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ABSTRACT 

The Sequence Stratigraphy of the Middle Cambrian Wheeler Formation 

in the Drum Mountains of West Central Utah 

by 

Loren P. Schneider, Master of Science 

Utah State University , 2000 

Major Professor: Dr. W. David Liddell 
Department: Geology 

Ill 

The majority of the Middle Cambrian Wheeler Formation in the Drum Mountains 

was deposited during a single 3rd order sequence. Superimposed onto this sequence are 

three indistinct 4th order cycles and twenty distinct 5th order cycles. These higher order 

cycles were likely deposited within short intervals of geologic time (204 to 405 ky). 

The lower sequence boundary zone occurs within the Swasey Formation. The 

Transgressive Surface is the contact between the Swasey and Wheeler Formations . The 

Maximum Flooding Surface is located near the top of the lower Wheeler Formation , 

which also approximates the base of the Ptychagnostus atavus range zone. The upper 

sequence boundary is marked by stromatolites , which occur near the top of the upper 

member of the Wheeler Formation in the Drum Mountains. 

Deposition of the Wheeler Formation in the Drum Mountains was controlled by 

eustacy and tectonics . Local normal faulting associated with Middle Cambrian post­

rifting thermal subsidence may have caused some of the 5th order cycles. 



lV 

The cycles and surfaces defined in this stratigraphic analysis, and the base of the 

Ptychagnostus atavus and P. gibbus range-zones, can be used to correlate strata occurring 

in other localities in the eastern Great Basin. In addition, this study enables the evaluation 

of the effect of tectonics (faulting) versus global eustacy on the sedimentary regime 

occurring within the Middle Cambrian House Range Embayment. 

(95 pages) 
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I dedicate this project to the memory of my mother , Blanche Marie Duvivier. 

Life is a bowl of queries. 
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INTRODUCTION 

Purpose 

The Middle Cambrian Wheeler Formation is world renowned for its well­

preserved trilobite fauna (Robison, 1991 ). As a result, the Wheeler Formation in the 

Drum Mountains of western Utah has attracted studies of its paleontology and 

paleoecology (Robison , 1962; White, 1973; McGee , 1978; Vorwald, 1983), 

sedimentology (Robison and Rees, 1981; Grannis, 1982), and biostratigraphy (Robison 

1964, 1976; Rowell et al., 1982). All ofthese studies, however , were performed before 

the development , or at least widespread use, of sequence stratigraphy. Sequence 

stratigraphy provides a unifying framework, within which previous and future studies of 

the Wheeler Formation can be better understood. 

Petroleum geologist s first developed sequence stratigraphic concepts in the 

1970' s (Emery and Meyers, 1996). In seismic data acquired on continental shelves, sets 

of stratigraphic patterns (system tracts and parasequences) are reported in a vertical 

sequence (Vail et al., 1977). Collectively , these sets ofreoccurring stratigraphic patterns 

are called sequences (Vail et al., 1977). Sequences are caused by relative sea level 

oscillations (Vail et al., 1977). They have a predictable internal framework that can be 

used to correlate sedimentary rock types (facies) over great distances (Emery and 

Meyers, 1996). 

The objective of this project is to present a sequence stratigraphic model that 

explains the paleontologic , paleoecologic, sedimentologic, and stratigraphic patterns 

found in the Wheeler Formation in the Drum Mountains. However, before starting the 
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analysis, it was important to address an issue that would affect the sequence stratigraphic 

interpretations. 

The Wheeler Formation in the Drum Mountains is anomalously thick relative to 

other localities (White, 1973). Further, near the middle of the Wheeler Formation in the 

Drum Mountains, a structural geologist observed shales having cleavage structures. 

These two observations , as well as others, led to the hypothesis that the Wheeler 

Formation in the Drum Mountains was structurally doubled as a result of Late Mesozoic 

thrust faulting. Therefore, a secondary objective of this project was to test this hypothesis 

of structural doubling. 

This project was significant because it was the first to define high-resolution strata 

(parasequences) in the Middle Cambrian of west central Utah. These high-resolution 

strata were likely deposited within short intervals (204 to 405 ky) of geologic time . The 

highly resolved framework in the Drum Mountains can be used to correlate Middle 

Cambrian strata over large areas within the eastern Great Basin. Within this correlated 

framework, it will now be possible to examine fauna! response to eustatic events 

occurring in different environments. 

Previous Work 

The Wheeler Formation was first described by Walcott (1908) in the House 

Range of west central Utah. Robison (1964) described the biostratigraphy of the Wheeler 

Formation in the House Range and Drum Mountains . White (1973) described the 

paleontology and depositional environments of the Drum Mountains Wheeler Formation . 

McGee ( 1978) described the depositional environments and inarticulate brachiopods of 
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the lower Wheeler Formation in the east central Great Basin, including the Drum 

Mountains. Dommer (1980) described the general geology of the entire Drum Mountains 

area. Robison and Rees (1981) described the Wheeler Formation in the Drum Mountains 

as generally representing a shallowing-upward sequence from deep-water agnostoid­

bearing beds to intertidal microbial stromatolites. 

Grannis (1982) described the sedimentology of the Wheeler Formation in the 

Drum Mountains. Rowell et al. (1982) recognized the base of the Ptychagnostus atavus 

Range Zone occurring in the Wheeler Formation as an easily recognizable, time­

significant biohorizon, which can be used to correlate rocks in many areas in the world. 

Vorwald (1984) described the paleontology and paleoecology of the upper Wheeler 

Formation in the Drum Mountains. 

Stratigraphy 

Dommer ( I 980, p. 60) describes the Swasey Formation (limestone) as "appearing 

much as it does elsewhere in western Utah. The lower 24.1 m form a dark gray, mostly 

fossil-barren cliff. The upper 31.4 mare also fossil poor, thin bedded, and somewhat 

argilaceous and form a f1aggy backslope above the cliff." 

Dommer ( 1980) mapped three informal members in the Drum Mountains Wheeler 

Formation. Dommer (1980, p. 61) described the lower member of the Wheeler Formation 

as consisting of "thin to very-thin-bedded argilaceous limestone, with abundant agnostid 

trilobites and siliceous hexactinellid sponge spicules. The lower member forms a silver 

colored flaggy slope." 



4 

Dommer (1980, p. 61) described the Middle Member of the Wheeler Formation as 

consisting of "medium to dark-gray, thin-bedded limestone, the upper portion of which 

forms prominent ledges in the midst of the Wheeler slopes." 

Dommer (1980 , p. 61) described the Upper Member of the Wheeler Formation as 

consisting of "buff-weather ing siltstone with limestone interbeds at the base. The 

limestone interbeds at the base of the upper member are extremely fossiliferous, 

containing abundant Elrathia, Asaphiscus, and trace fossils." 

The Pierson Cove Formation is dominantly a dark gray lime mudstone mottled 

with dolomitic mudstone , and fine-crystalline , medium gray limestone (Hintze and 

Robison , 1975). Dommer (1980) found the contact between the Pierson Cove Formation 

and underlying upper member of the Wheeler Formation to be gradational. Because it 

was easier to map, Dommer (1980) placed the contact at the base of the first major cliff 

above the buff-colored shale of the upper Wheeler Formation. Workers have shifted the 

upper boundary of the Drum Mountains Wheeler Formation, as well as the lower , over 

the last 35 years. This boundary evolution is explained in detail on page 41. 

Geologic Setting 

The Drum Mountains are located in west central Utah, about 45 km northwest of 

Delta (Fig. 1). The terrain is rugged and rocky with elevations from 1500-2135 m. The 

dry desert climate and lack of dense vegetation provides for great rock exposures. 

The Drum Mountains include nine formations of Lower and Middle Cambrian 

age (fig. 2) that have over 5000 m of combined stratigraphic thickness (Hintze, 1988). 
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The strata dip at approximately 20-30° to the south, southwest, and west (personal 

observation). Some of these rocks are intruded or covered by Tertiary igneous rocks 

(Dommer, 1980). Approximately 1.5 km northwest of the field area is the Drum Mine, 

which exploits disseminated gold from ore bodies in Middle Cambrian carbonate rocks 

and Eocene to Oligocene igneous rocks (Nutt and Thorman, 1992). 

Cambrian Paleogeography 

7 

The Cambrian strata were deposited at a time when the North American craton 

was rotated nearly 90 degrees relative to its modem orientation, and what would 

eventually become the state of Utah was located at the equator (Scotese, 1997). During 

the Late Proterozoic and Early Cambrian , rifting occurred in California , Nevada , and 

Utah (Christie-Blick , 1984). Later, during the Middle Cambrian, the western margin of 

proto-North America became a passive margin that underwent post-rilling thermal 

subsidence (Bond ct al., 1989). At that time Utah was on the northwestern edge of the 

craton and the geography consisted of a broad platform that was inundated by a relatively 

shallow sea (Scotese , 1997). This environment harbored a rapidly evolving and relatively 

new ecology, including benthic and plank.tic trilobites, brachiopods , and sponges 

(Robison , 1991 ). Also during that time , relative sea level was rising as part of a second 

order , tectonically driven, cycle (Sloss, 1963). Superimposed on the overall transgression 

were lower order (3rd- 5th) regressive-transgressive pulses (Vail et al., 1991). 

Three general groups of lithofacies in the Cambrian stratigraphy of the eastern 

Great Basin can be recognized (Palmer, 1971) (f<ig.1 ). Robison (1964, p. 996) states that 

these lithofacies 
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occur in sinuous , laterally interfingering belts that approximately parallel the 
ancient cratonic coastline. Rocks of the inner and outer detrital belt are 
characterized by a high content of argillaceous and arenaceous material, 
whereas rocks of the middle belt are composed of relatively clean 
carbonates. 

Most of the Wheeler Formation is interpreted to have been deposited in the outer 

detrital belt (Palmer , 1971 ). The Swasey Formation and the Whirlwind Formation are 

examples of the middle carbonate belt and the inner detrital belt, respectively (Palmer , 

1971). 

In addition, Palmer (1971) introduced a Middle Cambrian paleogeographic 

feature called the House Range Embayment (HRE) (Fig. 1, 3). Palmer (1971, p. 68) 

described the HRE as "a depression in the Eureka-House Range region forming a broad 

embayment terminating just east of the House Range." More recently, Rees (1986, p. 

1054) described this feature as 

an asymmetrical trough that deepened and widened as it extended 
approximately 400 km westward across the shelf toward the edge of the 
continent. The trough axis lay near its abrupt southern margin , which was 
a normal fault separating an area of continuous shallow-water 
accumulation to the south from deep-water deposition. The northern flank 
of the embayment was initially a drowned platform that forms a 
southward-sloping ramp. 

Drum Mountains area 

150 km 

FIGURE 3-Block diagram of the House Range Embayment in 
west central Utah as described by Rees (1986). Note the normal 
fault on the southern edge of the embayment. This image is 
adapted from Grannis (1982). 

E 



METHODS 

Location of Study Area 

The study area is located in the southeastern Drum Mountains. The specific 

locality ofthe measured stratigraphic sections can be found in S ½, Sec. 17, T15S, 

Rl0W, Drum Mountains Well, UT 7.5' quadrangle , 1971 (Fig. 4). This locality was also 

studied in detail by Robison (1962), White (1973), McGee (1978), Vorwald (1984), 

Robison and Rees (1981 ), and Grannis (1982) . 

Field Methods 

The first field objective was to walk the section and identify meter-scale 

parasequences. Parasequences were identified , as defined by the University of Georgia 

Stratigraphy Lab (1999, p. 4), "as a relatively conformable succession of genetically 

related beds or bedsets bounded by marine flooding surfaces and their correlative 

surfaces. In addition to these defining characteristics, most parasequences are 

asymmetrical shallowing-upward sedimentary cycles ." 

In this project , the word parasequence is used synonymously with the word cycle. 

The shallowing-upward sedimentary cycles in this study area have a lower carbonate 

shale unit (deep-water facies) that grades upward into a limestone unit (shallow-water 

facies). The upper surface of each limestone unit is separated from the shale of the next 

cycle by a sharp contact (marine-flooding surface). 

9 



I Kilometer 

N 

+ 
Legend 

..---- Exposed l:loundary 

..... Cove red l:loundary 

# e Stromatolites 

Measured Scct1on 

, Eros ive Surface 

/ Road (creek bed) 

FIGURE 4-Map of study area 
within the southeastern Drum 
Mountains of west central Utah. -0 



11 

Rock samples, fossils, and other data were collected from the lower and upper 

units of each cycle. Many of the lower shale units were less resistant to erosion than the 

upper carbonate units. As a result, the lower units were often slope-forming and covered 

by talus. In order to expose fresh outcrop surfaces it was often necessary to dig trenches 

into the hillslope . 

The stratigraphic thickness of each cycle was determined by using a Jacob staff 

and Brunton compass. Colors of each unit were determined by using the GSA Rock 

Color Chart. The ichnofabric index of Droser and Bottjer (1988) was used to quantify the 

extent of bioturbation occurring in the carbonate rocks. Dunham's (1962) classification of 

carbonate rocks was used to name the limestone lithologies. 

Fossil densities were detem1ined by counting the fossils on exposed outcrop 

surfaces . Because these surfaces ha<l variable areas, I extrapolated each sample density to 

a standard (fossils/m2
) . 

Structural observations within the measured section were noted simultaneously 

with that of the sedimentology and paleoecology. Localities outside of the measured 

section were also inspected for structural deformation. 

Laboratory Methods 

Insoluble-Residue Analysis 

Thirty-four rock samples were powdered and 50.0 g of each was weighed using a 

Brainweigh B1500D scale by OHAUS. Each powdered sample was then placed in a 
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preweigh ed glass jar. Hydrochloric acid (HCl) of 20% concentration was then poured 

slowly into each of the jars to avoid excessive foaming. This method prevented loss of 

any portion of the sample. The acid-enriched samples were stirred and then allowed to 

react for 8 hours. Typically, most of the HCI was consumed within an hour, but it took 8 

hours for the mud to settle out of suspension before the supernatant fluid could be 

removed. After removal of the supernatant fluid, the samples were then subjected to 

another bath of HCL. If the sample did not react after stirring, it was then set aside from 

the others and allowed to settle. The other samples that continued to react were put 

through the process of settling, supernatant fluid removal, and HCI bathing. They were 

put through these processes for as many repetitions as it took for them to stop reacting. 

After each sample stopped reacting and had settled , it was rinsed with distilled 

water. It then was allowed to settle again, and then rinsed twice more. Samples then were 

allowed to desiccate until they appeared dry. To complete the drying process they were 

then placed in a single-wall transit oven at 115° C for 8 hours. Each sample was then 

removed from the oven and weighed before cooling to minimize any absorption of 

moisture from the surrounding air. The weight ratio of insoluble material to the original 

was then calculated using a Microsoft Excel spreadsheet. 

Insoluble-Organic-Carbon Analysis 

Organic carbon was separated from the total insoluble residue by baking the 

previously mentioned samples at 550° C for 8 hours in either a Cress Electric Kiln Model 

C-100-E or a Fisher Isotemp Muffle Furnace Model 184A. Before baking, the samples 

were weighed using a Fisher Scientific XL-3000 scale to a precision of 0.01 g. After 



baking, the samples were again weighed before they cooled. The weight ratio of the 

insoluble organic carbon to the original weight (pre HCI bath) was calculated using a 

Microsoft Excel spreadsheet. 

Quantitative Analysis of Data 

13 

A computer program called Multi-Variate Statistical Package (MVSP 3.01) was 

used to perform a cluster analysis on fossil data. The four general fossil groups observed 

in the Wheeler Formation (polymeroids , agnostoids, brachiopods, and sponge spicules) 

were used as variables and the twenty cycles were used as cases. In each of the twenty 

cycles , the numeral 1 was plotted if a fossil group was present. The numeral O was plotted 

if that fossil group was absent. The clustering was unconstrained. The clustering method 

was UPGMA. The Jaccard similarity coefficient for binary data was used . 

Thin-Sections 

Thin-sections were made from rock samples taken from the lower and middle 

Wheeler Formation. The Geology Department of Utah State University provided the 

equipment with which the thin-sections were fabricated. 

X-Ray Diffraction 

The clay mineralogy of four shale samples from four different stratigraphic 

horizons was determined through the techniques of x-ray diffraction. The samples came 

from the following stratigraphic horizons: the lower unit of cycle 20 in the upper Wheeler 

Formation, the lower unit of cycle 1 in the lower Wheeler Formation, the Whirlwind 
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Formation , and the Chisolm Formation (both of which occur below the Swasey 

Formation). 

To identify the presence of smectite , powdered samples were exposed to ethylene­

glycol vapor at 65° C for I hour. After cooling, each sample was subjected to the same 

procedure. To identify the presence of kaolinite, each sample was then heated at 550° C 

for I hour , allowed to cool, and then heated once again. 



RESULTS 

Stratigraphy, Sedimentology, and Paleoecology 

In this study the Wheeler Formation in the Drum Mountains is 309 m thick. The 

lower boundary is at the sharp transition occurring between light gray , ledge-formin g 

(stair-step) limestone of the Swasey Formation and pale red purple , slope-forming shale 

(and medium dark gray limestone) of the Wheeler Formation. The upper boundary is at 

the base of the "southeast-thickening," platey shale, which occurs within the cliffs and 

ledges of Sawtooth Ridge (Fig . s:. 

FIGURE 5-Sawto oth Ridge and the approximate boundarie s of 
the Swasey, Wheele ~, and Pierson Cove Formations. View is to 
the west. 

15 
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Dommer (1980) informally subdivided the Wheeler Formation into lower, middle , 

and upper members . These members can be identified in the field by their different 

weathering profiles. The lower member is a slope-former, the middle member is a ledge 

to cliff-former , and the upper member is a slope and cliff-former. Within these three 

sections are twenty , well-defined cycles (parasequences), having thicknesses ranging 

from 0. 75-106 m. Each cycle contains a relatively shale-rich, lower unit that grades 

upsection into a carbonate-rich , upper unit. 

Figure 2 contains a stratigraphic column of Lower, Middle, and Upper Cambrian 

Formations within the Drum Mountains . Also shown is a stratigraphic column of the 

Wheeler Formation showing the relationship of the three informal members , cycles 1-20, 

the P. gibbus and P. atavus agnostoid trilobite range zones, and the Bolaspidella and 

Oryctocephalus polymeroid trilobite range zones. Detailed stratigraphic, sedimentologic , 

and paleoecologic attributes of this generalized column are presented in figures 6, 8-10, 

and 12-16 (shown later). In these figures , the appearance of the stratigraphic column 

reflects the relative weathering profile of the sediments occurring in the study area. The 

color data refer to both the weathered and fresh surface unless otherwise noted. In the 

upper left comer of each detailed column is a miniature stratigraphic column of the 

Wheeler Formation, which can be used as reference. 

Upper Swasey Formation 

The upper 30 m of the Swasey Formation (Fig. 6) is dominantly a ledge-forming, 

coarse-grained, carbonate pack-grainstone. At 30 m below the Swasey-Wheeler 

Formation contact, a stratigraphic horizon marks a distinct, bedding-parallel color 
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transition . Below the transition, the rock weathers to medium gray (NS) and above it is 

light gray (N6) . Five meters above this color transition is an undulating erosional horizon 

that has wavelengths of 1.0 m and amplitudes of 0.5 m (Fig . 7). The lithology 

immediately above and below this undulating horizon is a rippled oolitic grainstone . 

Upsection , oncoidal packstones with ooid and trilobite sclerite lenses occur. The 

uppermost 10 cm of the Swasey Formation contains a polymeroid sclerite grainstone. The 

upper surface of the Swasey Formation has irregular relief with wavelengths of 

5-10 cm and amplitudes of 1-4 cm . 

FIGURE 7-Erosional surface in the upper Swasey Formation . 
The line highlights the undulatory nature of the surface . The 
lithology above and below the surface is oolitic grainstone . 
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Cycles 1-6 in the Lower Wheeler Formation 

At the Wheeler Formation contact there is an abrupt facies transition. The 

irregular surfaced, light gray, trilobite sclerite grainstone of the Swasey Formation is 

covered by a thin (0.2 m), pale-red purple, paper shale. This shale is the lower unit of the 

first cycle occurring in the Wheeler Formation (Fig. 8). 

The first four cycles of the lower Wheeler Formation are characterized by shales 

that grade upsection into carbonate-rich upper units. The color of all four of these upper 

units is medium dark gray (N4). This color contrasts noticeably with the medium gray 

(NS) of the Swasey Fom1ation. Fossils in the first four cycles include sponge spicules and 

disarticulated agnostoid trilobites . They both occur in low densities (agnostoids 0-2/m2
, 

spicules 5-50/m2
). 

Cycles 5 and 6 differ from the first four. Their lower units are composed of thin­

bedded (3 cm) calcisiltite intercalated with very thin (0.3 cm) shale partings. Both the 

calcisiltite and the shale are laminated. The upper unit of cycle 5 is a thick (25 cm) 

calcisiltite bed. The upper unit of cycle 6 is ledge forming, intercalated calcisiltite and 

shale. The shale partings of this upper unit are thinner. Shale is more susceptible to 

physical weathering processes than limestone, and because the intercalations of this upper 

unit have less shale, they are therefore more resistant to weathering. 

Cycles 7-8 in the Lower Wheeler Formation 

Cycles 7-8 (Fig. 9) are also composed of thin-bedded, intercalated calcisiltite and 

shale. In the lower unit of cycle 7-8, the shale partings thicken upsection. In the ledge-
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forming upper unit of cycle 7, the shale partings are abruptly reduced in thickness. In the 

upper unit of cycle 8, the thickness of the shale partings decrease gradually. Agnostoid 

trilobite and sponge spicule densities (agnostoids 15-50/m2, spicules 15-1 00/m 2
) increase 

in these two cycles. 

Cycles 9-12 in the Lower and Middle Wheeler Formation 

Cycle 9 (Fig. 10) marks an abrupt change in facies from that of cycles 5-8. Its 

lower unit grades from fissile to platey shale and contains extremely high densities of 

spicules (I 000/m 2
) , and moderately high densities of disarticulated polymeroid ( 40/m 2

) 

and agnostoid ( 40/m2
) trilobites. The upper unit of cycle 9 is a moderately bioturbated 

(index 3) carbonate mud-siltstone . It contains fossil densities that are greater than that of 

the lower unit. 

Cycle 10 is thin ( I .6 m) relative to the other cycles. Its lower unit is fissile shale 

and it lacks fossils. The upper unit has three thin bedded carbonate mud-siltstone beds 

that contain disarticulated agnostoid and polymeroid trilobites, and sponge spicules, all of 

which occur at high densities (75-1 00/m2
). 

The lower unit of cycle 11 grades from fissile to platey shale. Its upper unit is 

ledge forming with intercalated shale and carbonate mudstone. In this upper unit, the 

shale thickness decreases upsection while the carbonate mudstone thickness increases. 

The uppermost surface is a hardground characterized by irregular relief and a grayish 

purple color (SP 6/2) . Both the lower and upper units of cycle 11 have sponge spicules 

occurring in low densities (25/m2
). 
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The lower unit of cycle 12 contains platey shale. At 0.5 m above the hardground 

of cycle 11, there is a 2-cm, condensed, agnostoid-sclerite bed. Above the condensed bed, 

platey shales weather to very pale orange (1 0YR 8/2) and the fresh rock is medium dark 

gray (N4). Fossils in this zone include articulated agnostoid trilobites with moderate 

densities ( 40/m 2
) and sponge spicules of moderate to low densities (50-20/m 2

). 

Upsection , the shale increases in thickness until reaching a comformable contact with a 

medium dark gray (N4) cliff that is approximately 6 m high. This cliff is not only a 

portion of the upper unit of cycle 12, but it also marks the contact between the lower and 

middle members of the Wheeler Formation. 

The upper unit of cycle 12 (middle Wheeler Fo1mation) is composed of thin 

calcisiltite (6 cm) beds intercalated with very thin shale partings (0.5 cm) These 

intercalations have a greater thickness (6.5 cm) than those occurring lower in the section 

(3.3 cm). The intercalated calcisiltite and shale lithology is maintained throughout the 

entire thickness (90 m) of this upper unit. 

Tightly folded beds distinctly characterize the initial 3 m of the upper unit of 

cycle 12 (Fig. I 1 ). Folded beds occur at other stratigraphic horizons in different localities 

within the middle Wheeler Formation , but their intensity of folding is much less than this 

lower contorted zone. Folded beds that are truncated by non-deformed intercalations 

mark the top of the contorted zone. 

The final 2 m of the upper unit of cycle 12 (bottom of Fig. I 0) is moderately 

bioturbated (index of 3-4 ). At the uppermost surface of the upper unit of cycle 12 there 

are ooid-filled channels (1 cm deep, 10-15 cm wide). 



FIGURE 11-Contorted unit at the base of the middle Wheeler 
Formation. Note the hammer for scale. 
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Cycles 13-18 in the Upper Wheeler Formation 

Cycles 13 and 14 (Fig. 12) continue to maintain the intercalating calcisiltite and 

shale lithologies found farther below in the section. However, these cycles contain 

inarticulate brachiopods as well as agnostoid trilobites. The upper units of these two 

cycles are also slightly bioturbated (index of 1.5-2). 

26 

Cycles 15 and 16 have distinct shales in the lower units that coarsen upward into 

carbonate-rich cycle caps. The upper unit of cycle 15 is moderately bioturbated (index of 

3.5) and contains oncoids and ooid cross laminae. The upper surface is a hardground 

characterized by irregular relief that is grayish purple (5P 4/2) . The upper unit of cycle 16 

is also moderately bioturbated (index of 3.5) and has oncoids and intraclasts . 

The lower units of cycles 16 and 17 have thin beds of gypsum "beef." In the 

upper unit of cycle 14, polymeroid trilobites become dominant in the upper Wheeler 

Formation. The lower units of cycles 18 and 19 contain shale-dominated intercalations. 

Cycle 19 and Lower Unit of Cycle 20 in the Upper Wheeler Formation 

The upper unit of cycle 19 has three thin beds (3-6 cm) having different 

lithologies (Fig. 13). The first is a carbonate mudstone, the second is an oolitic 

grainstone, and the third is a sclerite packstone. 

The lower unit of cycle 20 is a yellowish gray (5Y 7/2), platey shale. It has well­

preserved , articulated , polymeroid and agnostoid trilobites. They both occur in very low 

densities ( 1-5/m2
). This lower unit is 51. 7 m thick. 
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FIGURE 12-Detailed stratigraphic column of cycles 13-18 
in the upper Wheeler Formation with specific attributes of 
each cycle. 
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Litholo gy Structures Color Fossils Taphonomy 

platey shale none yellowis h gray polymeroids 5/m1 articulated 
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3cm ooids 
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bioturbated condensed zone 

carbonate mudstone 
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------------------- ---- ---------------- --------- ------------------- --------------------- ----------------------
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intercalated shale med. gray 
and mudstone none none none 

N5 

FIGURE 13-Detailed stratigraphic column of cycles 
19-20 with specific attributes of each cycle. 
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Lower and Upper Uni/ o,_(Cycle 20 in the Upper Wheeler Formation) 

About half way up through the lower unit the platey shale turns slabby (Fig. 14). 

The slabby shale thickens upsection and becomes increasingly bioturbated. The upper 

unit of cycle 20 is marked by a cliff ( ~ 15 m tall). The cliff is a mottled carbonate 

mudstone . 

Upper Unit of Cycle 20 in the Upper Wheeler Formation 

In lhe upper unil of cyde 20 lhere is <lramalic variabiiily lhal occurs ialeraiiy 

within the study area (Figs. 15 and 16 ). An example of this occurs at approximately 20 m 

below the contact between the Wheeler and Pierson Cove Formations. At this horizon , on 

the nose of Sawtooth Ridge (Fig. 5), the lithology is a mottled carbonate mudstone. 

About 1 km to the southeast , and next to the creek bed (road) , there is an outcrop surface 

exposing a group ofrelatively small (- 0.8 x 0.3 m), elongate (in plan view), 

stromatolites. Farther to the southeast( ~ 0.5 km) there is another group of larger (- 1.5 x 

1.0 m), and less elongate , stromatolites . East of this locality (- 1 km) there is yet another 

outcrop of giant (- 2.0 m diameter) stromatolites having a very hemispherical geometry. 

In addition , on the nose of Sawtooth Ridge , at the contact between the Wheeler and 

Pierson Cove Formations , there is a thin (0.7 m) platey shale bed. This bed increases 

dramatically in thickness (-20 m) to the southeast in just 0.3 km. 
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FIGURE 14-Detailed stratigraphic column of the middle 
of cycle 20 with specific attributes. 
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- I I FIGURE 15-Detailed stratigraphic column of 
- I I I 
- I I upper cycle 20 with specific attributes. 
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- I I the uppermost Wheeler Formation. 
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Cluster Analysis of Paleontologic Data 

The results of the R-mode cluster analysis are shown in Fig. 17. The R-mode 

analysis shows the relative frequency of association between each fossil group. For 

example, spicules and agnostoids occur together more often than any other combination. 

Similarly , brachiopods and polymeroids occur together more often than any other 

combination. The cluster containing spicules and agnostoids has a higher coefficient 

(0.60) , and therefore a greater frequency of occurrence, than the cluster containing 

brachiopods and polymeroids (0.41 ). The importance of performing this analysis is to 

identify different faunal communities. [dentifying the faunal communities will then 

support interpretations of the depositional environment. 

The Q-mode analysis (Fig. 18) displays the relative similarity of each cycle based 

on its fossil content. Specifically, the Q-mode analysis identifies the different biofacies 

occurring within the deposits . There are eight different clusters occurring throughout the 

Wheeler Formation. Most of the cycles in the lower Wheeler Formation are separated 

from those occurring in the upper Wheeler Formation, thereby suggesting that the lower 

Wheeler Formation has a different biofacies than that of the upper. 

Insoluble Residue and Organic Carbon Analysis 

The results of the insoluble residue and organic carbon analyses are shown in Fig. 

19. To minimize graphic complexity, the data for the lower and upper units of each cycle 

are displayed separately. The data points within the Swasey Formation and middle 

Wheeler Formation (upper unit of cycle 12) are shown in both the lower and upper unit 
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FIGURE 19-Insoluble residue and organic carbon in the Wheeler Formation. 



36 

graphs. The patterns fonned by the percent insoluble and organic carbon data mimic each 

other closely . 

The lowest percent residue datum (0.4% = highest carbonate content) (Appendix 

A, Geochemical Data) occurs in the Swasey Formation, 30 m below the Wheeler 

Formation contact. The highest percent insoluble datum (97.6% = lowest carbonate 

content) occurs in the lower unit of cycle 1. The lowest percent organic carbon datum 

(0.48 %) occurs in the upper unit of cycle 4. The highest percent organic carbon datum 

(4.36 %) occurs in the lower unit of cycle 1. At this horizon, both the insoluble residue 

and organic carbon data differ dramatically from that occurring in the upper Swasey 

Formation. Also notable are the two anomalously high insoluble-residue data occurring at 

the base of cycle 7 and cycle 11. 

Thin Sections 

Figure 20 shows images of a thin-section made from a sample taken from the 

middle of the middle Wheeler Formation. Most conspicuously it displays alternating light 

and dark colored banding . At the bottom there is a relatively coarse lag deposit composed 

of trilobite sclerites, which lies above a massive, fine-grained (mud) deposit. 

From the trilobite lag deposit , the sediments fine upward into pelloids and then into 

organic-rich , laminated mud. 

Figure 21 shows thin-section images of a calcisiltite bed collected from the lower 

unit of cycle 5. They reveal dark (moderately opaque) laminae containing silt-sized 

carbonate clasts ( calcisiltite ). Scattered throughout the thin-section are isolated, light-
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FIGURE 20-Thin-section (negative) of a calciturbidite from the middle Wheeler 
Formation. Note the upward transition from coarse trilobite lag to pelloids (Bouma A) , 
then to wavy laminae (Bouma C). The trilobite lag deposit lies directly above non­
laminated mud (Bouma E). Also note the vertical, narrow and dark pattern just left of 
the middle of the section . It is probably an escape burrow of an organism after being 
rapidly transported and buried. (A) Trilobite shepherds crook with sand-sized pelloids 
above and mud-sized sediment below . (B) Neomorphic calcite surrounded by pelloids. 
The calcite may have formed in a cavity made by an organism that was rapidly 
transported and deposited in a turbidity flow. The organism then tried to escape by 
burrowing vertically. (C) Wavy laminae made of pelloids. 



FIGURE 21-Thin-section (negative) from the bottom unit of cycle 
five in the lower Wheeler Formation. The matrix is carbonate silt. The 
lens-shaped structures are also made of carbonate silt. They might be 
rip-up clasts that were abraded during transport in a turbidity current. 
In comparison to figure 12, this sample is finer-grained and its 
bedding thickness is thinner. It is interpreted to be a distal 
calciturbidite. (A) Matrix of carbonate silt and organic material 
surrounding lens-shaped structures (possibly abraded rip-up clasts). 
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colored, micro-lenses (- 1-2 mm in length), which are also made of carbonate silt. Some 

of these micro-lenses are normally graded (fining upward). 

X-Ray Diffraction Analysis 

Figure 22 shows the results of the x-ray diffraction analysis. The shale of the 

Chisolm Formation possibly contains illite. The shale of the Whirlwind Formation 

contains illite and possibly contains kaolinite and chlorite. Similarly, the shale of cycle 1 

in the lower Wheeler Formation contains illite and possibly contains kaolinite. The shale 

of cycle 20 in the upper Wheeler Formation possibly contains kaolinite and chlorite. 
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DISCUSSION 

Wheeler Formation Boundaries in the Drum Mountains 

The placement of the upper and lower boundaries of the Wheeler Formation in the 

Drum Mountains has evolved over the last four decades. Robison (1962) stated that the 

Wheeler Formation was 94 m thick. Robison's (1962) lower boundary was at the contact 

between what is now called the middle and upper Wheeler Formation (Dommer, 1980). 

His upper boundary was at the geomorphic transition from slope to cliff, occurring 94 m 

above the middle and upper Wheeler Formation contact. This closely corresponds to the 

cliff of the upper unit of cycle 20, which I measured as 86 m above the middle-upper 

Wheeler Formation contact. 

White (1973) moved the lower boundary of the Wheeler Formation down to the 

currently recognized contact with the Swasey Formation. This change in the lower 

boundary was suggested by Robison, who in 1970 found that the Wheeler Formation 

fauna occurred much farther below than had been previously recognized (White, 1973). 

White's (1973) upper boundary was also described as a geomorphic change from slope to 

cliff, and therefore it presumably was the same upper boundary as implied in Robison 

(1962). White's (1973) total measured thickness of the Wheeler Formation was 302 m. 

Dommer (1980) stated that the total thickness of the Wheeler Formation in the 

Drum Mountains was 237 m. Dommer (1980, p. 61) states: 

The contact of the Pierson Cove Formation with the underlying upper member of 
the Wheeler Shale is somewhat gradational and is usually covered. The base of 
the lowest limestone and dolomite cliff of the Pierson Cove was used as the 
contact since it is much more easily mapped. 
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Presumably this is the same upper boundary (base of cliff) suggested by Robison 

(1962) and White (1973). 

Vorwald ( 1984) moved the upper boundary of the Wheeler Formation up into 

what was previously described by Dommer (1980) as unit 1 of the Pierson Cove 

Formation. A photograph in Vorwald (1984) shows the amended upper boundary to be 

located at the top of the "southeast-thickening " platey shale, occurring in the cliffs and 

ledges of Sawtooth Ridge. This upper boundary was amended because of the presence of 

Wheeler Formation trilobites occurring in the "southeast-thickening" shales (Vorwald, 

1984). 

In the present analysis, the Wheeler Formation in the Drum Mountains is 

considered to be 309 m thick. The lower boundary is at the sharp transition occurring 

between light gray, ledge-forming (stair-step) limestone of the Swasey Formation, and 

the pale red purple , slope-forming shale (and medium dark gray limestone) of the 

Wheeler Formation (Fig. 8). All workcrn after Robison (1962) have concurred on this 

boundary . 

In this analysis, the upper boundary of the Wheeler Formation is at the base of the 

"southeast-thickening ," platey shale, which occurs within the cliffs and ledges of 

Sawtooth Ridge. This is different from Vorwald (1984) because it does not include the 

"southeast-thickening" shale as part of the Wheeler Formation. Like the contact between 

the Swasey and Wheeler Formations, this is the first abrupt facies transition to occur in 

the upper Wheeler or lower Pierson Cove Formations. And like the contact between the 

Swasey and Wheeler Formations (discussed later), this surface likely represents a 

transgressive surface separating a Lowstand Systems Tract (LSI) from a Transgressive 
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Systems Tract (TST). Therefore , from a sequence stratigraphic perspective, this 

stratigraphic horizon should be considered the logical contact between the Pierson Cove 

and Wheeler Formations. 

Structural Doubling of the Wheeler Formation 

The thickness of the Wheeler Formation in the Drum Mountains (309 m) is more 

than twice that in the Fish Springs Range (100 m), Wheeler Amphitheater, central House 

Range (125 m), and Marjum Pass, south-central House Range (140 m) (personal 

observation). In addition , cycles 1 through 3 in the lower Wheeler Formation in the Drum 

Mountains have similar colored shales (pale red-purple) as do cycles 15 and 16, which 

occur in the upper Wheeler Formation. Further , there are horizontal faults that occur near 

the base of the middle Wheeler Formation. The base of the middle Wheeler Formation 

coincides with the contorted unit. These phenomena suggested that the strata of the 

Wheeler Formation in the Drum Mow1tains might have been structurally doubled. 

It was hypothesized that during the Sevier Orogeny a plate containing the 

Wheeler Formation was thrust in an easterly direction as part of the hanging wall to the 

Drum Mountains area. The structurally incompetent shales of the Wheeler Formation 

would have facilitated a detachment surface upon which the hanging wall moved. The 

end result would have been a dramatic increase in stratigraphic thickness of the Wheeler 

Formation in the Drum Mountains. Before a proper sequence stratigraphic analysis of the 

Wheeler Fonnation in the Drum Mountains could be performed, it was necessary to first 

address the issue of stratigraphic doubling. 
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Contorted Unit 

The thin calcisiltite and shale intercalations (6.5 cm) composing the contorted unit 

look as though they were deformed in a plastic state. There is no evidence of brittle 

deformation within the contorted unit. If thrust-fault shearing occurred in this carbonate­

rich horizon , it would be reasonable to expect some brittle deformation. 

In addition, non-deformed, intercalated beds of calcisiltite and shale truncate the 

upper crests of folds in the contorted unit. These truncated folds express a cross cutting 

relationship that could not have occurred if the beds were deformed by thrust faulting. It 

is more probable that the beds of the contorted unit were deposited horizontally, and then 

were only partly lithified when a gravity or seismic induced event deformed them. 

Subsequent to the deforming event. the upper parts of the folds were eroded flat and 

younger beds were then deposited. 

Grannis ( 1982) studied the contorted unit in detail at different outcrops within the 

southeastern Drum Mountains. He not only argued that the contorted unit was created by 

Cambrian soft-sediment deformation , but also presented data that suggested the direction 

of paleoslope dip was to the southwest. 

Horizontal Faults 

The horizontal faults near the base of the middle Wheeler Formation can be found 

on the west side of the road ( creek bed), just east of Sawtooth Ridge. These faults cut the 

bedding planes at approximately 20-25°. The deformation has both brittle and ductile 

components. Fault breccia can be seen in small zones. 
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Nutt and Thonnan (1992) studied the Drum Mine , approximately 1.5 km to the 

northwest of the study area. Nutt and Thonnan (1992, p. 1) state that 

... ore deposition was controlled by faults parallel with or at low angles to bedding 
and their associated ramp structures and by high-angle fractures and faults. The 
low-angle to bedding-parallel faults are mostly younger-over-older faults that thin 
units; rarely units are thickened. 

Nutt and Thonnan (1992) did not observe any thrust faulting within the Drum 

Mine. The horizontal faults in this study area are likely the same attenuation faults 

described above. These faults , therefore , could not have caused structural doubling of the 

Wheeler Fonnation . 

Dommer (1980) studied the geology of the entire Drum Mountain area. Dommer 

(1980, p. 65) states that "most faults in the Drum Mountains are high angle," and that 

"neither folds nor thrusts were observed. " 

Facies Relationships 

If structural doubling occurred, then facies in both the lower and upper Wheeler 

Fonnation should mimic each other. In this hypothesis, cycles 15-16 in the upper 

Wheeler Fonnation would be the third and fourth cycles above the contact of the middle 

Wheeler. They both have pale red-purple colored shales in their lower units and are 3-6 m 

thick . The color and thicknesses is similar to that of cycles 1-3 in the lower Wheeler. 

However , the biofacies in these two groups are very different. Cycles 1-3 contain sponge 

spicules and agnostoid trilobites , both in very low densities . Cycles 15-16 contain high 

densities of polymeroid trilobites. Agnostoid trilobites lived a pelagic life in open ocean 

environments (Robison, 1972). Polymeroid trilobites lived a benthic life within the neritic 



zone (Robison, 1972). With this major contrast in biofacies, the similar color and 

thicknesses occurring between these cycles is likely coincidental. 

Anomalous Thickness 
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Approximately 80% of the thickness in the Drum Mountains Wheeler Formation 

is limestone and the remaining 20% is shale (White, 1973). In contrast, the other three 

localities referred to above are dominated (60-90%) by shale (personal observation). The 

thickness of shale found in the field is approximately one quarter of its original thickness 

(Weller, 1960). In contrast, limestone found in the field is approximately equal to its 

original thickness (Bathurst, 1975). Therefore, the anomalous thickness of the Drum 

Mountain Wheeler Formation can be attributed to its abundance of limestone. Further , 

carbonate sedimentation rates are generally much higher than that of shale (Liddell, 2000, 

personal comm.). Therefore, the anomalously thick Wheeler Formation in the Drum 

Mountains could have been deposited in an equivalent amount of time as those localities 

having decreased thicknesses. 

Given the arguments presented above, I conclude that the Wheeler Formation in 

the Drum Mountains has not been structurally doubled and is therefore stratigraphically 

conformable . 

Sequence Boundary Zone 

Sequence boundaries are caused by a relative fall in sea level (U. of Georgia 

Stratigraphy Lab, 1999). When subaerially exposed, carbonates are prone to dissolution 

and are often expressed as karst surfaces with solution relief (U. of Georgia Stratigraphy 
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Lab, 1999). At 25 m below the Wheeler Formation contact, in the Swasey Formation, the 

lithology is a rippled oolitic grainstone. The rippled ooids reflect a shallow, high-energy 

depositional environment (Flugal, 1982). The undulating surface at 25 m below the 

Wheeler Formation contact (Figs. 6-7) might be solution relief that was caused by 

subaerial exposure. Because the amount of relief on this undulating surface is only 0.5 m, 

I speculate that the amount of time in which this erosion took place was brief, perhaps on 

the order of 20-40 ky. This is the interval of time represented by a 5th order parasequence 

(Vail et al. 1991 ). 

The color change 30 m below the Wheeler Formation contact might reflect a 

change in ocean water chemistry as a result of shallowing conditions . Both the undulatory 

surface and the color change are interpreted to represent the lower Sequence Boundary 

Zone (SBZ) . 

Lowstand System Tract 

In the upper 25 m of the Swasey Formation, above the SBZ, there is a transition 

of microfacies . The rippled oolitic grainstone in the SBZ is replaced upsection by an 

oncoidal packstone , which then, at the Wheeler Formation contact, is replaced by a 

trilobite sclerite grainstone. This transition is interpreted to be the result of a gradual , and 

then rapid deepening of relative sea level. 

I interpret the rippled oolitic grainstone at the SBZ to have been deposited in a 

shallow-peritidal environment. Flugal (1982, p. 153) states that "marine ooids originate in 

the tropics and subtropics in high-energy, shallow-water environments influenced by 

wave action or tidal currents. The majority of ooids originate in depths down to 2 m." 
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The lack of interstitial mud in the oolitic grainstone indicates that the environment 

was continually turbulent, at least enough to prohibit the mud-sized particles from 

settling out of suspension. The ripples indicate sediment transport, presumably in tidal 

currents. 

I interpret the oncoidal packstone to have been deposited in a slightly deeper 

environment, perhaps shallow subtidal or deeper intertidal. The oncoids reflect an 

environment that periodically had enough energy to rotate the lobulate form, but in 

general was low in energy (Flugal , 1982). The interstitial mud also reflects conditions 

that were low in energy (Flugal , 1982). 

The sclerite grainstone , which is the upper most unit of the Swasey Formation, is 

interpreted to represent a period of time in which sedimentation rates were very low. The 

characteristics of this narrow horizon are very similar to Kidwell ' s (1986) R-Sediment 

Model , Type-2 shell bed. This model states that an upward increase in shell packing 

density is a result of decreasing sedimentation rates. I interpret the low sedimentation 

rate to have been caused by a rapid deepening of relative sea level. The deepening of 

relative sea level was fast enough to prohibit sustainable carbonate production and 

impound shales at the coastline . This interpretation is supported by the presence of a thin 

bed of carbonate-poor , paper shale directly above the sclerite grainstone. This shale is the 

lower unit of cycle l within the Wheeler Formation. White (1973) suggests that the 

contact between the Swasey and Wheeler Formations is a hardground. Rowell et al. 

(1982) state that the contact between the Swasey and Wheeler Formations likely 

represents a global eustatic event. This surface coincides with the base of the 

Ptychagnostus gibbus biostratigraphic range zone. 
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McGee (1978) suggests that the Swasey Formation was deposited in water depths 

of a few to tens of meters. McGee (1978, p. 69) also states that the "Swasey Limestone 

and its equivalents in this study appear to exhibit a deepening upward sequence .... " This 

deepening upward sequence, which is located between the SBZ and the Wheeler 

Formation contact, is interpreted to be the upper part of the lower Lowstand Systems 

Tract (LST). 

Transgressive Surface 

The Lowstand Systems Tract is commonly capped by a prominent marine­

flooding surface called the Transgressive Surface (TS) (U. of Georgia Stratigraphy Lab, 

1999). The TS represents the first major marine-flooding surface to follow the SBZ and is 

usually distinct from the relatively minor flooding surfaces that occur in the LST (U. of 

Georgia Stratigraphy Lab, l 999). A marine-flooding surface separates younger strata 

from older strata, across which there is evidence of an abrupt increase in water depth 

(Van Wagoner, 1990). The contact between the Swasey and Wheeler Formations marks 

the first major facies change to occur in the measured section. 

At the contact between the Swasey and Wheeler Formations is an irregular 

surface with wavelengths of 5-10 cm and amplitudes of 1-4 cm. This surface is 

interpreted to be the Transgressive Surface, which separates the Lowstand Systems Tract 

from the Transgressive Systems Tract. Above and below this surface are two distinct 

facies representing very different depositional environments. 

Below the contact is a light gray, sclerite grainstone (uppermost Swasey 

Formation) formed from disarticulated polymeroid trilobites. Robison (1972) states that 
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non-agnostoid trilobites are most common in neritic environments . The insoluble residue 

of this facies is 5.2% and the total organic carbon is 0.60% (Table 2, Appendix A). 

Above the contact is a pale-red purple , 20 cm, paper shale (lowest Wheeler Fm) 

containing traces of sponge spicules. Four meters above this shale, in cycle 3, there are 

agnostoid trilobites. Robison (1972) states that agnostoid trilobites are most commonly 

found in open-oceanic environments. The insoluble residue of this facies is 97.6% and 

the total organic carbon is 4.36% (Table 2). As shown in Fig. 19, the greatest difference 

in insoluble residue and total organic carbon occurring between any of the facies in the 

measured section is located at the Wheeler Formation contact. 

Transgressive Systems Tract 

Cycles 1-4 

Unlike the Swasey Formation, the cycles 1-4 of the lower Wheeler Formation are 

characterized by a deep-water lower unit (shale) that grades (coarsens upward) into a 

dark-gray , carbonate mud-wackestone cycle cap. 

The fauna of cycles 1-2 (lower units) include only trace amounts of sponge 

spicules. However, the lower units of cycles 3-4 contain trace amounts of agnostoid 

trilobites (disarticulated) and increased spicule densities (10-50/m 2
). Therefore, from 

cycles 1-4 there is a slight but noticeable increase in fauna! diversity and density. 

The increase in sponge spicule density may reflect condensation caused by 

decreasing sedimentation rates (Kidwell, 1986). The decreased sedimentation rate would 
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have been caused by the rapid increase in relative sea level. A rapid increase in sea level 

would impound sediments farther up on the shelf in bays and estuaries. 

The appearance of agnostoid trilobites might reflect paleoecologic conditions 

occurring in the ocean water column during the transgression in sea level. Opik (1979) 

suggests that agnostoid trilobites were planktonic filter feeders. Robison (1972) suggests 

that agnostoid trilobites avoided neritic environments having excessive runoff. Fine­

grained sediment in the water column may have disrupted filter feeding. The lack of 

abundant agnostoid trilobites in cycles 1-5 may reflect a period of time in which the 

Middle Cambrian ocean water in the Drum Mountain locality contained enough muddy 

sediment to prevent their existence. 

From cycle 1-6 there is an increase in agnostoid trilobite density. J attribute this 

increased density to an environmental transition. I hypothesize that as sea level increased, 

the environment became increasingly favorable for agnostoid trilobites, and therefore 

their population densities increased . These first six cycles are therefore considered to 

display a retrogradational-stacking pattern. 

Cycles 5-8 

A significant change in sedimentology occurs above the cap of cycle 4. The 

deposits are thin (3-4 cm), intercalated, dark-gray calcisiltite, capped with very thin (0.3 

cm), light gray shale. These intercalated deposits occur in a relatively thick stratigraphic 

interval ( 47 m) within the lower Wheeler Formation (Figs. 8-9). These fining-upward 

intercalations of calcisiltite and shale may be the result of turbidite deposition. 
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A thin-section of a calcisiltite bed ( collected from the lower unit of cycle 5) 

reveals many dark (moderately opaque) laminae containing silt-sized carbonate clasts 

(calcisiltite). Scattered throughout the thin-section are isolated, light-colored, micro­

lenses (- 1 mm in length), which are also made of carbonate silt (Fig. 21 ). Some of these 

micro-lenses are normally graded (fining upward). It is possible that these micro-lenses 

are eroded rip-up clasts. The tapered ends may have been formed as a result of abrasive 

processes that occurred during sediment transport. McGee (1978) described a 4-5 cm 

thick , Bouma-A division sequence from at least one bed in the lower Wheeler Formation, 

and he interpreted it as being deposited from a sediment gravity flow , and possibly as a 

turbidity flow. 

Upsection , in the middle Wheeler Formation (upper unit of cycle 12) there are 

similar intercalations. These intercalations are thicker (avg. 6.5 cm) , they are coarser in 

grainsize , and they contain pelloids , trilobite sclerites , and scoured surfaces. A thin­

section from the middle Wheeler Formation reveals what might be Bouma-A , C, and E 

divisions (Fig. 20). I interpret the intercalations of both the middle Wheeler and those of 

cycles 5-8 to be calciturbidites . 

The thin-bedded and fine~grained intercalations of cycles 5-8 may have been 

deposited more distally with respect to the southern escarpment of the House Range 

Embayment. The thicker and coarser grained intercalations of the middle Wheeler may 

have been deposited more proximal to the southern escarpment of the House Range 

Embayment. Flugal (1982) developed criteria for the determination of proximal versus 

distal limestone turbidites (calciturbidites). Of the seventeen criteria shown in Table 1, 

six of them support the hypothesis that the middle Wheeler Formation is composed of 



TABLE ]-Criteria of proximal and distal limestone turbidites (from 
Flugal, 1982). The bold font indicates that the criteria were observed in 
thin-section. 

Proximal (middle Wheeler) Distal (lower Wheeler) 
I) Mean bed greater less, often very thin 
thickness 
2) Mean grain size larger (arenite and rudite) smaller (lutite and arenite) 

3) Grading graded, poorly graded or not nearly always graded 
graded 

4) Inverse grading common absent 

5) Coarse-tail common absent 
grading 

6) Base of the generally sharp sharp 
detrital zone 

7) Top of the often sharp grades into finer sediments 
detrital zone 
8) Scours , common rare ; no channels 
washouts , channels 
and reworked pebble s 
at the base 
9) Tool marks rare common 

10) Geometry of irregular in thickn ess, regular parallel beds 
beds lenticular 

I I) Comp lete common rare 
Bouma sequence 

12) Lamination and less common, restricted to more common 
ripple lamination thicker beds 

13) Micritic upper thin or absent well developed and usually 
parts well-preserved 

14) Arenite /Lutite high low 
ratio 
15) Matrix within sparry cement micrite 
the detrital zone 
16) Depositional turbidite beds densely thick "normal" 
pattern spaced, background sediments 

sedimentation (shales of cycles 9-11) 
restricted 

17) Lithofacies slumping structures, coarse elastics rare; 
association tluxoturbidites , cherts common 

conglomerates ; cherts rare 
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proximal calciturbidites and that the lower Wheeler Formation contains distal 

calciturbidites. 

The thin-section of the lower calciturbidite interval (Fig. 21) displays less varied 

and generally smaller grainsizes, it has no Bouma divisions, and it has no scours. In 

contrast, the thin-section (Fig. 20) of the calciturbidite interval in the middle Wheeler 

Formation displays coarser grainsizes that are graded , it has Bouma A, C, and E 

divisions, and it has scours. In addition, the upper calciturbidite interval has thicker beds 

than the lower. Most importantly this upper interval has slumping structures ( contorted 

zone), which indicates deposition on a slope. The calciturbidite beds in the contorted 

zone may have been deformed during a Middle Cambrian earthquake event. The 

calciturbidites of the lower interval lack any deformation and therefore were likely 

deposited on nearly horizontal terrain near the bottom of the House Range Embayment. 

Aggradational Cycle Stacking of Cycles 7-10 

The fauna within cycles 7-10 includes sponge spicules and agnostoid trilobites. 

The densities of these two fossil groups generally stabilize in cycles 7-10. I interpret 

these cycles to represent an aggradational cycle~stacking pattern. 

Maximum Flooding Surface 

On the upper surface of cycle 11 there is a hardground. Half a meter above the 

hardground, in the lower unit of cycle 12, there is a 2-cm-thick agnostoid coquina. Both 

of these horizons suggest that during this time, very low sedimentation rates occurred in 



the Drum Mountains area. I interpret these two horizons as reflecting a rapid and 

significant deepening of relative sea level, with consequent sediment slowdown . 
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Above the agnostoid coquina are medium dark gray (fresh) platey shales. These 

shales contain moderately high densities (30-40/m 2
) of articulated agnostoid trilobites , 

moderately high densities (20-50/m 2
) of sponge spicules, and no bioturbation . The 

articulated nature of the agnostoid trilobites indicates that they were not allochthonous. 

The presence of both agnostoid trilobites and dark shales indicates deposition within a 

basinal environment. Both Grannis (1982) and McGee (1978) interpreted this facies the 

same way, that is, as the deepest facies that occurs in the Wheeler Formation in the Drum 

Mountains. 

The Stratigraphy Laboratory of the University of Georgia (1999, p. 11) states: 

The maximum flooding surface coincides roughly with the most rapid relative 
rate of sea level rise, after which sea level rise begins to slow. In outcrop, the 
maximum flooding surface is also recognized by the deepest water deposits 
within a sequence. 

I interpret the Maximum Flooding Surface (MFS) to occur within the lowest 3 m 

of the lower unit of cycle 12. From this horizon, up to the contact with the Pierson Cove 

Formation, the facies indicate a gradual shallowing of relative sea level. 

Highstand Systems Tract 

Highstand Shedding of the ,\fiddle Wheeler Formation 

The middle Wheeler unit (upper unit of cycle 12) is a thick section (90 m) 

composed entirely of calciturbidites. Emery and Meyers (1996, ch. 10) introduced a 

concept called "highstand shedding," which is the redeposition of carbonate sediment 
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from the platform top to the slope and basin. This redeposition is a result of carbonate 

production exceeding the space available to accommodate it. Emery and Meyers (1996, 

p. 214) state, "A carbonate platform will also shed sediment during transgression and sea 

level fall , but all other factors being equal , a platform will tend to shed most sediment 

during highstand as the rate of creation of accommodation declines." 

Progradation in the Upper Wheeler Formation 

Cycles 13-20 exhibit characteristics that indicate a gradual shallowing ofrelative 

sea level. These include , ooids , oncoids , intraclasts , moderate to high bioturbation, and 

densely packed polymeroid trilobites. The parasequence-stacking pattern of these eight 

cycles is progradational. J suggest the sea level drop was the result , not only of 

decreasing eustatic sea level , but also of the filling of the HRE. 

The uppermost 2 m of the middle Wheeler Formation are moderately bioturbated 

(index of 3-4) (Fig . 12). On the top surface of the middle Wheeler are u-tube burrows 

(Diplocriteron) , trilobite coquina lenses , and small ooid channels. This evidence suggests 

that bathymetry was further decreasing . 

Cycle 13 in the upper Wheeler Formation is composed of less~resistant 

calciturbidites. It contains agnostoid trilobites and inarticulate brachiopods. Cycle 14 is 

similar but it includes disarticulated polymeroid trilobites. The presence of polymeroid 

trilobites in cycle 14 suggests that bathymetry was decreasing. 

Cycle 15 marks the beginning of shale deposition in the upper Wheeler. The 

lower shale has algal residue and the upper carbonate cap contains relatively high 

densities of disarticulated polymeroid trilobites. Portions of this cycle cap are moderately 



57 

bioturbated (index of 3.5). In the uppermost 3 cm of the carbonate cap of cycle 15 is an 

oncoidal packstone . Cycle 16 is very similar to cycle 15 but the polymeroids become 

increasingly articulated. On the surface of cycle 16 is an oncoidal/intraclast packstone. 

This thin horizon may be a storm deposit shed from the platform top. The coarse-grained 

(rudite) nature of this deposit (and that in the cap of cycle 15) may reflect increasingly 

shallow depths , and therefore proximity to the platform edge. 

Cycles 17-20 continue to display evidence of shallowing. The upper unit of cycle 

19 has three thin beds (3-6 cm) having different lithologies. The first is a carbonate 

mudstone , the second is an oolitic grainstone , and the third is a sclerite packstone. These 

three beds might be storm deposits shed from the increasingly proximal platform edge. 

The lower unit of cycle 20 is a thick accumulation (51 m) of yellowish gray shale. 

It has well-preserved and articulated polymeroid trilobite body fossils and molts. They 

occur in very low densities (l-5 /m 2
). Kidwell ' s (1986) R-sediment model suggests that 

the well-preserved nature of the trilobites and their low density reflect high sedimentation 

rates . The great thickness of this lower unit supports this interpretation . 

About halfway into the lower unit of cycle 20 the shale partings begin to increase 

in thickness and bioturbation occurs at a moderate intensity (index of 3). As can be seen 

in Fig. 10, the insoluble residue decreases dramatically from the bottom of cycle 20 to the 

top of its lower unit. This decrease in insoluble residue reflects an increase in carbonate 

content. The increased carbonate content and bioturbation likely reflects decreasing 

bathymetry. 

In cycle 20 the mottled nature and thickness of the carbonate beds increases up­

section. The slabby slope eventually grades into a highly bioturbated carbonate cliff 
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( upper unit of cycle 20). This thick unit ( 41 m) of mottled carbonate mudstone is 

interpreted to be the end of the Highstand System Tract and the beginning of the next 

Lowstand Systems Tract. 

Approximately 20 m above the base of the cliff is a horizon containing 

stromatolites. Kepper (1974) described an antipathetic relationship between Cambrian 

trilobites and stromatolites. Kepper (1974, p. 141) states , "Under normal salinity 

conditions trilobites were abundant and algal stromatolites absent. Along the margins of 

hypersaline pools within the carbonate bank stromatolites flourished. Salinity conditions 

there were unfavorable for trilobites and other bottom-dwelling invertebrates." 

Vorwald (1984) states that the lithofacies in the upper Wheeler Formation 

represent depo sition in a shallow subtidal lagoon on the lee side of a high-energy shoal. It 

is possible that a decrease in trilobite density occurring in the upper Wheeler Formation 

might reflect increasing salinities occurring within the subtidal lagoon. The high salinities 

may have been caused by poor circulation arising from irregular topography occurring in 

the Drum Mountain area . The irregular topography would have been a result of 

differential sedimentation and subsidence rates occurring within the nearly filled House 

Range Embayment. The normal fault , which facilitated the HRE, might have been a 

cause of the irregular topography. The normal fault also may have caused the southeast 

variability in shale-bed thickness and stromatolite size , both of which occur in the upper 

unit of cycle 20 . 

As described earlier , there is significant lateral variability in the size and shape of 

the stromatolites. From the road southeast of Sawtooth Ridge (Fig. 4) towards the 

southeastern edge of the study area, the size and sphericity of the stromatolites increases 
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dramatically. This change in shape may be a result of changing bathymetries. The larger 

stromatolites would likely have been deposited in a deep tidal or shallow subtidal 

environment. The smaller stromatolites to the north would have been deposited at 

decreased depths. This rapid southeastern bathymetric gradient can easily be explained by 

the presence of the northeast-southwest trending normal fault that initially formed the 

House Range Embayment (Rees, 1986). 

Upper Sequence Boundary 

The stromatolite horizon is interpreted to represent the minimum lowstand of 

relative sea level and is therefore considered to be the upper Sequence Boundary. This 

stromatolite horizon marks the end of the sequence occurring in the Wheeler Formation. 

It also is interpreted to represent the approximate complete filling of the House Range 

Embayment in the Drum Mountains area. 

Above the stromatolite horizon is a sudden lithofacies transition from shallow-

water carbonates to deeper-water , fissile shale. This contact is not only interpreted to 

represent the next Transgressive Surface but also the contact between the Wheeler and 

the Pierson Cove Formations. 

R-Mode Analysis 

The R-mode analyses performed on the four fossil groups occurring in the 

Wheeler Formation support the idea that the lower Wheeler Formation was deposited in a 

relatively deep environment and that the upper Wheeler Formation was deposited in a 

relatively shallow environment. 



The R-mode analysis (Fig. 17) shows that the polymeroid and brachiopod 

community occurs separately from the agnostoid and sponge spicule community. 

Robison (1972) states that non-agnostoid trilobites are most common in neritic 

environments and agnostoid trilobites are most commonly found in oceanic 

environments. 

Three Different Orders of Cyclisity Within the Wheeler Formation 

60 

The twtmty cycl€s previously described am the highest order of cyclisity observed 

in this study. They can be superimposed onto two different lower orders of cyclisity. The 

lowest order of cyclisity occurring in the Wheeler Formation is a single cycle that spans 

from the lower sequence boundary in the upper Swasey Formation to the upper sequence 

boundary in the upper Wheeler Formation. Between these two cycle orders is a less 

obvious intermediate cycle order. 

Figure 19 shows insoluble residue data in the Wheeler Formation. The left-most 

graph is data derived from the lower units (shale) of each of the twenty cycles. There are 

three distinct data spikes in insoluble content occurring in the lower Wheeler. The first is 

at the Swasey Wheeler contact (97.6%), the second is at the base of cycle 7 (80.4%), and 

the third is at the base of cycle 11 (87.2%). These insoluble residue spikes approximately 

coincide with the bases of the retrogradational ( cycles 1-6), aggradational ( cycles 7-12), 

and progradational ( cycles 13-20) cycle-stacking patterns described earlier. I interpret 

these three data points to be eustatic signals. Specifically, each of the three spikes is 

interpreted to represent the deepest facies of a 4th order, eustatically-driven cycle. In 

contrast, at least some of the 5th order cycles might not have been caused by eustacy. 
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Possible Cause of the 5th Order Cycles 

Beyond its anomalous thickness , the stratigraphy of the Wheeler Formation in the 

Drum Mountains is different from that in Marjum Pass , Wheeler Amphitheater , and the 

Fish Springs Range. The well-defined, 5th order , meter-scale cycles in the southeastern 

Drum Mountains are not found in the other three localities (personal observation). The 

facies transitions in the other localities are much more gradational. They generally lack 

the well-defined parasequence structur e found in the Drum Mountain locality. 

One possible cause of this phenomenon is that each of the Wheeler Formation 

localities was deposited at a different bathymetric depth within the House Range 

Embayment. If an environment was deep enough , it is possible that the sediments may 

not have recorded some eustatic oscillations (i.e. "missed beat "). According to the 

geometry of the House Range Embayment (Rees , 1986) , the Wheeler Formation in the 

Marj um Pass locality would have been deposited within the trough axis of the HRE and , 

therefore , at the greatest depth (relative to the other three localities in question). The 

shales in the Wheeler Formation at Marjum Pass are dark, well laminated , and contain 

abundant agnostoid trilobites and soft-bodied algae. This evidence supports the 

hypothesis that the Wheeler Formation at Marjum Pass was deposited at great depth. 

The Wheeler Formation at the Wheeler Amphitheater is farther north, and, 

presumably , farther away from the trough axis of the HRE. This locality contains a great 

number of well-preserved polymeroid trilobites , which indicates that it was deposited at 

decreased bathymetries . This locality , however , does not contain the well-defined cycles 

found in the Drum Mountains locality (personal observation). 



62 
The Wheeler Formation in the Fish Springs Range contains dark carbonate rocks 

in the lower most 1-10 m ( depending on which locality in the Fish Springs Range are 

observed), and then a thick section of yellowish gray shales (very similar to the upper 

Wheeler Formation in the Drum Mountains) . The Fish Springs Range is located the 

greatest distance from the trough axis (relative to the other three localities), and 

presumably this facies was deposited at the shallowest depth. Well-defined cycles like 

those found in the Drum Mountain locality were not observed within the Fish Springs 

Range. 

I propose that each of the meter-scale , well-defined, 5th order cycles within the 

southeastern Drum Mountains may have been caused by a local , rapid depth increase. 

The depth increase would have been caused by the rapid down-dropping of a block 

occurring in the hanging wall of a normal fault. The normal fault would have been that 

described by Rees (1986). This nonnal fault facilitated the accommodation space of the 

House Range Embaymcn t, within which the Wheeler Formation of the Drum Mountains 

area was deposited (Rees, 1986). According to the nonpalinspastic map of Rees (1986), 

the fault scarp would have trended approximately northeast and southwest and would 

have been located southeast of the study area. 

During the formation of a normal fault, approximately two thirds of the offset is 

downdropped and one third is uplifted (Evans, 2000, personal comm.). An uplift of the 

footwall would have caused an area of the carbonate shelf to be exposed to subaerial 

processes , including erosion (Fig. 23). 

During uplift , a lower slope angle would cause a greater area of the shelf to be 

exposed. For example , Fig. 24 shows that an uplift of 2 m on a shelf-slope of 0.1 degrees 
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would cause a horizontal distance of 40 m to be exposed. Elevating the shelf would cause 

the strandline to move closer to the fault escarpment (Fig. 23). It would also drop the 

relative base level of the ocean. As a result , fluvial systems would incise the shelf and 

erode the exposed carbonate strata. Sediment would then be transported across the 

exposed shelf towards the new strandline. Eventually, sediment would be transported 

across the fault scarp and into the basin. Deposition of the 5th order, shallowing-upward 

cycles would be controlled by erosion, transport, and other sedimentary processes 

occurring on the shelf. 

During the Late Precambrian and Early Cambrian, rifting occurred in the western 

margin of North America (Christie-Blick , 1984). During the Middle Cambrian this region 

was undergoing post-rifting thermal subsidence (Christie-Blick , 1984). This thermal 

subsidence and faulting is the proposed mechanism that drove the 5th order relative sea­

level oscillations. 

Sea Level Model 

Figure 25 is a sea level model that displays the relationship of the three orders of 

cyclisity occurring in the Wheeler Formation. The relative water depths to which the 

facies are assigned came from Bond et al. (1989). Grannis ( 1982) evaluated the deposits 

of the Wheeler Formation in the Drum Mountains and suggested that the maximum local 

depth of the House Range Embayment was 200 m. 

Figure 26 is the same sea level curve found in Fig. 25, but it is turned on its side 

and correlated with a lower-order sea-level curve encompassing the entire Middle 

Cambrian. This lower-order curve is from Bond et al. (1989). The data for this lower-
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order curve were derived from the Wah Wah Range, which is approximately 100 km 

southwest of the Drum Mountains. At this locality the equivalent of the Wheeler 

Formation is called the Eye of the Needle Formation. This unit is dominantly a clean 

carbonate that lies conformably between the Swasey and Pierson Cove Formations. 

According to the time scale of Bond et al. (1989), shown at the bottom of Fig. 26, 

deposition of the Eye of the Needle Formation, and therefore the Wheeler Formation, is 

shown to have occurred during a million-year interval. Vail et al. (1991) suggest that 3rd 

order depositional sequences occur during a 0.5-5 million-year interval. Thernfore , the 

time interval represented by the Wheeler Formation is within the limits of a 3rd order 

depositional sequence. I interpret the Wheeler Formation in the Drum Mountains to have 

been deposited during a 3rd order sequence , and therefore the higher order cycles are 4th 

and 5th order. 

In contrast , the Middle Cambrian sea-level curve of Bond et al. (1989) (Fig. 26), 

shows a 3rd order sequence starting from the base of the Whirlwind Formation and ending 

near the base of the Pierson Cove Formation. As a consequence, the Eye of the Needle 

Formation , and therefore the Wheeler Formation , is shown to only represent a component 

of that 3rd order sequence . However , in this analysis a sequence boundary, transgressive 

surface , and maximum flooding surface were identified within the Wheeler Formation in 

the Drum Mountains. These three surfaces separate systems tracts , which are the major 

subdivisions of a 3rd order depositional sequence (Vail et al., 1991 ). It is possible that the 

analysis of Bond et al. ( 1989) may have been too coarse to identify sequence boundaries 

and other sequence stratigraphic surfaces occurring in the Eye of the Needle Formation. 
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Trilobite Range Zones in the Wheeler Formation 

Figure 2 shows four trilobite range zones occurring in the Wheeler Formation. 

The transition between the Bolaspidella and Oryctocephalus open-shelf, polymeroid­

trilobite range zones occurs in the lower Wheeler Formation (Robison, 1976). The 

transition between the Ptychagnostus gibbus and P. atavus open-shelf agnostoid trilobite 

range zones also occurs in the lower Wheeler Formation (Robison , 1976). 

Two important chronohorizons that can be used to correlate strata in the eastern 

Great Basin (and worldwide) are the base of the Ptychagnostus gibbus and P. atavus 

range zones (Rowell et al., 1982). Rowell et al. (1982 , p. 161) state that "the base of the 

P. atavus Zone is a superior biohorizon for chronocorrelation because it is typically 

present in monofacial strata, whereas the P. gibbus Zone commonly occurs above an 

unconformity or an abrupt lithofacies change ." 

The base of the P. gibbus range-zone occurs at the contact between the Swasey 

and Wheeler Formations (Rowell et al., 1982). According to Rowell et al. (1982) , in the 

Drum Mountains. the base of the P. atavus range-zone occurs at 71 m above the base of 

the Wheeler Formation. In this analysis , the base of the P. atavus range-zone occurs at 

the agnostoid-condensed zone ( cm-thick coquina bed of Rowell et al., 1982) in the lower 

unit of cycle 12 (Fig. I 0), which is 76 m above the base of the Wheeler Formation. 

The base of the P. atavus range-zone in the Wheeler Amphitheater , just southeast 

of the U-dig trilobite quarry , was found to occur very low in the section, approximately 

20 m (Fig. 28, Appendix B) above the base of the Wheeler Formation at the first 

fossiliferous, tan shale ledge. 
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The base of the P. atavus range-zone at Marj um Pass was also found very low in 

the section , approximately 15-20 m above the base of the Wheeler Formation in gray , 

platey shales, occurring below the concretion horizon . According to Rowell et al. (1982), 

the base of the P. atavus range-zone at Marj um Pass occurs at 27 m above the base of the 

Wheeler Formation. The base of the P. atavus range-zone in the Fish Springs Range was 

not identified . 
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SUMMARY AND CONCLUSIONS 

(1) The stratigraphy of the Wheeler Formation in the southeastern Drum 

Mountains has not been structurally doubled. The seemingly "anomalous" thickness can 

be attributed to sedimentation and not to tectonics. 

(2) The facies of the three informal members in the Wheeler Formation in the 

Drum Mountains indicate a conformable eustatic sequence. During the deposition of the 

lower member there was rapid and then gradual deepening of relative sea level. The 

calciturbidites of the middle member were shed from the carbonate platform during 

maximum highstand. The shallowing facies of the upper member were deposited during 

the end of the highstand and beginning of the next lowstand of relative sea level. 

(3) In this sequence stratigraphic analysis there are twenty distinct 5th order 

cycles , which are superimposed unequally within three , indistinct 4th order cycles. These 

three 4th order cycles are superimposed on to a single 3rd order depositional sequence. 

(4) At least some of the 5th order cycles may have been caused by local normal­

fault-induced , down-dropping events . These events were likely related to the evolution of 

the House Range Embayment. This study enables the evaluation of the effect of tectonics 

(faulting) versus global eustacy on the sedimentary regime occurring within the Middle 

Cambrian House Range Embayment 

(5) The cycles and surfaces defined in this sequence stratigraphic analysis were 

likely deposited within short intervals (204 to 405 ky) of geologic time. These sequence 

stratigraphic surfaces , and the base of the Ptychagnostus atavus and P. gibbus range-



zones, can be used to correlate strata occurring in other localities in the eastern Great 

Basin . 
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78 
TABLE 2-Geochemical data in lower units of cycles 1-20 in the Wheeler Formation. 

CYCLE # % ORGANIC CARBON % INSOLUBLE RESIDUE 

upper unit , cycle 20 1.20 20.0 

20 3.86 57.0 

15 1.74 11.4 

13 0.56 1.6 

upper middle Wheeler Fm 0.78 2.4 

middle middle Wheeler Fm 0.58 1.8 

12 2.34 28.4 

11 3.02 87.2 

10 2.38 25.6 

9 2.60 34.2 

8 0.76 7.4 

7 3.44 80.4 

6 0.66 6.0 

5 0.80 19.0 

4 2.46 45 .2 

3 2.74 39.0 

2 1.86 27.4 

I 4.36 97 .6 

top of Swasey Fm 0.60 5.2 

sequence boundary 0.58 0.4 



79 
TABLE 3-Geochemical data in upper units of cycles l-20 in the Wheeler Formation. 

CYCLE # % ORGANIC CARBON % INSOLUBLE RESIDUE 

20 0.78 6.6 

19 0.92 5.8 

18 1.28 17.8 

upper middle Wheeler Fm 0.78 2.4 

middle middle Wheeler Fm 0.58 1.8 

11 1.02 6.8 

10 1.32 6.2 

9 0.66 5.4 

8 0.84 7.8 

7 0.74 4.0 

6 1.04 4.8 

5 0.82 4.4 

4 0.48 3.8 

3 1.26 14.6 

2 0.88 7.8 

I 0.56 4.2 

top of Swasey Fm 0.6 5.2 

sequence boundary 0.58 0.4 
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E] 

8------1 ---------------:::::::-

Thick-bedded limestone 

Thin-bedded limestone 

Paper shale 

Fissile shale 

Platey shale 

Slabby shale (thickening upsection) 

Contorted intercalated 
limestone and shale 

Stromatolites and algal laminae 

Gypsum "beef' 

Fossil condensed zone 

Erosive or undulating surface 
(hardground) 

FIGURE 27-Key for stratigraphic symbols. 
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