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ABSTRACT 

 

A Comparison of Five Statistical Methods for Predicting Stream Temperature Across  

Stream Networks 

 

by  

 

Maike Holthuijzen, Master of Science 

Utah State University, 2017 

 

Major Professor: Dr. Richard Cutler 

Department: Mathematics and Statistics 

 

 

The integrity of freshwater ecosystems, particularly stream networks, is strongly 

influenced by water temperature, which controls biological processes and influences species 

distributions and aquatic biodiversity. The thermal regimes of streams and rivers are likely to 

change in the future due to climate change and other anthropogenic impacts, and our ability 

to model stream temperatures will be critical in understanding and predicting distribution 

shifts of aquatic biota. Recently developed spatial statistical network (SSN) models, which 

explicitly account for spatial autocorrelation and hydrological distance, can have high 

predictive accuracy. However, SSN models have can have high computation times and 

data pre-processing requirements, which may compromise their routine use under some 

circumstances. Other modeling approaches, such as machine learning techniques and 

generalized additive models (GAM), are promising alternatives to SSN models in that 

they are typically more computationally efficient and are subject to fewer assumptions 
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than SSN models. In particular, machine learning methods such as gradient boosting 

machines (GBM) and Random Forests (RF) are both computationally efficient and can 

automatically model high-order interactions and non-linear responses. GAMs also can fit 

highly non-linear relationships, which may produce prediction error in SSN models, 

which assume linear relationships between response and predictor variables.  However, 

we cannot yet generalize regarding the relative strengths and weaknesses of different 

modeling approaches because a direct comparison of prediction accuracy has not yet been 

conducted across a variety of methods.  

My objectives were to 1) compare the accuracies of linear (LM), SSN, GAM, RF, 

and GBM models in predicting stream temperature from field observations, 2) conduct 

simulations to determine the effect of autocorrelation strength on prediction accuracies 

among all methods, and 3) provide guidelines in choosing a prediction method for 

ecologists and other practitioners. Through simulations, I compared prediction accuracy 

of all methods on datasets with varying degrees of linearity, spatial autocorrelation, and 

error structure. Prediction accuracies were quantified as the test-set root mean square 

error (RMSE) for all methods. For the field data, SSN had the highest predictive accuracy 

overall, followed closely by GBM and GAM. LM performed poorly overall. Simulations 

showed that for linearly-structured, spatially autocorrelated data, SSN achieved the most 

accurate prediction accuracy of all methods. However, GAM had the best performance on 

non-linearly structure data in simulations, regardless of the degree of spatial 

autocorrelation. This study shows that machine learning methods and GAM may provide 

suitable alternatives to SSN models for many stream temperature prediction applications, 
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especially when modeling 1,000’s of data points and when the assumption of linear 

relationships is suspect. 

(75 pages) 
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PUBLIC ABSTRACT 

A Comparison of Five Statistical Methods for Predicting Stream Temperature Across 

Stream Networks 

Maike Holthuijzen 

 

The health of freshwater aquatic systems, particularly stream networks, is mainly 

influenced by water temperature, which controls biological processes and influences species 

distributions and aquatic biodiversity. Thermal regimes of rivers are likely to change in the 

future, due to climate change and other anthropogenic impacts, and our ability to predict 

stream temperatures will be critical in understanding distribution shifts of aquatic biota. 

Spatial statistical network models take into account spatial relationships but have 

drawbacks, including high computation times and data pre-processing requirements.  

Machine learning techniques and generalized additive models (GAM) are promising 

alternatives to the SSN model. Two machine learning methods, gradient boosting 

machines (GBM) and Random Forests (RF), are computationally efficient and can 

automatically model complex data structures. However, a study comparing the predictive 

accuracy among a variety of widely-used statistical modeling techniques has not yet been 

conducted.  

My objectives for this study were to 1) compare the accuracy among linear 

models (LM), SSN, GAM, RF, and GBM in predicting stream temperature over two 

stream networks and 2) provide guidelines in choosing a prediction method for 

practitioners and ecologists. Stream temperature prediction accuracies were compared 

with the test-set root mean square error (RMSE) for all methods. For the actual data, SSN 
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had the highest predictive accuracy overall, which was followed closely by GBM and 

GAM. LM had the poorest performance overall. This study shows that although SSN 

appears to be the most accurate method for stream temperature prediction, machine 

learning methods and GAM may be suitable alternatives.  
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INTRODUCTION 

 

The integrity of freshwater ecosystems, particularly stream networks, is strongly 

influenced by water temperature (Caissie 2006). Water temperature controls biological 

processes and influences species distributions and aquatic biodiversity (Hawkins et al. 

1997, Hill and Hawkins 2014). In particular, maintaining stream temperatures within 

acceptable limits is crucial to the fitness of ichthyofauna and other aquatic biota (Caissie 

2006, Isaak et al. 2012, Turschwell et al. 2016). Climate change and other anthropogenic 

impacts (e.g. dams, riparian vegetation removal, livestock grazing) can alter the thermal 

regime of rivers and streams, resulting in direct and indirect impacts on aquatic 

biota  (Isaak et al. 2010, Piccolroaz et al. 2016) and potential losses of aquatic 

biodiversity (Heino et al. 2009, Isaak et al. 2012). Due to climate change and other 

anthropogenic impacts, the thermal regimes of rivers may change in the future, and our 

ability to accurately model stream temperatures will be critical in understanding and 

predicting distribution shifts and dynamics of aquatic biota as stream temperatures 

change (Gardner et al. 2003). Furthermore, accurate methods of stream temperature 

prediction will also save monitoring effort and time  (Yuan 2004, Hawkins et al. 2010, 

Hill et al. 2013), and aid in creating restoration plans for aquatic ecosystems (Isaak et al. 

2012).  

It is imperative that managers and freshwater biologists have access to accurate 

and accessible methods of stream temperature prediction that perform well at local 

(individual stream reaches) to regional (entire stream networks spanning 100’s of km2) 

scales. Several types of modeling approaches (stochastic, deterministic, and mechanistic) 
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have been used to predict stream temperatures. From a statistical point of view, modeling 

stream temperature presents a challenge because 1)  stream temperatures along a stream 

network are often autocorrelated (Peterson et al. 2006), 2) the relationships between 

stream temperature and predictor variables may not be linear (Cressie et al. 2006), and 3) 

factors may interact to influence stream temperature (Caissie 2006).  Gardner et al. 

(2003) highlighted the use of kriging, a geostatistical method for spatial interpolation that 

accounts for spatial autocorrelation, for predicting stream temperatures over a stream 

network. However, the implementations were not conducted with known software 

packages, and the predictions were unreliable due to the use of invalid autocovariance 

functions (e.g. positive definite covariance matrices were not obtained) (see Ver Hoef et 

al. 2006). Non-spatial linear regression, which does not account for temporal or spatial 

autocorrelation, has also been used to model stream temperatures (Crisp and Howson 

1982, Mohseni et al. 1998);  however the temperature predictions based on non-spatial 

regression have been shown to be less accurate than spatial methods (Isaak et al. 2010, 

Turschwell et al. 2016).  Finally, two machine learning methods, artificial neural 

networks (Chenard and Caissie 2008, DeWeber and Wagner 2014) and Random Forests 

(Hill et al. 2013, Turschwell et al. 2016) have also been used for stream temperature 

prediction over the entire United States and over several stream networks in Australia. 

More recently, spatial statistical network (SSN) models (Ver Hoef et al. 2006) 

were developed to incorporate hydrological distance and spatial autocorrelation among 

observed temperature sites over a stream network. Although SSN models use kriging 

methods, the predictions are thought to be reliable because valid autocovariance functions 
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were obtained for these models (Ver Hoef et al. 2006). SSN models have been shown to 

be superior predictors than Random Forests (Turschwell et al. 2016) and non-spatial 

linear regression (Isaak et al. 2010) under the few circumstances compared to date. SSN 

models have been used to predict daily, weekly, and monthly mean temperatures over 

watershed (Isaak et al. 2010, Turschwell et al. 2016) and state- and region-wide scales 

(Isaak et al. 2013, Detenbeck et al. 2016). SSN models work best when data are spatially 

autcorrelated over a stream network and there are enough observations for distance 

calculations (for kriging) (Peterson et al. 2013). Ver hoef and Peterson et al. (2014) 

developed a GIS toolbox for preprocessing stream network data and the SSN package in 

R (R Core Team 2016) for modeling the data. However, the pre-processing step can take 

a considerable amount of computation time and requires users to have strong GIS skills in 

ArcMAP (ESRI 2011) (Peterson et al. 2013, Isaak et al. 2014). Additionally, model-

fitting with the SSN package in R becomes computationally prohibitive for datasets with 

more than 2000 data points (Ver Hoef et al. 2014), which is problematic for prediction of 

stream temperature on larger scales and on watersheds that have been intensely sampled. 

Furthermore, SSN models cannot inherently model non-linear associations, and the 

application of SSN models and interpretation of results requires a sophisticated 

understanding of statistical theory.  

It is also not yet clear how much more accurate SSN models are than other 

predictive methods, such as machine learning and general additive models. A few studies 

have used machine learning methods for stream temperature prediction (Chenard and 

Caissie 2008, Hill et al. 2013, DeWeber and Wagner 2014), but only one compared 
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prediction accuracy with SSN models (Turschwell et al. 2016). Thus, a comparative 

study among a variety of statistical prediction methods including machine learning 

methods, general additive models, and SSN models is warranted.  In this study, we 

provide comparisons of stream temperature prediction accuracy among SSN models and 

four other modeling methods: multiple linear regression, generalized additive models, 

Random Forests, and gradient boosting machines. We chose to include linear models 

because they are the non-spatial counterpart of SSN models, are familiar to many users, 

and are routinely used for a variety if modeling applications. Generalized additive 

models, Random Forests, and gradient boosting machines represent classes of predictive 

methods that are increasingly used in ecology and natural resource disciplines (Cutler et 

al. 2007, Olden et al. 2008). We did not include artificial neural networks, because we 

wanted to evaluate models that could be interpreted in terms of predictor variable 

strength and behavior (Olden and Jackson 2002). Random Forests and gradient boosting 

machines can handle complex interactions and non-linear data structure (Cutler et al. 

2007, Olden et al. 2008), and generalized additive models excel in modeling non-linear 

associations (Drexler and Ainsworth 2013). Because these three methods have strengths 

in modeling complex data structures, they are promising for use in stream temperature 

prediction and could potentially rival the predictive accuracy of SSN models, which are 

currently considered to be the state-of-the-science for statistically-based stream 

temperature prediction (Ver Hoef et al. 2006).   

We had three main objectives: 
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1. Quantify the accuracy (using root mean square error) of linear models (LM), 

spatial statistical models (SSN), Random Forests (RF), gradient boosting 

machines (GBM), and general additive models (GAM) in predicting observed 

maximum weekly maximum temperature, mean summer stream temperature, and 

mean August stream temperature. 

2. Conduct simulations to determine how all five methods perform with known 

linear and nonlinear spatial data.  

3. Develop guidelines for choosing predictive methods for stream temperature data 

based on data attributes and user expertise.  
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METHODS 

 

Study sites and data 

We used data from two stream networks in the Boise and Clearwater National 

Forests in Idaho, USA to model stream temperature. The Boise dataset was originally 

used by Isaak et al. (2010), whereas the Clearwater data had not been previously 

modelled.   

Response variables for both datasets included measures of mean monthly and 

weekly stream temperatures. Specifically, response variables for the Boise dataset were 

maximum weekly maximum stream temperature (Mwmt) and summer mean stream 

temperature (SummerMean). The response variable for the Clearwater dataset was 

August mean stream temperature (Stream_Aug).  Mwmt was obtained by calculating the 

highest seven-day moving average of daily maximum stream temperatures. In both 

stream networks, stream temperatures were recorded hourly with digital thermographs 

(Tidbit™ devices) that were placed in streams mid-July and retrieved in mid-September 

(the summer period) (Isaak et al. 2010).   

The Boise data were collected between 1993 and 2006, whereas Clearwater data 

were collected between 1993 and 2011.  In both stream networks, the majority of data 

were collected after 1999.  Both datasets contained several years’ worth of data for 

almost all monitoring sites, although the number of years of observation was not 

consistent across sites.  To avoid weighting some sites more than others and temporal 

pseudoreplication, we eliminated duplicate observations at a site, similar to Detenbeck et 
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al. (2016). For sites with multiple observations, we randomly selected one year to model 

from each site. Doing so reduced the size of the Boise dataset from 780 to 506 

observations and the Clearwater dataset from 4487 to 746 observations. Validation sets 

were created by randomly selecting 1/3 of the observations from each original dataset. 

The final Boise data thus contained 340 training and 146 test observations, and the 

Clearwater dataset contained 526 training and 220 test observations. Prior to modeling, 

we inspected histograms and boxplots of all variables for testing and training sets of both 

datasets to ensure that distributions were similar for training and testing datasets.  

 

GIS pre-processing 

To implement the SSN model for a stream network, the network must be 

continuous,, as this is a requirement for the calculation of the moving average function 

necessary for tail-up SSN models (Ver Hoef et al. 2014). We used ArcMap  10.2 (ESRI 

2011) to construct the stream network. Stream network shapefiles were downloaded from 

the National Stream Internet (NSI), and waterbody polygons were downloaded from 

NHDPlusV2.  Reach catchment areas (RCAs) were delineated from the 30m National 

Elevation Dataset (NED) digital elevation model (DEM).  Calculations of stream 

distances (e.g. separation measured along the path of the stream (Rushworth et al. 2015) 

were also conducted in ArcMap 10.2 with the STAR extension (Peterson and Ver Hoef 

2014).  The resulting dataset was exported as a Spatial Stream Network (.SSN) object for 

analysis in R. The spatial weights needed to produce a positive-definite covariance matrix 

were based on watershed contributing area, a proxy for stream size (Ver Hoef et al. 
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2014). Hydrologic distance and spatial weights matrices were calculated with the SSN 

package in R (Ver Hoef et al. 2014). 

 

Covariate descriptions 

Boise data 

Covariates for the Boise dataset consisted of 11 geomorphic and climatic 

predictors that had been previously shown or were hypothesized to influence stream 

temperature (Isaak et al. 2010). We provide general descriptions of them here, but note in 

some cases precise definitions (including units of measure) were not given. According to 

Isaak et al. (2010), geomorphic predictors were quantified from digital map layers in 

ArcMap 9.2. Isaak et al. (2010) previously analyzed a digital elevation model (DEM) 

with TauDEM software to summarize the six geomorphic predictor variables: watershed 

contributing area (Carea) was used as a proxy for stream size, network drainage density 

(Draind), elevation in meters (Elevation), percent of the catchment as glaciated stream 

valley (Gvalley), channel slope (Slope) as percent, percent catchment area classified as 

open water (Lake), and the percent of the catchment classified as alluviated valley bottom 

(Valleyb) (Isaak et al. 2010). We interpret the variable Valleyb to refer to the percent of 

the catchment that consisted of alluvial deposits in valley bottoms. Higher values would 

imply higher likelihood of ground water inputs to the stream. Drainage density is the 

length of stream in a watershed divided by the area of the watershed. Isaak et al. (2010) 

interpret this variable as quantifying the amount of stream channel exposed to solar 

radiation per unit area. As the amount of open water increases, larger areas of standing 
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water are exposed to solar radiation, which would imply a positive impact on stream 

temperature. Increasing values of Gvalley imply that more area of the catchment receives 

heavy snowfall and implies a negative relationship with stream temperature. All 

geomorphic variables were calculated within 1-km of monitoring sites on the stream 

network.  

The four climatic predictor variables were: solar radiation (Rad), summer stream 

discharge (MnSummerFl), maximum weekly maximum air temperature (airMwmt), and 

summer mean air temperature (AirSummerMn). Solar radiation (Rad) was quantified by 

combining satellite imagery of vegetation and above-stream canopy photos.  Specifically, 

Thematic Mapper satellite imagery was used to classify riparian vegetation, and later 

results were linked to field measurements of radiation at the stream surface (Isaak et al. 

2010).  Solar radiation was measured with hemispherical canopy photography, and the 

resulting photo film was used to calculate an index of total solar radiation.  Estimates 

were matched with vegetation classifications from satellite imagery, and power-law 

relationships were used to predicted total radiation from vegetation type and catchment 

area (Isaak et al. 2010). The variables maximum weekly maximum air temperature 

(AirMwmt) and summer mean air temperature (AirsummerMn) were calculated from 

data obtained from NOAA weather stations near the study area (Arrowrock, Idaho City, 

and Ketchum, Idaho). Estimates of summer stream discharge (MnSummerFl) were 

derived from two USGS gages near the study area (Twin Springs and Featherville). 

Geographic location (Easting and Northing, UTM 11N, NAD 83) were also included as 
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variables. More detailed information on covariates is available in Appendix A5. For 

clarity, we chose to change variable names from those used by Isaak et al. (2010). 

 

Clearwater data 

Geomorphic and climatic predictor variables were similar to that of the Boise 

dataset and were chosen based on their likely influence on stream heat budgets for the 

Clearwater data (Isaak et al. 2016).  Extraction of the covariates via NHDPlus V1, NSI, 

and other national databases was previously completed. The six geomorphic predictors 

included elevation (m) (Elevation), cumulative drainage area (km2) (Cumdrainag), stream 

slope (percent) (Slope), base flow index (Bfi), percent glaciated valley (percentage of the 

catchment area classified as glacier) (Glacier), and percent lake (percentage of catchment 

area classified as open water) (Lake). Elevation values were obtained from a 30-m DEM 

associated with NHDPlus V1. Values for cumulative drainage and stream slope were also 

downloaded from NHDPlus V1. Glacier percentages were calculated with a standard 

flow accumulation routine in a GIS (data were downloaded from 

http://glaciers.research.pdx.edu/Downloads). One additional categorical variable coded as 

0/1 (Dam_effect) was included to indicate whether a stream monitoring site was 

downstream from a reservoir, possibly creating anomalously cold tailwater.  Canopy 

shade (percent) (Canopy) was used as a measure of stream shading and was compiled 

from the 2001 version of the National Land Cover Database (Homer et al. 2015).  The 

three climatic variables included mean annual precipitation in mm (Precip), mean August 

air temperature (Air_Aug), and mean August stream discharge (Flow_Aug). Precipitation 



11 
 

was downloaded from NHDPlus V1 as the area weighted mean annual precipitation at 

bottom of flowline in mm. Mean August stream discharge was calculated by averaging 

across USGS flow gages with long-term records (data was downloaded from the National 

Water Information System website (USGS 2016)).  Mean August air temperature for a 

river basin was obtained from the dynamically downscaled NCEP RegCM3 reanalysis 

(Hostetler et al. 2011) (data were downloaded from the USGS Regional Climate 

Downscaling website: http://regclim.coas.oregonstate.edu/). Measures of latitude and 

longitude in decimal degrees were included as Y_coord and X_coord, respectively. 

Values for all spatial covariates were assigned to 1-km reaches throughout the NSI 

network (Isaak et al. 2017). More detailed information on covariates is given in Table 1. 

 

 

 

 

 

 

 

 

 



12 
 

TABLE 1. Meanings and definitions for predictor variables in Boise and Clearwater 

datasets. 

Boise 

Variable Definition  Meaning 

Elevation Elevation in meters Cooler air temperature and snowpack at 

high elevations have a negative impact on 

stream temperature 

Draind Drainage density Provides a measure of the portion of stream 

exposed to solar radiation. Larger values 

have positive influence on stream 

temperature. 

Carea Contributing area A proxy for stream size. Larger values have 

a positive influence on stream temperature 

Gvalley Percent glaciated 

valley 

Percent of catchment area defined as 

glacier. Heavy snowfalls in these valleys 

should have a negative influence on stream 

temperature. On a scale of  0 to 1. 

Valleyb Alluviated valley 

bottom 

Cool recharge water from aquifers has a 

negative impact on stream temperature. On 

a scale of 0 to 1. 

Lake Percent lake Percentage of catchment area classified as 

open water; positively influences stream 

temperature. On a scale of 0 to 1. 

SummerMnFl Summer stream flow Determines the volume of water available 

for heating. Larger values have a negative 

impact on stream temperature 

AirSummerMean Mean summer air 

temperature 

Larger values have a positive impact on 

stream temperature 

Slope Channel slope Steeper slopes result in fast-flowing stream. 

Larger values have a negative impact on 

stream temperature 

AirMwmt Maximum weekly 

maximum air 

temperature 

Larger values have a positive impact on 

stream temperature 

Rad Solar radiation Larger values have a positive impact on 

stream temperature 

Easting 
 

Measure of longitude 

 

(Table continues)  
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Northing 

  

Measure of latitude 

 

 

 

Clearwater 

Variable Definition Meaning 

Elev Elevation at a stream site (m) 

Air temperatures are cooler at higher 

elevations, representing a cooling effect 

on stream temperature. 

Cumdrainag 
Cumulative drainage area 

(km2) 

Represents the size of a stream; larger 

streams are likely to be exposed to 

greater amounts of solar radiation, 

representing a warming effect. 

Slope stream slope (percent) 

the steeper a stream is, the faster the 

water flows, and the less it is able to 

absorb radiation. Higher values have a 

negative impact on streams. 

Lake Percent lake near a site 

Larger values indicate greater portions of 

the stream are classified as open water; 

represents a warming effect. On a scale 

of 0 to 1. 

Glacier 
Percent catchment classified 

as glacier near a site 

Larger values indicate more portion of 

the stream catchment is glaciated, which 

may cool stream temperatures. On a scale 

of 0 to 1.  

Bfi Base flow index 

Streams with larger baseflows may be 

colder than other streams and less 

sensitive to climate warming. 

Canopy 
Percent of river shaded near 

a site 

Streams with more shade receive less 

solar radiation; larger values negatively 

impact stream temperatures. 

Flow_Aug 
Mean August stream 

discharge 

May or may not have an effect on stream 

temperature. 

Air_Aug 
Mean August air 

temperature, °C 

Larger values have a warming effect on 

stream temperature. 

Y_Coord Latitude   

X_Coord Longitude   

(Table continues)   

   

Precip Annual precipitation (m) 
Higher values have a negative impact on 

stream temperature. 
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Dam_effect Effect of cold tailwater 

Takes a value of 1 or 0 depending if a 

site is downstream from a dam or 

reservoir 
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STATISTICAL METHODS 

We used five statistical methods for modeling stream temperature data: linear 

regression models (hereafter LM), spatial stream network (SSN) models, generalized 

additive models (GAM), Random Forests (RF), and gradient boosting machines (GBM). 

All analyses were conducted in R 3.3.1 (R Core Team 2016). Non-spatial models were 

fitted twice: once with and once without spatial covariates (e.g., Easting/Northings, 

Latitude/Longitude). Thus, for the two response variables for the Boise data (Mwmt and 

SummerMean), we obtained 2 final models for each of the non-spatial methods (2 

response variables x 2 rounds of analyses x 4 methods = 16 final models). Similarly, 

there were 8 final non-spatial models for the Clearwater dataset, which only had one 

response variable (Stream_Aug). Since SSN models account for spatial attributes, each 

SSN models were fitted once for each response variable. 

We considered interactions between variables previously used by Isaak et al. 

(2010) for LM, SSN, and GAM methods (Carea*Rad, AirMwmt*Rad, 

AirMwmt*MeanSummerFl, Elevation*Gvalley, and AirMwmt*Rad*MeanSummerFl), as 

well as the interaction between measures of latitude and longitude. We used the root 

mean square error (RMSE) of the test data sets to quantify the performance of each 

method: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2
𝑛

𝑖=1
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where 𝑌𝑖 is the observed value of the response variable for the 𝑖𝑡ℎ observation, and 𝑌̂𝑖 is 

the predicted value for the 𝑖𝑡ℎ observation.  

 

Linear Regression Models 

In the multiple linear regression model (see, for example Seber and Lee, 2003), 

stream temperatures are related to a number of predictor variables through a linear 

formula with an error (residual) term. Mathematically, we write 

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖 

for 𝑖 = 1,2, … , 𝑛 where  𝑌𝑖 is the stream temperature at the 𝑖𝑡ℎlocation, 𝑥𝑖𝑗 is the value of 

the 𝑗𝑡ℎ predictor variable for the 𝑖𝑡ℎ observation, and 𝜖𝑖 is the error term for the 𝑖𝑡ℎ 

observation.  

 

LM model fitting 

We fit linear regression models using the lm function that is part of the base 

distribution of R. After inspecting scatter plots of predictor versus response variables for 

linearity,we applied the arcsin-square root transformation to Valleyb, Gvalley, and Lake.  

To avoid bias and overfitting, we used the lasso technique with 10-fold cross validation 

on the training set to perform variable selection for LM. The lasso technique is a 

shrinkage method that also performs variable selection and often results in sparse models 

(James et al. 2013). We performed the lasso technique using the GLMSELECT procedure 

in SAS (Version 9.4 of the SAS System for Windows). We set the SELECTION 

argument to ‘LASSO’ and specified external 10-fold cross validation with the optional 
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parameter CHOOSE = CVEX (SAS Institute 2015). After obtaining final predictor 

subsets for both response variables Mwmt and SummerMean, we calculated the RMSE 

for each model on the test dataset.  

For the Clearwater data, we applied natural log transformations to both SLOPE 

and BFI.  Clearwater models were constructed in the same way as described above, 

except we only considered the interaction between latitude and longitude for the 

Clearwater models. 

Three important assumptions of the linear regression model are: 

1. Independence: the error terms, 𝜀𝑖, are statistically independent. 

2. Linearity:  the relationship between the predictor variables is linear as opposed to 

non-linear (but possibly additive). 

3. Limited interactions:  there are limited interactions among the predictor variables 

in terms of their effects on the response variable. 

 

Spatial Stream Network Models 

Spatial stream network models (Ver Hoef et al. 2006) address the independence 

assumption of LM issue by relaxing this assumption.  SSN models take into account 

covariance structure of temperature data on a river network, allowing for the unique 

properties of stream networks such as branching structure, longitudinal connectivity, 

directed flow, and abrupt temperature changes at stream junctions (Isaak et al. 2014).  

Specifically, the vector of error terms in the multiple linear regression model, 𝜺, is 

decomposed into  
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𝜀 =  𝒗TU + 𝒗TD + 𝒗EU + 𝑣NUG  

where 𝒗TU captures upstream (“tail up”) autocorrelation, 𝒗TD captures downstream (“tail 

down”) autocorrelation, 𝒗EU characterized autocorrelation structures, and 𝑣NUG is a 

“nugget” effect due to, for example, the confluence of streams. The nugget effect may be 

thought of as sampling error for spatial data (Ver Hoef et al. 2014). More detailed 

information about SSN can be found in Appendix B. 

 

SSN model fitting 

We used the SSN package (Ver Hoef et al. 2014) in R v. 3.3.1 for analysis. First, 

we calculated distance matrices as specified in (Ver Hoef et al. 2014) and imported the 

prediction (test set) observations.  For both data sets, we used the same transformations of 

predictor variables for SSN models as we did for LM.  For each of the two response 

variables, Mwmt and SummerMean, we constructed models containing the subset of 

variables used for the linear models (without spatial covariates). We considered models 

with all combinations of Euclidian, tail up, and tail down covariance structures. Tail-up 

and tail-down covariance structures within the SSN package in R include the Spherical, 

Mariah, Empanovich, Linear-with-Sill, Gaussian, and Cauchy, while the options for 

Euclidean covariance structures are Gaussian, Spherical, Exponential, and Cauchy (Ver 

Hoef et al. 2014),. To determine which combination of covariance structures was best, we 

used the compareSSN function, which computes AIC scores and 10-fold cross validated 

prediction errors for a user-defined subset of candidate models (Ver Hoef et al. 2014). 

We chose the model with the lowest cross-validated prediction errors and used it to make 
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predictions on the test set. We followed the same methods for modeling the two response 

variables in the Boise dataset and the response variable in the Clearwater dataset.  

 

Generalized Additive Models 

GAM (Hastie and Tibshirani 1986) assume independent observations but relax the 

assumption of linearity in individual predictor variables to forming a sum of continuous 

functions of individual predictor variables.  For the situation with normal errors, the 

GAM model may be written as: 

 

𝑌𝑖 = 𝑠0 + 𝑠1(𝑥𝑖1) + 𝑠2(𝑥𝑖2) + ⋯ 𝑠𝑝(𝑥𝑖𝑝) + 𝜀𝑖 

 

where 𝑠0 is a constant and 𝑠1(), 𝑠2(),⋯ , 𝑠𝑝() are smooth but unspecified functions of the 

respective predictor variables.  Choices for smoothers to estimate 𝑠1, 𝑠2, ⋯ , 𝑠𝑝  include 

local regression (loess), smoothing splines and regression splines (B-splines, P-splines, 

and thin-plate splines) (Wood 2006). Unsmoothed, linear effects may also be included in 

a GAM, resulting in a semi-parametric model. Prespecified interactions among two or, 

possibly, even three variables may be incorporated as well.  The estimation of the 

unknown functions (𝑠𝑗) in  GAMs is by penalized maximum likelihood through the P-

IRLS (penalized iteratively reweighted least squares) algorithm (Wood 2006).  However 

because the model fitting process involves estimating the degree of “wiggliness” of the 

smoothed functions, the generalized cross validation score (GCV) or Un-Biased Risk 

Estimator (UBRE),  is used to determine the optimal degree of smoothing (Wood 2006).  
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The main limitation of GAMs is their strain on computational resources, which limits 

their use on very large datasets (Friedman et al. 2001). Also, GAMs do not model 

interactions automatically in contrasts to tree-based methods. The user must determine 

which interactions to include in the model.  Finally, extrapolation with GAMs may be 

problematic, especially if data are scarce at the endpoints (Wood 2006).Since their 

introduction, GAMS have been used extensively in ecology (Guisan et al. 2002), often 

for modelling species distributions of both plants and animals (Fewster et al. 2000, 

Austin 2002, Leathwick et al. 2006b, Moisen et al. 2006, Drexler and Ainsworth 2013). 

GAMs can be implemented in R with the package mgcv (Wood 2013) or the package 

gam (Hastie and Tibshirani 2013).  

 

GAM model fitting 

We used the mgcv (Wood 2006) package in R for all GAM analyses.  For the 

Boise data, we first fit additive models (e.g. without interaction terms) with all predictor 

variables (with and without spatial covariates). We assessed residual versus individual 

predictor plots, residual q-q plots, and histograms of residuals to ensure normality and 

homogeneity of residual variance.  We fit scale invariant tensor product interactions 

(Wood 2006) to model interaction terms used by Isaak et al. (2010). All predictor 

variables (except interaction terms) were modeled with penalized regression splines. To 

perform variable selection for GAM models, we used a shrinkage approach developed by 

Marra and Wood (2011), which can be invoked in the mgcv package by setting select = 

TRUE within the gam function. Smoothed effects that do not influence the response 
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variable are effectively set to zero (Marra and Wood 2011). The shrinkage approach was 

used with 10-fold cross validation. Because the shrinkage method resulted in all variables 

being retained in the model, we used the summary results from the 10-cross-validation 

folds to determine which, if any, predictors were consistently not significant (P > 0.1). 

Predictors that were consistently not significant were eliminated from the model, and 

cross-validation was again performed. This process was repeated until the cross-validated 

error began to increase.  

 

 

Random Forests 

Random Forests (Breiman (2001a) is a machine learning method for regression 

and classification that fits an ensemble of decision trees to data and combines the 

predictions from the trees to produce more accurate predictions.  

The basic algorithm is as follows.  Many samples are drawn from the original 

dataset.  Observations that are in the original dataset but not in a given sample are said to 

be out-of-bag for that dataset.  Decision trees are fit to each sample, usually without 

pruning, and with only a randomly selected subset of variables available for splitting at 

each node.  Predictions are made for every observation that is out-of-bag for the sample a 

given tree is fit on, and then, in the case of regression, averaged over all the trees for each 

observation to produce a more accurate prediction.  In the randomForest package in R 

(Liaw and Wiener 2002) the default number of samples (and hence fitted trees) is 500.  

The number of randomly selected variables available for splitting at each node in 

regression is 𝑝/3, where 𝑝 is the total number of predictor variables, and in classification 
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it is √𝑝, although these parameters should be tuned for optimal performance (Friedman et 

al. 2001). A detailed explanation of the algorithm is given by Breiman (2001a) and 

(Cutler et al. 2007). The impact of individual predictor variables on the response variable 

may be visualized using partial dependence plots (Friedman et al. 2001) which show the 

relationship between a predictor variable with the response variable, averaged over all 

predictor variables. 

RF has received considerable attention as a predictive methodology for a wide 

range of ecological applications, from mapping tree distributions (Prasad et al. 2006) to 

predicting and classifying plant and animal species (Cutler et al. 2007) as well as 

predicting wildfire occurrence (Oliveira et al. 2012). Hill et al. (2014) used RF to model 

the vulnerability of stream networks to climate change, and Hill et al. (2013) created a 

temperature prediction model for the entire continental United States. Although relatively 

few studies have explicitly used RF in the context of stream temperature prediction 

(Hawkins et al. 2010, Hill et al. 2013, Hill and Hawkins 2014, Turschwell et al. 2016), 

the ability of RF to fit data with many predictor variables, nonlinear effects, and high 

order interactions (Cutler et al. 2007) make them an excellent candidate for more 

extensive use in stream temperature prediction. 

 

RF model fitting 

All RF regressions were fit using the randomForest package in R 3.3.1 (Liaw and 

Wiener 2002) with the default number of trees/samples (500) and the default numbers of 

variables available for splitting at each node (𝑝/3).  After fitting full models for each 
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dataset with and without measures of latitude and longitude, we inspected variable 

importance plots and refit models with subsets of important predictor variables. There are 

no P-values associated with RF, and variable selection via inspection of variable 

importance plot is subjective. To choose the best models, we tried fitting models with 

successively smaller variable subsets and eliminating variables based on the variable 

importance plots. We inspected the OOB error rate in each successive model and chose 

the one with the lowest OOB error rate as the final model.  

 

Gradient boosting machines 

Gradient boosting machines (Friedman 2001) is another machine learning 

ensemble classification method.  Although the GBM algorithm is quite general it is 

frequently implemented with regression and classification trees.  The algorithm works by 

sequentially fitting trees to the residuals from previous fits.  In many applications, GBM 

has been found to be one of the most accurate classifiers (see, for example, Friedman, 

2001).  For more details of the GBM algorithm, see (Friedman 2001) or (Friedman et al. 

2001).  As with RF, the relationships between the response and individual predictor 

variables may be characterized using partial dependence plots (Friedman 2001). As with 

RF, GBM is able to deal with complex, high-order interactions among predictor 

variables.  Finally, boosting supports the use of different loss functions, which, for 

regression includes the Huber loss function, MSE, and others (Friedman 2001). 

GBM has been used in a variety of ecological studies for predicting species 

richness (Leathwick et al. 2006a), abundance (De'Ath 2007) and classification (Cappo et 
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al. 2005). In the R implementation, the parameters for gradient boosting machines are  

the number of trees, the shrinkage value, the interaction depth, and the minimum number 

of observations in terminal nodes. Optimal predictive power can be achieved by tuning 

these parameters, which is commonly done via a grid search. In a grid search, a statistical 

model is run with combinations of parameters and the cross-validated error rate is 

computed. The combination of parameter values resulting in the lowest cross-validated 

error rate is either chosen for the final model, or the grid search can be performed several 

times with successively finer-tuned parameter values.  

 

GBM model fitting 

All GBM models were fit using the gbm package in R (Ridgeway 2015), and the 

model fitting process was very similar to that for RF. After fitting full models with and 

without measures of latitude and longitude, we inspected variable importance plots. For 

GBM, we chose to use all variables for models with and without spatial covariates. By 

default, the parameters of the gbm function (number of trees, shrinkage value, the 

interaction depth, and the minimum number of observations in terminal nodes) were set 

at 500, 0.001, 1, and 10, respectively (Ridgeway 2013). To achieve optimal performance, 

we tuned these four regularization parameters with a grid search with the caret package 

(Kuhn 2016). Optimal tuning parameters are shown in Table 2.  
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TABLE 2. Tuning parameters for final GBM models for all response variables. 

Response variable No. trees Shrinkage Interaction 

depth 
 

Without Lat/Long 

Boise: Mwmt 1000 0.01 10 

Boise: SummerMn 3000 0.01 8 

Clearwater: Stream_Aug 10000 0.01 14 

  With Lat/Long 

Boise: Mwmt 1000 0.01 12 

Boise: SummerMn 3000 0.01 6 

Clearwater: Stream_Aug 8000 0.1 18 
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SIMULATIONS 

 

Non-spatial simulations 

 

Non-spatial simulations were conducted with datasets representing all 

combinations of 1 and 2 variables, nonlinear and linear structure, and autocorrelated or 

independent error structure.  Datasets had either independent error structure (with 𝜎2 =

4 or 9) or autocorrelated error structure (with ρ = 0.7 or 0.8, with ρ being the 

autocorrelation parameter). Each dataset contained 200 observations. To create linear 

data for the one variable model, we generated 200 values of 𝑥𝑖 from a 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−3, 3) distribution with the runif function in R. To create independent error 

terms, we generated 200 values from a 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) distribution (with 𝜎2 = 4 or 9) 

using rnorm. Autocorrelated errors 𝜀𝑖were generated sequentially using the following 

algorithm:   

 

For i in 2 through the number of observations: 

𝜀𝑖 = 𝜌 ∗ 𝜀𝑖−1 + √1 − 𝜌
2 ∗ 𝑉𝑖 , 

where 𝑉𝑖 is a vector of values from a 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) distribution.    

Then, we have 

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖   𝑓𝑜𝑟  𝑖 = 1, 2,⋯ , 𝑛. 

Constructing a two variable, linear dataset was identical to the construction of the one-

variable dataset, except that two variables, 𝑋1 and  𝑋2 were included.  
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The nonlinear, one variable dataset was a log-linear model, and the nonlinear, two 

variable dataset was an additive model with a log-linear component and squared term 

(Table 3). The choice of non-linear data structure was based on known relationships 

between stream temperature and predictor variables at weekly or monthly levels of 

temperature aggregation (relationships between predictor variables and stream 

temperature can differ depending on the time period over which stream temperature is 

expressed (Caissie 2006, Turschwell et al. 2016). The association between stream 

temperature and air temperature, in particular, are generally not linear and have been 

previously modeled via logistic regression (Caissie 2006, Mayer 2012, Arismendi et al. 

2014). Hill et al. (2013) also found logistic relationships best described relationships 

between air temperature and mean summer, winter, and annual stream temperatures. 

Others have observed an exponential relationship between maximum weekly average 

stream temperature and catchment area (Friele et al. 2016). 

 

 

TABLE 3. Linear and nonlinear data models for non-spatial simulations 

  Nonspatial Simulation Models   

 Linear Nonlinear 

1 var.  𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝜀   𝑌 = 𝛽0(𝑒
𝛽1𝑥1) +  𝜀   

2 var.  

 

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀 

 

  𝑌 = 𝛽0(𝑒
𝛽1𝑥1) + 𝛽2(𝑥2)

2 +  𝜀   
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For all models, β0 = 1 , β1 = -1, and β2 = 1.9. Test datasets consisting of 200 

observations each were created for computing RMSE values for each type of training 

dataset and predictive method. All non-spatial methods (LM, RF, GBM, GAMs) were fit 

to 50 datasets several times. Each of the 50 datasets represented a unique combination of 

linear/nonlinear structure and independent/autocorrelated error structure (where ρ equal 

to 0.7 or 0.8 and 𝜎2 = 4 or 9), and number of predictor variables. Next, predictions were 

made for each of the 50 training datasets onto the 50 test datasets for each method. The 

resulting 50 predictions were used to calculate 50 RMSEs for each method.  Finally, the 

50 MSEs were averaged to obtain one mean RMSE per method per data structure 

combination. We also calculated the mean resubstitution error and 10-fold cross 

validation error to compare with the test-set RMSE. Model fitting and calculations of 

RMSEs were done with a custom function in R. Additionally, we made use of the 

packages randomForest (Liaw and Wiener 2002), gbm (Ridgeway 2013), mgcv (Wood 

2013), purr (Wickham 2016b), and dplyr (Wickham 2016a). GBM models were tuned 

using one sample training dataset. 

 

Spatial simulations 

Spatial simulations were conducted in the SSN package (Ver Hoef et al. 2014) in 

R. The createSSN function creates the .SSN object necessary for use in the function 

glmssn, which fits generalized linear models with spatially autocorrelated errors (Isaak et 

al. 2014, Ver Hoef et al. 2014). The createSSN function generates an artificial network 

system, placing training and testing observations on the branches of the artificial network. 



29 
 

To make the simulations realistic, we simulated large artificial networks with 200 

branches, ~240 training sites and ~170 testing sites. The algorithm for creating the 

artificial network was kept at the default (igraphKamadaKawai), and training/testing 

observations were distributed across the network branches using the hardcoredesign 

algorithm with parameters 300 (number of maximum training observations), 200 (number 

of maximum testing observations), and 0.2 (the inhibition region). We performed all 

simulations with two predictor variables, X1 and X2. Although more observations would 

have been more realistic, adding more sites was not feasible given the large computation 

times required to produce two variable models.  

We used the function simulateonSSN to simulate temperatures on the artificial 

stream network based on the type and strength of autocorrelation, model formula (which 

specifies a linear or nonlinear data structure), and coefficients (0, 1 and 2). The 

coefficients 0, β1, and β2 were set at 1, -1, and 1.9, respectively. We used the exponential 

autocovariance model for both tail-up and tail-down autocorrelation. As in the non-spatial 

simulations, we wanted to use known non-linear relationships between stream 

temperature and predictors for the non-linear data structures. The relationship between air 

temperature and stream temperature can be modeled with a logistic function (Webb et al. 

2008), which is why we choose the “non-linear logistic” equation in Table 4. The second 

non-linear data structure was constructed with the “non-linear exponential” equation in 

Table 4. We also constructed a linear data structure with two predictor variables as 

comparison. 
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We simulated each type of data structure (“logistic”, “exponential”, and “linear”) 

with strong and weak autocorrelation. The strength of autocorrelation depends on the 

partial sill and range, while a third parameter, the nugget, controls random variation. The 

partial sill was set at 2 for all simulations, the range varied from 2 (weak) to 10 (strong) 

autocorrelation, and the nugget was set at 0.01. 

After we obtained the temperatures on the simulated stream networks, we used 

glmssn to fit an SSN model to each of the linear/nonlinear - autocorrelation combinations 

of data structure. We created a custom function to generate and fit 100 spatial datasets. 

Finally, after fitting models for each of the 100 datasets, we predicted onto the 

corresponding test datasets and calculated the average RMSE. Next, we used the training 

datasets to fit models using the other four methods (LM, RF, GBM, GAM), made 

predictions onto the corresponding test datasets, and computed the average RMSE for the 

100 datasets. Simulations for fitting models with the four other methods were conducted 

with a custom function in R. Additional R packages used for fitting RF, GBM and GAM 

were randomForest, purrr, gbm, and mgcv.  
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TABLE 4. Linear and non-linear data models for spatial simulations. All models 

contained two variables. 
Spatial simulation models  

Linear 

 
𝑌 =  β0 + β1𝑥1 +  β2𝑥2 

  

Nonlinear: “logistic” 

 

𝑌 =  β0 +
25

1 + 𝑒−2𝑥1
+ 2𝑒−𝑥2  

Nonlinear: “exponential” 

𝑌 =  β0 + 𝑒−𝑥1 − 2𝑥2
2 

  

 

 

Timing of computations 

 Because we were interested in the amount of time the methods took to make 

predictions, we obtain estimates for the time each model took to compute a 50,000 

observation dataset. We simulated a simple, linearly structured dataset with 50,000 

observations and 5 predictor variables and applied RF to 5, 10, and 20 tree models. Then, 

we extrapolated to 500 tree models, which is the default number of trees. Computation 

time is linearly associated with the number of trees (Cutler 2017, pers. comm.). Next, we 

applied GAM to the dataset. We then applied SSN to datasets with 100, 500, and 1000 

observations and then extrapolated these results to 50,000 observations. Computation 

times in SSN is linearly associated with the log of the number of observations. We used 

the microbenchmark function from the microbenchmark package (Mersmann 2015) in R 
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to time simulations. Computation time to predict stream temperatures for 50,000 sites 

ranged from 14 seconds (GAM) to 10 days (SSN). Both RF and GBM took 14 minutes to 

complete computations. 
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RESULTS 

All methods except SSN/LM performed better with spatial covariates included in 

the models, so we report results only for those models. Overall, the models with the 

lowest test-set RMSE, regardless of dataset, were SSN and GAM (Table 5). 

 

Boise River basin: Maximum weekly maximum stream temperature (Mwmt) 

 Overall, the SSN model with spherical tail-up, spherical tail-down and spherical 

Euclidean covariance structures (RMSE = 1.68) had the lowest test-set error.  GAM and 

GBM also performed well with RMSEs of 1.78 and 1.85, respectively. RF and LM had 

the highest RMSE values (2.28 and 2.54, respectively). The LM/SSN models contained 

the fewest covariates, while GAM/GBM had the most; covariates for all models, 

including those without spatial covariates, are shown in Table A1. 

 

Boise River basin: Summer mean stream temperature (SummerMn) 

             The SSN model achieved the lowest test-set RMSE (0.83) with Mariah tail up, 

Mariah tail down, and spherical Euclidean covariance structures. GBM and GAM 

performed nearly as well, with RMSEs of 0.85 and 0.91, respectively. RF and LM had 

the largest RMSE values (1.03 and 1.39, respectively). Test-set RMSEs for SummerMean 

were generally lower than for Mwmt.  Similar to the Mwmt models, The LM/SSN 

models contained the fewest covariates, while GAM/GBM included the most; covariates 

for all models are shown in Table A2. 
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Clearwater River basin: August mean stream temperature (Stream_Aug) 

The SSN model with linear-sill tail-up, linear-sill tail-down, and exponential 

Euclidean covariance structures outperformed all other models with an RMSE of 1.09. 

However, in contrast to the data from the Boise River basin, all methods achieved 

relatively good predictive performance for August mean stream temperature. RMSEs 

ranged from 1.16 (RF) to 1.79 (LM). GAM and LM had the largest RMSE values: 1.22 

and 1.31, respectively. The LM model including spatial covariates contained only five 

covariates, while all other models included at least eight; covariates for all models are 

shown in Table A3. 

 

 

 

 

TABLE 5. RMSE values for all final models for Boise and Clearwater response 

variables. 

Method 
Boise: 

Mwmt 

Boise: 

SummerMn 

Clearwater: 

STREAM_Aug 

LM lat long 2.54 1.39 1.31 

LM 2.6 1.41 1.4 

RF lat long 2.03 1.03 1.16 

RF 2.22 1.17 1.19 

SSN  1.68 0.83 1.1 

GAM  lat long 1.78 0.91 1.22 

GAM 2.34 1.26 1.34 

GBM  lat long 1.84 0.85 1.17 

GBM 1.85 1.06 1.19 
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SIMULATION RESULTS 

All simulations were conducted in under 10 hours on a laptop PC with an Intel™ 

i74810MQ CPU at 2.80 GHz. 

 

Non-spatial simulations  

 Overall, GAM outperformed all other methods, regardless of error variance, 

degree of autocorrelation, and data structure. LM performed nearly as well as GAM, but 

only when data structure was linear and error variance was not autocorrelated. LM 

performed very poorly for all nonlinear data structures. GAM performed especially well 

when data structure was nonlinear and errors were autocorrelated.  

 RF and GBM outperformed LM only when data structure was nonlinear. RF 

almost always outperformed GBM, especially when data had a nonlinear structure. 

Several trends held true for all methods. First, methods performed better on one-variable 

datasets when errors were independent than when errors were autocorrelated. However, 

models performed slightly better on two-variable datasets when errors were 

autocorrelated than when errors were independent.  

 For linear datasets with independent errors, the test-set RMSE was lower for LM 

and GAM for both one variable models (2.03 and 2.03, for 𝜀 = 4, respectively) and two 

variable models (1.89 and 1.91 for 𝜀 = 4, respectively) than GBM and RF models (one 

variable RMSE = 2.28 and 2.36, for 𝜀 = 4, respectively and two variable RMSE = 2.08, 

2.36 for 𝜀 = 4, respectively). However, for nonlinear data, RMSE values were lower for 



36 
 

one-variable RF and GAM models (2.24 and 2.02, for 𝜀 = 4, respectively) and two-

variable RF and GAM models (3.03 and 2.09 for 𝜀 = 4, respectively) than LM (3.43 and 

6.14 for 𝜀 = 4, respectively). RMSEs for GBM were slightly higher than those for RF 

(Table A1).  

 For one and two variable, linearly structure data with autocorrelated errors (𝜌 = 

0.7), test-set RMSE values were lower for both one-variable (2.53 and 2.54, respectively) 

and two-variable LM and GAM models (1.90 and 1.92, respectively) than either one-

variable (2.77 and 2.84 , respectively) or two-variable RF and GBM models (2.13 and 

2.30, respectively).  

 For one and two-variable, non-linearly structured data with autocorrelated errors 

(𝜌 = 0.7), RMSEs for one variable GAM models were lowest (1.99), followed by RF, 

GBM, and LM (2.16, 2.58, and 3.43, respectively). The same trend was apparent for two 

variable GAM, RF, GBM and LM models (RMSE = 2.03, 2.66, 3.12, and 5.65, 

respectively). The results presented here are a summary of the main results, but all RMSE 

values can be found in (Table A4).   

Spatial simulations 

 SSN models performed better than any other method only if the data structure was 

purely linear, regardless of the strength of autocorrelation. However, for nonlinear data 

structures (“logistic” or “exponential”, Table 3), GAM achieved the lowest RMSE 

values. RMSE values for RF and GBM were consistently greater than those for GAM, 

especially for non-linearly structure data. RMSE values for GBM and RF were very 
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similar. GBM outperformed RF by a small margin for the linear and exponential model, 

but the reverse was true for the logistic model (Table 6).  

 

TABLE 6. RMSE values for all combinations of linear/nonlinear and strong/weak spatial 

autocorrelation for spatial simulations. The model with the smallest RMSE for each data 

structure is highlighted in bold. 

Method 

Linear, 

strong 

autocov. 

Linear, 

weak 

autocov. 

Exponential, 

strong 

autocov. 

Exponential, 

weak 

autocov. 

Logistic, 

strong 

autocov. 

Logistic, 

weak 

autocov. 

SSN 1.57 1.81 3.64 3.74 3.81 3.90 

LM 1.93 1.96 3.79 3.80 3.87 3.89 

RF 2.11 2.14 2.55 2.56 2.71 2.74 

GBM 2.02 2.04 2.38 2.40 2.94 2.96 

GAM 1.94 1.98 2.12 2.14 2.09 2.14 
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DISCUSSION 

Our ability to accurately predict temperatures over stream networks is critical for 

studying the distributional shifts of aquatic organisms (Isaak and Rieman 2013) and for 

making conservation management decisions (Hill et al. 2013, Jones et al. 2014, Westhoff 

and Rosenberger 2016). Research that uses stream temperature predictions to investigate 

aquatic species’ dynamics is urgently needed, as climate change related to human activity 

will continue to alter river thermal regimes (Welsh Jr et al. 2001). Predicting stream 

temperature presents a challenge because stream temperatures along a stream network are 

often autocorrelated (Peterson et al. 2006), the relationships between stream temperature 

and predictor variables may not be linear (Cressie et al. 2006), and factors may interact to 

influence stream temperature (Caissie 2006).  The SSN method, especially, is promoted 

for use primarily because it is the most accurate method (Isaak et al. 2010). However, the 

degree of prediction accuracy necessary to achieve study objectives is not often 

considered. As biological phenomena are notoriously noisy, the accuracy of predictions 

may not help us understand general ecological trends in the biological entities we are 

studying. As we have shown in this study, machine learning methods and GAM are 

excellent alternatives to SSN because they provide accurate predictions and are more 

accessible, interpretable, and computationally efficient than SSN. 

 

Computational demands and interpretability 

In this study, we found that SSN models were most accurate among the methods 

evaluated for predicting stream temperature for actual data, but two machine learning 
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methods, GBM and GAM, also achieved high predictive accuracy. GAM performed 

particularly well in spatial and non-spatial simulations, when the relationships between 

the response and predictor variables were non-linear. The drawbacks of SSN include 

substantial data pre-processing requirements, high computational times, and limited 

ability to fit nonlinear data and interactions.  Taken together, our results suggest that 

some machine learning methods, such as GAM, are viable alternatives to SSN that are 

accurate, computationally efficient, and are easy to automate for large datasets. 

It has been argued that non-spatial methods that do not explicitly account for 

spatial autocorrelation cannot be used to derive valid statistical inference (Rushworth et 

al. 2015). However, we contend that, to some degree, apparent spatial autocorrelation 

may be due to non-linear associations between the response variable and the predictor 

variables.  The high accuracies achieved by GAM and GBM could be due to the ability of 

both methods to fit nonlinear data structure or the ability of GBM to fit high-order 

interactions.  Ultimately, the goal is to make accurate predictions (rather than parameter 

estimation). Our results suggest that machine learning and other non-spatial methods can 

provide predictions of stream temperature that are sufficiently accurate for many 

ecological purposes. 

SSN models are computationally more intensive than methods described in this 

study, due to the calculation of covariance matrices (an n2 operation) (Isaak et al. 2014, 

Rushworth et al. 2015).  Computation efficiency is an important consideration as large 

amounts of stream temperature data is available online. In fact, datasets with more than 

2000 observations would likely have to be processed on high-powered computing 
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facilities (Ver Hoef et al. 2014, Turschwell et al. 2016). Moreover, SSN models require 

data to be pre-processed in a GIS, a task which requires advanced GIS skills (Isaak et al. 

2014). In contrast, RF, GBM and GAM are much more computationally efficient and do 

not require data to be pre-processed in a GIS. 

Interpretability of models is important to model users wishing to infer causality 

from analyses. Machine learning methods, as well as GAM, have advantages over SSN in 

terms of interpretability. Non-machine learning methods (SSN, LM and GAM) are 

interpreted in terms of the sign and value of coefficients and p-values of coefficients. 

This traditional method of model interpretation is appealing because it is simple and 

relatively easy to explain to a wider audience. The SSN provides a slight advantage over 

LM in that information about the autocorrelation present in the data can be inspected 

visually with a Torgegram (similar to a variogram plot but specialized for stream network 

data) (Ver Hoef et al. 2014). However, the sole use of p-values and coefficients in 

interpretation is problematic, especially as p-values decrease as the number of 

observations increase (Breiman 2001b). Interpretability in SSN and LM is also hindered 

by the use of high order interaction terms, which nearly impossible to interpret in the 

context of the study (Wood 2006). GAM produces smoothing plots, which can be useful 

for determining the shape of relationships response and predictor variables (Wood 2006). 

Moreover, the additivity of GAM means these models include few, if any, interactions, 

adding to their interpretability (Hastie and Tibshirani 1986).  

Although RF and GBM are usually described as being uninterpretable, “black 

box” methods (Lipton 2016), there are graphical methods applicable to both techniques 
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that assist with interpretation.  Variable importance plots shed light on the number of 

variable to include in a GAM or RF.  One- and two-variable partial dependence plots 

(Friedman et al. 2001, Friedman 2002) may be used to characterize the relationships 

between individual predictors or pairs of predictors and the response variable. These plots 

can be very useful for inferring ecological relationships (Cutler et al. 2007).  

 

Accuracy 

Our study shows that machine learning methods and GAM can, in fact, approach 

the accuracy of the SSN model. More accurate temperature predictions obtained with the 

SSN may be necessary to minimize the error in distribution models of thermally sensitive 

species. The thermal tolerance ranges of ectothermic aquatic species is important because 

it can be used to predict species’ absence or presence and distributional shifts in response 

to climatic changes (Eaton and Scheller 1996). Although using species’ thermal tolerance 

as a guide for determining the necessary prediction accuracy seems convenient, aquatic 

species do not always respond consistently to thermal changes (Isaak and Rieman 2013) 

either within species (Pörtner 2001) or within genera (Hildrew and Edington 1979). Thus, 

other methods from this study that are close in accuracy to the SSN model would be well 

suited for studies that rely on temperature predictions to make inferences about species’ 

distributions. 

The level of temperature aggregation is an important aspect in the study of river 

networks, as the thermal regime of rivers and aquatic species’ distributions can be 

characterized by daily, weekly, monthly, or annual temperature metrics (Caissie 2006). 
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Temperature measures can affect biological inferences, because more aggregated 

measures (e.g. yearly, monthly) can be predicted with less error compared with less 

aggregated measures (weekly, daily) (Turschwell et al. 2016). Indeed, we found that 

RMSE values were lowest and very similar for all statistical methods in predicting mean 

monthly temperature measures compared to weekly measures. For studies investigating 

species’ distributions and dynamics, more aggregated measures may be sufficient in 

predicting temperatures. The presence/absence of most freshwater species, including 

thermally sensitive salmonids, can be accurately predicted from mean monthly and even 

annual stream temperature (Buisson et al. 2008) (Keleher and Rahel 1996). Distributional 

patterns of freshwater trout species were closely related to mean July-August stream 

temperatures (Isaak and Hubert 2004). Finally, Hill and Hawkins (2014) used RF to 

predict mean summer stream temperature and model the presence of aquatic invertebrate 

species in 92 sites over the entire U.S with an RMSE of 1.9 °C.  A large body of evidence 

shows that species’ distributions can adequately be modeled by more aggregated stream 

temperatures, which means that non-SSN methods examined in this study (RF, GBM, 

and GAM) could be reliable prediction methods for most studies involving the prediction 

of aggregated temperature metrics. 

 

Conclusions 

Predicting stream temperatures accurately is important for gaining a better 

understanding of species’ distributions as the global climate continues to change (Isaak et 

al. 2012), testing hypotheses about species’ distributions (Hill 2013), and guiding 
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restoration and conservation decision-making (Hill and Hawkins 2014). Although we 

found that the SSN model was the most accurate predictor of stream temperature for two 

river networks in Idaho, two machine learning methods RF and GBM, as well as GAM, 

closely rivaled the accuracy of the SSN model. Predictions were especially close in 

predicting monthly or summer mean stream temperature measures. We also found that 

GAM (and machine learning methods, to a lesser extent) attained higher prediction 

accuracies than SSN when data had nonlinear structure, which suggests that these 

techniques would be better suited to most real-world data which rarely has linear 

structure. 

 Stream temperature prediction will become more important in the future, as 

species shifts due to climate change and other anthropogenic impacts will have long-

lasting implications on the ecological functioning of aquatic environments. Thus, 

understanding the types of methods for stream prediction, their advantages, and 

disadvantages will be useful for scientists engaged in this research. The choice of stream 

temperature prediction method should depend on specific data characteristics, such as the 

presence of linear/nonlinear structure, number of observations and variables, and the 

availability of statistical and computational resources. Overall, machine learning methods 

and GAM provide advantages over the SSN model due to their prediction accuracy, 

computational efficiency, accessibility, and interpretability. 
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APPENDIX A 

 MODEL COVARIATES 

 

TABLE A1. Covariates for Mwmt models 

LM/SSN LM lat long GAM GAM lat long RF RF lat long GBM GBM lat 

long 

Elevation Easting AirMwmt AirMwmt AirMwmt AirSummer

M 

AirMwmt AirMwmt 

Gvalley* Elevation Carea AirSummerM Carea Carea AirSumme

rM 

AirSummerM 

Rad Gvalley* Draind Carea Draind Draind Carea Carea 

Rad x 
AirMwmt 

Northing Elevation Draind Elevation Easting Draind Draind 

 
Rad Gvalley Easting x 

Northing 

(tensor product) 

Gvalley Elevation Elevation Easting 

 
Rad*AirMw

mt 

Rad Elevation Rad Gvalley Gvalley Elevation 

  
Slope Gvalley Slope Northing Lake Gvalley   

SummerMn

Fl 

Rad SummerMnFl Rad Rad Lake 

  
Valleyb Slope Valleyb Slope SlopeE Northing    

SummerMnFl 
 

SummerMn-

Fl 

SummerM

nFl 

Rad 

   
Valleyb 

 
Valleyb Valleyb Slope        

SummerMnFl        
Valleyb 

*indicates variables were arcsin-transformed

5
1
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TABLE A2. Covariates for SummerMean models 

LM/SSN LM lat 

long 

GAM GAM lat 

long 

RF RF lat 

long 

GBM GBM lat 

long 

Carea Carea Elevation AirMwmt AirMwmt AirSummer

M 

AirMwmt AirMwmt 

Elevation Easting AirMwmt AirSummer-

M 

Carea Carea AirSummer- 

M 

AirSummer

-M 

Gvalley* Elevation Carea Carea Draind Draind Carea Carea 

Rad x 
AirMwmt 

Gvalley* 
 

Draind Elevation Easting Draind Draind 

SummerMn

Fl 

Northing Draind Easting x 
Northing 

(tensor 

product) 

Gvalley Elevation Elevation Easting 

Valleyb* Rad x 
AirMwmt 

Gvalley Elevation Rad Gvalley Gvalley Elevation 

 
Summer- 

MnFl 

 
Gvalley SLOPE Northing Lake Gvalley 

 
Valleyb* Rad Rad Summer- 

MnFl 

Rad Rad Lake 

  
Slope Slope Valleyb Slope Slope Northing   

Summer-

MnFl 

Summer- 

MnFl 

 
Summer-

MnFl 

Summer-

MnFl 

Rad 

  
Valleyb Valleyb 

 
Valleyb Valleyb Slope        

Summer-

MnFl        
Valleyb 

*indicates variables were arcsin-transformed 

 

5
2
 



53 
 

TABLE A3. Covariates for Stream_Aug models 

LM/SSN LM lat long GAM GAM lat 

long 

RF RF lat long GBM GBM lat 

long 

Air_Aug Cumdrainag* Air_Aug Air_Aug Air_Aug Air_Aug Air_Aug Air_Aug 

Bfi Elev Bfi Bri Bfi Bfi Bfi Bfi 

Canopy Precip Canopy Canopy Canopy Canopy Canopy Canopy 

Cumdrainag* X_Coord Cumdrainag Cumdrainag Cumdrainag Cumdrainag Cumdrainag Cumdrainag 

Dam_effect Y_Coord Dam_effect Dam_effect Dam_effect Dam_effect Dam_effect Dam_effect 

Elev 
 

Elev Elev Elev Elev Elev Elev 

Flow_Aug 
 

Precip Flow_Aug Flow_Aug Flow_Aug Flow_Aug Flow_Aug 

Precip 
 

Slope X_Coord x 
Y_Coord 

(tensor 

product) 

Precip Precip Precip Precip 

Slope* 
  

Precip  X_Coord  X_Coord 

  
  

Slope 
 

Y_Coord 
 

Y_Coord 

              

*indicates variables were log-transformed 
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APPENDIX B 

 NON-SPATIAL SIMULATION RESULTS 

 

TABLE A4. RMSE values for non-spatial simulations. “LIN” and “NON” indicate linear and nonlinear data structure, 

respectively; “ind” and “auto” indicate independent and autocorrelated errors, respectively. “Number of vars” indicates the 

number of variables. “Resub RMSE”, “Test RMSE” and “CV RMSE” denote the resubstitution RMSE, test-set RMSE, and 

10-fold cross-validated RMSE, respectively. The last column “ρ” is the amount of autocorrelation in the errors (for data sets 

with autocorrelated error structures only).  

 

 

Linear/Nonlinear 

structure 

Auto/Ind 

Error 

structure 

Number 

of vars 
Method 

Resub 

RMSE 

Test 

RMSE 

CV 

RMSE 

Error 

variance  
Data model 

                 

ρ 

LIN ind 1 LM 1.94 2.03 1.98 4 
y = b0 + 

b1*x1 
0.7 

LIN ind 1 RF 1.12 2.28 2.28 4  0.7 

LIN ind 1 GBM 1.40 2.36 2.23 4  0.7 

LIN ind 1 GAM 1.94 2.03 1.99 4  0.7 

NON ind 1 LM 3.35 3.43 3.44 4 
y = b0 * 

exp(-b1*x1) 
0.7 

NON ind 1 RF 1.16 2.24 2.32 4  0.7 

NON ind 1 GBM 1.75 2.67 2.62 4  0.7 

NON ind 1 GAM 3.35 2.02 2.09 4  0.7 

LIN ind 2 LM 1.97 1.89 2.03 4 
y = b0 + 

b1*x1 + b2*x2 
0.7 

(Table continues)          
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LIN ind 2 RF 1.12 2.08 2.25 4  0.7 

LIN ind 2 GBM 0.81 2.36 2.08 4  0.7 

LIN ind 2 GAM 1.97 1.91 2.07 4  0.7 

NON ind 2 LM 6.01 6.14 6.24 4 

y = b0 * 

exp(-b1*x1) + 

b2*x2
2 

0.7 

NON ind 2 RF 1.49 3.03 3.09 4  0.7 

NON ind 2 GBM 1.22 3.52 3.39 4  0.7 

NON ind 2 GAM 6.01 2.09 2.18 4  0.7 

LIN auto 1 LM 1.92 2.53 1.96 4 
y = b0 + 

b1*x1 
0.7 

LIN auto 1 RF 1.10 2.77 2.24 4  0.7 

LIN auto 1 GBM 1.40 2.84 2.20 4  0.7 

LIN auto 1 GAM 1.92 2.54 1.98 4  0.7 

NON auto 1 LM 3.26 3.43 3.36 4 
y = b0 * 

exp(-b1*x1)  
0.7 

NON auto 1 RF 1.14 2.16 2.28 4  0.7 

NON auto 1 GBM 1.82 2.58 2.64 4  0.7 

NON auto 1 GAM 3.26 1.99 2.04 4  0.7 

LIN auto 2 LM 1.92 1.90 1.98 4 
y = b0 + 

b1*x1 + b2*x2 
0.7 

LIN auto 2 RF 1.09 2.13 2.22 4  0.7 

LIN auto 2 GBM 0.77 2.30 2.32 4  0.7 

LIN auto 2 GAM 1.92 1.92 2.00 4  0.7 

NON auto 2 LM 5.96 5.65 6.20 4 

y = b0 * 

exp(-b1*x1) + 

b2*x2
2 

0.7 

NON auto 2 RF 1.45 2.66 3.01 4  0.7 

NON auto 2 GBM 1.23 3.12 3.37 4  0.7 

(Table continues)          5
5
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NON auto 2 GAM 5.96 2.03 2.08 4  0.7 

LIN ind 1 LM 3.02 3.25 3.09 9 
y = b0 + 

b1*x1 
0.7 

LIN ind 1 RF 1.74 3.72 3.57 9  0.7 

LIN ind 1 GBM 2.17 3.82 3.48 9  0.7 

LIN ind 1 GAM 3.02 3.27 3.11 9  0.7 

NON ind 1 LM 3.92 4.37 4.01 9 
y = b0 * 

exp(-b1*x1) 
0.7 

NON ind 1 RF 1.69 3.64 3.42 9  0.7 

NON ind 1 GBM 2.40 3.91 3.68 9  0.7 

NON ind 1 GAM 3.92 3.24 3.08 9  0.7 

LIN ind 2 LM 2.99 3.25 3.09 9 
y = b0 + 

b1*x1 + b2*x2 
0.7 

LIN ind 2 RF 1.64 3.59 3.36 9  0.7 

LIN ind 2 GBM 1.21 3.91 3.58 9  0.7 

LIN ind 2 GAM 2.99 3.30 3.13 9  0.7 

NON ind 2 LM 6.36 7.00 6.61 9 

y = b0 * 

exp(-b1*x) + 

b2*x2
2 

0.7 

NON ind 2 RF 1.92 3.63 3.94 9  0.7 

NON ind 2 GBM 1.51 4.20 4.35 9  0.7 

NON ind 2 GAM 6.35 3.04 3.26 9  0.7 

LIN auto 1 LM 2.89 3.69 2.96 9 
y = b0 + 

b1*x1 
0.7 

LIN auto 1 RF 1.66 3.99 3.39 9  0.7 

LIN auto 1 GBM 2.07 3.99 3.32 9  0.7 

LIN auto 1 GAM 2.89 3.70 2.97 9  0.7 

NON auto 1 LM 3.92 4.69 4.03 9 
y = b0 * 

exp(-b1*x1)  
0.7 

(Table continues)          56
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NON auto 1 RF 1.63 3.93 3.27 9  0.7 

NON auto 1 GBM 2.35 4.36 3.53 9  0.7 

NON auto 1 GAM 3.92 3.62 2.97 9  0.7 

LIN auto 2 LM 2.98 3.29 3.08 9 
y = b0 + 

b1*x1 + b2*x2 
0.7 

LIN auto 2 RF 1.63 3.53 3.34 9  0.7 

LIN auto 2 GBM 1.17 3.85 3.52 9  0.7 

LIN auto 2 GAM 2.98 3.31 3.12 9  0.7 

NON auto 2 LM 6.39 6.52 6.63 9 

y = b0 * 

exp(-b1*x1) + 

b2*x2
2 

0.7 

NON auto 2 RF 1.87 3.67 3.86 9  0.7 

NON auto 2 GBM 1.49 4.17 4.22 9  0.7 

NON auto 2 GAM 6.39 3.02 3.20 9  0.7 

LIN auto 1 LM 2.00 2.58 2.04 4 
y = b0 + 

b1*x1 
0.8 

LIN auto 1 RF 1.16 2.82 2.35 4  0.8 

LIN auto 1 GBM 1.45 2.92 2.31 4  0.8 

LIN auto 1 GAM 2.00 2.54 2.05 4  0.8 

NON auto 1 LM 3.18 2.84 3.27 4 
y = b0 * 

exp(-b1*x1)  
0.8 

NON auto 1 RF 1.09 2.10 2.17 4  0.8 

NON auto 1 GBM 1.70 2.43 2.49 4  0.8 

NON auto 1 GAM 2.60 1.85 1.94 4  0.8 

LIN auto 2 LM 1.91 1.96 1.97 4  0.8 

LIN auto 2 RF 1.09 2.19 2.20 4  0.8 

LIN auto 2 GBM 0.77 2.40 2.32 4  0.8 

LIN auto 2 GAM 1.91 1.98 1.99 4  0.8 

NON auto 2 LM 5.97 6.26 6.21 4  0.8 

(Table continues)          
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NON auto 2 RF 1.44 3.00 2.97 4  0.8 

NON auto 2 GBM 1.16 2.97 3.31 4  0.8 

NON auto 2 GAM 5.97 2.13 3.31 4  0.8 

LIN auto 1 LM 2.83 3.20 2.89 9 
y = b0 + 

b1*x1 
0.8 

LIN auto 1 RF 1.62 3.57 3.30 9  0.8 

LIN auto 1 GBM 2.02 3.64 3.21 9  0.8 

LIN auto 1 GAM 2.83 3.20 2.90 9  0.8 

NON auto 1 LM 3.95 3.57 4.06 9 
y = b0 * 

exp(-b1*x1)  
0.8 

NON auto 1 RF 1.71 3.12 3.43 9  0.8 

NON auto 1 GBM 2.38 3.41 3.63 9  0.8 

NON auto 1 GAM 3.95 2.68 3.08 9  0.8 

LIN auto 2 LM 2.77 2.67 2.85 9 
y = b0 + 

b1*x1 + b2*x2 
0.8 

LIN auto 2 RF 1.54 2.96 3.06 9  0.8 

LIN auto 2 GBM 1.12 2.69 2.89 9  0.8 

LIN auto 2 GAM 2.77 2.69 2.89 9  0.8 

NON auto 2 LM 6.34 6.38 6.58 9 

y = b0 * exp(-

b1*x1) + 

b2*x2
2 

0.8 

NON auto 2 RF 1.90 3.69 3.91 9  0.8 

NON auto 2 GBM 1.54 4.31 4.30 9  0.8 

NON auto 2 GAM 6.34 3.10 3.25 9   0.8 
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APPENDIX C 

DETAILS OF SSN 

 

SSN models as described by Ver Hoef et al. (2006) take into account covariance 

structure of temperature data on a river network, which allow for the unique properties of 

stream networks such as branching structure, longitudinal connectivity, directed flow, 

and abrupt temperature changes at stream junctions (Isaak et al. 2014).  The basic form of 

the model is similar to that of a linear model 

𝐘 = 𝐗𝛃 +  𝛜 

where X is a matrix of fixed effects predictor variables and β is a parameter vector for 

fixed effects; the mean, Xβ, is modeled using predictor variables known to influence the 

response (Y). In contrast to a linear model with an independent N ~ (0, 1) error structure 

(ɛ), SSN models account for upstream (tail up) and downstream (tail down) 

autocorrelation using a weighted moving average function (Ver Hoef and Peterson 2006). 

Tail up and tail down models are derived using hydrologic distance. A general form of 

the SSN model is: 

 

𝐘 = 𝐗𝛃 + 𝑣TU + 𝑣TD + 𝑣EU + 𝑣NUG 

 

Where the 𝑣 components correspond to tail up, tail down, and Euclidian autocorrelation 

structures and a nugget effect.   
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Another important property of SSN models is that they account for the important 

spatial relationships among flow-connected and flow-unconnected sites. In flow-

connected sites, water flows from an upstream site past a downstream site. In flow-

unconnected sites, water from one site cannot reach another site via normal stream flow 

(i.e. water must move upstream to reach the other site).  

Features of SSN models, such as tail-up versus tail-down and flow-connected 

versus flow-unconnected may be understood after the introduction of some notation (also, 

see Fig. A1). Let  𝑥𝑖 be the distance upstream on the ith stream segment and 𝑙𝑖 be the most 

downstream location on the ith stream segment and 𝑢𝑖 be the most upstream location on 

the ith stream segment. Next, let 𝐼 be the total set of stream indices.  The index set of 

stream segments upstream of 𝑥𝑖, excluding 𝑥𝑖, is ∪𝑋𝑖  ⊂ 𝐼. Next, let 𝐷𝑥𝑖 be the index set of 

all stream segments downstream of 𝑥𝑖 into which 𝑥𝑖 flows, including the stream segment 

𝑥𝑖. Now, let 𝑠𝑖 and 𝑡𝑗 be two stream segments. 𝑆𝑖 and 𝑡𝑗 are flow connected if  𝐷𝑠𝑖 ∩

 𝐷𝑡𝑗 = 𝐷𝑠𝑖  or 𝐷𝑡𝑗  . Two segments, 𝑠𝑖 and 𝑡𝑗 are flow unconnected if 𝐷𝑠𝑖 ∩ 𝐷𝑡𝑗 ≠

 𝐷𝑠𝑖  or 𝐷𝑡𝑗.Similarly, distance between stream segments (including the upstream segment 

but excluding the downstream segment) may be denoted as  

 

𝐵(𝑠𝑖 , 𝑡𝑗) = {
(𝐷𝑠𝑖 ∩ 𝐷𝑡𝑗)

𝑐  ∩ (𝐷𝑠𝑖 ∪ 𝐷𝑡𝑗) , if 𝑠𝑖 and 𝑡𝑗 are flow connected

∅,                                                                                 otherwise.
 

Now, stream distance, which can be thought of as the shortest distance between two sites 

on a stream network, can be defined as follows : 
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𝑑(𝑠𝑖 , 𝑡𝑗) = {
|𝑠𝑖 − 𝑡𝑗|, if 𝑠𝑖 and 𝑡𝑗 are flow-connected

(𝑠𝑖 − 𝑢) + (𝑡𝑗 − 𝑢) ,               otherwise,
 

where 𝑑(𝑠𝑖 , 𝑡𝑗) is stream distance between two points 𝑠𝑖 and 𝑡𝑗 and, 𝑢 = max {𝑢: 𝑘 ∈

 𝐷𝑠𝑖 ∩ 𝐷𝑡𝑗} (Ver Hoef et al. 2006). A valid autocovariance function for tail up models is 

shown in equation 1: 

1 

𝐶(ℎ|𝜃) =

{
 
 

 
 ∫ 𝑔[(𝑥|𝜃)]2𝑑𝑥 + 𝑣𝑗

2 , if h =0

∞

−∞

∫ 𝑔(𝑥|𝜃)𝑔(𝑥 − ℎ|𝜃)𝑑𝑥

∞

−∞

, if h >0,

 

where h is Euclidean distance, and 𝑔(𝑥|𝜃) is the moving average function. Note that 

there is a discontinuity 𝑣𝑗
2 at h = 0 (the “nugget” effect) (Ver Hoef et al. 2006). Moving 

average functions work on the real line, which is defined from −∞ to + ∞.  On a stream 

network, however, stream segments split in two, so the moving average function is also 

split into two parts. To ensure stationary variances along stream segments, weights (ω), 

are assigned to stream segments based on stream flow volume (Ver Hoef et al. 2006). 

The addition of weighting prevents the inflation of variances for stream segments that 

have more upstream branching compared to other stream segments. In tail up models, the 

moving average function points in the upstream direction and correlation is calculated 

only between flow-connected sites, while in tail-down models, the moving average 

function points in the downstream direction, and correlation is calculated between flow-

connected as well as flow-unconnected sites (Isaak et al. 2014, Ver Hoef et al. 2014). The 
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weights necessary for tail up models are not required to ensure stationarity of tail-down 

models.  

 

 

FIG. A1. A simple representation of flow-connected and flow-unconnected sites. 

 

 

The tail up model of the covariance between two sites, 𝑠𝑖 and 𝑡𝑗 , is defined as 

2 

𝐶𝑢(𝑠𝑖 , 𝑡𝑗|𝜃) =

{
 
 

 
 
0 ,        if 𝑠𝑖 and 𝑡𝑗  are not flow-connected

𝐶1(0) + 𝑣𝑗 ,                                               if s = t 

∏ √𝜔𝐶1
𝑘∈𝐵𝑠𝑖,𝑡𝑗

(𝑑(𝑠𝑖 , 𝑡𝑗))  ,       otherwise,
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where  𝐶𝑖(ℎ) = ∫ 𝑔(𝑥|𝜃)𝑔(𝑥 − ℎ|𝜃)𝑑𝑥
∞

−∞
 (Ver Hoef et al. 2006) , and 𝑔(𝑥|𝜃) may be 

defined by valid autocovariance functions: linear with sill, spherical, Mariah, exponential, 

Cauchy, Empanovich, and Gaussian (Ver Hoef et al. 2006, Isaak et al. 2014).   

Now, for example, the exponential covariance function for the tail-up model can 

be expressed as 

3 

𝐶𝑢(ℎ|𝜃𝑢) = 𝜎𝑢
2𝑒

−
3ℎ
𝛼𝑢  . 

 

A valid autocovariance function for tail-down models is  

𝐶𝑑(ℎ|𝜃) = ∫𝑔(−𝑥|𝜃)𝑔(−𝑥 − ℎ|𝜃)𝑑𝑥,

ℎ

−∞

 

if sites are flow-connected, and for 𝑏 >  𝑎 (Fig. A1), a valid autocovariance function is 

𝐶𝑑(𝑎, 𝑏|𝜃) = ∫ 𝑔(−𝑥|𝜃)𝑔(−𝑥 − (𝑏 − 𝑎)|𝜃)𝑑𝑥,

−𝑏

−∞

 

 

if sites are flow-unconnected.  

Similarly, the exponential covariance function for the tail down model, which 

distinguishes between flow-connected and flow-unconnected sites, is expressed as 

4 

𝐶𝑑(ℎ|𝜃𝑑) =  {
𝜎𝑑
2𝑒

−
3ℎ
𝛼𝑑   , flow − connected 

𝜎𝑑
2𝑒

−
3(𝑎+𝑏)
𝛼𝑑  , flow − unconnected .
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In equation 4, a and b are defined as in Figure A1. In equations 3 and 4, 𝜎𝑢
2 and 𝜎𝑑

2 (> 0) 

are the “partial sills” (variance parameters and values of the covariance functions when 

the distance is 0) for the tail up and tail down models, respectively; αu and αd are the 

range parameters for tail up and tail down models, respectively, and h is the distance 

between two flow-connected sites (Ver Hoef and Peterson 2012).  

Although autocovariance functions based on stream distance are useful for stream 

networks, climatic and/or geographic variables may be best modeled by Euclidean 

distance. SSN models can take this into account, resulting in a models that may 

potentially have tail-up, tail-down, and Euclidean covariance structures (Isaak et al. 

2014). Another useful tool developed along with SSN models to visually inspect 

autocorrelation is the Torgegram (Peterson et al. 2013). Like a semivariogram, a 

Torgegram depicts semivariance over distance between sites; however, a Torgegram 

splits the semivariance between flow-connected and flow-unconnected sites (Peterson et 

al. 2013).  

Since their introduction in 2006, SSN models have received some attention in the 

field of stream ecology, but due to the limited awareness of their potential, 

implementation of SSN models remains limited (Isaak et al. 2014). Falke et al. (2016) 

used SSN models to predict stream temperatures in habitat modelling for trout in the 

Great Basin; such a model could be used by managers to prioritize conservation 

management of streams. SSN models have been used numerous times to predict stream 

temperatures under climate change scenarios (Isaak et al. 2010). SSN models have also 

been used to predict the influence of geographically isolated wetlands on stream flow 
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(Golden et al. 2016). These models were successfully used to predict stream temperatures 

in different regions, including the western (Isaak et al. 2010), midwestern (Golden et al. 

2016), and eastern United States (Detenbeck et al. 2016) and Australia (Turschwell et al. 

2016). Isaak et al. (2016) estimated salt trout populations in the Salt River watershed in 

Utah, while Brennan et al. (2016) used SSN models to quantify the movement of 

strontium isotopes over a river network and geographic features. These two latter 

examples show that SSN models can be generalized to predict other ecological 

phenomena besides stream temperatures.  

SSN models are more accurate in predicting stream temperatures than linear 

models (Isaak et al. 2010) and random forests (Turschwell et al. 2016). They can also be 

used to predict stream temperatures at unsampled locations along a stream network (Isaak 

et al. 2014). Random and mixed effects can also be used in SSN models, adding to their 

versatility (Ver Hoef et al. 2014). However, SSN models suffer from a considerable GIS 

data pre-processing requirement; furthermore, model implementation and interpretation 

requires advanced background in statistical theory and R computing skills (Isaak et al. 

2014). These two barriers may be prohibitive in allowing practitioners or other stream 

scientists to analyze data using SSN models. In addition, SSN models are much slower 

computationally than other methods discussed in this paper, and for large datasets (> 

2000 observations), high – power computing facilities are necessary for analysis (Ver 

Hoef et al. 2014). Finally, since SSN models are an extension of general linear models 

(GLMs), the assumptions of linearity, normality and heteroscedasticity of residuals, must 

also be met. 
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