values and relative to 

the control in the shaded canopies (t = 2.411, df = 8, P < 0.025 from Day 1 to Day 2, not 

significantly different after Day 2), and increased slightly in the canopies receiving high 

light relative to initial pretreatment and control values (Figure 5-2B). 

Carbon use efficiency decreased to 0.31 from 0.65 after the first day of shading 

(Figure 5-1 C, 5-2C, 5-3B). Carbon use efficiency recovered completely after about 10 

days, with most recovery occurring after the first three days of shade (Figure 5-1 C and 5-

2C) . In the canopies receiving high PPF , the CUE initially increased from 0.65 to 0.72 on 

the first day after treatment. Subsequent days showed an exponential decline in CUE 

with a return to the same values as before treatment after about 10 days (Figure 5-3A). 

20C Treatments 

Photosynthetic rate decreased from 0.72 mol C fixed m-2 d-1 to 0.12 mol C fixed m-2 

d-'(or 83%) the initial day after reducing the PPF from 300 to 80 µmo! m-2 s-1 (73% shade) 

(Figure 5-lB) . Photosynthesis increased from 0.85 mol C fixed m-2 d-1 to 1.39 mol C 

fixed m-2 d-'(or 63%) the initial day after increasing PPF from 300 to 600 µmol m-2 s-1 

(I 00% increase). On subsequent days, photosynthetic rate slightly increased relative to 
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initial pretreatment values and relative to the control in the shaded canopies, and slightly 

decreased relative to initial pretreatment values and control in the high light treatment 

(Figure 5-2A). 

Respiration rate decreased from -0.12 to -0.071 ( or 41 %) the initial day after 

reducing the PPF from 300 to 80 µmol m-2 s-1 (73% shade) (Figure 5-lD). Respiration 

increased from -0.14 to -0.18 (or 32%) the initial day after increasing PPF from 300 to 

600 µmol m-2 s-1 (100% increase) . On subsequent days, respiration rate continued to 

decrease relative to initial pretreatment values and relative to the control in the shaded 

canopies, and continued to increase slightly relative to initial pretreatment and control 

values in the canopies receiving high light (Figure 5-2B). 

After the first day of shading , CUE decreased from 0.64 to 0.18 (Figure 5-lD , 5-2C, 

and 5-3B), and recovered completely after about 10 days, with most recovery occurring 

after the first three days after shading. This pattern matched that of the 30C treatment. 

In canopies receiving high PPF, the pattern was different from that of the 30C 

treatment (Figure 5-3A). Carbon use efficiency initially increased from 0.64 to 0.68 on 

the first day after treatment. A best fit regression for subsequent days indicated a linear 

decrease, which was significant, but relatively low correlation (P < 0.001; r2 = 0.68). Our 

analysis does not eliminate the possibility of an exponential decrease in CUE with a low 

slope. Both the warm and cool treatments were shaded or had high light for 20 days, so it 

is not known if the pattern is exponential or linear beyond 20 days. 

Growth and Maintenance Estimates 

Relative growth rate and specific respiration were highly correlated within each 
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chamber (F = 226 .1, df= 23, P < 0.001, r2 of at least 0.91) (Figure 5-4A and 5-4B). 

Graphs are separated according to chamber temperatures to facilitate comparisons 

between PPF levels. Shade treatments had low values of RGR, so the distance the 

regression line must be extrapolated in order to estimate the intercept is a relatively 

smaller distance than those treatments with higher RGRs . Nevertheless, correlations for 

these treatments were high. 

Estimates of the growth coefficient (slope) increased with decreasing PPF, while the 

maintenance coefficient (intercept) decreased with lower PPF (Table 5-1 ). ANOV A 

indicated a significant relationship between both the estimate of the growth coefficient 

and the maintenance coefficient with PPF . Comparison of group means by Tukey's test 

indicated that the low (80 µmo] m-2 s-1
) and high (600 µmol m-2 s-1

) PPF treatments 

differed significantly from one another in both growth and maintenance estimates, but 

other group means did not differ significantly . Temperature did not affect the growth (P 

= 0.91) or maintenance coefficient (P = 0.51). 

Tissue Analysis 

Both temperature and PPF significantly affected leaf C content (P < 0.001) (Table 

5-2 and 5-3). Higher light and warmer temperatures led to higher percent C. A 

significant interaction was observed between PPF and temperature on leaf carbon content 

(P = 0.003). Stem and root C content also increased significantly with high PPF (Table 5-

2). 

The N content in the leaf decreased with higher PPF, but was not directly related to 

temperature (Table 5-2 and 5-3). There was a significant light and temperature 
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interaction, however, which indicated that N content was different under high and low 

light depending on temperature. The N content in the stem was not influenced by either 

light or temperature . Cooler temperature decreased root N content, possibly due to the 

influence of temperature on uptake rates . Nitrate content of the leaf and stem was only 

influenced by PPF , with lower PPF resulting in much higher NQ 3- content , while low 

N0 3- content was observed at high PPF . Stem NQ 3- content also decreased at high PPF. 

Quantum Yield 

There was a significant difference in QY between PPF levels with the highest QY 

occurring under the lowest light level , and the lowest QY occurring under the highest PPF 

(Table 5-4). There was marginal significance in QY in response to temperature (P=0.08) , 

with the 30C treatment having a slightly higher QY than the 20C treatment. 

Discussion 

Models that separate respiration into growth and maintenance components assume 

no effect of temperature on the growth coefficient but a strong effect on the maintenance 

coefficient (Heuvelink , 1995). This effect is usually described with a Q10 term of about 

2.0 (Witowski, 1997; McCullogh and Hunt, 1993; Edwards and Hanson, 1996). If these 

models are accurate, we should have seen a doubling of maintenance respiration between 

the two temperature treatments; however, no effect of temperature on the maintenance 

respiration coefficient was detected in this study. This differs from the results of other 

studies that reported no effect of temperature on maintenance respiration, but nevertheless 

assume a Q10 of 2 for the maintenance coefficient (Heuvelink, 1999) 
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Each canopy developed in a constant temperature environment with day, night, and 

root zone temperatures all being identical. These conditions do not simulate a typical 

plant growth environment and, therefore, may not be a true reflection of how plants 

respond in a normal, fluctuating environment. The same can be said for short-term 

studies on plant parts. Taken together, the two methods provide different information 

about plant response to temperature. Our results indicate that maintenance respiration 

does not respond to temperature. However, these plants were never stressed by 

fluctuating temperatures and, therefore, had no requirement to increase or decrease their 

maintenance in response to the environment. That is, maintenance respiration may have 

acclimated to the growth environment and estimating a Q 10 from different plants grown in 

different environments may not be a true representation of how maintenance respiration 

responds to a fluctuating environment. Conversely, a plant that undergoes fluctuations on 

a daily or hourly basis likely has acclimated to such fluctuations and, as a result, has less 

maintenance respiration than a one-time change in temperature in the leaf, root, or fruit 

with an apparent Q10 of 2 or higher. Models may need to reflect the dynamic nature of a 

temperature response (i.e., Q10 value) by scaling it to how often and severe a temperature 

fluctuation a plant or canopy experiences through time (seconds, minutes, hours, or days). 

On the other hand, PPF changed drastically a single time during the trial. The 

ANOV A indicated that different PPF resulted in changed maintenance and growth 

respiration coefficients. The maintenance coefficient roughly doubled with each increase 

in PPF, but a pairwise Tukey's test indicated that only the low PPF and the high PPF 

were different. All estimates were on the low end of the range of values typically 
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reported for maintenance requirement (Amthor, 2000). Our trial was run in elevated C0 2, 

which reportedly causes reductions in maintenance requirements, due in part to decreased 

Rubisco concentrations of plants grown in elevated C0 2 (Bunce, 1995). 

The growth coefficient decreased with increasing PPF , suggesting that plants under 

high PPF synthesized simpler compounds such as sugars and starches, whereas plants in 

the low PPF treatments were synthesizing more complex compounds (Amthor, 1989). 

Plants grown under low PPF tend to synthesize more light -harvesting compounds, less 

storage compounds, and have less Rubisco (Zhao and Oosterhuis, 1998), whereas plants 

grown under high PPF tended to accumulate starch in leaves and have more Rubisco 

(Goldschmidt and Huber, 1992; Yelle et al., 1989). These growth coefficients are 

consistent with those physiological changes as plants acclimate to low and high PPF. 

Carbon use efficiency acclimated to low PPF in a similar manner as previously 

reported (Chapter 4) . Some of the acclimation could have been the result of differences 

in QY after shade was imposed. The low light plants had greater QY, while the high PPF 

treatments were less efficient photosynthetically. The large decrease in CUE on the 

initial day after shading indicated that plants were also less efficient at conserving newly 

fixed carbon immediately after shading. The CUE did not decrease as much as 

previously reported. In that study, however , plants were shaded the same percentage 

(-80%), but were changed from 600 µmol m-2 s-1 down to 125 µmol m-2 s-1, a larger 

absolute change in PPF . The following day, CUE greatly increased, back to within about 

80% of its initial, pretreatment value . I attribute this large initial change in CUE to a 

temporary imbalance of stored C that permits respiration to continue at a high rate. 
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However, as those reserves are consumed, respiration decreases in balance with 

photosynthesis. No interaction was observed between temperature and PPF, which 

suggests that these stored reserves were consumed at roughly equal rates or were 

mobilized equally well at different temperatures when shaded. This explanation fits the 

model of Dewar et al. (1998) for steady CUE values under non-limiting conditions. 

Provided the growth and maintenance requirements are both met, CUE should be the 

same in different constant environments. 

In estimating growth and maintenance coefficients, I assumed that growth and 

maintenance were unchanged during this study. I, therefore, assumed that a Michaelis

Menton type of relationship existed between CUE and RGR; that is, a change in RGR 

resulted in a change in CUE . While this may be the case , RGR apparently remains high 

enough to not substantially affect CUE and indeed remain near its maximum value (value 

under optimal conditions) . This would happen if the maintenance requirement is 

extremely low, as predicted for this trial. It also provides further evidence that if the 

demand for substrate for growth and maintenance is met with the substrate supply ( even 

in very low RGRs) , CUE can remain high. 

The response of CUE to a change from low to high PPF was different for the two 

temperature environments used in this study. Both showed an initial increase in CUE the 

first day after PPF increase, and the warmer treatment declined back to initial 

pretreatment levels after a few days. This suggests differences in starch mobilization at 

different temperatures, but that switching from high to low PPF had no such effect at the 

different temperatures. Starch synthesis in cereal grains is known to be temperature 



sensitive, and warm temperature in wheat (Triticum aestivum) during the grain filling 

stage reduced seed mass because of lower rates of starch accumulation (Bhullar and 

Jenner, 1986) and decreased duration of grain fill (Tashiro and Wardlaw , 1988). 

Differences in CUE may be the result of a prolonged imbalance of supply and demand 

due to starch synthesis in leaves . 
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Several attempts have been made to correlate maintenance respiration requirement 

with Nor protein content (Ryan et al., 1996; Dewar , 1996). It is believed that N status is 

a reflection of protein amount and, therefore, an indirect measure of protein amount that 

needs to be maintained . As a result, the higher the N content, the higher the maintenance 

cost. In our study , leaf N content decreased with increased light, which is opposite of 

what would be expected ifN content were related to maintenance respiration. Even after 

subtracting the N0 3- fraction from total N, (a number that should reflect both protein N 

and amino acid N) , the remaining N forms still decrease with increasing PPF. The stem 

had a weaker response ofN to PPF, while root N remained virtually unchanged. A higher 

fraction ofN0 3· N may indicate a smaller requirement of maintenance respiration, 

possibly maintaining ion gradients rather than functional proteins. 

Surprisingly little difference in Nor N0 3• content was observed between the two 

temperature environments . Kafkafi (1990) reported about a 33% increase in leafN0 3· 

concentration as temperature increased from 24 to 34C and about a 50% decrease in root 

NQ3· as the temperature increased from 24 to 34C. This was attributed to less N0 3· 

transport from the root to the shoot under the warmer temperatures. 

The differences in carbon content in different PPF tended to reflect the possible 
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starch versus no-starch accumulations under high and low light. The differences in 

percent C measured in leaves, stems, and roots possibly reflected how much and where 

starch was accumulating. Slightly more C was observed in leaves grown in warm than in 

cool temperatures, while there was more C in roots of plants grown under cool than in 

warm temperatures. No differences were observed in stem C. 

Together, these data indicate that both growth and maintenance respond to 

fluctuations in light more so than differences in temperature. Because respiration, in 

general, and maintenance respiration, in particular, has widely been measured to have a 

temperature response, we suggest that the temperature response is a function of not only 

the magnitude of temperature change, as is usual in models, but also how often the 

change is incurred and for what duration plants experience the change. Our data also 

indicate that CUE can change in response to the environment. However, as long as the 

demand for growth and maintenance is met by newly fixed carbon, CUE can remain as 

high as values obtained under optimal conditions. This may be caused by either 

exceptionally low maintenance requirements , or high RGR under somewhat limiting 

conditions. 
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Table 5-1. Estimates of growth and maintenance coefficients for the average of the 

different PPF and temperature treatments. Degrees of freedom for PPF in all ANOV A is 

2 and the degrees of freedom for temperature in all ANOV A is 1. 

PPF (µmol m-2 s-1) Temperature (C) 

80 300 600 20 30 

Growth (mol Cresp mol Cgrowth-t ) 0.587 0.506 0.379 0.492 0.489 

Std. error 0.02 0.03 0.02 0.02 0.02 

Significance F = 18.7 F = 0.013 

P = 0.009 P = 0.91 

Maintenance (mmol C mol C d-1
) 3.39 6.47 11.6 6.56 7.77 

Std. error 1.3 1.8 1.3 1.2 1.2 

Significance F = 10.85 F = 0.51 

P = 0.024 P = 0.51 
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Table 5-2. Carbon, nitrogen, and No 3- contents (g per kg) for the average of the different 

PPF treatments. Degrees of freedom for PPF in all ANOV A is 2. 

Leaf Stem Root 

PPF (µmol m-2 s-1
) PPF (µmol m-2 s-1) PPF (µmol m-2 s-1

) 

80 300 600 80 300 600 80 300 600 

c 351 365 389 335 356 387 353 378 390 

Std . error 2.2 3.1 2.2 7.3 10.3 7.3 4.2 4.9 3.5 

Significance F = 80.1 F = 12.9 F = 23.5 

P < 0.001 P = 0.018 P = 0.015 

Total N 63 49 40 35 33 26 43 45 42 

Std. error 1.2 1.7 1.2 2.5 3.5 2.5 0.6 0.7 0.5 

Significance F = 96.0 F = 3.14 F = 6.7 

P < 0.001 P = 0.15 P = 0.078 

N0 3• 23 15 9 22 17 10 14 12 9 

Std . error 1.2 1.7 1.2 2.3 2.6 1.9 1.3 2.4 1.3 

Significance F = 32.8 F = 10.0 F = 8.11 

P = 0.003 P = 0.047 P = 0.062 
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Table 5-3. Carbon, nitrogen, and N0 3- contents (g per kg) for the average of the different 

temperature treatments. Degrees of freedom for temperature in all ANOV A is 1. 

c 

Std. error 

Significance 

Total N 

Std. error 

Significance 

N0
3

-

Std. error 

Significance 

Leaf 

20C 30C 

353 383 

2.0 2.0 

F = 108.0 

P < 0.001 

49 52 

1.1 1.1 

F = 4.35 

P = 0.11 

16 15 

1.1 1.1 

F = 0.612 

P = 0.48 

Stem Root 

20C 30C 20C 30C 

358 359 380 368 

6.9 6.9 3.3 3.6 

F = 0.011 F = 6.579 

P = 0.923 P = 0.083 

30 32 42 45 

2.3 2.3 4.8 0.4 

F = 0.56 F = 18.4 

P = 0.50 P = 0.023 

15 18 11 13 

2.0 1.7 1.7 1.0 

F = 1.29 F = 3.14 

P = 0.34 P = 0.18 
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Table 5-4. Differences in quantum yield (mol C fixed per mol photons absorbed) after 

shade application at 20 days after treatment. Data were analyzed with a two-way 

ANOVA and Tukey's comparison of means within PPF level, which showed that the 

three PPF levels differed significantly (P < 0.005). Degrees of freedom for PPF in all 

ANOV A is 2, and degrees of freedom for temperature for all ANOV A is 1. 

PPF (µmol m-2 s-1) Temperature (C) 

80 300 600 20 30 

Quantum yield 0.0718 0.0667 0.0542 0.0631 0.0653 

Std. error 0.00094 0.0013 0.00096 0.00090 0.00089 

Significance F = 89.4 F= 3.1 

P < 0.001 P = 0.080 
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Figure 5-1. Carbon exchange rates and carbon use efficiencies for all ten chambers for 

both temperature treatments . PPF was changed on Day 19 for the warm canopies and on 

Day 27 for the cool treatment. 
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Figure 5-2. Effect of a change in PPF on net photosynthesis (P nei), dark respiration (RctarJ, 

and carbon use efficiency (CUE). Data are shown relative to the control and pretreatment 

values . 
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Figure 5-3. Change in carbon use efficiency (CUE) through time after increasing or 

decreasing the PPF . Replicate light levels at the same temperature did not differ 

significantly from each other. 
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chambers . Correlations in each chamber were always greater than r2 = 0.91 (F = 226.1, df 

= 23, P < 0.0001). 
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It is important to understand the environmental factors that influence respiration and 

the physiological mechanisms that influence how plants use carbon efficiently . There is 

evidence that respiratory control occurs due to demand (temperature dependency) or 

supply (photosynthate availability) limitations. The relative importance of each may 

depend on a number of factors including period of time during which respiration is 

measured , phase of plant development, environmental conditions , and species . 

Role of Temperature 

There is an abundance of literature on how temperature controls and influences 

plant respiration . Unfortunately , the conclusions from this literature reached about the 

role of temperature in the carbon economy of plants cannot easily be extrapolated to 

longer periods of time, across species, and for whole canopies. 

Initially, I had hypothesized that respiration would double for every 1 OC rise in 

temperature, as is widely reported for respiration studies conducted using single leaves, 

and that this increase in respiration would result in decreased CUE. I found, however, 

that plant respiration was far less sensitive to temperature for all species tested than is 

commonly reported . This is probably due to a high proportion of growth respiration, 

which is not temperature sensitive, compared to maintenance respiration, which is 

temperature sensitive. Furthermore, small, rapidly growing plants were used, which 

should have increased the fraction of growth respiration. Breaking down respiration into 



129 

its component parts is rarely performed in analyses to explain why tissue may have higher 

or lower temperature sensitivity . This study should assist in interpreting the role of 

temperature in respiration , and provide insight into appropriate scaling of results rather 

than scaling from single leaf to whole plant. 

Previous studies indicated that CUE remains constant regardless of temperature , or 

adapts when temperature is changed. However, plants grown with cooler nights than 

days had significantly greater CUE than the canopies receiving either constant day/night 

temperatures or warmer nights than compared to days when the night temperature was 

changed after canopy closure. The change was biologically small, however. I had 

hypothesized that CUE would acclimate back to pretreatment values in the days following 

the temperature change . The CUE did not acclimate in my study, contrary to what as was 

reported in the literature , but remained at the new value for the duration of the treatment , 

which lasted up to 20 days . 

Initially I had proposed that the rate of night respiration would be correlated to the 

subsequent day's photosynthetic rate . I had hypothesized that elevated night-time 

respiration would not be efficient and would impair subsequent growth and that low night 

respiration would increase growth due to better respiratory efficiency. In my study, 

altered night respiration did not influence photosynthetic rates on subsequent days. This 

is in contrast to the literature that suggests substantially higher leaf photo synthetic rates 

after increased night temperature due to less feedback inhibition. In fact, plants with 

higher CUE were not larger, nor did they gain more carbon after treatments were imposed 

than those with lower CUE values. This is likely due to greater variability in 
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photosynthetic rates outweighing any potential improvement in CUE. 

I wanted to further test the potential influence of temperature on CUE and 

respiration. Realizing that CUE was influenced when there was a difference in the day 

and night temperature, I hypothesized that there would be no differences in CUE of plants 

grown at constant day night temperature across a range of 21 C to 3SC. I thought that 

respiratory demand would be in constant proportion to the photosynthetic rate as long as 

the temperatures remained constant. I also hypothesized that CUE would be the same in 

plants that had a SC day/night difference as other plants with the same day/night 

temperature difference, regardless of the average daily temperature . This was again due 

to respiratory demand being in constant proportion to the photosynthetic rate. I found 

these hypotheses to be supported by two trials performed in elevated C0 2• 

If C0 2 was lowered to ambient C0 2, I hypothesized that carbohydrate supply would 

not meet the demand . Therefore, at low temperatures that could inhibit light capture (and 

therefore carbohydrate supply) , or at warm temperatures with high carbohydrate demand 

CUE would be lower. Values of CUE were much lower at a constant day/night 

temperature of 3SC and slightly , but significantly , lower at a constant 21C in ambient 

C0 2• At 3SC, growth was severely stunted , and the respiratory demands may not have 

been met in this warm environment. At 21 C in ambient C0 2, photosynthesis was 

efficient, as determined by canopy quantum yield, but sink strength may have been 

reduced, thereby, decreasing CUE. Interestingly, no such pattern was observed in the 

canopies in ambient C0 2 with a SC day/night difference. This may be due to the warmest 

treatment (3S/30C day/night) having an average daily temperature of 32C, which may 
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have been cool enough so that supply could meet demand. Indeed, plants grown at this 

temperature were not as severely stunted as those grown at constant 

35C, suggesting that the temperature threshold is between 32C and 35C. 

Role of Light 

Studies that have exogenously applied a sugar source to excised tissue clearly 

showed a strong dependency of respiration on available substrate . Unfortunately, 

experiments at the whole plant or community level have not been performed to test this 

relationship. I hypothesized that on a whole plant level , the same basic patterns of 

reduced respiration with reduced carbohydrate supply would follow the pattern obtained 

with single leaf studies. The effect of low light on photosynthesis was expected to be 

immediate. Plants store carbohydrate , which may function as a carbohydrate reserve 

under stress. In low light , I proposed that photosynthesis would immediately decline, but 

that respiration would return to a balance with photosynthesis after consuming the 

carbohydrate reserves within a few days. In the tests that reduced the light level after 

canopy closure, photosynthesis was immediately lowered in a nearly 1: 1 relationship with 

increasing shade. Initially after shading, the CUE was greatly reduced because respiration 

was high on the first night after shade application. Respiration, however, decreased 

during the next several days. This suggests that carbohydrate pools were large enough for 

respiration to continue at relatively high rates immediately after shade was applied, but 

eventually came back to equilibrium with the new, reduced PPF level. 

Different species accumulate different forms and amounts of carbohydrate. I 
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hypothesized that a high starch accumulator (tomato) would require a longer period of 

time to consume its carbohydrate reserves than a species that had less carbohydrate and 

starch storage (lettuce). Values of CUE in lettuce were reduced by half after the first day 

of shading, whereas values of CUE in tomato were nearly zero after initial shading. This 

indicated that carbohydrate reserves were different in these species, and that their ability 

to tap into their reserves may differ. Both species reduced their respiration rates and 

increased photosynthetic efficiency in response to shade. Both species also reached 

nearly complete recovery after only a few days. However, tomato completely recovered 

(based on a return of CUE to pretreatment levels) after 12 days but lettuce only reached 

80% of pretreatment levels at the conclusion of the trial. This suggests that respiratory 

demands may be different in the two species, and that some species may be better able to 

acclimate other physiological processes after environmental conditions change. 

There have been reports of temperature influencing carbohydrate mobilization and a 

well established link between temperature and carbohydrate consumption. I, therefore, 

hypothesized that there would be an interaction between temperature and light with 

cooler temperatures slowing the rate of CUE acclimation to shade. However, I did not 

observe an interaction between shade and temperature. Both 30C and 20C canopies 

acclimated at the same rate with reduced PPF. Acclimation to increased PPF may have a 

significant interaction with plants grown in warm temperatures better able to use 

additional carbohydrate than plants grown in cool temperatures. This suggests possible 

sink limitations with plants grown in cool temperatures unable to rapidly make use of 

additional carbohydrate with increased light. 
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Growth and maintenance respiration were measured to describe how acclimation 

may occur in respiration with temperature or PPF changes. I hypothesized that the 

maintenance respiration coefficient would decrease with increasing temperature as a way 

to decrease respiratory demand, and that the growth respiration coefficient would 

decrease with lower PPF. In this study, the maintenance coefficient was not affected by 

temperature, and lower light not only increased the growth coefficient , but decreased the 

maintenance requirement as well. This response provides strong evidence that models 

that divide respiration into growth and maintenance components should incorporate light 

effects on both components, and perhaps decrease the emphasis of temperature on the 

maintenance coefficient. 
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APPENDIX 



APPENDIX A 

EXPLORING THE LIMITS OF CROP PRODUCTNITY: QUANTUM YIELD, 

RADIATION CAPTURE, AND CARBON USE EFFICIENCY OF LETTUCE 

IN A HIGH LIGHT, TEMPERATURE, AND C0 2 ENVIRONMENT 

Introduction 
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There have been several analyses to determine the theoretical maximum yield of a 

crop community (Loomis and Williams , 1963; Thomley and Johnson , 2000). For 

example, it was modeled and validated that wheat yield responds nearly linearly to 

increased photosynthetic photon flux (PPF) if all other conditions are optimized (Bugbee 

and Salisbury , 1988) . Many crops are grown in sub-optimal conditions and maximum 

growth rates are sacrificed in order to improve some other characteristic of crop 

production (e.g. timing for the market). As a result , theoretical maximum yields have not 

been analyzed for several important crops and breeders have little information as to what, 

if anything , may be most limiting to productivity . 

Most productivity studies are performed under ambient or field C0 2 concentrations. 

Due to an increase of photorespiration in elevated temperatures for C3 crops, quantum 

yield, a measure of photosynthetic efficiency and a parameter in many productivity 

models, is reduced in warmer temperatures in ambient C0 2• It is well established 

theoretically, but often ignored experimentally, that the temperature optimum for C3 

species should increase several degrees under elevated C0 2 (Harley and Tenhunen, 1991; 

Long, 1991 ). Photorespiration is reduced substantially by elevating C0 2, even in warm 
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temperatures, and electron transport becomes the rate limiting factor in C0 2 fixation . The 

potential rate of electron transport continues to increase up to 30 to 35C (Farquar et al., 

1980), and as a consequence , crops photosynthetic rate can be much higher in elevated 

rather than in ambient C0 2• 

Radiation capture is also a critical component of productivity models . Leaf 

expansion rate is greatly influenced by temperature (Faust and Heins, 1994; Clifton

Brown and Jones , 1997) and along with leaf emergence rate , provide a plant the means to 

effectively capture light as it develops from seedlings . The temperature optimum for leaf 

expansion differs for different crops . Cotton , a warm season crop, has a temperature 

optimum for leaf expansion of about 31C (Reddy et al., 1993), while broccoli has a 

optimum of only 21 C (Olesen and Grevsen , 1997). While lettuce is considered to be a 

cool-season crop, it is not known what its temperature optimum is for leaf expansion and 

radiation capture . 

Carbon use efficiency (CUE) is a measure of how well a plant incorporates newly 

fixed carbon into new biomass. It is a ratio of weight gain to fixed carbon, or gross 

photosynthesis (P gross). Because it integrates both respiration and photosynthetic rates, 

CUE may be sensitive to light, temperature , and C0 2 concentrations. Little information 

exists for lettuce CUE in different environments. 

Lettuce is typically grown in cool temperatures ( day-time temperatures between 20 

to 25C) and in low light (often the maximum is 400 µmol m-2 s-1
) (Hammer et al., 1978, 

Swiader et al., 1992; Koontz and Prince, 1986; Jie and Kong, 1997). While adequate 

yields can be obtained in this environment , the main reason for these growth conditions is 
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to improve quality (Saure, 1998). Exceptional dry weight gain through optimization of 

environmental parameters means little if the crop is unpalatable. In the case oflettuce, 

high growth rates are sacrificed in order to obtain superior quality. 

High growth rates of lettuce can result in a calcium deficiency disorder called 

tipbum. Calcium is not phloem mobile, so most calcium is supplied through the xylem 

(Marchner, 1995). Rapidly growing meristems have poorly developed xylem to supply 

calcium. Furthem1ore, lettuce meristems can be located in the interior of older, more 

developed leaves thereby reducing transpiration and calcium supply (Barta and Tibbitts, 

1986; Barta and Tibbitts, 1991; Barta and Tibbitts, 2000). The faster the growth rate, the 

more calcium is needed and the rate and extent of tipbum development increases. This 

same deficiency is analogous to tipbum in strawberry, sugar beets, and cabbage, and 

blossom end rot in tomatoes (Mostafa and Ulrich, 1976; Bradfield and Guttridge, 1984; 

Ho et al., 1993; Cubeta et al., 2000; Morard et al., 2000). 

Controlled environments offer a way to optimize the environment to achieve the full 

genetic yield potential. Paradoxically, an optimized environment results in higher growth 

rates, and as a result, lettuce production in controlled environments is particularly 

sensitive to tip burn. Because of these issues, the limits of lettuce productivity have not 

been explored. Genetic selection for lettuce cultivars that are less susceptible to tipbum 

has resulted in tipbum resistance in the field (Welsh et al., 1983; Ryder and Waycott, 

1998), but they have not been tested in controlled environment production. Management 

to deal with tipbum in controlled environments includes low light, low temperatures, and 

harvesting before the first sign of tipbum. These all make it impossible to know what the 
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limits of lettuce productivity are. 

In this study, we optimize the environment for lettuce in controlled environments. 

We manipulate temperature and light to maximize lettuce quantity and quality without 

sacrificing growth rates. Three of the determinants of yield (radiation capture , quantum 

yield, and carbon use efficiency) are described to provide insight into what is most 

sensitive to altered temperatures. In doing so, insight can be gained as to the most limiting 

factors in lettuce production. This provides goals for breeders and managers to obtain 

maximum productivity from more typical lettuce growing conditions. 

Materials and Methods 

A total of three experiments were performed to explore the high light and 

temperature responses of lettuce. For convenience, a table is provided that summarizes 

the growth conditions of each trial (Table A-1 ). 

Studies with Temperature 

Lettuce (Latuca sativa L. cv. Grand Rapids) was germinated and transplanted after 

four days into small chambers at a density of 106 plants m-2• Temperature treatments 

were arranged as randomized complete block design, and analyzed using linear 

regression. Treatments were initiated upon transplanting at were 23/ 18, 26/21, 29/24, 

32/27, 35/30 C day/night. 

A 10-chamber open gas-exchange system was used as described previously (van 

Iersal and Bugbee, 2000). Each chamber is 0.5 x 0.4 x 0.9 m (L x W x H) and fully 

enclosed a hydroponic tub . Chamber temperature was controlled to within ±0.2C of set 
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point, and C0 2 controlled to within ±2% of set point of 1200 µmol mo1-1
• C0 2 was 

elevated to ensure that photosynthesis would be light- rather than C0 2 limited, to 

optimize growth, and to eliminate photorespiration (Long, 1991; Bugbee et al., 1994). 

Root-zone temperature was maintained by activating flexible heat-stripping wrapped 

around the outside of the hydroponic tubs when the temperature fell below the average 

daily temperature set point. Hydroponic solution was bubbled with the same C0 2-

enriched air as that used in the canopy. C0 2-gas-exchange of each of ten different whole 

canopies was monitored once every 10 minutes. C0 2 measurements were made using 

two infrared gas analyzers (LI-COR model 6251 ), one in absolute mode and one in 

differential mode. A delta C0 2 was calculated using pre-C0 2 minus post-C0 2 

concentrations, and photosynthetic and respiration rates were calculated by multiplying 

the delta C0 2 by the flow rate (Mitchell, 1992; Bugbee, 1992). 

The pH of the hydroponic solution was maintained between 4 and 5 in order to 

eliminate C0 2 dissolved in solution (Monje and Bugbee, 1998). Relative humidity was 

maintained between 60 and 85%. PPF was provided by water-filtered HPS lamps that 

provided 600 µmol m-2 s-1 ± 30 µmol m-2 s-1 using a 16-h photoperiod to provide 35.6 mol 

photons per m2 per day. Side lighting was reduced by wrapping each chamber in a 

reflective Mylar curtain and adjusted so that the top of the curtain was level with the top 

of the canopy . 

Ground cover was measured every other day using a digital camera positioned 

directly above the canopies, and the images were processed for the ratio of leaf cover to 

total area. Absorbed PPF was also measured with a line quantum sensor with 52 sensors 
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along a 43-cm length by measuring PPF incident, reflected, and transmitted through the 

canopy (Klassen et al., 2000) . Because of biases between the two methods of estimating 

radiation capture, early digital images were used early to estimate radiation capture and 

the line quantum sensor method was used when ground cover reached about 80%. We 

could therefore accurately estimate the amount of light that was absorbed each day. 

Canopy quantum yield (CQY) was then calculated by the following equation: 

CQY = P 6.,.oss I light absorbed = mo! C fixed I mol photon absorbed 

P gross for the day period (mol C m·2 ct·1
) was divided by total photons absorbed (mo! 

photons m·2 ct·1
) to give CQY (mo! C fixed per mo! photons absorbed). Gross 

photosynthesis (P gross) is a calculated term that incorporates both the net C fixed (P neJ and 

the C that is simultaneously being respired. P gross can be calculated as: 

p gross = p net + Rd. 

Net photosynthesis (P0eJ and night-time respiration(~) were measured directly. 

Since day-time respiration (RJ can not be measured directly , P gross is calculated as the 

sum of Pn et and some percentage of night-time respiration rate. Different studies have 

indicated that Rd can remain high during the day due to higher carbohydrate content 

during the day (Azc6n-Bieto and Osmond, 1983), or can be lower due to some type of 

light-inhibition ofrespiration (Atkin et al., 2000; Sharp et al., 1984). We have taken the 

common approach to assume that Rd is occurring at the same rate as ~ . Rd would then be 

defined as 

~*(time in light)/(time in darkness) 

so for a 16-h photoperiod, Rd= ~ * 2. In these equations, respiration assumes a positive 
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value (i.e. mass respired). 

A combination of these parameters can be used to determine CUE in the following 

manner : 

CUE = p gross I DCG 

where DCG is daily carbon gain and is determined by subtracting R,, from Pnet: 

DCG = p net - R,,. 

Studies with Light 

Both light studies were performed with lettuce seedlings sown directly into 12.7 x 

12.7 x 12.7 cm pots. Pots were filled with 1: l peat perlite mixture irrigated twice daily 

with nutrient solution. Soluble fertilizer (Peter's 5-11-26) was combined with reagent 

grade CaN0 3 and Fe-EDDHA to give the following concentrations : 7.2 mM N, 0.75 mM 

P, 2.7 mM K, and 20 µM Fe . Only 25% of the N was supplied with the mixed fertilizer 

and of that , 1 % was in the NH 4 + form. This is important because NH 4 + strongly inhibits 

the uptake of calcium . 

Seedlings in both studies were thinned two days after emergence to one plant per 

pot. Four pots were grouped together to form a lettuce canopy. Side lighting was 

controlled with a reflective Mylar barrier that was raised daily to match canopy height. 

Light was from HPS lamps in a 16-h photoperiod . Four 10-cm fans were positioned in 

each comer to increase the wind speed to an average of 0.68 m s-1 ± 0.18 m s-1 across the 

chamber. Air temperatures were maintained at 30/25 C beginning at seeding based on the 

results of our temperature study. Temperatures were measured with one shielded, 

aspirated, type-E thermocouple per chamber. Leaf temperature was measured with an 
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precision infrared thermocouple that corrected for sensor body temperature (model IRT-P, 

Apogee Instruments Inc., Logan, UT). The sensor was positioned 8 to 10 cm from target 

leaf at a 60 angle to minimize self shading. Relative humidity was controlled at 75% 

during the day and night (model SOY, Vaisala, Inc., Woburn, MA). C0 2 was elevated to 

1200 µmol mo1-1• 

In the initial light study, a single chamber was maintained at PPF of 500 µmol m-
2 

s-

1 ± 25 µmol m-2 s-1 and another at 1000 µmol m-2 s-1 ± 50 µmol m-2 s-1
• PPF was measured 

with a line quantum sensor with 32 quantum sensors along a 27-cm length (model LQSV

ELEC, Apogee Instruments, Logan, UT) and adjusted once a week by adding neutral

density shade cloth or reflectors to the sides of the chamber. Two canopies each of four 

cultivars, 'Tiber', 'Waldmann's Green', 'Grand Rapids' and 'Buttercrunch' were used in 

both chambers. One canopy of each cultivar in both chambers had -25% relative 

humidity air blown directly on the meristem at a rate of 1 L min-1 as was done in Goto 

and Takakura (1992a). Qualitative observations were made for each cultivar. Yield data 

was pooled across cultivars and analyzed with ANOV A and regression (SigrnaStat, SPSS 

Science, Chicago, IL). 

In the second light study, two canopies each of 'Waldmann's Green' and 

'Buttercrunch' were grown in each chamber maintained at 1000 µmol m-2 s-
1 
± 50 µmol 

m-2 s-1 of PPF at canopy height. Two canopies of each cultivar in both chambers had dry 

air blown directly on the meristem at a rate of 1 L min-1
• One chamber was harvested on 

day 19 (after imbibition) and the second chamber was harvested on day 28. This allowed 

us to see changes in final mass over the last few days of growth when the effects of 
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tipbum would be greatest. Data were kept separate between cultivars and analyzed with 

ANOV A and regression. Ground cover was measured using a digital camera every other 

day beginning at day seven until canopy closure. 

Tipburn Index 

Lettuce was scored after 28 days for severity of tipbum using a tipbum index that 

took into account both severity of tip burn and number of affected plants. Many other 

tipbum indices only take into account either tip burn severity or number of affected plants 

(Misaghi et al., 1981a; Nagata and Stratton, 1994). As a result, a high score in those 

indices do not discriminate between all plants having only minor tipbum or few plants 

having major tipbum . In this index, the following equation was used: 

{[(S*5) + (M*3) + (L)] *100} I P* 5 

where S is the number of plants with severe tip bum, M is the number of plants with 

medium tipbum, L is the number of plants with light tip burn , and P is the total number of 

plants. Severe tipbum is when most of the leaves have developed tipbum symptoms, 

promoting plant core death, reduced growth, and would definitely be rejected 

commercially. Medium tipbum symptoms exist when a few older leaves and the 

meristem have symptoms. Light tipbum symptoms are when only the central leaflets 

show any symptom oftipbum. In this index, there is more emphasis placed on severely 

affected plants, and less emphasis on the plants with only minor tipbum symptoms. A 

score of 100 would indicate that all plants have severe tip burn while a score of 20 may 

indicate all plants have only minor symptoms . 
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Results and Discussion 

Studies with Temperature 

Lettuce growth rates differed substantially in the different temperatures (Figure A

l). The coolest and warmest average daily temperatures (20 and 33C, respectively) had 

the lowest final photosynthetic and respiration rates per unit ground area. The highest gas 

exchange rates were obtained in the treatments with average daily temperatures of 27 or 

30C. The temperature at which lettuce is typically grown had intermediate 

photosynthesis and gas exchange rates. Tipburn was observed in all temperature 

treatments, but was not quantified for severity in this study. 

Three of the determinants of yield are summarized in Figure 2. There was a strong 

influence of temperature on leaf expansion (Figure A-2A). The 27 and 30C treatments 

both reached near maximum PPF absorption by day 16. Conversely, the 33C treatment 

never reached that amount of PPF absorbed. Since radiation capture is a determinate of 

growth, the different magnitude of ground cover contributed to the different growth rates. 

Averaged over the 24 days after transplanting, the 27 and 30C treatments had the highest 

daily PPF absorbed (Figure A-2B). Total PPF absorbed is linearly related to the final dry 

mass (Figure A-3). The extrapolated line intercepting the x-axis should be an indication 

of the light compensation point for lettuce canopies. Assuming the 16-h photoperiod 

used in this study, the line suggests a light compensation point of 40 µmol m-2 s-1, a value 

that is slightly higher than the 20 µmol m-2 s-1 estimated for "sun-plants"for C3 species 

(Taiz and Zeiger, 2002), but remarkably close considering the number was derived for an 

integrated calculation of total PPF absorbed. 
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The coolest and warmest temperature treatments had similar photosynthetic rates 

per unit ground area (Figure A-1 ), but had different rates of canopy closure with the 20C 

treatment reaching maximum absorption after 22 days and the 33C treatment expected to 

reach that level about 4 to 5 days later ( extrapolating the line from Figure A-2A) . This 

indicates that these two treatments differed in their photosynthetic capacity or 

photosynthesis per unit leaf area. Canopy quantum yield was lower for the coolest 

treatment and highest for the warmest treatment, but did not change significantly over 

time (Figure A-2C and A-2D) . This pattern would not be expected in ambient C0 2 

concentrations . This study was performed at elevated C0 2 (1200 µmol mo1·1) , which 

effectively eliminated photorespiration. 

Carbon use efficiency was stable after day nine and all temperature treatments had 

similar CUE of 0.6 after that point (Figure A-2E) . There was no effect of temperature on 

CUE (Figure A-2F , slope = 0.0001). This finding is surprising given the widely accepted 

view that respiration rates increase exponentially in warmer temperatures. Similar CUE 

across temperatures indicates that respiration and photosynthesis increase in exact 

proportion to each other in elevated temperatures in a high C0 2 environment. Gifford 

(1995) also reported similar CUE in a wide range of species and growth conditions in 

ambient C0 2• Lettuce plants grown in elevated temperatures are equally efficient as 

lettuce grown in cool temperatures at conserving the carbon fixed during the day. 

Chlorophyll content increased significantly with warmer temperatures (Figure A-4). 

The warmest treatment had about 10-fold higher chlorophyll content than the coolest 

treatment. This effect is especially interesting considering the relatively high light in this 



study (600 µmol m-2 s-1
) and the belief that high light in lettuce will result in 

photobleaching. Our results indicate a strong effect of temperature in determining 

chlorophyll content rather than high light, per se. 

Studies with Light 
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A slight flattening of the light response curve beyond 500 µmol m-2 s-1 was observed 

in the initial PPP response study (Figure A-5). Yield nevertheless increased beyond 500 

µmol m-2 s-1
• Surprisingly , the literature on lettuce response to high PPF is not clear. 

There are some reports of lettuce shoot dry weight decreasing under high PPF (Tibbitts et 

al., 1983; Mitchell et al., 1991), while others report an increase with elevated PPF 

(Mitchell et al., 1997; Knight and Mitchell , 1983; Knight and Mitchell, 1988; Guadreau 

et al., 1994). Tipbum in our high-PPP canopies was more severe than in lower light, 

however , so edible yield likely was not increased with additional light. 

There was a linear yield response to increased PPF in the canopies receiving air on 

the meristem during growth (Figure A-5). Tipbum was not observed in these canopies as 

well , suggesting that the flattening of yield in response to PPP is due to tipbum and a lack 

of continued leaf expansion in the latter stages of growth (after canopy closure) when 

growth rate is maximal. The differences between the aerated and unaerated was not 

significant, however (P = 0.084) . There was more variation in the aerated treatment that 

we believe was independent of the treatment effect (e.g. side lighting), and some due to 

different cultivars not responding similarly to the aeration and PPF treatments, so in 

further studies, these issues were addressed by reducing the discrepancies in side lighting 

and reducing the number of cultivars tested to two from four. We also tested the 
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hypothesis that the differences in aerated versus unaerated canopies would manifest 

themselves late in canopy growth by harvested canopies both early (19 days) and later (28 

days). 

In the second PPF study, we observed no tipbum in the 'Waldmann's Green' and 

very little tipbum in the 'Buttercrunch' aerated canopies (Table A-1) . This finding 

confirms earlier work that proved the concept of aerating meristems to reduce tipbum 

(Goto and Takakura, l 992a; Goto and Takakura, i 992b ). However, this study differs 

from previous work in that we eliminated tipbum at extremely high PPF (1000 µmol m-2 

s-1
) compared to the original studies that used 180 µmol m-2 s-1 and 230 µmol m-2 s-1• 

Symptoms of tip bum initially appeared for the unaerated treatments on about day 14 for 

'Buttercrunch' and about day 16 for 'Waldmann's Green'. This is consistent with 

previous results and suggests that 'Waldmann's Green' is somewhat resistant to tipbum 

(Bres and Weston, 1992). 



Table A-1. Extent oftipbum on 'Buttercrunch' and 'Waldmann's Green' lettuce 

cultivars with and without air blown on the meristems. 

Cultivar 

Buttercrunch 

Waldmann' s Green 

Treatment 

Air on meristem 

Control 

Air on meristem 

Control 

Tipbum Index(%) 

5 

95 

0 

60 
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There was no difference in the fresh mass between the aerated and unaerated 

treatments of either cultivar at the first harvest (Figure A-6A). Over the next nine days, 

however , both the treatments increased their mass significantly with a larger increase in 

the aerated treatments. All aerated treatments had significantly higher fresh mass than the 

unaerated canopies. There were no differences between cultivars . 

There also were no differences in percent dry matter at the first harvest (Figure A-

6B) . At the second harvest , however, all un-aerated canopies had significantly higher 

percent dry matter. This finding confirmed our observations during harvest that the 

aerated canopies were more succulent and fragile . As a result of differences in percent 

dry matter, the final dry mass for both cultivars in each treatment were similar (Figure A-

6C) . This was surprising to us for the following reasons: We believed that lack oftipbum 

would result in greater leaf expansion for late-forming leaves and would therefore result 

in higher yield (dry mass). We also believed that once tipbum began in the unaerated 

controls, the canopies would not continue to grow at the same rate. Furthermore, we 

assumed the differences in percent dry matter would be insignificant between the 

treatments. 
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Canopy closure occurred on day 16 for both 'Buttercrunch' and 'Waldmann's 

Green' in both aerated and unaerated canopies. When canopy closure occurs in lettuce, 

approximately 80% of PPF is absorbed (Ritchie et al., unpublished data). In the 

following two to three days, light absorption is maximized at between 90 to 95%. Our 

assumption of greater leaf expansion of aerated canopies may have been true, but the 

amount of light absorbed for both treatments was already at or close to the maximum 

possible when tipburn began. Therefore, any potential differences in duration of leaf 

expansion would not necessarily result in differences in light capture. 

Mature leaves in unaerated treatments were still green and presumed functional at 

the end of the study. Therefore, they were still able to accumulate mass regardless of 

young, tipburn affected leaves late in growth. The carbon fixed late in growth was 

partitioned differently in the two treatments (Figure A-7 A) . The aerated canopies had 

higher specific leaf area (SLA) than unaerated canopies so aeration maintained their 

ability to make thinner leaves for more efficient light capture . The shoot harvest index 

decreased from the initial harvest to the final harvest in both treatments, but decreased 

more in the unaerated controls (Figure A-7B). Since all leaf mass was counted as edible , 

the differences in SHI was a result of greater stem mass in unaerated controls. 

While all leaf mass was counted as edible, the treatments differed greatly in quality 

of lettuce . No tip burn was observed in any of the 'Waldmann's Green' aerated canopies 

and only slight tipburn was observed in the aerated 'Buttercrunch' canopies. All 

unaerated 'Buttercrunch' canopies had severe tipburn with both interior and exterior 

malformed leaves, blackened meristem , and overall shorter, misshapen heads. Unaerated 
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'Waldmann's Green' also had tipburn in all unaerated canopies, but the severity was less 

than that of unaerated 'Buttercrunch'. Only the inner-most leaves were blackened and no 

outer leaves showed symptoms of tip bum. Because of the extent of tip bum, none of the 

harvested leaves for 'Buttercrunch' and only about 2/3 for 'Waldrnann's Green' would be 

considered 'edible'. In this sense, aeration of the meristem can greatly increase yield of 

lettuce by eliminating tipbum. 

Lettuce productivity was increased greatly with higher light and temperatures than 

typically used. High lettuce quality can be maintained if tip bum is eliminated . Aerating 

the meristem is not a practical solution for most situations . Shibata et al. (1995) reported 

a 30% increase in yield in a lettuce production facility when air was blown down 

vertically onto plants , but they did not report the amount of light used in the study. 

Eliminating tipbum in the present studies was done to test whether yield was light 

saturated or if other , indirect factors caused the yield saturation in light response curves. 

Since this evidence indicates yield can be increased with much higher light than 

previously though possible for lettuce, the importance of eliminating tipbum to obtain 

maximum yields either by environmental management or breeding is emphasized . 

Some progress has been made in both of these areas. Several tipbum resistant 

cultivars have been developed for the field, but what works for the field does not 

necessarily work in controlled environments. Our present lack of understanding of the 

fundamental differences between field and controlled environments also makes it difficult 

to extrapolate from the field to the chamber and vice versa. 

High light can increase tipburn by increasing transpiration from exposed leaves 



151 

more than increasing transpiration from meristem tissue (Saure, 1998). Furthermore, 

high light increases growth rates, which results in more need for Ca in the meristem. 

Humidity can also influence tipbum incidence through its effect on transpiration rates 

(Collier and Wurr, 1981; Collier and Tibbitts, 1984). Furthermore, low humidity at night 

may reduce full rehydration and turgor, and result in less Ca being forced to leaf tips and 

meristems (guttation). Salinity (or solution electrical conductivity) can also reduce night

time re-hydration and guttation (Feigin et al., 1991). Too much salt can lower soils 

osmotic potential and prevent adequate water uptake. Good nutrition is also important in 

tipbum prevention (Misaghi et al., 1981 b; Rosen, 1990). Ca uptake is prevented by other 

cations , so fertilization with NH4 + can reduce Ca uptake. Wind also can reduce tip burn 

by reducing the vapor pressure deficit around a meristem thereby increasing transpiration 

potential (Shibata et al., 1995). Finally , temperature can also influence tipbum incidence 

both through its effect on vapor pressure deficits around the plants and influencing 

growth rates (Yanagi et al., 1983; Misaghi and Grogan , 1978). All of these 

environmental factors can be controlled within chambers . However optimizing all of 

these parameters still does not eliminate tipbum. Slowing down growth rates does reduce 

tipbum, but when the goals are fast, optimized production, this management scenario will 

not work. Fortunately, in these situations (as in Advanced Life Support Systems for 

NASA or in so called lettuce factories), it may be practical to use hoses blowing air 

directly on the meristem in high light to maximize yields. 
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Figure A-1. Photosynthesis and respiration rates for lettuce canopies grown in 1200 µmo! 

moJ-1 C0 2 with constant day/night temperatures. 
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relationship is linear, and if the regression line is extrapolated, an estimate for the canopy 

compensation point is obtained of about 60 mol m-2• 
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Figure A-6. Fresh mass , fraction of dry matter , and dry mass in 'Buttercrunch ' (BC) and 

'Waldmann's Green ' (WG) with and without aeration during the final 8 days of growth. 

Most of the aeration effect occurred during the final week of growth . 
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Figure A-7 . Specific leaf area and shoot harvest index for both treatments and cultivars . 

All leaves , regardless of their tipburn index were counted as edible for this analysis. 
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