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ABSTRACT 

29-Day Analysis of Scale Heights and the Inference of the Topside Ionosphere  

Over Millstone Hill During the 2002 Incoherent Scatter Radar Campaign 

by 
 

Jennifer L. Meehan, Doctor of Philosophy  

Utah State University, 2017 

 
Major Professor: Dr. Jan J. Sojka  
Department: Physics 

 
 

Ionospheric scale height is a measure of the topside altitude dependence of electron 

density and is a key ionospheric parameter due to its intrinsic connection to ionospheric 

dynamics, plasma temperature, and composition. A longtime problem has been that 

information on the bottomside ionospheric profile is readily available, but the observation 

of the topside ionosphere is still challenging. Despite numerous data techniques to 

characterize the topside ionosphere, the knowledge of the behavior of the topside 

ionosphere and its subsequent scale heights remains insufficient. The goal of this study is 

to evaluate whether or not we can characterize the topside ionospheric density and 

temperature profiles in the event that neither temperature nor electron density are measured 

by using a cost-effective method. 

In a simple model, the electron density in the F-region topside decreases 

exponentially with height. This exponential decay is mainly driven by thermal diffusive 

equilibrium, but also dependent on the dominant ion species, as well as other drivers during 
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nondiffusive conditions. A scale height based on observations of the temperature can 

generate topside electron density profiles. While a measure of the electron density profile 

enables a scale height to be inferred, hence yielding temperature information.  

We found a new way to represent how much total electron content (TEC) is allotted 

for the topside ionosphere. We then used this information to successfully determine TEC 

using ionosonde data containing only bottomside electron density information. For the first 

time, slab thickness, which is directly proportional to scale height, was found to be 

correlated to the peak density height and introduced as a new index, k. Ultimately, k relates 

electron density parameters and can be a very useful tool for describing the topside 

ionosphere shape and subsequently, scale height. The methodology of using cost-effective, 

readily available ionosonde bottomside electron density data combined with GPS TEC was 

discovered to be capable of inferring the topside ionosphere. This was verified by 

incoherent scatter radar (ISR) data, though major issues surrounding the availability of 

ionogram data during nighttime hours greatly limited our study, especially during diffusive 

equilibrium conditions. Also, significant differences were found between ISR and 

ionosonde-determined peak density parameters, NmF2 and hmF2, and raised concerns in 

how the instruments were calibrated.                                                            

(225 pages) 
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PUBLIC ABSTRACT 

29-Day Analysis of Scale Heights and the Inference of the Topside Ionosphere  

Over Millstone Hill During the 2002 Incoherent Scatter Radar Campaign 

Jennifer Meehan 
 

This study aims to characterize the topside ionospheric density and temperature 

profiles using readily available Global Positioning System (GPS) total electron content 

(TEC) and ionosonde bottomside profile of electron density. The aim of this study is to 

find a technique that can be applied globally rather than specific locations where a wealth 

of data exists. Knowledge of the distribution of electron density and its altitude 

dependence, known as scale height, is important for ionospheric empirical modeling and 

ionospheric studies, and for practical applications, such as time delay correction of radio- 

wave propagation through the ionosphere. 

Over the years, researchers have gathered information and developed several 

different methods to analyze the topside ionosphere, including: coherent scatter radar 

observations of underdense electron density irregularities, incoherent scatter radar (ISR) 

probing, topside sounders onboard satellites, in situ rocket and satellite observations, such 

as Global Positioning System (GPS), and occultation measurements. 

We were able to obtain topside information by an analysis of GPS TEC in 

combination with bottomside electron density profiles observed by ionosondes. This was 

verified by a study using one month’s worth of data from Millstone Hill ISR observations. 
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CHAPTER 1 

INTRODUCTION 

1.1. The Ionosphere 

Several layers of atmosphere surround the Earth, extending from the surface to 

space. Radiation emitted by the sun is attenuated exponentially in Earth’s atmosphere by 

an absorbing medium. Due to forces of gravity, the density of the atmosphere decreases 

exponentially with altitude. As you decrease in altitude, the density increases and so does 

the absorption of solar radiation as shown in Figure 1.1 [Whitten and Poppoff, 1971]. At 

the outer fringes of the Earth’s atmosphere, the density is low and radiation is only slightly 

absorbed. If the absorption is caused by ionization processes, an ionized layer will result. 

Solar radiation produces an ionized layer within the Earth’s atmosphere known as the 

ionosphere, forming at about 80 km above the Earth’s surface and extending up to 1000 

km.  

 

Figure 1.1. Layer formation in terms of optical depth, [Whitten and Poppoff, 1971]. 
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Formation of the ionosphere also requires a neutral atmosphere. The neutral 

atmosphere is very thin in the ionosphere with about 99% of the Earth’s atmosphere below 

50 km. In the ionosphere, shortwave solar (EM) radiation in the form of both solar extreme 

ultraviolent (EUV, wavelength = 175 – 17 nm) and X-ray (X, wavelength = 17 – 0.1 nm) 

ionizes both molecules and atoms separating electrons from their parent particles creating 

free electrons and positive ions. These free electrons and positive ions are what create 

several weak ionized layers of plasma that constitute the ionosphere. Unlike other gases, 

the ionosphere can conduct an electric charge and is affected by magnetic fields. The 

ionosphere undergoes a diurnal cycle of solar radiation, with ionization being more 

extensive in the daytime.  

The ionosphere acts as a communication medium allowing for radio wave 

propagation, an idea postulated in 1902 and confirmed in 1925 [Kivelson and Russell, 

1995]. Telecommunication satellites orbiting Earth transmit signals down from space by 

using radio waves that interact with free electrons in the ionosphere. An increase in solar 

radiative energy (EUV) energizes matter in the atmosphere and causes an ionization 

increase, better known as photoionization. This rapid increase can cause instabilities in the 

ionosphere and can have major effects on satellite signals [Kunches, 2007]. Because of 

this, electron density distribution in the ionosphere and how it decreases with an increase 

in altitude, better known as scale height, needs to be understood.  

The ionosphere is separated into D, E, F1, and F2 regions, which are based solely 

on composition and dynamics of the atmosphere and solar radiation. The ionospheric 

region discussed in this study is the F2 region, which includes the electron density peak, 
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formed by competition between chemical and transport processes, and the topside 

ionosphere, which begins just above the F2 density peak.  Figure 1.2 shows a schematic of 

the ionospheric vertical electron density profile as a function of altitude. The electron 

density peak, NmF2, occurs at height, hmF2. The ionospheric topside extends from hmF2 and 

up to a transition height (UTL) where the plasmasphere begins, signifying a change in ion 

dominance from O+ to H+, and He+. Hsc is the scale height and measures the increase in 

altitude needed to decrease density by a factor of e above hmF2. Sydney Chapman 

introduced scale height in 1931 and since then, scale height has been found to be the most 

important parameter used to describe the vertical density structure and regions of the 

atmosphere, as well as the temperature trends that reflect numerous physical and chemical 

processes in the ionosphere [Huang and Reinisch, 2001; Stankov et al., 2003; Tulasi Ram 

et al., 2009]. Slab thickness is related to the shape of the density profile and is equal to the 

ratio of total electron content (TEC) to NmF2.  

 
 

Figure 1.2. Vertical electron density profile [Stankov and Warnant, 2009]. 

Author's personal copy

day-to-day and storm-time changes (Leitinger et al., 2004;
Kouris et al., 2004).

This paper presents an overview of the climatological
and storm-time behaviour of the slab thickness. In both
cases, observations at a European mid-latitude site, Dour-
bes (coordinates: 50.1!N, 4.6!E (geographic), 51.7!N,
88.9!E (magnetic)), will be used. Modelling and monitoring
efforts are discussed and details of a local ionospheric elec-
tron density/slab thickness monitoring system will be pre-
sented together with results from recent interoperability
test.

2. Measurements

The Royal Meteorological Institute (RMI) Geophysics
Centre at Dourbes is a complex observational site where
meteorological, ionosphere sounding, geomagnetic, TEC
and other measurements have been regularly carried out
for many years. The Dourbes ionosonde (URSI code:
DB049) carries out regular vertical incidence soundings
with a Digisonde 256 developed by the University of Mas-
sachusetts – Lowell (Reinisch, 1996). Although the iono-
grams are automatically scaled, manually corrected
hourly values of foF2 are used here for more accurate
results. TEC observations have been made with a GPS
(Global Positioning System) receiver, collocated with the
ionospheric sounder, applying a computational procedure
based on the ‘geometry-free’ combination of the GPS code
and phase measurements for resolving the ambiguities

(Warnant, 1997, 1998; Warnant and Pottiaux, 2000).
Receiver and satellite group delays are estimated by model-
ling the slant TEC with a simple polynomial depending on
latitude and local time. The conversion to vertical TEC is
performed by assuming the standard ionospheric thin-shell
model at a mean ionospheric height of 350 km (e.g. Hof-
mann-Wellenhof et al., 2008). To obtain a TEC value rep-
resentative of the ionosphere above a given location,
selected and averaged are all values within a latitudinal
range of ±1.5! over a 15 min period. The slab thickness
database consists of measurements since July 1994, i.e. cov-
ering more than one complete solar cycle period. For the
analysis, the data has been sorted according to season,
solar and geomagnetic activity. Thus, measurements from
July 1994 to December 1997 were selected to represent
low solar activity (LSA) conditions and measurements
from July 1999 to December 2002 for high solar activity
(HSA). Also, ‘low’ magnetic activity (LMA) conditions
are considered when Kp < 3, and active, ‘high’ magnetic
activity (HMA) – when Kp P 3. Three seasons (winter,
equinox and summer) have been defined as 91-day periods
centred on the corresponding winter solstice (day of year,
DoY, 356), summer solstice (DoY 173) and equinoxes
(DoY 81 and DoY 264).

3. Climatological behaviour

Based on long-time series of foF2 and TEC data, numer-
ous analyses have been published on the climatological
behaviour of the slab thickness. As mentioned in Section
1, it has been found that the slab thickness shows diurnal,
seasonal, spatial, solar and geomagnetic activity variations.
Specific features were revealed, such as the pre-dawn
(PDE) enhancement and the correlation with the plasma
scale height behaviour.

The mean diurnal variations of the slab thickness
observed at Dourbes (Fig. 2) are characterised with
night-time values that are substantially higher than the
day-time values during winter (night-to-day ratio between
1.40 at HSA and 1.55 at LSA), but higher day-time and
lower night-time values during summer (night-to-day ratio
of 0.80 HSA to 0.86 LSA). A pre-dawn increase of the slab
thickness is observed in the winter and equinox seasons,
most pronounced during LSA winter between 05:00LT
and 06:00LT, when average values exceed 400 km. On
average, the higher solar activity induces higher slab thick-
ness values, both during night (up to 14%) and day (up to
24%). Active geomagnetic conditions also tend to elevate
the slab thickness, more noticeably (in percentage terms)
at HSA. Most prominent are the seasonal changes. During
LSA, the average day-time values increase from 181 km in
winter to 316 km in summer, while during HSA, the values
almost double from winter (205 km) to summer (390 km).
The night-time values however, do not experience such
large variability from winter to summer. There is compar-
atively small diurnal variation in s during the equinoctial
months.

Fig. 1. Schematic view of the vertical electron density profile with key
characteristics such as the peak density (NmF2), peak height (hmF2),
upper ion transition level (UTL), scale height (Hsc) and slab thickness (s).

1296 S.M. Stankov, R. Warnant / Advances in Space Research 44 (2009) 1295–1303
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1.2. Motivation 

Ground-based ionosondes can measure the vertical electron density profile up to 

hmF2, leaving no direct information on the topside ionosphere [Huang and Reinisch, 2001]; 

however, the topside ionosphere can be approximated using a Chapman function with a 

constant scale height, Hc [Chapman, 1931; Rishbeth and Garriott, 1969; Stankov and 

Warnant, 2009]. The ratio of TEC to NmF2 provides the slab thickness parameter, which 

contains information on the shape of the electron density profile and may provide the 

neutral and ionospheric temperatures and gradients, the ionospheric composition and 

dynamics [Stankov and Warnant, 2009]. Note: TEC may contain a plasmaspheric 

component if measured from a GPS satellite orbiting at 20,200 km; however, TEC 

measured from ISR will likely not contain a plasmaspheric component because the electron 

density measurement range is between 100 km and 784 km. In general, slab thickness 

depends upon the plasma scale height, but is not a good indicator of either electron or ion 

temperature; however, direct proportionality was found between slab thickness and scale 

height [Furman and Prasad, 1973].  

There are several different instruments that researchers use to probe and gather 

information to analyze the topside ionosphere, including: coherent scatter radar, incoherent 

scatter radar (ISR) probing, topside sounders onboard satellites, in situ rocket and satellite 

observations such as Global Positioning System (GPS) and occultation measurements. 

Numerous techniques have been developed over several decades of study, yet knowledge 

of the topside ionosphere behavior in terms of scale height, remains insufficient [Stankov 

and Warnant, 2009].  ISRs measure the electron density profile from top to bottom in the 
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range of about 100 - 800 km, but are expensive to run and are limited to their geographical 

locations. Topside sounders and satellite data can provide homogeneous global coverage 

of electron density measurements from their respected satellite orbit altitude down to the 

Earth’s surface; however, this approach is an integral quantity providing no details of the 

topside profile shape, and NmF2 and hmF2 cannot be evaluated unless combined with 

ionosonde bottomside measurements. 

One of the most critical elements in ionospheric modeling-related applications is 

knowing the electron density profile of the topside ionosphere and its response to 

geophysical phenomena in terms of basic physical principles. Ionospheric models are 

critical for forecasting any instabilities in the ionosphere caused by space weather events, 

and in my interest, to ensure smooth operations of the GPS. Owned and operated by the 

United States Air Force, 31 operational GPS satellites fly at an altitude of approximately 

20,200 km above the surface of the Earth in six equally spaced orbital planes [National 

Coordination Office for Space-Based Positioning, Navigation, and Timing, 2016].   

The goal of this study is to better characterize the electron density profile of the 

topside ionosphere by providing new insights into the ambiguity that still exists for 

interpreting the physical meaning behind the behaviors of the topside ionosphere, which 

can improve said forecast models and contribute to alleviating space weather effects on 

GPS. Space weather is created by electromagnetic energy streaming radially from the sun, 

emitting rivers of photons and charged particles that sweep through space and threaten our 

space-based technological infrastructure; namely, GPS.  Society is heavily reliant on GPS 

for positioning, navigation, and timing with critical applications, such as precision 
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agriculture, emergency response, commercial aviation, and marine navigation [Meehan et 

al., 2010]. GPS receivers calculate their locations by analyzing signals from a constellation 

of satellites, but the propagation of those signals can be disrupted by instabilities in the 

ionosphere caused by space weather events. During large geomagnetic storms caused by 

space weather events, density gradients in the ionosphere can result in errors of up to 50 

meters [Meehan et al., 2010]. 

1.3. This Study 

In 2002, a wealth of data capturing the ionosphere in its entirety was collected from 

incoherent scatter radars located at Millstone Hill Observatory in Westford, Massachusetts 

(42.6°N, 288.5°E) and Svalbard, Norway (78.2°N, 16.0°E) from 4 October – 4 November. 

This 30-day consecutive run of ISRs enables a very thorough, statistical study of a very 

dynamic ionosphere and is the only one of its kind from the Millstone Hill, mid-latitudinal 

location. Running an ISR is very expensive and not practical for day-to-day monitoring of 

the ionosphere in order to study the electron density profile of the topside ionosphere. For 

this, we use 29 out of 30 days’ of ISR data collected from Millstone Hill in an attempt to 

find other means of monitoring the topside ionosphere; namely, readily available 

ionosonde data and GPS TEC measurements, and what physical interpretations we can 

conclude by a scale heights analysis.  

The document is divided into eight chapters. Chapters 2 and 3 give the literature 

review needed to describe the topside ionosphere in terms of scale height, slab thickness 

and the Chapman layer and addresses the ionosphere’s thermal structure, ionic 

composition, and electron density formation necessary to conduct this study.  
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 The analysis of ISR data collected from Millstone Hill begins in Chapter 4 by a 

brief description of why the Millstone Hill location was selected for this study and what 

exactly comprised the dataset. It continues by highlighting the conclusions and shortfalls 

of previous statistical studies on the same data campaign, as well as our interpretation of 

the campaign observations and the methodology adapted moving forward. The dissertation 

results begin in Chapter 5 by studying how scale height methods differ from day to day. 

ISR methodology consisted of separating data into nighttime hours, 0 – 10 UT, and daytime 

hours, 11 - 23 UT, then grouped into active and quiet days by an analysis of corresponding 

solar indices. New physical parameter correlations and relationships, as well as our unique 

methodology of characterizing the topside ionosphere, is found in Chapter 6 and applied 

in Chapter 7.  

Finally, Chapter 8 gives the most important results found in this dissertation and 

outlines future work to thoroughly investigate what these new relationships mean between 

plasma temperature trends and density parameters. 
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CHAPTER 2 

TOPSIDE IONOSPHERE BACKGROUND 

2.1.  Introduction 

The electron density profile is one of the most critical elements in the ionospheric 

modeling-related applications today. Ionosphere parameters of the F2 layer: f0F2, the 

highest frequency of radio signal reflected vertically from the F2 layer peak (usually 

converted into a peak density numerical value known as NmF2), and hmF2, the height of the 

peak density layer, are generally obtained simply from any global sounding observation 

network and are easily incorporated into models, theoretical or empirical, as numerical 

representations. The ionospheric profile shape, however, requires knowledge of several 

ionospheric parameters: electron, ion and neutral temperatures, ion composition, electric 

fields, and neutral winds, and is dependent upon seasons, local time, location, and the level 

of solar and geomagnetic activity [Fox et al., 1991]. Modeling efforts show the effects on 

the profile shape when varying each of the parameters, but there is a problem with the 

physical interpretation.   

The topside ionosphere is the region just above hmF2, and in a simple model, the 

density of this region decreases exponentially with height, known as the scale height, H. 

Satellite and rocket measurements over the past half century have shown that the important 

topside ionosphere ions are H+, O+, and He+. At progressively greater distances from Earth, 

the equations governing the distributions of ions under the effect of gravity predict that the 

mean ionic mass should continually decrease, with the particles of smallest mass being 

predominant in the further regions [Banks and Kockarts, 1973b]. The topside ionosphere 
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extends upward to a transition height where O+ ions are less dominate than H+ and He+ 

ions. The transition height can vary anywhere from 500 km at night or 800km during the 

day and can reach 1100 km [Knipp, 2011]. The transition height has a major effect on the 

electron density profile due to dramatic differences in individual scale heights that create 

vertical distribution gradients and also marks the beginning of the plasmasphere [Stankov 

et al., 2003]. 

Over the years, researchers have gathered information and developed several 

different methods to analyze the topside ionosphere, including: coherent scatter radar 

observations of underdense electron density irregularities, ISR probing, topside sounders 

onboard satellites, in situ rocket and satellite observations such as GPS, and occultation 

measurements [Booker, 1956; Greenwald, 1996; Bowles, 1958;  Huang and Reinisch, 

1996; Leitinger, 1996; Stankov and Jakowksi, 2006a, b]. The tools to conduct such an 

analysis are readily available: accumulated databases of ISR [Zhang et al., 2004, 2005; 

Tepley, 1997; Isham et al., 2000], topside sounders [Bilitza et al., 2006], and radio 

occultation; however, a thorough analysis investigating the characteristics of the 

ionospheric scale heights is yet to be completed.    

2.2.  Diffusive States  

Dynamical properties within the topside ionosphere are complex. The state of 

diffusive equilibrium in the topside ionosphere between different ion species provides a 

convenient theoretical understanding, though the upper atmosphere is never in a true state 

of thermal, mechanical, or chemical equilibrium [Whitten and Poppoff, 1971]. Diffusive 

equilibrium is generally found above 100 km where all atoms and molecules move about 
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as independent particles and are subject to the effects of gravity. The distribution of 

ionization in the topside ionosphere is strongly controlled by the geomagnetic field and the 

perpendicular plasma convection motions resulting from the electric fields of 

magnetospheric origin [Banks and Kockarts, 1973]. Distribution of thermal plasma in the 

topside ionosphere are driven by electric fields of magnetospheric origin at high and mid-

latitudes, while the atmospheric dynamics generate electric fields at midequatorial 

latitudes, so dynamical processes, such as plasma convection motion of ions, serve as a 

particular importance for diffusive states in the topside ionosphere. It is widely accepted to 

describe the vertical distribution in and above the F2 region by the effect of diffusion with 

ion-neutral particle collisions relatively unimportant due to a thin neutral atmosphere in the 

topside ionosphere.  

In 1973, Banks and Kockarts introduced three basic diffusive states for the plasma 

in the topside ionosphere: diffusive equilibrium, which corresponds to (1) no net transport 

of ionization along the tubes of magnetic force; (2) inward diffusive flow, which is a result 

of excess plasma pressure at high altitudes somewhere along a magnetic field tube; and, 

(3) outward diffusive flow, which results from a deficit of plasma pressure at some point 

along a magnetic field tube. Because of the frequent occurrence of plasma disturbances 

and large time constants associated with ion flow parameters, only the topside ionosphere 

at low latitudes ever has the opportunity to reach the state of diffusive equilibrium, while 

mid to high latitudes experiences prolonged periods of plasma outflow or inflow.  

Diffusive equilibrium can be a useful concept when dealing with the topside 

ionosphere because it may appear to fit the observed plasma density profiles. Bauer 
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[1969] notes such an idealized situation is not advised because it is not a true physical 

representation of observed physical parameters; however, it can be a powerful analytical 

model of the topside ionosphere by representing general features. Therefore, we follow 

this model moving forward in our study. 

2.3.  Chapman Layer 

In the 1920s, Sydney Chapman was the first person to introduce a theory for 

ionospheric layers. The Sun’s ionizing photons produce more and more ions as they 

penetrate deeper into the Earth’s atmosphere with rapidly increasing density. Up until the 

launch of an ionospheric topside sounder satellite known as Alouette I on 29 September 

1962, knowledge of the topside ionosphere was based on theory, a few incoherent scatter 

radar facilities and sporadic high-altitude rocket flights [Jursa, 1985]. Ground-based 

ionosondes were thought to be only sufficient for a precise determination of the bottomside 

electron density profile up until hmF2, leading to no information of the topside ionosphere. 

A global picture of the ionosphere in its entirety was lacking in the scientific community.  

A typical fix to this problem was to use a 𝛼 −	Chapman layer [Banks and Kockarts, 

1973b], which only needs NmF2, hmF2, and scale height values to calculate the topside 

distribution; see equations 2.1, 2.2, and 2.3. This approach demonstrated some 

disadvantages associated with the use of a constant plasma scale height and is not tied to 

any additional measurements [Stankov et al., 2003]. The 𝛼 −	Chapman layer [Chapman, 

1931; Rishbeth and Garriott, 1969; Reinisch and Huang, 2001] adapted for this study 

(derived in Appendix B) is as follows: 
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																																																									𝑁 ℎ + = 	𝑁-𝐹/ exp 	
1
2	 	1 − 𝑧 −	𝑒

78	 	 	,																	(2.1) 
where 
  

𝑧 =
ℎ −	ℎ-𝐹/
𝐻(ℎ)>

	,																																																												(2.2)	 

and 

𝐻(ℎ)> = 	
𝑘@	𝑇>
𝑚	𝑔D

	.																																																													(2.3) 

 
Equation 2.1 is dependent on NmF2, hmF2, and H(h)C, with H(h)C dependent on gravity due 

to height, h. Gravity at h above the Earth’s surface is calculated by: 𝑔D = 	𝐺𝑚G 𝑟G + ℎ /, 

where G is the universal gravitational constant, mE the mass of the Earth, and rE the radius 

of the Earth. TC, referred to as the Chapman temperature and H(h)C, the Chapman scale 

height, with scale height discussed in the next section. Lastly, m is the ionic mass and 𝑘@, 

the Boltzmann constant.  

Stankov et al. [2003], tested topside profilers and found no single method can 

properly represent the entire spectrum of spatial and temporal variations of the topside 

ionosphere; however, it was found for nighttime conditions that the Chapman layer gave 

better results compared to three other methods not discussed here.  

2.4.  Scale Height 

The most important parameter used to describe the vertical structure and regions of 

the neutral atmosphere is the behavior of temperature with altitude, because this trend 

reflects the numerous physical and chemical processes at play [Huang and Reinisch, 2001; 

Stankov et al., 2003; Tulasi Ram et al., 2009]. Likewise, electron density is the parameter 

used to describe the vertical structure of the ionosphere. The way to describe the vertical 
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structure of electron density in the topside ionosphere is by the scale height. Scale height 

measures the increase in altitude needed to decrease electron density by a factor of e. The 

behavior of electron density in the topside ionosphere was first approximated by a 

Chapman layer (equation 2.1) and described by a monotonic decreasing function (equation 

2.3) [Zolesi and Cander, 2014].  

In 1931, Sydney Chapman introduced the scale height parameter, equation 2.3, 

which has since been adopted in all aeronomic problems relating to the logarithmic gradient 

of pressure. The density of a constituent in the upper (neutral) atmosphere obeys the 

hydrostatic equation:  

𝑁J𝑚J𝑔 =
𝑑𝑝
𝑑ℎ = −

𝑑
𝑑ℎ 𝑁J𝑘@𝑇J 	,																																									(2.4) 

 
where there is a balance between vertical gravitational force and thermal-pressure-gradient 

force on the atmospheric gas. Chapman postulated over a range of altitude considered, the 

density of the atmosphere varied exponentially, with the first order solution derived in 

Appendix B and given by:  

𝑁N ℎ/ = 𝑁N ℎO 𝑒𝑥𝑝
− ℎ/ − ℎO

𝐻 	,																																									(2.5) 
 

where N is the electron density at some reference level and H was a slowly varying function 

of height known throughout the rest of this dissertation as the vertical scale height (VSH). 

Chapman, [1931], suggested constancy of H would result if the atmosphere was of uniform 

composition and temperature, but these conditions are only sufficient and not necessary. 

According to the different layers composing the atmosphere it was convenient to measure 

heights in terms of H as a unit; however, it was acknowledged that the actual values and 
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variations as a function of height and time at high levels in the atmosphere was uncertain 

at the time.  

Electron density above the peak decreases due to the exponential increase of the 

diffusion coefficient with a scale height equal to that of atomic oxygen. The variation of 

electron density with height was found to depend on plasma scale height (Hp), which is 

proportional to the mean plasma temperature Tp, the average of the electron and ion 

temperatures (Te + Ti)/2 [Titheridge, 1973] as shown below and derived in Appendix B: 

𝐻R =
2𝑘𝑇R
𝑚S𝑔D

	.																																																										(2.6) 

 
For the topside ionosphere, mi is the mass of atomic oxygen.  

2.5.  Slab Thickness 

The ratio of total electron content (TEC) to peak density NmF2, provides the slab 

thickness parameter: 

𝜏 = 	
𝑇𝐸𝐶
𝑁-𝐹/	

	,																																																									(2.7) 

 
where  
 

TEC = 𝑁N ℎ 𝑑ℎ.																																																		(2.8) 
 

TEC is the number of electrons in a column stretching from the receiver at the 

Earth’s surface to a satellite with a cross-sectional area of one square meter [Coster and 

Komjathy, 2008]. The limits of integration for equation 2.8 is dependent on the signal ray 

path which ranges from 0 - 20,200 km for GPS and 100 – 784 km for ISR. Subsequent 

chapters will discuss TEC in more detail. 
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 The slab thickness parameter, which is a convenient one-parameter summary of 

the electron density profile, can relate a variety of elements of interest that effect the overall 

electron profile shape, such as the neutral and ionospheric temperatures and gradients, the 

ionospheric composition, and dynamics [Fox et al., 1991; Stankov and Warnant, 2009]. 

Because ionospheric slab thickness is related to the shape of the density profile equal to 

the ratio of TEC to NmF2, it can address many ionospheric phenomena, which has been 

studied over the last six decades [Bhonsle et al., 1965; Kersley and Hosseinieh, 1976; 

Huang, 1983; Davies and Liu, 1991; Jayachandran et al., 2004]; however, the physical 

meaning of this parameter remains unclear. Various studies have proposed relations 

between 𝜏 and both neutral temperature and O+/H+ transition height [Titheridge, 1973], the 

scale height of atomic oxygen [Furman and Prasad, 1973], and the mean gradient of 

electron temperature [Amayenc et al., 1971]; however, 𝜏 is operationally a very useful 

parameter that allows a simple conversion between f0F2 and TEC [Fox et al., 1991]. 

 It is well known that the slab thickness relates the shape of the electron density 

profile; the smaller 𝜏 is, the sharper the profile [Amayenc et al., 1971]. The plasma 

temperature, Tp, affects the overall rate of diffusion which plays a part to which height the 

peak forms, but the thickness of the ionosphere depends primarily on the temperature of 

the neutral gas, Tn, and corresponds to a Chapman layer at a temperature of 0.87Tn 

[Titheridge, 1973]. A rapid increase in 𝜏 occurs when there is a rapid decrease in electron 

density at lower heights. This is described in part to occur near sunrise during the equinox 

months due to the departure from diffusive equilibrium and the downward movement of 

the ionosphere when the neutral winds decrease or reverse [Titheridge, 1973].  
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It has been found that, in general, 𝜏 depends upon the Hp, but is not a good indicator 

of either Te or Ti [Furman and Prasad, 1973]; however, direct proportionality was found 

between slab thickness and scale height [Amayenc et al., 1971; Huang and Reinisch, 2001]. 

Te varies with altitude making it difficult to link strong variations of 𝜏 with ionospheric 

temperature variations. Amayenc et al. [1971] used an empirical model and found 𝜏 and 

plasma temperature does not have great physical significance, especially during the day; 

however, it is pointed out that if one knows the electron density from an ionogram below 

the hmF2 and a theoretical model for Ti is assumed, one can deduce the variation of Te in a 

specified altitude region. While 𝜏 may not be easily interpreted in terms of neutral or 

plasma temperatures, neutral wind, or ion composition changes, it has been found that the 

variations it provides are a good indication of how the broad structure of the electron 

density profile changes as a function of season, time of day and solar activity [Fox et al., 

1991].  

2.6.  Discussion 

Previous studies have shown further work is still needed to understand the physical 

processes behind the behavior of the topside ionosphere. There is insufficient 

understanding in day-to-day, storm-time variability using the well-known methods for 

extrapolating topside vertical profiles. For example, 18 March 1990 experienced high 

geomagnetic activity and ionosondes and ISR simultaneously measured TEC with a 

significant difference of 30% [Reinisch et al., 2004, Stankov and Warnant, 2009].  

It is evident that scale height is a key parameter for a realistic topside representation 

incorporated into every topside model and used for various practical applications; however, 
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the fundamental question of the electron density altitude dependence and its intrinsic 

connection to ionospheric dynamics is yet to be determined. Scale height is derived around 

the F2 peak region and is assumed to remain constant at all altitudes above the F2 peak; 

however, the real scale height varies with altitude; so, the assumption of the scale height 

remaining constant with respect to altitude is possibly only valid within a limited altitude 

range [Liu et al., 2014]. When the topside profile is modeled using a Chapman function 

with constant scale height, such a model has no theoretical foundation and is simply a 

hypothesis and only empirical evidence can be shown to reflect how well the model 

compares to the actual topside profile [Reinisch et al., 2004].  In fact, the accurate 

reconstruction of the topside ionospheric electron density profile from ground-based 

sounders depends purely on the topside profiler model that is applied [Stankov et al., 2003]. 

Operational slab thickness monitoring could be used to characterize or even predict 

ionospheric density parameters by a simple conversion between NmF2 and TEC; however, 

these capabilities remain largely unexplored [Stankov and Warnant, 2009]. Presently, 

scientifically sound validation of the profile extrapolation technique for the topside 

ionosphere is still missing and may be due to the limited database of measured topside 

profiles and simultaneously measured bottomside profiles [Reinisch et al., 2004]. 

Ground-based ionosondes can measure the vertical electron density profile up to 

hmF2, leaving no direct information on the topside ionosphere [Huang and Reinisch, 2001]; 

however, the topside ionosphere can be approximated using a Chapman function with a 

constant scale height, Hc [Chapman, 1931; Rishbeth and Garriott, 1969; Liu et al., 2007]. 

It is suggested that the scale heights routinely produced by a global network of digital 
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ionosondes be statistically analyzed and used for input in the construction of a topside 

electron density model [Reinisch et al., 2004]. 

 It is clear a study is needed to evaluate day-to-day variations in the ionosphere and 

how the topside can best be inferred by building off of current theory and instrumentation, 

as well as some sort of physical interpretations by a scale heights analysis. The two scale 

height techniques adapted for this study were introduced in section 4 of this chapter.  

Electron density information allows equation 2.5 to be solved, giving vertical scale height 

(VSH), terminology adapted from Lei et al. [2005], and knowing electron and ion 

temperatures, equation 2.6 can solve for plasma scale height, Hp. 

Moving forward, the literature review continues in the next chapter by discussing 

the ionosphere’s thermal structure, ionic composition, and electron density formation of 

the topside ionosphere, which will be the main drivers of our scale height calculations.  
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CHAPTER 3 

TOPSIDE IONOSPHERE  

3.1. Plasma Temperature 

Extensive studies of ionospheric thermal structure began in 1960 at a time when it 

was common to assume thermal equilibrium (Te = Te = Tn) was present since the various 

modes of energy exchange between the neutral and ionized gases were sufficiently rapid 

[Gerson, 1951]. In 1961, a theory by Hanson and Johnson predicted electron temperatures 

(Te) were hotter than the neutral atmosphere was presented and later confirmed by rocket 

experiments with plasma probes, as well as incoherent scatter radar (ISR) measurements, 

which showed disequilibrium between electrons and ions [Banks and Kockarts, 1973]. 

ISRs have been shown to directly monitor the thermal status of the F region in the upper 

atmosphere, where plasma temperatures and densities can be used to derive neutral 

temperature and composition [Oliver, 1979]. 

Previous studies have found the temperature of the electrons (Te) is higher than that 

of the ions (Ti) and neutrals (Tn) in the topside ionosphere under most circumstances. The 

solar extreme ultraviolet (EUV) flux produces photoelectrons. These photoelectrons act to 

raise Te above Ti and Tn with Ti elevated above Tn due to the very efficient heat transfer by 

Coulomb collisions between ions and electrons [Bilitza, 1991]. The initial photoelectron 

energy and subsequent rise in Te is dependent, in part, on the composition and density 

distribution of the neutral atmosphere [Bauer, 1973].  
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Photoionization in the topside ionosphere is described by interactions between the 

neutral O atom and an EUV or X-ray photon (of energy hf), which has sufficient energy to 

detach an electron with the result of a positive ion, O+: 

𝑂 + ℎ𝑓	 → 	𝑂\ + 𝑒7	.																																																(3.1)		
 
Ions and electrons receive thermal energy during this photoionization process and lose 

thermal energy through collisions, see Figure 3.1 [Banks and Kockarts, 1973b]. Since 

recombination lifetimes are smaller than timescales required to lose excess thermal energy, 

Ti and Te are both larger than Tn above about 300 km. 

Photoionization is the principal plasma heat source for the topside ionosphere 

[Bauer, 1973]; therefore, other sources of heating that may be significant, such as fast 

 

 

Figure 3.1. Energy sources for the electrons, ions, and neutral particles within the 
ionosphere [Banks and Kockarts, 1973]. 
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streams of electrons in the magnetosphere, Joule heating, and solar wind heating will not 

be discussed in this study.  

3.1.1. Diurnal and Solar Variations 

Sources of diurnal variations are rapid heat, and at sunrise, ion and electron 

temperatures increase rapidly, while O+ is produced by photoionization. After sunset, the 

ionosphere loses its main source of heating and O+ decays mostly by reactions with 

molecular gases. Sethi et al. [2003], found large day-to-day seasonal variations in ISR 

Arecibo Te profiles by a study that used 1800 Te profiles during high solar activity 

(resolution of 1 minute) and 160 Te profiles during low solar activity (resolution of 15 

minutes). The solar and seasonal effects identified are shown in Figure 3.2 and Figure 3.3, 

respectively, by using average Te profiles.  

The profiles used were between local times of 10 - 14 LT for low solar activity and 

11 - 13 LT for high solar activity. Due to instrument sensitivity, altitude profiles for low 

solar activity reach 500 km and for high solar activity, 650 km. This instrument sensitivity 

can be described by ISR’s return signal and its strong dependence on density levels and 

during solar minimum the ionosphere has less density at equivalent heights compared to 

solar maximum. In Figure 3.2 it appears that in the topside ionosphere, at 500 km, the 

average Te values seem to be the same for both high solar activity and low solar activity, 

but the spread of Te during high solar activity reaches hotter temperatures by about 300 K. 

Further, around the F-region peak hmF2, average Te varies from 1500K at 250 km and 

1400K at 300 km for low solar activity, whereas for high solar activity, 2000K is measured 
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at 250 km and 1800K at 300 km. This result proves Te is highly variable due to solar activity 

and is altitude dependent.  

Interestingly, a noticeable trend is apparent in Figure 3.3: winter Te values are hotter 

during noontime hours, above 200 km for low solar activity and above 350 km for high 

 

Figure 3.2. Observed electron temperatures (+) during low solar activity (a) and high solar 
activity (b). The solid line the average electron temperature profiles from ISR data at 
Arecibo [Sethi et al., 2003]. 
 

 
 
Figure 3.3. Observed seasonal midday average electron temperatures during low solar 
activity (a) and high solar activity (b) from ISR data at Arecibo [Sethi et al., 2003]. 

 

period in the height range of 200–600 km, the recent
model studies of Holt et al. (2002) have confirmed the
earlier results of Evans (1973). With the availability of Te
data from the Arecibo radar for the periods 1974–1977
[low solar activity (LSA)] and 1989–1990 [high solar
activity (HSA)], we re-examine seasonal and solar ac-
tivity variations of Te, in the F-region and the topside
ionosphere.

2. Experimental data

As mentioned earlier, the data analysed in the present
paper, have been taken from i.s. radar measurements at
Arecibo (18.4 N, 66.7 W) for the period 1974–1977 and
1989–1990 representing solar minimum and solar max-
imum conditions, respectively. The measurements dur-
ing solar minimum period were made under the 19/129
observational program of the Arecibo Ionospheric Ob-
servatory (Emery et al., 1981). In this program the Te
was determined at a total of 26 heights, 10 spaced at 3.6
km intervals between 100 and 135 km, 5 spaced at 7.2
km intervals between 135 and 170 km and 11 spaced at
30 km between 170 and 500 km region. The data for
HSA have a height resolution of 37 km and a time
resolution of about 1 min and have been recently ac-
quired from the CEDAR database of National Center
for Atmospheric Research of Boulder, Colorado. Data
for midday sectors only were used.

3. Analysis and results

We have used about 1800 Te profiles during HSA for
the local time 11–13 h and 160 Te profiles during LSA
for the local time 10–14 h in this analysis. The data have
been grouped into summer, winter and equinox seasons.

The HSA data had a time resolution of 1 min and thus a
larger number of profiles. The LSA data had a time
resolution of about 15 min and thus a smaller number of
profiles. An extended noontime definition, 10–14 h, had
to be used to increase the database for the low solar
activity period. Ten to eleven days of data with about 50
profiles in each season have been utilized to obtain av-
erage profile for the low solar activity. These numbers
are much larger for HSA data.

Fig. 1(a) shows a scatter plot of Te values for all the
midday measurements during the low solar period. The
large day-to-day variability in Te is clearly observed
here, which is consistent with earliest results of Mahajan
(1967) who reported large variability in the early Te
measurements at Arecibo. Fig. 1(b) shows a similar plot
for a HSA period, 1989–1990. Here again, a large var-
iability in Te can be noted.

As stated earlier, since Te is a complex function of
altitude, local time, season and solar activity conditions,
the observed Te variability appears to indicate the
complex mixture of seasonal and solar activity varia-
tions. To identify the seasonal effect, we have grouped
the data into three seasons during both the solar activity
periods. Fig. 2(a) compares the observed averaged
temperature profiles during summer, winter and equinox
for the LSA period. Clear seasonal variations can be
noted in the F-region as well as in the topside with Te
larger during winter as compared to other seasons.
Similar results are also seen during the high solar ac-
tivity period as is clear from Fig. 2(b). Otsuka et al.
(1998) from MU radar measurements at Shigaraki
(34.85 N, 136.10 E, magnetic latitude 25 N) on the other
hand, found highest temperature during summer and
lowest in equinox.

To demonstrate the solar activity changes, we have
plotted the average Te profiles for low as well as HSA
periods along with their standard deviations in Fig. 3.

Fig. 1. Scatter plot of observed electron temperatures (+) during (a) low solar activity and (b) high solar activity periods. Average Te profiles are
shown as solid lines.
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The IRI-95 and TTSA (Truhlik et al., 2000) models are
also shown for comparison. It may be noted that the F-
region (200–350 km) Te is larger during HSA than
during LSA. In the topside (400–700 km), Te changes
little with solar activity. Comparison with models shows
that, the model values in the topside ionosphere, are
somewhat higher than the measurements, but are largely
within one standard deviation of observed Te values.

Fig. 4(a)–(c) compare average Te profiles for the three
seasons during the two solar activity periods along with
their standard deviations. Unmistakable solar activity

effects can be identified, in the F-region for summer and
equinox, with very little change in winter. Model values
from IRI (1995) are also shown. As noted earlier, IRI
values are largely within one standard deviation for
most of the cases. However, IRI grossly overestimates in
the topside for equinox.

4. Discussion

Since ionospheric Te is a complex function of altitude,
latitude, season and solar extreme ultraviolet (e.u.v.)
flux, it is very difficult to accurately separate out the
mixed response of Te to all these parameters. From large
database of i.s. radar at Arecibo (from 1966 to 1984)
and electron temperature probe measurements from
AE-C (between 1974 and 1977) and DE-2 (between 1981
and 1982), Bilitza and Hoegy (1990) found that for HSA
the daytime temperature at 400 km during winter is
higher than the temperature during summer, which is
consistent with our results for the topside. Bilitza and
Hoegy further found that temperatures tend to be
highest during equinoxes and lowest during solstices.
This is in conflict with our results which indicate higher
Te during winter in the topside for solar minimum too.
Our analysis shows that in the F-region (200–350 km) Te
shows a large increase with solar activity for all seasons.
This is expected since solar euv flux increases with ac-
tivity. Electron density, to which Te is inversely related,
does not increase proportionately at these heights, since
hmF2 (the height of the peak density of F2-region),
moves up with solar activity. Our results on increase in
the F-region Te with solar activity cannot be compared
with Bilitza and Hoegy (1990), since their analysis is
restricted to an altitude of 400 km. We would like to

Fig. 2. Comparison of observed midday average Te profiles for summer, winter and equinox seasons during (a) low solar activity and (b) high solar
activity periods.

Fig. 3. Comparison of midday average Te profiles during low solar
activity (LSA) and high solar activity (HSA) with IRI-95 and TTSA
(Truhlik et al., 2000) models. Standard deviations on the average are
also shown.

972 N.K. Sethi et al. / Advances in Space Research 33 (2004) 970–974
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solar activity, compared to summer and equinox Te values. Bauer [1973] points out a lower 

Ne concentration at higher altitudes, as seen during winter months, will result in less 

cooling of electrons because of a net decrease in Coulomb collisions.  

Sethi et al. [2003] concluded that because Te is a complex function of altitude, 

latitude, season, local time, and solar EUV flux, it is very difficult to accurately separate 

out the mixed response of Te. Their analysis overall showed an increased solar EUV flux 

is, in part, due to a large increase in solar activity and consequently, sees an increase in Te 

below 350 km, which is not season dependent.   

A study conducted by Zhang et al. [2004] using French Saint Santin ISR (44.6°N, 

2.2°E) observations show diurnal variations in Figure 3.4 for Te and Ti during high and low 

solar activity. During daytime hours, Figure 3.4 shows there is a large separation of Te and 

Ti due to the increase in photoelectrons and after sunset, when nocturnal heating dies out, 

thermal balance between ions and electrons is resumed. Electron cooling effects become  

 

Figure 3.4. Ti (blue circles) and Te (red dots) altitude profiles taken at the French Saint 
Santin ISR. The two local time spans are for high solar activity (top row) and low solar 
activity (bottom row) levels from 1966 to 1987 [Zhang et al., 2004]. 

exospheric temperature. It tends to show an increased slope
above 400 km which is an indication of the heat flux from
the plasmasphere. Te (dots and thick solid lines) has a
largely similar height variation pattern for lower solar
activity. However, a minimum is formed for high solar
activity at !300 km, in the vicinity of the F2 peak (see
Paper I). Obviously, electron cooling effects become signif-
icant at high solar activity due to the enhanced Ne. Starting
from 1900 LT, the thermal balance between ions and
electron is resumed as the nocturnal heating dies out. The
balance is established later in time for low solar activity,
where the daytime Te and its separation from Ti are
relatively large, than for high solar activity. Again, the
higher Ne for higher solar activity helps a more efficient
establishment of the thermal balance between Te and Ti.

4. Further Discussions on Te

[16] Te variations with solar activity and its dependence
on Ne are actually more complicated than the general
picture described above. An enhanced solar EUV flux gives
rise to more photoelectrons, which in turn elevate plasma
temperatures by heating processes (proportional to Ne);
meanwhile, the increased electron density due to the en-
hanced EUV flux leads to an enhanced electron cooling rate
through Coulomb collisions (proportional to Ne2), which

may lead to a lower Te. The actual response of Te to a
change in solar EUV is the result of, in addition to effects of
heat conduction at high altitudes, these two competing
processes, and depends much on the level of background
Ne.
[17] The relationship between Te and solar activity

(or F10.7) can be quantified using the following expression:
Te = C0 + C1 " f, where f = (F10.7 # 135)/100 is the
normalized F10.7, C0 is the background Te independent of

Figure 5. Yearly variations of the midday (top) Ti and Ne and (bottom) Te and Te-Ti at two altitude
ranges for F10.7 between 120 and 160 units.

Figure 6. Ti and Te altitude profiles at two local time
spans for two solar activity levels. The blue circles are for Ti
and the red dots are for Te.
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significant at high solar activity due to the enhanced electron density (Ne), which is shown 

by the electron temperature differences in the left, top, and bottom panels of Figure 3.4. 

Zhang et al. [2004] concluded the actual response of Te is dependent on background Ne 

and to a change in solar EUV, as well as the effects of heat conduction at high altitudes. 

3.2. Ionic Composition 

As introduced, ionospheric plasma is composed of electrons and ions, freed from 

each other by ultraviolet energy from the sun. In the ionosphere, there are seven major ion 

species: hydrogen, H+; helium, He+; nitrogen, N+; oxygen, O+; molecular nitrogen, N2
+; 

nitric oxide, NO+; and molecular oxygen, O2
+ [Johnson, 1966]. Ample amounts of N and 

O atoms are produced by the photo dissociation of N2 and O2 molecules with heavy 

molecular constituents dominating at low altitudes and the atomic neutrals dominating at 

higher altitudes [Schunk and Nagy, 2009]. Oxygen is second to nitrogen by mass 

throughout most of Earth’s atmosphere; however, the double bonds in molecular oxygen 

are more easily broken than the triple bonds of molecular nitrogen. Because of this, 

photoionization of neutral molecules provides the bulk of plasma for the ionosphere and it 

is well known that atomic oxygen, O+, is the dominate species for the F region and the 

topside ionosphere up until the transition height where the lighter atomic ions, helium and 

hydrogen dominate, as shown in Figure 3.5 [Johnson, 1966]. 

A generalized daytime ionosphere during solar minimum shown in Figure 3.5, 

shows ions N+, N2
+, and He+ to play a minor role in ionic composition of the topside 

ionosphere. As you increase in altitude from the bottomside ionosphere up to the F-region  
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Figure 3.5. Ionic composition of the daytime ionosphere during solar minimum. 
Measurements are from mass spectrometer experiments: Aerobee 150 in 1963 and Electron 
2 in 1964 [Johnson, 1966]. 
 
  
peak, hmF2, the ion composition transitions from a combination of several molecules to O+ 

atoms at around 180 km.  Atomic O+ continues to dominate until the altitude of 900 km is  

reached and the dominant ion transitions to H+. This transition height between O+ and H+ 

is latitude, season, and solar cycle dependent. According to Figure 3.5, it is safe to assume 

O+ as the dominant ion species in the topside ionosphere beginning at 300 km +/- 50 km 

up to about 800 km, which is the range of altitude focused upon in this research.   

3.2.1. Diurnal Variations 

Measurements from the Atmosphere Explorer E (AE-E) satellite were used by 

Gonzalez et al. [1992] to determine seasonal average behavior of ion concentrations, O+, 

He+, and H+ and their diurnal behavior near Millstone Hill, shown in Figure 3.6. Because 
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Fig. 1. Ionic composition of solar minimum daytime ionosphere. The ion distributions 
shown are a composite picture based on positive ion composition data from two radiofre- 
quency ion mass spectrometer experiments in 1963 and 1964. The data were normalized to 
electron-density distributions, N•-, derived from dispersive Doppler radio propagation and 
ionosonde measurements made during the same general period. 

Doppler radio propagation experiments, and 
ionosonde techniques are proven methods for 
investigating the ionosphere. Each is sufficiently 
accurate and has the dynamic sensitivity re- 
quired. The greatest uncertainty may occur in 
comparing the mass spectrometer values for the 
light ions, It* and Ite*, with those for the 
medium ions, N* and 0'. The easy joining of 
the low- and high-altitude portions of the N* 
and O* curves provides some confidence in the 
picture presented. In constructing the electron- 
density distribution the maximum deviation 
required to join the three segments smoothly 
was less than 25% and occurred at the 240-kin 
level. 

Although Figure 1 probably provides a good 
over-all idea of the solar minimum daytime 
ionosphere, there are nonetheless deficiencies in 
the picture. In particular there are no reliable 
data in the 240-400 km region, where molecular 
ions become relatively unimportant and the 
light ions H + and He + appear in the ion distri- 

bution. The altitude distributions and the level 
at which these events occur are a function of 
the solar ionizing flux and the temperature of 
the topside ionosphere, and hence of solar ac- 
tivity. Istomin [1965] finding no molecular ions 
at 400 km during solar minimum, concluded 
that the relative concentration of these ions 
had decreased by at least an order of magni- 
tude in comparison with years of maximum so- 
lar activity. 
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these observations were made at Millstone Hill, the results are highly relevant to our study. 

The O+/H+ transition altitude was found between 750 and 825 km during the day and 

between 550 and 600 km at night with He+ being a minor species at all altitudes and H+ 

varying little in concentration with season. This is especially important to consider when 

calculating scale heights for the topside ionosphere, considering the ion mass is a major 

contributing factor. O+ is widely recognized as the controlling ion species for the topside 

ionosphere up until approximately 800-1000 km, so if the transition altitude of O+/H+ dips 

below 800 km, one can expect to see contamination in scale height calculations. For this 

reason, scale height calculations using O+ as the controlling ion species should choose the 

altitude range slightly above the F2 peak up until 550 km.  

 

Figure 3.6. Daytime (top row) and nighttime (bottom row) averages of the major and minor 
ions in the topside ionosphere measured during different seasons [Gonzalez et al., 1992]. 
Helium is represented by (+), hydrogen by (x), ion density, ni by (o), and oxygen by (◊).  
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Fig. 3. Daytime (0800 to 1800 LT) and nighttime (2000 to 0500 LT) averages of [O+], [H+], and [He +] at different seasons. 
The average concentrations from the BIMS have been normalized by a factor of 2.15. The number of points in each 100-kin 
bin is largest for O + and H + in the 300- to 600-km range. No average values are given when there are fewer than 12 samples. 

that the average concentration above 400 km for both these 
seasons is between about 100 and 200 ions cm '3. 

DISCUSSION AND CONCLUSIONS 

Data from the ion mass spectrometer on AE-E is sufficiently 
abundant that a statistical description of the major features of 
the topside equatorial ionosphere is possible. Inspection of 
the individual data shows that near the magnetic equator during 
the daytime, a combination of photoionization at lower and 
higher altitudes, along with an upward E x B drift, provides an 
essentially constant altitude for the F region peak. H + is 
produced primarily by the resonant charge exchange process 
between O + and neutral hydrogen. This reaction represents a 
sink for the topside O +, and the equilibrium concentrations 
produce an O+/H + transition height near the H + peak. During 
the solar minimum conditions studied here, this height lies 
between 750 and 825 km. At night the O + concentration 
decays due to recombination at lower altitudes. The charge 
exchange reaction now reverses direction, with H + becoming a 
source for O + in the topside. The transition altitude falls to 
between 550 and 600 km, with the height of maximum [H +] 
varying between 600 and 800 km. The peak [H +] during the 
daytime is about 2.5x104 cm -3 and at night is 104 cm -3 with 
little dependence on season seen at the dip equator. We 
emphasize that the observed concentrations show a variability 
of about a factor of 4; the mean values and any seasonal 
dependence in localized longitude sectors cannot be extracted 
with any significance from this data set. At a fixed altitude in 
the topside ionosphere one might expect larger O + and H + 

concentrations at the dip equator during solstice than during 
equinox, since interhemispheric transport, which is larger 
during solstices, tends to move plasma from the Appleton 
peaks closer to the dip equator. We suspect that the rather large 
dip latitude range over which the data are collected removes 
this signature from the average profiles by including not only 
the increase in density at the equator but also the decrease in the 
concentrations on the downwind side. 

The O + peak concentration changes by about an order of 
magnitude from day to night, having a daytime value near 106 
cm -3. During these solar minimum conditions the E x B drift 
velocity has an almost sinusoidal variation with local time, 
and the lack of significant postsunset enhancement means that 
the average daytime and nighttime F peak altitudes are about 
the same. In this study the F peak appears at about 350 km at 
all seasons. 

He + is always a minor ion species at all altitudes in the 
topside equatorial ionosphere at solar minimum. The transport 
of He + will be dominated by the motion of O +, to which He + is 
collisionally bound, and thus a small seasonal variation 
similar to that seen in [O +] appears in the data. The He + peak 
concentration varies between 100-200 cm -3 during the night 
and about 400 cm -3 during the day except during the equinox, 
when it peaks at more than 1000 cm -3 during the day. 
Calculations by Murphy et al. [1984] show that 
interhemispheric transport during the solstices produces He + 
concentrations at the solstices that are lower than those at 
equinox by about a factor of 2. The observations are in accord 
with this result given that the rather broad bins used introduce a 
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3.3. Electron Density 

High-energy ultraviolet radiation from the sun removes electrons from some of the 

atoms and molecules in the ionosphere with the density of the electrons ranging from about 

10,000 to 1,000,000 per cubic centimeter [Haystack, 2016]. A large electron density is 

often associated with a large rate of ionization, resulting in the generation of more 

photoelectrons, which lose their energy to ambient electrons through elastic collisions and 

to neutrals through inelastic collisions [Zhang et al., 2004]. The electron density is highest 

in the F region at the peak height of hmF2 and peak value of NmF2 with the F region existing 

during both daytime and nighttime. 

ISRs are proven instruments for measuring electron content in the ionosphere since 

the scattering efficiency of high-frequency radio waves scattered from an electron is well 

known. An ISR measures the number of electrons in the scattering volume by the strength 

of the radar echo received from the ionosphere [Haystack, 2016]. There is a caveat using 

an ISR to produce ionospheric density profiles, though, due to the calibration needed with 

local ionosonde measurements. ISRs use a calibration factor into the radar equation that 

relates radar signal temperature to electron density. For Millstone Hill, this calibration 

constant is determined by direct comparison of high-elevation measurements of signal 

temperature from the F-region peak with University of Massachusetts Lowell ionosonde 

measurements of peak electron density [Madrigal, 2017].  

GPS dual-frequency measurements were discovered early on as a way to measure 

the ionospheric TEC at multiple locations [MacDoran, 1979]. TEC was introduced in 

Chapter 2 as an integrated column level of ionospheric density over a specific location and 
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is often summarized by a TECU (1016 electrons/m2). In the Earth’s ionosphere, TEC can 

range from 5-120 TECU and is dependent on local time and geomagnetic activity [Knipp, 

2011]. 

ISR and the ionospheric radio occultation method using navigation satellites, such 

as GPS, are well established as being powerful sensing methods to obtain key information 

about the topside ionosphere [Schreiner et al., 1999]. Radio occultation methods were 

developed in the early 1960s by science teams from Stanford University and the Jet 

Propulsion Laboratory (JPL) to probe the atmosphere and other properties of Mars using 

data from the NASA Mariner 3 and 4 spacecraft [Fjeldbo, 1964]. It was not until the 1980s 

when techniques were devised for geodesy and submitted by JPL for the first GPS 

occultation proposal to NASA in 1988, but the GPS Geoscience Instrument was cut from 

NASA’s budget in 1993 and did not fly [Yunck et al., 2000]. The concept was established; 

however, and the University Corporation for Atmospheric Research (UCAR) saw the 

promise of GPS occultation and conceived the GPS/MET experiment, sponsored by the 

US National Science Foundation and was launched by a Pegasus rocket into low-Earth 

orbit aboard NASA’s MicroLab I spacecraft in 1995 [Ware et al., 1996]. Because of the 

substantial success of GPS/MET, COSMIC was launched in 2006 as a joint effort by 

UCAR and Taiwan’s National Space Organization, and was the first operational GPS 

occultation constellation that refined the systems and techniques of GPS sounding [Yunck 

et al., 2000]. Due to the pioneering science teams at JPL, Stanford, and UCAR, we now 

have the capabilities to generate profiles of Earth’s electron density profiles using GPS 

occultation data. 
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ISR is a small volume measurement, while GPS is a line integral between the 

receiver and transmitter of the electron density. In the context of the ionosphere, the Abel 

transform method is a radio occultation inversion technique that allows retrieving electron 

densities as a function of height from STEC (Slant Total Electron Content) [Aragon-Angel 

et al., 2009]. These measurements are derived from carrier-phase observations based on 

precise carrier dual-frequency phase measurements (L-band) of a GPS receiver onboard a 

low-Earth orbit satellite tracking a rising or setting GPS satellite behind the limb of the 

Earth [Schreiner et al., 1999]. One can obtain information about the vertical refraction 

index by means of inversion techniques, which can then be converted into ionospheric 

vertical electron density profiles and/or neutral atmospheric profiles [Aragon-Angel et al., 

2009]. This is one technique to retrieve electron density profiles; however, the global Abel 

retrieval error has not been quantified due to lacking comparisons between ionosondes and 

ISR observations [Yue et al., 2010], hence justifying why we do not chose this method to 

generate electron density profiles. 

3.3.1. Diurnal Variations 

Typical nighttime and daytime variation in electron density profiles are shown in a 

study by Kelley et al., [2009]. An ISR located at Arecibo Observatory ran continuous for 

160 hours, known as a World Day period, which allowed radar data to be compared with 

occultation measurements GPS signals received by the COSMIC/Formosat receivers.  The 

results are shown in Figures 3.7 and 3.8. ISR data was normalized using a local ionosonde 

and GPS occultation-based profiles using the Abel transform method developed 

independently at UCAR and JPL [Kelley et al., 2009]. The results shown correspond to 
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two consecutive passes of the COSMIC constellation on 30 June 2006 during the 

development of an ionospheric storm. 

 Figure 3.7 shows F-region profiles during daytime hours while Figure 3.8 shows 

profiles during nighttime hours. Both Figure 3.7 and 3.8 show differences between the JPL 

and UCAR products when deducing F-region profiles from occultations, which show that 

data processing methods are not totally straightforward. Kelley et al., [2009] found daytime 

hours appear in better agreement between the two methods and with the ground  

 

Figure 3.7. Nine daytime comparisons between the two Abel inversions of the occultation 
data (red is UCAR, black is JPL) and the Arecibo-determined density profiles (blue). AST 
stands for Atlantic Standard Time for which UT = AST + 4. [Kelley et al., 2009]. 
 

Figure 7. A comparison between two Abel inversions of the occultation data and the Arecibo-
determined density profiles. (Blue represents ground truth at Arecibo, red is UCAR, and black
represents JPL.)
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Figure 3.8. Three nighttime comparisons between the two Abel inversions of the 
occultation data (red is UCAR, black is JPL) and the Arecibo-determined density profiles 
(blue). AST stands for Atlantic Standard Time for which UT = AST + 4. [Kelley et al., 
2009]. 
 
 
truth at Arecibo compared to nighttime hours. It is also suggested these profiles are 

reasonably accurate, given the distances from Arecibo and the long horizontal tracks 

involved from GPS to receiver. In terms of geomagnetic variations, Kelley et al., [2009] 

found the mid-latitude ionosphere to react strongly to a moderate magnetic storm, Kp value 

equal to four, with the daytime density decreased by a factor of two. 

Another study showing electron density profile variations throughout the day was 

conducted by Lei et al. [2007]. Figure 3.9 shows the results using COSMIC satellite data  

Figure 9. Three nighttime occultations compared with the Arecibo profiles.
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Figure 3.9. (a-f) Solid lines show COSMIC electron density profiles compared to those 
measured at Millstone Hill incoherent scatter radar. Days include July (212), August (214, 
230, 231), and September (265) 2006. ISR AC stands for alternate code data, and ISR SP 
stands for single-pulse data [Lei et al., 2007]. 
 
 
and ISR data at Millstone Hill over a handful of summer days. The top row (a and b) of 

Figure 3.9 shows the hours just after sunrise with hmF2 at about 230 km, the middle row (c 

and d) around noon with hmF2 around 230 km, but a wider peak and signatures of the E-

layer bump, the bottom row (f) just after sunset, hmF2 is around 280 km, and (e) well into 

nighttime hours, hmF2 is at 300 km.  The physical interpretation of this is well understood 

predictions in this study. The location of the tangential point
at the F2 peak height hmF2 is defined as the site of an
occultation event [Jakowski et al., 2002]. A least-squares
fitting of the RO electron density profile at the F2 layer to a
two-layer Chapman function [Lei et al., 2004, 2005] is
performed:

N hð Þ ¼ NmF2 exp 0:5 1$ z$ e$zð Þ½ &; z ¼ h$ hmF2ð Þ=H hð Þ:
ð7Þ

We take the Chapman scale height to be H(h) = A1(h $
hmF2) + Hm in the bottomside and H(h) = A2(h $ hmF2) +
Hm in the topside. Here, NmF2, hmF2, Hm, A1, and A2 are
adjustable parameters, and can be determined by using the
least-squares fitting approach. This brings in the best match
with the RO electron density profiles N(h) at F2 region [see
Lei et al., 2005]. Then seriously distorted electron density
profiles with abnormal scale height at peak height (Hm <
20 km or Hm > 100 km), as well as those with the
correlation coefficient (between the fitted and observed
profiles) of determination less than 0.9, are discarded in the
following analysis to insure the integrity of the results.
About 9% of the COSMIC electron density profiles were
discarded after applying the rejection criteria.

3.1. Comparison With ISR and Ionosonde
Observations

[11] ISRs provide very good data to validate the COSMIC
retrieved electron densities because they can probe not only
the ionospheric characteristics but also the whole electron
density profile. Carefully calibrated ISR electron density
data on 31 July, 2 August, 18–19 August, and 20–
22 September 2006 at Millstone Hill and the Jicamarca
data on 27 June to 1 July and 20–22 September 2006 are
used in this study. It should be noted that COSMIC
measurements with tangent points at the F2 peak height
within 6! latitude and 6! longitude of the ISR at Millstone
Hill, and within 3! latitude and 9! longitude of the ISR at
Jicamarca were selected for the profile comparison. The ISR
median profiles within one hour time bin of the occultation
are also required. Six typical electron density profiles at
Millstone Hill and two profiles at Jicamarca are selected in
the following comparisons.
[12] In Figure 3 the COSMIC electron density profiles are

compared with those measured by the Millstone Hill ISR.
Over Millstone Hill, these experiments use an interleaved
alternating code (AC) and single pulse (SP) to make zenith
measurements. The SP measurements with 480 ms pulse

Figure 3. (a–f) Comparison of the COSMIC electron density profiles (solid lines) near Millstone Hill
(42.6!N, 71.5!W) with those measured by Millstone Hill incoherent scatter radars (ISR) at the same time.
ISRAC stands for alternate code data, and ISR SP stands for single-pulse data. The latitude and longitude of
the radio occultation (RO) electron density profile at the F2 peak height are shown at the top of each panel.
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[Titheridge, 1968]. At nighttime, the F-region loses its source of radiation and sees a 

change in electron flux balance between the plasmasphere above and recombination below, 

which subsequently results in upward movement of the F-region peak, hmF2. 

3.4. Discussion 

This chapter discussed the thermal structure, ionic composition, and electron 

density profiles found in the topside ionosphere, as well as their respective diurnal 

variations, which we expect to see reflected in our study. We also expect to see the proven 

anti-correlation of said characteristics between plasma temperature and electron density in 

the topside ionosphere [Bauer, 1973; Knipp, 2011], which may be useful to consider in 

terms of solar variance. This anti-correlation can be described by an increase in topside Ne 

will lead to an enhanced electron cooling rate by Coulomb collisions, proportional to Ne
2, 

which may lead to a lower Te [Zhang et al., 2004; Sharma et al., 2008]. Also, as the solar 

activity increases, temperature of the ions increases at low altitudes following the 

corresponding Tn changes, and at high altitudes, due to increased energy transport from 

electrons [Zhang et al., 2004]. 

Understanding the complexities between the thermal structure, ionic composition, 

and electron density found in the topside ionosphere is important for a simple model to 

represent how the electron density of the topside ionosphere decreases exponentially with 

height [Jursa, 1985]. Chapter 2 named the exponential decrease in electron density as the 

scale height. Thermal energy (kBT) is the dominating variable when calculating plasma 

scale height, Hp, and density is the dominating variable when calculating vertical scale 

height, VSH.  As discussed in this chapter, the temperatures and densities of plasma depend 



	
	

	

34 

on several contributing factors; neutral atmosphere, ionization, recombination, local 

heating, transport processes, diffusion, conduction, electric field, neutral winds, and 

geophysical conditions.  

The combination of in situ observations from satellites (GPS) with ground-based 

experiments (ISR and ionosondes) can provide a wealth of information for temperature and 

density measurements and consequently, extensive studies highlighted by Sethi et al. 

[2003], have been carried out to understand the physics of the low and mid-latitude 

ionosphere over the last several years. The issue with the instrumentation used to 

characterize the topside ionosphere is ground-based ionosondes can probe only up to the 

F-layer peak height giving only information about hmF2 and NmF2, therefore, observational 

data of the topside ionosphere is lacking since topside sounders and ISR are very sparse. 

ISR provide full ionospheric profiles, but are expensive and not feasible for extensive, day-

to-day monitoring. Bottomside ionosphere physics and chemistry is very different from 

topside physics and chemistry so moving forward, this study addresses the question of 

whether or not one can deduce topside physics and chemistry by obtaining bottomside 

ionosonde data and TEC by GPS satellite data. The history and methodology in regards to 

the combined use of ionosondes, a Chapman layer and in situ observations from satellites 

to profile the ionosphere is given in detail by Liu et al. [2014] and our adaption and 

contributions to this technique are described in subsequent chapters.  

 Moving forward, the analysis of ISR data collected from Millstone Hill begins in 

Chapter 4. The expected key trends in the subsequent topside ionosphere analysis over 

Millstone Hill Observatory found in this chapter are as follows: 
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• During daytime hours, there is a large separation of Te and Ti due to the increase in 

photoelectrons. During nighttime hours, when nocturnal heating dies out, thermal 

balance between ions and electrons is resumed; therefore, Te is expected to be the 

largest driver for plasma scale height calculations during the daytime. 

• Atomic oxygen, O+, is the dominant species for the F2 region, 300 km +/- 50km up 

until the transition height where He+ and H+ dominate; therefore, scale height 

calculations using O+ as the controlling ion species will use an altitude range 

slightly above the F2 peak up to 550 km to avoid any data contamination caused by 

a lower transition height. 

• The electron density profile is highly variable in terms of solar activity and time of 

day, driven by photoelectrons produced by solar EUV radiation.  

• Changes in plasma temperature will dominate plasma scale height calculations 

(equation 2.6) and changes in electron density structures will dominating vertical 

scale height calculations (equation 2.5). Both temperature and density are 

dependent on several contributing factors in the topside ionosphere. 
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CHAPTER 4 

MILLSTONE HILL STUDY  

4.1. Introduction 

This chapter begins the analysis of ISR data collected from Millstone Hill 

Observatory (42.6°N, 288.5°E), a subauroral, mid-latitude site in North America. The 

location selected for this study was chosen due to the readily available data from Millstone 

Hill’s ISR, and local ionosonde and GPS receiver data. The ionosonde and GPS data 

gathered for this study will be discussed in Chapter 6. 

In 2002, Millstone Hill collected continuous data for 32 days with a 68 m zenith 

antenna, a data integration time of four minutes, and an altitude resolution of 4 km. This 

experiment used a single pulse mode with a pulse length of 4.80 x 10-4 seconds interleaved 

with an alternating code to measure ionospheric parameters [Zhang et al., 2005]. Data 

collected from 4 October to 4 November provides a unique opportunity to study 

ionospheric variability during a time of solar variation covering both geomagnetically 

active and quiet periods [Zhang et al., 2005, Lei et al., 2005]. ISR data is collected by the 

Thomson backscatter technique [Thomson, 1906] using ionospheric electrons to deduce 

height and time resolved plasma drift velocities, electron, ion and neutral temperatures (Te, 

Ti and Tn), electron densities (Ne), ion composition, and ion-neutral collision frequencies.  

For this study, an ISR dataset of approximately 696 hourly altitudinal profiles of 

Te, Ti, Tn, and Ne across 29 days, was collected from a continuous observation data 

campaign conducted in October 2002, and subsequently analyzed.  We acknowledge the 

assistance of Dr. John Foster, principal research scientist at the Massachusetts Institute of 
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Technology, for data provided to Michael David, a USU Center for Atmospheric and Space 

Sciences (CASS) Research Technician in a convenient format.  Millstone Hill data used in 

this study are available to the public through the URL 

[http://madrigal.haystack.mit.edu/madrigal/].  The Madrigal-distributed database system is 

operated by MIT Haystack Observatory under support of NSF grant AGS-

1242204.  Observations at Millstone Hill in 2002 were supported by NSF Cooperative 

Agreement ATM-9714593 with the Massachusetts Institute of Technology. We would also 

like to acknowledge Dr. Phil Erickson, Assistant Director of Massachusetts Institute of 

Technology’s Haystack Observatory for providing the above proper citation in regards to 

using this dataset.  

This chapter is separated into two parts: previous Millstone Hill statistical studies 

and our interpretation of the campaign observations over Millstone Hill.  

4.2. Previous Millstone Hill Statistical Studies  

This chapter begins by highlighting the conclusions and shortfalls of previous 

statistical studies using the same Millstone Hill data campaign, as well as the methodology 

adapted moving forward in this study. 

4.2.1. Zhang et al., 2005 

 One of the first papers to assess data from Millstone Hill’s campaign and its 

potential for long-term theoretical validation and testing was completed by Zhang et al. in 

2005. The paper mainly focused on day-to-day variations in the ionosphere, shown in 

Figure 4.1, and a quick overview of the associated dynamics.  
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The top three rows of Figure 4.1 show the corresponding solar and geomagnetic 

indices for the entire data campaign. Those indices include the daily solar 10.7 cm flux 

(F10.7), hourly Dst index, and three-hourly Ap index. Three separate magnetic 

disturbances are identified on days 280, 287, and 297 with sharp drops in Dst, a rise in 

F10.7 and Ap and associated recovery periods lasting 12 hours and up to one day. A 

geomagnetically quiet reference day 294 was identified due to stable F10.7 values over a 

three-day period and corresponding low magnetic activity values of Dst and Ap. This quiet 

reference day was also adopted in our study.  

The bottom portion of Figure 4.1 shows the ionospheric parameters of ion velocity 

(Vo), Te, Ti, and Ne. The day-to-day variability is clearly seen, even under quiet magnetic 

conditions for Ne, Ti, and Te, with changes occurring during local time and in height. The 

largest variability is seen in Ne and the smallest in Ti. Also, variability increases with height 

in Ne and Ti; however, Te variability was relatively large slightly above the F peak. Finally, 

it appears the daytime hours offered the largest variability in the ionosphere. Because the 

same days are used in our analysis we can expect to see the same behavior in the 

ionospheric parameters. 

The study done by Zhang et al. [2005] also offered to describe the ionospheric 

variability as a result of long-period ionospheric oscillations and continued to examine such 

oscillations by using a statistical approach with 24-hour averages. TIMED satellite flyovers 

at Millstone Hill correlated some of these oscillations with changes in the neutral 

composition originating from geomagnetic activity, which may have altered the global 

atmospheric circulation as a result of high-latitude heating processes. It is suggested the  
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Figure 4.1. Data from Millstone Hill’s 4 October - 4 November 2002 data campaign. Solar 
geophysics indices shown: daily solar 10.7 cm flux F107, the hourly Dst index, and the 
three-hourly ap index. Ionospheric indices shown from the alternating code: electron 
density, Ne (log10 m-3), Ion and electron temperatures, Ti and Te (K), and vertical ion 
velocity, Vo (m/s) [Zhang et al., 2005]. 
 
 
appearance of high Ti over Millstone Hill could be caused by the precipitating particles 

enhancing the localized electric fields, such as the Sub-Auroral Polarization Stream 

associated fields, which were studied by Foster and Vo [2002].  

4.2.2. Lei et al., 2005 

Lei et al. [2005] conducted an extensive study at Millstone Hill covering two solar 

cycles, including this data campaign, investigating temporal variations in electron density. 

Electron density profiles were fit to a simple Chapman layer where photoionization is 

assumed to be a one-species neutral gas (O+) and transportation processes are ignored. Peak 

parameters, hmF2 and NmF2 are derived from the ISR profiles and local ionosonde 

measurements, as well as the scale height, H. It is noted in this study that a Chapman layer 

used to fit the ISR profiles and subsequent scale height values do not represent the actual 

physics of the F layer.  

launched with a Dst main phase of 12 hours and recovery
phase of several days, causing severe ionospheric storms.

4. Variation Pattern and Quiet-Time Variability

[6] Figure 1 also shows the whole set of alternating-code
ISR data for Millstone Hill. The day-to-day changes can be
seen clearly even for quiet geomagnetic conditions. The
variability was recently discussed by Rishbeth and Mendillo
[2001] based on long-term F2 peak data. Our ISR Ne
variability (defined quantitatively as standard deviations
divided by averages), as shown in Figure 2 for ap < 10,
tended to maximize about 100 km above the peak, although
the maximum absolute variability (standard deviation of the
average) is present near the peak, suggesting the signifi-
cance of non-chemical processes. Chemical composition
effects contribute to the Ne variability in the F2 region
through changes in the O/N2 ratio which can be significant
even under quiet conditions (next section). Non-chemical
causes include dynamical changes of vertical ion motions
(next section) induced by winds and E ! B drifts; e.g.,
Mendillo et al. [2002] suggested the wind variability effect
on the ionospheric variability. Another interesting cause is
tides and waves in the mesosphere/lower thermosphere
(MLT) region which can be dynamically coupled upward
to generate ionospheric perturbations and long period oscil-
lations [Forbes et al., 1993]. We will discuss the quasipe-
riodic ionospheric oscillations observed during the 30-day
run in the next section.
[7] The variability in Te is smaller than that in Ne. Due

to the strong anti-correlation between Ne and Te [Schunk
and Nagy, 1978; Zhang et al., 2004] which can be seen in
Figure 1, the very variable Ne near the F2 peak can lead to
more variability in Te there. As for Ti, the magnetospheric
heat flux contributes to the temperature increase at high
altitudes. Therefore, changes in the ion heat flux, along with
the Te variability and ion-electron energy coupling, may
cause Ti variability increase with height. At low altitudes
however, since ions are in close thermal contact with
neutrals whose temperature is less variable, Ti exhibits less
variability than Te and Ne.
[8] The variability in Ne and Te was larger from local

midnight through dawn than during other periods. Calcu-

lations for Millstone Hill indicate that the magnetic conju-
gate ionosphere (>100 km) sunrise occurred between the
Millstone Hill midnight and sunrise through day 297, thus
effects of photoelectrons from the conjugate ionosphere
could lead to much of the observed variability.
[9] For Svalbard, the average diurnal variation (Figure 3

for ap < 10) in Ne was characterized by two maxima, one
around 0900 UT (10 SLT or 12 Magnetic LT) when the
radar is in the dayside cusp and photoionization is strong,
and a secondary one around 1900 UT when the so-called
‘‘Universal Time Effect’’ of the polar ionosphere was
present. The effect has been explained in terms of the
neutral wind that blows across the magnetic pole toward
the geographic pole [King et al., 1968]. This latter maxi-
mum in the nightside experiences more variability than the
maximum in the sunlit dayside. The variability (see error
bars representing standard deviations) in the three parame-
ters, especially in Ti, was more drastic than for Millstone
Hill due to the frequent particle precipitation and various
heating processes originating from the magnetosphere. The

Figure 1. Millstone Hill alternating code data between October 4 and November 4, 2002 of electron density (in log10
scale for a density unit m"3), ion and electron temperatures (K), and vertical ion velocity (m/s). Solar geophysical indices
are the daily solar 10.7 cm flux F107, the hourly Dst index, and the 3-hourly ap index.

Figure 2. Variability (standard deviation over average) in
Ne, Ti and Te during 10–14LT (upper) and 1–5LT (bottom)
for quiet conditions (ap < 10) at Millstone Hill. The radar
single pulse data were used.
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The results of the scale height analysis by Lei et al. [2005] is shown in Figure 4.2. 

There is an apparent effect on scale heights due to seasons, solar activity, and time of day. 

All seasons, except for summer, see a diurnal variation with a significant dip in scale height 

values around sunrise followed by a steady increase in values throughout the day.  For 

purposes of our study, we are only concerned about the dashed Autumn line and can expect 

to see similar patterns in scale height. Values of scale height appear to have a factor of two 

increase during high solar activity when compared to low solar activity. 

This paper speculates that the topside effective scale height (calculated with 

electron density) is a good measure of the plasma temperatures and that it should be 

somehow related to the plasma scale height because the topside profile shape is dependent 

on plasma diffusion; however, this relationship is not explored leaving the question of 

whether or not you can infer one or the other from temperature or density profiles. We 

expect to address this question in our analysis.  

 

Figure 4.2. Variations of scale height according to season, time of day, and solar activity 
[Lei et al., 2005]. 

during daytime than at night, and with a diurnal peak at
around 1300–1400 LT in all seasons. It is interesting to
note that this rate of change is also positively correlated
with the hmF2 values, with both the rate and hmF2
lower in winter than in other seasons. This solar activity
variation of hmF2 is mainly attributed to the correspond-
ing variation of the neutral temperature and neutral
concentrations that control the chemical loss and
diffusion balance height and the height of the peak
production [see Zhang et al., 1999].

3.3. Chapman Scale Height H

[15] A Chapman-type layer is predicted by a simplified
aeronomic theory, assuming photoionization in a one-
species neutral gas, and neglecting transport processes
[Rishbeth and Garriott, 1969]. Note that the Chapman
layer is a fitting device and does not represent actual
physics of the F layer ionosphere because a Chapman
process does not form the F2 layer. The determined H
becomes an effective scale height because of the possible
influence of transport processes and additional neutral
species.
[16] Figure 7 presents diurnal and seasonal variations

of the scale height Hm, which somewhat reflects the
effective scale height at hmF2. It is seen that the scale
height Hm also undergoes appreciable changes with local
time, season, and solar activity. For low solar activity,
Hm decreases from night to day in winter and equinoxes,
whereas it increases from night to day in summer. The
minimum values of Hm occur at 0700 LT in equinoxes
and 0800 LT in winter. It is found that daytime values are
higher in summer and lower in winter with equinox in
halfway between the two solstices; while nighttime
values exhibit less seasonal variation. The value of Hm

under high solar activity is generally higher by about
10–20 km as compared to that under low solar activity.
[17] Figure 8 illustrates responses of scale height Hm to

solar activity. It is evident that Hm also displays a linear
dependence on F10.7p as NmF2 and hmF2. The rate of
change d(Hm)/d(F10.7p), as shown in Figure 9, indicates a
lower value during daytime, and the day-night difference
of Hm increases with solar activity except for summer.

Figure 6. Same as Figure 4, but for dhmF2/dF10.7p.

Figure 7. Diurnal and seasonal variations of scale
heights (Hm) under low and high solar activities.

Figure 8. An example of the variation of scale height
Hm with solar flux index F10.7p. The solid line is the
results from linear regression.
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4.2.3. Liu et al., 2007 

 A statistical study using data from the 2002 Millstone Hill data campaign was 

conducted by Liu et al. [2007]. Three techniques for calculating scale height are used, but 

only two will be given an overview for the purpose of our study; vertical scale height (VSH) 

calculated by gradients in electron density, and plasma scale height (Hp) calculated using 

plasma temperature, (Te + Ti)/2 information. Both VSH and Hp equations were introduced 

in Chapter 2 of this dissertation as equation 2.5 and 2.6, respectively. The median values 

for 30-days served as the reference level for this study and is shown in Figure 4.3 with the 

corresponding upper and lower quartiles during the ISR experiment Liu et al. [2007]. 

There is a clear average pattern of ionospheric scale heights shown in the right side, 

middle two panels of Figure 4.3 for VSH and Hp; however, the diurnal behaviors of the 

median values in both VSH and Hp are not tightly correlated, suggesting a disconnect 

between density scale heights and plasma temperatures. The largest variations between 

VSH and Hp occur during predawn local hours (2 – 6 LT) where VSH values approach 200 

km and Hp values fluctuates around 150 km then climb to 200 km by 7 UT. Perhaps the 

most interesting part of Figure 4.3 is the ratio of VSH and Hp (right side), which differ 

diurnally. VSH values are shown to be larger during nighttime hours and Hp values larger 

during daytime hours.  

This study produced interesting results, but with several limitations. It is explicitly 

stated that profiles not fitting their least-squares procedure for median topside ionospheric 

electron density profiles were discarded even though they may have represented actual 

situations. Also, the altitude ranges used to determine Hp and VSH differed; (hmF2 to hmF2  
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Figure 4.3. Campaign results of observed ionospheric parameters. Results include 
observed NmF2, hmF2, ratio of vertical scale height (VSH) to plasma scale height (Hp), line-
of-sight velocity Vo (around 500 km), Chapman scale height (Hm), VSH, Hp, and plasma 
temperature relative gradient (dTp/dh)/Tp. The blue dashed lines represent half-hourly 
median values and the corresponding upper and lower quartiles are shown in the vertical 
red lines. This Figure is by Liu et al. [2007] and is licensed under CC BY 3.0, which does 
not require permission for reuse.  
 
 
+200 km) for Hp and (hmF2 +25 km to hmF2 +250 km) for VSH, which may cause significant 

issues in comparisons. 

 Liu et al. [2007] found evidence suggesting that both contributions from the 

temperature structure and diffusion processes can greatly control the shape of electron 

density profiles in the topside ionosphere over Millstone Hill. It is concluded that despite 

several decades of study, the knowledge of the behavior of the ionospheric scale heights 

2022 L. Liu et al.: Topside scale heights over Millstone Hill

Fig. 3. The diurnal variation of NmF2, hmF2, the line-of-sight velocity Vo (around 500 km), the Chapman scale height Hm, the vertical
scale height VSH, plasma scale height Hp , and the relative gradient of plasma temperatures (dTp/dh)/Tp derived from the ISR experiment
at Millstone Hill. The ratio of VSH to Hp is also plotted. Lines with bars represent, respectively, the half-hourly median values and the
corresponding upper (UQ) and lower (LQ) quartiles during the ISR experiment.

ln(Ne) versus h. At the same time, ion and electron tem-
peratures (Ti and Te) and their altitude gradients (dTi /dh and
dTe/dh) at an altitude of 100 km above the F2 peak are also
evaluated from a linear fitting (hmF2 to hmF2+200 km) for
the observed Ti and Te profiles, as shown in the center and
right panels of Fig. 2. Thus, Hp and the relative altitude gra-
dient of plasma temperature, (dTp/dh)/Tp, can be easily de-
termined from the fitted Ti and Te and their gradients (dTi /dh
and dTe/dh). Tp is the plasma temperature. Finally, a half-
hourly average of ion velocity Vo at an altitude of around
500 km is determined from the raw ISR line-of-sight veloc-
ity observations.

3.2 The median pattern of ionospheric parameters

A statistically average feature of the ionosphere can be de-
scribed by the median values of ionospheric parameters. Fig-
ure 3 shows the half-hourly median values of parameters
NmF2, hmF2, Hm, VSH, Hp, Vo, VSH/Hp, and (dTp/dh)/Tp

over Millstone Hill during 4 October to 4 November 2002.
Vertical bars in Fig. 3 depict the corresponding upper and
lower quartiles values, illustrating the deviations from the av-
erage.
Over Millstone Hill, as illustrated in Fig. 3, the variation of

the median NmF2 has a well-defined diurnal pattern, namely
with values larger during the daytime than during the night-

time. Median hmF2 has a maximum around midnight, de-
scends slowly after midnight, declines sharply around sun-
rise, and reaches a minimum at 07:30 LT. Then hmF2 reverses
to increase and reaches its maximum value around midnight.
MedianHm reaches its maximum at night with values around
65 km and its minimum during the daytime with values of
50 km. Taking a value of about 160 km around midnight,
VSH increases from midnight till sunrise. Accompanying a
sharp sunrise decline, VSH keeps low values during the day-
time, although increases slowly in the afternoon and has a
second peak at around 18:30 LT. The median values of Hp

are higher during daytime and lower at night. A significant
morning rise is present in Hp, which is consistent with the
morning overshoot of electron and ion temperatures in the F
layer (e.g. Oyama et al., 1996; Sharma et al., 2005). How-
ever, the evening peak is not present in Hp at Millstone Hill,
although it clearly is present in Hp at Arecibo (Liu et al.,
2007). Overall, our results suggest, over Millstone Hill, that
the diurnal behaviors of median VSH and Hm are much dif-
ferent from that of Hp. In other words, density scale heights
VSH and Hm are not so tightly correlated with the plasma
temperature or Hp.

The ratio VSH/Hp is 1.2 to 1.25 at night and about 0.85
during daytime, displaying a diurnal pattern rather similar
with that of Hm. Accompanying the sunrise descent in
hmF2, VSH, Hm, and the ratio VSH/Hp, the peak shifts

Ann. Geophys., 25, 2019–2027, 2007 www.ann-geophys.net/25/2019/2007/
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remains insufficient and recommends further studies are needed to better understand the 

complexity of the major impact geomagnetic activity can have on the behavior of topside 

ionospheric scale heights [Liu et al., 2007]. 

4.3. Campaign Observations  

 This section begins the second half of Chapter 4. A discussion of our interpretation 

in regards to the campaign observations over Millstone Hill during the 2002 data campaign 

will be given. 

4.3.1. Solar Conditions  

As pointed out by Zhang et al. [2005], the 2002 data campaign at Millstone Hill 

offers a unique opportunity to study the ionosphere under solar variations, because the 

period of observation saw both geomagnetically quiet and active periods. Solar indices, 

solar radio flux F10.7 (daily averages), planetary K-index, Kp*10 (three-hour averages) 

and Dst (hourly averages) are shown in Figure 4.4 and defined in Appendix A. Data for 

Figure 4.4 was extracted from NASA/GSFC's OMNI data set through OMNIWeb 

[https://omniweb.gsfc.nasa.gov/]. Figure 4.4 shows Kp*10 ranged from 7 to 63 units with 

three obvious peaks circled in orange around days 281, 287, and 297. Sharp drops in Dst 

followed by a recovery period correlated with spikes in Kp*10 are apparent signatures of 

solar storms and substorms, respectively. The variations between F10.7 were 155.1 to 

181.4 units with a 29-day average of 168.4 units. A severe geomagnetic storm was initiated 

on day 297 as mentioned by Zhang et al. [2005], highlighted in Figure 4.4 by the red oval, 

and will be considered as the reference active day in this study. The ionosphere was 

disturbed for about 30 hours.  
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Figure 4.4. Solar geophysical conditions between 5 October (day 278) and 2 November 
(day 306), 2002. Results were extracted from NASA/GSFC's OMNI data set through 
OMNIWeb. Solar indices are the three-hourly Kp*10 index and daily solar 10.7 cm radio 
flux F10.7 from NOAA's National Geophysical Data Center, and the hourly Dst index 
computed at and obtained from the World Data Center for Geomagnetism, operated by the 
Data Analysis Center for Geomagnetism and Space Magnetism at Kyoto University, Japan. 
Quiet reference day 294 is highlighted in green and the severe ionospheric storm, day 297, 
by red. The orange circles represent the Kp*10 peaks and the blue boxes represent the quiet 
Kp*10 periods.  
 
 

There are two noticeable quiet periods over the 29 days, day 286 and day 294 shown 

in Figure 4.4 by the blue boxes. A quiet period is considered when Kp*10 values are 

consistently low for two to three days, there are no sharp drops in Dst, and steady F10.7 

values. Day 294 is chosen to be a good reference day for quiet geophysical conditions, 

since the quiet period surrounding day 294 is a day longer compared to the quiet period 



	
	

	

45 

around day 286. It also keeps consistent with the previous analysis by Zhang et al. [2005]. 

Day 294 is highlighted by the green oval in Figure 4.4.  

4.3.2. NmF2 and hmF2 

Using collected ISR data over the 29-day data campaign conducted at Millstone 

Hill, the peak electron height, hmF2, is shown in Figure 4.5 and peak electron density, NmF2, 

shown in Figure 4.6. Both Figures 4.5 and 4.6 are separated into four panels, which consist 

of about seven days each for simplicity. Local daytime hours range from 10 - 22 UT and 

nighttime hours from 22 – 10 UT. It must be noted that the first few days; namely, 278 - 

280, of the dataset had several data gaps in the early morning hours and may not display 

actual ionospheric conditions.  

The overall diurnal variations in both Figures 4.5 and 4.6 are apparent. For local 

daytime hours, there is a broad NmF2 peak beginning at 11 UT with a corresponding drop 

in hmF2; however, hmF2 peaks around 5 UT with a decrease in height through sunrise 10 - 

11 UT. A minima peak in NmF2 is apparent between predawn hours 5 – 10 UT, that 

increases sharply at sunrise and tapers slowly with sunset, 21 – 22 UT.  hmF2 has an average 

peak height around 350 – 400 km and an average minimal height around 250 – 300 km. 

NmF2 peak values are tightly coupled throughout each day (on log scale) around 6.25         

cm-3; however, minima values seem to have the largest day-to-day variation from 4.5 to 

5.5 cm-3. 
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Figure 4.5. The ISR-derived variation of the peak electron height, hmF2 (km), for days (a) 
278-284, (b) 285-291, (c) 292-298, and (d) 299-306.  

 

Figure 4.6. The ISR-derived variation of the log scale peak electron density, NmF2 (cm-3), 
for days (a) 278-284, (b) 285-291, (c) 292-298, and (d) 299-306. 
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4.3.3. Electron Temperature and Density Profiles  

Using the collected ISR data, daily electron temperature (Te) and density (Ne) 

profiles at local midnight and noon for days 278 - 306 are derived and shown in Figure 4.7. 

The gray shaded area is the altitude range from 428 km – 556 km used to represent the 

topside ionosphere in this study. The green line represents the reference quiet day 294, the 

red line, active day 297 and the blue line post-active day 298 to show the continued 

response in a disturbed ionosphere.  

 

Figure 4.7. The ISR-derived diurnal variation for days 278 – 306. Results include electron 
temperature, Te (K), at local midnight (a), local noon (c), and linear plot for electron 
density, Ne (cm-3), at local midnight (b), and local noon (d). The green line represents the 
reference quiet day 294, the red line, active day 297, the blue line, post active day 298, and 
the gray shaded area, the topside ionosphere used in this study.  
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Figure 4.7 shows a large diurnal variation from day to day in both Te and Ne.  In 

terms of the topside ionosphere, large variations occur in day-to-day Te and Ne profiles 

with Te seeing more variations overall compared to Ne. A majority of midnight Te profiles 

average between 1000 – 1500 K. At local noon, average Te is higher, between 1750 and 

2250 K, as expected due to daytime heating. There are a handful of days whose Te profiles 

are well above the average range between 2500 - 3000 K for both noon and midnight.  

At noon, Ne sees very large variations in the peak values, but the peak height is 

consistent day to day at about 300 km. For midnight, the peak Ne values remain below 

500000 cm-3; however, the peak height is not as well defined, and sees more variations in 

the peak height ranging from 325 km to 425 km.  Electron density panels b and d in Figure 

4.7 is replotted on a log scale in Figure 4.8 to examine the rate of change (slope) in Ne.  

 
Figure 4.8. The ISR-derived diurnal variation for days 278 – 306 for electron density      
(cm-3) using log scale, at local midnight (a) and local noon (b). The green line represents 
the reference quiet day 294, the red line, active day 297, the blue line, post active day 298, 
and the gray shaded area, the topside ionosphere used in this study. 
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4.4. Discussion 

This first part of this chapter began with a discussion of previous statistical studies, 

which assessed the same Millstone Hill data campaign used in this study. Zhang et al. 

[2005] showed what we can expect in terms of ionospheric variability in electron density, 

and ion and electron temperatures due to time of day and solar geophysical indices. Lei et 

al. [2005] found an apparent effect on scale heights due to seasons, solar activity and time 

of day. Lei et al. [2005] also suggested the topside profile shape of electron density is 

dependent on plasma diffusion; however, whether or not scale height can be inferred 

knowing either plasma temperature or density information was inconclusive. Liu et al. 

[2007] found diurnal differences in the two scale height techniques adapted for this study, 

VSH and Hp. Large VSH values during nighttime and small values during daytime hours 

compared to Hp values were found by Liu et al. [2007] and we expect to see the same trend 

in our analysis. The study by Liu et al. [2007] concluded further studies are needed to 

understand the behavior of the ionospheric scale heights. A combination of the three 

presented statistical studies over Millstone Hill set the path forward for our study.  

The second part of this chapter discussed our interpretation of the campaign 

observations over Millstone Hill during the 2002 data campaign. Daily solar variations in 

the period of study, as introduced by Zhang et al. [2005], were discussed in section 4.3.1 

and reference days for quiet conditions and active conditions were identified as day 294 

and 297, respectively. Zhang et al. [2005] suggested this variability will offer a good 

opportunity for this study to address several ionospheric behavior questions. Sections 4.3.2 

and 4.3.3 showed diurnal variations in F-region peak parameters NmF2 and hmF2 and 
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electron density and temperature trends we can expect to see in our forthcoming analysis 

of scale heights in Chapter 5.   

The scale height analysis is expected to see a trend in the variation of plasma 

temperature, driven by rapid changes in Te, using both Hp and VSH techniques as shown 

by Lie et al. [2007]. Topside variations in electron temperature and density are apparent 

which will be studied in terms of the effect it may have on scale height values. 
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CHAPTER 5 

TOPSIDE SCALE HEIGHT COMPARISONS 

5.1. Introduction 

In the previous chapter, it was discussed what topside ionospheric conditions we 

expect to see at Millstone Hill by reviewing earlier studies and the campaign observations 

over Millstone Hill during the 2002 data campaign. To reconstruct the topside ionosphere 

is the ultimate goal of this study, which depends on a measure of the exponential decrease 

in electron density; namely, scale height. Previous chapters have shown this exponential 

decay is mainly driven by thermal diffusive equilibrium, but also dependent on the 

dominate ion species, as well as other drivers during nondiffusive conditions. A scale 

height based on observations of the temperature, the plasma scale height (Hp), can generate 

topside electron density profiles. While a measure of the electron density profile enables a 

scale height to be inferred, the vertical scale height (VSH), hence, yielding temperature 

information.  

This chapter begins the scale height analysis needed for the topside reconstruction 

technique by using data collected from Millstone Hill Observatory’s ISR as described in 

Chapter 4. We will study how the scale height methods differ and for the first time, offer 

an explanation of the day-to-day variability in dynamics at mid-latitudes. This chapter will 

begin to address the fundamental question set out by this study: how the topside electron 

density over Millstone Hill during the 2002 ISR Campaign is dependent on altitude, its 

intrinsic connection to ionospheric dynamics, and how to infer the topside ionosphere by a 

determination of scale heights. 
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5.2. ISR Methodology 

The ISR data were smoothed to account for the ISR altitude stepping by a Gaussian 

type method and separated into nighttime hours, 0 – 10 UT, and daytime hours, 11 - 23 

UT. Daytime hours include both sunrise and sunset with local noon at 16 UT (EDT) for 

days 278 - 300 and 17 UT (EST) for days 301 – 306.  Solar noon ranges from 15:32 UT on 

day 278 to 15:27 UT on day 306. During nighttime hours, local midnight occurs at 04 UT 

(EDT) for days 278 - 300 and 05 UT (EST) for days 301-306. Solar midnight ranges from 

03:32 UT on day 278 to 03:27 UT on day 306.  

The errors included in the Madrigal data files for Ne, Te, and Ti are very minimal, 

usually less than 0.1%. This is discussed and shown in Appendix C, as we do not fully 

understand how the errors can be so small. For this reason, we do not include error bars on 

Figures 5.1 – 5.8 and 5.10 – 5.11.  

The dataset was also separated into active and quiet days by an analysis of 

corresponding geomagnetic indices. The indices used were the planetary K index (Kp) and 

the northern polar cap index (PCN), and are described in Appendix A. Days with a Kp 

value greater than four and/or a PCN value greater than two are considered active days. Kp 

values under four and PCN values under two are considered quiet days [Stauning, 2013; 

NOAA Space Weather Scales, Appendix A].  

The scale height analysis uses both the electron density-driven vertical scale height 

(VSH) method given by equation 2.5 and the plasma temperature-determined scale height 

(Hp) method given by equation 2.6. Both equations 2.5 and 2.6 are reproduced below as 

5.1 and 5.2 respectively:  
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𝑉𝑆𝐻 =
−(ℎ/ − ℎO)

ln	(𝑁N(ℎ/)𝑁N(ℎO)
)
	,																																																						(5.1) 

 
 

𝐻R =
2𝑘𝑇R
𝑚S𝑔D

	.																																																											(5.2) 

 
In both scale height techniques, there are two altitude comparisons located above 

the F-layer peak height, hmF2. The lower altitude in Hp calculations is 428 km and upper 

altitude at 520 km. For VSH calculations the lower altitude range is 448 km – 500 km and 

the upper, 500 – 556 km. The lower altitude range for VSH was adjusted up from 400 – 

448 km to keep peak contamination at minimum.  

If the topside F2 region of the ionosphere is controlled by plasma diffusion as 

postulated in the literature and discussed in Chapter 2, Whitten and Poppoff  [1971] suggest 

including a diffusion coefficient, (C + 1), in the scale height calculation:  

𝐻 =
(𝐶 + 1)𝑘a𝑇J

𝑚S𝑔D
	,																																																								(5.3) 

 
where an isothermal atmosphere, Ti	=	Tn, is assumed and C	=	(Te/Tn). This equation is 

expected to hold true for diffusive conditions.  

Ultimately, we will assess the degree to which diffusive equilibrium exists during 

quiet solar and geomagnetic conditions, revisiting active conditions in subsequent chapters. 

We expect to confirm the topside ionosphere is not in diffusive equilibrium for daytime 

hours.  

5.3. Scale Height Results during Quiet Solar and Geomagnetic Conditions 

In this section, we describe the initial results during quiet solar and geomagnetic 
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conditions between the two methods for calculating scale heights in the topside ionosphere. 

Consecutive days 294 - 296 (October 21 - 23) are deemed the quietest days contained in 

the dataset in regards to geomagnetic activity. Because of this, results from these three days 

will be referred to throughout this section. Also, we are interested in the shape and 

associated dynamics of the topside ionosphere; therefore, we examine nighttime and 

daytime hours separately in more detail.   

 Figure 5.1 shows the initial comparison of the two scale height techniques for 

consecutive quiet days 294 - 296. Hours 0 – 23 UT represent day 294, 24 – 47 UT, day 

295, and 48 – 71 UT, day 296. This figure shows an hourly comparison between scale 

heights: Hp, using plasma temperature measurements (black lines); neutral scale heights, 

Hn, using neutral temperatures in equation 5.2 (blue lines), and VSH, using density 

measurements (red lines). For each scale height parameter, the two altitude comparisons 

are represented by circles for the lower altitude and triangles for the upper altitude.  

For nighttime hours, VSH and Hp seem to be in reasonable agreement. After sunset 

at about 22 UT, there is a steady decrease in Hp from 22 – 30 UT at both altitudes as the 

topside ionosphere loses photoionization, the main source of heating. A decrease in Hp 

occurs during nighttime hours until the sun begins to rise and photoionization begins to 

pick back up at about 32 UT. In VSH, this aforementioned nighttime trend is not so clear; 

however, the scale height values tend to closely resemble the values produced by the Hp 

method just after sunset. 
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Figure 5.1. Scale height calculations for quiet days 294 - 296. Hours 0 – 23 UT represent 
day 294, 24 – 47 UT, day 295, and 48 – 71 UT, day 296. The black lines show the plasma 
scale height, Hp for the two altitudes above the density peak, the red lines show the density- 
driven vertical scale height and the blue lines, the neutral temperature scale height, Hn. The 
lower altitude is represented by circles and the upper altitude is represented by triangles. 
The grey arrows represent nighttime hours, 0 – 10 UT, each day, and green arrows represent 
daytime hours, 12 – 22 UT. The yellow sun marks when sunrise occurred each day (11 UT, 
35 UT, and 59 UT) and the dark orange sun marks when sunset occurred (22 UT, 46 UT, 
and 70 UT).  
 
 

A strong peak in scale heights is seen both for Hp and VSH at both upper and lower 

altitudes just after sunrise, beginning around 10 UT and peaking at 12 UT; however, the 

lower boundary for VSH indicated a weaker peak earlier at 11 UT. Nighttime scale height 

for day 294 is roughly described by 150 ± 30 km, but on dayside, the Hp value exceeds its 

corresponding VSH by about 80 km. The sunrise rapid increase in scale heights is more 

difficult to describe. 

During daytime hours, there is a very gradual decrease in Hp as the day progresses 

until sunset. In VSH, this trend is not so obvious. A major discrepancy between the two 

methods is seen in the diurnal variation, which is very noticeable in Hp; but, for VSH, 

Day 295 Day 294 Day 296 
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daytime heating effects in the topside is not apparent with a much lower scale height 

compared to the Hp method.  

The topside ionosphere during daytime hours is subjected to ionospheric transport 

processes. Just after sunrise, rapid changes in boundary pressures and temperatures cause 

an upward flow of plasma into the magnetosphere, increasing the plasma scale height of 

the F2 region, and therefore, the ion density distribution cannot be in diffusive equilibrium 

[Banks and Kockarts, 1973]. This may explain why there is such a large discrepancy 

between the two methods (shown in black and red) during daytime hours. Finally, Hn is as 

expected. The neutral temperature does not show much variation as the day progresses so 

a diurnal fluctuation should not be present with the magnitude shown in Figure 5.1 for Hp 

and VSH. The Hn spread is about 15 km throughout the day with a 5 km difference between 

the upper and lower altitudes of the topside ionosphere.  

Consecutive days 295 and 296 are shown beginning at 24 UT and 48 UT, 

respectively, in Figure 5.1. The same trends present for day 294 are also present for days 

295 and 296; however, a very unusual VSH spike due to an electron density profile change 

occurs on day 295 at 42 UT (or 18 UT).  

Figure 5.2 shows five electron density profiles for day 295 during hours 16, 17, 18, 

19, and 20 UT. The anomalous 18 UT profile above 460 km is quite different from the 

adjacent dayside profiles. This may reflect difficulty in the ISR data or topside plasma 

dynamics. It is because of this abnormality in the data that we get the large spike at 18 UT 

in the VSH scale height calculation. We will disregard this VSH calculation since the 

density profile is not self consistent with prior or later profiles.   
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Figure 5.2. Hourly ISR electron density profiles for day 295 from 16 – 20 UT. 

 
This indicates that not all profiles have topside smooth slopes. The 18 hour UT 

profile is not consistent with a diffusive environment; hence, our analysis technique should 

not be applied to this data. Because of this, we carried out a profile-by-profile review to 

identify such outliers, which will be discussed in section 5.3.1. 

5.3.1. Scale Height Comparisons during Nighttime Hours 

 This section discusses the results of scale height calculations in the previous section 

only for nighttime hours. It appears nighttime hours have the best agreement between the 

two separate methods for calculating topside scale heights. As a result, we conclude that 

the Millstone Hill nighttime topside ionosphere is well described as being in diffusive 

equilibrium. As previous chapters suggest, the major ion over the range 450 - 550 km is 
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assumed to be O+ and the nighttime temperature variations are smaller from one night to 

the next when compared to daytime hours. The right side of Figure 3.4 from Chapter 3, 

section 1.1 confirms this, showing Te is approximately equal to Ti and not altitude 

dependent from 300 km upwards.    

The strong correlation between the two scale height analysis techniques is shown 

in Figure 5.3a for the upper altitude, Figure 5.4a for the lower altitude, and include the 

density profiles not consistent with a diffusive profile shape, an issue introduced in the 

previous section and shown in Figure 5.2. In review, a total of 33 out of 110 profiles (~30%) 

were flagged as not consistent with a diffusive profile shape. 78.8% of these flagged 

profiles occurred between the nighttime hours of 05 – 10 UT. Figures 5.3a and 5.4a were 

replotted as Figures 5.3b and 5.4b to exclude these flagged profiles as the nondiffusive 

shape profiles are not included in the correlation analysis. Both Figures 5.3b and 5.4b 

contain quiet solar activity days: 284 – 286, 291 – 296, and 305. 

In Figure 5.3b, the upper altitude distribution is centered on the line of equality 

between VSH and Hp near 160 km with an approximate 34 km spread in both the x and y 

directions. Overall, the two methods appear to be in good agreement as expected under 

diffusive, like conditions.   

In Figure 5.4b, the lower altitude distribution is centered just above the line of 

equality between VSH and Hp near 142 km with an approximate 16 km spread in the x 

direction and 155 km with a 32 km spread in the y direction. There is a noticeable outlier 

from day 295 that cannot be explained with the criteria used to flag nondiffusive, like 

profile shapes. In general, the altitude chosen for the lower boundary region of the topside 
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Figure 5.3a. Plasma scale height, Hp, plotted against density-driven vertical scale height, 
VSH, for quiet days where Kp < 4 including nondiffusive shaped profiles during nighttime 
hours 0 – 10 UT at the topside upper altitude of 520 km. These days are 284 – 286, 291 – 
296, and 305. The purple line represents the line of equality between VSH and Hp.   

 

                 
 

Figure 5.3b. Plasma scale height, Hp, plotted against density-driven vertical scale height, 
VSH, for quiet days where Kp < 4 excluding nondiffusive shaped profiles during nighttime 
hours 0 – 10 UT at the topside upper altitude of 520 km. These days are 284 – 286, 291 – 
296, and 305. The purple line represents the line of equality between VSH and Hp.   
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Figure 5.4a. Plasma scale height, Hp, plotted against density-driven vertical scale height, 
VSH, for quiet days where Kp < 4 including nondiffusive shaped profiles during nighttime 
hours 0 – 10 UT at the topside lower altitude of 428 km. These days are 284 – 286, 291 – 
296, and 305. The purple line represents the line of equality between VSH and Hp. 

 

 
 

Figure 5.4b. Plasma scale height, Hp, plotted against density-driven vertical scale height, 
VSH, for quiet days where Kp < 4 excluding nondiffusive shaped profiles during nighttime 
hours 0 – 10 UT at the topside lower altitude of 428 km. These days are 284 – 286, 291 – 
296, and 305. The purple line represents the line of equality between VSH and Hp. 
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ionosphere is well above the peak layer; however, the peak may still contaminate our 

electron density data because it is well known that the peak rises in altitude during 

nighttime. Again, the two methods appear to be in good agreement as expected under 

diffusive, like conditions. 

5.3.2. Inference of Te during Nighttime Hours 

 Section 5.3.1 showed a strong correlation between VSH and Hp during nighttime 

hours. Because of this, we can assume VSH is approximately equal to Hp at night. This 

assumption allows us to infer Te values by solving for VSH by using just electron density 

values and setting VSH equal to Hp in equation 5.3. This allows us to solve for C using the 

neutral temperatures. Results are shown for consecutive quiet solar activity days 294 – 296, 

keeping consistent with the days shown in the previous section. This method works quite 

well for nighttime hours when compared to Te values obtained by data from Millstone 

Hill’s ISR as shown in Figures 5.5 – 5.7. The hourly results are separated by day and split 

by upper (5.5a, 5.6a, 5.7a) and lower (5.5b, 5.6b, 5.7b) boundaries to inspect when the 

method works best. For example, we define a significant spread as a difference of 500 K 

or larger between the inferred Te value and the ISR observed value, which equates to a 30% 

error when compared to the average nighttime Te value of approximately 1500 K. Also, if 

the points are touching or overlapping, they are considered to be in complete agreement. If 

a significant spread exists, the method of inferring Te from equation 5.3 suggests 

nondiffusive equilibrium conditions.  

 Quiet reference day 294 is shown in Figure 5.5a. A significant spread (i.e. > 500 

K) in Te occurs between hours 05 and 06 UT, but for hours 02, 03, 07, and 08 UT, Te 
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inferred is in complete agreement with the observed ISR values. For the upper altitude 

shown in Figure 5.5b, a significant spread occurs at 01 and 10 UT with hours 05, 06, and 

09 UT in complete agreement with the observed ISR values. 

Lower altitude for day 295 is shown in Figure 5.6a. There is one significant spread 

at 02 UT compared to three significant spreads at 08, 09, and 10 UT in the upper altitude 

shown in Figure 5.6b. There are no hours where Te inferred is in complete agreement with 

the observed ISR values for the upper boundary during day 295; however, for the lower 

boundary, hours 04, 05, and 09 UT are in complete agreement. The significant spreads 

shown in Figure 5.6b may suggest the nondiffusive conditions.  

Day 296 had the most favorable agreement out of the three consecutive days 

between Figures 5.7a and 5.7b. There are no significant spreads (i.e. > 500 K) between the 

inferred Te and the observed ISR Te values for the lower altitude with hours 02, 06, and 07 

UT in complete agreement and hours 01, 04, 05, and 10 UT within 100 K of the observed 

ISR values. For the upper altitude, there is one significant Te difference at 00 UT, one in 

complete agreement at 09 UT, and a close 100 K difference between Te inferred and the 

observed Te at 10 UT.  

Overall, observed Te values from ISR were higher than the inferred Te values 66.7% 

of the time. For quiet days 294, 295, and 296, the lower altitude produced better results 

compared to the upper altitude; however, there were no significant trends observed for 

specific hours when inferred Te was in close agreement with observed Te.  

 



	
	

	

63 

 
Figure 5.5a. Comparison between Te values taken from ISR data and by solving for Te 
using VSH for the solution of Hp in equation 5.3 for reference quiet day 294 at the lower 
altitude of 428 km. 
 
 

 
Figure 5.5b. Comparison between Te values taken from ISR data and by solving for Te 
using VSH for the solution of Hp in equation 5.3 for reference quiet day 294 at the upper 
altitude of 520 km. 
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Figure 5.6a. Comparison between Te values taken from ISR data and by solving for Te 
using VSH for the solution of Hp in equation 5.3 for quiet day 295 at the lower altitude of 
428 km. 
 

 
Figure 5.6b. Comparison between Te values taken from ISR data and by solving for Te 
using VSH for the solution of Hp in equation 5.3 for quiet day 295 at the upper altitude of 
520 km. 
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Figure 5.7a. Comparison between Te values taken from ISR data and by solving for Te 
using VSH for the solution of Hp in equation 5.3 for quiet day 296 at the lower altitude of 
428 km. 
 

 
Figure 5.7b. Comparison between Te values taken from ISR data and by solving for Te 
using VSH for the solution of Hp in equation 5.3 for quiet day 296 at the upper altitude of 
520 km. 
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Now that the upper and lower altitudes for the inference of Te have been examined, 

it is of interest to look at the distribution of C, initially calculated in equation 5.3. The C 

value spread for quiet days, 294, 295, and 296 during nighttime hours are shown in Figure 

5.8. The lower altitude C values are represented by black dots and the upper altitudes values 

by green crosshairs. For each C value, the vertical lines extend to plus/minus one standard 

deviation. The black line is the overall lower altitude C average for the three mentioned 

days and the green line, the overall average for the upper altitude.  

Both the upper and lower altitude C value averages are just above 1, at 1.19 and 

1.18, respectively. Days 294 and 295 show a larger spread in both the upper and lower 

altitudes compared to day 296, which has daily values that appear to be clustered closer to 

1 (suggesting thermal equilibrium, Te ≈ Ti ≈ Tn) with the smallest standard deviation out of 

 
Figure 5.8. C values and associated daily standard deviation are shown for nighttime hours 
0 – 10 UT on quiet days 294 – 296. 
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the three days. This would make the diffusive equilibrium factor in our scale height 

calculations (C + 1) from equation 5.3 roughly equal to 2. Note the smaller standard 

deviations found on day 296 may be associated with better diffusive equilibrium conditions 

compared to days 294 and 295. About 33% of the hours had either an upper or lower 

altitude value that did not fall within one standard deviation of the overall mean.  

5.3.3. Scale Height Comparisons during Daytime Hours 

This section discusses the results of scale height calculations for daytime hours. 

Because the two methods for determining scale heights during daytime hours has a large 

discrepancy visible in Figure 5.1, we conclude the Millstone Hill daytime topside 

ionosphere cannot be described by diffusive equilibrium.  

Temperature variations during daytime hours are large and are not consistent from 

day to day compared to nighttime hours, which shows very little change from one night to 

the next as described in section 5.2.1. Figures 5.9 and 5.10 show the two scale height 

analysis techniques for the upper and lower altitudes, respectively, during quiet solar 

activity days 284 – 286, 291 – 296, and 305, keeping consistent with the previous sections. 

In Figure 5.9, the upper altitude distribution is centered around 225 km in the x 

direction (Hp) and 150 km in the y direction (VSH), significantly offset from the line of 

equality between VSH and Hp by about 50 km. A similar magnitude offset is shown in the 

lower altitude distribution, Figure 5.10, centered around 187 km in the x direction (Hp) and 

125 km in the y direction (VSH). The offset from the line of equality is larger compared to 

the upper altitude distribution by about 10 km at 60 km.  
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Figure 5.9. Plasma scale height, Hp, plotted against density driven, VSH, for days where 
Kp < 4 during daytime hours 12 – 22 UT at the topside upper altitude of 520 km. These 
days are 284 – 286, 291 – 296, and 305. The purple line represents the line of equality 
between VSH and Hp.  
 

 
 

Figure 5.10. Plasma scale height, Hp, plotted against density driven, VSH, for days where 
Kp < 4 during daytime hours 12 – 22 UT at the topside lower altitude of 428 km. These 
days are 284 – 286, 291 – 296, and 305. The purple line represents the line of equality 
between VSH and Hp. 
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Hp has a larger scale height than VSH in both Figures 5.9 and 5.10 for all daytime 

hours. We expected to see a discrepancy between the two methods because daytime hours 

cannot be described by diffusive equilibrium as mentioned earlier. Our analysis suggests 

the possibility of a consistent offset that can be quantified for daytime hours since the 

cluster is more elongated than for the nighttime hours and tracks the slope, which suggests 

the offset may be real. This finding will be revisited in Chapter 7.  

5.4. Discussion 
 

This chapter was a scale height analysis of the data collected from Millstone Hill 

Observatory’s ISR as described in Chapter 4 for quiet geomagnetic activity. Active 

conditions will be discussed in subsequent chapters. The two different scale height methods 

using both plasma temperatures (Hp) and electron density (VSH) were quantified and 

compared.  Scale height being the exponential decay is mainly driven by thermal diffusive 

equilibrium; however, it is also dependent on the dominate ion species, as well as other 

drivers during nondiffusive conditions.  

The results in section 5.3 show that during quiet geomagnetic activity, the two 

methods of calculating scale heights are nearly always in good agreement during nighttime 

hours. Also during nighttime hours, the variation in both the x and y directions is within 

34 km from the line of equality between the two scale height methods shown in Figures 

5.3b and 5.4b, so it is reasonable to conclude the variations in topside Te, Ti and electron 

density have minimal effects over the altitude range 428 km – 520 km used to investigate 

scale height.  
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We observed signatures in our scale height analysis of contributions from 

temperature structures and diffusion processes that greatly control the shape of the electron 

density profile (see Figure 5.2) as suggested by Liu et al., [2007] in section 4.2.3. We 

conducted a data profile review to separate hours that did not represent diffusive, like 

conditions. Our review found that nighttime hours between 00 – 04 UT more than likely 

gave a diffusive profile shape in contrast to hours 05 – 10 UT where 78.8% of the flagged 

profiles occurred. 

Section 5.3.2 proved the topside F2 region of the ionosphere is, indeed, controlled 

by plasma diffusion during quiet solar and geomagnetic activity for nighttime hours as 

postulated in the literature and discussed in Chapter 2. We found equation 5.3, given by 

Whitten and Poppoff  [1971], is a good method to infer Te when only electron density 

values are available. It is possible to even take it a step further and assume a multiplier of 

two instead of (C + 1) in equation 5.3 that will give a good approximation during nighttime 

diffusive conditions. We can conclude that during said conditions, a measure of the electron 

density profile enables a scale height to be inferred, yielding temperature information about 

66.7% of the time; however, more seasonal data is needed to study this result further. 

Concluding, we have assessed the degree to which diffusive equilibrium exists for 

quiet solar and geomagnetic conditions. Our data analysis shows during nighttime hours, 

it is reasonable to assume diffusive equilibrium; however, because of such a large 

discrepancy between the two scale height methods, diffusive equilibrium is not a good 

representation of the topside ionosphere during daytime hours. This is consistent with what 

the literature suggests.  
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In Chapter 6, TEC data collected from a GNSS receiver located in Westford, 

Massachusetts will be analyzed to determine topside electron density contributions 

followed by bottomside ionosonde data collected and used to determine bottom TEC. This 

will lead into the investigation of different topside reconstruction techniques and compare 

the results. 
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CHAPTER 6 

TOPSIDE RECONSTRUCTION 

6.1. Introduction 

Now that we have explored scale height trends in the topside ionosphere for quiet 

conditions, this chapter outlines our topside reconstruction technique. Our results from 

Chapter 5 show little variation between the two scale height calculation techniques during 

nighttime hours and quiet geomagnetic activity, suggesting diffusive equilibrium 

conditions. This means we can calculate an appropriate scale height to show the 

exponential decrease of electron density in the topside ionosphere, whether it be from data 

containing only density information or only temperature information.  

Now we can begin our investigation into the different topside reconstruction 

techniques and compare the results. This chapter starts with the total electron content 

(TEC) data collected from a GNSS receiver located in Westford, Massachusetts, five miles 

from the location of the ISR used in this study. We will determine topside density 

contributions and compare it to topside contributions calculated using Millstone Hill ISR 

data as outlined in Chapter 4. Next, bottomside ionosonde data collected from Lowell 

Global Ionospheric Radio Observatory (GIRO) Data Center [Reinisch and Galkin, 2011] 

for Millstone Hill is used to calculate TEC for the bottomside ionosphere.  

Once we know the ionosphere’s total TEC and the bottomside contribution to TEC 

we can then determine the topside contribution to TEC. Our study will, for the first time, 

address whether or not topside information can be gained by an analysis of GPS TEC and 
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bottomside electron density profiles observed by ionosonde in the event that neither plasma 

temperature nor topside electron density are measured. 

6.2. TEC Methodology 

TEC was first mentioned in Chapter 2, section 5 and Chapter 3, section 3, as the 

number of electrons in a column stretching over some distance, vertically, with a cross-

sectional area of one square meter and can be integrated to give ionospheric electron 

density over a specific location. In this case, our specific location is that of the Millstone 

Hill ISR as used in this study. For this chapter, we computed TEC from both the GPS data 

and from ISR data and compared the results. 

It is common to represent TEC in units of TECU, which is equal to 1016 

electrons/m2. TEC can range from 5-120 TECU depending on local time and geomagnetic 

activity, which previous literature revealed. We can expect to see said variations in our 

data. Also, the raw GPS data obtained for this study is in the form of slant TEC (STEC) 

meaning it is not always equal to the TEC directly above Millstone Hill. The GPS satellites 

could be piercing through the ionosphere at a perceived horizon, which is at an angle from 

the relative local zenith of the receiver, which we refer to as the inclination angle, and is 

described in more detail in the following pages.  

Absolute GPS TEC was obtained from Dr. Gary S. Bust at Johns Hopkins Applied 

Physics Laboratory and with the help of Dr. Leda Sox, the NetCDF ECS TEC files were 

converted to plain text files. The location of the receiver is that of the Millstone Hill ISR, 

located in Westford, MA. There is a single receiver bias of a residual error of 2-3 TECU 
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[private email communication with Dr. Gary Bust, confirmed by Dr. Anthea Coster, 

Millstone Hill Observatory].  

STEC was then compared to ISR TEC from Millstone Hill. ISR TEC was calculated 

each hour by summing electron density values, vertically from 100 km to 784 km. The 

results are shown in Figure 6.1 for reference quiet day 294 and Figure 6.2 for reference 

active day 297. ISR determined TECU is represented by the black solid lines, GPS STECU 

by the black triangles, ISR topside contribution to total TECU by the squares, and the ISR 

bottomside contribution to total TECU by asterisks. It should be noted that the topside 

ionosphere is considered to be the altitude just above the peak density height, hmF2, up to 

784 km, and the bottomside, directly below the topside down to 100 km, including hmF2. 

Both Figures 6.1 and 6.2 show diurnal variations, with higher TECU values during 

daytime hours 12 - 22 UT and less TECU during nighttime hours 0 – 10 UT. This is true 

for both ISR TECU and GPS STECU. This change in TECU is due to the loss of 

photoionization after sunset until sunrise the next day. Figure 6.1 shows the reference quiet 

day 294 having higher TECU values throughout the day than during active day 297 shown 

in Figure 6.2, with a daytime peak TECU value of 46 for day 294 and 36 for day 297. The 

nighttime TECU values seem to be analogous from day 294 to day 297. Both Figures 6.1 

and 6.2 show topside ISR TECU contributing more to total TECU than the bottomside, 

with a larger separation between the two during daytime hours. 

Overall, GPS STECU is noticeably higher than ISR TECU throughout the day for 

both days 294 and 297, Figures 6.1 and 6.2, respectively. The difference between GPS 

STECU and ISR TECU changes throughout the day: during nighttime hours, the minimum  
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Figure 6.1. ISR TEC compared to GPS STEC for quiet day 294. 
 

 
 
Figure 6.2. ISR TEC compared to GPS STEC for active day 297. 
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difference is about 5 TECU on average, and during daytime hours the minimum difference 

is about 10 TECU. There are a few explanations as to why there are differences in GPS 

STECU and ISR TECU. GPS satellites fly in medium Earth orbit (MEO) at an altitude of 

approximately 20,200 km above Earth’s surface [National Coordination Office for Space-

Based Positioning, Navigation, and Timing, 2016] so a plasmaspheric contribution to 

TECU is possible, which will be discussed in Chapter 8. 

Another reason can be explained by the difference in measurement techniques, 

discussed in Chapter 3, section 3. ISR is a small volume measurement while GPS is a line 

integral between the receiver and transmitter of the electron density. Because GPS data is 

left in STEC, the line integral between receiver and transmitter can be at an angle and not 

directly above the Westford, MA receiver. This means the GPS signal can be piercing 

through more ionosphere than the ISR, which we refer to as the inclination angle, 𝜙. This 

is shown in both Figures 6.1 and 6.2 by the triangles, which represent the receiver tracking 

a rising or setting GPS satellite behind the limb of the Earth. The ISR data are collected 

directly above the instrument, with an inclination angle of 0°, so it is beneficial to know 

when the GPS satellite flies directly above the receiver itself. We can determine this by 

solving for the inclination angle, 𝜙, shown in Figure 6.3.  

We are given the Cartesian coordinates for both the receiver and satellite in the 

NetCDF ECS TEC files, so we can then use the dot product to solve for 𝜃Oshown in Figure 

6.3: 

𝜃O = 𝑐𝑜𝑠7O m	∙ o
𝑅𝑆 	,																																																			(6.1) 
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Figure 6.3. Inclination angle, 𝜙. 

where R represents the unit length from the center of the Earth to the location of the 

receiver, approximately equal to radius of the Earth (RE), and S, the length from the center 

of the Earth to the location of the satellite. Next, we can use the law of cosines to solve for 

the length of the vector pointing from the location of the receiver to the satellite designated 

by the red line labeled L in Figure 6.3:  

𝐿/ = 	𝑅G/ + 𝑆/ − 2𝑅G𝑆𝑐𝑜𝑠𝜃O	.																																											(6.2) 

Law of sines gives us 𝜃2: 

𝐿
𝑠𝑖𝑛𝜃O

= 	
𝑅G
𝑠𝑖𝑛𝜃/

	,																																																						(6.3) 

 
then, 

𝜃t = 180 − 𝜃/ + 𝜃O 	,																																																	(6.4) 
 

and finally, 

𝜙 = 180 −	𝜃t     OR      𝜙 = 𝜃/ + 𝜃O	.																																		(6.5)  
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Figure 6.4 shows the conversion from slant STEC, green line, to vertical TEC 

(VTEC), yellow line, by using a mapping function (MF), equation 6.6, adopted from the 

2014 research group at the Royal Observatory of Belgium [2014], which uses the technique 

described by [Schaer, 1999]. VTEC is very useful for the valuable space weather 

information it can provide, but the conversion is challenging and may not be the best 

representation of the space and time variations in electron content, especially during 

ionospheric storms [Hernández-Pajares et al., 2008]. The mapping function equation is 

defined as:  

𝑀𝐹 𝑧 = 	𝑉𝑇𝐸𝐶 = 𝑆𝑇𝐸𝐶	×	cos 𝜙z 	,																																			(6.6) 
 
where, 

sin 𝜙z = 	
𝑅G

𝑅G + 𝐻
sin 𝜙 .																																											(6.7) 

 

 
 

Figure 6.4. STEC (green line) versus VTEC (yellow line). 
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In equation 6.7, H is the assumed altitude of 350 km above the Earth’s surface where the 

ionosphere is considered a thin layer containing the bulk of all free electrons and is also 

the altitude of ionospheric intersection of the user line-of-sight to a tracked satellite 

[Mannucci et al., 1995].  

Using the first order approach to H, with the assumption of the ionosphere to be a 

thin-shell model, TEC values can be underestimated if a smaller height than actual height 

is used, or overestimated if a larger height than the actual height is used [Schaer et al., 

1995]. We conducted a sensitivity test to see if a change in H to 300 km would make a 

significant difference in VTEC. The daily overall percent difference was a 1.3% decrease 

in VTEC from 350 km to 300 km with the highest percent difference at 6.4%. Again, this 

points to the challenging conversion of VTEC.  

Now that we have calculated VTEC, we can replot Figures 6.1 and 6.2 with STEC 

of 𝜙 less than 10° and VTEC using the mapping function mentioned above. STEC of 𝜙 

less than 10° is shown in both Figures because a small 𝜙 means it was close to being 

directly overhead of the receiver, so it should naturally be a true ionospheric electron 

density measurement. Figures 6.5 and 6.6 show the results for days 294 (quiet) and 297 

(active), respectively. 

In Figures 6.5 and 6.6, ISR TEC is represented by the black solid lines, GPS STEC 

by the black triangles, GPS STEC of 𝜙 less than 10° by blue circles, GPS VTEC by pink 

circles, ISR topside contribution to total TEC by black squares, and ISR bottomside 

contribution to total TEC by black asterisks. Noticeably, daytime hours still show the 
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largest difference between GPS VTEC and ISR TEC, with GPS VTEC being slightly above 

ISR TEC.  

The VTEC mapping technique works quite well for quiet reference day 294 shown 

in Figure 6.5 by smooth pink lines close to the ISR TEC black solid line. There is still a 

noticeable difference in GPS VTEC and ISR TEC during daytime hours by about 7 TECU. 

Nighttime hours for the same day are shown in Figure 6.7. GPS VTEC lies directly on and 

above the ISR TEC line with a few GPS VTEC lines dipping below. Notice the blue GPS 

STEC lines that overlay the pink lines and are within a few TECU of the ISR TEC line, 

especially between 9 and 10 UT for 𝜙 less than 10°.  

For active day 297, Figure 6.6 shows a GPS VTEC pink line particularly smooth 

during nighttime hours and turbulent during daytime hours smoothing out again just after 

sunset. There are definitely larger gaps in GPS VTEC and ISR TEC during daytime hours 

compared to nighttime hours, keeping consistent with previous results. Figure 6.8 shows 

day 297 during nighttime hours. GPS VTEC lines are not as smooth as day 294; however, 

they lie directly above the ISR TEC line, with no tracks directly on the ISR TEC line as 

shown in Figure 6.7 for day 294. There are also a few GPS VTEC lines dipping below as 

with the case for day 294. Blue GPS STEC lines are within a few TECU of the ISR TEC 

line, especially between 9 and 10 UT, again keeping consistent with day 294. 

6.3. Ionosonde Methodology  

This section uses a similar technique described in section 6.2 to determine 

bottomside TEC using an ionosonde. The location of the ionosonde is that of the Millstone 
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Figure 6.5. ISR TEC results compared to STEC and VTEC from GPS for quiet day 294. 
 

 
 
Figure 6.6. ISR TEC results compared to STEC and VTEC from GPS for active day 297. 
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Figure 6.7. ISR TEC results compared to STEC and VTEC from GPS for quiet day 294 
during nighttime hours 0 - 10 UT. 

 

 

Figure 6.8. ISR TEC results compared to STEC and VTEC from GPS for active day 297 
during nighttime hours 0 - 10 UT. 
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Hill ISR and is owned and operated by University of Massachusetts Lowell, Space Science 

Laboratory. Ionogram data were retrieved from the Lowell Global Ionospheric Radio 

Observatory Data Center (LGDC) with the Principal Investigator being Prof. B. W. 

Reinisch of the University of Massachusetts Lowell [Reinisch and Galkin, 2011].  

An ionosonde is composed of a high-frequency transmitter that transmits short 

pulses, which are reflected at various layers of the ionosphere. The sounder sweeps from 

lower to higher frequencies, 1 MHz to as high as 40 MHz [Lowell Digisonde International, 

2015], and their echoes are received by the receiver and analyzed with an end result 

displayed in the form of an ionogram, a graph of reflection height (actual time between 

transmission and reception of pulse) versus carrier frequency (foF2) [NOAA National 

Centers for Environmental Information, 2016]. Ionogram-derived characteristics, such as 

foF2, are scaled, manually or by computer, typically every 15 minutes. An example of the 

ionograms used is shown in Figure 6.9. 

Hourly ionogram data were collected for reference quiet day 294 and active day 

297, keeping consistent with the previous section. If ionogram-derived characteristics were 

not available for a particular hour, the next or previous ionogram was used, which offsets 

our ISR data by about 15 minutes. The peak density height, hmF2 (unit: km), and F2 layer 

critical frequency, foF2 (unit: MHz), are given by the ionograms and are used to determine 

the peak density, NmF2 (unit: m-3) by: 

 
𝑁-𝐹/ = 1.24	×	10O{ 	×	(𝑓|𝐹/)/	.																																				(6.8) 
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Figure 6.9. Ionogram from LGDC, Principal Investigator, Prof. B. W. Reinisch, of the 
University of Massachusetts Lowell. The solid line is the recorded ionosonde foF2 
bottomside data and the dashed line is the inferred topside using ARTIST software, 
which scales the ionogram and calculates the vertical electron density profile. 
 
 

Electron density was then hand calculated every 10 km from 100 km to hmF2, 

keeping consistent with the ISR data, and summed to give total bottomside TEC. The 

results were then compared to the ISR TEC bottomside calculations from the previous 

section and are shown in Figure 6.10 for quiet day 294 and Figure 6.11 for active day 297. 

For both figures, ISR TECU bottomside is represented by (*) and ionosonde TECU 

bottomside by (x). The results for both figures are similar, as expected, because both 

instruments are co-located. Overall, the ionosonde and ISR measurements of bottomside 
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TEC were in very good agreement throughout the day for both days, with active day 297 

having a better overall agreement between the instruments than quiet day 294.  

The diurnal variations in TEC from the previous section is apparent in both Figures 

6.10 and 6.11, with bottomside TEC having greater daytime values during quiet reference 

day 294, Figure 6.10, than active day 297, Figure 6.11. Nighttime bottomside TECU is, 

however, similar in value for both days 294 and 297.  

For day 294, the daytime bottomside TEC peak occurs at 18 UT with an ISR value 

of 19.1 TECU and an ionosonde value of 17.2 TECU. For day 297, the daytime bottomside 

TEC peak occurs at 20 UT with an ISR value of 11.2 TECU and an ionosonde value of 

11.7 TECU.  

The largest discrepancies between the two different instrument results occur during 

nighttime hours 0 – 10 UT, with the most notable difference occurring on active day 297 

between 05 – 10 UT. The discrepancies can be explained by the methodology of how the 

different instruments make electron density measurements. During nighttime, depletion of 

ionospheric electron density occurs, and so the critical frequency in the bottomside 

ionosphere may drop below the normal minimum scanning frequency of 1 MHz for 

ionosondes. The ionospheric critical frequency, foF2, may drop low enough to the medium 

frequency range of AM radio broadcast bands, which extend up to 1.7 MHz according to 

the National Telecommunications and Information Administration’s radio spectrum [2003] 

and can create noise signals in ionosondes.  

The Lowell Digisonde International instrument description page [2015] describes 

how the physical parameters of the ionospheric plasma influence the way radio waves 
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Figure 6.10. Quiet day 294 ionogram-derived bottomside TECU versus ISR TECU 
bottomside. 
 

 
 
Figure 6.11. Active day 297 ionogram-derived bottomside TECU versus ISR TECU 
bottomside. 
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reflect from or pass through the ionosphere, with the only variable driving the relative 

refractive index of the ionospheric plasma being the density of the free electrons. 

Therefore, if the scanning radio frequency of the ionosonde is above the maximum plasma 

resonance frequency [McNamara et al., 2011], the wave is never reflected and can 

penetrate the ionosphere and propagate into outer space. This would explain why the 

availability of ionogram data is sparse during nighttime hours. And may even explain the 

discrepancies between the ISR and ionosonde data.  

Further, we investigated the major differences between ISR and ionosonde data for 

both days 294 and 297 by examining the peak density height, hmF2, shown in Figure 6.12. 

The left side of Figure 6.12, shown in green, is hmF2 for quiet day 294 and the right side, 

shown in blue, is active day 297. The circles represent ionosonde determined hmF2 and the 

triangles, ISR determined hmF2. At first glance the two measurements appear to track 

similarly for both days; with the notable exception of day 297 during hours 05 – 10 UT, 

which was noted above in Figure 6.11 and will be discussed in greater detail below. 

Overall, ISR reports a higher hmF2 throughout the day compared to that of an ionosonde 

with the largest differences between the two measurements occurring during nighttime 

hours. For both days 294 and 297, the average difference between the two is between 30 – 

40 km excluding the exception mentioned above.  

Nighttime hours 05 – 10 UT on active day 297 show a remarkable difference 

between ISR and ionosonde data. Day 297 sees a strong ionospheric storm according to 

standard indices of geomagnetic activity, see criteria listed in Chapter 5, section 2 and 

defined in Appendix A, but it is not reflected in ionosonde data. Three-hour Kp values and 
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Figure 6.12. hmF2 for quiet day 294 (green) and active day 297 (blue).  
 
 
elevated PCN values indicate the storm began at 0 UT on day 297 with values reaching a 

G2 level (moderate geomagnetic storm according to NOAA Space Weather Scales) by 03 

UT. PCN values nearly double by 11 UT. To see the ionospheric response to this magnetic 

storm, we examine the electron density for hours 05 – 10 UT. Figure 6.13 shows the results.  

The profiles in Figure 6.13 show a relatively broad, flat peak that extends from 350 

km to over 500 km with a constant value of peak density, especially for 08 and 09 UT. At 

07 and 08 UT, the ISR analysis can find a peak anywhere in the altitude range, which is 

500 and 550 km, respectively, and over 200 km higher than hmF2 at 06 UT. The ionosonde, 

in contrast, has a scanning ability that works from the lower altitudes towards a peak; 

hence, at 09 UT, a reading at the 350 km altitude corresponds to a maximum density and 

the sounding frequency contains no further information from higher altitudes.  
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Because the ionosondes only sound at discrete frequencies, the highest frequency 

returning an echo is considered to be foF2, but it would always lie in a frequency range of  

the last (critical) frequency plus an additional extraordinary critical frequency. Being less 

than or equal to foF2 also implies the corresponding height will be less than or equal to hmF2 

as seen in Figure 6.12. 

When a storm occurs in the ionosphere, it is due to the increased energy flow from 

the solar wind into the magnetosphere. Due to the enhanced magnetospheric electric field, 

particles are accelerated out of the ionospheric via flux tubes and into the equatorial plane 

[Kivelson and Russell, 1995]. This explains why we see an increased ionospheric slab 

thickness (𝜏) and subsequent increase in hmF2 in Figure 6.13, which is discussed in great 

detail in section 6.4.3. With the increase in 𝜏, the electron density profiles become flat in 

shape with no real distinct F2 layer peak and may raise the question of determining the 

actual hmF2 altitude, how ionosondes see a real problem with the fixed scanning 

frequencies, and how they are scaled via top and bottom traces of the F2 layer.  

6.4. Our Unique Methodology 

This section combines what we’ve learned thus far with an attempt to devise a 

method of determining topside Te that will allow us to reconstruct the topside ionospheric 

profile.  

6.4.1. TEC Topside Percentage 

 Section 6.1 gave insight of how much TEC can be allocated to the topside 

ionosphere by the results shown in Figures 6.1 and 6.2. For both days, quiet day 294 and 
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active day 297, TEC topside (TECt) was greater than TEC bottomside (TECb) for each hour 

during the entire duration of the day/night.   

 To find out whether or not this held true for all days in our data set, the percentage 

of TECt from TEC was determined hourly for each day then averaged over the entire day. 

The results are shown in Figure 6.14. The overall TECt average was found to be 65% of 

TEC and falls within one standard deviation of each day of our dataset with only nine out 

of 29 days slightly offset from the overall average line.  

Figures 6.15 and 6.16 break down the daily TECt percent averages into solar noon 

and solar midnight hours with the associated daily standard deviation. Noon hours were 

from 13 – 18 UT, which are composed of the three hours prior to noon and three hours 

following noon. The same approach was done for midnight hours, 01 – 06 UT. The overall 

TECt average for noon hours and TECt average for midnight hours is designated by the red 

line in figures 6.15 and 6.16, respectively.   

 
 
Figure 6.14. Daily average percentages of topside TEC and associated daily standard 
deviation for days 278 – 306.  
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 Figure 6.15 shows an overall TECt of 63.6% for daily noontime hours compared to 

the overall daily TECt of 65% found in Figure 6.14. There are several outliers, with days 

278 and 279 being most apparent to not fall within one standard deviation of the overall 

noontime hour average. Days 278 and 279 may offset the overall noontime average line 

with large discrepancies in percentage values compared to noontime hours for the 

following days in our dataset. The line might be better fit if these outliers were removed. 

Nevertheless, a majority of the data is contained within one standard deviation of the 

overall noontime hour average line and daily average line.  

Midnight hours shown in Figure 6.16 had a better result with an overall TECt of 

64.3% compared to the overall daily TECt of 65% found in Figure 6.14. There are not 

nearly as many outliers compared to noontime hours; however, there are several significant 

hours that did not fall within one standard deviation, namely day 280. Despite the outliers, 

the overall midnight hour average line and overall daily average line contain a majority of 

the data. 

For both noontime and midnight hour cases, the daily average line for TECt can be 

considered a good fit for a simple model. Therefore, we can conclude that 65% of TEC is 

allocated to the topside ionosphere. If we know TEC we can solve for TECt by this simple 

relationship:  

𝑇𝐸𝐶} = 0.65	×	𝑇𝐸𝐶	,																																																			(6.9) 
 
or, if we know TECb we can determine TEC: 

𝑇𝐸𝐶 = 	
𝑇𝐸𝐶a
0.35 	.																																																					(6.10) 
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Knowing only TECb we can plug equation 6.10 into 6.9 and solve for TECt: 

𝑇𝐸𝐶} = 0.65	×	
𝑇𝐸𝐶a
0.35 	.																																														(6.11) 

 
This relationship now lets us solve for either TEC, TECt, TECb given only one 

measurement by either GPS TEC, ISR TEC, or ionosonde TECb by the simple equation:  

𝑇𝐸𝐶 = 	𝑇𝐸𝐶} + 𝑇𝐸𝐶a	.																																											(6.11) 
 

6.4.2. Determining Topside TEC from Ionosondes  

This section builds off the results from 6.3 using what we have found in 6.4.1. The previous 

section concluded with a simple equation to solve for TECt only knowing TEC or TECb. 

TECb can be determined from ionograms with the use of equation 6.11, we can now solve 

for TECt or use equation 6.10 to solve for TEC. Figures 6.10 and 6.11 are replotted using 

this new relationship to solve for TEC, which are compared to ISR. The results are shown 

in Figure 6.17 for day 294 and Figure 6.18 for day 297. The black solid line represents ISR 

determined TEC, ionosonde derived TEC by the blue line, ISR TEC bottomside by the 

black asterisks, and lastly, ionosonde bottomside TEC by blue Xs.  

Interestingly, Figure 6.18 for active day 297 shows better results between ISR and 

ionosonde determination of TEC and TECb compared to quiet day 294, Figure 6.17. In 

Figure 6.17 there is a large discrepancy between ISR and ionosonde TEC between 

nighttime hours 2 – 8 UT and day time hours 15 – 18 UT and again around 22 UT. In 

Figure 6.18, there is one significant difference between the two during nighttime hours 6 – 

10 UT.  
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Figure 6.17. Quiet day 294 ionogram-derived TECU (blue) versus ISR TECU (black). 
 

 
 
Figure 6.18. Active day 297 ionogram-derived TECU (blue) versus ISR TECU (black). 
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Overall, the comparisons between ISR and ionosonde TEC and TECb are in good 

agreement for days 294 and 297. Both days show similar behavior for either ionosonde or 

ISR methods with the alignment of the peaks and troughs in TEC and TECb occurring at 

the same UT, as well as their comparable TECU values.  

6.4.3. Correlation between hmF2 and 𝝉  

 A new correlation has been found between peak density layer height, hmF2 and slab 

thickness, 𝜏. Slab thickness was discussed in Chapter 2, section 5 as the ratio of TEC to the 

peak density value (NmF2): 

𝜏 =
𝑇𝐸𝐶
𝑁-𝐹/

	,																																																				(6.12) 

 
where 𝜏 represents the equivalent thickness of the ionosphere having a constant uniform 

density equal to that of the F2 peak. It also describes the nature of the distribution of 

ionization at a specific location thickness and relates the shape of the electron density 

profile; the smaller 𝜏 is, the sharper the profile [Amayenc et al., 1971]. This means there is 

direct proportionality between slab thickness and scale height. 

What we stumbled on was that hmF2 and 𝜏 show some sort of correlation. Day 294 

is shown in Figure 6.19 and day 297, Figure 6.20. The black line represents hmF2 and the 

gray line, 𝜏. Both figures show that when the hmF2 increases, 𝜏 increases and when hmF2 

decreases, 𝜏 decreases. There is a large variation in hmF2 on active day 297, Figure 6.20, 

with a rapid decrease at 6 UT followed by the sharp increase at 7 UT; however, it is not 

reflected well in 𝜏. Overall, there is a strong correlation between the two parameters 

throughout the day for both days.  



	
	

	

97 

 
 

Figure 6.19. Quiet day 294 ISR relationship between hmF2 and slab thickness. 
 

 
 

Figure 6.20. Active day 297 ISR relationship between hmF2 and slab thickness.  
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As discussed in Chapter 2, there have been many studies done to understand the 

physical meaning behind 𝜏, which still remains unclear; however, this new correlation may 

provide new insight as to why the thickness of the ionosphere increases when the peak 

layer altitude increases. This new correlation of hmF2 to 𝜏, will now be referred to as k: 

𝜅 = 	
ℎ-𝐹/
𝜏 	,																																																								(6.13) 

 
and was thoroughly inspected throughout the data campaign and is shown in Figures 6.21, 

6.22, and 6.23. Figure 6.21 shows the individual daily averages of k and the overall dataset 

average to equal 1.28. This means that one can expect the peak density altitude (hmF2) to 

be 28% greater than that of the thickness of the ionosphere (𝜏). All but 3 out of 29 days 

fall within one standard deviation of our overall average line.  

Figures 6.22 and 6.23 separate daily k ratio averages into solar noon and solar 

midnight hours with the associated daily standard deviation. Keeping consistent with 

 
 
Figure 6.21. Daily average hmF2/𝜏 ratio and associated daily standard deviation for days 
278 – 306.  
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noontime hours and k ratio average for midnight hours is designated by the red line in 

Figures 6.22 and 6.23, respectively. Because there were noticeable variations from the 

average lines, it was beneficial to see if ionospheric active and quiet periods were 

responsible. For this, consecutive quiet days (at least two or more) are highlighted in green, 

the reference active day, 297, in red, and remaining active days in black with the notable 

exception of quiet days 302 and 305, which did not meet the criteria for consecutive quiet 

periods shown in green. The results for the case of active days versus quiet days were very 

noticeable in both Figures 6.22 and 6.23. 

Figure 6.22 has an overall k ratio of 1.23 for daily noontime hours, a 0.4% decrease 

compared to the overall daily k ratio of 1.28 found in Figure 6.21. There are several 

significant outliers that can explain the deviation from the overall average line, most of 

them being active days, especially reference active day 297. For active days, 65% of the 

noontime hours are within one standard deviation of either the daily noontime and/or 

overall daily average lines and 92% being the case for noontime hours during quiet days.  

It seems as if during active days, k ratio values approach one, meaning the peak 

density height is equal to the thickness of the ionosphere. Looking at Figure 6.20, 𝜏 

becomes greater than and equal to hmF2 briefly during noontime hours, which is reflected 

here in Figure 6.22. This may be explained by the rapid increase in photoionization after 

sunrise coupled with an ionospheric storm and compositional changes, as well as a rapid 

decrease in hmF2 as discussed in Chapter 3, section 3.1, and Chapter 4, section 4.2. 

Midnight hours shown in Figure 6.23 had a larger deviation from the overall daily 

k ratio of 1.28 than noontime hours with a k ratio of 1.38, an 8% increase; however, more 
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active day midnight hours fell within one standard deviation of either the midnight hour 

average line and/or the overall daily average line at 79% compared to 65% for noontime 

hours. Only 82% of quiet day midnight hours fell within one standard deviation of either 

the midnight hour average line and/or the overall daily average, a 10% decrease compared 

to noontime hours. This might be expected as there is a larger discrepancy in the two 

different average lines than at noontime hours, so we can expect to see less hours fall within 

one standard deviation of the overall average line and more hours fall on the midnight hours 

k ratio average line.  

It is again interesting to point out that during midnight hours for both active and 

quiet days, k ratio values approach 1.5 at times in Figure 6.23 when they approached one 

in Figure 6.22 for noontime hours. This may be explained by the well observed rise in hmF2 

during nighttime hours with the loss of daytime photoionization, but may suggest a lag in 

or subtle decrease of the ionospheric thickness. Signatures of this can be found in both 

Figures 6.19 and 6.20 with the largest differences in hmF2 and 𝜏 occurring during midnight 

hours 01 – 06 UT.  

Still, a majority of the data is well contained within one standard deviation of the 

overall daily k ratio average line, though, I would suggest proceeding with caution when 

specifically discussing noontime and midnight hours, especially during active and quiet 

days. The overall daily k ratio average of hmF2/𝜏 = 1.28 can be considered a good fit for a 

simple model ionosphere and supports the undeniable correlation between hmF2 and 𝜏, 

which is very clear in the results.  
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6.5. Discussion 

  This chapter outlines our topside reconstruction technique that will be applied to 

our data in Chapter 7.  TEC data collected from a GNSS receiver located in Westford, 

Massachusetts had conclusive results compared to our ISR TEC data collected at Millstone 

Hill, especially using STEC when the GPS satellite had an inclination angle of 10° or less.  

This suggests the methodology of using TEC data from GPS could be a good representation 

of the topside TEC contribution to the topside ionosphere; however, the plasmaspheric 

contribution cannot be ignored.  

Next, bottomside ionosonde data were collected from the Lowell GIRO Data 

Center [Reinisch and Galkin, 2011] for Millstone Hill and used to calculate TEC for the 

bottomside ionosphere. The new relationship found between TEC, TECt, and TECb was 

established in section 6.4.1 and applied to successfully determine TEC and TECt using only 

ionogram data. The initial results are promising; however, it must be noted that the 

unavailability of ionogram data during nighttime hours limits our study for comparison, 

especially during diffusive equilibrium conditions which is favorable for determining 

electron temperature trends.  

For the first time, slab thickness, which is directly proportional to scale height, was 

found to be correlated to hmF2 and introduced as a new index, k. Ultimately, k is a 

relationship between TEC, NmF2 and hmF2, and can be a very useful tool for describing the 

topside ionosphere and subsequently, scale height.  

Our unique methodology found in section 6.4 will be used in conjunction with a 

Chapman profile to recreate the topside ionosphere using ionosonde data and compared to 



	
	

	

103 

both GPS STEC of 𝜙 less than 10° and ISR data. As discussed in section 6.2, GPS STEC 

of 𝜙 less than 10° offers a true representation of TEC directly above Millstone Hill without 

needing to factor in the mapping function correction, which makes standard ionospheric 

assumptions, such as a constant ionospheric thickness of 350 km. And because GPS 

satellites take TEC measurements approximately 19,400 km higher than ISR 

measurements, this will also allow us to properly evaluate the plasmaspheric contribution. 

GPS TEC data will be used in conjunction with ionosonde data, which provides peak 

parameters not available from GPS VTEC: NmF2 and hmF2. Also, the discrepancies found 

in ionosondes compared to ISR must be accounted for such as Figure 6.12, which suggests 

ionosondes continually underestimate hmF2 values and must be adjusted for the purpose of 

this study.  
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CHAPTER 7 

RECONSTRUCTED TOPSIDE ELECTRON DENSITY PROFILE 

7.1. Introduction 

This chapter applies our scale height trend analysis results found in Chapter 5 and 

topside reconstruction technique outlined in Chapter 6. Our results thus far suggest scale 

height calculation techniques during nighttime hours and quiet geomagnetic activity should 

be in diffusive equilibrium allowing us to calculate an appropriate scale height using data 

only containing density information with the end goal of obtaining topside temperature 

trends.  

This chapter will begin by discussing how ionogram data collected from the 

ionosonde used in this study was scaled to Millstone Hill’s ISR. Next, the ionosonde 

bottomside TEC values calculated in Chapter 6 will be used for the reconstruction of the 

topside by using the relationship found between TEC, TECt, and TECb in Chapter 6 section 

4.1 and a Chapman profile technique described in Chapter 2, sections 2 and 6. The results 

will then be analyzed and compared to ISR electron density profile measurements.  

When the comparisons are complete and the correct Chapman profile is determined, 

the Chapman scale heights will then be calculated.  This will lead into a determination of 

the topside ionospheric plasma temperature trends. For the first time, a possible 

relationship may be found between plasma temperature trends by only using knowledge of 

density parameters: NmF2, hmF2, and TEC.  

Finally, this chapter will ultimately evaluate whether or not the methodology of 

using ionosonde bottomside TEC combined with TEC calculated from ISR (or by GPS 
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TEC) could be a good representation of the topside ionosphere.  

7.2. Ionosonde Scaling 

Major differences were found between ISR and ionosonde bottomside data for both 

days 294 and 297 in Chapter 6, section 3 by the examination of the peak density height, 

hmF2, which was shown in Figure 6.12. The ISR data used in this study provides the full 

ionospheric electron density profile information against which the ionosonde bottomside 

results are compared. Because the goal of this study is to recreate the topside ionosphere 

using bottomside TEC data collected by an ionosonde, for the purpose of this study, the 

ionosonde data was scaled to fit the ISR data. This is alarming for the reasons mentioned 

in section 3.3: the stated calibration constant used in Millstone Hill’s ISR is determined by 

direct comparison with the University of Massachusetts Lowell ionosonde measurements 

of peak electron density [Madrigal, 2017]. Appendix D shows the results of Chapter 7 

when ISR is scaled to fit the ionosonde bottomside data. 

 Compared to ISR, ionosondes routinely determine a lower altitude of peak density 

height, hmF2, and a higher peak density value, NmF2. Examples showing the adjustments 

made to the ionosonde bottomside density profiles are shown in Figures 7.1 and 7.2 where 

the blue line represents the ISR density profile ISR and the green line, the ionosonde 

bottomside density profile. 

 Figure 7.1 shows the 20 UT density profile during quiet day 294. For this hour, the 

ionosonde adjustment was an 5.4 % increase in all altitude values and an 8.7 % decrease 

in all density values in order to match the ISR observed hmF2 and NmF2 values. The density 

profile during 12 UT on active day 297 is shown in Figure 7.2. The ionosonde data had the 
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following adjustments to match the ISR observed hmF2 and NmF2 values: a 10.7 % increase 

in all altitude values and an 8.2 % decrease in all density values.  

 

Figure 7.1. Quiet day 294, 20 UT density profile ISR (blue) versus ionosonde (green). The 
right side shows the adjustments made to the raw ionosonde bottomside profile (left) to fit 
ISR. 
 

 
 
Figure 7.2. Active day 297, 12 UT density profile ISR (blue) versus ionosonde (green). 
The right side shows the adjustments made to the raw ionosonde bottomside profile (left) 
to fit ISR. 
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Without the adjustments in both Figures 7.1 and 7.2 the peak density shape would 

not be captured correctly by the ionosonde data and subsequent topside reconstruction. It 

must be noted that the scaling was not consistent over the two days used for the topside 

analysis with some hours during the day requiring a scaling of over 20%, as shown in Table 

7.1 for day 294 and Table 7.2 for day 297. For both days, NmF2 needed significant 

ionosonde scaling compared to hmF2 values.  Quiet day 294 required the most ionosonde 

scaling for NmF2 values during the hours of 12 and 14 UT at 20.7% and 23.7%, 

respectively. Day 294 also saw the largest and smallest hmF2 ionosonde scaling at 13.1% 

during 22 UT and 1.5% at 16 UT. Overall, the daily average hmF2 and NmF2 ionosonde 

scaling values for day 294 was 7.3 % and 11.9 % compared to 6.9% and 9.9% for day 297.  

This raises a concern in our methodology to use ionosondes that are significantly different 

than ISR, but will not be investigated in this study.  

7.3. 𝜶 −	Chapman Profile 

 Now that the ionosonde data has been scaled to fit the ISR data, we can move to 

the reconstruction of the topside ionosphere using the 𝛼 −	Chapman profile [Chapman, 

1931; Rishbeth and Garriott, 1969; Reinisch and Huang, 2001] outlined in Chapter 2, 

sections 2 and 6, reintroduced here. Again, the 𝛼 −	Chapman profile is as follows: 

𝑁 ℎ + = 	𝑁-𝐹/ exp 	
1
2	 	1 − 𝑧 −	𝑒

78	 	 	,																													(7.1) 
 

where 
 

𝑧 =
ℎ −	ℎ-𝐹/
𝐻(ℎ)>

	,																																																	(7.2) 

 
and  
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Table 7.1. Day 294 Absolute Difference Between Ionosonde and ISR Data. 

UT hmF2 numerical 
difference (km) 

hmF2 % error NmF2 numerical 
difference (m-3) 

NmF2 % error 

00 11.0 3.56 9.36E+10 11.6 
02 34.8 10.7 3.86E+10 7.59 
12 15.8 6.80 2.03E+11 23.7 
13 23.3 9.52 2.58E+11 18.7 
14 22.0 8.94 3.77E+11 20.7 
15 6.00 2.29 1.85E+11 10.5 
16 4.10 1.46 1.81E+11 10.1 
17 25.1 9.00 1.68E+11 8.85 
18 25.0 8.47 1.82E+11 9.37 
19 28.7 9.85 1.84E+11 8.84 
20 15.5 5.37 1.70E+11 8.69 
21 20.0 7.04 1.97E+11 10.1 
22 35.2 13.1 1.01E+11 6.56 
23 17.0 5.61 1.24E+11 10.8 

 

Table 7.2. Day 297 Absolute Difference Between Ionosonde and ISR Data. 

UT hmF2 numerical 
difference (km) 

hmF2 % error NmF2 numerical 
difference (m-3) 

NmF2 % error 

00 36.9 12.2 9.70E+10 10.5 
01 26.4 8.42 5.95E+10 7.50 
02 26.3 7.88 7.43E+10 11.2 
03 38.2 9.80 5.59E+10 12.1 
04 37.1 9.49 3.48E+10 8.80 
12 30.9 10.7 3.49E+10 8.15 
13 28.5 10.3 5.53E+10 10.9 
14 18.9 6.28 6.76E+10 11.8 
15 14.4 4.97 6.61E+10 9.23 
16 12.7 4.36 1.31E+11 14.4 
17 12.1 4.15 1.31E+11 12.9 
18 8.20 2.77 1.31E+11 11.4 
19 14.9 5.15 1.39E+11 10.5 
20 17.3 5.72 1.55E+11 12.1 
21 23.1 7.78 1.16E+11 9.16 
22 23.2 7.32 1.04E+11 8.72 
23 19.6 6.89 8.19E+10 9.03 
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𝐻(ℎ)> = 	
𝑘@	𝑇>
𝑚	𝑔D

	.																																																(7.3) 

 
Again, equation 7.1 is dependent on NmF2, hmF2, and H(h)C, with H(h)C dependent 

on gravity due to height (h) and TC, which will be referred to as the Chapman temperature. 

Several studies in the past such as [Titheridge, 1973] relate TC to the neutral temperature, 

TN. Because of this, we use a range of TC equal to 800 K, 900 K, 1000 K, 1100 K, 1200 K, 

1300 K, and 1400 K. The ionosonde NmF2, hmF2 values used are the ones adjusted as 

mentioned in section 7.2. 

The Chapman temperature variations of the 𝛼 −	Chapman profile was calculated 

hourly for quiet reference day, 294 and active reference day 297. Ionosonde data that were 

offset from the exact hour (a nighttime problem discussed in Chapter 6, section 3 as the 

scanning radio frequency of the ionosonde above the maximum plasma resonance 

frequency) was not used in this Chapter’s study, which unfortunately means a thorough 

evaluation of the topside ionosphere during diffusive conditions could not be conducted at 

this time. The hours available for comparison for day 294 are  00, 02, 12 – 23 UT and for 

day 297, hours 00 – 04 and 12 – 23 UT. 

The ionosphere’s electron density profile is then recreated using the ionosonde- 

generated bottomside profile and hmF2 and NmF2 values scaled accordingly to ISR data, 

along with the 𝛼 −	Chapman Profile described in this section.  

7.3.1. 𝜶 −	Chapman Pseudo-Temperature 

Once the 𝛼 −	Chapman profiles were computed for each of the above-mentioned 

variations in Chapman temperature, TECt was found by calculating electron density every 
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20 km from hmF2 to 800 km and summed, keeping consistent with the ISR data. The 

Chapman temperature, which produced the closest 𝛼 −	Chapman profile TECt values to 

ISR TECt, was then selected to represent the topside ionosphere and referred to as the 

Chapman pseudo-temperature. This was important to determine because the Chapman 

pseudo-temperature significantly controls scale height values, which we will use for our 

comparison. 

Figures 7.1 and 7.2 are recreated to show the results of the topside reconstruction 

in Figures 7.3 and 7.4, respectively. In both Figures 7.3 and 7.4, the ISR electron density 

profile is shown in bold-black and the bottomside ionosonde profile in bold-green. The 

remaining different colors represent the varying 𝛼 −	Chapman profile dependent on the 

Chapman temperature used. The red-dashed line is equal to the Chapman pseudo-

temperature or the Chapman temperature that produced the closest TECt values to ISR 

TECt. The right side in both Figures shows the adjustments made to the raw ionosonde 

bottomside profile, shown on the left side of each figure, to fit ISR as discussed in section 

7.2. 

A Chapman temperature of 1000 K produced the best fit 𝛼 −	Chapman profile 

during 20 UT on quiet day 294 and is shown by the red-dashed line in Figure 7.3. On the 

adjusted side (right) of Figure 7.3, the ionosonde bottomside fit lies directly on the ISR 

profile with the peak captured nicely by the 𝛼 −	Chapman profile. Overall, the 𝛼 −

	Chapman profile appears to be a good fit compared to the ISR density profile except 

between 400 – 600 km where the red-dashed line is slightly above ISR. 
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Impressive results were found for active day 297 during 12 UT, shown in Figure 

7.4. The best fit 𝛼 −	Chapman profile had a Chapman temperature of 1400 K and on the 

right side of Figure 7.4, the adjusted ionosonde data and red-dashed line lie directly on the 

ISR profile. Again, it was imperative the adjustments were made to the ionosonde data to 

correctly capture the peak shape and subsequent topside ionosphere. For the full set of the 

topside reconstruction results, see Appendix E. 

Consistency was checked in the Chapman temperature (TC) results for quiet day 

294 and active day 297 and are shown in Tables 7.3 and 7.4, respectively, as well as the 

corresponding TECt % errors when compared to ISR TECt. Overall, day 294 had 10 hours 

with a TC value less than 1000 K compared to day 297, which only saw one Tc value less 

than 1000 K. For day 294, daytime hours 12 – 15 UT, just before solar noon, saw the lowest 

daily TC values, while nighttime hours 00 and 23 UT saw the highest TC values. 

Conversely, day 297 had higher Tc values occur just before solar noon during the hours of 

12 – 14 UT, and lowest during nighttime hours 00 – 04 UT.  

Surprisingly, in terms of TECt % errors, active day 297 had eight hours with an 

error less than 1% compared to quiet day 294, which only had one hour less than 1%. Day 

294 also saw the largest TECt error at 8.9 % between the two days occurring at 13 UT. 

Consistency was not found in Tables 7.3 and 7.4 for the two days used in the study, in 

regards to the 𝛼 −	Chapman profile results of TC and TECt % error. 
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Figure 7.3. Quiet day 294, 20 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 

Figure 7.4. Active day 297, 12 UT density profile ISR (blue) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Table 7.3. Day 294 Chapman Temperature and TECt % Error 
 

 
 
 

 
 

 

 

 

 

 

 

 
Table 7.4. Day 297 Chapman Temperature and TECt % Error 

 
UT TC (K) TECt % Error 
00 1000 3.35 
01 1000 1.96 
02 900 2.95 
03 1000 0.584 
04 1000 0.628 
12 1400 0.649 
13 1400 0.730 
14 1400 0.690 
15 1200 3.11 
16 1100 0.835 
17 1100 1.87 
18 1200 3.86 
19 1100 1.16 
20 1200 3.70 
21 1200 0.0452 
22 1000 2.82 
23 1000 0.355 

UT TC (K) TECt % Error 
00 1100 2.36 
02 900 0.0859 
12 900 1.86 
13 800 8.94 
14 800 3.78 
15 800 6.30 
16 900 1.06 
17 900 4.58 
18 900 2.61 
19 900 4.92 
20 1000 4.97 
21 900 3.80 
22 1000 4.34 
23 1100 2.07 
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7.3.2. 𝜶 −	Chapman Profile Scale Height 

 In order to recreate the topside ionosphere, a scale height must be calculated. 

Equation 7.1 uses a Chapman scale height (HC), equation 7.3, that is dominated by a 

temperature that has been postulated by previous literature to resemble the neutral 

temperature and not give any information about the plasma temperature. Using an 𝛼 −

	Chapman profile determined to be a good fit for the topside ionosphere; however, gives 

the density structure and allows one to extract density values at any given altitude. Because 

of this, vertical scale height (VSH), introduced in Chapter 5, equation 5.1 can be calculated. 

VSH determined from an 𝛼 −	Chapman profile will be referred to as a Chapman VSH, or 

VSHC for short, throughout the rest of this chapter.  

The Chapman VSH was calculated for day 294 and day 297 and compared to the 

scale height results using the ISR methodology found in Chapter 5, section 3, and shown 

in Figure 7.5 for day 294, recreating Figure 5.1, and Figure 7.6 for day 297. Both Figures 

7.5 and 7.6 show an hourly comparison between all scale heights: plasma scale height, Hp, 

using plasma temperature measurements from ISR (black lines); neutral scale heights, Hn, 

using ISR neutral temperatures (blue lines); calculated ISR VSH (red lines) using ISR 

density measurements; calculated Chapman VSH (green lines) using ionosonde 𝛼 −

	Chapman profile density determined values; and Chapman scale height, HC, found by 

equation 7.3 (purple lines). Keeping consistent with previous results, there are two altitude 

comparisons, lower altitude at 428 km and upper altitude at 520 km, for each parameter. 

Both altitudes are located above the density layer peak, hmF2, representing the topside 

ionosphere.  



	
	

	

115 

The ISR hourly variations were discussed in Chapter 5, section 3, and will not be 

addressed here; rather, an analysis of how the Chapman scale heights VSHC and HC 

measured up to the ISR results will be discussed: for HC, a comparison against ISR Hn and 

VSHC against ISR VSH. Again, for day 294 only hours 00, 02, 12 – 23 UT are available 

for comparison and for day 297, hours 00 – 04 and 12 – 23 UT. 

Quiet day 294 HC, shown in Figure 7.5, seems to track Hn well during 00, 02, 12, 

and 23 UT but a noticeable gap of about 20 - 25 km exists between the hours of 13 – 22 

UT. For example, during 15 UT this small scale height difference translates to a 360 K 

difference in TC and Tn. Active day 297 shown in Figure 7.6 shows HC tracking Hn better 

overall compared to day 294 with a smaller gap in scale heights of about 10 km except for 

22 and 23 UT in which the gap is slightly larger. In both figures, with the exception of day 

297’s hours of 12 – 14 UT, HC under predicts Hn. It is because of the results found in 

Figures 7.5 and 7.6 for HC that it cannot be concluded that HC is a good representation of 

Hn. 

The results for Chapman VSH were surprising. It was theorized that fitting an 𝛼 −

	Chapman profile for the topside ionosphere as shown in Figures 7.3 and 7.4 by the red-

dashed line, and the density values determined from it would match ISR VSH since the 

red-dashed line overlays the bold-black ISR profile line; however, for both days, the overall 

results fall short.  

Noticeable in both Figures 7.5 and 7.6 is the lack of separation in VSHC values for 

the two altitudes that are very apparent in both ISR Hp and ISR VSH. The lower altitude 

Chapman VSH for quiet day 294, shown by green circles in Figure 7.5, shows 
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promising results compared to ISR Hp (black circles) and ISR VSH (red circles) for 

nighttime hours 00, 02, 23 UT, which may be expected due to previous chapters suggesting 

diffusive conditions.  For hours 12 – 15 UT, there is a significant difference in VSHC and 

ISR VSH for both the upper and lower altitudes. But, the lower altitude VSHC and ISR 

VSH track nicely during 16 – 22 UT.  

The same diffusive conditions can be said for active day 297 during 00 – 02 UT 

before the ionosphere saw disruptions due to a moderate geomagnetic storm as discussed 

in Chapter 6, section 3. A large spike in both altitudes is seen in both VSHC and ISR VSH 

methods at 03 UT and the lower altitude continues to match well between 12 – 14 UT. 

There are large discrepancies in the upper and lower altitude VSHC and ISR VSH 

calculations during 13 – 18 UT and at 23 UT.   

As expected, these results are consistent with the findings in Chapter 5, section 3.3 

that the daytime topside ionosphere over Millstone Hill cannot be described by diffusive 

equilibrium; however, during nighttime hours 00 – 04 UT more than likely gave a diffusive 

profile shape; and from this, we expect to determine temperature structures from the 

Chapman VSH. Moving forward, we suspect we can quantify the consistent offset during 

daytime hours between VSH in order to yield plasma temperature information. 

7.3.3. 𝜶 −	Chapman Profile-determined Te + Ti 

 Using density values determined from the fitted 𝛼 −	Chapman profile in the 

Chapman VSH equation given by equation 5.1 and setting it equal to the plasma scale 

height, Hp, given by equation 5.2, Te + Ti values are inferred by equation 7.4:  
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(−∆ℎ)𝑚S𝑔D

	𝑘aln	(
𝑁N(ℎ/)
𝑁N(ℎO)

)
= 	𝑇S + 𝑇N	.																																																(7.4) 

 
Given the results in 7.3.2, we expect the inferred Te + Ti to not be a good measure 

during nondiffusive conditions; however, examining the offset and checking for 

consistency is beneficial. The results for quiet day 294 are shown in Figure 7.7 and active 

day in Figure 7.8 with the black line representing the Chapman inferred Te + Ti and the 

observed ISR Te + Ti by the blue line. The triangles symbolize the upper altitude, 520 km, 

and the circles, the lower altitude, 420 km. As expected, there are large discrepancies 

during daytime hours for both altitudes and both days. The largest occurring during 

daytime hours for quiet day 294.  

 The lower altitude for day 294, shown in Figure 7.7, had a fit within 7% error for 

00, 02, and 23 UT. Interestingly, there appears to be a steady increase in Chapman inferred 

Te + Ti from 12 – 23 UT while observed ISR Te + Ti sees a steady decrease. In Figure 7.8, 

the lower altitude for active day 297 fit within 7% error during 00, 01, 02, 21 UT and sees 

an overall decrease in Chapman inferred Te + Ti during 12 – 23 UT with the exception of 

18, 20, and 21 UT compared to ISR observed Te + Ti which decrease steadily between 12 

– 21 UT then sees an increase at 22 UT. Also in Figure 7.8, the upper altitude had a fit 

within 3% errors for hours 03 and 04 UT. 
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Figure 7.7. Chapman determined Te + Ti compared to observed ISR measurements of Te 
+ Ti during quiet day 294. 
 
 

 
 
Figure 7.8. Chapman determined Te + Ti compared to observed ISR measurements of Te 
+ Ti during active day 297. 
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7.3.4. 𝜶 −	Chapman Profile-determined Te + Ti and the Relationship to 𝛋 

 Combining the results found in the previous section, 7.3.3, with the new 

relationship found in section 6.4.3 offers, for the first time, a possible relationship between 

plasma temperature trends by only using knowledge of density parameters: NmF2, hmF2, 

and TEC. Equation 6.13 described a new correlation found between the peak density 

height, hmF2, and slab thickness, 𝜏, of the ionosphere, which was named κ. Slab thickness 

was given by equation 6.12 as the ratio of TEC to the peak density value, NmF2. Essentially 

then,  

𝜅 = 	
ℎ-𝐹/	×	𝑁-𝐹/

𝑇𝐸𝐶 	.																																																									(7.5) 
 

 We postulate that knowing the density structure of the ionosphere will allude to 

insight of plasma temperature trends during nondiffusive conditions. We do this by 

optimizing equation 7.4 by including equation 7.5 raised to a power. We reintroduce 

equation 7.4 as equation 7.6 with this new relationship included in VSHC: 

𝜅/	×	
(−∆ℎ)𝑚S𝑔D

	𝑘aln	(
𝑁N(ℎ/)
𝑁N(ℎO)

)
= 𝑇S + 𝑇N	.																																												(7.6) 

 
  Section 7.3.3 found the Chapman inferred Te + Ti given by equation 7.4 to be a 

good fit for the lower altitude, 420 km, during nighttime hours 00, 02, and 23 UT for quiet 

day 294 and hours 00, 01, and 02 UT for active day 297. Equation 7.4 was also a good fit 

for the upper altitude, 520 km, during nighttime hours 03 and 04 UT on active day 297. 

Equation 7.6 was then used to determine Te + Ti at 520 km for hours 12 – 22 UT on day 

294 and hours 12 – 23 on day 297.  
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As discussed in Chapters 3 and 4, thermal equilibrium does not exist in the topside 

ionosphere; and therefore, the average altitudinal increase of temperature had to be 

calculated from 420 km to 520 km using ISR data to determine Te + Ti at 420 km, knowing 

Te + Ti at 520 km or vice versa. For day 294, the altitudinal increase had a daily average of 

463.7 K from 420 km to 520 km (equation 7.7) and 386 K for day 297 (equation 7.8):  

(𝑇N + 𝑇S)�/{	�- = 	 (𝑇N + 𝑇S)�/{	�- + 463.7	𝐾	,																												(7.7) 
 

(𝑇N + 𝑇S)�/{	�- = 	 (𝑇N + 𝑇S)�/{	�- + 386	𝐾	.																													(7.8) 
 

Knowing this altitudinal increase of temperature for both days will allow us to calculate Te 

+ Ti at either 420 km or 520 km given we know Te + Ti at one of the altitudes.  

Using the new relationships found in equations 7.6, 7.7, and 7.8, Figure 7.7 for day 

294 and Figure 7.8 for day 297, from previous section 7.3.3, are recreated to determine Te 

+ Ti and are reflected below in Figures 7.9 and 7.10, respectively.  

The results were surprising. Quiet day 294, shown in Figure 7.9, saw nine out of 14 

hours produced a Te + Ti result (black line) within 10% of the observed Te + Ti given by 

ISR measurements (blue line) at the lower altitude of 420 km.  Even better, 11 out of 14 

hours at the upper altitude of 520 km produced a (modified) Chapman Te + Ti result within 

10% of the observed ISR Te + Ti. The largest differences in Te + Ti were found for hours 

12 and 15 UT. Comparing both altitudes against ISR measurements, daytime hours 18 and 

21 UT had the best results of less than 2% error. 

Better results overall were found in Figure 7.10 for active day 297. At both upper 

and lower altitudes 14 out of 17 hours produced a (modified) Chapman Te + Ti result within 

10% of the observed ISR Te + Ti; however, hours that saw a κ value dip below 1.1 had 
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Figure 7.9. Chapman determined Te + Ti with κ relationship factor compared to observed 
ISR measurements of Te + Ti during quiet day 294. 
 
 

 
 
Figure 7.10. Chapman determined Te + Ti with κ relationship factor compared to 
observed ISR measurements of Te + Ti during active day 297. 
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a value of 0.25 added considering the results from Chapter 6, section 4.3, which found an 

overall daily average k equal to 1.28. Hours 12 – 18 UT needed this adjustment and may 

be explained by the timing of the ionospheric storm and the electron density response. The 

largest discrepancies compared to ISR and found in both upper and lower altitudes, 

occurred during 18 and 19 UT. Hours 02, 14, 20, and 22 UT had the best results with an 

error of 2% or less.  

7.4. Discussion 

Using our scale height calculation techniques during diffusive equilibrium 

conditions found on both quiet day 294 and active day 297 allowed us to calculate an 

appropriate scale height using data only containing density information. This was done by 

an 𝛼 −	Chapman profile and an appropriately selected Chapman pseudo-temperature. With 

this, we are able to obtain topside temperature information, Te + Ti, which gives the plasma 

temperature by: (Te + Ti)/2. 

For nondiffusive conditions, a κ relationship was included in the Chapman VSH 

calculation to determine Te + Ti and upon a first impression, a relationship between plasma 

temperature trends by only using knowledge of density parameters: NmF2, hmF2, and TEC 

that are collected by ionosonde bottomside data was found. This κ relationship does; 

however, come with limitations. It was only found to be a good fit for the upper altitude of 

520 km and not 420 km. Also, when the κ-value fell below 1.1, there needed to be some 

sort of modification, such as κ + 0.25, though a thorough investigation is needed to detail 

such modifications and what this relationship between plasma temperature trends and 

density parameters truly means.  
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Finally, this chapter found using ionosonde bottomside TEC and an 𝛼 −	Chapman 

profile with the appropriately selected Chapman pseudo-temperature that is fitted against 

TECt from ISR data, can be a good representation of the topside ionosphere. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1. Conclusions 

 A 29-day analysis of scale heights and the inference of the topside ionosphere over 

Millstone Hill during the 2002 Incoherent Scatter Radar campaign has been conducted. 

Normal ISR operations only allow data collection to span a few days; therefore, the long 

duration of this data campaign provided a unique opportunity to study the ionosphere over 

Millstone Hill. The data campaign used in this study also captured ionospheric variability 

during a time of both geomagnetically active and quiet periods. Millstone Hill Observatory 

is a subauroral mid-latitude site in North America and offers a wealth of available data 

from ground-based instruments including an incoherent scatter radar (ISR), an ionosonde, 

and a GPS receiver tracking several space-based GPS satellites of which were collectively 

used in this research.  

Chapter 4 began the study by an analysis of the collected 696 hourly altitudinal 

profiles of electron density and electron, ion, and neutral temperatures observed by ISR. 

An appreciation was gained in regards to the daily variability of electron density parameters 

hmF2 and NmF2, along with electron temperatures, by examining Figures 4.5, 4.6, 4.7, and 

4.8. This chapter also addressed issues with previous studies that assessed data from the 

same Millstone Hill campaign and found inconclusive results on the behavior of the 

ionospheric scale heights. The two methods used to calculate scale heights by either density 

(VSH), or temperature (Hp) information was adapted from Liu et al. [2007].  
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How much the two scale height methods differed was discussed in Chapter 5. The 

ISR data methodology was given and days were separated by their respective solar and 

geomagnetic conditions, classified as either a quiet or active day. Thermal diffusive 

equilibrium was found to be a main driver of scale height; however, scale height is also 

dependent on the dominate ion species, as well as other drivers during nondiffusive 

conditions.  

Overall, the two methods of calculating scale heights were in good agreement 

between nighttime hours 0 – 10 UT, during quiet solar, and geomagnetic activity, so it was 

reasonable to assume diffusive equilibrium conditions. During said conditions, using 

equation 5.5 [Whitten and Poppoff, 1971], a measure of the electron density profile enabled 

a scale height to be inferred, which yielded temperature information. During daytime hours 

12 – 22 UT, large discrepancies were found between the two scale height methods 

suggesting nondiffusive conditions for the topside ionosphere, keeping consistent with 

previous literature results.  

Chapter 6 introduced data collected from a GPS receiver located in the same area 

as Millstone Hill’s ISR. The GPS TEC methodology used was discussed, as well as the 

issues surrounding radio occultation inversion techniques. Converting slant TEC into 

ionospheric vertical TEC was shown to be geometrically challenging due in part by the 

constant changing of ionospheric pierce points and ionospheric conditions, which 

ultimately ends as an average TEC calculation versus what the GPS satellite actually sees. 

Figures 6.5 and 6.6 show the variations between ISR-determined TEC, slant, and vertical 

GPS TEC for quiet reference day 294 and active reference day 297. To properly evaluate 
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TEC from GPS satellites, it was determined only slant TEC could be used when a GPS 

satellite had an inclination angle (𝜙) of 10 degrees or less as discussed in Chapter 6, section 

2.  

A similar technique was used to determine bottomside TEC using ionosonde data 

collected from the Lowell GIRO Data Center [Reinisch and Galkin, 2011] for quiet 

reference day 294, Figure 6.10 and active reference day 297, Figure 6.11. A new 

relationship was established between TEC, TEC top (TECt), and TEC bottom (TECb) in 

section 6.4.1 and applied to successfully determine TEC and TEC top using ionosonde data 

only containing information, such as NmF2, and hmF2, to derive TECb.  

For the first time, slab thickness, which is directly proportional to scale height, was 

found to be correlated to hmF2 and introduced as a new index, k. Ultimately, k is a 

relationship between TEC, NmF2 and hmF2 and can be a very useful tool for describing the 

topside ionosphere and subsequently, scale height. Our initial results of k found the peak 

density altitude (hmF2) to be 28% greater than that of the thickness of the ionosphere (𝜏) 

with the value having slight changes due to diurnal variations.  

Major issues surrounding the availability of ionogram data during nighttime hours 

greatly limited our study, especially during diffusive equilibrium conditions. Significant 

differences were also found between ISR and ionosonde-determined NmF2 and hmF2. 

Chapter 7 made an attempt to adjust said differences; however, ionosondes routinely 

determined a lower hmF2 and a higher NmF2. An example of the adjustments made to 

ionosonde bottomside density profiles was shown in Figures 7.1 and 7.2. This raised a 

concern in the methodology to use ionosondes that significantly differ from ISR 
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observations and question whether or not a proper self-consistent scaling of ionosondes is 

in place.  

Scale height was then calculated using the adjusted ionosonde data that contained 

only bottomside density information in conjunction with an 𝛼 −	Chapman profile and an 

appropriately selected Chapman pseudo-temperature. The Chapman pseudo-temperature 

can only be determined knowing TEC topside, which for this part of the study, ISR TEC 

topside was used; however, the TEC topside can be retrieved from a GPS receiver 

subtracting ionosonde bottomside TEC from GPS slant TEC, Figure 8.1 for quiet reference 

day 294 and Figure 8.2 for active day 297, when a GPS satellite has an inclination angle 

(𝜙) of 10 degrees or less. 

Obvious altitude differences exist between ISR (from 100 km - 786 km) and GPS’s 

medium-Earth orbit (surface of the Earth - 20,200 km) [National Coordination Office for 

Space-Based Positioning, Navigation, and Timing, 2016] so this study could set the stage 

needed for proper evaluation of the plasmaspheric contribution to TECU, which may 

explain the TECU differences in Figures 8.1 and 8.2.  

During diffusive equilibrium conditions for both reference quiet day 294 and 

reference active day 297, an 𝛼 −	Chapman profile determined Chapman VSH topside 

temperature information, Te + Ti, was determined within 2% of observed ISR Te + Ti which 

gives the plasma temperature by: (Te + Ti)/2. A κ relationship was included in the Chapman 

VSH calculation for nondiffusive conditions to determine Te + Ti, which means for the first 

time a relationship between plasma temperature trends by only using knowledge of density 

parameters: NmF2, hmF2, and TEC collected by ionosonde bottomside data and  
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Figure 8.1. TEC topside comparison between ISR (blue), ionosonde (green), and GPS 
STEC (red) for quiet day 294. 
 
 

 

Figure 8.2. TEC topside comparison between ISR (blue), ionosonde (green), and GPS 
STEC (red) for active day 297. 
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compared against TEC topside data, was found. 

Finally, the fundamental question of this study addressed whether or not the 

electron density altitude dependence in the topside ionosphere could be inferred over 

Millstone Hill during the 2002 ISR campaign. Ultimately, the methodology of using cost-

effective, readily available ionosonde bottomside TEC combined with GPS TEC is capable 

of inferring of the topside ionosphere, as verified by ISR, though concerns raised in this 

study need careful consideration.  

8.2. Future Work 

This dissertation opens the door for many areas of continued study. The very 

dynamic topside ionosphere undergoes significant changes in structure and composition 

rapidly throughout the day. The wealth of data from Millstone Hill’s 2002 ISR campaign 

used in this study would allow a comprehensive study to be conducted at the 15-minute 

timescale (comparable to ionosonde data) to understand our results and new findings, as 

well as the physical implications. It would also allow for one to truly study the evolution 

of the topside ionosphere under changing solar and geomagnetic activity, as well as the 

diurnal effects. As presented in Chapter 4, previous statistical studies conducted using this 

same dataset have only used 24- and 12-hour timescales, whereas this dissertation used 

hourly data, yet it does not capture the timing of the rapid physical changes in the topside 

ionosphere. This study could perhaps investigate the timing a solar storm has on 

compositional changes in the ionosphere that are reflected in density and plasma 

temperature profiles at different times and how that may compare to ionosonde data.  
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An understanding of how ISR is calibrated to ionosonde data is needed. Chapters 6 

and 7 raised a flag of concern in terms of major differences seen in electron density peak 

parameters between ISR and ionosonde data. An analysis matching the timeframe 

recommended above needs to be conducted between the differences seen in ISR data and 

ionosonde data, which can be extracted from the Lowell Global Ionospheric Radio 

Observatory Data Center (LGDC) with the Principal Investigator being Prof. B. W. 

Reinisch of the University of Massachusetts Lowell [Reinisch and Galkin, 2011]. This may 

also address the issues surrounding the availability of ionogram data during nighttime 

hours, which greatly limited our study, especially during diffusive equilibrium conditions. 

Once the concerns raised in the prior two paragraphs have been addressed, a 

thorough analysis can be built upon the results found in this dissertation by the following:  

• A new relationship found between TEC, TECt, and TECb was established in 

section 6.4.1 with ISR data and applied to successfully determine TEC and 

TECt using only ionogram data of TECb. This was only confirmed for two days 

of our study. Further confirmation is needed with the rest of the dataset at the 

timescale mentioned above.  

• A combination of the new relationship found between TEC, TECt, and TECb 

and new k index may be used to better understand and predict the topside 

ionosphere. An extensive dataset mentioned at the beginning of this section can 

confirm this and what, if any, implications solar and geomagnetic activity may 

have.  
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• Because the topside reconstruction requires TEC from GPS, GPS STEC of 𝜙 

less than 10° (Chapter 6, section 2) must be used initially to properly evaluate 

the plasmaspheric contribution to TEC (Figures 8.1 and 8.2). GPS STEC offers 

a true representation of electron density directly above Millstone Hill without 

needing to factor in a mapping function correction (VTEC), which makes 

standard ionospheric assumptions and averages.  

• For nondiffusive conditions, the Chapman VSH with a κ relationship included 

(equation 7.6) was able to determine the plasma temperature at the upper 

altitude. This answered a long-running question of whether or not a relationship 

between plasma temperature trends and density parameters: NmF2, hmF2 and 

TEC, could be found. But the stipulations of κ are not well understood, such as 

why it works better at the upper altitude and not the lower altitude and why 

when κ < 1.1 a modification of κ + 0.25 was needed. A thorough investigation 

is needed to detail such criteria and modifications needed and what this 

relationship between plasma temperature trends and density parameters truly 

means.  

• Finally, Chapter 5 tested equation 5.3 introduced by Whitten and Poppoff 

[1971] and found it to be a good measure of Te when the topside ionosphere 

was in diffusive equilibrium. This equation will need to undergo further testing 

for verification using an 𝛼 −	Chapman profile and Chapman scale height. To 

solve for C in equation 5.3, knowledge of Tn is needed and can be easily 

obtained by the Defense Meteorological Satellite Program (DMSP). 
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Interestingly, the simplification suggested in Chapter 5, section 4 for (C + 1) to 

equal a multiplier of 2 in equation 5.3 during nighttime diffusive conditions is 

equal to k2 in equation 7.6 used during nondiffusive conditions, especially 

around local and solar noon hours. Understanding the physical meaning behind 

this may be worth investigating.  
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APPENDIX A 

SOLAR AND GEOMAGNETIC INDICES  

A.1. Explanation of Indices 

• K-index is represented by disturbances in the horizontal component of Earth's magnetic 

field and is an integer ranging from 0 – 9, 0 classified as a period of quiet geomagnetic 

activity and 9 for highly disturbed geomagnetic conditions. The K-index is derived 

from fluctuations observed on a magnetometer for three hours from 13 geomagnetic 

observatories between 44 degrees and 60 degrees northern or southern geomagnetic 

latitude. Kp is from NOAA’s National Geophysical Data Center. These fluctuations are 

driven by storm time geomagnetic enhancements. 

• Dst-index is a classification of storm strength and possible because the strength of the 

surface magnetic field at low latitudes responds to the magnetospheric storm time ring 

current. The index is inversely proportional to the energy content of the ring current, 

which increases during geomagnetic storms. Values are obtained from the World Data 

Center for Geomagnetism and operated by the Data Analysis Center at Kyoto 

University. 

• The solar radio flux at 10.7 cm (2800 MHz) is one of the longest running records of 

solar activity. The F10.7 radio emissions originate high in the chromosphere and low 

in the corona of the solar atmosphere. The F10.7 correlates well with the sunspot 

number, as well as a number of UltraViolet (UV) and visible solar irradiance records.  

• The north polar cap index (PCN) monitors magnetic activity from a single near-pole 

station, Thule, Greenland. Magnetic activity responds to solar wind parameters as 
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the southward component of the interplanetary magnetic field (IMF), the azimuthal 

component of the IMF (By), and the solar wind velocity (v). It is a 15-minute index 

averaged hourly by the World Data Center for Geomagnetism and managed by the 

National Space Institute, Copenhagen, Denmark. 
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A.2. NOAA Space Weather Prediction Center’s Space Weather Scales 

 
Figure A.1. NOAA Space Weather Prediction Center’s Space Weather Scales. 

 

 

URL:  www.swpc.noaa.gov/NOAAscales                                                                              April 7, 2011 

NOAA Space Weather Scales 
 

Category Effect Physical 
measure 

Average Frequency  
(1 cycle = 11 years) 

Scale Descriptor Duration of event will influence severity of effects   

Geomagnetic Storms Kp values* 
determined 
every 3 hours 

Number of storm events 
when Kp level was met; 
(number of storm days) 

G 5 Extreme 

Power systems: widespread voltage control problems and protective system problems can occur, some grid 
systems may experience complete collapse or blackouts. Transformers may experience damage. 
Spacecraft operations: may experience extensive surface charging, problems with orientation, uplink/downlink 
and tracking satellites. 
Other systems: pipeline currents can reach hundreds of amps, HF (high frequency) radio propagation may be 
impossible in many areas for one to two days, satellite navigation may be degraded for days, low-frequency radio 
navigation can be out for hours, and aurora has been seen as low as Florida and southern Texas (typically 40° 
geomagnetic lat.).** 

Kp=9 4 per cycle 
(4 days per cycle) 
 

G 4 Severe 

Power systems: possible widespread voltage control problems and some protective systems will mistakenly trip 
out key assets from the grid. 
Spacecraft operations: may experience surface charging and tracking problems, corrections may be needed for 
orientation problems. 
Other systems: induced pipeline currents affect preventive measures, HF radio propagation sporadic, satellite 
navigation degraded for hours, low-frequency radio navigation disrupted, and aurora has been seen as low as 
Alabama and northern California (typically 45° geomagnetic lat.).** 

Kp=8 100 per cycle 
(60 days per cycle) 
 

G 3 Strong 

Power systems: voltage corrections may be required, false alarms triggered on some protection devices. 
Spacecraft operations: surface charging may occur on satellite components, drag may increase on low-Earth-orbit 
satellites, and corrections may be needed for orientation problems. 
Other systems: intermittent satellite navigation and low-frequency radio navigation problems may occur, HF 
radio may be intermittent, and aurora has been seen as low as Illinois and Oregon  (typically 50° geomagnetic 
lat.).** 

Kp=7 200 per cycle  
(130 days per cycle) 
 

G 2 Moderate 

Power systems: high-latitude power systems may experience voltage alarms, long-duration storms may cause 
transformer damage. 
Spacecraft operations: corrective actions to orientation may be required by ground control; possible changes in 
drag affect orbit predictions. 
Other systems: HF radio propagation can fade at higher latitudes, and aurora has been seen as low as New York 
and Idaho (typically 55° geomagnetic lat.).** 

Kp=6 600 per cycle 
(360 days per cycle) 
 

G 1 Minor 

Power systems: weak power grid fluctuations can occur.  
Spacecraft operations: minor impact on satellite operations possible. 
Other systems: migratory animals are affected at this and higher levels; aurora is commonly visible at high 
latitudes (northern Michigan and Maine).** 

Kp=5 1700 per cycle 
(900 days per cycle) 

*         Based on this measure, but other physical measures are also considered. 
**       For specific locations around the globe, use geomagnetic latitude to determine likely sightings (see www.swpc.noaa.gov/Aurora)  

Solar Radiation Storms Flux level of > 
10 MeV 

particles (ions)* 

Number of events when 
flux level was met** 

S 5 Extreme 

Biological: unavoidable high radiation hazard to astronauts on EVA (extra-vehicular activity); passengers and 
crew in high-flying aircraft at high latitudes may be exposed to radiation risk. *** 
Satellite operations:  satellites may be rendered useless, memory impacts can cause loss of control, may cause 
serious noise in image data, star-trackers may be unable to locate sources; permanent damage to solar panels 
possible. 
Other systems: complete blackout of HF (high frequency) communications possible through the polar regions, 
and position errors make navigation operations extremely difficult. 

105 Fewer than 1 per cycle 

S 4 Severe 

Biological: unavoidable radiation hazard to astronauts on EVA; passengers and crew in high-flying aircraft at 
high latitudes may be exposed to radiation risk.*** 
Satellite operations: may experience memory device problems and noise on imaging systems; star-tracker 
problems may cause orientation problems, and solar panel efficiency can be degraded. 
Other systems: blackout of HF radio communications through the polar regions and increased navigation errors 
over several days are likely. 

104 3 per cycle 
 
 

S 3� Strong 

Biological: radiation hazard avoidance recommended for astronauts on EVA; passengers and crew in high-flying 
aircraft at high latitudes may be exposed to radiation risk.*** 
Satellite operations: single-event upsets, noise in imaging systems, and slight reduction of efficiency in solar 
panel are likely. 
Other systems: degraded HF radio propagation through the polar regions and navigation position errors likely. 

103 10 per cycle 
 
 

S 2 Moderate 

Biological: passengers and crew in high-flying aircraft at high latitudes may be exposed to elevated radiation 
risk.*** 
Satellite operations: infrequent single-event upsets possible. 
Other systems: effects on HF propagation through the polar regions, and navigation at polar cap locations 
possibly affected. 

102 25 per cycle 
 

S1 Minor 
Biological: none. 
Satellite operations: none. 
Other systems: minor impacts on HF radio in the polar regions. 

10 50 per cycle 

*        Flux levels are 5 minute averages. Flux in particles·s-1·ster-1·cm-2 Based on this measure, but other physical measures are also considered. 
**      These events can last more than one day. 
***    High energy particle (>100 MeV) are a better indicator of radiation risk to passenger and crews.  Pregnant women are particularly susceptible. 
 

Radio Blackouts GOES X-ray 
peak brightness 
by class and by 
flux* 

Number of events when 
flux level was met; 
(number of storm days) 

R 5 Extreme 

HF Radio: Complete HF (high frequency**) radio blackout on the entire sunlit side of the Earth lasting for a 
number of hours. This results in no HF radio contact with mariners and en route aviators in this sector.  
Navigation: Low-frequency navigation signals used by maritime and general aviation systems experience outages 
on the sunlit side of the Earth for many hours, causing loss in positioning. Increased satellite navigation errors in 
positioning for several hours on the sunlit side of Earth, which may spread into the night side. 

X20 
(2x10-3) 

Fewer than 1 per cycle 
 
 

R 4 Severe 

HF Radio: HF radio communication blackout on most of the sunlit side of Earth for one to two hours. HF radio 
contact lost during this time. 
Navigation: Outages of low-frequency navigation signals cause increased error in positioning for one to two 
hours. Minor disruptions of satellite navigation possible on the sunlit side of Earth. 

X10  
(10-3) 

8 per cycle 
(8 days per cycle) 
 
 

R 3 Strong 
HF Radio: Wide area blackout of HF radio communication, loss of radio contact for about an hour on sunlit side 
of Earth.  
Navigation: Low-frequency navigation signals degraded for about an hour. 

X1 
(10-4)  

175 per cycle 
(140 days per cycle) 
 

R 2 Moderate 
HF Radio: Limited blackout of HF radio communication on sunlit side of the Earth, loss of radio contact for tens 
of minutes.  
Navigation: Degradation of low-frequency navigation signals for tens of minutes. 

M5  
(5x10-5) 

350 per cycle 
(300 days per cycle) 
 

R 1 Minor 
HF Radio: Weak or minor degradation of HF radio communication on sunlit side of the Earth, occasional loss of 
radio contact.  
Navigation: Low-frequency navigation signals degraded for brief intervals. 

M1  
(10-5) 

2000 per cycle 
(950 days per cycle) 
 

*        Flux, measured in the 0.1-0.8 nm range, in W·m-2. Based on this measure, but other physical measures are also considered. 
**      Other frequencies may also be affected by these conditions. 
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APPENDIX B 

SCALE HEIGHT DERIVATIONS 

B.1. Hydrostatic Scale Height, H 

 At any height in the atmosphere, the air pressure is due to the force per unit area 

exerted by the weight of all air above it. Net upward force acting on a thin slab of air due 

to the decrease in atmospheric pressure with height is in balance with the net downward 

force due to gravity: 

𝑑𝑃
𝑑ℎ = 	−𝑔𝜌	,																																																												(𝐵. 1) 

 
where g is gravity and 𝜌 is density of a gas. 𝜌	is also equal to the number density, N, 

multiplied by the mean molecular mass, m. Equation B.1 can be rewritten as 

𝑑𝑃
𝑑ℎ = 	−𝑔𝑁𝑚	.																																																										(𝐵. 2) 

 
From the ideal gas law 

𝑃 = 𝑁𝑘a𝑇	,																																																													(𝐵. 3) 
 

where P is the pressure, kb is the Boltzmann’s constant and T is temperature. Equation B.2 

can be written as  

𝑑(𝑁𝑘a𝑇	)
𝑑ℎ = 	−𝑔𝑁𝑚	.																																																				(𝐵. 4) 

 
With respect to how density, N, varies with height, h, equation B.4 becomes 
 

𝑑𝑁
𝑑ℎ 𝑘a𝑇	 = 	−𝑔𝑁𝑚	.																																																					(𝐵. 5) 

 
Solving for N,  
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𝑑𝑁
𝑑ℎ 	= 	

−𝑔𝑁𝑚
𝑘a𝑇

	,																																																								(𝐵. 6) 

 
and 

 
𝑑𝑁
𝑁 	= 	

−𝑔𝑚
𝑘a𝑇

𝑑ℎ	,																																																						(𝐵. 7) 

 
and finally 

 

𝑑𝑁
𝑁

�

��

	= 	
−𝑔𝑚
𝑘a𝑇

𝑑ℎ
D

D�

	.																																															(𝐵. 8) 

 
If scale height, 𝐻 =	 ��+

�-
,  

 

ln
𝑁
𝑁|

= 	
− ℎ −	ℎ|

𝐻 	,																																																	(𝐵. 9) 

 
 

N = 𝑁|exp	[	
− ℎ −	ℎ|

𝐻 ]	.																																									(𝐵. 10) 
 

B.2. The 𝜶 −	Chapman Layer from First Principles 

 Again, the ideal gas law describes particle interactions due to the dependent 

variables of pressure, density and temperature: 

𝑃 = 𝑁𝑘a𝑇	,																																																									(𝐵. 11) 
 

where P is the pressure, N is number density, kb is the Boltzmann’s constant and T is 

temperature. Atmospheric pressure can only vary by height, h, which the gradient  ��
�D

  is 

equal to the weight of the atmosphere above:  

𝑑𝑃
𝑑ℎ = −𝑔𝑁𝑚	,																																																						(𝐵. 12) 

 
where g is gravity and m the mean molar mass. The first order differential solution for N is  
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𝑁 =	𝑁{ exp
−ℎ
𝐻 	,																																																 𝐵. 13  

 
as shown by equation B.10 where H is the scale height and given by  

𝐻 =	
𝑘a𝑇
𝑔𝑚 	.																																																										(𝐵. 14) 

 
 In order to superimpose an ionosphere of very little pressure, Chapman [1931] 

proposed H be treated as a unit from a reference height, ho. The change in H due to h at 

and near ho will be assumed small and neglected. Therefore, 

𝑧 = 	
ℎ −	ℎ|
𝐻 	.																																																					(𝐵. 15) 

 
Plugging equation B.15 into B.13 gives 

𝑁 =	𝑁{ exp −𝑧 	.																																															(𝐵. 16) 
 

Equation B.16 assumes both temperature, T, and scale height, H, are independent of 

altitude.   

 The distribution of charged particles, electrons and ions, in the ionosphere are 

governed by the equation of continuity:  

𝑑𝑁
𝑑𝑡 = 𝑃 − 𝐿	,																																																								(𝐵. 17) 

where P is the production of positive ions and free electrons due to intensity of radiation, 

I. I is given by  

𝐼 ℎ, 𝜒 = 	 𝐼| exp 1 − 𝑧 − 𝑠𝑒𝑐 𝜒 𝑒𝑥𝑝 −𝑧 	,																													(𝐵. 18) 
 
and describes the number of species produced by absorption of radiation per unit area as 

you change in height, h, and solar zenith, 𝜒. L in equation B.17 is the loss rate due to 

recombination and is given by Bauer [1973] as 
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𝐿 = 	𝑎N𝑁𝑁N +	𝑎7𝑁𝑁7	,																																												(𝐵. 19) 

where a is the coefficient for recombination. Because pressure in the topside ionosphere is 

low, coefficients of recombination for the electrons and ions are equal, therefore equation 

(B.19) reduces to  

𝐿 = 	𝑎𝑁/	.																																																								 𝐵. 20  
 

 In a steady-state ionosphere, the time-derivative term in equation B.17 is negligible. 

Plugging equation B.18 and B.20 into B.17 gives 

0 = 𝐼 ℎ, 𝜒 − 	𝑎𝑁/	.																																																(𝐵. 21) 
 

At reference height, ho, 𝜒 = 0° and equation B.21 becomes 

𝐼| = 𝑎𝑁|/	,																																																										(𝐵. 22) 
 

or 

𝑁| = 	
𝐼|
𝑎

O
/
	.																																																							(𝐵. 23) 

 
 

 Solving for equation B.21 at all other heights and zenith angles,  

0 = 	 𝐼| exp 1 − 𝑧 − 𝑠𝑒𝑐 𝜒 𝑒𝑥𝑝 −𝑧 − 	𝑎𝑁/	,																										(𝐵. 24) 
 

𝑎𝑁/ = 	 𝐼| exp 1 − 𝑧 − 𝑠𝑒𝑐 𝜒 𝑒𝑥𝑝 −𝑧 	,																												(𝐵. 25) 
 

𝑁/ =
𝐼|
𝑎 exp 1 − 𝑧 − 𝑠𝑒𝑐 𝜒 𝑒𝑥𝑝 −𝑧 	,																											(𝐵. 26) 

 

𝑁 = (
𝐼|
𝑎)

O// exp
1
2 (1 − 𝑧 − 𝑠𝑒𝑐 𝜒 𝑒𝑥𝑝 −𝑧 ) 	,																						(𝐵. 27) 

 
plugging equation B.23 into B.27 

𝑁 = 𝑁| exp
1
2 (1 − 𝑧 − 𝑠𝑒𝑐 𝜒 𝑒𝑥𝑝 −𝑧 ) 	.																									(𝐵. 28) 
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When 𝜒 = 0°, �
��
=	maximum values and sec 𝜒 = 1. Equation B.28 becomes the 𝛼 −

	Chapman layer:  

𝑁 = 𝑁| exp
1
2 (1 − 𝑧 − 𝑒𝑥𝑝 −𝑧 ) 	.																															(𝐵. 29) 

 

B.3. Plasma Scale Height, Hp, in which Ambi-Polar Diffusion Plays a Significant 

Role 

 The upper ionosphere is characterized by the transfer of charged particles in a 

plasma by ambi-polar diffusion, thermospheric winds, and ionospheric-magnetospheric 

interactions. The height distribution of electron density in the topside ionospheric is 

governed by the plasma scale height:  

𝐻R = 	
2𝑘a

𝑇S + 𝑇N
2

𝑚S𝑔
	,																																															(𝐵. 30) 

 
or 

𝐻R = 	
𝑘a 𝑇S + 𝑇N

𝑚S𝑔
	,																																															(𝐵. 31) 

 
where kb is the Boltzmann’s constant, mi the mass of an ion, g, gravity, Ti the ion 

temperature, and Te the electron temperature.  

 Ambi-polar diffusion allows no net electrical current to flow in the plasma and ions 

and electrons diffuse at the same rate. In a simple model of plasma transport for steady-

state conditions, the ion equation of continuity can be combined with the momentum 

equation, as given by Banks and Kockarts [1973]: 

𝑑/𝑁N
𝑑ℎ/ +

1
𝐻R

+	
1
𝐷�
𝑑𝐷�
𝑑ℎ −	

𝜔�
𝐷�𝑠𝑖𝑛/𝐼

𝑑𝑁N
𝑑ℎ +

1
𝐷�𝐻R

𝑑𝐷�
𝑑ℎ −	

1
𝐷�𝑠𝑖𝑛/𝐼

𝑑𝜔�
𝑑ℎ 𝑁N =	 
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=
𝐿S − 𝑃S
𝐷�𝑠𝑖𝑛/𝐼

	,																																																								(𝐵. 32) 

 
where Da is the ambi-polar diffusion coefficient 

𝐷� = 1 +	
𝑇N
𝑇S

𝐷SJ	,																																																		(𝐵. 33) 

 
and Din is the ion-neutral coefficient:  

𝐷SJ =
𝑘a𝑇
𝑚S

1
𝓋SJ

	,																																																		(𝐵. 34) 

 
where 𝓋SJ is the velocity term for ion-neutrals. For the motion of plasma having one ion 

species, Ne = Ni and 𝓋SJ is proportional to Nn. Equation B.33 becomes 

𝐷� = 1 +
𝑇N
𝑇S

𝑘a𝑇
𝑚S

1
𝓋SJ

=
𝑘a
𝑚S

𝑇S + 𝑇N
𝓋SJ

	.																											(𝐵. 35) 

At high altitudes, the neutral density decreases exponentially and drift, production and loss 

terms become negligible. Also, Da increases exponentially because 𝐷� ∝ 	
O
��

, where 𝓋SJ ∝

𝑁J. Equation B.32 becomes  

𝑑/𝑁N
𝑑ℎ/ +

1
𝐻R

𝑑𝑁N
𝑑ℎ = 0	.																																												(𝐵. 36) 

Let    �
 �¡
�D 

= 𝑦zz	, O
£¤

��¡
�D

= 𝑦z	, 	𝑁N = 𝑦, and  𝑥 = ℎ.  

If 𝑦 = 	𝑒¥¦, then 𝑦′ = 	𝑟𝑒¥¦, and 𝑦′′ = 	 𝑟/𝑒¥¦.  

Equation B.36 becomes  

𝑟/𝑒¥¦ +
1
𝐻R

𝑟𝑒¥¦ = 0							 ⟹ 						 𝑒¥¦ 𝑟/ +
1
𝐻R

𝑟 = 0	.																				(𝐵. 37) 

 
Solving for r,  
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𝑟/ +
1
𝐻R

𝑟 = 0	,																																																					(𝐵. 38) 

 

𝑟 = 	−
1
𝐻R
	.																																																										 𝐵. 39  

Therefore, the linear solution to the second-order differential equation B.36 is  

𝑁N ℎ = 	𝐶O exp
−ℎ
𝐻R

	.																																													(𝐵. 40) 

For a reference height, ho, 𝐶O = 	𝑁N| . Equation B.40 then becomes 

𝑁N ℎ = 	𝑁N| exp
−(ℎ − ℎ|

𝐻R
	.																																							(𝐵. 41) 
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APPENDIX C 

ISR ERRORS 

C.1. Overview of ISR Errors 

The Madrigal-distributed database interface is hosted online for open access to 

Millstone Hill’s ISR and other instrumentation data as discussed in Chapter 4. The original 

campaign data files were reobtained from the Madrigal website including the statistical 

error in the following parameters used in this dissertation: uncorrected electron density 

(Ne), corrected electron density (Ne), electron (Te), and ion (Ti) temperatures.  

In the Madrigal Parameter Documentation (MPD) file found at 

http://madrigal.haystack.mit.edu/madrigal/parmDesc.html#HMAX_MODEL, it details 

selected Madrigal parameters. For the uncorrected electron density parameter (POPL) and 

associated error in uncorrected electron density (DPOPL) a statistical uncertainty of the fit 

autocorrelation function (ACF) at zero lag is used. The report titled, Overview of the 

Millstone Hill Incoherent Scatter Radar for Madrigal users states that the Millstone Hill 

ISR uses INSCAL for standard fitting [Madrigal, 2017]. Ionospheric plasma parameters 

are determined by the way INSCAL analyzes incoherent scatter ACFs, which are formed 

from the measured lag-products using a trapezoidal summation rule [Madrigal, 2017]. A 

multidimensional nonlinear least squares fit to each ACF is then performed to compute 

estimates of the plasma parameters, and parameter error bars are computed by assuming 

that chi square is 1.0 [Madrigal, 2017]. 
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In the MPD file, under the DPOPL description there is a disclaimer, “the statistical 

uncertainty is normally much smaller than the larger uncertainty in the density calibration, 

which is ~20%.” 

The electron density (Ne) and associated errors are shown in Figures C.1 and C.2 

below for reference quiet day 294 during the hours of 02 and 15 UT, respectively. The 

Figures use both the previous Madrigal data and the newly obtained Madrigal single pulse 

data. Each Figure shows the previously used Ne values (red line), single pulse corrected Ne 

values (purple line) with associated errors, single pulse uncorrected Ne (orange line) with 

associated errors, the madrigal given ionosonde NmF2 value (bright green dot), and the 

madrigal given ISR NmF2 value (dark green dot). For comparison, Figures C.3 and C.4 

show example plots of what 10% error looks like for 11 UT and 18 UT on quiet day 294.  

The same procedure mentioned above for reference quiet day 294 was conducted 

for reference active day 297 and are shown in Figures C.5 and C.6 below. In all figures for 

both days, the errors in Ne are minimal and do not offer up an explanation of why there are 

large differences in the ionosonde and ISR found Ne values. These results will not change 

the results found in this dissertation.  

From the data plots it is clear, in general, the final ISR densities (after correction)  

increase the density towards the ionosonde values, as expected. The fact they do not 

produce a one-to-one match at the peak probably reflects upon how calibration is done. For 

example, if only noon times are chosen to adjust the calibration, then all day a hard-wired 

multiplier is introduced. The question that arises is whether there is an expectation of ISR 

NmF2 to track exactly to the ionosonde NmF2? This is not expected; hence, diurnal 
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variability of this calibration would exist. Even worse if the noon calibration was done once 

per week. We do not have access to these old log book records, and it’s unclear if they 

exist. The text above states “….than the larger uncertainty in the density calibration, which 

is ~20%,” this is most certainly consistent with what we found. Our analysis by comparing 

ISR with ionosonde at selected times suggests the uncertainty is more like 10% - 20%.  

 
 

Figure C.1. Ne results with errors for nighttime hour 02 UT on quiet day 294. 
 
 

 
 

Figure C.2. Ne results with errors for daytime hour 15 UT on quiet day 294. 
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Figure C.3. Ne results with an example error of 10% for daytime hour 11 UT for quiet 
day 294. 
 
 

 
 

Figure C.4. Ne results with an example error of 10% on daytime hour 18 UT for quiet 
day 294. 
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Figure C.5. Ne results with errors for nighttime hour 02 UT on active day 297. 
 
 

 
 
Figure C.6. Ne results with errors for daytime hour 15 UT on active day 297. 
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The electron temperature (Te), ion temperature (Ti), and associated errors are shown 

in Figures C.7 and C.8 for reference quiet day 294 during the hours of 02, and 12 UT, 

respectively. The Figures use both the previous Madrigal data and the newly obtained 

Madrigal single pulse data. Each figure shows the previously used Te values (black line) 

and Ti values (red line), as well as the single pulse corrected Te values (purple line) with 

associated error bars and single pulse corrected Ti values (orange line) and associated error 

bars. The same procedure was done for reference active day 297 and are shown in Figures 

C.9 and C.10. 

For comparison, Figure C.11 shows an example plot of what 10% error looks like 

for 18 UT for active day 297. In all figures for both the reference quiet and active days, the 

errors in Te and Ti are minimal, especially the region used to calculate scale heights in the 

topside ionosphere (428 km – 520 km) and will not change the results found in this 

dissertation.  

 
Figure C.7. Te and Ti results with associated errors for nighttime hour 02 UT on quiet 
day 294. 
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Figure C.8. Te and Ti results with associated errors for daytime hour 12 UT on quiet day 
294. 
 
 

 
Figure C.9. Te and Ti results with associated errors for nighttime hour 02 UT on active 
day 297. 
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Figure C.10. Te and Ti results with associated errors for daytime hour 12 UT on active 
day 297. 
 
 

 
Figure C.11. Te and Ti results with an example error of 10% for daytime hour 18 UT on 
active day 294. 
 

 

 



	
	

	

161 

APPENDIX D 

ISR SCALED TO IONOSONDE RESULTS 

D.1. When ISR is scaled to an ionosonde, how does TEC change? 

Section 7.2 of the dissertation found ionosondes routinely determined a lower 

altitude of peak density height, hmF2, and a higher peak density value, NmF2 when 

compared to ISR. The question was raised to scale ISR data to match the ionosonde 

bottomside Ne profiles to see how that would affect total electron content (TEC). Tables 

7.1 and 7.2 were used to scale ISR Ne values to match that of the ionosonde values. Figure 

D.1 shows the results for reference quiet day 294 and Figure D.2 for reference active day 

297. In both Figures D.1 and D.2, ISR TEC is represented by the black solid lines, adjusted 

ISR TEC (green lines) GPS STEC by the black triangles, GPS STEC of 𝜙 less than 10° by 

blue circles, and GPS VTEC of 𝜙 less than 30° by pink circles. The TEC increases between 

3-5 TECU maximum for both reference quiet day 294 (Figure D.1) and reference active 

day 297 (Figure D.2) when ISR is adjusted to match ionosondes, making very minimal 

changes in our results.  

Figures 8.1 and 8.2 from the dissertation are recreated in Figures D.3 and D.4 to 

show the TEC topside comparison between ISR (black), adjusted ISR to ionosonde (blue), 

GPS STEC (red) when a GPS satellite has an inclination angle of 10 degrees or less, and 

GPS VTEC (pink) when a GPS satellite has an inclination angle of 30 degrees or less for 

quiet day 294 and active day 297, respectively. In the dissertation, it is discussed how the 

TEC topside can be retrieved from a GPS receiver subtracting ionosonde bottomside TEC. 
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In both Figures D.3 and D.4, the change of TEC topside for the adjusted ISR is between 1-

3 TECU, making very minimal changes in our results.    

By increasing the ISR NmF2 to match the ionosonde NmF2, the TEC associated with 

the ISR profile is increased. Proceeding to determine topside TEC from the revised ISR 

electron density profiles moves the topside TEC closer to the GPS value. This effectively 

reduces the difference that might be attributed to the plasmaspheric contribution. Note: the 

reduced value of 2 to 5 TECU is more probable to be responsible for the plasmasphere than 

was the 3 to 10 TECU difference for day 294. Also, due to the limited availability of 

ionosonde data at night, Figure D.3 shows only two periods when TEC topside could be 

calculated from GPS STEC – Ionosonde bottomside TEC on day 294 when Figure D.1 

shows five GPS STEC periods throughout the day. The same issue occurred for day 297, 

Figures D.2 and D.4.  
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Figure D.1. Adjusted ISR to fit ionosonde bottomside Ne data versus GPS TEC results 
on quiet day 294. 
 

 
 
Figure D.2. Adjusted ISR to fit ionosonde bottomside Ne data versus GPS TEC results 
on active day 297. 
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Figure D.3. TEC topside comparison between ISR (black), adjusted ISR to ionosonde 
(blue), GPS STEC (red), and GPS VTEC (pink) for quiet day 294. 
 
 

 
 

Figure D.4. TEC topside comparison between ISR (black), adjusted ISR to ionosonde 
(blue), GPS STEC (red), and GPS VTEC (pink) for active day 297. 
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APPENDIX E 

IONOSPHERE TOPSIDE RECONSTRUCTION RESULTS 

E.1. Hourly Topside Reconstruction Results for Quiet Reference Day 294  

Each figure contains an ISR density profile (black) versus an ionosonde profile 

(green). The different colors represent the 𝛼 −	Chapman profile and Chapman temperature 

used. The red-dashed line is equal to the Chapman pseudo-temperature. The right side 

shows the adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 

 

 
 
Figure E.1. Quiet day 294, 00 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.2. Quiet day 294, 02 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.3. Quiet day 294, 12 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.4. Quiet day 294, 13 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.5. Quiet day 294, 14 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.6. Quiet day 294, 15 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.7. Quiet day 294, 16 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.8. Quiet day 294, 17 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.9. Quiet day 294, 18 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.10. Quiet day 294, 19 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.11. Quiet day 294, 20 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.12. Quiet day 294, 21 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.13. Quiet day 294, 22 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.14. Quiet day 294, 23 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 

E.2. Hourly Topside Reconstruction Results for Active Reference Day 297  

• Each figure contains an ISR density profile (black) versus an ionosonde profile 

(green). The different colors represent the 𝛼 −	Chapman profile and Chapman 

temperature used. The red-dashed line is equal to the Chapman pseudo-

temperature. The right side shows the adjustments made to the raw ionosonde 

bottomside profile (left) to fit ISR. 
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Figure E.15. Active day 297, 00 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.16. Active day 297, 01 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.17. Active day 297, 02 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.18. Active day 297, 03 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.19. Active day 297, 04 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.20. Active day 297, 12 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.21. Active day 297, 13 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.22. Active day 297, 14 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.23. Active day 297, 15 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.24. Active day 297, 16 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.25. Active day 297, 17 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.26. Active day 297, 18 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.27. Active day 297, 19 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.28. Active day 297, 20 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.29. Active day 297, 21 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
 
 

 
 
Figure E.30. Active day 297, 22 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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Figure E.31. Active day 297, 23 UT density profile ISR (black) versus ionosonde (green). 
The different colors represent the 𝛼 −	Chapman profile and Chapman temperature used. 
The red-dashed line is equal to the Chapman pseudo-temperature. The right side shows the 
adjustments made to the raw ionosonde bottomside profile (left) to fit ISR. 
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APPENDIX F 

COPYRIGHT PERMISSIONS 

 Eleven Figures from Chapters 1, 3, and 4 of this dissertation required copyright 

permissions from their original sources. As outlined in the Publication Guide for Graduate 

Students, the copyright licenses were obtained and the copies are provided in the 

subsequent pages. It must be noted, Figure 4.3 from Liu et al. [2007] operates under an 

open access, Creative Commons Attribution 3.0 License and does not require copyright 

permission. 



	
	

	

183 

 

 

PARTIES:
1. John Wiley & Sons Limited (Company number – 00641132) (Licensor); and
2. Jennifer Meehan (Licensee). 

Thank you for your recent permission request. Some permission requests for use of material 
published by the Licensor, such as this one, are now being facilitated by PLSclear.

Set out in this licence cover sheet (the Licence Cover Sheet) are the principal terms under 
which Licensor has agreed to license certain Licensed Material (as defined below) to Licensee. 
The terms in this Licence Cover Sheet are subject to the attached General Terms and Conditions, 
which together with this Licence Cover Sheet constitute the licence agreement (the Licence) 
between Licensor and Licensee as regards the Licensed Material. The terms set out in this 
Licence Cover Sheet take precedence over any conflicting provision in the General Terms and 
Conditions.

Free Of Charge Licence Terms

Licence Date: 26/06/2017

PLSclear Ref No: 3184

The Licensor

Company name: John Wiley & Sons Limited

Address: The Atrium
Southern Gate
Chichester
PO19 8SQ
United Kingdom

The Licensee

Licensee Contact Name: Jennifer Meehan

Licensee Address: 4405 Old Main Hill
Department of Physics
84322
United States

Licensed Material

title: FUNDAMENTALS OF AERONOMY

ISBN: 9780471941200

publisher: John Wiley & Sons Limited



	
	

	

184 

 

Figure F.1. Copyright permission received for [Whitten and Poppoff, 1971]. Permission is 
for use of Figure 1.1. 
 

figure number & title / caption Figure 1.4: Schematic representation of layer formation

Are you the author of the work you 
are requesting?

I am NOT the author

page number 16

For Use In Licensee's Publication(s)

usage type Book, Journal, Magazine or Academic Paper...-Thesis

estimated publication date July 2017

number of pages 200

publication title 29 Day Analysis of Scale Heights and the Inference of 
the Topside Ionosphere over Millstone Hill during the 
2002 Incoherent Scatter Radar Campaign

type of document Ph.D. Dissertation 

Rights Granted

Exclusivity: Non-Exclusive

Format: Thesis

Language: English

Territory:

Duration: Lifetime of Licensee's Edition

Maximum Circulation: 0

GENERAL TERMS AND CONDITIONS
1. Definitions and Interpretation

1.1 Capitalised words and expressions in these General Terms and Conditions have the meanings given to 
them in the Licence Cover Sheet.

1.2 In this Licence any references (express or implied) to statutes or provisions are references to those 
statutes or provisions as amended or re-enacted from time to time. The term including will be construed as 
illustrative, without limiting the sense or scope of the words preceding it. A reference to in writing or 
written includes faxes and email. The singular includes the plural and vice versa.



	
	

	

185 

 

Figure F.2. Copyright permission received for Stankov and Warnant [2009]. Permission 
is for use of Figure 1.2. 
 

6/23/2017 RightsLink - Your Account

https://s100.copyright.com/MyAccount/web/jsp/viewprintablelicensefrommyorders.jsp?ref=2a2b64e8-7566-4bac-a14c-09f16d5f10b1&email= 1/4

ELSEVIER LICENSE

TERMS AND CONDITIONS

Jun 23, 2017

This Agreement between Utah State University ­­ Jennifer Meehan ("You") and Elsevier ("Elsevier") consists of your license details and
the terms and conditions provided by Elsevier and Copyright Clearance Center.

License Number 4134930516338

License date Jun 23, 2017

Licensed Content Publisher Elsevier

Licensed Content
Publication

Advances in Space Research

Licensed Content Title Ionospheric slab thickness – Analysis, modelling and monitoring

Licensed Content Author S.M. Stankov,R. Warnant

Licensed Content Date Dec 1, 2009

Licensed Content Volume 44

Licensed Content Issue 11

Licensed Content Pages 9

Start Page 1295

End Page 1303

Type of Use reuse in a thesis/dissertation

Portion figures/tables/illustrations

Number of
figures/tables/illustrations

1

Format both print and electronic

Are you the author of this
Elsevier article?

No

Will you be translating? No

Order reference number

Original figure numbers Figure 1

Title of your
thesis/dissertation

29 Day Analysis of Scale Heights and the Inference of the Topside Ionosphere over Millstone Hill
during the 2002 Incoherent Scatter Radar Campaign

Expected completion date Jul 2017

Estimated size (number of
pages)

200

Elsevier VAT number GB 494 6272 12

Requestor Location Utah State University
84 W 400 S

Logan, UT 84321
United States
Attn: Utah State University

Publisher Tax ID 98­0397604

Total 0.00 USD
Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in connection with completing this licensing transaction,
you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions



	
	

	

186 
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Figure F.4. Copyright permission received for Sethi et al. [2003]. Permission is for use of 
Figures 3.2 and 3.3. 
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Figure F.5. Copyright permission received for Zhang et al. [2004]. Permission is for use 
of Figure 3.4. 
 

6/23/17, 2:22 PMRightsLink - Your Account

Page 1 of 4https://s100.copyright.com/MyAccount/viewPrintableLicenseDetails?ref=107deaae-5afc-4803-8c86-fa77a0432581

JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

Jun 23, 2017

This Agreement between Utah State University -- Jennifer Meehan ("You") and John Wiley and Sons ("John Wiley and Sons")
consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number 4134960122850

License date Jun 23, 2017

Licensed Content
Publisher

John Wiley and Sons

Licensed Content
Publication

Journal of Geophysical Research: Space Physics

Licensed Content Title Midlatitude ionospheric plasma temperature climatology and empirical model based on Saint
Santin incoherent scatter radar data from 1966 to 1987

Licensed Content Author Shun‐Rong Zhang,John M. Holt,Angela M. Zalucha,Christine Amory‐Mazaudier

Licensed Content Date Nov 23, 2004

Licensed Content Pages 1

Type of Use Dissertation/Thesis

Requestor type University/Academic

Format Print and electronic

Portion Figure/table

Number of figures/tables 1

Original Wiley figure/table
number(s)

Figure 6

Will you be translating? No

Title of your thesis /
dissertation

29 Day Analysis of Scale Heights and the Inference of the Topside Ionosphere over Millstone Hill
during the 2002 Incoherent Scatter Radar Campaign

Expected completion date Jul 2017

Expected size (number of
pages)

200

Requestor Location Utah State University
84 W 400 S

Logan, UT 84321
United States
Attn: Utah State University

Publisher Tax ID EU826007151

Billing Type Invoice

Billing Address Utah State University
84 W 400 S

Logan, UT 84321
6/23/17, 2:22 PMRightsLink - Your Account

Page 2 of 4https://s100.copyright.com/MyAccount/viewPrintableLicenseDetails?ref=107deaae-5afc-4803-8c86-fa77a0432581

United States
Attn: Jennifer Meehan

Total 0.00 USD
Terms and Conditions

TERMS AND CONDITIONS
This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each
a"Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a
particular work (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that
the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established
by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your
RightsLink account (these are available at any time at http://myaccount.copyright.com).

Terms and Conditions

The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright. 

You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-alone basis), non-transferable,
worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process. This license,
and any CONTENT (PDF or image file) purchased as part of your order, is for a one-time use only and limited to any
maximum distribution number specified in the license. The first instance of republication or reuse granted by this license
must be completed within two years of the date of the grant of this license (although copies prepared before the end date
may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose,
beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the
Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the
text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is
expressly excluded from this permission.

With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no
part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new
Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may
be made based on the Wiley Materials without the prior permission of the respective copyright owner.For STM Signatory
Publishers clearing permission under the terms of the STM Permissions Guidelines only, the terms of the license
are extended to include subsequent editions and for editions in other languages, provided such editions are for
the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts,
You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley
Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a
stand-alone basis, or any of the rights granted to you hereunder to any other person.

The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of
John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having
possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this
Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property
rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is
granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR
ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE
ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY
IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A
PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE
HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU. 



	
	

	

189 

 

 
Figure F.6. Copyright permission received for Johnson [1966]. Permission is for use of 
Figure 3.5. 
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Figure F.7. Copyright permission received for Gonzalez et al. [1992]. Permission is for 
use of Figure 3.6. 
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Figure F.8. Copyright permission received for Kelley et al. [2009]. Permission is for use 
of Figures 3.7 and 3.8. 
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Figure F.9. Copyright permission received for Lei et al. [2007]. Permission is for use of 
Figure 3.9. 
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Figure F.10. Copyright permission received for Zhang et al. [2005]. Permission is for use 
of Figure 4.1. 
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Figure F.11. Copyright permission received for Lei et al. [2005]. Permission is for use of 
Figure 4.2. 
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