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ABSTRACT 

Highway Effects on Small Mammal Communities and 

Effectiveness of a Deer-Vehicle Collision 

Mitigation Strategy 

by 

Silvia A.S. Rosa, Master of Science 

Utah State University , 2006 

Major Professor: Dr. John A. Bissonette 
Department: Wildland Resources 

My work focused on the study of road effects and mitigation of negative 

impacts of roads on wildlife . Two different studies were conducted on Interstate 

15, in southern Utah . My first study reported on road effects on small mammal 

communities . The results suggested that overall, there was no clear effect on 

small mammal populations relative to distance from the road. Most small 

mammal species did not appear to be negatively affected by the presence of the 

road. Instead, the road seemed to have either a neutral or a positive effect. The 

abundance and diversity of small mammals responded more markedly t9 micro-

habitat than to the presence of the highway. I suggest that other factors such as 

water runoff during rainy periods may be responsible for the detected patterns by 

increasing primary productivity in areas close to the road. I conclude that roads 

may often provide favorable micro-habitat in the desert landscape for many small 
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mammals and that the disturbance caused by the highway use (e.g. , noise, road 

surface vibration) seemed to have a negligible effect on these organisms . My 

second study examined the effectiveness of a mitigation strategy to reduce mule 

deer (Odocoileus hemionus) road mortality. Mitigation included exclusion fencing, 

earthen escape ramps, and underpass crossing structures . Results comparing 

mortality data before and after the mitigation showed 76-96% reductions of deer

vehicle collisions. There was no evidence that the mitigation caused "end-of-the

fence" problems, i.e., higher mortality at the ends of the exclusion fencing . 

Results from underpass camera monitoring showed an increasing deer use of 

the underpasses over time. The volume of crossings recorded on new underpass 

structures approached the volume of crossings observed in a 20-year-old control 

underpass . My results suggest that human use and location of structures 

influenced deer use of underpasses . Overall results show that the mitigation 

strategy was effective and has reduced the number of deer-vehicle accidents 

while allowing easier wildlife movement across the landscape . I presented future 

maintenance recommendations to assure a long-term success for this strategy. 

iii 

(86 pages) 



IV 

DEDICATION 

To my family in Lisbon and Logan. To all of those who have loved me 
back. 

Silvia Rosa 



ACKNOWLEDGMENTS 

I would like to thank the Utah Department of Transportation, the Utah 

Division of Wildlife Resources, and the Bureau of Land Management for the 

funding provided for this research. I would like to thank John Bissonette for this 

lifetime opportunity and for all the trust and encouragement. I would like to 

acknowledge and thank the help and feedback provided by my committee, 

especially the input, ideas, and patience of Mary Conner . I also thank Susan 

Durham for the statistical help and Patty Cramer for the road ecology input. I 

thank Bruce Bonebrake , Becky Bonebrake , Donald Auer , and Chance Stewart 

for all the energy, help, and commitment. I would also like to thank Diana 

Marques for the illustrations , and my field technicians Chris Kassar for the 

tireless work, and Dulce Ferreira for the support , patience , and care. 

Silvia Rosa 

v 



VI 

CONTENTS 

Page 

ABSTRACT ............ ....................................... ....... .... ............ .................................. .. ii 

DEDICATION ..................................................................... ............. ..................... ... iv 

ACKNOWLEDGMENTS ........... ........ ..... .......................... ............ ................ ....... ..... v 

LIST OF TABLES ................... ............ ................................................................... viii 

LIST OF FIGURES ...... ............ ......... ........... ............... ................... ......... ................ ix 

CHAPTER 

1. INTRODUCTION ............... ........ ........... ....... ........... ....... ........... ....... . 1 

REFERENCES ........ ............. ............... ............... ..... ..... ................. ... 5 

2. IMPACTS OF HIGHWAYS ON SMALL MAMMAL COMMUNITIES . 8 

ABSTRACT .................................... ................ ............... ........... ........ 8 
INTRODUCTION ............................. .......... ............... .......... ......... ..... 9 
STUDY AREA ........... ....... ............ ................ .......... ............... .......... 11 
METHODS .................... ........... ........ ........................ .................. ..... 12 

Field Methodology .............. ........ .... ................... .......... ..... ............ 12 
Data Analysis ...................... ............ ............... ........... ................... 13 

Diversity ........................................................ ....... ............ ......... 13 
Abundance and Density Estimation .................... ...................... 14 

RESULTS .... ......... ........... ........ ......... ....... ...... .............. .......... .... ..... 15 

Trapping .................... ............................................ ....................... 15 
Diversity Analysis ......................... ...... ................ ........... ...... ......... 16 
Abundance and Density Analysis .............. ........... ............... ........ 17 

DISCUSSION .................. ........... .............. .......... .............. ............. . 18 
REFERENCES ..................... ....................... ........ ...... ..................... 23 

3. MITIGATION STRATEGY FOR DEER-VEHICLE COLLISIONS IN 
SOUTHERN UTAH : EVALUATION OF EFFECTIVENESS ............ . 37 



VII 

ABSTRACT ............................ ........... ..... .......................... .............. 37 
INTRODUCTION ......... .... ....... ....................... ....... ....... ......... .......... 38 
STUDY AREA ...... ........ ........ ...... ........................ .... ........... ..... ......... 41 
METHODS ................................................ .......... ........ .................... 42 

Mitigation Strategy Description ...... .................................. ............ 42 
Monitoring ..... ........... ..... .... ........ .................. ........ ..... ...... ............. . 43 

Deer-Vehicle Collisions .... ........................ .............................. ... 43 
Underpass Use .... ................................ ............ ............ ............. 44 

RESULTS .... ............ .... .... ................... .................. ...... ......... .... ....... 47 

Deer-Vehicle Collisions ................ .... ........ ..... ....... .... ..... ............... 47 
Underpass Use ......... ............ ......... ..... .......................... ... ........ .... 47 

DISCUSSION ........ ........ .... .............. .............. ........... ........... ....... .... 50 
CONCLUSIONS AND FUTURE CONSIDERATIONS ........... ......... 55 
REFERENCES ........................ ................ .......................... ........ ..... 57 

4. CONCLUSION ............. ............ .......... ....... ............ .... ........... ........... 69 

REFERENCES ............ ... .... ................ .................................. ........... 7 3 



viii 

LIST OF TABLES 

Table Page 

2-1 Species detected at different distances from 1-15 in 2004 and 2005 in 
southern Utah, USA. .................................. ....................... ...... ................... 31 

2-2 Comparison of small mammal diversity H (Shannon-Wiener Index) trends 
in 2004 and 2005 among different distances from the road in southern 
Utah, USA. . ........... ................... ................... .................. ......... .......... ........ . 32 

2-3 Summary of main conclusions reported in the literature about road effects 
on small mammals ............ : .............. ........... ..................... .................... ...... 33 



ix 

LIST OF FIGURES 

Figures Page 

2-1 Study area map with trapping location in 2004 and 2005 and geographic 
areas (A, B, and C) used for comparison of densities in 2004 in southern 
Utah, USA ............ ........... ................................ ...... ............ .................. ....... 34 

2-2 Schematic representation of trapping schemes in 2004 and 2005 used in 
southern Utah, USA ............ ..... ........... .......... ...................... ................... .... 35 

2-3 Density estimates of small mammals (and 95% Confidence Intervals) in 
2004 at different distances from the road in southern Utah, USA. .......... ... 36 

2-4 Abundance estimates of small mammals (and 95% Confidence Intervals) 
in 2005 at different distances from the road in southern Utah, USA ........... 37 

2-5 Density estimates of small mammals (and 95% Confidence Intervals) in 
2004 at different distances from the road in three distinct geographic areas 
(A, B, C) in southern Utah, USA. ............................ ................ ................. ... 38 

2-6 Density estimates of Peromyscus manicu/atus and Perognathus patVus 
(and 95% Confidence Intervals) in 2004 at different distances from the 
road, southern Utah, USA. ......... .................. ...... .......... ................... ...... ..... 39 

3-1 Study area location in southern Utah, USA. Location of deer-vehicle 
collision (DVC) control area, mitigation area , monitored underpasses , and 
fence extension in the study area ..... ................ ............ .............. ................ 66 

3-2 Schematic representation of underpasses monitored in the study area on 
1-15, southern Utah, USA .......................................................... ................. 67 

3-3 Deer vehicle collision counts in control and mitigated areas. Dashed line 
represents mitigation strategy implementation . Data from UDOT deer 
carcass removals on 1-15 in southern Utah, USA. ..................... ................. 68 

3-4 Comparison of deer use of monitored underpasses on 1-15, in southern 
Utah, USA. Proportional values(%) and absolute values are presented. 
Photos grouped in: mule deer use, human use, cattle use, other wildlife 
use, and blank photos ..................................... ...... ................. ........... ......... 69 

3-5 Monthly counts of deer crossings detected in both directions (east and 
west) on monitored underpasses on 1-15, southern Utah, USA. ................ 70 



x 

3-6 Net crossings through time for each underpass on 1-15, in southern Utah , 
USA. . ......... .... ...... ......................... ....... ..................... ............. ............. ....... 71 

3-7 Net crossings in monitored migration periods (fall : October-January ; 
spring : April-July) for each underpass on 1-15, southern Utah , USA .......... 72 



CHAPTER 1 

INTRODUCTION 

The continued expansion of human influence into natural areas has raised 

awareness of the importance of understanding and mitigating human impacts on 

ecosystems. Current estimates of the total landscape transformed or degraded by 

human influence have been estimated to be between 39-50% of total land surface 

of the earth (Vitousek et al. 1997). One of the most distinctive elements of human 

expansion on the landscape is the presence of roads . They constitute linear 

linkages between human populations allowing for the flow of people, resources, 

and information . However, natural areas crossed by road networks are heavily 

impacted (Forman 2000, Trombulak and Frissell 2000). The presence of the road 

infrastructure itself results in direct loss of habitat, realignment of watersheds , and 

direct mortality of wildlife (see Forman & Alexander 1998 for review). But road 

influences are not limited to the physical area occupied by the infrastructure ; 

instead they extend into the adjacent landscape creating what is often referred to 

as a "road effect zone" (Forman and Deblinger 1998, Forman 2000). This zone, 

located beyond the road verge, is often characterized by high levels of disturbance 

(e.g., noise, vibration), altered habitat quality and hydrologic regimes, occurrence 

of exotic species , and a high probability of soil contamination (Forman 2000). 

Habitat can be affected hundreds of meters away from the verge, resulting in a 

"road effect zone ." This is often a disproportionately large area when compared 

with the area physically occupied by the road per se (Forman 1998). In the United 



2 
States , an estimated15-20% of the total land area is ecologically affected by roads 

(Forman & Deblinger 1998, 2000; Forman 2000), while only 1 % is physically 

occupied by road networks (Forman 1998). The extent to which this impacted area 

affects wildlife is highly variable and still uncertain in many cases. Research has 

documented several ecological and behavioral changes in populations close to 

roads, e.g., avoidance of roaded areas (Rost and Bailey 1979, Witmer and 

deCalesta 1985), interference with reproduction (Reijnen et al. 1995), and genetic 

isolation (Epps et al. 2005). But the influence of roads on organisms is not yet fully 

understood or satisfactorily studied. Noise and vibration are generally the most 

cited disturbances; but they only seem to selectively affect some wildlife (Adams 

and Geis 1983, Reijnen et al. 1995, Forman and Alexander 1998, Meunier et al. 

1999; Goosem 2000). The barrier effect caused by roads is also considered an 

important influence on populations (Oxley et al. 1974, Swihart and Slade 1984, 

Gerlach and Musolf 2000, Epps et al. 2005), but some species are less susceptible 

than others depending on their mobility, tolerance to disturbance, and vulnerability 

to traffic collisions. The impact of roads is thus neither straightforward nor equal for 

all wildlife. A more accurate identification of road effects on wildlife of concern is 

thus essential to adjust management to real conservation needs . Furthermore, 

there is little information on the role that roads play on communities dynamics , e.g ., 

on multi-species interactions. If a species avoids roads because of disturbance, it 

might leave free habitat for other species without competition or predation pressure 

(Trombulak and Frissell 2000) . That would imply that habitat adjacent to the road is 

more suitable for generalist species (Gossem 2000). However, where habitat 



availability is scarce because of human development, road adjacent habitat may 

be the last natural refuge for wildlife, constituting premium habitat occupied by both 

generalists and specialists (Way 1977, Bennett 1988, Bellamy et al. 2000, 

Underhill and Angold 2000). 

If a logical first step of research is to identify and understand the impacts of 

roads on ecosystems, then an effective second step is to mitigate its observed 

negative effects. Current research largely focuses on developing and testing 

effective mitigation strategies . Attention has been traditionally given to reduce 

wildlife mortality directly caused by vehicular traffic. This pervasive effect has 

received much attention from the public , not just because of its impact on wildlife 

populations, but primarily because of human safety concerns (Conover et al. 

1995). Despite the fact that current estimates indicate that one million vertebrates 

are killed on the road every day in the United States (Forman and Alexander 

1998), the main concern is centered on large-sized animals that can potentially 

cause serious accidents. North American and northern European large-sized 

ungulates and carnivores are generally perceived as major hazards on the roaded 

landscape (Bruinderink and Hazebroek 1996, Nielsen et al. 2003) . However, the 

considerable impact that roads have on their population viability and dynamics has 

also concerned wildlife managers (Lehnert 1996, Seiler 2003). Conover et al. 

(1995) estimated that 1.5 million deer-vehicle collisions (DVCs) occur in the U.S. 

every year. In Utah, very conservative estimates suggest a median of 2,200 DVCs 

reported to authorities annually (Kassar 2005). Lehnert (1996) estimated that 5.6% 

to 17.4% of northern deer populations were killed by vehicle collisions every year. 
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The resolution of this problem has to reconcile two different perspectives: human 

safety and wildlife management (Sullivan and Messmer 2003). 

As referred above, the science of road ecology has currently two major 

interests: identification of road impacts on ecosystems and mitigation of negative 

effects. My research addressed both fields of study: I studied road effects on small 

mammal communities and I tested the effectiveness of a mitigation strategy to 

reduce mule deer mortality on a heavily traveled Interstate highway. The following 

chapters describe these two studies. 

In Chapter 2, titled "Impacts of Highways on Small Mammal Communities, " I 

focused on the impact of a southern Utah highway (Interstate 15) on small 

mammals . I was interested to see if road disturbance affected this group, and if 

community composition changed at increasing distances from the road. I expected 

that habitat adjacent to the road would support different communities either 

because of disturbance, changes in habitat, or shifts in interspecific dynamics. 

Results are discussed in the context of the high altitude desert ecosystem of 

southern Utah. 

In Chapter 3, entitled "Mitigation Strategy for Deer-Vehicle Collisions in 

Southern Utah: Evaluation of Effectiveness" I present the results of a mitigation 

strategy to reduce animal vehicle collisions. I monitored a 32.2 km (20 miles) 

stretch of 1-15 where exclusion fencing, earthen escape ramps, and 

underpasses were constructed to reduce deer mortality on the road . I 

compared results of mortality before and after the intervention and analyzed 

whether the strategy was effective in reducing mortality. Ends of the fence and 
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hotspot areas were analyzed for reductions in mortality Additionally , I report on 

mule deer use of underpass structures and compare use of new and control 

structures. I present migration periods, behavior crossing patterns, and 

changes in structure use with time. I analyze the comparative effectiveness of 

each crossing structure in allowing deer to cross the road . The results of this 

monitoring study will help evaluating the effectiveness of these types of 

interventions and contribute to its implementation in other problem areas. 
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CHAPTER 2 

IMPACTS OF HIGHWAYS ON SMALL MAMMAL COMMUNITIES 

ABSTRACT 

My study focused on road effects on small mammal communities in a high 

desert region of southern Utah. Specifically, I tested the idea that roads create 

adjacent zones characterized by lower habitat quality that cause lower small 

mammal densities. I sampled abundance of small mammals at increasing 

distances from Interstate 15 for 2 summers . I detected 11 genera and 13 species. 

My results suggested that overall, there was no clear effect on small mammal 

populations relative to distance from the road. The road by itself does not seem to 

influence abundance or diversity patterns . Most small mammal species did not 

appear to be negatively impacted by the presence of the road. Instead, abundance 

of organisms was either similar at different distances from the road or higher closer 

to the road. I found that 2 species were never detected near roaded areas, but 

their numbers were clear exceptions in the community context. I did not test other 

factors responsible for the distribution of small mammals, but suspect that micro

habitat features were important. The abundance and diversity of small mammals 

responded more markedly to habitat quality and complexity than to the presence of 

the highway. I suggest that water runoff during rainy periods may be responsible 

for the patterns we detected. In this arid environment, even sparse rains can have 

important effects on plant growth and structure. I conclude that roads may often 

provide favorable micro-habitat in the desert landscape for many small mammals 
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and that the disturbance caused by the highway use seems to have a negligible 

effect on these organisms . 

INTRODUCTI ON 

Roads present one of the greatest concerns for wildlife conservation across 

the earth (Forman and Alexander, 1998; Trombulak and Frissell , 2000; Jaeger et 

al., 2005). The most visible effect of roads on wildlife is direct mortality. However , 

road influences on landscapes extend much further than their physical boundaries 

(Reijnen et al., 1995; Forman, 2000; Forman and Deblinger, 2000; Bissonette, 

2002). Several indirect effects of roads on wildlife communities have been reported 

such as habitat quality alteration, loss in landscape connectivity, and barrier effects 

(Forman et al., 2003; Jaeger et al., 2005) . An effect zone of up to 1 OOm on either 

side of the road has been described as causing visible impacts on ecological 

communities (Underhill and Anglod, 2000) . Small mammal communities are good 

models to study such impacts. These communities are generally composed of 

species that use a wide variety of resources; have short generation times allowing 

for quick detection of environmental changes, and are permanent residents of a 

site responding directly to disturbance in a perceptible and measurable way 

(Steele et al., 1984) . 

Roads can impact small mammal communities by: 1) creating an edge with 

different habitat characteristics (Garland and Bradley , 1984; Tyser and Worley , 

1992); 2) promoting the introduction of exotic species (Getz et al., 1978; 

Vermeulen and Opdam, 1995; Underhill and Anglod , 2000); 3) increasing stress 

and reducing survival (Benedict and Billeter. 2004) through disturbance and 

9 



contamination (Jefferies and French, 1972; Williamson and Evans , 1972 ; Quarles 

et al., 1974); 4) blocking movement thus causing genetic barriers and home range 

rearrangements (Oxley et al ., 197 4; Garland and Bradley, 1984; Mader, 1984; 

Swihart and Slade, 1984; Merriam et al., 1989; Gerlach and Musolf , 2000); and 

finally 5) causing direct road mortality (Wilkins and Schmidly, 1980; Ashley and 

Robinson, 1996; Mallick et al., 1998) . 

While the main focus of studies on the impact of roads on small mammals 

has been on road barrier effects, less attention has been given to the effect of 

roads on density and diversity of local natural communities . Some have mentioned 

the importance of road verges to small mammal conservation but do not make 

reference to road effects on diversity or density in natural adjacent habitats 

(Bennett, 1988; Bellamy et al., 2000) . Others have compared diversity and density 

between natural adjacent habitat and road verges/medians (Adams and Geis , 

1983; Adams, 1984; Garland and Bradley, 1984; Meunier et al., 1999; Goosem, 

2000) , but do not describe community attributes in natural areas without road 

influences. Moreover, conclusions drawn from these studies are often based on 

the use of count indices instead of mathematically derived estimators of 

abundance or density that are corrected by capture probability estimates . In 

studies of this nature, capture probabilities may be radically affected at different 

levels of human disturbance. Animals not accustomed to human disturbance may 

be more prone to avoid traps than animals living in more disturbed areas, thus 

having a lower probability of capture. Therefore, numbers of animals captured 

need to be corrected by capture probability at different sites . Without correction for 
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capture probabilities, the use of indices to estimate accurate population sizes is 

flawed (McKeivey and Pearson, 2001) preventing accurate conclusions about road 

effects. 

Further analysis on the effect of roads on natural habitats is needed . My 

objective was to assess and compare density estimators and diversity of small 

mammal communities in areas influenced by roads with areas having no road 

influence . I tested the hypotheses that, in natural habitats, density and species 

diversity are the same at increasing distances from the road . 

STUDY AREA 

This study was conducted in the high elevation desert region of 

southwestern Utah . It is included in the Great Basin geographic region (Durrant, 

1952; Barash, 1960; Cronquist, 1978). The study area was located near Beaver , 

Utah (38°16'N latitude and 112°37'W longitude) adjacent to Interstate 15 (1-15) 

(Figure 2-1 ). Elevation in the study area ranged from 1,700 to 1,900m (Department 

of Natural Resources, 1978). 1-15 is a 4-lane divided highway . The habitat was 

dominated by big sagebrush (Arlemisia tridentata) with occasional patches of 

pinyon pine (Juniperus osteosperma ) and juniper (Pinus edulis). The road verge 

was either covered by sagebrush and grass-like vegetation or non-vegetated . 

Weather was characteristic of high elevation lntermountain desert with below 

freezing temperatures and snow cover during the winter and high temperatures 

during the summer. Maximum temperatures rarely exceeded 100°F (38 °C) and 

minimum temperatures were usually above -10°F (-23°C); the annual mean 

temperature was 47.4 °F (8.6°C). Annual precipitation in the form of rain and snow 
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was less than 12 in (305 mm), occurring primarily during winter, early spring, and 

late summer (Department of Natural Resources, 1978) . Relative humidity was very 

low and evaporation potential was high (Durrant, 1952; Zeveloff and Collet , 1988). 

Prolonged periods of drought are frequent in this region (Durrant, 1952). The soil 

on trapping sites was composed mainly of fine sand deposits with occasional 

volcanic rocky areas (Chronic, 1990) . 

METHODS 

Field Methodology 

Small mammal sampling was conducted exclusively in sagebrush habitat 

on both sides of the road during the summer periods of 2004 and 2005. Trapping 

was conducted close to and distant from the road to sample communities with and 

without putative road influence. For the first year (2004 ), 2 trapping webs were 

placed on a perpendicular transect from the road at each site (Figure 2-2) . The first 

webs were centered at 50 m from the road (Close) and the second webs centered 

on average 400 m from the road (Distant) . Each web was composed of 8 arms 

extending 50 m outwards from a central point. Each arm had 6 trapping-stations 

(5, 10, 20, 30, 40 , and 50 m) plus 1 trapping station located at the center of the 

web . In total, each web had a total of 98 traps. I used both lethal (snap traps) and 

non-lethal (Sherman) traps to maximize the number of species detected and to 

allow sampling during the diurnal period. 

A different trapping design was used in 2005 to correct problems detected 

in the first trapping season . Closer webs in 2004 were thought to be sampling a 

considerably wide area away from the road (1 OOm) that would probably confound 
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presumed impacted and not impacted communities . Trapping lines were used 

instead in 2005 . Three trapping lines were placed in a perpendicular transect from 

the road (Figure 2-2) . Trapping lines were set at increasing distances from the 

road verge (Om - Close, 200m - Mid, 600m - Distant). Each line (150m) had a total 

of 30 traps (lethal and non-lethal) . All traps were baited with a mixture of horse 

feed and peanut butter and checked for three consecutive mornings and 

intermediate afternoons (lethal traps only) . Upon capture, all animals were 

identified, sexed, measured, marked, and released . Dead animals were removed 

from the study site. Trapping was conducted according to Utah State University 

IACUC protocol #1139 of animal welfare . 

Due to differences in trapping design and areas sampled, data from 2004 

are not directly comparable to data from 2005; hence data were analyzed by year . 

Yearly trends can be compared to assess if densities differed by proximity to the 

road. 

Data Analysis 

Diversity 

I used the Shannon-Wiener diversity index (H) to compare community 

diversity at different distances from the road (Begon et al., 2006) . The index was 

calculated for each web or trap-line in all transects. I tested diversity differences at 

different distance from the road using the Wilcoxon paired-sample test for 2004 

data, and Friedman 's test for 2005 data (Zar, 1996). A Least significance 

difference (LSD) multiple comparison test for Friedman's test (Sprent , 1989) was 
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used with 2005 data to determine which pairs of distances (close vs . mid; close vs. 

distant; mid vs. distant) were significantly different. 

Abundance and Density Estimation 

Analysis for 2004 Web-based data employed a distance method described 

by Anderson et al. (1983) and accounted for first capture locations for each 

individual and their distances to the center . Program DISTANCE 4.1 (Buckland et 

al., 1993, 2001) was used to calculate densities and variance estimates . For 

analysis purpose, capture data in different transects were pooled in close webs 

and distant webs due to low number of animals sampled in each web. Estimation 

was possible for all small mammals combined (all species) and for the most 

abundant species (i.e., >30 captured individuals per pooled database). Additional 

analysis was performed for 2004 data by pooling groups of transects set in similar 

geographic areas (A, B, and C; see Figure 2-1 ). Grouping of these transects was 

done to account for biologically meaningful factors observed on the field (e.g ., 

habitat and soil differences) . I compared differences between areas and within 

areas at different distances . Density estimations in program DISTANCE were 

obtained by trying all available combinations of models (uniform, half-normal , 

hazard, and negative exponential), with adjustment terms (cosine, simple 

polynomial , or hermite polynomial). Final model selection was based on Akaike 's 

Information Criterion (AIC) value and on model performance (i.e., models running 

without warnings). Because the amount of data was scarce, data sets were used in 

their entirety (i.e ., no truncation was performed) . Intervals used in DISTANCE (0, 

7.5, 15, 25, 35, 45 m) were the midpoints between trap-stations . Resulting 



densities in Close and Distant Webs were tested for significant differences with a 

Wald test. 

Analysis for 2005 trapping-line-based data was performed using a closed 

population mark-recapture method in Program MARK 4.3 (White and Burnham, 

1999). Closure was assumed given that trapping occurred in a sufficiently brief 

interval and the removals were known and accounted for in the analysis (Williams 

et al., 2001 ). The Huggins Closed Capture estimator was used to obtain 

abundance estimates. Capture data was pooled into 3 groups representing 

increasing distances from the road (Close, Mid , and Distant) . Estimates were 

obtained for the null model and other models that accounted for variability in 

capture probabilities due to behavior , heterogeneity, and time. Models that did not 

converge were discarded . Remaining models with the lowest AIC value were 

averaged to obtain final estimates of abundance . Differen ces in abundance 

estimates were tested using a Wald test. 

RESULTS 

Trapping 

I completed a total of 8,406 trap nights (webs 7,056; trap-lines 1,350) and 

captured 484 small mammals (webs 420; trap-lines 58) comprising 13 species and 

11 genera. The two species trapped most often were deer mice (Peromyscus 

maniculatus) and great-basin pocket mice (Perognathus parvus). 

In 2004 I captured a total of 11 species (Table 2-1 ). Two of the species, 

rock squirrel (Spermophilus variegatus) and sagebrush vole (Lemmiscus curtatus), 

were captured exclusively in areas closer to the road , and 2 other species , pinyon 
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mouse (Peromyscus truei) and white-tailed antelope squirrel (Ammospermophilus 

leucurus), were captured exclusively distant from the road . The remaining 7 

species were captured at both distances. During 2005 I captured a total of 7 

species (Table 2-1 ). Three of the species - desert cottontail (Sylvilagus audubonii) , 

jackrabbit (Lepus californicus) and desert woodrat (Neotoma lepida) - were only 

detected closer to the road . No unique species were detected at mid or at distant 

classes . The number of species decreased as distance to road increased . 

During the two years of sampling I noted that some species were only 

detected in areas with unique micro-habitat characteristics. For example, desert 

woodrats were only captured close to Pinyan -Juniper habitat or areas with rocky 

substrate ; chisel-toothed kangaroo rats (Dipodomys microps) only were detected 

in the southern portion of the study area , near Beaver; cottontail rabbits and 

jackrabbits juveniles were only detected in road verge habitat ; and rock squirrels 

and sagebrush voles were caught only at higher elevations in a transect with more 

structurally complex vegetation (area B). The transect done in area B was distinctly 

different from the others, not only because of its habitat features , but also because 

of the disproportionately high number of organisms captured (132 individuals) and 

the occurrence of 3 unique species. 

Diversity Analysis 

Results of Shannon-Wiener diversity index (H) analysis showed different 

trends in diversity according to different sampling years (Table 2-2) . For 2004, 

Shannon-Wiener diversity indices were 43.2% higher in areas distant from the 
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road (Z = -2.224, P = 0.026) as compared to results in 2005 in which diversity was 

57-87% lower further from the road (Friedman test x2 = 6, P = 0.05) . 

Abundance and Density Analysis 

Analysis to compare total small mammals distribution relative to road 

distance seems to indicate opposite trends for different years . In 2004 (Figure 2-3), 

I did not detect a significant difference in densities at distant and closer webs. 

Despite the fact that density was 28.9% higher at distant webs, there was not a 

significant difference (Z = -0.49, P = 0.63). In 2005, however, abundance 

comparisons between close, mid, and distant found lower abundance of small 

mammals at distant transects (Figure 2-4 ). An 87.3% difference between 

abundances at close and distant was highly significant (Z = 3.99, P < 0.001 ). The 

difference between mid and any other distance was non-significant because the 

low capture and recapture rates at mid resulted in less precise estimates (CV Mio= 

0.84). 

Despite the fact that trapping areas were chosen carefully to be consistent, 

observations in the field suggest that sites might have had relevant differences in 

micro-habitat characteristics. Observed differences such as volcanic rock 

substrate, Pinyan-Juniper proximity, higher elevation, and extensive existence of 

fallen trees may have influenced trapping outcomes in some transects (e.g ., area 

B). Given this situation, the pooling of distant and close webs across the entire 

data set seemed inappropriate . When I pooled transects with similar 

characteristics (corresponding to similar geographic areas) and compared 

densities between areas, I was able to test if differences in habitat influenced 



density ( Figure 2-5). Area B was located at higher elevation and had a higher 

abundance of fallen trees; It had higher densities of organisms both in webs near 

and farther from the highway compared with areas A or C. Densities at area B 

were significantly different from densities at area A (for both close [Z = -2.15, P = 

0.03] and distant webs [Z = -3.07, P = 0.002]) and area C (for both close [Z = 

-2.84, P = 0.004] and distant webs [Z = -2.97, P = 0.003]). 

When I compared close and distant abundances of organisms within each 

of the geographic areas I found no significant differences (Z Area A= 1.33 , P = 0.18; 

Z Area B = -1 . 61 , P = 0. 11 ; Z Area c = -1 . 12, P = 0. 2 6) . 

For individual species P. maniculatus and Perognathus parvus (Figure 2-6), 

comparisons between densities close and distant failed to reject the null 

hypothesis, indicating no statistical difference in densities between close and 

distant trapping sites for either species (P. manicu/atus Z = -1.06, P = 0.29; 

Perognathus parvus Z = 0.71, P = 0.48). However, results seem to indicate 

opposite trends for the two species . P. manicu/atus density was 100.6% higher at 

distant webs while Perognathus parvus density was 31.8% lower . 

DISCUSSION 

The main objective of this study was to assess if roads had any zone 

effects on small mammal community abundance and density. The null hypothesis 

was that abundance and density would not vary significantly at increasing 

distances from the road if the road had a neutral effect. I expected effects, if any, 

to be constant throughout the length of the study . However, the results are 

contradictory in different sampling years and suggest that there is no clear effect 

18 



on small mammal populations relative to distance to the road. Abundances of 

small mammals were similar close and distant in 2004, and higher closer to the 

road in 2005. Diversity was higher away from the road in 2004 and closer to the 

road in 2005. The road by itself does not seem to influence abundance or diversity 

patterns. I did not detect any negative impacts. Small mammal populations did not 

appear to be negatively affected by the presence of the road . Similar results have 

been reported in several other studies (Adams and Geis, 1983; Adams, 1984; 

Garland and Bradley, 1984; Meunier et al., 1999; Goosem , 2000). These studies 

(see Table 2-3) never report a road negative impact on total abundance or 

diversity . Roads appear to have either a neutral or a positive effect. A negative 

effect has only been reported for specific species that avoided roaded areas, but 

their numbers were in clear minority (see Table 2-3) . My study also detected 

species that were never found near roads (Peromyscus truei and 

Ammospermophilus /eucurus), but they were rare and constituted a very small 

proportion of the captured small mammals. 

Because of the variable patterns of abundance in different years, I 

concluded that road effect zone by itself does not strongly influence small mammal 

community dynamics and patterns on the landscape. Roads may intervene in the 

landscape as distinctive structures causing barrier effects but do not appear to 

cause disturbance or habitat impoverishment for small mammals . The yearly 

differences in abundance and diversity recorded in my study suggest that other 

factors, possibly combined with road presence, may be influencing these patterns. 

Differences in areas sampled, sampling methods, or different trapping years, could 
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have influenced the results . Differences between areas were clearly more 

important than differences between close and distant trapping sites . Results show 

that micro-habitat highly influenced organism abundances . Differences in sampling 

methods could also have influenced results . For example, trapping lines are more 

suitable to detect the diversity present at a site and are not as robust for estimating 

abundances (Stickel, 1948). Finally, yearly differences, such as variable 

precipitation regimes, could have influenced my results. There is a possible 

interaction between roads and precipitation , whereby road water runoff, a factor 

known to influence small mammal life cycles in desert ecosystems (Beatley, 1969) , 

might help explain my results. In years with good prec ipitation, vegetation growth 

near roads is enhanced because roads may act as water collectors and as 

protection against evaporation (Huey, 1941 ). Increased water availability in the soil 

by these "linear watersheds" may influence primary productivity, increasing food 

and shelter availability for small mammals (Garland and Bradley , 1984 ), ultimately 

influencing their abundances and diversity (Swihart and Slade , 1990; Li et al ., 

2003). This scenario is likely in my study area because of the desert climate 

conditions . The first year of my study, 2004, registered the end of a severe multi

annual drought period in Utah. One can hypothesize that the 2004 precipitation 

could have easily been absorbed by the dried soils or immediately evaporated. 

The following year, 2005, was even wetter and precipitation would have been 

sufficient to result in runoff to the road verges. This may have promoted water 

retention in the soil, and increased primary productivity, which may have led to 

higher diversity and abundance of small mammals near the road . However, a 
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multi-causal effect, such as this road vs. precipitation interaction, has not yet been 

tested so as to separate road effects from other environmental (spatial or 

temporal) factors. 

If roads indeed promote water availability in desert habitats and induce 

higher abundance and diversity of organisms, their function may be viewed as 

similar to the function exerted by riparian vegetation zones. They both constitute 

linear components on landscape differing from the matrix by having distinct 

vegetation composition and higher water availability . 

My results also suggest that the abundance and diversity of small mammals 

responds more markedly to habitat quality and complexity than to the presence of 

roads. The comparison of geographic areas in 2004 showed that higher densities 

of mammals existed with favorable habitat conditions (higher food and shelter 

availability in Area B than on other areas). Therefore, I suggest that management 

of roaded landscapes to increase small mammal populations would more profitably 

focus on roadside habitat improvement rather than on road disturbance mitigation. 

One of the limitations of this type of study is that conclusions are based on 

the assumption that habitat modification induced by road presence will have the 

effect of altering species abundances. However, variation in abundance may not 

be a good indicator of habitat quality (van Horne, 1983 ). The number of animals 

present in an area depends on several other aspects other than habitat quality 

(e.g., source-sink dynamics; interspecific movements , and effects caused by 

coexistence relationships). Examples include situations where a high density of 

animals may occur in a low-quality habitat site due to a disturbance event, or, 



conversely, a low abundance of organisms may be found on good quality habitat 

due to competitive exclusion. Areas near roads, for example, could hypothetically 

be lower-quality areas (sinks) with a high density of animals because of high 

immigration rates from core areas (sources) . In this case, the real impact of roads 

may not be reflected in abundance but in individual survival. According to van 

Horne (1983) survival should be a reliable indicator of habitat quality . Therefore , 

studies on small mammal survival at increasing distances from the road could 

provide a more reliable measure of the real impact of roads. Another inherent 

problem is that conclusions tend to be biased towards abundant species due to the 

difficulty of using statistical analysis with low abundances . This compromises the 

understanding of road effects on rare and probably the most sensitive species . 

Despite these problems, this study supports the conclusion that the 

scientific predisposition to consider roads as negative landscape elements for all 

wildlife is ,not valid for small mammal communities. I documented the existence of 

few intolerant species, but most small mammal species in the community were 

indifferent or attracted to road areas . Road verges are often seen as refuges to 

preserve native wildlife in places where loss of natural habitat is an issue (Way, 

1977; Bennett, 1988; Bellamy et al., 2000; Underhill and Angold, 2000) . But even 

in this situation, where sagebrush habitat integrity was not a problem, immediately 

adjacent verge habitat seemed to be more suitable than matrix habitat beyond the 

right-of-way zone. Organisms may benefit from the abundance of water or even 

from the isolation provided by the fenced road verge from other human induced 

disturbances (e.g., cattle grazing, or deforestation). In conclusion , roads can create 
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favorable micro-habitat in the desert landscape for many small mammals . The 

disturbance caused by the road use seems to have a negligible effect on these 

organisms. 
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Table 2-1. Species detected at different distances from 1-15 in 2004 and 2005 in 

southern Utah, USA. Species (number of individual captures).*= species 

uniquelly detected at certain distance. 

DI STANCE TO ROAD 

CLOSE 

MID 

DISTANT 

2004 

Peromyscus maniculatus (124) 
Perognathus parvus (39) 
Tamias minimus (27) 
Oipodomys microps (5) 
Rethrodontomys megalotis (4) 
Peromyscus boy/ii (3) 
Neotoma lepida (2) 
Lemmiscus curtatus (1) • 
Spermophilus variegatus (1) * 

Peromyscus maniculatus ( 120) 
Perognathus parvus (54) 
Tamias minimus (18) 
Peromyscus boy/ii (11) 
Ammospermophi/us /eucurus (4) • 
Rethrodontomys megalotis (3) 
Peromyscus truei (2) • 
Neotoma lepida (1) 
Dipodomys microps (1) 

2005 

Perognathus parvus ( 12) 
Peromyscus maniculatus (10) 
Dipodomys microps (8) 
Tamias minimus (2) 
Sylvilagus audubonii (2) • 
Lepus californicus ( 1) • 
Neotoma lepida ( 1) • 

Dipodomys microps (11) 
Perognathus parvus (4) 
Peromyscus maniculatus (1) 
Tamias minimus (1) 

Dipodomys microps (2) 
Perognathus parvus (2) 
Peromyscus manicu/atus (1) 
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Table 2-2 . Comparison of small mammal diversity H (Shannon-Wiener Index) 

trends in 2004 and 2005 among different distances from the road in southern 

Utah, USA. Wilcoxon paired-ample test was used for 2004 data. Least significant 

difference (LSD) multiple comparisons test for Friedman test was used for 2005 

data. (*) differences significant at P < 0.05; (NS) not significant. 

DIFFERENCE 
YEAR 

COMPARISON 
TREND IN BETWEEN 

SIGNIFICANCE 
DIVERSITY H ESTIMATES 

(%) 

2004 H c1ose VS . H distant 
Distant > 

43 .2% * 
Close 

H close VS . H mid Close> Mid 57.3% * 

2005 
H close VS. H distant 

Close > 87.2% 
* 

Distant 

H mid VS . H distant Mid > Distant 70 .1% NS 



Table 2-3. Summary of main conclusions reported in the literature about road effects on small mammals . 

TOTAL SPECIES REPORTED 
STUDY LOCATION ABUNDANCE/DENSITY DIVERSITY RESPONSE TO ROADS 1 

Adams and Geis, 1983 USA Verge > adjacent habitat Verge > adjacent habitat Reithrodontomys humulis A 
(Oregon/California Microtus pennsylvanicus A 
Illinois Microtus ochrogaster A 
North/South Carolina) Sorex vagrans A 

Microtus townsendii A 
Peromyscus leucops I 
Peromyscus maniculatus I, I, R 
Ochrotomys nuttallii R 
Microtus califomicus R 

Adams, 1984 USA Median = adjacent habitat 
(North Caro lina) 

Garland and Bradley, USA Verge = adjacent habitat Verge = adjacent habitat Thomomys spp. A 
1984 (southern Nevada) Spermophilu s tereticaudus A 

Onychomis torridus I 

Dipodomys merriami 

Peromyscus eremiscus R 

Meunier et al , 1999 France Verge = adjacent habitat Verge 2'. adjacent habitat Crocidura russula A 
Apodemus sylvaticus A 
Microtus arvalis A 

Goosem , 2000 Australia Verge f. adjacent habitat Melomys cervinipes A 
Rattus spp. R 

Codes for species reported response to roads (A - Attracted , I - Indifferent , R - Repelled). 

(;J 

0 
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Figure 2-1. Study area map with trapping location in 2004 and 2005 and geographic areas 

(A, B, and C) used for comparison of densities in 2004 in southern Utah, USA. 
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Figure 2-2. Schematic representation of trapping schemes in 2004 and 2005 used 

in southern Utah, USA. 
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2004 at different distances from the road in southern Utah, USA. 
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CHAPTER 3 

MITIGATION STRATEGY FOR DEER-VEHICLE COLLISIONS IN 

SOUTHERN UTAH: EVALUATION OF EFFECTIVENESS 

ABSTRACT 

I present the results of a study that examined the effectiveness of a 

mitigation strategy to reduce mule-deer (Odocoileus hemionus) mortality on 

Interstate 15 near Beaver, Utah, USA Historically, high wildlife mortality recorded 

in a 32.2 km (20 miles) stretch of 1-15 south of its confluence with 1-70 and north 

of the town of Beaver led to the establishment of a mitigation strategy with two 

major objectives: 1) a decrease wildlife-vehicle collisions, and 2) maintenance 

and improvement of landscape permeability that facilitates wildlife movement 

across the roaded landscape . The mitigation involved the construction of 

exclusion fencing, right-of-way escape ramps, and two underpasses designed 

primarily for large mammal passage. In this study, I: 1) assessed the 

effectiveness of the mitigation measures in reducing mule deer mortality; 2) 

evaluated the success of the new underpasses in allowing wildlife to cross the 

road safely; and 3) analyzed the "end-of-the-fence " problem, defined here as 

increased road mortality of mule deer at the ends of the exclusion fences . 

Carcass removal data for the study area were used to assess mule deer mortality 

changes. I compared two years of post-construction mortal ity data with 6 years of 

pre-construct ion mortality. Mitigation resulted in 76-96% reductions of deer

vehicle collisions . I used remotely sensed cameras to record deer passage 
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through the new underpasses during fall 2004, spring 2005, fall 2005, and spring 

2006 migrations and compared results with a 20-year old "control" underpass 

structure. Results showed an initial low use of the structures during the first 

migration period (fall 2004 ), however, use increased with time, with more deer 
' 

crossing in subsequent migrations (spring 2005, fall 2005, and spring 2006). 

Additionally, my results suggest that road noise and human use of structures 

interfered with deer use of underpasses. These results strongly suggest that the 

mitigation strategy has been effective and has reduced the number of deer-

vehicle accidents while allowing easier wildlife movement across the landscape. I 

present future maintenance recommendations to assure a long-term success for 

this strategy. 

INTRODUCTION 

Current estimates of the total landscape transformed or degraded by 

human influence fall in the range of 39-50% of total land surface (Vitousek et al. 

1997) . One of the greatest challenges for wildlife managers today is to mitigate 

the negative influences of these changes on wildlife populations. Road networks 

have been an important contributor for this transformation and their effects on 

wildlife have been of growing concern because natural areas are progressively 

invaded by a continuously expanded and upgraded road system (Puglisi et al. 

1974, Nielsen et al. 2003, Sullivan and Messmer 2003). The most evident direct 

effect of roads on wildlife is decreased survival due to wildlife-vehicle collisions. 

In the lntermountain West region of the United States, wildlife-vehicle collisions 
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grieatly affect ungulates in general and mule deer (Odocoileus hemionus) in 

pairticular. Nation-wide estimates of 1.5 million deer-vehicle collisions (DVCs) per 

ye,ar reveal the scale of the problem (Conover et al. 1995). DVCs are frequent 

arnd responsible for high costs associated with damage to vehicles, human injury 

an1d loss of life. From the animal perspective, roads create habitat fragmentation, 

disruption of migratory movements, as well as depletion of deer populations 

(Reilly and Green 1974, Lehnert et al. 1998, Sawyer et al. 2005). In Utah very 

conservative estimates point to an average of 2,000 DVCs reported to authorities 

annually (Kassar 2005) and a 5.6% to 17.4% reduct ion in northern deer 

populations due to vehicle collisions every year (Lehnert 1996), with several 

major roads being considered mortality hotspots (Kassar 2005) . 

This study focused on a 32 .2 km (20 miles) stretch of Interstate 15 (1-15) 

in southern Utah (Figure 3-1) that historically has been considered an hotspot. In 

this area, deer have traditionally migrated east to summer ranges at higher 

elevations, and west to winter ranges at lower elevations, frequently crossing 1-

15. The upgrade of this road to an Interstate in the 1960s/1970s most likely 

blocked the traditional East to West migratory route and caused considerable 

deer mortality levels (B. Bonebrake , Utah Division of Wildlife Resources , 

personal communication). Similar situations of high levels of mortality or 

disruption of migration routes caused by the upgrade or realignment of roads 

have been described (Reilly and Green 1974, Lehnert et al. 1998, Sullivan et al. 

2004, Braden 2005 , Sawyer et al. 2005). The disruption of migratory routes in 

this study was likely due to road avoidance, and to high levels of mortality while 
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crossing the highway. Both situations can cause a reduction of deer population 

sizes , either by direct kill or by lower survivorship of animals unable to reach 

traditional seasonal ranges . Despite the initial heavy impact on deer populations , 

migration was not disrupted and deer continued to use this route across the 

highway . As a consequence a 9.6 km (6 miles) stretch of road still recorded 

heavy mortality . 

In 2003 , in an attempt to increase driver 's safety, reduce deer mortality, 

and provide deer access to their traditional seasonal ranges , three state 

agencies (Utah Division of Wildlife Resources, Utah Department of 

Transportation , and Bureau of Land Management) jointly created a mitigation 

strategy that included three integrated measures: 1) construction of deer -proof 

fencing; 2) installation of earthen escape-ramps ; and 3) construction of wildlife 

underpass crossing structures . This strategy was planned to mitigate the 

negative impact of the highway on deer, but some of the measures were 

implemented to minimize adverse consequences of the mitigation itself. For 

example , underpasses were constructed to reduce the barrier effect intensified 

by fencing (Foster and Humphrey 1995, Bruinderink and Hazebroek 1996, 

Putman 1997, Jaeger and Fahrig 2004 ). Also, earthen escape ramps were 

constructed to allow deer to escape the fenced right-of-way (ROW) . Data show 

that exclusion fencing is seldom if ever 100% effective, even with continued 

maintenance (Putman 1997) . As a result, animals that enter the ROW often 

become trapped, increasing its probability of a collision (Reed et al. 1982). This 
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situation is minimized by using escape-ramps (Hammer 2002) or one-way gates 

(Reed et al. 1974, Putman 1997). 

I conducted a 2-year study following implementation of this mitigation. The 

overall objectives were to reduce DVCs and to assure landscape connectivity for 

deer across the highway. I was interested to see if fences and escape-ramps 

jointly reduced deer mortality on the road, and if underpasses allowed mule deer 

movement across the interstate. 

For the mitigation strategy to be considered effective, I established 3 a 

priori criteria. First, DVCs on this stretch of 1-15 needed to be reduced by 70%. 

This threshold was chosen according to mule deer population studies in northern 

Utah (Lehnert 1996), and according to reduction in mortality observed in 

successful mitigations strategies elsewhere (Clevenger et al. 2001 , McDonald 

1991 ). Second, there should not be an increase in DVCs at mitigation fence 

edges, i.e., the "end-of-the-fence problem" (Bellis and Graves 1971, Ward 1982, 

Clevenger et al. 2001 ). Third, there should be substantial underpass use by deer, 

which should increase with time (Ward 1982). 

STUDY AREA 

The study area was located on 1-15 in southern Utah, between 1-15 and 1-

70 interchange (Mile Post 132) and north of Beaver (Mile Post 112) (Figure 3-1 ). 

1-15 is a 4-lane divided pavement highway. Surrounding habitat included patches 

of big sagebrush (Artemisia tridentata) , pinyon pine (Juniperus osteosperma) and 

juniper (Pinus edulis), agricultural fields, and urban areas . 
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METHODS 

Mitigation Strategy Description 

Mitigation construction started in spring 2004 and ended in fall 2004. A 

2.44-m (8 ft) fence was erected on both sides of the road. During the summer of 

2004, the highway was fenced from Mile Post 112 to 132 . Additional fencing 

extended the northern end of the fence to Mile Post 133 during the summer of 

2005 to prevent deer access to the highway intersection of 1-15 with 1-70. Earthen 

escape ramps (n = 64) were installed throughout the 32 .2 km (20 miles) stretch 

of the study area especially around known deer crossing areas . Two wildlife 

specific underpasses were constructed . Underpass 1 (UP1) was located at Mile 

Post 126 and Underpass 2 (UP2) at Mile Post 124 (Figure 3-1). The structures 

were located based on prior mortality data. Both structures were oval-shaped 

double tunnels, made of corrugated metal , with large middle open areas. UP1 

(Figure 3-2a) had an openness-ratio-score of 6.68 (6 .55m (height) x 11.13m 

(width) I 19.82m (length)) in each tunnel section. This structure was crossed by a 

dirt road opened to construction and recreational traffic . UP2 (Figure 3-2b) had 

an openness-ratio -score of 1.62 (4.23m (height) x 8.12m (width) I 21 .23m 

(length)) in each tunnel section and was designed solely for wildlife use . Because 

this crossing structure followed the topography of Wildcat Creek, the two tunnels 

were not aligned. The 2 new underpass structures were baited during the course 

of the study with hay, apples, and salt blocks to encourage deer use in early 

stages of underpass establishment. 



Monitoring 

Deer-Vehicle Collisions 
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To assess the joint effects of fencing and escape-ramps in reducing mule 

deer mortality on the road, I analyzed carcass removal counts before and after 

the mitigation . Data from carcass removal surveys from Utah Department of 

Transportation databases were available . Road carcass removal work was 

conducted an average of 4 times per month by contract personnel from 1998 to 

2006. To distinguish between any effects due to the mitigation from the usual 

yearly fluctuation of road mortality, I monitored a similar control area located 

north of the study area (Mile Post 137 - 144) (Figure 3-1 ). This area had a similar 

mortality problem but no exclusion fencing . A BACI design (Before-After , Control

Intervention) was used to assess if variation on road mortality was due to the 

intervention (Eberhardt 1976, Green 1979). A drop in mortality on the treatment 

area would not necessarily be a consequence of the mitigation ; but a higher 

proportional decrease of mortality when compared to a control area would reflect 

a successful intervention . I compared annual road-kill average for 6 years before 

and 2 years after. For each individual year I estimated difference in mortality 

counts between control and treatment areas . I estimated average of differences 

before and after and used a 2-independent sample t-test (Zar 1996) to test the _ 

null and alternative hypothesis. My null hypothesis was that the average change 

in mortality in the study area was equal to or lower than in the control area . My 

alternative hypothesis was that the average change in mortality was higher in the 



study area comparatively to control. The rejection of the null hypothesis would 

therefore indicate a successful mitigation strategy in reducing mortality. I was 

constrained to assume that difference data was normally distributed due to the 

difficulty of testing normality with the limited amount of data available (n = 8 

years). T-test results were obtained according to Levene 's Test for Equality of 

Variances . I compared before and after mortality by year, fall migrations 

(October-January), and spring migrations (April-July). 

I used at-test to assess whether the mitigation was effective in reducing 

mortality at the hotspot area (MP 120-126) by comparing annual deer mortality 

averages before and after the mitigation . 
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To test if end-of-the-fence problems existed I compared annual deer 

mortality averages before and after the mitigation at the northern (MP 131-134 ), 

and southern (MP 111-113) ends of the fence by using at -test as described 

above . I accounted for mortality that occurred within 2.4 km (1.5 miles) on either 

side of the fence for a total of 4 .8 km (3 miles) . At the northern end of the fence , 

however, I analyzed a 6.4 km (4 miles) section of road because additional 

fencing extended the northern end of the fence by 1.6 km (1 mile) during 2005 . 

Underpass Use 

I monitored a 20-yr-old control underpass (Control UP) to compare mule 

deer use between new and established structures. The Control UP was located 

south of the study area (Mile Post 103) in a similar mule deer migration area 

(Figure 3-1 ). The Control UP (Figure 3-2c) was composed of two double-span 



bridges with an openness-ratio-score of 4.43 each (4.12m (height) x 21.49m 

(width) I 20m (length)) and a large median area. This structure was also 

designed exclusively for wildlife, and mule deer use had been previously 

reported. Exclusion fencing was also present in the control area. 
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To record animal crossings, each underpass (UP1 , UP2, and Control) was 

equipped with a Reconyx® camera (digital , triggered by motion and heat , with 

infrared illumination) . All cameras were installed facing north, inside the median 

of each underpass. Camera placement was chosen to assure approximately 

equal photo capture probabilities in all the structures. Cameras were 

camouflaged and mounted inside urban electric boxes to reduce the probability 

of damage or theft. Cameras were equipped with 512Mb memory cards and 

checked an average of twice a month from October 2004 to August 2006 . 

Cameras were set with maximum sensitivity, a 2-second lag between triggers , 

and took 1 picture per trigger . I sampled four migration periods (fall 04 ; spring 05 ; 

fall 05; spring 06) . 

I used camera data to 1) characterize overall use of the structures and 2) 

to estimate deer crossing volume and temporal variation. 

To characterize overall use of the structures I categorized photos into 

classes (mule deer , humans, cattle, other wildlife, and blank) and computed 

percent use for all classes in each underpass by dividing the number of photos in 

each category by the total number of photos collected. Using a x2 test of 

homogeneity of proportions, I evaluated whether proportions of each class were 

similar in every underpass (Zar 1996). 
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Photos taken of mule deer were used to estimate deer volume use and 

changes with time. Because all cameras were fully functional for >90% of the 

monitoring period (678 days total) the results resemble census data more than 

sample data . Camera data provide a continuous monitoring of deer passage , i.e., 

a census, rather than a replication of independent samples . As a result, null 

hypothesis and significance testing have no theoretical interpretation (Berger 

1985, Gill 2001 ). Thus, analysis of the volume of underpass use and changes 

with time are descriptive, using summary statistics. 

Generally, mule deer are not individually identifiable by unique external 

characteristics (e.g., pelage markings). This impedes the estimation of the exact 

number of different individuals using the structures and the frequency at which 

the same individuals crossed. Because of this constraint, instead of counting the 

number of animals that used the structure , I counted the total number of 

crossings detected . I also noted direction of crossings: west, to winter ranges , 

and east , to summer ranges. Net number of crossings was inferred from the 

difference between crossings in each direction (west - east). By convention , net 

crossings towards the west were represented by positive values, and net 

crossings towards the east by negative values . I used net crossings to monitor 

changes in flux in either direction through time. This allowed the detection of 

migration periods, as well as changes in volume use of new underpasses . 

Crossing data were also used to identify different types of movement exhibited by 

deer . 



RESULTS 

Deer-Vehicle Collisions 

The BACI analysis of carcass removal data indicates that reduction in 

DVCs was due to the mitigation and not to stochastic annual oscillations in 

mortality in the study area . I documented a significant decrease in annual DVC 

levels (t = 4.244, P = 0.004) that corresponded to a 77% reduction in mortality 

after the mitigation (Figure 3-3a). spring DVC levels were also significantly 

decreased (t = 2.903, P = 0.027) corresponding to a 96% mitigation-induced 

reduction in mortality (Figure 3-3b). Finally , fall DVC levels were equally 

significantly reduced (t = 2.463, P = 0.049) to levels that correspond to 76% of 

the original mortality (Figure 3-3c) . 
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Analysis of mortality at the hotspot stretch suggests a reduction of 

mortality of 66% with average of DVCs before and after significantly different (t = 

2.809, P = 0.023). Further results show that mitigation measures did not promote 

an increase of mortality at the ends of the fence. I observed lower levels of 

mortality at the northern end (t = 2.831, P = 0.022); and equal levels of mortality 

in the southern end (t = 1.274, P = 0.238) ; thus DVC levels were not higher at 

either end of the fence . 

Underpass Use 

There were considerable differences in underpass use between the three 

structures . From a total of 48,483 pictures (UP1: 18,829; UP2: 14,421; Control: 



14,509) I noted similarities between UP2 and the Control UP, and a different 

pattern of use in UP1 (Figure 3-4 ). 
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UP1 registered the highest levels of human use, differing significantly from 

UP2 (x2 = 7910, P < 0.001) and the Control (x2 = 8010, P < 0.001 ). UP1 also had 

the lowest number of mule deer detections both in absolute and proportional 

terms when compared to UP2 (x2 = 5238, P < 0.001) and to the Control (x2 = 

1782, P < 0.001 ). 

In UP2 and the Control, I recorded a higher proportion of deer use and 

frequently detected other wildlife (e.g., coyotes, cottontail rabbits, and birds) . Elk 

were on!y detected in the Control UP. UP2 and the Control differed in proportion 

of cattle (x2= 1687, P< 0.001) and deer (x2= 906, P< 0.001). Deer and cattle 

used the Control UP simultaneously several times . Occasionally, deer and elk 

were detected using the structure at the same time . 

Deer exhibited similar crossing behavior in all the structures . Animals 

would either enter the structure to cross the road in a direct movement (i .e., 

without turning in the opposite direction), or they would remain in the proximity or 

interior of the structure crossing several times in either direction. In the new 

structures, some photos showed active use of bait, with deer groups frequently 

spending considerable amount of time feeding . In the Control UP, direct 

movements were generally the rule, but water and salt accumulations under the 

road often caused deer to remain inside the structure for some time. Photos also 

documented deer startling behavior when inside the structures as a reaction to 

traffic. 
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I identified two different types of deer movement by plotting the monthly 

number of crossings in east and west directions (Figure 3-5). Dur ing certain 

periods, deer exhibited daily movements, crossing in equal numbers east and 

west. During other periods, deer exhibited seasonal migratory movements, 

crossings disproportionately more in one particular direction. For examp le, in the 

Control UP (Figure 3-5a), I documented that in some periods of the year (e.g., 

December through March), deer displayed approximately the same number of 

crossings in each direction. However, during migration periods (namely, October 

or May), the number of crossings was much more pronounced in one particular 

direction. When I analyzed UP1 (Figure 3-5b) and UP2 (Figure 3-5c) I found that 

migratory periods were not as evident in either of the new structures . These 

underpasses showed mostly daily movements all year long, possibly because of 

the presence of bait in the structures. The flux of animals in one predominant 

direction at migratory times was not as obvious. Migration could only be assumed 

by the increase in deer activity (i.e., a higher number of crossings) in the new 

underpasses at migration periods. However, UP2 showed some evidence of 

spring migratory movements in May (2005 and 2006) . 

Results from the analysis of net crossings (Figure 3-6) allowed us to 

identify four migratory movements: fall 04 (October - November 2004 ), spring 05 

(April - June 2005), fall 05 (September - November 2005), and spring 06 (April -

June 2006). Migratory activity was not detected through UP1 and UP2 during the 

first migration monitored. However , subsequent migrations did occur through the 

new crossing structures and followed temporal patterns of the Control UP. The 



volume of crossings during spring migrations was generally higher than fall 

migrations, but fall migrations extended longer in time , with some migration 

movements occurring in later winter months (e.g., January - March) . 

Finally, net crossings during migration months indicated increasing use 

with time in UP1 and UP2 (Figure 3-7). Results show that the volume of use in 

the new structures gradually approximated the Control UP. For example, during 

the first migration period (fall 04 ), UP1 only registered 12.6% of the movement 

observed in the Control , whereas during the last migration sampled (spring 06) 

crossings increased to 33%. Similarly , UP2 increased from 5.9% in the first 

migration to 71.7% in the last migration, nearly matching movement volume of 

the Control UP. 

DISCUSSION 
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The results suggest that the mitigation strategy was effective. The three a 

priori established criteria were met. DVC levels were significantly and 

satisfactorily reduced in the study area ; the strategy did not create end-of-the

fence problems; and underpasses were heavily used by deer . 

Annual mortality in the study area was reduced by 77%. This reduction 

was limited by results in 2004. High mortality levels registered were due to 

periods when mitigation was either not yet implemented or fully operational. 

Therefore 2004 can be considered a transition year. I observed a 76% reduction 

in mortality during fall migrations and a 96% reduction during spring migrations . 

The difference between the two periods was due to the influence of higher road 
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mortality recorded during the first fall migration sampled in the 2004 transition 

year. During that period, fences had several gaps that were easily exploited by 

deer to gain access to the road as frequently reported in other studies (Falk et al . 

1978, Feldhamer et al. 1986). Until fencing problems were detected and repaired 

(shortly after the first migration) , deer continue to access the ROW. Fencing 

problems were more influential in the hotspot area, where I recorded a mortality 

reduction of only 66%. 

The impact on deer population of the observed reduction in mortality 

cannot be fully understood with rny results. Population dynamics data are needed 

to estimate how much reduction in mortality is required to revers e population 

declines or improve survivorship. According to Lehnert (1996), a 60-100 % 

reduction in road kill was sufficient to stop the decline in mule deer population in 

central Utah . However , population information for the study area is scarce and 

insufficient to define a biologically meaningful reduction threshold . I argue that 

the a priori selected 70% reduct ion threshold is a justifiable goal for this area. I 

expect that 70% less mortality on the road has a high probability of translating in 

a significant increment in survival and a high chance of reversing declining local 

population trends. The study area overall results of 76-96% are satisfactory when 

compared to mortality reduction results published in the literature. For example, 

Clevenger et al. (2001) reported reductions of 80% in levels of ungulate-vehicle 

collisions in Banff National Park; Braden (2005) reported a reduction of 83-92% 

in Key deer-vehicle collisions in Florida; and McDonald (1991) described a 70% 

reduction in moose mortality in Alaska. 



The results also confirm that the strategy did not cause an end-of-the 

fence problem, suggesting that deer that crossed the road used the new 
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available underpasses . To my knowledge, this was the only study where 

mitigation exclusion fencing did not cause end-of-the-fence problems (Bellis and 

Graves 1971, Reed et al . 1975, Clevenger et .al. 2001 , Braden 2005) . I argue that 

the fences extended far enough from deer kill hotspot areas ( 11 .3 km (7 miles) 

north and 19.3 km (12 miles) south of the underpasses) that deer were 

discouraged from moving around the end of the fence and encouraged to use the 

underpasses across the highway . I also observed evidences of deer using 3 

other non-wildlife specific structures along the fenced area. Wildlife use of non

wildlife specific underpasses has often been reported in the literature (e.g., Ng et 

al. 2004 , Krawchuk et al. 2005). 

Overall use of the underpasses shows that these structures were 

appropriate for deer . UP2 registered the majority of deer use, probably due to 

topography (alignment with Wildcat Creek), location (traditional migratory 

pathway for deer) , and virtually no human disturbance. Despite its unusual 

configuration, deer seemed to easily adapt to the structure, almost matching the 

volume of crossings in the Control UP later in the study. The short length of its 

tunnels appeared to facilitate crossings . 

I was surprised that UP1 was less used than UP2. I expected a higher use 

than observed because of its greater openness ratio , and straight alignment. 

However, there were high levels of vehicular traffic, mostly related to recreational 

activities. Additionally, UP2 was located centrally at the hotspot area , and 



probably collected the majority of the migratory animals. However, deer did 

continue to use UP1 in considerable numbers . 

53 

Elk were never recorded in UP1 or UP2 even though they occurred in the 

area. Some studies suggested that elk avoid roaded areas more than deer (Rost 

and Bailey 1979, Witmer and deCalesta 1985, Rowland et al. 2005, Wisdom et 

al. 2005) , and need longer periods of time to habituate to roads (Lyon 1983). 

These factors may explain why elk used the Control UP and not the new 

structures. Another potentially important factor may involve differences in the 

types of vegetation surrounding the Control (Pinyan-Juniper on both sides) and 

new structures (Pinyan-Juniper on just one side). Elk may be more prone to 

move through denser vegetation cover (Rost and Bailey 1979) . I expect that with 

learning and habituation, these underpasses may be potentially usable by elk in 

the future . 

In 2004, migration immediately following construction was very low and 

was probably delayed by reluctance to use the new crossing structures . 

Hesitation behavior has been reported for similar circumstances by Reed et al. 

(1975) and Ward (1982) in early and late stages of underpass use . Hesitation 

and avoidance are frequent wildlife reactions to recently-built human structures 

(Ward 1982, Merrill et al. 1994, Sawyer et al. 2005). However, subsequent 

movements through the new structures increased over time , suggesting a 

gradual learning process (Putman 1997) . I also documented that deer use of the 

new structures approximated over time that of the use of the Control UP, which is 

also an evidence of gradual learning. 
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Two different types of movement were identified in this study. I recorded 

both daily and migratory movements . Daily movements occurred yearlong in the 

new structures, probably because of the presence of bait inside the structures . 

However, daily movements were also recorded in the Control UP outside of 

migration periods. Deer apparently forage near roads all year long potentially 

increasing the risk of accidents . DVCs related to daily movements have been 

reported to cause the highest impact on population size (van Langevelde and 

Jaarsma 2004 ), highlighting the importance of focusing on these types of 

movements for population management. A total of 4 ,658 crossing events were 

observed in new underpasses and thus prevented from occurring over the road. 

Deer usually follow similar migratory routes to reach the same seasonal 

ranges (Garrot et al. 1987, Kucera 1992). Deviation from their traditional 

migratory routes through an underpass structure may be challenging for the 

animals and involves gradual learning . With the mitigation strategy fully 

operational , deer populat ion should benefit by an increased probability of 

reaching their traditional winter and summer ranges without being killed on the 

road, thus having higher survival probability and increased fitness. I expect that 

the number of animals accessing seasonal ranges through the underpasses will 

increase with time, firmly establishing migratory routes through the mitigation 

structures . 

Even though I considered this strategy effective in the first years following 

mitigation, I was unable to assess its real impact on the deer migratory 

population. It was beyond the scope of this study to obtain estimates of the 
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proportion of the total migratory population that actually crossed the highway, or 

estimates of the proportion of deer that may have been blocked by the mitigation 

(Reed et al. 1975). These data are needed to fully evaluate the extent to which 

this population may be impacted by the mitigation (Hardy et al. 2003) and are 

desirable in future research . The available results, however, strongly suggest that 

exclusion fencing and escape ramps, combined with wildlife underpasses, were 

effective in reducing DVCs and maintaining landscape connectivity for mule deer . 

CONCLUSIONS AND FUTURE CONSIDERATIONS 

This mitigation action on southern Utah is a good example of effective 

cooperation between state agencies in mitigating human wildlife conflicts. Often 

Transportation and Wildlife agencies have divergent perceptions and solutions 

for this deer-vehicle collision problem (see Sullivan and Messmer 2003 for 

review) and do not communicate or cooperate to obtain combined solutions . 

Transportation agencies are primarily concerned with human safety while the 

goal of wildlife agencies is mainly wildlife management. It is clear that mitigation 

is less likely to solve the problem when it only accounts for traffic issues and 

disregards wildlife concerns (Foster and Humphrey 1995) . Integrated mitigation 

approaches, such as the one described here, confer better results by allying 

scientific wildlife expertise with transportation engineering solutions. Often 

agency objectives can be met, but intelligent and authentic compromise is 

required. In this study, if mitigation remains effective through time, each agency 
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involved will have accomplished their objectives, namely, increased driver safety, 

landscape connectivity, and higher deer population survival rates. 

An integrated solution, however, does not liberate agencies from their 

long-term responsibilities in maintaining the strategy effective. Clevenger (2005) 

and Clevenger and Waltho (2005) clearly stated that mitigation for wildlife 

mortality on highways is a long-term process. Agency responsibilities do not 

cease with the implementation of mitigation measures but extend to long-term 

maintenance and assessment of effectiveness . Damaged fencing and non

functional crossing structures are frequent problems in years following mitigation 

(Falk et al. 1978, Hammer 2002). Reed et al. (1982) estimated that fence 

maintenance costs are about 1 % of the initial fence cost. If long-term 

maintenance is planned in the early stages of a project, this would facilitate 

maintenance of project effectiveness. I expect that fencing at the study site will 

require regular maintenance in order to keep animals from accessing the ROW. 

Annual maintenance checks will help keep the mitigation effective . 

Additionally, the use of underpasses should be monitored regularly, to 

assure that deer continue to use the structures . If a marked decrease in use is 

observed in the future, bait should be utilized to attract deer; but it should be 

used in low quantity and discontinuously in time. This will prevent the risk of 

artificial feeding habituation and avoid the association between structures and 

feeding areas. Deer should perceive underpasses as crossing corridors rather 

than as feeding sites. 



57 

Continued wildlife movement through the underpasses may also be 

facilitated if some degree of protection was conferred to underpass areas. 

Underpasses should be considered migration bottlenecks , as described by 

Sawyer et al. (2005) , i.e., areas along migration routes that confine animal 

movements to narrow or limited regions. Continued evaluat ion and management 

of underpass areas is thus especially important and should aim to protect 

migratory deer from human disturbances, including both recreational and hunting 

activ ities . 

This study documented a successful mitigation strategy where deer 

highway mortality was reduced without blocking migratory routes or generating 

end-of -the-fence problems . Reflection on the future of this strategy should be the 

next step for state agencies . Special attention should be given to fencing 

maintenance and to underpass use. State agencies should set joint goals to 

assure that this strategy constitutes a long-term solution for 1-15 in southern 

Utah. 
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Figure 3-1. Study area location in southern Utah, USA. Location of deer-vehicle collision 

(DVC) control area, mitigation area, monitored underpasses, and fenre extension in the 

study area. 
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Figure 3-2 . Schematic representation of underpasses monitored in the study area on 1-15, southern Utah , USA. 

a) Underpass 1; b) Underpass 2 , c) Control Underpass . Images ©Diana Marques (www.dianamarques.com) . 
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Figure 3-3. Deer vehicle collision counts in control and mitigated areas. Dashed 

line represents mitigation strategy implementation. Data from UDOT deer carcass 

removals on 1-15 in southern Utah, USA 
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Figure 3-4. Comparison of deer use of monitored underpasses on 1-15, in southern 

Utah, USA. Proportional values(%) and absolute values are presented. Photos 

grouped in: mule deer use, human use, cattle use, other wildlife use, and blank 

photos . 
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Figure 3-5. Monthly counts of deer crossings detected in both directions (east and 

west) on monitored underpasses on 1-15, southern Utah, USA. 
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CHAPTER 4 

CONCLUSION 

69 

One major focus of the developing science of Road Ecology is the study of 

impacts of roads on wildlife. The understanding of the impact of roads on wildlife 

has motivated extensive research with the general conclusion that natural areas 

crossed by road networks are heavily ecologically impacted and that those impacts 

are negative (Forman 2000, Trombulak and Frissell 2000) . The awareness of the 

existence of extensive road impacts on wildlife began when researchers reported 

high levels of road-killed animals affecting a wide range of animal groups (Stoner 

1925). Later research assessed in more detail the effects of roads on different 

animal groups and identified other impacts besides reduction in survival. 

Avoidance of roaded areas (Rost and Bailey 1979, Witmer and deCalesta 1985), 

interference with reproduction (Reijnen et al. 1995), and genetic isolation (Epps et 

al. 2005) were some of the identified effects on wildlife. Noise and vibration are 

frequently cited as major sources of disturbance (Forman and Alexander 1998 ). 

However , the influence of roads on organisms is not yet fully understood or 

satisfactorily studied, especially for less visible organisms, e.g. , small mammals . 

Roads potentially impact small mammal communities because they create edges 

with different habitat characteristics (Garland and Bradley 1984, Tyser and Worley 

1992), promote the introduction of exotic species (Getz et al. 1978, Vermeulen and 

Opdam 1995, Underhill and Anglod 2000), induce disturbance and contamination 

(Jefferies and French 1972, Williamson and Evans 1972, Quarles et al. 1974 ), 



constraint dispersal movements causing genetic barriers and home range 

rearrangements (Oxley et al. 197 4, Garland and Bradley 1984, Mader 1984, 

Swihart and Slade 1984, Merriam et al. 1989, Gerlach and Musolf 2000), and 

cause direct road mortality (Wilkins and Schmidly 1980, Ashley and Robinson 

1996, Mallick et al. 1998). 
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The main focus of small mammals ' studies has been on road barrier effects 

(Oxley et al.197 4, Garland and Bradley 1984, Mader 1984, Swihart and Slade 

1984, Merriam et al. 1989, Gerlach and Musolf 2000), while less attention has 

been given to the effect of roads on density and diversity of local natural 

communities. Little is known about communities living in natural habitats adjacent 

to roads and how they diverge from communities occurring in similar areas with no 

road influence . Furthermore, conclusions drawn from available studies (Adams 

and Geis 1983, Adams 1984, Garland and Bradley 1984, Bennett 1988, Meunier et 

al. 1999, Bellamy et al. 2000, Goosem 2000) are often based on the use of count 

indices instead of mathematically derived estimators of abundance or density 

corrected for capture probabilities . Without this correction, the use of indices to 

estimate accurate population sizes in this type of study is flawed (McKelvey and 

Pearson 2001) preventing accurate conclusions about road effects . 

In my study, presented in Chapter 2, I used estimations of abundance and 

density and analyzed natural habitat communities in areas adjacent to the road 

and areas without road influence . My major conclusion was that roads seemed to 

have a neutral or positive effect on abundance and diversity of small mammal 

communities . Other studies with small mammals have reported analogous results 
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(Adams and Geis 1983, Adams 1984, Garland and Bradley 1984, Meunier et al. 

1999, Goosem 2000). However, the idea that some wildlife is indifferent or 

attracted to roads has not yet been embraced by the scientific community nor 

incorporated into the larger theoretical framework of road ecology. The major 

contribution of this study is thus heuristic. It reinforces the need for debate about 

whether all road impacts are negative for wildlife . It also highlights some unstudied 

questions. For example , what situations make wildlife attracted or indifferent to 

roads? Are there specific habitat characteristics or climatic conditions that induce 

wildlife to be attracted to roads? Do roads impact survival of organisms rather than 

abundance, and if so, how? Are there other groups of animals that show the same 

abundance patterns than those observed for small mammals? Do we observe 

these patterns in other areas of the globe? The need for further research to fully 

understand the complex interaction of organisms and roads is still considerable . 

Other major focus of Road Ecology is testing mitigation strategies to 

minimize negative impacts of roads, especially the impact of roads on wildlife 

mortality . Wildlife mortality on roads is a problem of increasing concern for 

transportation engineers and wildlife managers around the globe (Forman and 

Alexander 1998, Trombulak and Frissell 2000, Jaeger et al. 2005) . Mitigation 

measures have traditionally been applied in problem areas, especially where, 

large-sized animals, like deer, elk, or moose can potentially cause serious 

accidents . However , not only are mitigation measures often ineffective, they may 

also cause additional problems for wildlife. Exclusion fencing, one of the most 

common measures used to prevent animals from entering the road , is seldom 
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100% effective and blocks animal migratory movements (Putman 1997) . The need 

for multi-integrated measures has been acknowledged for some time (Feldhamer 

et al. 1986). 

Several studies tested the effectiveness of integrated mitigative measures 

such as fencing and underpasses to reduce deer-vehicle collisions (Ward 1982, 

McDonald 1991, Clevenger et al. 2001 , Braden 2005). Some of the conclusions 

drawn from these studies, however, do not provide reliable information because of 

poor experimental design (Hardy et al. 2003). Often studies cannot explain if 

reduction in wildlife-vehicle collision was due to the intervention or to confounding 

variables (e.g., fluctuation in wildlife abundances , traffic volumes) . The inclusion of 

comparisons "before-after" and "control-treatment" is also not frequent and 

compromises the ability to explain observed patterns (Hardy et al. 2003) . Those 

concerns were incorporated in my study and an integrated multi-measure strategy 

to minimize road associated deer mortality strategy was evaluated . Results clearly 

demonstrated that the mitigation was effective during the 2-year period following 

the mitigation . I observed an overall 77% reduction in collisions in the study area, 

prevention of "end-of-the-fence" increase in mortality , and increase use of the 

underpass structures. Future monitoring is important to assess if deer migratory 

routes through the underpasses become established, and to fully understand 

mitigation consequences on local populations. Also of concern is the long-term 

future sustainability of the mitigation strategy. Problems with maintenance of 

structures often result in decrease of effectiveness, and have to be addressed in 

order to maintain a long-term functionality and thus justify the initial investment. 
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Finally, this mitigation strategy was an example of the desirable cooperation 

between state agencies, and provides an effective. model in other areas where 

similar problems exist. 

In conclusion, my results contributed to the understanding of the impacts of 

roads on wildlife and tested an effective way to mitigate road negative effects on 

mule deer . My results for small mammals suggest that roads may have positive 

effects and raise important questions about what kinds of scientific research are 

needed to better understand the total range of road effects . For mule deer I 

suggest that further discussion and evaluation is needed for a long-term effective 

mitigation strategy. To the extent that road-wildlife interactions are openly 

evaluated , the results will be useful for the management of road-wildlife conflicts . 
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