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ABSTRACT 

Comparison of Water Dynamics 

in Aspen and Conifer: 

Implications for Ecology Water Yield Augmentation 

by 

Eric Martin LaMalfa, Master of Science 

Utah State University, 2007 

Major Professor: Dr. Ronald Ryel 
Department Program: Wildland Resources 

Differences in water dynamics between deciduous aspen (Populus tremuloides) 

Ill 

and co-occurring evergreen conifer species in the Northern Rocky Mountains result from 

complex physical and biological interactions. A comprehensive evaluation of individual 

water transfer mechanisms was used to elucidate the relative importance of several 

components of the hydro logic cycles of aspen and conifer, and determine which water 

transfer mechanisms have potential to cause differences in net water yield. 

Adjacent aspen and conifer stands were monitored to determine snow 

accumulation and ablation (snow survey), soil moisture recharge (capacitance probes), 

snowpack sublimation (sublimation pan), transpiration period (thermal dissipation 

probes), and evapotranspiration (soil water content). Snow accumulation was 34 and 44% 

higher in aspen during springs of 2005 and 2006, respectively. Ablation rates in aspen 

(9.58 mm daf 1) were nearly double that of conifer (4.9 mm daf 1). When changes in soil 
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moisture (due to over winter snowmelt) were combined with snow accumulation in 

2006, aspen had greater potential (42-83%) for runoff and groundwater recharge. 

Snowpack sublimation during the ablation period was not different between open, aspen, 

and conifer sites and comprised <5% of snowpack losses. Extended conifer transpiration 

in spring did not contribute to large differences in snowmelt water yield ( <2.8 mm yr- 1). 

Summertime ET rate was higher in an aspen stand (3.6 mm dai 1
) than in an adjacent 

conifer stand (2.7mm dai 1
) amounting to -126 mm more water lost over the growing 

season, but largely reflected post-ablation differences in stored soil water. 

The net effects of these water transfer processes could result in more watershed 

water yield from aspen than conifer forests. However, the difference in water yield 

between these two forests will largely depend on the fate of snow lost from the conifer 

canopy. Snow intercepted by conifer branches can be removed by the processes of 

sublimation (reduces water yield) and redistribution (does not affect water yield). Future 

studies should focus on partitioning the ratio of sublimation to redistribution to predict 

hydro logic response of vegetation conversions for water yield augmentation in snow­

dominated watersheds. 

(156 pages) 
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CHAPTER 1 

INTRODUCTION 

Overview 

Quaking aspen and various conifer tree species occur in mixed and adjacent 

communities throughout the lntermountain West. The absence of fire in these landscapes, 

coupled with excessive browsing of young aspen ramets (trees) by livestock and wildlife, 

has contributed to the displacement of aspen communities by conifer forests throughout 

the west (Kay, 1997; Bartos and Campbell, 1998; White et al., 1998; Brown et al., 2006). 

It has been hypothesized that the increase in conifer dominated lands has led to a 

significant decrease in net watershed water yield throughout the Intermountain West and 

the Colorado River Basin (Hibbert, 1979). Anecdotal accounts of springs drying up as 

conifers succeed aspen dominated watersheds are common amongst livestock operators 

and other land managers in Utah. 

In Eastern forests there are indications that conifer forests do not yield as much 

stream runoff as deciduous systems given the same set of climatic and physical 

hydrologic variables. In the southern Appalachians, reductions in stream flow after 

conversion from deciduous to coniferous forest primarily occurred during the dormant 

and early growing season (Swank and Douglass, 1974). In a meta-analysis of water 

augmentation experiments throughout the world, Bosch and Hewlett (1982), inferred 

there would be greater water yield responses from removal of coniferous (- 40 mm 

increase per 10% decrease in cover) compared to removal of deciduous hardwood 
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communities (- 25 mm increase per10% decrease in cover). However, to make accurate 

quantitative generalizations about the impacts of vegetation change between evergreen 

and deciduous forests, consistent methods and analyses need to be established and 

applied to a large number of catchments (Brown et al., 2005). Watershed studies in the 

western snow-dominated systems are limited. Variables which will most accurately 

predict hydrologic response to vegetation conversions in the west have not been defined. 

Researchers in the west have speculated that water yield is higher in aspen 

relative to conifer. Several authors have suggested water yield augmentation could be 

achieved by converting conifer stands to aspen in snow-dominated western watersheds 

(Dunford and Niederhof, 1944; Jaynes, 1978; Gifford et al., 1984). However, because 

forest cover type conversion from conifer to aspen has not been adequately tested, and 

the physiographic constraints affecting the magnitude of water yield augmentation are ill 

defined, this type of vegetation treatment has not become an accepted practice (DeByle 

and Winokur, 1985). The hypothesized water yield losses resulting from aspen to conifer 

succession have not yet been tested with direct experimentation. 

Watersheds in Utah and throughout the west experience high variation in annual 

climate regimes, however, they are typically marked by cold wet winters and hot dry 

summers. The majority of precipitation in the Northern Rocky Mountains of Utah comes 

in the form of snow, with 69% occurring during the period from October to April 

(Richardson et al., 1989). The water harvested from snow is delivered primarily during 

the spring melt period when vegetation is simultaneously becoming active. To 

understand differences in water dynamics that could lead to differences in water yield 

between aspen and conifer, we investigated physical and biological processes that occur 



during the annual hydrologic cycle focusing on the spring snow melt period. 

We investigated differences in water dynamics on north facing slopes where 

aspen and conifer occur in a mosaic of mixed and pure stands. Insolation (incoming solar 

radiation) is higher on south facing slopes relative to north facing slopes during the 

dormant season. In eastern forest clear cuts, slopes with low insolation (north facing) 

yielded more water than slopes with high insolation (Swank et al.; 1987). North facing 

slopes are expected to have the greatest potential for increasing water yield by conversion 

from aspen to conifer forest in snow-dominated western watersheds. 

The monitoring of dominant water pools and water fluxes was used to evaluate 

the maximum expected differences in hydrology between an evergreen and a deciduous 

forest. Simultaneous measurements of physical and biological water transfer 

mechanisms in aspen and conifer were used to determine differences in water yield at the 

stand level. 

Goals and Objectives 

The primary goal of this study was to determine the extent to which physical and 

biological variables affecting water yield differ in adjacent aspen and conifer stands. To 

achieve this goal, our objectives were to quantify the primary hydrologic mechanisms 

which result in water yield differences at the stand level. With a better understanding of 

these differences in water dynamics, we explore the ecological implications associated 

with the management of aspen vs. conifer forests. This includes a discussion of how 

water dynamics in aspen and conifer forest may affect biogeochemical processes, 



wildlife, soil genesis, susceptibility to disturbance, and potential differences in water 

yield that could arise under projected climate change scenarios in the West. 

Hypotheses 

Seven hypotheses were tested to determine how hydrologic mechanisms differ 

between aspen and conifer stands. Research was focused on those mechanisms expected 

to significantly affect differences in net annual water yield. 

• HI: Aspen and conifer communities will have accumulated different amounts of

snow at the time of peak snow accumulation ( approx. April I 51
). 

• H2: Net sublimation losses from the surface snowpack in open, aspen, and conifer

stands are significantly different.

• H3: The ablation period is extended in conifers leading to increased sublimation

loss of the snowpack and decreased soil moisture recharge.

• H4: Aspen stands have greater evapotranspiration rates during the growth period

resulting in higher net summer water loss.

• HS: Conifer stands have a longer annual transpiration activity period in fall and

spring relative to aspen leading to increased net annual water loss.

• H6: Spring soil moisture recharge is different between aspen and conifer stands.

• H7: Conifer transpiration activity in spring is facilitated by accelerated snow melt

within conifer tree wells, evidenced by lower shallow soil moisture content within

tree wells compared to forest interspaces between trees.

The net effects of these differences (HI - H7) are expected to result in higher net

water yield to groundwater and runoff in aspen stands. By examining these hypotheses 



simultaneously, we were able to identify which water loss mechanisms could have 

caused large differences in aspen and conifer water yield. With an understanding of the 

relative importance of each mechanism, we discuss landscape variables that may affect 

changes in water yield when conifer stands are converted to aspen stands. 



CHAPTER2 

LITERATURE REVIEW 

The challenge in understanding differences in water yield between aspen and 

conifer stands is accounting for all the temporal and spatial interactions of various water 

pools and fluxes. A literature review across disciplines is used to highlight important 

variables affecting the measurement of winter, spring, and summer water transfer 

processes. Considering an annual hydrologic cycle, snow hydrology and plant physiology 

research is temporally disjunct; traditionally these disciplines focus research during 

winter and summer, respectively. It is particularity important to consider the extent to 

which both physical and biological water transfer processes simultaneously occur during 

the transitional snow melt period. 

Tree Canopy Effects on Snow Hydrology 

Contrasting observations have been made when comparing snow accumulation 

and melt patterns beneath aspen (P. tremuloides) and conifer stands such as white fir 

(Abies concolor), subalpine fir (Abies lasiocarpa), Engelman spruce (Picea 

Engelmannii), lodgepole pine (Pinus contorta) and Douglas-fir (Pseudotsuga menziesii), 

possibly due to variability in topographic position, aspect, fetch (topographically induced 

snow capture), and climate. Winter snow water equivalent (SWE) beneath lodgepole pine 

was 75% of that below aspen stands in Colorado (Dunford and Niederhof, 1944). 

Hardwood stands in Minnesota have been estimated to yield 140 mm more water than 

conifers. The differences in water yield were attributed to greater snow accumulation in 

hardwoods and a longer transpiration season in conifers (Urie, 1967). Areas with tree 



cover (leafless or not) were more effective at trapping snow than open areas in 

windswept Southern Alberta (Swanson and Stevenson, 1971 ). 

Snow accumulation and melt has been observed to differ by aspect. Southerly 

exposures tend to accumulate less snow relative to the adjacent northern aspects, thus, the 

hydrologic response of vegetation change is also highly dependent upon aspect (Troendle 

et al., 1993). Snow water equivalent under Douglas-fir and aspen stands was similar on 

south facing slopes in New Mexico, however, on north facing slopes Douglas-fir had 

72% of the SWE found in aspen (Gary and Coltharp, 1967). 

Differences in peak snow accumulation have been attributed to high canopy 

interception by conifers, which can increase susceptibility to sublimation and 

redistribution (Miller, 1962; Troendle et al., 1993). In aspen stands there is low 

interception by the leafless canopy during winter precipitation events. Once intercepted 

by the canopy, snow can take several mass transport pathways including mechanical 

transport (wind and gravity), melt (drip), and sublimation (evaporation). The intercepted 

water will ultimately be lost to the atmosphere via sublimation or retained in the 

watershed by melting and mechanical transport processes. 

Sublimation of snow from ice to water vapor occurs when there is a vapor 

pressure gradient between the snow and atmosphere. As with transpiration, the vapor 

pressure at the boundary layer between the snow surface and atmosphere is quickly 

saturated in the absence of air movement. Conversely, sublimation increases with 

increasing wind as fresh dry air replaces saturated air maintaining the vapor pressure 

gradient (Miller, 1962). 



The atmospheric conditions of temperature, insolation, relative humidity, and 

wind, as well as snow energy content are driving variables for sublimation process. 

Snow that is sublimated from the canopy inhibits the sublimation of the surface 

snowpack by raising the surface boundary layer vapor pressure (Lundberg and Halldin, 

1994). Leonard and Eschner (1968) found that albedo (shortwave reflectance by land 

surfaces) for intercepted snow on a conifer canopy was considerably lower (-0.2) than 

for the surface snowpack, resulting in more rapid melting and greater sublimation rates of 

intercepted snow. Dry air (such as that found in Utah) facilitates sublimation processes 

(Miller, 1962). While general estimates of the relative rate of canopy-sublimation 

processes are attainable via indirect measurements, it is not possible to predict how 

intercepted snow after a given snow event will be divided between atmospheric losses 

and watershed gains. 

Several authors have found an inverse relationship between coniferous stand 

structure and maximum snow accumulation, presumably caused by canopy-sublimation 

of intercepted snow (Gary and Troendle, 1982; Skidmore et al., 1994; Moore and 

McCaughey, 1997). Half of the variation in SWE in the coniferous communities of the 

Tenderfoot Creek Experimental Forest was attributed to canopy cover and density 

(Moore and Mccaughey, 1997). There is an assumption that over the course of a water 

year, canopy-sublimation losses in conifer are greater than the losses associated with both 

surface-sublimation and total site transpiration (Dunford and Niederhof, 1944). 

Alternatively, reductions in SWE with increasing canopy have also been attributed to the 

redistribution of intercepted canopy snow into openings via wind effects (Chang, 2003 ). 



Sublimation of intercepted canopy snow has been estimated and modeled using a 

variety of methods. The hanging tree method uses automated measurements of weight 

lost from a suspended tree in the forest assuming that reductions in mass are equal to 

sublimation rate. Using a suspended tree method, without corrections for mass transfer to 

the surface, Lundberg et al. ( 1997) estimated that canopy-sublimation occurred at 

maximum rates of 3.3 mm da/ amounting to a total of 200 mm yr- 1
• Pomeroy et al. 

(1998) built a physically based sublimation model using hanging tree measurements for 

calibration and found that total canopy-sublimation was 29-39 mm yr- 1
. By adding 

lysimeters below the hanging tree, Stork and Lettenmaier (2002) accounted for mass 

transfer and drip below the tree and estimated that canopy-sublimation accounted for less 

than 1 mm day' 1 and approximately 100 mm yr- 1 in a maritime climate. The most recent 

use of the hanging tree method by Montesi et al. (2004) eliminated mass transfer errors 

by excluding 10 minute intervals that coincided with abnormal losses in mass caused by 

gravitational loss of large snow conglomerates from the tree canopy. In the Fraser 

Experimental Forest in southwestern Colorado, total canopy-sublimation varied between 

30 and 39 mm yr- 1 at a low (2700 m) and high (3900 m) elevation lodgepole pine sites, 

respectively (Montesi et al., 2004). 

Redistribution is the relocation of resting snow particles from one area to another 

independent of the precipitation event. Redistribution is driven by the wind, which re­

mobilizes (re-suspends) snow partials that have come to rest after or during a 

precipitation event. In upper tree-line and alpine landscapes, high wind speeds, 

topography, and vegetation interact with snow to produce snow deposition patterns. 

Ultimately, snow is eroded from exposed areas and deposited on the lee sides of hills, 
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trees, rocks, and other obstructions (Hiemstra et al., 2006). Unlike canopy-sublimation, 

redistributed snow is retained by the terrestrial system in an adjacent locality where 

partials come to rest. Redistribution was considered to be more important than canopy­

sublimation in causing differences in snow accumulation between lodgepole pine forests 

and clear cut openings on the Fraser Experimental Forest (Hoover and Leaf, 1967). Gary 

(1974) found that increases in SWE in clear cut patches of lodgepole pine forest were 

offset by decreases in SWE in the upwind forest. The clearing affected the distribution of 

snow but did not increase net SWE at the landscape level. Differences in SWE between 

forest cover types could also be a product of differential deposition caused by the surface 

structure and topography effects on wind currents and snow deposition patterns. 

Sublimation of the surface snowpack has been reported to occur at greater rates in 

subalpine environments than in subalpine forests. Hood et al. (1999) estimated surface­

sublimation using the aerodynamic profile method at Niwot Ridge in the Colorado Front 

Range. They found that total surface-sublimation for the snow season was 195 mm, or 

15% of peak SWE at the study site. The majority of this sublimation occurred during the 

snow accumulation season. The snowmelt season from May through mid-July showed net 

condensation to the snowpack ranging from 5 to 16 mm of water equivalent. Sublimation 

during the snowmelt was sometimes episodic in nature, but often showed a diurnal 

periodicity with higher rates of sublimation during the day. Surface-sublimation in the 

Northern Rocky Mountains has been found to be 20% higher in aspen than conifer. 

However, total annual losses by surface-sublimation accounted for less than 5% of the 

total snow pack (Doty and Johnston, 1969). 
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Snow ablation (melt rate) beneath aspen stands and in openings may be faster 

than in conifer stands. During high spring rains there was no difference in the timing of 

snow disappearance between thirty three year old aspen and lodgepole pine stands in 

Colorado. Melt in both aspen and conifer communities was accelerated by the latent heat 

input accompanied by 99 and 81 mm of rainfall, respectively (Dunford and Niederhof, 

1944). Forest snow packs beneath conifer are relatively shallow and melt slowly but 

ultimately disappear at the same time as open or aspen sites with deep, fast ablating 

snowpack (Gel fan et al., 2004). Snow is highly reflective of short-wave radiation and 

absorptive of long-wave radiation. The leafless aspen canopy provides some shelter from 

advective energy exchange (wind) but is a source for increased long-wave radiation 

(Swanson and Stevenson, 1971 ). The conifer tree canopy is thought to reduce radiation 

via shading, which decreases the rate and delays the timing of ablation (Hardy and 

Hansen-Bristow, 1990). 

Snowpack Energy Balance 

To understand how differences in aspen and conifer snow dynamics could lead to 

differences in water yield we must consider the effects of forest cover on physical snow 

properties. The period of snow melt begins when the net energy balance of the snowpack 

becomes more or less continually positive and can be described in three phases: warming, 

ripening, and output. The warming phase is the period when the average snowpack 

temperature increases until the snowpack becomes isothermal at O °C. Water begins to 

melt within the snowpack at the onset of the ripening phase. The output phase begins 

when the snowpack is saturated with liquid water and additional energy inputs produce 
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liquid water output to the snow/ soil interface. The snowpack may fluctuate between 

these phases due to seasonal and diurnal ambient temperature changes (Dingman, 2002). 

Snowmelt energy balapce is the net result of energy exchange with the soil and 

atmosphere and may be mediated by forest vegetation cover. Snowpack energy balance 

can be thought of as: 

S = K + L + H + LE + R + G - M 

where S is the energy content of the snow, K is net shortwave solar radiation input, Lis 

longwave radiation exchange, H is turbulent exchange of sensible heat, LE is the 

turbulent exchange of latent heat, R is latent heat inputs from rain, and G is conductive 

heat exchange of sensible heat with the ground. The energy used to melt the snow (M) is 

considered an energy sink because the resulting water leaves the system (Dingman, 

2002). Woo and Steer (1986) speculated that conductive exchange of sensible heat via the 

tree trunk and roots could aiso contribute to snowpack energy balance in coniferous 

forests. 

In a comparison of snowpack energy balance between aspen and conifer forest 

there will be differences in these individual energy fluxes. Assuming the stands are on 

similar aspect and latitude, net shortwave radiation (K) would be higher in the relatively 

open stand of leafless aspen. However, the surface-snowpack albedo would be expected 

to be lower in snow beneath conifer stands due to leaves and tree resins accumulating in 

the surface-snowpack beneath the trees. 
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Longwave radiation (L) reaching the surface snowpack would be expected to be 

higher in aspen. Although the tops of coniferous forests absorb much of the intercepted 

shortwave radiation and re-emit longwave radiation, this energy may not reach the 

snowpack surface because of the thick canopy. The leafless aspen structures are source 

for increased long-wave radiation that reaches the snowpack (Swanson and Stevenson, 

1971 ). Turbulent heat exchange of sensible heat (H) and latent heat (LE) may be reduced 

in conifer stands due to diminished wind speeds under the dense evergreen tree canopy. 

Surface-sublimation primarily occurs after snow intercepted by the canopy has 

disappeared by canopy-sublimation, melt water drip, or mass transfer (Lundberg and 

Hall din, 1994 ). The canopy-sublimation process consumes incoming radiation as latent 

heat, thus, the atmosphere interacting with the snowpack below the canopy stays cool and 

moist. If the snow pack is colder than the atmosphere, the air near the surface is cooled, 

becomes more dense, and resists being lifted away from the snowpack surface, and 

cannot be replaced by warmer or moister air (Dingman, 2002). 

Energy inputs by rain (R) will be reduced in conifer due to interception effects 

from the canopy unless precipitation events are long enough that the threshold of 

interception is passed. The parameter R is rarely a large contributor to the snowpack 

energy balance (Dingman, 2002). Another source of latent heat is condensation from the 

atmosphere. If water vapor from moist air condenses on a snowpack, 590 calories of heat 

are released by each gram of condensate. This is enough energy to melt 7.5g of ice 

(Dune and Leopold, 1978). 

Conductive heat exchange with the ground (G) is a constant input of energy to 

both aspen and conifer systems due to stored thermal and geothermal heat. The thermal 
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conductivity of the soil would be equal if the aspen and conifer soils have the same 

texture, density, and moisture content. Conifer stands may have lower G if late season 

transpiration diminishes soil water content and because of reduced net shortwave 

radiation reaching the soil prior to snow accumulation due to canopy shading. In contrast, 

aspen soils may have higher soil water content and greater net shortwave radiation after 

the trees undergo senescence. Conduction of heat from the ground into the snowpack can 

contribute as much as 20 mm mo- 1 of base flow runoff in middle latitudes (Dunne and 

Leopold, 1978). Any difference in G might be negligible because it is usually much 

smaller than other terms (Dingman, 2002). 

Thermal conductivity by the trees might be another snow energy input parameter 

in conifer stands. Measurements of sap flux have been hampered by inverse temperature 

gradients in tree trunks (Ping et al., 2004). In the morning, the tops of trees receive solar 

radiation before the lower parts of the canopy, and although transpiration is occurring, the 

heat gradient in the sapwood is reversed. If heat is conducted downward through the 

sapwood it might transfer the energy directly to the snowpack via the roots and soil. 

Woo and Steer (1986) measured the variations in snow depth around individual trees in a 

sub-artic forest in Northern Ontario to determine average snow depth for the forest. They 

found that depth increased non-linearly when moving away from the tree bole. 

Presumably, this pattern was produced by snow interception and added heat inputs due to 

long wave radiation from the tree trunk, which can accelerate snow metamorphosis and 

melt (Dingman, 2002). 
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Snow Metamorphosis 

The snow energy balance ultimately will determine the onset of snowmelt phases. 

Differences in energy balance could result in different snowmelt and runoff patterns 

between aspen and conifer. Another way to look at observed differences in snowpack 

properties is to focus on processes affecting the physical snow properties in the period of 

time proceeding the output phase. 

As soon as snow settles on a surface (branch or ground) it begins metamorphoses 

(densification). Four mechanisms of metamorphosis can occur simultaneously including: 

gravitational, destructive, constructive and melt metamorphosis. Gravitational settling is 

the increase in density due to the weight of the overlying layers and temperature. 

Destructive metamorphism is the evaporation of fresh snowflake points and projections 

and condensation onto less convex surfaces, caused by microscopic differences in vapor 

pressure over convex surfaces. Constructive metamorphism is the dominant densification 

process where adjacent snow grains bridge together as a result of vapor transfer within 

the snowpack. In warmer portions of the snowpack sublimation occurs and the resulting 

water vapor movement along a concentration gradient towards colder portions of the 

snowpack where condensation occurs (Dingman, 2002). 

Melt metamorphism is the introduction of liquid water to the surface of the 

snowpack by rain or melt. As the introduced water freezes it releases latent heat that 

warms the snowpack and accelerates vapor transfer. Within the snowpack smaller grains 

are sublimated and deposited onto larger grains resulting in larger net grain size and 

snowpack densification. There is high temporal and spatial variability in snowpack 

characteristics over short distances due to the effects of vegetation ( drip lines), slope, and 



aspect. In general, the variability will be greatest where periods of melting occur 

during the winter and where much of the heat input to the snow is from solar radiation 

(Dingman, 2002). 
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Interception of snow by the conifer canopy affects surface snowpack density. The 

density of freshly fallen snow often ranges from 0.004-0.34% (Mckay, 1970), with lower 

values occurring under calm, very cold conditions and higher values accompanying 

higher winds and higher temperatures. Schmidt and Gluns (1991) found that (I) 

individual conifer branches intercepted 11-80% of SWE in 22 storms, (2) the fraction of 

intercepted snow was inversely related to the snow density and total storm precipitation, 

and (3) the maximum SWE intercepted was -7 mm. The high variability in SWE and 

density beneath conifers could be a result of the random patches of mechanical snow 

returns from the canopy and their continued effects on the basal snowpack. In conifer 

stands the heterogeneity in snow energy content may affect sublimation rates. The 

density of fresh fallen snow beneath conifers might be lower than in the open because 

lighter snow has a higher probability of being intercepted by the conifer canopy. Even 

when snow is returned to the conifer snowpack via melt water drip and mass transfer it 

will have undergone metamorphosis due to high net radiation exposure on the branch. 

In cold regions with shallow snowpack and thin vegetation cover, the top soil may 

be covered by a dense layer of ice lenses referred to as "concrete frost". The infiltration 

capacity of the soil may be lowered to 0.2 mm hr-
1 

or less by this ice and it may result in 

rapid surface runoff during melt events. However, under thick snow packs or dense 

vegetation in temperate regions, the soil may remain unfrozen, or may be occupied by 



"porous frost" or needle ice, which does not inhibit soil infiltration capacity (Dunne 

and Leopold, 1978). 
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Snow metamorphosis, and melt dynamics are expected to differ between aspen 

and conifer. Snowpack properties in conifer stands are more heterogeneous due to 

canopy effects on snowpack metamorphosis. It is important to consider the processes that 

affect the observed differences in snowpack morphology in aspen and conifer stands. 

Plant Physiology 

Transpiration can have two effects on the fate of spring snowmelt. The first is the 

direct loss of water from the soil column during the snow melt season. The second is the 

effect on soil moisture content in fall prior to the snow accumulation period. If a soil is 

relatively dry in the fall prior to the snow accumulation period, the soil will have an 

additional capacity to absorb and retain a greater amount of water during the spring snow 

melt. Conversely, if a soil is relatively wet in the fall prior to the snow accumulation 

period, the soil will have decreased capacity for infiltration leading to increased runoff. 

Thus, the relative contribution to soil moisture recharge can be a significant loss to 

stream water inputs (Julander and Perkins, 2005). It is important to define the amount and 

timing of transpiration in aspen and conifer forest communities (Gifford et al., 1984). 

Several physiological processes confound the measurement and comparison of net 

annual transpiration in aspen and conifer species. Conifers can transpire water during 

warm periods in winter while hardwoods are leafless or only leafing out (Douglass, 

1983). Conifers may begin transpiring as much as two months before aspen (Gifford et 

al., 1984). However, aspen has consistently higher sap flux than conifers in the early 
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season possibly due to leaf expansion. Mean estimates of daily sap flux in aspen and 

conifer communities were not different when averaged over the course of the summer 

growing season (2.6 and 2. 7 mm da/, respectively) in Wyoming (Pataki et al., 2000). 

However, these estimates were made between day of year (DOY) 168-238 (6/17 and 

8/25) which did not account for fall and spring periods when conifer may be active while 

aspen remains dormant. 

A brief summary of transpiration monitoring techniques and parameters affecting 

transpiration is necessary to understand the complexity of comparing species differences. 

Plant stomata are the terminal regulator for plant uptake of C02 and release of H20. 

During the gas exchange process, water vapor within the leaf moves along the 

concentration gradient from the leaf to the atmosphere. 

At the leaf level stomata! control is a feed forward response that balances the 

tradeoff between C02 assimilation and H20 loss to maximize water supplies. To scale 

single leaf transpiration estimates to the whole tree level, measured flux rates must be 

conected for boundary layer and leaf area such that the leaves measured represent the 

range of conductance values throughout the plant canopy (Meinzer, 2002). A complete 

model of stomata] behavior might include: photosynthetic photon flux density (PPFD); 

vapor pressure deficit (VPD); C02 concentration; temperature; water stress; and a host of 

tissue, cellular, and sub-cellular processes involving solutes, membrane characteristics, 

and hormones (Kaufmann, 1982). In a survey of five different models for predicting 

stomata! aperture in Rocky Mountain subalpine tree leaves, Massman and Kaufmann 

( 1991) found that regardless of the model, variables decreased in importance: PPFD > 

VPD > temperature. 
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Scaling stomata! conductance models to whole tree transpiration is difficult 

because of the heterogeneous microclimate within a single tree canopy. Thus, sap flux 

(Js) measurements developed by Granier (1985) can be used to determine whole tree 

transpiration. The velocity of water movement in the xylem is determined by measuring 

the difference in temperature between a heated and non-heated needle inserted into the 

sap wood and calculating the cross sectional sap wood area of the tree. One advantage of 

Is measurements is their ability to take continuous measurements throughout the entire 

growing season. In a Is, based transpiration study of Rocky Mountain subalpine trees, 

Pataki et al. (2000) reported Is values were parabolically related to daytime average VPD 

regardless of species (R 
2 

= 0. 79-0.91 ). Compared to all coniferous species investigated, 

aspen had the greatest increases in Is with increasing VPD and the least decline in Is in 

response to declining soil moisture. 

Sap flow measurements can be scaled up to the forest canopy level by estimating 

the sapwood to area ratio in a given area and multiplying by the measured sap velocity. 

Using this scaling method, Pataki et al. (2000) observed that two conifer species 

(lodgepole pine and subalpine fir) had similar whole canopy transpiration when 

compared to aspen during a summer drought, despite a four fold difference in leaf area 

index (LAI) for conifers. Thus, LAI and other stand characteristics such as basal area 

cannot be used to compare transpiration potential between aspen and conifer. Differences 

in LAI are offset by differences in stomata! regulation and leaf physiology. 

Whole ecosystem evapotranspiration (ET) can be monitored directly by eddy­

covariance method that uses vapor flux density between the forest and atmosphere to 

determine energy and mass exchanges. Modeling ET in forests is based solely on 
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physical information gathered from meteorological stations that are erected upon a 

tower above the tree canopy. The stations can determine energy balance by measuring net 

radiation, photosynthetically active radiation, and incoming solar radiation. Mass 

exchange is determined by measuring turbulent velocities with a three-dimensional sonic 

anemometer as well as measuring water vapor and C02 concentrations with a open-path 

Infra Red Gas Analyzer (IRGA). Other parameters measured include relative humidity, 

air temperature, precipitation, soil temperature, and soil moisture at rooting depth. 

Evapotranspiration estimates based on eddy covariance should always yield lower 

values than potential evapotranspiration (PET). In a comparison study of several 

transpiration estimation techniques, Granier et al. ( 1990) found that in homogeneous 

maritime pine (Pinus pinaster) stands, the average ratio for sap flux to potential 

evapotranspiration (PET) measurements was 0.55. Estimation of ET should also yield 

higher values than canopy transpiration estimates based on sap flux. This is because 

eddy covariance approximates whole ecosystem vapor movement. Granier et al. (1990) 

reported an R
2 

= 0.66 comparing the two methods in maritime pine and also noted a lag 

time between maximum sap flux rate and maximum vapor flux. This observation has 

since been referred to as the lag time effect and could be a result of transient removal of 

water stored above the point of sap flow measurement at the base of the tree (Goldstein et 

al. 1998). Others have recently attributed the lag time effect to quantifiable hydraulic 

resistance and capacitance properties of the wood (Unsworth et al. 2004). Differences in 

the hydraulic properties of aspen and conifer wood could lead to temporal difference in 

the relationship between sap flux rate and actual transpiration. This could systematically 

bias models based on the relationship between sap flux and physical parameters such as 



PPFD, VPD, and temperature. Accurate quantification and comparison of sap flux 

between aspen and conifer may require calibration with other methods. 

21 

Net annual transpiration may not be different between aspen and conifer. At the 

ecosystem scale, Roberts (1983) suggested that there is no variability observed in forest 

transpiration between various forest vegetation types under a given climate regime. He 

suggested that a combination of effects including transpiration from the forest understory, 

negative wind feedbacks from surface resistance, and insensitivity to soil moisture 

ultimately buffer against potential differences in water yield. 

There is physiological evidence that trees in tropical systems use the same amount 

of water regardless of species and tree architecture. Functional convergence is an 

evolutionary response to a given situation where diverse plant taxa may converge on a 

limited number of solutions to a given problem such as water use. Recent empirical and 

theoretical scaling models emphasize the strong role of plant size, architecture, allometry 

and chemistry in constraining functional traits related to water and carbon economy and 

growth (Meinzer, 2002). It has been suggested by several authors that allometric scaling 

of plant vascular systems, and therefore water use is universal (Enquist et al., 1998). In 

tropical trees allometric relationships may exist between ls and stem diameter and also 

between water use and aboveground biomass. Meinzer (2002) reported that sap flux and 

stem diameter for five tropical tree species had a bi-phasic relationship of mean ls (20 

days) vs. stem diameter. From these observations he concluded that three contributing 

factors drive the biphasic relationship. First, stomata! conductance must increase to 

compensate for gravity up to a threshold where the risk of cavitations limits ls. Second, 

increasing the basal sapwood to leaf area ratio decreases the sap velocity. Finally, as stem 
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water storage increases with tree size the max I
s 
rate decreases. These Is convergence 

observations were made with sap flux probes placed at a single sap wood depth (20 mm) 

which has raised questions abc;mt the observed results. Wullschleger and King (2000) 

measured radial differences in sap velocities at four depths in yellow-poplar trees 

(Liriodendron tulipifera). They divided each velocity by the maximum sap velocity 

measured to determine the fraction of sapwood that was functional in water transport (IS). 

The JS value varied between 0.49 and 0.96 and there was no relationship between.JS and 

sapwood thickness, or between JS and stem diameter. They cautioned that not all 

sapwood is functional in water transport and the magnitude of this variation in a range of 

non-porous, diffuse-porous, and ring-porous trees could introduce systematic bias into 

estimates of both tree and stand water use. This implies there may be fallacies in Is vs. 

stem diameter and other convergence relationships. 

The difference in water use between evergreen and deciduous species has been 

attributed to a variety of other environmental and biological factors. Leaf morphology 

affects transpiration in several ways. Common leaf traits for species in dry habitats 

include thick, hard leaves with thick cuticles and small, thick walled cells. These traits 

have been interpreted as water conserving traits, which increase resistance to wilting. 

However, the general occurrence of the same leaf traits in species growing on nutrient­

poor soils has led others to propose that these traits are an adaptation to increase leaf life 

span in habitats where rapid growth is not possible and slow tissue turnover is therefore 

favored. Stomata! conductance of shade-tolerant species may be more strongly coupled to 

VPD and less coupled to PPFD than that of shade intolerant species (Massman and 

Kaufmann, 1991 ). Many environmental factors confound the comparison of leaf 



morphology between widely divergent habitats; the effect of a given set of leaf 

morphological characteristics on water use may not be universal under various climate 

regimes (Wright et al., 2002). 
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Insights into the tradeoff between deciduous and evergreen life forms could be 

derived from geographic differences in morphology within species. Regional foliage 

retention patterns (leaf life span) of coniferous stands could be an acclimation to winter 

temperatures, while local variation may be the result of adaptation to patchy microsite 

environments. In China, coniferous forest climate variables, annual precipitation, 

evaporation, and solar radiation all had significant relationships with needle longevity, 

indicating that variation across regions is most likely a result of adaptation to the ambient 

environment (Xiao, 2003). For 75 perennial species from eastern Australia, individuals 

on poorer soils had higher leaf mass per unit area and longer leaf lifespan, but 

significantly so only in areas with high rainfall (Wright et al., 2002). Although these 

studies suggest that phenological traits within species can show adaptation for 

conservative water use, it remains unclear if deciduous vs. evergreen morphology is 

better adapted to conserve water under various climate regimes. 

Distribution of Evergreen and Deciduous Species 

On a global scale the distribution of evergreen and deciduous forests may reflect 

adaptations to climate. Temperate deciduous trees in North America tend to dominate 

forests characterized by cold winters with frozen soils and short day lengths ( effective 

dry season) and high precipitation in the spring, fall, and winter (warm season). 

Evergreen forests in western North America are associated with mild winters and longer 
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growing seasons (Givnish, 2002). The increase in leaf longevity of evergreens with 

latitude may buffer against more harsh and windy ambient environments (Xaio, 2003). 

Simulations of two tree species with contrasting leaf habits in New Zealand suggests 

there is no clear advantage in terms of annual carbon balance for a deciduous vs. 

evergreen phenology at sites with relatively mild winters (Dungen et al., 2004). In 

contrast, at sites where frost-induced photo-inhibition [cavitation] limits photosynthesis 

for over-wintering leaves, a deciduous phenoJogy results in a higher value of carbon 

uptake for species with leaves that are very active photosynthetically during spring and 

summer (Dungan et al., 2004). Sandquist and Ehleringer (1998) suggested that the trade­

off among water consumption, photosynthesis, and leaf longevity maximized carbon gain 

for the Chilean brittle bush (Enceliafarinosa) along a precipitation gradient. 

The distribution of aspen and conifer may influence climate thus complicating 

biogeographical inferences. Feedbacks between vegetation and the atmosphere can be 

inferred from the analysis of eddy flux measurements. Rocha et al. (2004) used three 

years of eddy-covariance and meteorological data from an aspen-dominated northern 

hardwood forest in Michigan to investigate the effect of cloud cover on ET and water use 

efficiency (WUE). They found that increasing the proportion of diffuse light ( cloud 

cover) to total PAR decreased midday canopy ET but increased midday canopy WUE. 

The latent heat absorbed by transpiring forests could have strong implications for 

atmospheric temperature regulation. It has been postulated by Hogg et al. (2000) that 

transpiration feedbacks between aspen forests and the atmosphere in the Western 

Canadian interior may explain anomalously warmer than expected conditions in spring 

and autumn. Observations using eddy correlation and J5 measurements revealed that 



latent heat (water vapor) flux reaches a maximum during the summer period when 

leaves are present, while sensible heat flux is highest in early spring when the forest is 

leafless. These findings would support the hypothesis that forest cover type can 

contribute significantly to the distinctive seasonal patterns of mean temperature and 

precipitation in a region. 
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Little is known about the trade-offs among water consumption, photosynthesis, 

and leaf longevity where evergreen and deciduous species co-dominate. However, if leaf 

life traits are the drivers for xylem vessel size, these traits combined with convergence in 

hydraulic conductance and resistance might lead to differences in net annual transpiration 

between evergreen and deciduous trees. Superimposed on temperate bio-geographical 

water use relationships are complicating factors such fire disturbances, herbivore 

dynamics, and the physical differences in tree structure leading to differentiation in 

abiotic interception of precipitation and subsequent evaporation. It is important to 

consider how these variables have affected the evolution of evergreen and deciduous tree 

physiology in water limited ecosystems. 

Summary 

Various scientific disciplines have added insight into the determination of 

differences in water yield between aspen and conifer forests. To understand the net 

differences in water yield, one must consider all variables contributing to water transfer 

over the course of a water-year. In Northern Utah a water-year is considered to begin and 

end in October. This convention is used because generally the plants have used most of 

the available soil water and the dry fall precipitation regime often results in the lowest 
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observed water storage and stream flow. Most of the precipitation in Utah comes 

during the winter in the form of snow. Throughout the winter snow accumulation and 

melt patterns are affected by the physical structure of forest vegetation. As the melt 

progresses the biological activity of the trees begins to influence the transfer of water to 

the atmosphere via transpiration. During summer, precipitation changes to rain which is 

affected by the physical interception of tree structures and biological transpiration. 

Finally, the late summer drought and dry fall precipitation regime result in eventual 

drying of the system. 

We expect that differences in physical and biological variables between evergreen 

conifer species and deciduous aspen species cause differences in annual water yield. 

While the difference in timing and rates of water transfer in adjacent end point (mature) 

evergreen and deciduous forest communities is most likely site specific, we expect the 

relative importance of hydro logic transfer mechanisms to be similar in snow dominated 

watersheds. Determination of the water "pool sizes" and flux rates within the snow, soil, 

vegetation and atmosphere will help determine which hydrologic transfer mechanisms 

could cause large differences in water yield. 



27 

CHAPTER3 

FIELD SITE AND RESEARCH METHODS 

' N 

Water dynamics in mature aspen (deciduous) and conifer (evergreen) stands were 

compared on north facing slopes in Northern Utah. North facing slopes were expected to 

have the greatest potential for increasing water yield by conversion from aspen to conifer 

forest in snow-dominated watersheds. Simultaneous measurement of physical and 

biological mechanisms of water transfer was used to determine why differences in water 

yield occur at the stand level. 

Study Site 

General location 

The study was located in the Northern Wasatch Mountains of Utah, USA. 

Research was conducted primarily within Weber County near the intersection with Cache 

and Rich Counties on private land owned by Deseret Land and Livestock (Fig .. 3.1). The 

conifer stands were heavily logged at the tum of the 20th century, however, some stands 

were not harvested at this time presumably due to difficult road access on steep ridges 

and in deep gullies. Mature aspen and conifer stands occur adjacent to one another on 

North facing slopes in the study area. Abrupt edges between pure aspen and conifer 

stands may have been caused by fire or logging disturbances, or soil characteristics that 

favor each community. 
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Block locations and plot descriptions 

The comparative study was primarily undertaken in the Frost creek drainage of 

the Ogden River, which is part of the upper Weber River basin (Fig .. 3.2). Research 

blocks containing aspen and conifer stands were selected on north, north-west, and north-

east facing aspects due to the limited range of conifers, which primarily occur on these 

aspects within the catchments. Within each block, a single aspen and conifer plot were 

selected approximately 200 meters apart, based on the criteria that they shared similar 

slope, aspect, and slope position. In Blocks 2, 7, and 8, open plots devoid of tree cover 

were also identified using the same selection criteria. Two of the blocks (Blocks 1 and 2, 

Table 3.1) were sampled and instrumented to monitor SWE, snowpack sublimation, soil 

moisture content, and sap flux (Fig. 3.2). All remaining blocks within the Frost Creek 

watershed and adjoining watersheds were only used to measure SWE (Blocks 3-8, Table 

3.1). Detailed location maps of plots within each block can be viewed in appendix A. 

Automated measurements of atmospheric variables were recorded at a 

meteorological station and snow telemetry station (MET and SNOTEL, Table 3 .1 ). 

Table 3.1 Locations ofresearch blocks, SNOTEL, and meteorological station. 

ID UTM (12 T, NAD 83) Elevation (m) Aspect Slope(%) 

2 

3 
4 

5 

6 

7 

8 

SNOTEL 

MET 

4580516,459990 2515 NV/ 35 
4579687, 461670 2626 N 40 

4580593,460064 2556 NW 30 

4580800, 460560 2558 N 35 

4575735, 462320 2531 Flat O 

4575735,462320 2520 N 30 

4578655, 459227 2635 NE 10 
4582168, 461319 2641 NE 30 

4578696, 459244 2507 NE 10 

4577109, 464359 2572 NV/ 5 
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0 70 140 280 Kilometers 

Fig. 3.1 Study site location. 

The MET station was located approximately 3 km to the south-east of Block 2 (Fig. 3.2). 

The SNOTEL station was located approximately 3 km (2.1 mi) West of Block 2 (Fig. 

3.2). 

Aspen plots consisted of ramets (trees) of varying age class including 

regenerating young ramets in the understory. The understory in aspen plots was 
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primarily dominated by shrubs (Symphoricarpos a/bus, and Amelanchier alnifolia) and 

forbs ( Conium maculatum, Senecio serra, Geranium richardsonii, Epilobium 

angustifolium, Mertensia ciliata, and Agastache urticifolia). Overstory trees in conifer 

plots consisted primarily of white fir (Abies concolor) and Douglas fir (Pseudotsuga 

menziesii), although Block 8 was predominantly Engelman spruce (Picea Engelmannii). 

The conifer understory was predominantly bare ground with limited herbaceous 

vegetation and shrub cover (primarily Ribes montigenum). 

Methods 

Snow Telemetry Station (SNOTEL) 

Automated measurements of snow parameters were obtained from the Natural 

Resource Conservation Service (NRCS) Lightning Ridge SNOw--TELemetry (SNOTEL) 

station, in operation since 2004. The station was located on the edge between an open 

meadow and an aspen stand, it was adjacent to Block 7. The station monitored a vertical 

profile of soil moisture using capacitance probes (Hydra probe, Stevens Water 

Monitoring Systems, Inc., Beaverton, OR, USA) placed at 5, 10, 20, 51, and 102 cm soil 

depths; measured and recorded snow depth with a sonic depth sensor; SWE with a snow 

pillow; total precipitation; and air temperature (see, www.wcc.nrcs.usda.gov/snoteIO. 

Variables were recorded once per hour. 

Meteorological station 

The Bear Canyon meteorological station monitored physical variables including 

relative humidity, temperature, wind speed and direction, precipitation, and incoming 

solar radiation. Variables were recorded at 15-minute intervals. 
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Peak snow accumulation 

Snow accumulation was measured within aspen, conifer and treeless openings at 

various times during the winters of 2005 and 2006. Peak snow water equivalent (SWE) 

was determined by conducting snow surveys at or near maximum snow accumulation 

Fig. 3.3 Measurement of snow water equivalent with standard snow tube. 

(-April l st) as approximated by the Lightning Ridge SNOTEL station. The decision to 

measure peak snow accumulation was made with consideration of predicted snow melt 

forecasts from the National Oceanic and Atmospheric Administration (NOAA). Within 

each plot several 8 m X 20 m grids were surveyed for SWE. Snow Water Equivalent 
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(SWE) and snow depth were measured using a standard snow tube (Carpenter Machine 

and Supply, Seattle, WA, USA). Each snow survey consisted of four line transects 

oriented up-slope and two meters apart. At each sample point the tube was vertically 

inserted into the snowpack and depth was recorded (Fig .. 3.3). The tube was gently 

pushed into the soil, and then removed with a small soil plug at the end. The soil plug 

was removed and the tube and snow core weighed. During spring 2005, SWE and depth 

were measured every four meters in aspen and conifer plots (n= 16). During spring 2006, 

SWE and depth were measured every four meters in aspen plots (n=16) and every 2 

meters in conifer (n=32). The greater sample size in conifer was used to account for 

greater heterogeneity in the conifer stand snowpack as indicated by data from 2005. To 

determine if sampling was missing small scale heterogeneity in conifer stands ( e.g. due to 

sloughing of snow along the drip line) a single conifer tree was sampled in 2006 along 

each cardinal aspect every 0.1 m in a 4 m X 4 m plot. A complete schedule of data 

collection is provided in Appendix B. 

Snow ablation 

Several additional surveys for SWE and snow depth were conducted after the 

peak snow accumulation period to determine the ablation (melt) rate. Surveys were 

conducted within Blocks 2 and 4 in 2005 near the end of the melt period DOY 139 

(5/19/05), and in Blocks 1, 2, 7, and 8 in 2006 at two week intervals following peak snow 

accumulation until DOY 139 (5/19/06). Successive snow surveys were conducted in 

parallel transects adjacent to the original transects where possible, but in the Block 2 

conifer plot, repeated measurements along the same transects were used due to spatial 



limitations. The SNOTEL station recorded daily SWE during the entire snow 

accumulation and melt periods in 2005 and 2006. 

'I 

Snow density 
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Snow density was calculated by dividing SWE by snow depth for each point 

observation in each snow survey. Daily snow density at the SNOTEL station was also 

determined by dividing the snow depth (determined by a sonic depth sensor) by the SWE 

(determined by a snow pillow). 

Snow pack sublimation and condensation 

Spring surface snowpack sublimation and condensation estimates were 

determined using sublimation pans ( clear plastic Tupperware containers). Bricks of snow 

were cut from a representative snow surface in each plot and placed into sublimation pans 

(approx. 60 cm X 20 cm X 10 cm). The containers were weighed in grams using an 

electronic scale and then installed into snow pits cut to fit the dimensions of the pan. The 

pans fit inside the pits such that the top of the container was flush with the snow surface 

(Fig. 3.4). In each plot, sublimation pans (n=5) were placed along a -25 m transect once 

every -Sm. Installation occurred around 8 am, and the pans were left for approximately 

24 hours before being weighed again. The measured difference in start weight - end 

weight of the pan and snow was converted from weight to mass of water (1 g H20 = 1 

cm3 H20) and divided by the surface area of the pan (520 cm2
) to determine the change in

total water content (equivalent depth cm). Weight losses were assumed to be due to 

sublimation and gains due to condensation. 



Sublimation pan measurements were taken approximately once every two 

weeks throughout the melt period in the springs of 2005 and 2006. During spring 2005, 

six replicated sublimation pans were installed in open (where available), aspen, and 

conifer plots in Blocks l ,  2, and 5. During spring 2006 six sublimation pans were 

installed in each of the aspen, conifer, and open plots in Block 2. 

In 2006 snow temperature was monitored in two of the sublimation pans within 

each plot and in the snow adjacent to each pan to determine if heating effects from the 

plastic pans were affecting sublimation rates. The first two pans in each transect were 

instrumented with temperature micro-loggers (iButton DS I 922L, Maxim Integrated 

Products, Inc. Sunnyvale, CA, USA). Within each instrumented sublimation pan the 

temperature probe was inserted horizontally into the snow brick so as not to disrupt the 

snow surface. Before placing the brick into the pan, a temperature logger, sewn into a 

Fig. 3.4 Sublimation pan methodology. 
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small white pouch, was pushed into the center of the snow brick using a knife. A 0.32 

m section of fishing line connected the pouch to a second pouch with logger. The second 

temperature micro-logger was then installed 5 cm beneath an undisturbed section of snow 

approximately 20 cm to the side of the pan for comparison. Temperature was logged 

once per hour inside the pan and in the adjacent snowpack. 

Transpiration 

Transpiration activity was estimated by measuring hourly sap flux velocity. 

Measurements were logged using four sap flux systems (Probe 12, Dynamax inc., TX, 

USA). The system measured sap flux using a thermal dissipation probe (TDP) similar to 

that described by Granier ( 1985). Thirty-two TDP sensors were deployed, eight in each 

of the aspen and conifer plots in Blocks 1 and 2. In Block 1, one tree in each plot was 

selected to measure sap flux on all four cardinal aspects; the four remaining probes were 

installed on the south side of four trees in a - 100 m transect perpendicular to the slope. 

In Block 2, all eight probes in each plot were installed on the south side of eight trees in a 

-200 m transect perpendicular to the slope. All probes were installed one meter above the

ground and insulated with Styrofoam and reflective bubble wrap (Fig. 3.5). All exposed 

cables and insulation were protected from ungulate and rodent damage using schedule 40 

PVC pipe and chicken wire. Sap flux was measured once every hour beginning in fall and 

continued until transpiration ceased. Sap flux measurements resumed the following 

spring during snowmelt period. 
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Fig. 3.5. Sap flux probe installation. 

Problems with the sap flux system were identified while collecting and 

interpreting the sap flux data. The clock in the Dynamax system often skipped an hour at 

midnight which offset the reference temperature (�dT) and caused incorrect values to be 

calculated by the logger. Another problem occurred when the power supply dropped 

below 11.5 volts causing the system hardware to crash. These problems ultimately lead 

to large gaps in the data. 

Two methods were used to analyze the data. The first method relied on the sap 

flux reported in grams per hour. In Block I, reported sap flux values were plotted for 

single trees monitored on all cardinal aspects. Data were plotted only for days when both 

aspen and conifer data loggers were functioning for a full 24-hr period. All data points for 

each probe were scaled (0-l ) to the maximum sap flow value calculated by the probe 

during the study. The daily sap velocity was plotted for individual days. 

The second method used the difference in voltage between the heated and 

unheated probes to determine the seasonality of transpiration activity. This analysis was 

applied to the four remaining probes in Block I and all eight probes in Block 2. In order 

to approximate the transpiration activity period, the maximum K value for each day was 



calculated using the daily maximum and daily minimum difference in voltage (Li V) 

between the heated and unheated thermocouples where 

K = (Li Vmax - Li Vmin) 
LiVmin 

The data were filtered to exclude days when Li Vmin was abnormally high or low based 

on the assumption that baseline tree temperature (temperature of the trunk) at zero sap 

velocity should change gradually throughout the season (Ping et al., 2004). 

The difference in voltage for each day was used to calculate the daily maximum 

dimensionless K parameter. In the original Granier equation sap flow density (Js) is 

directly related to the scaling parameter K where 

ls
= 118.99 x J0-6 [K] 1.231

As K increases ls increases. In many sap flux studies ls is multiplied by the sap wood 

area of each tree to calculate sap flow rate (volume hr- 1
). The analysis ofK alone was

used to scale the relative transpiration index at daily intervals rather than quantify the 

volume hr-1of water transpired by the trees.

Soil moisture 

Volumetric soil water content was monitored at shallow depths beneath trees and 
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in the interspaces and in vertical profiles of the soil column. Calibrated measurements of 

soil volumetric water content were made with capacitance probes (Hydra Probe, Stevens 

Water Monitoring Systems, Inc., Beaverton, OR, USA). The hydra probe measures soil 

dielectric content and temperature which are then entered into the manufacturers 



proprietary software (Hyd_file.exe, Stevens Water Monitoring Systems, Inc., 

Beaverton, OR, USA) to determine volumetric water content. 
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Spatial differences in soil moisture within the aspen and conifer stands were 

measured inside and outside of tree wells to determine if transpiring trees had a negative 

effect on shallow soil water content during the spring snow melt period. A tree well was 

defined as the area beneath the conifer tree canopy where snow accumulation is 

diminished due to interception (0-2 m from the trunk). In deciduous aspen there are no 

tree wells (because winter canopy is absent) so probes were placed in small clearings 

approximately 2 m from the nearest aspen ramet (tree) for comparison. Twenty probes 

were deployed in 10 pairs inside and outside of the tree wells at 10 cm soil depth and 

monitored at I-hour intervals using data loggers (CR21X and CR23X, Campbell 

Scientific Inc., Logan, UT, USA) throughout the spring snow melt. Twelve probes were 

deployed evenly between the aspen (3 pairs) and conifer plots (3 pairs) in Block I and 

eight probes were deployed evenly between the aspen (2 pairs) and conifer plots (2 pairs) 

in Block 2. 

Vertical distribution of water in the soil profile and soil column water content 

were measured using four stacks of five probes each. Two stacks were placed in each 

block, one per plot. The probes were placed at 5, 10, 20, 51, and 102 cm soil depths. 

Probes were monitored at I-hour intervals using data loggers (RS 205, and CR23X , 

Campbell Scientific Inc., Logan, UT, USA). 

Soil moisture probe calibration 

Two shallow soil cores were extracted from each plot in Blocks 1 and 2 for the 

calibration of Hydra probes. One core was taken near the bole of a tree ( < 1 m from 
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trunk), and a second core was taken in the interspaces between two trees (> 3 m from 

trunk). The containers used to hold the soil cores were constructed of -10 cm ( diameter) 

PVC pipe cut to 10.5 cm height and caped at one end (697 cm\ Holes were drilled in 

the cap at the bottom of the container to provide for drainage. To extract the soil cores, 

the topsoil at each site was excavated and leveled to 5 cm depth using a hand trowel. The 

PVC containers were then pounded into the ground until soil was visible through the 

drainage holes in the cap. The soil surrounding the container 

was then excavated and the trowel used to tum the container upright and keep the soil 

from falling out the container. 

Soil cores were taken to the Utah State University ecophysiology lab for 

calibration experiments. Each container was saturated with water for 12 hours and then a 

Hydra probe was inse1ted into the open top containers (Fig. 3.6). The entire apparatus 

was placed into a Tupperware container and weighed. Then each probe was connected to 

data logger and the analog voltages were read. Soils were then allowed to dry for 24 

hours and the measurement of weights and voltages repeated. This process was repeated 

three times. The soils were then allowed to air dry for two weeks until all soil cores had 

low water content measured by weight (0.08-0.15 m3 m-3) and then final voltages and 

weights were recorded. Soils cores were then oven dried at 110 °C for 24 hours. The 

weight of the water contained in the cores during each of the measurements was 

determined by subtracting the weights of the Tupperware container, hydra probe, PVC 

container, and oven dry soil core weight from the total weight. The volumetric water 

content was then compared to volumetric water content given by the capacitance probes 

(after processing raw voltages with Hyd_file.exe software). Water content estimated by 



Fig. 3.6. Soil moisture calibration. 

capacitance probes in aspen had a slightly stronger relationship to water content 

determined by weight (P < 0.05, R
2 = 0.96), than conifer soils (P < 0.05, R

2 
= 0.90). 

Calibration equations were applied to the soil moisture data collected by the all of the 

capacitance probes installed in aspen and conifer soils (Fig. 3.7). 

Soil column equivalent depth water content calibration 
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The total soil moisture content was determined by interpolating vertical soil 

moisture values (calibrated) from Blocks l and 2, and then applying a second calibration 

to account for soil column characteristics. The second calibration was determined using 

Block 2 peak spring water content values and soil column porosity calculated from soil 

survey information (Table 3.2). 
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Fig. 3.7 Calibration equations for the correction of capacitance probe readings. 

In Block 2, the NRCS completed pedon descriptions of the pits where vertical 

stacks of aspen and conifer soil moisture probes were installed (Appendix C). The bulk 

density for each soil horizon was used to calculate the porosity assuming a particle 

density of 2,650 kg m-
3
, the approximate density of quartz and most mineral soils. The 

total porosity of the soil column was compared to the calculated water content of the 

column during the spring saturation to further calibrate water content values. 

The NRCS determined the bulk density of each horizon in an excavated soil pit 

using a re-wetted soil sample method (Burt, 2004). Naturally occurring soil clods were 
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collected from the face of the soil pit. One coat of plastic lacquer was applied in the field. 

Additional coats of plastic lacquer were applied in the laboratory. The clod was weighed 

in air to measure its mass and placed in water to measure its volume. After the clod was 
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Table 3.2 Soil column water content calibration (Block 2). 

Hydra Difference 
Horizon Horizon Bulk Soil Horizon Column peak In water 
depth thickness dens it� porosity De max De max content depth 

Cover rcml rem] rMqm-'l [m3 m-3 ] [mm] [mm] [mm] [mm] 
Aspen 0-10 10 1.21 0.54 54 
Aspen 10-38 28 1.28 0.52 144 
Aspen 38-76 38 1.29 0.51 195 
Aspen 76-89 13 1.32 0.50 65 
Aspen 89-127 38 1.23 0.54 203 663 706 43 
Conifer 0-18 18 1.06 0.6 108 
Conifer 18-36 18 1.13 0.57 103 
Conifer 36-58 22 1.44 0.46 100 
Conifer 58-114 56 1.77 0.33 185 498 555 57 

dried in the oven at I 10°C, its mass and volume were determined again. Corrections were 

made for the mass and volume of rock fragments> 2 mm and for plastic coatings. 

Table 3.2 Soil column water content calibration (Block 2). The maximum equivalent 

depth of soil water (De max) for the soil column was calculated as the sum of soil horizon 

thickness multiplied by the calculated porosity of the individual horizons (Table 3 .2). 

When estimates of soil column porosity were compared, Hydra probe soil water content 

measured at peak saturation in aspen on DOY 137 (5/17/06) and conifer on DOY 144 

(5/24/06) plots in Block 2 overestimated water content by 43 mm and 57 mm, 

respectively. The overestimation of water content was used as an offset to correct the 

total soil column water content values in Blocks 1 and 2. 137 (5/17/06) and conifer on 

DOY 144 (5/24/06) plots in Block 2 overestimated water content by 43 mm and 57 mm, 

respectively. The overestimation of water content was used as an offset to correct the 

total soil column water content values in Blocks 1 and 2. 
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Soil moisture calibrations determined using upper soil layers were used to 

calibrate all probe values including deeper probes. Appling calibration equations derived 

from upper soil horizons to the probes in lower soil horizons resulted in a slight 

overestimation of volumetric water content in the soil profile. However, the mean error 

across all five probes in the soil profile(+/- 0.03-0.05 m3 m-3) was close to the 

manufacturers reported probe error(+/- 0.03 m3 m-3)_ 

Summary 

Many variables were monitored to directly test our hypotheses. Data were also 

used for descriptive analysis of water transfer processes. Paired measurements of SWE, 

sublimation, ablation rate, sap flux, and soil moisture were used to directly test 

hypotheses dealing with differences in individual water pool sizes and fluxes. All data 

were then used to predict the equivalent depth of water lost or gained from each 

component. Data were then combined to calculate the magnitude of influence that each 

has in determining water yield from each stand type and determine the potential for water 

yield differences between aspen and conifer stands. 
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CHAPTER 4 

RESULTS 

Peak Snow Accumulation 

SWE comparisons among and within survey blocks 

Differences in April 1
st 

peak snow accumulation (PSWE) between aspen and 

conifer stands were monitored during the 2004-2005 and 2005-2006 water years (WY). 

During spring 2005 PSWE was measured in six blocks (Blocks 1-6) over a 2-week period 

from DOY 101 ( 4/11 /05) to 116 ( 4/26/05). Peak snow accumulation of 513 mm was 

observed at the Lightning Ridge SNOTEL station on DOY 92 (4/2/2005). Blocks 1-5 

were monitored within a week of the SNOTEL peak before significant melting had begun 

(Fig. 4.1 ), while Block 6 was monitored DOY 116 ( 4/26/2005) after the SNOTEL peak 

had passed and 97 mm had ablated from the snow pillow. 

Timing of Peak Snow Water Equivilent Survey 

Relative to Peak SNOTEL observation 
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Fig. 4.1. Timing of peak snow accumulation at the SNOTEL station relative to timing of 

peak snow water equivalent surveys 2005. 
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Peak SWE observations in spring 2005 were compared between adjacent aspen 

and conifer plots using a one-way ANOV A in a randomized block design. Aspen plots 

had significantly higher PSWE than the adjacent conifer plots (F 1, 5 = 5221, p<0.0001).

Within block differences in PSWE ranged from 48 - 322 mm (12% to 57% less in 

conifer). The mean difference between aspen and conifer plots across all blocks was 197 

mm (34% less in conifer). Aspen plots in all blocks, with the exception of Block 5, had 

greater PSWE than the SNOTEL station (Fig .. 4.1 ); in contrast the conifer plots all had 

less PSWE than the Lightning Ridge SNOTEL snow pillow. Block 5 had the least 

difference in PSWE between aspen and conifer plots, possibly due to its exposed position 

along the crest of a windswept ridge (Fig .. 4.2). 
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Fig. 4.2. Peak snow water equivalent for paired aspen and conifer plots in six study 
blocks in 2005. 
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During the spring of 2006 peak snow observations were made in four blocks, 

including Blocks 1 and 2 from the previous year as well as two new Blocks, 7 and 8. In 

addition to aspen and conifer plots, snow surveys were also conducted in an adjacent 

open meadow plot in Blocks 2, 7, and 8. Block 7 was located adjacent to the Lightning 

Ridge SNOTEL site in order to compare snow survey and snow pillow observations. 

Corresponding open and conifer plots were not available in Blocks 1 and 7, respectively. 

Peak SWE observations were measured over a 2-week period from DOY 99 

( 4/9/06) to DOY 113 ( 4/23/06). Peak snow accumulation observed at the SNOTEL 

station was 655 mm on DOY 97 (4/7/2006). Blocks 1, 2, and 7 were monitored within a 

week of the SNOTEL peak after 10 mm of SWE had ablated at the snow pillow. Block 8 

was monitored DOY 113 ( 4/26/2005) after the SNOTEL peak had passed and 81 mm had 

ablated from the snow pillow (Fig. 4.3). 
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Fig. 4.3. Timing of peak snow accumulation at the SNOTEL station relative to timing of 

peak snow water equivalent surveys 2006. 
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As in the previous year, aspen plots had significantly higher PSWE than the 

adjacent paired conifer plots during the spring of 2006 (F2,3 =139_13, p<0.0001). 

Differences in PSWE ranged from 250 - 334 mm (37% - 49% less in conifer). The mean 

difference between aspen and conifer plots across all blocks was 305 mm ( 44% less in 

conifer). 

A one-way ANOV A with a Tukey-Kramer adjustment for multiple comparisons 

was used to test for differences between open, aspen, and conifer plots (Fig .. 4.4). The 

open plots had significantly higher PSWE than the adjacent aspen plots (P = 0.0007). 

Aspen plots had 10% lower PSWE relative to the open plots. 
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Fig. 4.4 Peak snow water equivalent for paired open, aspen, and conifer plots in four 
blocks in 2005. 
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Micro-plot SWE 

During spring 2006 the snow around a single conifer tree in Block 2 was surveyed 

for SWE to determine if micro-site differences beneath a single conifer tree canopy could 

bias snow survey results. The tree bole survey was conducted DOY 112 ( 4/22/06), 

fifteen days after the initial Block 2 standard snow survey and 5 days prior to the second 

ablation snow survey (DOY 120). No relationship between SWE and distance from the 

tree bole or drip line was apparent (Fig. 4.5). The PSWE determined from the single 

conifer tree survey was 451 mm (SE =13.8). The PSWE determined from a conventional 

snow survey in block 2 was 400 mm (SE= 27.2). 
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Fig. 4.5 Snow survey micro-plot extending in four cardinal directions away from a single 
conifer tree bole in Block 2. 
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Snow Ablation 

The ablation (melt) rate was observed for consecutive sets of snow survey 

observations during spring 2005 and spring 2006. During the 2005 melt period, Blocks 2 

and 3 were surveyed during the ablation period. In Block 2, observations were made on 

DOY 101 ( 4/11/05) and 144 (5/24/05). Over the 43-day period the aspen and adjacent 

conifer stands lost 420 mm and 297 mm of SWE at rates of 9.8 mm da/ and 6.9 mm 

daf 1
, respectively. In Block 3, observations were made four times throughout the melt

period on DOY 101, 123, 139, and 143 (4/11/2005, 5/3/2005, 5/19/2005, and 5/23/2005). 

Over the 42-day period from observation 1 (DOY 101) to observation 4 (DOY 143) the 

aspen and adjacent conifer stands in Block 3 lost 316 mm and 17 mm SWE at rates of 7.5 

mm daf I and 0.42 mm daf 1
, respectively (Fig. 4.6). The initial conifer observation in

Block 3 appears abnormally low and could have been caused by within stand variability 

in SWE. From the second to fourth observations over a 20-day period, aspen lost 278 

mm and conifer lost 122 mm at rates of 13.9 mm daf 1 and 6.1 mm daf 1
• The most rapid 
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Fig. 4.6 Snow ablation patterns at the Lightning Ridge SNOTEL station and in snow 
surveys in Blocks 2 and 3 for spring 2005. 
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rate of ablation occurred in Block 3 between the third and fourth observations. Over a 

4- day period aspen lost 241mm (60 mm daf 1
) while the adjacent conifer stand lost 22 

mm (5.5 mm daf1). 

During the spring 2006 melt, three additional snow surveys were conducted after 

the PSWE survey. In Block 1, surveys were conducted on DOY 103, 120, and 130 

(4/13/06, 4/30/06, and 5/10/06) . During the 27-day period the aspen and conifer plots 

lost 271 mm (10.3 mm daf 1
) and 101 mm (3.7 mm dal) of SWE, respectively 
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Fig. 4.7 Snow ablation patterns at the Lightning Ridge SNOTEL station and in snow 
surveys in Blocks 1, 2, 7 and 8 for spring 2006. 
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4.7a.) . In Block 2, observations were made on DOY 99, 120, and 130 (4/9/06, 4/30/06, 

and 5/10/06). Over this 31-day period the open, aspen and conifer plots lost 177 mm (5. 7 

mm da/), 195 mm (6 mm dai/), and 128 mm (4.2 mm da/) of SWE, respectively 

(Fig. 4.7b.). In Block 7, measurements were made on DOY 103, 113, 119, and 129 

(4/13/06, 4/23/06, 4/29/06, and 5/9/06). During this 36-day period the open and aspen 

plots lost 307 mm (8.5 mm dai 1
) and 386 mm (10.7 mm dai 1

) of SWE, respectively 

(Fig. 4.7c.). In Block 8, observations were made on DOY 113, 119, and 129 (4/23/06, 

4/29/06, and 5/9/06). Over this 27-day period the open, aspen, and conifer plots lost 48 

mm (1.7 mm dai\ 204 mm (7.6 mm dai\ and 99 mm (3.7 mm da/) of SWE, 

respectively (Fig. 4.7d.). 

Within each block, aspen had the highest average ablation rate over the entire 

melt period. Comparison of blocks containing both aspen and conifer (Blocks 1, 2, 3, 4, 

5, 6, and 8) revealed that average melt rates were 49% faster in aspen (9.58 mm daf 1) 

compared to the conifer (4.9 mm da/). Comparison of blocks containing both open and 

aspen plots (Blocks 2, 7, and 8) revealed that average melt rates were 35% faster in aspen 

(8.2 mm daf 1
) compared to the open (5.3 mm dai 1

). The completion of snow melt as 

signified by a snow free surface was very similar in aspen and conifer plots. In 2006 the 

majority of snowpack (with the exception of snow drifts) had disappeared in all plots 

around DOY 140 (5/20/06). 

Snow Density 

Comparisons among and within blocks 

At peak snow accumulation at the Lightning Ridge SNOTEL station on DOY 97 

(4/7/05), the snow density was 35%. The snow density reached 41 % by DOY 105 
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( 4/25/05) and oscillated between 39% and 42% until snowpack ablation was complete 

on DOY 137 (5/17/05, Fig. 4.8). 

In all blocks aspen had higher snow density than adjacent conifers throughout the 

ablation period (Fig. 4.9). In Block 2 the density of the open plot was higher than aspen 

plot; however, open and aspen plots were more similar in Blocks 7 and 8 (Figs . 4.9b -

4.9d). The snow density in Block 7 (adjacent to SNOTEL) approximated by the snow 

survey observations, was slightly higher than SWE approximated by the SNOTEL snow 

pillow and sonic depth sensor measurements (Fig. 4.9c). In general the snowpack 

matured and began to melt earlier in aspen and open plots relative to the conifer plots. 
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Fig. 4.9 Snow density at the SNOTEL station and in snow surveys 2006. 

Micro-plot snow survey density 

54 

The density of snow in spring 2006 was also determined for snow around a single 

conifer tree in Block 2 in order to determine if micro-site differences beneath a single 

conifer tree conifer canopy could systematically bias snow survey results. There did not 

appear to be a consistent pattern that could be related to the drip-line of the conifer tree 

canopy (Fig. 4.10). 
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Fig. 4.10 Snow survey micro-plot density extending in four cardinal directions away from 
a single conifer tree bole in Block 2. 

Snow Pack Sublimation / Condensation 

Rates of sublimation / condensation 

During the winter and spring of 2005 and the spring of 2006, sublimation and 

condensation of the surface snowpack beneath aspen and conifer stands were measured 

using sublimation pans . During the 2005 accumulation and ablation period, eight 

attempts were made to measure sublimation and condensation in Block 1. Due to 

consistent precipitation events and subsequent transfer of intercepted snow from the 

canopy to the pans in conifer stands, six of the eight observations were compromised. 

Two successful observations were made on DOY 53 (2/22/2005) and DOY 143 
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Daily [24] hr atmosphere - snowpack exchange for 
two days in aspen and conifer communities 2005 
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Fig .. 4.11 Sublimation and condensation of snowpack during two 24-hour events in 2005 . 

(5/23/2005). During the first observation, the aspen and conifer snowpack sublimated 0.5 

mm da/ and 0.4 mm daf I of SWE, respectively. During that 24-hour observation 

period the average ambient temperature was -4 °C and average relative humidity (RH) 

was 81 %. During the second observation, there was a net condensation of water into the 

aspen and conifer snowpack of 0.3 mm daf I and 0.1 mm daf 1, respectively (Fig. 4.11 ). 

Average ambient temperature was 12 °C and average RH was 44%. 

During the 2006 ablation period five observations were made in open, aspen, and 

conifer plots located within Block 2. Observations were made on DOY 102, 103, 113, 

120, and 131 (4/12/2006, 4/13/2006, 4/23/2006 , 4/30/2006, and 5/ 11/2006). Sublimation 

rates ranged from 1.84 mm daf 1 to 0.4 mm daf 1 across all plots (open 1.36 to 0.5, aspen 

1.46 to 0.4, and conifer 1.84 to 0.48 mm da/) . The condensation event that occurred in 

open and aspen plots on DOY 113 was marked by significant differences in flux between 
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plots which ranged from 1.17 mm da/ sublimation in the open to 0.03 mm da/ 

condensation in the conifer plot (Fig. 4.12). 

During the condensati@n event the Bear Canyon meteorological station recorded 

an average temperature of 3.7 °C and 58% RH. The meteorological station data was 

unavailable during sublimation events on DOY 102, 103, and 120 but temperature and 

humidity averages on DOY 131 were 9 °C and 27% RH. The mean daily temperatures at 

the Lightning Ridge SNOTEL station on DOY 102, 103, 120 were 2.5, 6.7, and 8°C, 

respectively. Fluxes were not significantly different between open, aspen and conifer 

plots during the five observed periods. The average snowpack sublimation rate for all 

plots and days in spring 2006 was 0.8mm daf 1. 

Daily [24 hr] atmosphere - snowpack exchange for five days 
in open, aspen, and conifer communities 2006 
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Fig .. 4.12 Sublimation and condensation of snowpack during two 24-hour events in 
2006. 
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Sublimation pan temperature 

During four of the sublimation and condensation events in 2006, probes recorded 

the temperature within the sublimation pan and in the adjacent snowpack near the pan 

(Appendix D). In general, the snowpack temperature was highest in the open and the 

aspen snowpack. Pans in the conifer stand remained at or near 0°C during the day and 

night, except for periods when shortwave radiation reaching the pans was not obstructed 

by foliage (- solar noon). The range of temperature differences observed between all 

pans and the adjacent snowpack was O - 2.4 °C. The greatest differences occurred in the 

open plot (2.4 °C) when the pan was cooler than the adjacent snowpack. In the aspen plot 

the largest difference (1.5 °C) occurred in the daytime when the pan was relatively 

warmer. In conifer there was little difference (0.5 °C) mostly during the day . The average 

difference across all plots and times was 0.7 °C (Fig. 4.13). The difference in temperature 

could have caused a slight bias in the sublimation rate estimates. It is unclear if 

differences in pan temperature would cause an increase net condensation or sublimation 

during a 24-hour period . 

During the sublimation observations on DOY 102 and 103, the snow was not 

replaced between observations. It was noted that melting snow had produced liquid 

water (-15 mm) which had subsequently frozen at the bottom of the pan during the first 

observation (DOY 102). The frozen water could have prevented the pan temperature 

from dropping below freezing at night due to the increased ice density (less air). On the 

second day (DOY 103) the temperature of the snowpack was raised several degrees 

above the temperature of the pan. All other observations the snow was replaced at the 

start of each 24-hour period. 
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Transpiration Period 

Aspect effects on relative sap velocity 

Differences between the period of transpiration for aspen and conifer trees were 

evaluated by indexing sap velocity for aspen and conifer based the on peak daily sap 

velocity parameter K. Sap velocity was assessed for the four cardinal aspects of a single 

aspen and a single conifer tree and were plotted for within tree comparison. The dates 

chosen for comparison were selected at approximately one month intervals when both 

aspen and conifer data loggers were working, DOY 246, 287, and 314 (9/3/06, 10/13/06, 

and 11/10/06). Several differences between the cardinal distributions of sap velocity can 

be observed between the aspen and conifer trees (Fig. 4.14). The highest sap velocities 

for the conifer tree occurred on the north side of the tree on all days. The next highest 

velocities were observed in descending order: south, west, and east, although this pattern 

changed by the last observation on DOY 314 (Fig. 4. l 4f), when the west aspect flux 

exceeded the south. 

In the aspen tree the sap velocity was initially highest on the west side of the tree 

followed closely by the south, north, and east aspects (Fig. 4. l 4a). The aspen were 

observed to senesce their leaves during the first 2 weeks of October (~DOY 274-288). 

The observed sap velocities on DOY 287 and 314 (10/13/06 and 11/10/06) are considered 

signal noise possibly associated with the extreme changes in diurnal temperature . In the 

second and third observations the differences in measured sap velocity could be due to 

differences in daytime stem temperature by aspect, under no flow conditions . Although 

sap velocity differed by aspect, the south side of the tree appears to be a reasonable 

differences in daytime stem temperature by aspect, under no flow conditions. Although 
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4. 14 Daily sap velocity index in aspen and conifer on four cardinal aspec ts (n= l) . 
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Although sap velocity differed by aspect, the south side of the tree appears to be a 

reasonable approximation of seasonal transpiration activity for both species. In both 

species the south side of the tree reported moderate values relative to the other aspects. 

Seasonal sap flow 
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Transpiration activity period differed between aspen and conifer plots in fall 2005 

and spring 2006 (Fig. 4.15). Transpiration activity scaling (K) values less than 0.1 were 

considered signal noise, based on the observation that values < 0.1 K continued to be 

recorded in aspen plots after leaf senesce occurred on DOY 280 (10/7 /06) and DOY 288 

(I 0/15/06) in Bocks I and 2, respectively. In the fall, conifer had K values greater than 

0.1 K until DOY 304 (10/31/06) and DOY 305 (11/1/06) in Bocks 1 and 2, respectively. 

This extended the transpiration activity period in conifer for 24 days in Bock I and 

3 ldays in Bock 2. However, the conifer transpiration rate in fall (-0.2 K) was less than 

peak summertime transpiration rate (-0.5 K). 

In spring, both of the aspen data loggers failed, however, aspen leaf flush did not 

occur until after snow ablation period ended on -DOY 139 (5/19/05, Fig. 4.15b and d) . 

Conifer K values greater than 0.1 were recorded in Blocks 1 and 2 beginning on DOY 

120 and 135 (5/1/05 and 5/15/06), respectively. Conifers were active for 13 and 4 days 

during the snowmelt period in Blocks 1 and 2, respectively. The peak daily transpiration 

values during this time were 0-0 .2 K. Conifer transpiration rates may have been 

diminished during these extended fall and spring periods in response to low VPD, 

daytime temperature, and soil moisture (Fig. 5). 
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Fig. 4.15 Peak daily K values in aspen and conifer plots 2005-2006 . 

We estimated net transpiration in conifer during the fall and spring period s when 

aspen were dormant. The available K data from Block 2 was combined ET estimate s 

( discussed in next section) which were within the range of transpiration rates reported in 
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the literature . Transpiration rates reported for Pinus contorta stands (Knight et al., 1981) 

were 3.3 mm day"1, while Pataki et al. (2000) reported 2.6 +/- 0.6 mm day"1 in P. contorta 

and Abies lasiocarpa stands in Wyoming. We scaled our estimate of average daily 
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summertime ET rate in conifer (2.8 mm day -1

) using daily K values during the fall and 

spring period. 

We assumed that maximum transpiration rates in conifer (2.8 mm day -1
) occur at 

a K value of 0.5 or greater. For each day that K > 0.1 the stand level transpiration was 

calculated as 

Transpiration [mm dai 1
] = K*2.8 mm dai 1 

0.5 

The total transpiration during the extended fall transpiration period after aspen leaf 

senescence, conifer transpired approximately 14 mm and 5 mm in Blocks 1 and 2, 

respectively. During spring snow melt in Blocks 1 and 2 conifer plots was estimated to be 

14 mm and 3 mm during the spring snowmelt period . 

Transpiration activity related to meteorologi cal variables 

A linear regression model was used to test the seasonal trend in conifer 

transpiration activity and to determine atmospheric variables related to spring and fall 

transpiration activity period. The fall season K values over the period of DOY 213 to 

304 (8/ 1/06 to 10/31/06) were used to test for relationships with physical atmospheric 

variables . Peak daily K values were plotted separately for each block against : mean 

daytime VPD, peak daytime VPD, and mean daytime temperature. Of all variables 

tested, mean daytime temperature (7am - 6pm) had the best relationship to peak K (Fig. 

4.16), in Block 1 (R2 = 0.33, P < 0.05) and Bock 2 (R2 = 0.53, P < 0.05). Vapor pressure 

deficit was low during the fall, winter and spring periods when aspen were dormant and 
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Fig. 4.16. Regression of mean daytime temperature (7am - 6pm) and peak K values in 
aspen and conifer fall 2005. 

conifer continued to transpire (Fig. 4.17). For these reasons, transpiration activity period 

had little effect on net annual transpiration differences between aspen and conifer. 

Soil Moisture 

Shallow soil water recharge 

Shallow soil moisture in Blocks 1 and 2 was monitored from fall 2005 through 

spring 2006. The volumetric water content of shallow probes placed outside the tree 

65 



Vapor Pressure Deficit and Transpiration 
Activity Index (Block 2) 

3.5 ~--------------~ 0.7 
V PD 

3 -- Aspen 0.6 
-- Con ifer 

~ ...... 2.5 - - -- - 0.5 a. >< ...... 
(ll (!) ~ 

(/) "O .......... 
::, (ll 
,.,, Q. 
:fl -¥ 2 -
.............. 0.4 >, -= a, 

~ ~ Q) 
- o.3 c ·u ~ Q. -~ 

0 _g 1.5 
a. (!) 
(ll c 

.:.:: 0 .... 
(ll - (ll 

> 0.2 &_ ~ o. 

0.5 - 0.1 

0 ~--~~- ~ ~~-~~~~_,_i-...,_,._ 0 

182 212 242 272 302 332 362 27 57 87 117 147 

DOY (2005-2006) 

Fig. 4.17 Vapor pressure deficit and transpiration activity in aspen and conifer. 
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numbered wells (odd probes) and within the tree wells (even numbered probes) were not 

consistently higher or lower in either aspen or conifer plots (Fig. 4.18). Thus, there was 

no evidence that shallow soil moisture depletion near the tree wells was greater than soil 

moisture depletion in the interspaces. 

Over the entire fall through spring period average shallow soil moisture within 

both Blocks l and 2, was higher in the aspen plots relative to the adjacent conifer plot s 

(Fig. 4.19). Shallow soil moisture content was very low for several weeks in fall 2005, 

prior to DOY 270 (9/27/05). A series of precipitation events that occurred over the 

period from DOY 270 to 281 (10/8/05 to 9/27/05) recharged a portion of the shallow 

layers in both aspen and conifer stands. The effect of precipitation on shallow soil 

moisture recharge was higher in Block 2, suggesting either greater precipitation or greater 
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Fig. 4.18 Soil moisture (10 cm) near tree boles (even number probes) and in the 
interspaces (odd number probes) during winter 2005-2006. 

melting of intercepted snow. In both Blocks 1 and 2 shallow soil layers in aspen 

recharged more than the adjacent conifer following these precipitation events . 
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Shallow soil moisture recharge occurred differently during the snow accumu lation 

and the snowmelt periods. Only a small amount of recharge occurred during snow 

accumu lation period from DOY 323 to DOY 64 (11/13/05 to 3/5/06). During this period 

shallow water content in aspen increased by 0.09 and 0.08 m3 m·3 in Blocks 1 and 2, 

respectively, while shallow soils in conifer increased shallow water content by 0.11 and 

0.04 m3 m·3 in Blocks 1 and 2, respectively. 
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Fig. 4.19 Mean shallow soil moisture (10 cm) content in Blocks 1 and 2 during fall, 
winter, and spring 2005-2006. 

Infiltration of water from snowme lt rapidly increased shallow soil water content 
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over the period from DOY 64 to DOY 77 (3/5/06 to 3/18/06). This period was preceded 

by a week of above freezing temperatures which continued during the following week. 

Although the water content in shallow soils continued to increase in aspen and conifer 

recharge rates slightly declined around DOY 77 (3/18/06) . The rate of increase in shallow 

soil moisture content was slightly higher in aspen plots in both Blocks 1 and 2. Shallow 

soil moisture content was greater in aspen at all times during the late fall, winter, and 

spnng. 

Vertical soil water recharge 

Vertical profiles of soil moisture were monitored in Blocks 1 and 2 during fall 

2005 and spring 2006. The soil moisture profile was also monitored at the Lightning 

Ridge SNOTEL station in an aspen stand. The moisture profile in Block 1 was 

monitored beginning DOY 274 (10/ 1/05, while the SNOTEL and Block 2 data became 
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available DOY 31 (1/31/06). Data from the deepest probe (102 cm) in the aspen plot of 

Block I was not collected until late summer 2006, due to a bad wire connection. 

The recharge of deep soil layers began earlier in aspen than in conifer. The initial 

fall precipitation events that occurred from DOY 270 (9/27 /05) to DOY 281 (10/8/05) 

infiltrated into the 51 cm depth in Block 1 aspen. All soil layers in aspen continued to 

recharge through the winter (Fig. 4.20a). 

The conifer soil profile in Block 1 was not affected by the initial fall precipitation 

events. Shallow probes in conifer (5 cm and 10 cm) rapidly began to recharge in the 

middle of winter DOY 342 to DOY 7 (12/8/05 to 1/7/06, Fig. 4.20b). This relatively 

rapid rate of infiltration was also observed in some of the other shallow conifer probes 

(Fig. 4. l 9b ). Deeper areas of the conifer soil profile in Block 1 did not begin to recharge 

until DOY 74 (3/15/06). 

The vertical profile of soil moisture recharge patterns in Block 2 were similar to 

those in Block 1 aspen and conifer. The aspen profile began to recharge the deepest 

layers of the profile while the deepest conifers layers remained relatively dry (Fig. 4.20 c 

and d) . The deepest layer (I 02 cm) in aspen was consistently wetter than the overhead 

layer prior to saturation. Both aspen and conifer profiles rapidly increased the rate of 

recharge later in Block2 than in Block 1. 

The vertical profile of soil moisture content in the Lightning Ridge SNOTEL 

station was different from aspen and conifer plots in Blocks 1 and 2. The soil profile had 

begun to recharge to 20 cm depth by DOY 31 ( 1/31/06). The deepest layers in the soil 

profile rapidly increased water content beginning DOY 98 (8/4/06) (Fig . 4.21) . The 

deepest probes in the SNOTEL and Block 2 aspen profile (51 cm and 102 cm) were 
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Fig. 4.20 Vertical profiles of soil moistur e content in Block s I and 2 during fall winter 
and spring 2005-2006. 

similar to each other. Thus, missing values in aspen Block l profil e ( 102 cm) were 

expected to be similar to the overhead probe (51 cm). 

Soil temperature 

Winter-time soil temperatures were measured for the vertical soil columns 

instrumented in Block I aspen and conifer. In both aspen and conifer soil temperature 

increa sed with depth . Aspen soils remained slightly warmer thought the winter, possibly 

due to greater shortwave radiation input s prior to snow accumulation and a deeper 
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Fig. 4.21 Vertical profile of soil moisture content at the SNOTEL station. 

insulating snowpack throughout the winter. Shallow soil layers under conifer (10 cm) 

were frozen during the first months of winter (Fig. 4.22). 

Soil column water content 

The equivalent depth soil column water content during the melt period was 

calculated for Block s I and 2. The mis sing values for the Block l aspen plot (102 cm) 

were estimated to be equal to the soil moisture content of the overhead probe (51 cm). 

The lowest probes (51 cm and 102 cm) at the SNOTEL station and in Block 2 were 

similar. 

Total soil water content in fall DOY 270 (9/27 /05) was similar between aspen and 

conifer in Block l. Total soil water content peaked at different times between blocks but 

was simi lar within blocks probably due to differences in snow energy balance caused by 

aspect. In both Blocks 1 and 2, soi ls under aspen had a greater water content at peak 

saturation due to soil column characteristics including depth, and porosity (Appendix C). 
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Soil column water content was monitored throughout the remainder of the 2005-2006 

WY in Block 1 (Fig. 4 .24a). The soil water content declined during the summer growth 
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period . The water content on the last day of observation DOY 250 (917/05) was 132 mm 

in aspen and 141 mm in conifer. 

Patterns of soil water depletion during the summer growth period were similar in 

Block 1 aspen and conifer. In aspen and conifer, shallow soil layers were depleted faster 

than deep layers (51 and 102 cm), due to higher plant root density. In both aspe n and 
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Fig . 4 .23 Total soil column water content in Block s l and 2 during fall, winter , and spring 
2005-2006. 

conifer profile s, three distinct precipitation periods recharged the shallow soil layers to 10 

cm depth. By the end of the summer, both profiles indicated the majority of water was 

contained in the lower half of the soil column (Fig. 4.24b and c). Over the course of the 

2005-2006 water year aspen soils usually contained more water in the column; soil 

moisture content converged in the fall dry season. Shallow soil layers in the aspen plot 

had higher volumetric water content for the majority of the year. 



.... 
QJ ".' 

600 ·----

500 · 

400 · 

300 

200 

100 

0.5 

-- Aspen 

Conifer 

Aspen 

co E 
:i: (') 0.4 
u E 

·c 0 .3 
ID C 
E .2 ::} c 0.2 

- 0 g (.) 

CD e; 
cri E 
:i: (') 
u E ·;:: 

Cl) c 
E .2 
::} c 

- 0 g (.) 

0.1 

ronifer 
0.5 

- 5cm 
0.4 - 10cm 

0.3 · 

0 .2 

0.1 

20 cm 
- 51 cm 

- 102cm 

a 

b 

c 

0 ~----------------------~ 
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Month (2005-2006 WY) 

Fig .. 4 .24 Annual soil column water content and vertical distribution of water in Block l 
aspen and conifer soils. 

74 



75 
Spring Snowmelt Potential for Groundwater Recharge and Runoff 

A mass balance model for water based on measured water pools and estimated 

daily fluxes was used to determine the potential for differences in groundwater and runoff 

yield in aspen and conifer stands . Water contained in the snow, soil, net snowpack 

sublimation, and net potential for groundwater recharge and runoff were estimated for 5 

days , one at the beginning of the water year and 4 days at 2-week intervals during spring 

snowmelt (Fig . 4.25). On the first day of observation DOY 270 (9/27 /05) the soil 

columns in Block 1 were relatively dry in aspen (99 mm) and conifer (97 mm). Data for 

Block 2 soil profile were not available for this day, but, were assumed to be to similar to 

Block 1. This assumption was, in part, supported by similar water content in shallow soil 

probes in Blocks 1 and 2 during in fall 2006 (Fig. 4.19). Assuming that Block 2 soil 

profile and shallow probes would be similar as in Block 1, shallow probe measurements 

were used to determine soil column water storage for the DOY 270 (9/27 /05) 

observation , estimated at 69 mm in aspen and 67 mm in conifer. 

The second date corresponds to the peak SWE in spring, and estimates of water 

contained in the snow and soil profile were used to determine total moisture storage in 

the aspen and conifer stands (Fig. 4.25). For Blocks 1 and 2, the second observation 

occurred on DOY 103 (4/13/06) and DOY 99 (4/9/06), respectively, corresponding to the 

dates on which snow surveys were conducted . The total water stored in snow and soil 

pools on these dates were used to estimate potential runoff or groundwater recharge for 

three subsequent dates. Estimated water pools for the last three dates, DOY 120, DOY 

130, and DOY 138 ( 4/30/06, 5/10/06, and 5/18/06) included snow, soil, net sublimation, 

net transpiration, and net potential for groundwater recharge and runoff. 
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Fig. 4.25 Water pools for aspen and conifer in Block s l and 2 for 5 days in fall 2005 and 
spring 2006. 

Sublimation losses between observation date s were estimated as the average of 

the 2006 sublimation I condensation observation s (0.8 mm da/) multiplied by the 

number of days since the last observation date. Transpiration was calculated for the 

conifer only (aspen had no leaves) , but was relatively minor during the ablation period. 

The amount of water potentially available for runoff and groundwater recharge for a 

given date was calculated as the difference between the total water in the preceding 



observation date and amount of water remaining in the snow and soil on that date 

minus net sublimation and transpiration losses since the first observation date. It was 

assumed that modeled groundwater recharge and runoff was not available for 

transpiration later in the growing season. 
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The predicted potential for runoff and groundwater recharge was greater in aspen 

than conifer stands in both Blocks I and 2. In Block 1 the greatest water storage (snow 

and soil) was measured on DOY 103 (5/10/06) in aspen (1160 mm) and conifer (706 

mm). The potential for runoff and groundwater recharge in Block 1 on DOY 138 was 

predicted to be 42% greater in aspen (773 mm) than conifer (447 mm). In Block 2, peak 

water storage in snow and soil was observed on DOY 120 (4/30/06) in aspen (1274 mm) 

and conifer (573 mm). Potential for runoff and groundwater recharge in Block 2 on DOY 

138 was predicted to be 83% greater in aspen (662 mm) than conifer (118 mm). Most of 

the snow water in the Block 2 conifer plot recharged the soil column during the melt 

period . 

Potential for Canopy Snow Redistribution 

Total precipitation (measured) was compared to the calculated net precipitation in 

Blocks 1 and 2 to indirectly determine if canopy redistribution caused snow accumulation 

differences between aspen and conifer. In the winter net precipitation = precipitation -

redistribution - sublimation. The net precipitation was calculated from water storage in 

snow and soil at PSWE in aspen and conifer plots in Blocks I and 2, and the Lightning 

Ridge SNOTEL station . The water storage of the Lightning Ridge SNOTEL station was 

calculated (SNOTEL *) as the sum of measured soil and snow water pools minus soil 

water storage measured at the beginning of the water year DOY 270 (9/27/05). When 



SNOTEL * was compared to measured net precipitation (SNOTEL) the estimate was 

similar, SNOTEL * underestimated net precipitation by 29 mm (Table 4.1 ). 
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Because a direct measurement of total precipitation was not available in Blocks I 

and 2 net precipitation was calculated for each plot as described above (Table 4.1 ). In 

Blocks 1 and 2, aspen had higher net precipitation in snow and soil than the measured net 

precipitation at the SNOTEL station. In Blocks 1 and 2, conifer had less net water stored 

compared to the SNOTEL station. The within block mean net precipitation of aspen and 

conifer plots was slightly greater than the measured net precipitation at the SNOTEL site. 

While net precipitation between individual plots and the Lightning Ridge SNOTEL 

station were different, net precipitation between Blocks 1 and 2 and the Lightning Ridge 

SNOTEL station were similar (Fig. 4.26). This indicates that net precipitation in Blocks 1 

and 2 may be slightly higher than at the Lightning Ridge SNOTEL station. 

Redistribution processes may have caused differences in peak SWE that were observed 

between aspen and conifer. The net precipitation at the block level might have been lower 

than the SNOTEL total precipitation if significant canopy sublimation had occurred in the 

conifer plots, rather than redistribution of intercepted canopy snow. 

Summertime Ecosystem Evapotranspiration 

Total soil moisture content was monitored throughout the summer of the 2005-

2006 WY in Block 1. Summer precipitation events did not add large amounts of water to 

the soil column. In the course of the 2005-2006 WY, 1006 mm of precipitation fell as 

snow. During the summer growth period 91mm of precipitation fell in the form of rain. 
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Table 4.1 Net precipitation measured at the Lightning Ridge SNOTEL station 
(SNOTEL), and calculated net precipitation for the Lightning Ridge SNOTEL 
(SNOTEL *), aspen and conifer plots, average of aspen and conifer in Blocks 1 
and 2 ((A+C)/ 2), and difference between average and SNOTEL (Difference). 

SNOTEL SNOTEL* Aspen Conifer (A+C)/2 Difference 

Block 1 
Block 2 

SNOTEL 

DOY mm mm mm mm mm 
103 765 985 653 819 
120 789 1083 532 808 

98 752 723 

Net precipitation measured at SNOTEL and 
calculated in blocks 1 and 2 
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Fig. 4.26 Net precipitation measured at the SNOTEL station and calculated from water 
stored in Blocks 1 and 2. 

Both aspen and conifer soils experienced depletion of nearly all available soil water 

during the summer growing period (Fig. 4.27). 

Ecosystem evapotranspiration (ET) rate for Block 1 aspen and conifer was 

estimated based on the initial spring soil water storage on DOY 144 (5/24/06), 
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summertime precipitation inputs, and the final fall water storage on DOY 250 (9/7/06). It 

was assumed that after spring snow melt there was minimal percolation of soil water to 

bedrock fissures below the soil column , and that summertime precipitation events were 

not of sufficient intensity and duration to exit the system via overland flow. Given these 

assumptions, average daily ET was 3.6 mm day"1 in aspen (451 mm) and 2.7 mm day"1 in 

conifer (343 mm) during the period from DOY 144 - 250. The higher soil water storage 

in aspen at the beginning of the growth period was offset by a greater ET rate per day 

during the growth period. The ET rates converged around DOY 210 (7/29/06). This was 

likely the result of decreased soil matric potential which at - 0.22 m3 m-3 water content is 

approximately -600 kPa for silt loam soils (van Genuchten, 1980) . Under these 

conditions, transpiration rate could be primarily regulated by soil water movement to the 

plant rather than VPD and temperature of the atmosphere. Near the end of the water year, 
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on DOY 224 (12/8/06) both aspen and conifer ecosystems had equally depleted nearly 

all plant available water. 



CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

Mechanisms Related to Water Yield 
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This study examined several hydraulic parameters and water transfer mechanisms 

to determine how differences in water yield could differ between stands of aspen and 

conifer. Seven hypotheses related to water dynamics were addressed to determine which 

hydrologic processes might affect water yield . This study is unique in that we measured 

many hydro logic variables simultaneously to asses the relative importance of each 

component in contributing to potential annual water yield differences. 

The first hypothesis stated that aspen and conifer communities were expected to 

retain different amounts of snow during peak snow accumulation. This was strongly 

supported during both years and across all blocks. Aspen stands had significantly higher 

SWE than paired conifer stands. In the winters of 2005 and 2006 , aspen stands had 34-

44% greater snow accumulation. These findings are consistent with those of previous 

researchers that have measured differences between open or deciduous stands and the 

contrasting winter foliage density of conifers. Relative to open or deciduous stands, peak 

snow accumulation in conifer has been reported to be 15-40% lower in montane and 

alpine systems (Dunford and Niederhof, 1944; Miller 1962, Hoover and Leaf, 1967; 

Gary, 1974; Gary and Troendle, 1982; Troendle et al., 1993; Skidmore et al., 1994; 

Moore and Mccaughey, 1997; Gelfan et al., 2004) . 

When changes in soil water content are combined with peak snow water 

equivalent, aspen stands had even greater (42-83 %) winter precipitation accumulation 
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relative to adjacent conifer stands in 2006. Previous studies which have examined only 

the SWE differences between forest stands have neglected changes in soil water content 

during the snow accumulation period . Our data illustrate that SWE alone may not be 

sufficient to accurately compare total winter snow accumulation between forest types. 

Soils under aspen stands in our study had greater soil column water content at the time of 

peak snow accumulation. 

Aspen had higher soil moisture recharge during the snow accumulation phase, 

which could have been a result of heat transfer from the aspen soil to the snowpack and 

greater snowpack energy content. The snowpack temperatures measured during the melt 

period were higher in aspen stands relative to conifer stands, as previously reported by 

Swanson and Stevenson ( 1971 ). This suggests that the aspen snowpack receives more 

direct shortwave radiation as well as long-wave radiation reemission from the leafless 

aspen canopy structures . Increased snow energy content of the aspen snowpack 

accelerated the snow metamorphosis and densification, indicated by aspen snowpack 

density which was consistently higher than conifer snowpack density across all blocks 

and times during the melt period. Earlier soil column saturation in aspen was a result of 

faster snow ablation rates. 

The second hypothesis stated that sublimation and condensation gains and losses 

from the snowpack beneath aspen and conifer stands were expected to differ throughout 

the melt period because of differences in energy balance caused by canopy stature. Our 

data did not indicate significant differences in net sublimation between aspen and conifer 

for seven observation days. Sublimation rates were estimated at 0.8 mm daf 1 over a 39-

day melt period in open aspen and conifer plots . Aspen tended to exchange more water 
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with the atmosphere via sublimation or condensation during individual observations, 

suggesting that differences in atmospheric exchange rates between stand types may 

occur. Higher rates of sublimation and condensation in aspen offset each other to 

reducing overall mean difference compared to conifer across all observations. The 

difference in snowpack temperature observed adjacent to the sublimation pans in aspen 

and conifer also suggests that the surface of the aspen snowpack was warmer which could 

contribute to greater sublimation rates. The amount of water sublimated from the 

snowpack surface during the melt period was minor (<5%) relative to snow accumulation 

and soil water pools, a finding consistent with Doty and Johnson (1969) who also 

compared sublimation rates in aspen and conifer stands within the Northern Rocky 

Mountains of Utah. 

The third hypothesis stated that the ablation period was expected to be extended 

in conifers leading to increased evapotranspiration loss within the late season snowpack. 

In both years, snow disappeared from both aspen and conifer stands within the same 

week. Given the low measured sublimation rates (0.8 mm daf 1
), the potential for 

differences in snowpack sublimation due to greater length of exposure (ablation period) 

to the atmosphere were minor (6 mm wk-1
). This pattern was also observed in boreal 

forests and other aspen-conifer stands (Dunford and Niederhof, 1944; Gelfan et al., 2004) 

where forest canopy structure affects both snow accumulation and snow melt rate. Forest 

snowpacks beneath conifer are shallow and melt slowly but ultimately disappear at the 

same time as open or aspen sites with deep, fast melting snowpacks. 

The fourth hypothesis stated that aspen stands were expected to have greater 

evapotranspiration rates during the growth period resulting in higher net summer 
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transpiration. Summertime ecosystem ET estimated from soil column water content 

was 25% higher in aspen (3.6 mm da/) relative to conifer (2.7 mm daf1). If we assume 

the growing period is approxiQ1ately 140-days long this would amount to 126 mm more 

water lost to ET in aspen than in conifer each year, accounting for approximately 11 % of 

the average annual precipitation. 

Increased net summertime ET in aspen was likely related to higher soil column 

porosity. The aspen soil stored more water during the snowmelt when soils became 

saturated. Both aspen and conifer utilized most of the soil column water content by the 

end of the growing season. Because of the higher ET rates in aspen stands, there was no 

difference in soil water content at the end of the fall 2005. 

The evapotranspiration rates we estimated from soil moisture loss in conifer were 

similar to previously values reported by Pataki et al. in (2000) [2.6mm day-1
) and by 

Knight et al. (1981) [3.4 mm daf 1
). Although sap flux was nearly identical between 

aspen and conifer trees per ground area in Wyoming (Pataki et al., 2000), our data 

suggests that the presence of understory plants in aspen could increase the whole 

ecosystem ET rate by at least 0.9mm daf I averaged over the growing period . 

The fifth hypothesis stated that aspen and conifer stands were expected to differ in 

total annual transpiration activity period leading to increased net annual transpiration . Sap 

flux measurements suggested that conifer were active for a longer total transpiration 

period beginning five day earlier in the spring, and continuing 24 to 31 days longer into 

the fall. Contrary to the modeling results of Gifford et al. (1984), net transpiration during 

periods of extended activity in conifer is a minimal portion of annual transpiration losses. 

Late season drought in 2005 equally impacted soil moisture in aspen and conifer. Aspen 
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stands utilized most available soil water before leaf senescence. The extended 

transpiration activity in conifer stands resulted in the near equal utilization of most plant 

available soil water between stand types, as evidenced by the very dry soil column water 

contents (0.07-0.10 m3 m-3
) in fall 2005. 

The sixth hypothesis stated that spring soil moisture recharge was expected to 

differ between aspen and conifer stands. We observed that aspen soils recharged more 

during the fall and winter, and became saturated earlier in the spring. This was 

corresponded to higher snow ablation rates in aspen. In aspen, shallow soil moisture 

recharge was 5 mm higher in early fall 2005. This soil recharge followed several early 

season snow events. Aspen could have had increased soil recharge during this period due 

to higher ground heat storage prior to the snow event and greater long wave radiation 

inputs to the snow and soil following the event. The aspen had lost their leaves at the time 

of the snow events, and we speculate that the heated soils transferred energy to the snow 

following the storm causing more melting to occur. In conifer stands, less soil water 

recharge may have been due to canopy snow interception. The snow that did reach the 

surface was relatively shaded, which may have reduced snow melt on warm days 

following the early fall snow events. 

Hypothesis seven stated that conifers transpiration activity in spring is facilitated 

by accelerated snow melt within conifer tree wells, evidenced by lower shallow soil 

moisture content within tree wells compared to forest interspaces between trees . The 

"tree well hypothesis" would have been supported by relationships between transpiration 

activity and changes in shallow soil moisture during the snow melt period. However, we 

found that the shallow soil moisture content in the interspaces and beneath tree boles was 
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not different. Sap flux data indicated that the transpiration rate (0.56 mm day -I) in 

conifers was much Jess than conifer snowmelt infiltration (4.9 mm dal) rates. These 

findings do not support the hypothesis that tree wells function as a significant snow melt 

water loss mechanism in conifer. 

We measured large differences in snow accumulation in aspen and conifer stands 

on north and northwest and northeast facing slopes within the Frost creek and adjacent 

watersheds in Northern Utah. The estimated snowmelt water yield to runoff and 

groundwater was higher in aspen relative to conifer, primarily due to higher snow 

accumulation in aspen forests. The results of this study suggest that contrary to the 

speculations of several researchers, transpiration does not contribute to large differences 

in annual water yield between aspen and conifer. The largest discrepancy in water 

balance we measured resulted from snow water accumulation throughout the winter. 

When changes in wintertime soil moisture content were taken into account, there was 

even greater water accumulation in aspen relative to conifer. Although aspen stands had 

higher ET rates during the growing season, these were not of sufficient magnitude to 

offset differences in water yield due to snow accumulation. Differences in transpiration 

and snowpack surface-sublimation during the snow melt period were not large enough to 

cause aspen and conifer water yield differences. 

Quantification of Water Yield in Aspen and Conifer 

There is great interest in the question of whether or not aspen forests will yield 

more water to stream runoff and groundwater recharge when compared to conifer forests. 

The decline in aspen stands in the Intermountain West may be due to conifer 
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encroachment or wildlife and livestock over-utilization of young aspen ramets (Bartos 

and Campbell, 1998). Many land managers are now interested in restoring aspen forests 

to regain a variety of resource values including livestock forage, wildlife habitat, and 

recreation. The hydrologic benefits of aspen restoration may include increasing the 

quantity of water delivered for agricultural and municipal use. 

Quantifying water yield increases after the restoration of aspen will have broad 

utility. Restoration treatments could pay for themselves if the initial cost of treatment is 

exceeded by the economic benefits of long-te1m water yield increases. While it is 

tempting to extrapolate our results across all aspen-conifer forests in the Intermountain 

West, it would be premature, based on the limited spatial inference of this study and our 

limited understanding of the factors affecting snow accumulation. A complete 

understanding of the water yield augmentation potential of conifer to aspen conversions 

requires a better quantification of the sublimation and redistribution processes acting on 

snow intercepted by the conifer canopy. 

Evidence for sublimation 

The physical processes of canopy-sublimation and redistribution were not directly 

investigated in this study . Average PSWE for two years was 197 mm (2005) and 305 

mm (2006) more in aspen relative to adjacent conifer stands, amounting to a 34% to 44% 

difference in snow accumulation . If we account for differences in wintertime soil 

moisture recharge, there was 42-83% higher net SWE in aspen during 2006. Canopy 

sublimation rates reported for conifer range from 29 mm yr-1 to 200 mm yr-1 (Lundberg et 

al., 1997; Pomeroy et al., 1998; Stork and Lettenmaier, 2002; Montesi et al., 2004). This 



suggests that sublimation could have accounted for 10 - 100% of the observed 

difference in snow accumulation. 
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There is great difficulty in tracing the pathway that snow will take after being 

remobilized from the tree canopy via the wind. Many authors have quantified canopy 

sublimation using the hanging tree method which makes the assumption that snow 

leaving the tree canopy moves in one of two vectors (Lundberg et al., 1997; Pomeroy et 

al., 1998; Stork and Lettenmaier, 2002; Montesi et al., 2004). The snow is either 

sublimated into the atmosphere or falls directly below the tree where it can be measured 

with lysimeters. The problem with measuring sublimation this way is that it does not 

account for snow particles that move away from the tree of interception to an adjacent 

snowpack surface . We expect sublimation to be greater in the conifer canopy because the 

surface area of intercepted canopy snow can be 60 to 1800 times greater than that of 

snow on the ground (Pomeroy and Schmidt, 1993). The greater surface area provides the 

opportunity for both accelerated sublimation and redistribution to occur . 

Canopy sublimation in the conifer stands is occuring to some extent in our system 

as evidenced by the sublimation of snowpack beneath the canopy . In addition , snow 

intercepted by the conifer canopy could be expected to sublimate at rates higher than 

those observed in the surface snowpack for three reasons . First, the surface area of 

intercepted snow is much greater than that of the flat snowpack surface . Second, the 

conifer trees themselves are dark bodies that reemit long-wave radiation that has 

penetrated the intercepted snow, thus, raising the temperature of the intercepted snow. 

Finally, sublimation is likely to be greater during the snow accumulation period 



(November -March) when the air is cooler and often dryer, compared to during the 

warm ablation period (April - May) when we conducted snowpack sublimation 

measurements. ' ~ 

Evidence for redistribution 
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Evidence for the redistribution of intercepted snow from the conifer canopy to the 

aspen snowpack may be inferred from calculated net precipitation and snow survey data. 

Peak snow accumulation in all aspen plots was consistently higher than the SNOTEL 

snow pillow, while nearly all conifer plots were consistently lower than the snow pillow. 

The snow pillow placement within the watershed was chosen by experienced NRCS 

snow hydrologists to approximate average snow conditions across the watershed. If the 

snow pillow is in fact a neutral position for averaging snow accumulation across the 

watershed, then the elevated snow accumulation in aspen relative to the snow pillow 

suggests that redistribution of snow from the conifer canopy to the aspen snowpack is 

occurring in this watershed. 

Redistribution and differential deposition processes are difficult to measure as 

they depend upon the large spatial scale of redistribution processes . In Blocks 1, 2, 3 

conifer stands were up-wind of the adjacent aspen stands, which could have redistributed 

the intercepted canopy snow to the aspen snowpack during the winter. However, in 

Blocks 4, 5, 6, and 8 there were no conifer stands in close proximity and upwind of the 

aspen plots. We calculated net precipitation in Blocks 1 and 2 to determine the net 

redistribution and sublimation effects of both aspen and conifer stands on the landscape. 

Net precipitation estimates were similar between Blocks 1 and 2 and the Lightning Ridge 

SNOTEL station when mean aspen and conifer values were averaged across blocks at 
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peak accumulation. This suggests that redistribution could account for a portion of the 

difference in SWE between aspen and conifer. This agrees with the findings of 

landscape-level inventories of SWE, which have suggested that alterations to forest 

canopy structure (e.g. clear cuts) change snow distribution, however, net accumulation in 

the catchment remains unchanged (Hoover and Leaf, 1967; Gary, 197 4; Stegman, 1996). 

Prospectives 

The ratio of sublimation to redistribution will largely determine the extent to 

which conifer to aspen conversion will augment water yield. It is likely that the 

sublimation to redistribution ratio changes across geographic regions and within 

topographically heterogeneous landscapes, due to canopy structures and physical climatic 

variables. In the present condition at Frost Creek watershed, aspen on North facing 

slopes are a likely a greater source of stream and groundwater yield than adjacent conifer 

stands due to greater snowpack. Conversion from conifer to aspen forest could increa se 

annual water yield if canopy sublimation in conifer is the primary process driving 

differences in snow accumulation . 

The distinction between sublimation and redistribution mechanisms leading to 

differences in observed peak SWE were not investigated in this study. If sublimation is 

responsible for snow accumulation differences , then removal of the evergreen canopy can 

be expected to increase net snow accumulation at the watershed scale . Conversely, if 

redistribution is responsible for differences in snow accumulation, then removal of the 

evergreen canopy will cause net snow accumulation to stay the same at the watershed 

scale with moderately decreased snow packs more uniformly distributed in aspen. Snow 

packs in the restored aspen area would be higher due to decreased canopy interception, 



92 
but the increase would be offset by decreased snowpacks in the pre-existing open or 

aspen stands which would not receive snow inputs from the conifer canopy. This could 

decrease stream water yield in soils beneath aspen if the soils develop higher porosity 

(discussed in the next section), which could retain more of the snow melt water for 

summer use. If redistribution is a dominant process leading to snow accumulation 

differences, then mosaic patterns of aspen and conifer stands might lead to the greatest 

stream water yield by creating large snow deposits in aspen. As we observed, large snow 

deposits in the aspen stands melt quickly. Future studies focusing on partitioning the ratio 

of sublimation to redistribution of intercepted canopy snow will greatly enhance our 

ability to predict water yield increases that could result from conifer to aspen conversion . 

Ecological Implications for Different Water Dynamics 

We speculate that ecosystem functions will respond to the differences in water 

balance observed in aspen and conifer. Differences in snow accumulation, soil moisture 

recharge , soil porosity, and melt rates in aspen and conifer may have the greatest effects 

on ecosystem function. Under aspen stands, a deep winter snowpack insulates the soils 

from freezing, and soil moisture is higher throughout the winter. These attributes would 

be expected to favor conditions for prolonged soil microbial activity and related food 

webs. Other wintertime ecological effects arising from aspen and conifer cover include 

canopy structure influences on energy balance and wintertime litter deposition . Increased 

peak soil column water content in aspen may lead to increased total primary productivity 

over the course of the growing season. 
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Biogeochemistry 

Snow cover acts as a dynamic nutrient reservoir, a mediator of soil nutrient 

cycling and gas emissions, and a source of hydro logic flux which drives nutrient export 

during snowmelt (Jones, 1999). Given that our snow accumulation and ablation rates 

were higher in aspen, we expect nutrient export during snowmelt to be elevated in aspen 

relative to conifer stands. Although nutrients accumulated in the snow may be small 

relative to nutrient pools in the soil, the nutrients in the snow melt water can increase 

rates of microbial transformation and root uptake in spring (Tranter, 1991 ). Elevated 

snow accumulation in aspen would be expected to have greater snow nutrients and 

therefore increased microbial transformation and root uptake during spring snowmelt. 

Inorganic nitrogen (N) pools are affected by the meteorological conditions driving 

deposition, as well as the biological activity of snow microbial assimilation. Biological 

assimilation ofNH 4 and N0 3 in snow was reported to exceed the daily rate of dry 

deposition during periods when the snow is saturated with free water in a northern boreal 

forest (Jones and Sochanska , 1985). Microbial assimilation of inorganic N was reported 

to be accelerated by the addition of conifer needles in snow . Over the course of a winter 

conifer needles could reduce available N in the snow water pool by 62% prior to melt 

(Gamanche, 1992). The energy balance in aspen and conifer snowpacks were very 

different as evidenced from snow density and ablation rates . We speculate that the litter 

quantity within the aspen snowpack will be diminished because leaves undergo 

senescence prior to snow accumulation. However, aspen will be expected to have much 

greater surface litter deposition prior to snow accumulation . These differences may be 
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significant enough to moderate the composition of snow and soil microbial populations 

and affect nutrient cycling pathways in each stand. 

Snow cover also affects soil microbial activity and soil respiration by regulating 

soil temperature, moisture, and gas exchange with the atmosphere. During this study, ice 

lenses were observed only in the conifer stands during snow surveys. These impermeable 

layers reduce gas fluxes between the soil and atmosphere (Winston et al., 1995). Soil 

microbial activity could be higher throughout the winter in aspen due to higher soil 

oxygen concentrations and available carbon substrate as well. 

Nutrient export is highest during snowmelt in evergreen and deciduous forests 

dominated by snow precipitation (Jones and Roberge, 1992; Williams, 1993). Stream 

runoff nutrient concentrations could have originated from both snow and soil nutrient 

pools that have undergone mineralization during the winter. Aspen had higher snow 

accumulation, ablation rates, and higher porosity (lower bulk density) in our study. 

Longer periods of saturation and higher infiltration rates through the aspen soil column 

could increase the leaching of soil nutrients. However, over winter decomposition of 

aspen litter beneath the snowpack may have immobilize soil nutrients before melting 

occurs . 

Wildlife 

We speculate that aspen may serve as refugia for small mammals during the 

winter snow accumulation period. In this study, higher spring rodent activity in aspen 

stands was anecdotally observed. To survive in the cold, insectivores possess high 

metabolic rates and have to feed almost continuously. Subnivian (below snow) fauna 

active in the winter include: oligochaetes, mollusks, centipedes, pseudoscorpions, 
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phalangids, spiders, mites, springtails, beetles, flies, wasps, and other insects 

(Aitchison-Benell, 2001). Shrews favor habitats with deep humus or snow cover where 

they construct nests to conser:v;e heat (Atichison-Benell, 2001). Omnivorous rodents tend 

to be hibernators or in torpor, while herbivorous microtine rodents are active during the 

winter (Jones et al., 2001). Small mammals are a key component of the winter food 

supply for weasels, foxes, birds of prey and other large carnivores. Higher soil water 

contents and temperatures in aspen soils would be expected to increase subnivian animal 

activity during winter, and thus, facilitate greater productivity within the higher trophic 

levels of the animal community. 

Soil genesis 

During soil genesis, morphological features such as soil column porosity could be 

affected by feedbacks with forest cover. Aspen and conifer may have occupied these soils 

with alternating residence during succession cycles at perhaps 200-500 year intervals , or 

they may be relatively persistent. It is noteworthy that under the current conditions , 

aspen soils in our study plots had greater porosity which increased soil column water 

content during the growing season by retaining more snowmelt water. An investigation 

into whether or not soils mediate vegetation or vice versa is warranted in this system. 

Differences in soil porosity beneath aspen and conifer could have resulted from 

ecological feedbacks including snow accumulation, litter quality and quantity, and small 

mammal activity which facilitate soil genesis. Dahlgren et al. (1997) found that soil 

properties including pH, soil color, clay and secondary Fe oxide concentrations showed a 

pronounced change (threshold-type step) over a 1600 m vertical transect which coincided 

with the present winter snow-line. Presumably the difference in snow accumulation and 
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differences in spring infiltration rates and duration in aspen and conifer could effect 

these properties. Yimer et al. (2006) reported that differences in soil textural fractions and 

bulk density may be attributed to differences in organic matter contents and leaching 

within the soil profiles mediated by vegetation type. The aspen had greater SWE and 

snow melt rates that increased potential for leaching and could be a greater source for 

annual leaf litter inputs relative to conifer. 

Aspen soils may have greater rodent activity during the winter due to the deeper 

snowpacks which insulate soil and maintain higher temperatures and water contents 

during the winter. Bioturbation (rodent disturbance) can increase soil porosity by the 

ejection of soil from fossorial mammal burrow systems. Ejected soil is generally of low 

bulk density, erodes readily, and varies greatly with respect to concentration of nutrients 

and organic matter (Van Miegroet et al., 2000). While pedogenisis was not investigated 

during this study we speculate that soil properties will be affected by the presence of 

aspen vs. conifer forest. 

Fire, drought, and pathogen stress 

Summer water dynamics in forest vegetation and soils are complimentary 

variables that may affect fire risk and beetle invasion caused by summer drought. In our 

study, aspen maintained higher soil water content than conifer during the 2006 summer 

fire season. This occurred despite higher rates of aspen ET, which were offset by higher 

soil column porosity and water content at the onset of the growth period . During the 

2006 water year, snow accumulation was above average and both aspen and conifer soil 

columns were saturated during the snowmelt period. In a below average snow year soils 

in conifer stands may be less likely to saturate the soil column during snowmelt because 



of less SWE. If summer precipitation is low as well, conifer stands could be more 

susceptible to drought stress and associated disturbances such as fire and beetle 

outbreaks . 

Evapotranspiration estimates were higher in aspen stands than in conifer stands, 

suggesting that aspen community has the potential to transpire more when soil water is 

unlimited. This could mean that aspen stands will be more susceptible to persistent 

annual drought due to a early utilization of limited soil water. Conversely, reductions in 

understory biomass in aspen may compensate for water scarcity following dry winters . 
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Mixed stands containing both aspen and conifer could have the greatest potential 

for water stress and associated disturbances. If canopy sublimation is the main 

mechanism lowering SWE, then the presence of conifer in the stand will result in lower 

snow accumulation available for soil moisture recharge in spring. During the growth 

period, the presence of aspen may increase evapotranspiration causing an early utilization 

of soil water. As we observed, aspen had higher ET rates until soil water content was 

diminished to 0.22 m3 m·3• This could explain why Pataki et al. (2000) found that mixed 

aspen and conifer stands had lower transpiration rates than adjacent stands of pure aspen 

and pure conifer during persistent summer drought. 

If mixed aspen and conifer stands have increased susceptibility to disturbance it 

would explain part of the succession cycle. If disturbance is more likely to occur in 

drought susceptible climax stand ( conifer dominated), it will be followed by the rapid 

recruitment of young aspen ramets from root reserves that survive the fire. I speculate 

that by utilizing unlimited soil water early in the growing season, aspen facilitate 

wildfires in mixed stands thereby competing with conifer. 
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Climate Change Scenarios 

The U.S. Global Change Research Program (USGCRP) has made climate 

change projections for the Rocky Mountain and Great Basin regions based on various 

global circulation models (GCM). According to these models, annual temperature could 

increase by 1.1-2.7 °C (2 to 5 °F) and total precipitation could increase by 50-100% by 

the end of the 21st century (USGCRP, 2006). We can use this hypothetical climate 

change scenario to further postulate the impacts that climate change could have on water 

yield from aspen and conifer forests. 

Climate change can affect the availability of water resources by altering the 

seasonal timing and form of precipitation which are dependent upon atmospheric 

temperature (USGCRP, 2006). According to the GCM, the largest increase in 

precipitation is projected to occur during the winter. Warmer temperatures could cause 

rainfall to change to snow later in the fall, and spring snowmelt may occur earlier. Along 

with snowpack retreating to increasingly higher elevations, the overall result could be 

reduced snowpacks , increased winter stream-flow, earlier spring run-off with lower peak 

discharge, and longer periods of low summer and fall flows . Evapotranspiration would 

likely increase due to rising temperatures and VPD. This could offset the gain from 

increased precipitation if water is available during the growing season. 

If the GCM predictions are correct, we can further speculate as to the effects on 

water dynamics in aspen and conifer forests . Increased rainfall during winter could 

reduce the discrepancy between aspen and conifer snow accumulation and increase 

winter soil moisture recharge rate in both systems. Conifers might still have diminished 

winter soil moisture recharge relative to aspen due to the interception of rainfall by the 
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evergreen canopy. If snowpacks alone are diminished, then the flood potential due to 

fast ablation of deforested or aspen-dominated landscapes could be diminished. However, 

if soils are saturated prior to snowmelt, then floods could result from the rapid ablation of 

a smaller snowpack . If high variability in temperature occurs, then we could expect more 

rapid spring warming and rain on snow events leading to rapid melt rates. Snow melt is 

able to saturate the soil column by prolonged persistent irrigation which can eventually 

displace air trapped in the soil pores. Diminished snow packs would be less likely to fully 

saturate the soil column via prolonged irrigation. 

If there is no increase in summer precipitation accompanied by increasing 

summertime temperatures and ET, drought stress could increase in both aspen and 

conifer. Conifer respond to high VPD by restricting their stomata, resulting in slower 

growth rates and the conservation of soil water (Massman and Kaufmann, 1991). Aspen 

and conife r have similar transpiration rates during annual summer drought (Pataki et al., 

2000). Our ET data suggests that once the soil water content passes a threshold where 

soil matric potential limits water uptake rate in plants . Transpiration rates converged 

when soil water content was -22 m3 m-3
. However, above the threshold, aspen use water 

with little stomata! regulation in response to high VPD. We found that aspen 

communities had a 25% higher evapotranspiration rate than conifer communities over the 

entire growth period . If summertime precipitation increases, aspen can be expected to 

utilize the soil water column faster than conifer during periods when soil moisture is 

unlimited. 

Givnish (2002) reported that temperate deciduous trees in North America tend to 

dominate forests in areas characterized by cold winters with frozen soils and short day 
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lengths and high precipitation in the spring, fall, and winter; while evergreen forests 

are associated with mild winters and longer growing seasons . Based on these 

observations it is difficult to d~termine weather the USGCRP climate predictions would 

favor either aspen or conifer. 

If, contrary to GCM projections, precipitation actually decreases in the Rocky 

Mountains and Great Basin regions, competition for already limited water supplies will 

increase in aspen and conifer stands. Aspen soils had a greater peak water content at 

saturation due to higher soil column porosity. During an average or below average snow 

year, peak soil water content differences may be even greater. Conifer soils may not 

reach saturation in a below average snow year, assuming that snow accumulation ratios 

stay constant. We might expect greater stress on both species and increasing 

susceptibility to disease and fire in conifer and perhaps aspen die off both due to drought 

stress. Causes of aspen decline previously reported include the absence of fire and 

excessive browsing of young aspen ramets (trees) by livestock and wildlife (Kay, 1997; 

Bartos and Campbell, 1998; White et al., 1998; Brown et al., 2006). Changes in the 

seasonality and amount of precipitation and may be additional factors contributing to the 

decline of some aspen stands. 

Conclusions 

A comprehensive evaluation of individual water transfer mechanisms was used to 

elucidate the relative importance of each component in the hydrologic cycle in aspen and 

conifer. Contrary to the speculations of previous authors transpiration did not contribute 

to large differences in potential water yield between aspen and conifer in a snow 
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dominated system. Snow accumulation, winter soil moisture recharge, and 

summertime ET were the dominant mechanisms leading to differences in potential water 

yield between adjacent aspen and conifer stands. A mass balance water model predicted 

that potential snowmelt water yield was greater in aspen relative to paired conifer plots in 

the 2005-2006 water year. Future studies should focus on partitioning the ratio of 

sublimation to redistribution of intercepted canopy to predict hydrologic response of 

vegetation conversions at the watershed scale. 

Across diverse landscapes the magnitude of difference between aspen and conifer 

water yield may be highly variable. The influence of individual water transfer 

mechanisms is likely to change across spatially and temporally. How these individual 

water transfer mechanisms respond to climate, soils, and topography at a given site, 

should be considered when manipulating aspen and conifer ecosystems. 
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Detailed plot locations 
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APPENDIX C 

NRCS Pedon Descriptions (Block 2) 



Block 2 Aspen Pedon Description 

Print Date: 07 /07 /2006 

Description Date: 06/22/2005 

Describer: Harms, MI, Woldesela, SSIE 

Site ID: 05UT057001 

Site Note: 

Pedon ID: 05UT057001 

Pedon Note: Land cover includes aspens 
and weeds. There was also some litter. 

Lab Source ID: SSL 

Lab Pedon #: 05N0632 

Soil Name as Described/Sampled: SND 

Soil Name as Correlated: 

Classification: 

Pedon Type: 

Pedon Purpose: 

Taxon Kind: 

Associated Soils: 

Physiographic Division: 

Physiographic Province: 

Physiographic Section: 

State Physiographic Area: 

Local Physiographic Area: 

Geomorphic Setting: on summit of 
interfluve of None Assigned 

Upslope Shape: convex 

Cross Slope Shape: linear 

Particle Size Control Section: 

Diagnostic Features: ? to? cm. 

Cont. Site ID: 05UT057001 

Country: United States 

State: Utah 

County: Weber 
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MLRA: 47 -- Wasatch and Uinta Mountains 

Soil Survey Area: 

Map Unit: 

Quad Name: 

Location Description: Lightning Ridge 
SNOTEL site. Main site behind shelter. 
Wasatch Mountains. Cache National Forest. 
Horse Ridge topo quad. Soil Survey 
Number S05UT 057 001. 

Legal Description: 

Latitude: 41 degrees 22 minutes north 

Longitude: 111 degrees 9 minutes west 

Datum: NAD83 

UTM Zone: 

UTM Easting: 

UTM Northing: 

Primary Earth Cover: Tree cover 

Secondary Earth Cover: 

Existing Vegetation: 

Parent Material: limestone 

Bedrock Kind: 

Bedrock Depth: 

Bedrock Hardness: 

Bedrock Fracture Interval: 

Surface Fragments: 

Pedon ID: 
05UT057001 
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Slope Elevation Aspect MAAT MSAT MWAT MAP FFrost-Drainage 
ree 

(%) (meters) (deg) (C) (C) (C) (mm) D Class 
ays 

Slope Upslope 
Length Length 
(meters) (meters) 

2.0 2,503.9 90 well 

Al--0 to 10 centimeters; dark brown (lOYR 3/3) loam, very dark grayish brown (lOYR 
3/2), dry; weak fine granular structure; loose, slightly sticky, nonplastic; common 
medium and coarse roots; many fine vesicular pores; 5 percent nonflat 2- to 5-millimeter 
unspecified fragments; gradual boundary. Lab sample# 05N03768 

A2--10 to 38 centimeters; dark brown (lOYR 3/3) loam, dark grayish brown (IOYR 4/2), 
dry; weak fine granular structure; loose , slightly sticky, nonplastic; common medium and 
coarse roots; many fine vesicular pores; gradual boundary. Lab sample# 05N03769 

Btl--38 to 76 centimeters; dark yellowish brown (lOYR 3/4) loam, brown (lOYR 4/3), 
dry; subangular blocky structure; friable, slightly sticky, nonplastic; few medium and 
coarse roots; common fine vesicular pores; IO percent nonflat 2- to 5-millimeter 
unspecified fragments; gradual boundary. Lab sample# 05N03770 

Bt2--76 to 89 centimeters; brown (7.5YR 4/4) silt loam, brown (lOYR 5/3), dry; weak 
fine subangular blocky, and moderate fine granular structure; friable, slightly sticky, 
nonplastic; few fine and medium roots; common fine vesicular pores; 15 percent nonflat 
5- to 75-millimeter unspecified fragments; gradual boundary. Lab samp le# 05N03771 

2B--89 to 127 centimeters; brown (7.5YR 4/4) sandy loam, brown (lOYR 5/3), dry; weak 
fine subangular blocky structure; friable, nonsticky, nonplastic; few fine and medium 
roots; 3 percent nonflat 250- to 600-millimeter unspecified fragments and 50 percent 
nonflat 2- to 250-millimeter unspecified fragments; gradual boundary. Lab sample # 
05N03772. Too wet for pores. 



PedonlD:S05UT057001 
*** Primary Characterization Data *** 

( Web er, Utah ) 

Sampled as: 

Revised to : 

SSL - Project 

- Site ID 

C2005USUT134 Climate Monitoring Station SNOTEUSCAN 

05UT057001 Lat: 4 1 ° 22' north Long : 111 ° 9' west NAD83 MLRA : 4 7 

- Pedon No. 05N0632 

- General Methods 1 B 1 A , 2A 1, 28 

.. ------ .. - ,~, ' ,M 

Layer Horizon Orig Hzn Depth (cm) 

05N03768 A 0-10 

05N03769 A 10-38 

05N03770 811 38-76 

05N03771 812 76-89 

05N03772 28 89-127 

'< ......... ,~·,••,<-·~, ... ¥--V<..,, 

Calculation Name 

Weighted Particles, 0.1-75mm, 75 mm Base 

Volume, >2mm, Weighted Average 

Clay , total, Weighted Average 

Clay, carbonate free , Weighted Average 

Field Label 1 

805 UT-001 -1 

805 UT-001- 2 

805 UT-00 1-3 

805 UT-001-4 

805 UT-00 1-5 

Pedon Calculat ions 

CEC Activity , CEC7/Clay , Weighted Average , CECd, Set 1 

LE , Whole Soil, Summed to 1m 

Field Label 2 

2 

3 

5 

4 

Result 

15 

15 

0.8 

Field Label 3 

Units of Measure 

% wt 

%vol 

% wt 

% wt 

(NA) 

cm/m 

Print Date : Sep 17 2006 2:02PM 

United States Department of Agriculture 

Natural Resources Conservation Service 

National Soil Survey Center 

Soil Survey Laboratory 

Lincoln , Nebraska 68508-3866 

Field Texture ~ Lab Texture 

L 

L 

L 

L 

L 

N 
\.,..) 



-·-·-·--y,--~--,~ ' 
PSDA & Rock Fragments 

Depth 

Layer (cm) 

05N03768 0-10 

05N03769 10-38 

05N03770 38-76 

05N03771 76-89 

05N03772 89-127 

PedonlD : S05UT057001 

Sampled As 

Horz Prep 

A s 
A s 
Bt1 s 
Bt2 s 
28 s 

-1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12-

(- - - - - Total - - - - - -) (- - Clay- - -) (--- -Silt-- - --) (- --- -- - - - - - -Sand- -- ---- - ----) 

Clay Silt Sand Fine C0 3 Fine Coarse VF F M c vc 
< .002 .05 < < .002 .02 .05 .10 .25 .5 

.002 -.05 -2 .0002 .002 -.02 -.05 - .10 -.25 -.50 -1 -2 

(- - - - - - - - - - - - - - - - - - - - - - - - - - % of <2mm Mineral Soil - - - - - - - - - - - - - - - - - - - - - - - - - - -) 

3A1a1a 

15.1 48.8 36.1 

15.2 49.5 35.3 

15.4 48.6 36.0 

14.7 46.0 39.3 

15.5 48.2 36.3 

3A1a1a 3A1a1a 3A1a1a 3A1a1a 3A1a1a 3A1a1a 

21.0 27.8 20.3 8.2 

20.9 28.6 16.2 12.6 

20.5 28.1 16.7 11.8 

19.7 26.3 15.1 15.6 

21 .0 27.2 15.8 12.9 

*** Primary Characterization Data *** 
( Weber, Utah ) 

5.3 1.5 0.8 

4.6 1.4 0.5 

5.4 1.4 0.7 

6.7 1.2 0.7 

5.4 1.6 0.6 

USDA-NRCS-NSSC-National Soil Survey Laboratory Pedon No. 05N0632 

Water Dispersible PSDA 

Layer 

Depth 

(cm) Horz 

-1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12-

(- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Water Dispersible - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -) 

(- - - - - Tota l - - - - - -) (- - Clay - - -) (- - - - Silt - - - - -) (- -- - - --- -- - - Sand ---- - - -- - - - -) 

Clay Silt Sand F C03 F c VF F M c vc 
< .002 .05 < < .002 .02 .05 .10 .25 .5 

.002 - .05 -2 .0002 .002 -.02 -.05 - .10 -.25 -.50 -1 -2 

Prep (- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % of <2mm - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -) 

-13- -14- -15- -16- -17-

( Rock Fragments (mm)) 

(- - - - - - - - Weight - - - - - - - -) >2mm 

2 5 20 .1- wt% 

-5 -20 -75 75 whole 

(- - - - - - - % of <75mm - - - - - -) soil 

2 7 13 34 22 

3 6 4 30 13 

2 4 5 28 11 

4 12 12 45 28 

2 6 5 31 13 

Print Date : Sep 17 2006 2:02PM 

3A1a6a 3A1a6a 3A1a6a 3A1a6a 3A1a6a 3A1a6a 3A1a6a 

05N03768 0-10 

05N03769 10-38 

A 

A 

s 
s 

4.6 

5.5 

52.6 42 .8 

53.1 41.4 

23.9 28.7 11.6 19.9 8.2 

25.3 27.8 16.7 15.4 6.5 

2.0 

1.7 

1.1 

1.1 



-·---" +>V'"'<,' <'"' 

Bulk Density & Moisture -1- -2-

(Bulk Density) 

33 Oven 

Depth kPa Dry 

Layer (cm) Horz Prep (---gcm- 3
---) 

DbWR1 DbWR1 

05N03768 0-10 A s 1.17 1.21 

05N03769 10-38 A s 1.27 1.28 

05N03770 38-76 Bt1 s 1.25 1.29 

05N03771 76-89 Bt2 s 1.26 1.32 

05N03772 89-127 28 s 1.18 1.23 __ ,.,.·--.,, 

Water Content -2-

(- - Atterberg - -) 

(- - - Limits - - -) 

LL Pl 

Depth 

Layer (cm) Horz Prep pct <0.4mm 

05N03768 0-10 A s 
05N03769 10-38 A s 
05N03770 38-76 Bt1 s 
05N03771 76-89 Bt2 s 
05N03772 89-127 28 s 

.3. -4- -5- -6- -7- -8- -9- -10- -11- -12- -13-

Cole (- - - - - - - - - - - Water Content - - - - - - - - - - - ) WRD Aggst 

Whole 6 10 33 1500 1500 kPa Ratio Whole Sta bl (- - Ratio/Clay - -) 

Soil kPa kPa kPa kPa Moist AD/OD Soil 2-0.5mm CEC7 1500 kPa 

(- -- - - -- - -- - -% of< 2mm- ----- --- -- -) cm3 cm·3 % 

DbWR1 DbWR1 DbWR1 3C2a1a 301 3F1a1a 

0.010 29.6 27.8 25 .6 10.1 1.024 0.16 44 1.11 0.67 

0.002 27.2 24.9 22.2 8.5 1.023 0.16 44 0.92 0.56 

0.010 30.4 28.1 24.2 8.0 1.021 0.19 0.77 0.52 

0.013 32.9 30.1 26.9 7.2 1.017 0.21 0.57 0.49 

0.013 27 .7 24.7 20.1 8.0 1.020 0.13 0.73 0.52 

-3- -4- -5- -6- -7- -8- -9- -10- -12- -13-
'¥' ---·-, ·------·-·--·--· -- .. , ··-

(- - - - - Bulk Density- - - - -) (- - - - - - - - - - - - - - - - - - - - - - - Water Content· - - - - - - - - - - - - - - - - - - - -) 

Field Re con Re con Field Re con (- - - - - - - - - - - - - - Sieved Samples - - - - - - - - - - - - -) 

33 Oven 33 6 10 33 100 200 500 

kPa Dry kPa kPa kPa kPa kPa kPa kPa 

(- - - - - - - - g cm·3 - - - - - - - ) (- - - - - - - - - - - - - - - - .- - - - - - - % of < 2mm - - - - - - - - - - - - - - - - - - - - - -) 

3C1d1a 3C1e1a 

15.7 14.0 

14.8 12.8 

14.7 12.3 

13.2 11.3 

15.0 12.3 

N 
v, 



PedonlD:S05UT057001 

Sampled As 

*** Primary Characterization Data *** 
( Webe r, Utah ) Print Date : Sep 17 2006 2 :02PM 

USDA-NRCS-NSSC-National Soil Survey Laboratory Peden No. 05N0632 

Carbon & Extractions -1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12 - -13 - -14- -15- -16- -17- -18--·------· --- -·------
(- - - - - Total - - - - -) Org C/N (- - - Dith-Cit Ext - - -) (- - - - - - Ammonium Oxalate Extraction - - - - - -) (- - - Na Pyre-Phosphate - - -) 

Depth c N s c Ratio Fe Al Mn Al+Y,Fe ODOE Fe Al Si Mn c Fe Al Mn 

Layer (cm) Horz Prep (- --- - - % of <2 mm-- - --- ) (- - - - - - - ---- - - - - - - - --%of< 2mm - - - - - - - - -- - - - - - - -- ) mg kg·1 (- - - - - - % of< 2mm - - - - -) 

4H2a 4H2a 4H2a 4G1 4G1 4G1 4G2a 4G2a 4G2a 4G2a 4G2a 

05N03768 0-10 A s 2.90 0.336 0.03 9 0.5 0.1 0.1 0.28 0.15 0.22 0 .17 0.01 1212.7 

05N03769 10-38 A s 2.39 0.203 0.01 12 0.6 0.2 0 .1 0.28 0.14 0.22 0.17 tr 1166 .5 

05N03770 38-76 811 s 1.65 0.155 tr 11 0.6 0.2 0.1 0.28 0 .12 0.22 0.17 tr 1151 .1 

05N03771 76-89 Bt2 s 0.83 0.100 -- 8 0.7 0.1 0.1 0.22 0.07 0.18 0.13 773 .3 

05N03772 89-127 28 s 1.55 0.161 0.01 10 0.6 0.2 0.1 0.30 0.11 0.24 0.18 tr 1269 .8 

•:···--- .. -·,~· .,.,.._..,,., .• ,.._, _____ ,....,v,-;,.....·e, - -----... - .... ~ .. -
CEC & Bases -1- -2- -3- -4- -5- -6- -7- -8- -9- -10- 1- -12- -13- -14-·----··-· -· 

(- - - - - - NH4 0AC Extractable Bases - - - - -) CEC8 CEC7 ECEC (- - - - Base - - - -) 

Sum Acid - Extr KCI Sum NH4 Bases Al (- Saturation -) 

Depth Ca Mg Na K Bases ity Al Mn Cats OAC +Al Sat Sum NH40AC 

Layer (cm) Horz Prep (- - --- - - - - - - - -- - - - cmol(+) kg·' - - -- - --- -- -- - - - -- - -) mg kg·' (- - - - cmol(+) kg·' - - -) (- --- - - - - %- - - ---- -) 

4B1a1a 481a1a 481a1a 48 1a1a 482b1a1 481a1a 

05N03768 0-10 A s 13.3 1.5 2.3 17.1 7.9 25 .0 16.7 68 100 

05N03769 10-38 A s 10.5 1.3 2.0 13.8 7.7 21 .5 14.0 64 99 

05N03770 38-76 Bt1 s 8.1 0.9 1.3 10.3 8.9 19.2 11.9 54 87 

05N03771 76-89 Bt2 s 5.1 0.7 0.3 6.1 7.5 13.6 8.4 45 73 

05N03772 89-127 28 s 7.1 0.8 0.5 8.4 9.7 18.1 11.3 46 74 



'Extractable Ca may contain Ca from calcium carbonate or gypsum ., CEC7 base saturation set to 100 . 

Salt 

Depth 

Layer (cm) 

05N03768 0-10 

05N03769 10-38 

05N03770 38-76 

05N03771 76-89 

05N03772 89-127 

Pedon!D : S05UT057001 

Sampled As 

Horz 

A 

A 

Bt1 

Bt2 

28 

Prep 

s 
s 
s 
s 
s 

-1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12 - -13- -14- -15- -16- -17- -18- -19- -20-

(- - - - - - - - - - - - - - - - - - - - - - - - Water Ex1racted From Saturated Paste - - - - - - - - - - - - - - - - - - - - - - - -) Pred 

Total Elec Elec Exch 

Ca Mg Na K 

(- - - - - mmol (+) L"1 
- - - - -) 

4F2 4F2 4F2 4F2 

C0 3 HC0 3 F Cl PO• Br OAC SO• N0 2 N0 3 

(- - - - - - - - - - - - - - - - - - - - - - mmol(-) L"1 
- - - - - - - - - - - - - - - - - - - -) 

4~ 4~ 4~ 4~ 4~ 4~ 4~ 4~ 4~ 4~ 

H20 Salts Cond Cond 

(- - - - % - - --) (- -dS m·1 
- -) 

4F2 4F2 4F1a1a1 

Na SAR 

% 

2 .0 0.6 3.1 2.2 tr 0.6 0.1 0.3 1.4 1.0 57 .5 tr 0.70 0.31 

*** Primary Characterization Data *** 
( Weber , Utah ) 

0.22 

0.13 

0.04 

0.10 

Print Date: Sep 17 2006 2:02PM 

USDA-NRCS-NSSC-National Soil Survey Laboratory Pedon No . 05N0632 

pH & Carbonates -1- -4- -5- -6- -7- -8- -9- -10- -11-

(- - - - - - - - - - - - - - - - - - pH - - - - - - - - - - - - - - - - -) (- - Carbonate - -) (- - Gypsum - - -) 

CaCl2 As CaC0 3 As CaS0 4 2H20 Resist 

Depth 0.01M H20 Sat <2mm <20mm <2mm <20mm ohms 

Layer (cm) Horz Prep KC! 1:2 1 :1 Paste Sulf NaF (- -- - - - -- - -- - % ---- - - - - -- -) cm_, 

4C1a2a 4C 1a2a 4F2 

05N03768 0-10 A s 5.9 6.3 6.4 

05N03769 10-38 A s 5.8 6.5 

05N03770 38-76 811 s 5.4 6.1 

05N03771 76-89 Bt2 s 5.3 6.0 

05N03772 89-127 28 s 4.9 5.4 



Phosphorous 

Depth 

Layer (cm) 

05N03768 0-10 

05N03769 10-38 

05N03770 38-76 

05N03771 76-89 

05N03772 89-127 

PedonlD: S05UT057001 

Sampled As 

Horz 

A 

A 

Bt1 

Bt2 

28 

Prep 

s 
s 
s 
s 
s 

-1-

Melanie 

Index 

USDA-NRCS-NSSC-National Soil Survey Laboratory 

Clay Mineralogy (<.002 mm) -1-

Depth Fract 

-2- -3- -4- -5- -6- -7- -8- -9- -10-

(- - - - - - - - - - - - - - - - - - - - - Phosphorous - - - - - - - - - - - - - - - - - -) 

NZ 

% 

-2-

Acid Bray Bray Olsen H20 Citric Mehlich Extr 

Oxal 2 Acid Ill N03 

(- -- - - - -- - - - - --- - - - ---mg kg·' - - - -- -- - --- - - - - --) mg kg·' 

4G2a 

673 .7 

536 .8 

565 .3 

295 .1 

489 .9 

-3-

X-Ray 

7A1a1 

-4-

4D6a1 

106 .7 

57 .2 

47 .3 

22 .7 

31 .3 

*** Primary Characterization Data *** 
( Weber, Utah ) 

Pedon No . 05N0632 

-5- -6- -7- -8- -9- -10- -11- -12-

Thermal 

-13- -14-

Elemental 

Si0 2 AbO J Fe20 3 MgO CaO 

Print Date : Sep 17 2006 2:02PM 

-15- -16- -17- -18-

EGME Inter 

K20 Na20 Rein preta 

tion 

Layer (cm) Horz ion ( - - - - - - - - - peak size - - - - - - - - - - ) (- - - - - - - - - % - - - - - - - - - -) (- - --- - --- - - -- - -- ---%- -- - -- - - - - - ---- - ---) mg g·' 

05N03768 0°10 A tcly 

05N03770 38-76 811 tcly 

FRACTION INTERPRETATION : 

KK3 Ml2 QZ2 

KK3 Ml2 QZ2 

VR 1 

VR 1 

CMIX 

CMIX 

N 
00 



tcly - Total Clay, <0.002 mm 

MINERAL INTERPRETATION : 

KK - Kaolinite Ml - Mica 

RELATIVE PEAK SIZE: 5 Very Large 

INTERPRETATION (BY HORIZON) : 

CMIX - Mixed Clay 

QZ- Quartz VR - Vermiculite 

4 Large 3 Medium 2 Small 1 Very Small 6 No Peaks 

N 
I.Cl 



Block 2 Conifer Pedon Description 

Print Date: 07 /07 /2006 

Description Date: 06/22/2005 

Describer: MI, Woldesela 

Site ID: 05UT057002 

Site Note: 

Pedon ID: 05UT057002 

Country: United States 

State: Utah 

County: Weber 

130 

MLRA: 47 -- Wasatch and Uinta Mountains 

Soil Survey Area: 

Map Unit: 

Pedon Note: Land cover includes aspen and 
Quad Name: 

timber. There was also some litter present. 

Lab Source ID: SSL Location Description: Lightning Ridge 
SNOTEL Site #2. Across east fork. Wasatch 
Mountains. Cache National Forest. Horse 
Ridge topo quad. Soil Survey Number 
S05UT 057 002. 

Lab Pedon # : 05N0633 

Soil Name as Described/Sampled: SND 

Soil Name as Correlated: 

Classification: 

Pedon Type : 

Pedon Purpose: 

Taxon Kind: 

Associated Soils: 

Physiographic Division: 

Physiographic Province: 

Physiographic Section : 

State Physiographic Area: 

Local Physiographic Area: 

Geomorphic Setting: on backslope of side 
slope of None Assigned 

Upslope Shape: linear 

Cross Slope Shape: convex 

Particle Size Control Section: 

Diagnostic Features: ? to ? cm. 

Cont. Site ID: 05UT057002 

Legal Description: 

Latitude: 41 degrees 35 minutes north 

Longitude: 111 degrees 4 7 minutes west 

Datum: NAD83 

UTMZone: 

UTM Easting: 

UTM Northing: 

Primary Earth Cover: Tree cover 

Secondary Earth Cover: 

Existing Vegetation: 

Parent Material: colluvium derived from 
limestone 

Bedrock Kind: 

Bedrock Depth: 

Bedrock Hardness: 

Bedrock Fracture Interval: 

Surface Fragments: 

Pedon ID: 
05UT057002 



131 
•c·---,.-,., .. ,., ___ _. • •- •-·V-•·• •-¥• • • · ,•v, -------M•----• 
· · . ,Frost- ! 

Slope Elevation Aspect MAA TMSATMW AT MAP : F Drainage 
Slope Upslope 

· ' i ree 
(%) , (meters) (deg) (C) (C) (C) 5~~ )[_I>a~s · Class 

13.0 2,514.6 270 well 

Length Length 
. (meters) (meters) 

Al--0 to 18 centimeters; dark reddish brown (5YR 3/3) loam, brown (lOYR 4/3), dry; 
weak fine granular structure; friable, nonsticky, nonplastic; many fine roots; many fine 
vesicular pores; gradual boundary. Lab sample# 05N03773 

A2--18 to 36 centimeters; dark reddish brown (5YR 3/3) loam, brown (7.5YR 4/2), dry; 
weak medium granular structure; friable, nonsticky, nonplastic; many very fine and fine 
roots; many fine vesicular pores; gradual boundary. Lab sample# 05N03774 

A3--36 to 58 centimeters; dark reddish brown (5YR 3/3) loam, brown (7.5YR 5/3), dry; 
weak medium granular structure; friable, nonsticky, nonplastic; many very coarse roots; 
many fine vesicular pores; 10 percent organic stains; gradual boundary. Lab sample # 
05N03775 

Btl--58 to 114 centimeters; dark red (2.5YR 3/6) clay loam, yellowish red (5YR 5/6), 
dry; moderate medium subangular blocky structure; friable, slightly sticky, slightly 
plastic; many fine roots; many fine vesicular pores; 10 percent organic stains; abrupt 
boundary. Lab sample# 05N03776 



Pedon lD: S05UT057002 
*** Primary Characterization Data *** 

( Weber , Utah ) 

Sampled as : 

Revised to: 

C2005USUT134 Climate Monitoring Station SNOTEUSCA N SSL - Project 

- Site ID 05UT057002 Lat: 41° 21' 58.60" north Long: 111° 27' 27.00" west NAD83 MLRA: 47 

- Peden No. 05N0633 

- General Methods 1B1A, 2A1, 2B 

Layer Horizon Orig Hzn Depth (cm) Field Label 1 

05N03773 

05N03774 

05N03775 

05N03776 

Calculation Name 

0-18 

18-36 

36-58 

58-114 

Weighted Particles, 0.1-75mm. 75 mm Base 

Volume , >2mm, Weighted Average 

Clay, total, Weighted Average 

Clay, carbonate free , Weighted Average 

S05UT-002-1 

S05UT-002-2 

S05UT-00 2-3 

S05UT-002-4 

Peden Calculations 

CEC Activity, CEC7/Clay , Weighted Average , CECd , Set 1 

LE, Whole Soil , Summed to 1m 

Field Label 2 

2 

3 

4 

Result 

20 

20 

0.5 

2 

Field Label 3 

Units of Measure 

% wt 

% vol 

% wt 

% wt 

(NA) 

cm/m 

Print Date: Sep 17 2006 1 :42PM 

United States Department of Agriculture 

Natural Resources Conservation Service 

National Soil Survey Center 

Soil Survey Laboratory 

Lincoln , Nebraska 68508-3866 

Field Texture Lab Texture 

SIL 

L 

L 

L 



~·,~ .. ,.,,,,..~_,-,_ . .,,,,,,,,,_ 

PSDA & Rock Fragments 

Depth 

Layer (cm) 

05N03773 0-18 

05N03774 18-36 

05N03775 36-58 

05N03776 58-114 

PedonlD : S05UT057002 

Sampled As 

---· .. ·---··-

Horz Prep 

s 
s 
s 
s 

-1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12-

(-- ---Total- - - - --) (- - Clay- - -) (- - - - Silt - - - - -) (- - - - - - - - - - - - Sand - - - - - - - - - - - -) 

Clay Silt Sand Fine C03 Fine Coarse VF F M c vc 
< .002 .05 < < .002 .02 .05 .10 .25 .5 

.002 -.05 -2 .0002 .002 -.02 -.05 -.10 -.25 - .50 -1 -2 

(- - - - - - - - - - - - - - - - - - - - - - - - - - % of <2mm Mineral Soil - - - - - - - - - - - - - - - - - - - - - - - - - - -) 

3A1a1a 

17.1 50 .0 32 9 

16.8 49 .6 33 .6 

15.0 48.5 36 .5 

24.6 46 .2 29.2 

3A1a1a 3A1a1a 3A1a1a 3A1a1a 3A1a1a 3A1a1a 

25.2 24.8 12.8 13.2 

24 .7 24.9 14.2 12.3 

24.0 24.5 13.5 15.3 

28 .1 18.1 10.0 11.4 

*** Primary Characterization Data *** 
( Weber , Utah } 

5.8 1.0 0.1 

6.3 0.8 

6.7 0.9 0.1 

6.8 0.8 0.2 

USDA-NRCS-NSSC-National Soil Survey Laboratory Pedon No. 05N0633 

Water Dispersible PSDA 

Layer 

Depth 

(cm) Horz 

-1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12-

(- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Water Dispersible - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -) 

(- - - - - Total - - - - - -) (- - Clay- - -) (- - - - Silt - - - - -) (- - - - - - - - - - - - Sand - - - - - - - - - - - -) 

Clay Silt Sand F C0 3 F c VF F M c vc 
< .002 .05 < < .002 .02 .05 .10 .25 .5 

.002 - .05 -2 .0002 .002 -.02 -.05 -.10 -.25 -.50 -1 -2 

Prep (- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % of <2mm - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -) 

-13- -14- -15- -16- -17-

( Rock Fragments (mm)) 

(- - - - - - - - Weight - - - - - - - -) >2mm 

2 5 20 .1- wt% 

-5 -20 -75 75 whole 

(- - - - - - - % of <75mm - - - - - -) soil 

tr 21 

tr 20 

tr 24 

tr tr 19 tr 

Print Date: Sep 17 2006 1 :42PM 

3A1a6a 3A1a6a 3A 1 a6a 3A 1 a6a 3A 1 a6a 3A 1 a6a 3A 1 a6a 

05N03773 0-18 

05N03774 18-36 

s 
s 

6.7 

7.4 

51.9 41.4 

53 .0 39.6 

28 .5 23.4 12.7 18.6 7.9 

28.7 24 .3 14.5 15.9 7.6 

1.9 

1.3 

0 .3 

0.3 



Bulk Density & Moisture -1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12- -13-

(Bulk Density) Cole (- - - - - - - - - - - Water Content - - - - - - - - - - -) WRD Aggst 

33 Oven Whole 6 10 33 1500 1500 kPa Ratio Whole Stabl (- - Ratio/Clay - -) 

Depth kPa Dry Soil kPa kPa kPa kPa Moist AD/OD Soil 2-0 .5mm CEC7 1500 kPa 

Layer (cm) Horz Prep (- - -g cm·3 ---) (- - - - - - - - - - - - % of < 2mm - - - - - - - - - - - -) cm3 cm·3 % 

DbWR1 DbWR1 DbWR1 DbWR1 DbWR1 3C2a1a 301 3F1a1a 

05N03773 0-18 s 0.99 1.06 0.023 32.8 30.5 28.0 10.3 1.026 0.18 52 0.90 0.60 

05N03774 18-36 s 1.10 1.13 0.009 31.8 29.9 25.8 9.0 1.021 0.18 41 0.77 0.54 

05N03775 36-58 s 1.31 1.44 0.032 25.1 23.2 21.6 7.4 1.015 0.19 0.61 0.49 

05N03776 58-114 s 1.68 1.77 0.018 17.4 16.4 15.2 9.0 1.012 0.10 0.23 0.37 

Water Content -1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -1 1- -12- -13---·--- -·-·----··- --- ---
(- - Atterberg - -) (- - - - - Bulk Density - - - - -) (- - - - - - - - - - - - - - - - - - - - - - - Water Content - - - - - - - - - - - - - - - - - - - - -) 

(---Limits---) Field Recon Re con Field Re con (- - - - - - - - - - - - - - Sieved Samples - - - - - - - - - - - - -) 

LL Pl 33 Oven 33 6 10 33 100 200 500 

Depth kPa Dry kPa kPa kPa kPa kPa kPa kPa 

Layer (cm) Horz Prep pct <0.4mm (- --- - - - -g cm·3 - - -- - --) (- - - - - - - - - - - - - - - - - - - - - - - % of< 2mm - - - - - - - - - - - - - - - - - - - - - - ) 

3C1d1a 3C1e 1a 

05N03773 0-18 s 19.1 15.8 

05N03774 18-36 s 18.1 14.9 

05N03775 36-58 s 15.8 12.8 

05N03776 58-114 s 16.5 14.5 



PedonlD : S05UT057002 

Sampled As 

*** Primary Characterization Data 
( Weber, Utah ) 

*** 
Print Date: Sep 17 2006 1 :42PM 

USDA-NRCS-NSSC-National Soil Survey Laboratory Pedon No. 05N0633 

Carbon & Extractions 

Depth 

Layer (cm) Horz Prep 

05N03773 0-18 s 
05N03774 18-36 s 
05N03775 36-58 s 
05N03776 58-114 s 

--··· --... -~ ........ 

CEC & Bases 

Depth 

Layer (cm) Horz Prep 

05N03773 0-18 s 
05N03774 18-36 s 
05N03775 36-58 s 
05N03776 58-114 s 

-1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- -18-

(- - - - - Total- - - - -) Org C/N (- - - Dith-Cit Ext - - -) (- - - - - - Ammonium Oxalate Extraction - - - - - -) (- - - Na Pyro-Phosphate - - -) 

c N s c Ratio Fe Al Mn Al+Y,Fe ODOE Fe Al Si Mn c Fe Al Mn 

(- - - - - - % of <2 mm - - - - - -) (- - - - - - - - - - - - - - - - - - - - % of < 2mm - - - - - - - - - - - - - - - - - -) mg kg· 1 (- - - - - - % of< 2mm - - - - -) 

4H2a 4H2a 4H2a 4G1 4G1 4G1 

3.24 0.299 0.01 11 0.8 0.1 0.1 

2.32 0.233 0.01 10 0.8 0.1 0.1 

1.22 0.102 -- 12 0.7 0.1 0.1 

0.33 0.086 -- 4 1.6 0.1 tr 

-1- -2- -3- -4- -5- -6- -7-----·-~···- . ·~·-- ·-·- ·------· --- . ----·-· --
(- - - - - - NH,OAC Extractable Bases - - - - -) 

Sum Acid- Extr 

Ca Mg Na K Bases ity Al 

(- - - - - - - - - - - - - - - - - cmol(+) kg·1 
- - - - - - - - - - - - - - - - - - -) 

4B1a1a 4B1a1a 4B1a1a 4B1a1a 4B2b1 a1 

13.0 1.6 0.9 15.5 9.2 

10.6 1.1 0.7 12.4 8.7 

6.9 0.6 0.3 7.8 6.4 

4.5 0.4 0.1 5.0 3.6 

4G2a 4G2a 4G2a 

0.22 0.17 0.16 0.14 

0.21 0.17 0.16 0.13 

0.20 0 .12 0.15 0.13 

0.09 0.04 0.06 0.06 

-8- -9- -10- -11----............ -----~--
CEC8 CEC7 ECEC 

KCI Sum NH4 Bases 

Mn Cats OAC +Al 

mg kg·1 (- - - - cmol(+) kg·1 
- - -) 

4B1a1a 

24.7 15.4 

21.1 13.0 

14.2 9.2 

8.6 5.7 

4G2a 4G2a 

566.2 

559 .8 

519.2 

333.2 

-12- -13- -14-

(----Base ----) 

Al (- Saturation -) 

Sat Sum NH40AC 

(- - - - - - - - % - - - - - - - -) 

63 100 

59 95 

55 85 

58 88 

...... 
w 
v, 



'Extractable Ca may contain Ca from calcium carbonate or gypsum., CEC7 base saturation set to 100 . 

Salt 

Depth 

Layer (cm) 

05N03773 0-18 

05N03774 18-36 

05N03775 36-58 

05N03776 58-114 

PedonlD:S05UT057002 

Sampled As 

Horz Prep 

s 
s 
s 
s 

-1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- -18- -19- -20-

(- - - - - - - - - - - - - - - - - - - - - - - - Water Extracted From Saturated Paste - - - - - - - - - - - - - - - - - - - - - - - -) Pred 

Total Elec Elec Exch 

Ca Mg Na K C03 HC0 3 F Cl PO• Br OAC so. N02 N03 H20 Salts Cond Cond Na SAR 

(- - - - - mmol(+) L.1 
- - - - - ) (- - - - - - - - - - - - - - - - - - - - - - mmol(-) L· 1 - - - - - - - - - - - - - - - - - - - - ) (- - - - % - - - -) (- - dS m-1 

- -) % 

4F2 4F2 4F2 4F2 

3.1 1.1 1.1 

4F2 4F2 4F2 4F2 4F2 4F2 4F2 

2.6 tr 0.3 tr 

*** Primary Characterization Data *** 
( Weber, Utah ) 

4F2 4F2 4F2 4F2 

0.4 0.8 0 .9 62.1 tr 

4F2 4F1a1a1 

0.61 0 .32 

0 .19 

0 .06 

0 .03 

Print Date: Sep 17 2006 1 :42PM 

USDA-NRCS -NSSC-National Soil Survey Laboratory Pedon No . 05N0633 

pH & Carbonates -1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11-

(- - - - - - - - - - - - - - - - - - pH - - - - - - - - - - - - - - - - -) (- - Carbonate - -) (- - Gypsum - - -) 

CaCl2 As CaC03 As CaS0,2H 20 Resist 

Depth 0 .01M H20 Sat <2mm <20mm <2mm <20mm ohms 

Layer (cm) Horz Prep KCI 1:2 1 :1 Paste Sulf NaF (- - --- - -- - - - -%----- - - --- -) cm· 1 

4C1a2a 4C1a2a 4F2 

05N03773 0-18 s 5.7 6 .1 6.2 

05N03774 18-36 s 5.4 5.8 

05N03775 36-58 s 5.3 6.1 

05N03776 58-114 s 5.3 6.0 
w 
0\ 



Phosphorous 

Depth 

Layer (cm) 

05N03773 0-18 

05N03774 18-36 

05N03775 36-58 

05N03776 58-114 

PedonlD:S05UT057002 

Sampled As 

Horz Prep 

s 
s 
s 
s 

-1-

Melanie 

Index 

-2- -3- -4- -5- -6- -7- -8- -9-

(- - - - - - - - - - - - - - - - - - - - - Phosphorous - - - - - - - - - - - - - - - - - -) 

NZ 

% 

Acid Bray Bray Olsen H20 Citric Mehlich 

Oxal 1 2 Acid Ill 

(- - - - - - - -- - - - - -- - -----mg kg·' - - - --- - - - --- - - ---) 

4G2a 

637.0 

631.1 

540.0 

212.0 

4D6a1 

108.0 

96.2 

109.4 

47.9 

*** Primary Characterization Data *** 
( Weber , Utah ) 

-10-

Extr 

N03 

mg kg·' 

Print Date: Sep 17 2006 1 :42PM 

USDA-NRCS-NSSC-National Soil Survey Laboratory Pedon No. 05N0633 

Clay Mineralogy (< .002 mm) 

Layer 

05N03773 

05N03776 

Depth 

(cm) 

0-18 

58~114 

Horz 

-1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- -18-
,\ 

X-Ray Thermal Elemental EGME Inter 

Si02 Al20 3 Fe203 MgO CaO K20 Na20 Retn preta 

Fract 7A1a 1 tion 

ion ( - - - - - - - - - peak size - - - - - - - - - - ) (- - - - - - - - - % - - - - - - - - - -) (- - - - - - - - - - - - - - - - - - - % - - - - - - - - - - - - - - - - - - -) mg g·' 

tcly KK 3 Ml 2 OZ 1 VR 1 

tcly KK 3 Ml 3 QZ 1 VR 1 GE 1 

HE 1 FK 1 FP 1 

CMIX 

CMIX 



FRACTION INTERPRETATION: 

tcly - Total Clay, <0.002 mm 

MINERAL INTERPRETATION: 

FK - Potassium Feldspar 

Ml - Mica 

RELATIVE PEAK SIZE: 

INTERPRETATION (BY HORIZON) : 

CMIX - Mixed Clay 

FP - Plagioclase Feldspar 

QZ - Quartz 

5 Very Large 

GE - Goethite HE - Hematite 

VR - Vermiculite 

4 Large 3 Medium 2 Small 

KK - Kaolinite 

1 Very Small 6 No Peaks 

-l,.) 
00 



139 

APPENDIXD 

Evaporation Pan Temperature Measurements 



14 

~ 9 
Q) .... 
:J - 4 Ill .... 
Q) 
c. 
E -1 Q) 

~ 

-6 

14 

~ 

~ 9 
Q) .... 
:J 
-; 4 .... 
Q) 
c. 
E -1 Q) 

~ 

-6 

14 
~ 

~ 9 
Q) .... 
:J - 4 Ill .... 
Q) 
c. 
E -1 Q) 

~ 

-6 

a. Open Plot Evaporation Pan and Adjcent Snowpack 
Temperatures DOY 102 

. Open Pan 1 i 

~ - ' 

.

~ 
. _,,.. 

- . . 

Open Snowpack 1 i 
i 

-- Open Pan 2 i 
; 

-- Open Snowpack 2 J 

..__ . :;;;:::: I 
i 
i ____________________________________ ____) 

3 5 7 9 11 13 15 17 19 21 23 

Time [hr] 

b. Aspen Plot Evaporation Pan and Adjcent 
Snowpack Temperatures DOY 102 

--- -~-~~-----~-~~~-----;:::=================;-

""" 

3 5 7 9 

' Aspen Pan 1 i 
. A5pen Snowpack 1 I 

--A5pen Pan 2 ; 

-- A5pen Snowpack 2 : 

11 13 15 17 19 21 23 

Time [hr] 

c. Conifer Plot Evaporation Pan and Adjcent 
Snowpack Temperatures DOY 102 

-- - - · Conifer Pan 1 

Conifer Snowpack 1 

-- Conifer Pan 2 

, ;;-....._ -- Conifer Snowpack 2 
A , ... .. 

-~ 

3 5 7 9 11 13 15 17 19 21 23 

Time [hr] 

140 



14 

~ 9 
f! 
.a 4 
~ 
Q) 
c. 
E -1 Q) 

I-

-6 

14 

~ 9 
Cl) .... 
:, .... 4 ra .... 
Cl) 
Q. 

E -1 Cl) 
I-

-6 

14 

~ 9 
Cl) .... 
:, .... 4 ra .... 
Cl) 
Q. 

E -1 Cl) 
I-

-6 

a. Open Plot Evaporation Pan and Adjcent Snowpack 
Temperatures DOY 103 

3 5 7 9 

Open Pan 1 

· · · · · · Open Snowpack 1 

--Open Pan2 

-- Open Snowpack 2 

---------
11 13 15 17 19 21 23 

Time [hr] 

b. Aspen Plot Evaporation Pan and Adjcent 
Snowpack Temperatures DOY 103 

3 5 7 9 

- - - Aspen Pan 1 

· · · · · · As pen Snowpack 1 ' 

- -Aspen Pan 2 

-- Aspen Snowpack 2 i 
---- -- --~ [ 

11 13 15 17 19 21 23 

Time [hr] 

c. Conifer Plot Evaporation Pan and Adjcent 
Snowpack Temperatures DOY 103 

3 5 7 9 

- - - · Conifer Pan 1 

· · · · · · Conifer Snowpack 1 ' 

-- Conifer Pan 2 

11 13 15 17 19 21 23 

Time [hr] 

141 



~ 
E 
:::, -E 
Q) 
a. 
E 
Q) ..... 

£ 
Q) .... 
:::, -ra .... 
Cl) 
0. 
E 
Cl) 

I-

u 
Cl) .... 
:::, -Ill .... 
Cl) 
0. 
E 
Cl) 

I-

14 

9 

4 

-1 

-6 

14 

9 

4 

a. Open Plot Evaporation Pan and Adjcent Snowpack 
Temperatures DOY 113 

3 5 7 9 

- - - Open Pan 1 

· · , · · ·· Open Snowpack 1 

--Open Pan 2 

-- Open Snowpack 2 i 

11 13 15 17 19 21 23 

Time [hr] 

b. Aspen Plot Evaporation Pan and Adjcent 
Snowpack Temperatures DOY 113 

.. - Aspen Pan 1 

Aspen Snowpack 1 
' - ~ 

--Aspen Pan 2 

-- Aspen Snowpack 2 

-1 -

-6 

14 

9 

4 

-1 

-6 

3 5 7 9 11 13 15 17 19 21 

Time [hr] 

23 

c. Conifer Plot Evaporation Pan and Adjcent 
Snowpack Temperatures DOY 113 

--~·----- --- - -

- - - Conifer Pan 1 

- .. ~ - . Conifer Snowpack 1 

-- Conifer Pan 2 

-- Conifer Snowpack 2 ___... - -

3 5 7 9 11 13 15 17 19 21 23 

Time [hr] 

H 

1, 

142 



14 

~ 9 
Cl) ... 
::, - 4 (IJ ... 
Cl) 
Q. 

E -1 Cl) 

I-

-6 

14 

£ 9 
Cl) ... 
.a 
(IJ 4 ... 
Cl) 

c. 
E -1 Cl) 

I-

-6 

14 

£ 9 
Cl) ... 
:I - 4 Cll ... 
QI 
c. 
E -1 QI 

I-

-6 

a. Open Plot Evap9ration Pan and Adjcent Snowpack 
Temperatures DOY 120 

3 

b. 

3 

c. 

5 7 9 11 13 

Time [hr] 

- - - , Open Pan 1 

· · · · Open Snowpack 1 

--Open Pan 2 

-- Open Snowpack 2 

15 17 19 21 23 

Aspen Plot Evaporation Pan and Adjcent 
Snowpack Temperatures DOY 120 

- - - Aspen Pan 1 

Aspen Snowpack 1 ; 

--Aspen Pan 2 
''-'I., - - -, 

-- As pen Snowpack 2 

5 7 9 11 13 15 17 19 21 23 

Time [hr] 

Conifer Plot Evaporation Pan and Adjcent 
Snowpack Temperatures DOY 120 

----- ,~----· 

----
3 5 7 9 

- - - Conifer Pan 1 

· · · · · · Conifer Snowpack 1 

-- Conifer Pan 2 

-- Conifer Snowpack 2 

11 13 15 17 19 21 23 

Time [hr] 

143 


	Comparison of Water Dynamics in Aspen and Conifer: Implications for Ecology Water Yield Augmentation
	Recommended Citation

	tmp.1501522654.pdf.rvOlc

