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ABSTRACT 

Lower Paleozoic Sequence Stratigraphy, Deposystems 

and Paleo geography of Northwestern 

Ordos Basin, North China 

by 

Benjamin J. Kessel, Master of Science 

Utah State University, 2006 

Major Professor: Dr. Bradley D. Ritts 
Department: Geology 

The Ordos basin rests upon the North China Block and is one of the largest 

sedimentary basins in north China, with more than 15 km of Phanerozoic strata. 

Published estimates suggest that over 2000 m of carbonates and lesser amounts of 

siliciclastics were deposited on the North China Carbonate Platform (NCCP) from the 

Lower Can1brian through the Middle Ordovician. However, lower Paleozoic facies 

successions and deposystems of northwestern Ordos basin remain poorly represented 

in western literature. This paper constrains depositional environments, lithologies, 

facies relationships and sea-level history of the northwestern part of the North China 

block (NCB) in an effort to further document the Early Paleozoic geologic history of 

western Ordos basin. 

New stratigraphic data come largely from measured sections in the Zhuozi 

Shan and Helan Shan in northwest Ordos basin. Strata in the mountains of 
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northwestern Ordos are divided into eleven lithofacies assemblages, distinguished by 

lithology, stacking patterns and sedimentary structures. Lithofacies assemblages in 

northwest Ordos are grouped into four lithostratigraphic units that make up the 

composite type section. Unit A is dominantly composed of shale and mudrock 

lithofacies, Unit B is dominantly composed of thin-bedded lime mudstone and banded 

and bioturbated lime mudstone to wackestone, Unit C is dominantly composed of 

quartz sandstone and dolostone and Unit D is dominantly composed of fossiliferous 

packstone. These four units were observed in all lower Paleozoic sections of the 

Helan Shan and Zhuozi Shan. Deposition of Middle Cambrian through lowermost 

Lower Ordovician strata in northwest Ordos basin occurred on a storm-influenced, 

mixed siliciclastic and carbonate, shallow-water ramp. Lateral trends in quartz 

sandstone, paleokarsts, thrombolites and section thickness suggest that 

accommodation space increased to the south. The depositional architecture changed 

in the Middle Ordovician to a carbonate shelf environment. The sea-level history of 

northwestern Ordos shows transgression through the Late Can1brian, regression in the 

Early Ordovician, followed by a Middle Ordovician transgression, corresponding 

with North American sea level signatures. 

Lower Paleozoic sections in northwestern Ordos basin are broadly similar to 

those previously described in western literature. However, based upon stratigraphic 

data, shoreline trends of the NCCP model are proved inapplicable to northwestern 

Ordos. There is no evidence for lower Paleozoic tectonics such as aulacogen­

controlled subsidence and platform tilting as described by previous workers. The sea­

level history interpreted for northwest Ordos basin is more similar to North American 
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curves than to the North China Carbonate Platform model, suggesting a eustatic 

control on lithofacies stacking patterns in northwest Ordos basin. 

(139 Pages) 
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INTRODUCTION 

The Ordos basin rests upon the North China Block (NCB) and is one of the 

largest sedimentary basins in north China, containing more than 15 km of 

Phanerozoic strata (Fig. 1) (Sun et al., 1989; Yang et al., 2005). The geology of Ordos 

is an important indicator of the geologic history of the entire North China Block. 

Economically, Ordos basin is one of the largest hydrocarbon production areas of 

north China, with major gas reservoirs within Ordovician paleokarst (Lee, 1986; 

Yang et al., 1992; Wang and Al-Aasm, 2002). Published estimates suggest that over 

2000 m of carbonates and lesser amounts of siliciclastics were deposited on the North 

China Carbonate Platform (NCCP) from the Lower Cambrian through the Middle 

Ordovician (Fig. 2) (Meng et al., 1997). However, lower Paleozoic facies successions 

and deposystems of northwestern Ordos basin remain poorly represented in western 

literature. 

We report a detailed sedimentologic and stratigraphic study oflower 

Paleozoic strata in the NW Ordos basin. Because of limited detail in previous studies, 

relatively simple yet fundamentally important questions still remain to be addressed. 

First of all, what are the lithologic units and sequences exposed in western Ordos 

basin? This information has not been previously reported for western Ordos, and is 

the foundation for interpretations such as depositional environment, paleogeography, 

basin history and sequence architecture. We provide detailed measured stratigraphic 

sections and facies descriptions from western Ordos that provide an essential 

stratigraphic framework for interpreting the early Paleozoic geologic history of Ordos 



Nf 
800 km 

Shanghai 

Figure 1. Shaded region shows the extent of the lower Paleozoic North China Carbonate Platform (NCCP), which was 
built entirely upon the North China Block (NCB). The NCB was an isolated microcontinent, located at low latitude 
during early Paleozoic time (Meng et al., 1997). Dashed box shows approximate location of northwestern Ordos field 
area (NCCP location modified from Wang and Al-Aasm, 2002; NCB boundaries from Johnson et al., 2004) 
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Ordos (Ritts et al., 2005) 
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basin. The second question is how western Ordos lithologic stacking patterns and 

sequences compare with models for the whole NCCP (Meng et al., 1997) and North 

America analogs (Vail et al., 1977; Sloss, 1988). Third, geologic features, such as 

aulacogens, are commonly mentioned in the Chinese literature without substantial, 

descriptive evidence to support them. Fourth, paleokarsts are important reservoirs for 

gas within central Ordos (Wang and AI-Aasm, 2002) and are important indicators of 

sea level (Esteban and Klappa, 1983 ), yet the description and position of paleokarsts 

are undocumented from western Ordos. We describe the character and position of 

paleokarsts within the lower Paleozoic stratigraphic framework of northwestern 

Ordos. The last fundamental question addressed by this research is whether the post­

Ordovician NCB-wide unconformity discussed in numerous papers (Meng et al., 

1997; Yang et al., 1992; Yin and Nie, 1996; Huebeck, 2001) is exposed in western 

Ordos basin. 

Huebeck (2001) implies that, although the interactions and contributions of 

major Asian cratonic elements are broadly understood, details such as depositional 

environments, paleogeography and kinematics of smaller elements remain vague. The 

stratigraphic record of the lower Paleozoic also may have implications for Asian 

tectonics as pre-existing sedimentary cover may have an effect upon younger tectonic 

evolution of the basin (Darby and Ritts, 2002). This paper constrains depositional 

environments, lithologies, facies relationships and sea-level history of the 

northwestern part of the North China block (NCB) in an effort to fill the lower 

Paleozoic data-gap of western Ordos basin. 



BACKGROUND GEOLOGY 

Generalized Stratigraphy of Western Ordos Basin (Fig. 2) 

Basement rocks of western Ordas basin consist of Archean foliated and non­

foliated granitic plutons, gneiss, schist and mafic dikes (Darby, 2003), deemed the 

Jinian and Urashan Groups in the north and the Luliang, Fenghe and Yeji Groups in 

the south (Sun et al., 1989). Archean basement rocks are unconformably overlain by 

Mesa-Proterozoic elastic and metasedimentary rocks of the Changchenian and 

Jixianian Groups and Neo-Proterozoic Sinian Group silicielastic rocks (Yang et al., 

1992). Lower Paleozoic lithologies are dominantly carbonate rocks with minor 

silicielastics and span the Lower Cambrian through the Middle Ordovician. A basin­

wide unconformity separates Ordovician carbonate rocks of the Majiaogou Formation 

from Middle Carboniferous to Permian strata; Upper Paleozoic strata are dominantly 

elastic, non-marine with lesser marine carbonate and shale (Yang et al., 1992). Thick 

sequences of Triassic arkosic sandstone and shale (Ritts et al., 2004) are overlain by 

Middle Jurassic to Upper Cretaceous conglomerates, sandstone and shale (Darby and 

Ritts, 2002). Cenozoic basin fill is thin and discontinuous, and is composed of non­

marine, fluvio-lacustrine elastic rocks; Quaternary wind-blown deposits are common 

in Ordas basin (Sun et al., 1989). 

Tectonic Setting 

The Ordas basin consists of an undeformed, central plateau bounded on all 

sides by mountain belts (Fig. 3) (Sun et al., 1989; Darby and Ritts, 2002; Ritts et al., 



SJ.19/on S1Jture Zone 

? 108 200 
km 

Figure 3. Map of Ordos basin and surrounding orogenic belts . Gray color indicates 
North China Block (NCB) . (Modified from Darby and Ritts , 2002) 



7 
2006b ). The northern margin of the basin is bounded by the Jurassic-Cretaceous, 

contractile Yinshan belt , an east-trending mountain range (Davis et al., 1998; Darby 

et al., 2001). North of the Yinshan marks the boundary between the NCB and 

Mongolian arc terraines, expressed by the Permian , Suolon suture zone (Darby et al., 

2001) . The eastern periphery of Ordos basin is composed of the Taihang Shan (Fig. 

3), another Jurassic-Cretaceous contractile fold belt (Darby and Ritts , 2002) . Southern 

Ordos is bounded by the Late Triassic Qinling suture zone, which separates the NCB 

from the South China Block (SCB) (Fig. 3) (Meng and Zhang , 2000). Western Ordos 

is bordered by a Late Jurassic-Earl y Cretaceous fold and thrust belt , well exposed in 

the approximately north-south trending Helan Shan and Zhuozi Shan (Darby and 

Ritts , 2002). 

Tectonic History 

Regional Tectonics 

China is an amalgamation of continental blocks and accretionary orogens 

bounded by sutures , fold and thrust belts or large faults (Enkin et al. , 1992). The NCB 

is one of the major tectonic elements of China, and is composed of two major 

Archean metamorphic continental elements (Zhao et al., 2003). Archean isolated 

microcontinents were fused together to form the larger NCB in the Paleoproterozoic 

(Meng et al., 1997). Rift basins dominated during the Late Proterozoic and are 

expressed by the thick sequences of Proterozoic sedimentary rocks deposited in the 

Ordos area (Sun et al., 1989). 



8 
The NCB persisted as an isolated microcontinent located at sub-tropical 

latitude through the early Paleozoic (Meng et al., 1997; Huang et al., 1999). During 

the early Paleozoic, the NCB was submerged under a shallow-marine, epicontinental 

sea on which over 2000 m of carbonates and lesser amounts of siliciclastics were 

deposited (Meng et al., 1997). A craton-wide unconformity separates Middle 

Ordovician from Middle Carboniferous strata (Fig. 2) (Sun et al., 1989). Chinese 

workers (Sun et al., 1989; Zhao et al., 1996) have characterized the pre-Permian 

history of the Ordos basin as tectonically quiescent , however the early Paleozoic 

history is poorly constrained. The NCB collided with arc ten-anes in present Mongolia 

in the Late Paleozoic; collision with the SCB was completed by the end of the 

Triassic and marked the beginning of intracratonic tectonics of the NCB (Enkin et al., 

1992; Darby and Ritts , 2002). 

Local Tectonics 

Data reported herein come from the Helan Shan and Zhuozi Shan, located 

adjacent to the western margin of Ordos basin (Fig. 3), which are part of the 

intracratonic , Western Ordos fold and thrust belt (WOFTB) (Darby and Ritts, 2002). 

The strata exposed within these Mesozoic-age contractile belts are generally regarded 

as analogs to subsurface units within the central portion of the basin (Ritts et al., 

2006a). Palinspastic reconstructions of tectonic elements of western Ordos are 

important for reconstructing the paleogeographic position of the lower Paleozoic 

NCCP. 



9 
The oldest structures known in the western Ordos belt , are pre-Carboniferous 

normal faults , which are exposed in both the Helan Shan and the Zhuozi Shan (Darby , 

2003) . Paleozoic extension is linked to: (a) continued aulacogen rifting or (b) an after­

effect of the Devonian Qaidam-North China collisional event (Darby, 2003; Yin and 

Nie , 1996) although neither relationship is rigorously established. The early Mesozoic 

history of the Helan Shan has been characterized as extensional (Ritts et al., 2004). 

Sedimentological data from thick packages of Middle and Upper Triassic strata 

exposed in the Helan Shan and Zhuozi Shan suggest a north-trending half-graben 

with both depocenter and master fault located in the west, over part of the Helan Shan 

(Liu, 1998; Ritts et al., 2004). Early Jurassic, non-marine rocks within the Zhuozi 

Shan and Hehm Shan record initiation of the WOFTB (Darby and Ritts , 2002) . The 

WOFTB consists of east vergent thrust faults, folds and associated reverse faults 

exposed in the Helan Shan and Zhuozi Shan (Darby and Ritts, 2002). Both ranges 

show a paleocurrent reversal from west-directed to east-directed in the Lower to 

Middle Jurassic, suggesting onset of contraction during this time (Darby and Ritts, 

2002 ; Ritts et al., 2006a). Late Jurassic to early Cretaceous(?) rocks are the youngest 

deformed rocks associated with the WOFTB in the Zhouzi Shan (Darby and Ritts, 

2002). 

Of great importance to this study is the Cretaceous dissection of the WOFTB. 

Chinese workers ( e.g. Liu et al., 1990) suggest that the northern Zhuozi Shan is an 

along-strike equivalent thrust belt, formed penecontemporaneously with the Helan 

Shan (Darby and Ritts, 2002). By reconstructing fault geometries within the region, 

Darby and Ritts (2002) dispute this interpretation and propose that a large, northwest-



Tertiary and Younger 

- Mesozoic 

- Upper Paleozoic 

ffl Ordovician 

[{:{ Cambrian _;:zp:-Strike-Slip Fault 

Precambrian ~ Thrust Fault 

0 km 50 

Figure 4. The interpretation that a large, left-lateral, strike-slip fault has 
dissected the WOFTB, effectively translating the Zhuozi Shan - 60 km 
north to its present position. Dotted line shows the position of the 
Wuhai-Yellow River fault between the Zhuozi Shan and northern 
Helan Shan (Darby and Ritts, 2002; Ritts et al., 2006a) 
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11 
southeast trending , left-lateral strike-slip fault, the Wuhai-Yellow River fault (Ritts et 

al., 2006a) has dismembered the WOFTB to its current position and that the western 

Zhuozi Shan actually represents the frontal portion of the WOFTB (Fig. 4). This 

interpretation is drawn from four iines of evidence: (a) the occurrence of a large, Late 

Jurassic, strike-slip fault that cuts both the Helan Shan and Zhuozi Shan and is 

presently offset by - 60 km, (b) similar trending , along strike, left-lateral faults in the 

Lang Shan, northwest of the WOFTB (c) a conspicuous northwest-southeast trending 

straight segment in the course of the Yellow River between the Helan and Zhuozi 

Shan and (d) thrust belt characteristics (Darby and Ritts , 2002 ; Darby , 2003; Ritts et 

al. , 2006a , 2006b ). 

Previous Work - Lower Paleozoic 

Chinese workers have documented the lower Paleozoic stratigraphy of the 

Ordos region , based primarily on core analyses ( e.g. Lee, 1986; Sun et al., 1989; 

Yang et al., 1992; Yang et al., 2005). These papers present an overview of the 

Phanerozoic sedimentologic and tectonic history of Ordos basin, with the main focus 

upon paleogeography and petroleum system architecture of the Mesozoic and 

Cenozoic. While petroleum-related aspects of these studies are relatively coherent, 

details of field relationships, outcrop locations and depositional environments are 

extreme ly broad or cryptic. For example , the Upper Cambrian of the whole of Ordos 

basin is described by Yang et al. (1992) as, "medium to thick bedded, silty to fine­

grained dolomite, muddy dolomite with some pebbly dolomite" in which "a 

disconformity existed" . Paleoenvironmental interpretations in the same study are 



limited to general descriptors such as "tidal flat patchy limestone" and "tidal flat 

wormkalk" plotted on paleogeographic maps without discussion of implications 

(Yang et al., 1992). 

Outcrop investigations of lower Paleozoic strata in Ordos basin are limited. 

Wang and Al-Aasm (2002) focused on karst horizons strictly in the Middle 

Ordovician Majiagou Formation in the east-central portion of Ordos basin. The main 

focus in the Wang and Al-Aasm (2002) paper is on reservoir properties and 

petrographic and geochemical analyses of carbonate rocks within the Majiagou 

Formation. Majiagou reservoir porosity in east-central Ordos is a function of 

dissolution-enhanced vugs in -dolomites. Wang and Al-Aasm (2002) used physical 

measurements ofreservoir quality to show 0.5-15% porosity and 0.01-1224 md 

permeability in outcrop , and 0.5-8% porosity with 0.1-5 md permeability in the 

subsurface dolomites. Through isotopic and petrographic data, they interpreted 

dolomites as mixing zone-induced from both shallow-and deep-burial environments 

(Wang and Al-Aasm, 2002). However, Wang and Al-Aasm (2002) have not 

addressed the stratigraphic positions of paleokarsts elsewhere within the lower 

Paleozoic section. 

The study of Meng et al. ( 1997) documented sequences of carbonate rocks in 

the lower Paleozoic strata of the whole NCCP, including sites near eastern and 

western Ordos basin . They also published a tentative correlation to North American 

sequences. The foundation of this paper is based upon detailed Cambrian lithologic 

descriptions, with depositional environment and sequence stratigraphic 

interpretations, resulting in a Lower to Middle Cambrian, stratigraphic column and a 
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general model for early Paleozoic deposition on the NCCP. However, the bulk of 

field data from that study was concentrated in regions situated north and south of 

Beijing, with inferred references to lateral changes (Meng et al., 1997). The Meng et 

al. (1997) model is generalized for the entire platform, which makes application to 

local areas, such as western Ordos basin, difficult. 
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By using bounding sequences of intraclastic conglomerates as relative depth 

indicators , Liang et al. (1993) demonstrated the cyclic nature of Middle and Upper 

Cambrian storm facies associations of the Helan Shan of western Ordos. The result of 

the Liang et al. (1993) study is a detailed, Middle and Upper Cambrian stratigraphic 

column for the Helan Shan showing various cycles and lithofacies associations of 

intraclastic conglomerate rocks. They interpreted intraclastic conglomerate abundance 

in west Ordos as a function of lower Paleozoic storm cyclicity. 

Biostratigraphy (Table 1) 

Chinese workers give lower Paleozoic age assignments for strata on the 

NCCP based upon trilobite, graptolite and conodont biostratigraphy (Meng et al., 

1997). In China, Cambrian age designations are based primarily upon trilobite 

biostratigraphy. The Middle to Upper Cambrian transition is marked by the change 

from redlichiid to ptycopariid trilobites (Meng et al., 1997). Chinese trilobite fauna! 

assemblages of the Cambrian are correlated to both North American and European 

zones (Meng et al., 1997). The Upper Middle Cambrian Zhangxia Formation of 

China is correlated to the Bathyuriscus-Elrathia and Bolasipidella zones, while the 

Upper Cambrian is correlated to trilobites of the Dresbachian, Franconian and 



Table 1. North China Carbonate Platform Biostratigraphy (Meng et al. 1997) 
Age Formation Chinese Fossil Zones North American Fossil Zones 

Middle Ordol.ician Pterograptus e/egans!Didymograptus murichisoni Whiterock 
Ampexograptus-confetus 

Majiagou Cardiograptus 
Didymograptus nexus 
Oncograptus magnus 

Beekmantovm 
Oidymograptus abnormis/Azygograptus suecicus 

Lower Ordol.ician 
Liangjiashan 

Didymograptus protobifidous , Didymograptus deflexus 
Tetragraptus-fruticosus/O idymograptus filiformis 

T. (Etragraptus)-approximatus 
Adelograptus-Clonograptus 

Yeli Aletograptus -Triogroptus Gascondia 

Staurograptus-Anisograptus 
Saukia 

Fengshan Calvinella-Mictosauk ia, Quadraticephalus-Dictyella -Ptchaspis -Tsinania Saratogia --
Taenicephalus 

Kaolishania 
Upper Cambrian 

Changshan 
Changshania Elvinia 

Dunderbergia 
Chuangia 

Aphelaspis 

Gushan 
Drepanura Crepicephalus 

Black v.elderia Cedaria 
Dames el/a 

Bolasipidella 
Zhangxia Amphoton-Taitzuia 

Crepicephalus Bathyuriscus -Elrathina 

Middle Cambrian 
Bailie/la G/ossopleura 

Xuzhuang Poriagraulos Albertella 
Sunaspis 

Maozhuang 
Kochaspis Plagiura-Poliella 

Shantungaspis 



Trempealeauan stages of North America (Meng et al., 1997). The Cambro­

Ordovician boundary is placed between the Calvinella-Mictasaukia and Onychopyge­

Leiostegium zones (Meng et al., 1997). A combination of graptolites and conodonts 

are used for dating Ordovician strata; conodonts are most effective for correlation 

because they are more widely distributed within carbonate platform interiors than 

graptolites (Meng et al., 1997). Graptolite assemblages suggest that the Ordovician 

Yeli , Liangjiashan and Majiagou (lower) Formations are correlative to the North 

American Gascondia and Beekmantown zones, respectively (Meng et al., 1997). 
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DATA AND RESULTS 

Study Localities 

Cambrian and Ordovician strata are exposed across north central and 

northeastern China (Meng et al., 1997). New stratigraphic data in this study come 

largely from measured sections in the Zhuozi Shan and Helan Shan (Fig. 5; Plate 1). 

The Suhaitu section is the northernmost section in the Zhuozi Shan, located 

approximately 35 km northeast of Wuhai (Fig. 5). The Suhaitu section is 573 m thick 

from the Middle Cambrian-Proterozoic unconformity to Middle Ordovician limestone 

beds that cap the section. The section is overlain by upper Jurassic to lower 

Cretaceous conglomerate (Darby and Ritts, 2002). Lower Paleozoic strata that make 

up this section are bounded in the south by a late Jurassic , right-lateral , strike-slip 

fault (Darby and Ritts , 2002) . Strata in this section have an average strike of 196° and 

dip of 57° SW. 

The west Zhuozi Shan anticline (WZA) section is located 10 km east of 

Wuhai, in Wuhai Canyon (Fig. 5). The lower Paleozoic section at the WZA section is 

548 m thick, spanning the Middle Cambrian through the Middle Ordovician. Units 

strike an average of 189° and dip approximately 11 ° SW. 

The Xima section is 20 km southwest of Wuhai and is the thickest section 

encountered, at 785 m (Fig. 5). The lower contact is faulted, but is mapped by Ma 

(2002) as covering Middle Cambrian through Lower Ordovician strata. Lower 

Paleozoic units strike at an average of 250° and dip at 20° SW. 
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The Chipanjing section is located 35 km southeast of Wuhai and is one of the 

thinnest lower Paleozoic sections in the Zhuozi Shan at 200 m (Fig. 5). The lower 

contact is faulted upon Proterozoic quartzites and may be missing some Middle 

Cambrian rocks; it is mapped by Ma (2002) as spanning from the Middle Cambrian 

through the Lower Ordovician. The Chipanjing section strata strike 164° and dip 26° 

SW. 

The Laosunmiao section is located 40 km south of Wuhai (Fig. 5), and is 

mapped as Middle Ordovician (Ma, 2002). This is the thinnest measured section at 94 

m thick, and is an intact chunk of Ordovician carbonates and elastics surrounded by 

heavily folded and faulted lower Paleozoic section . The basal contact is covered and 

not mapped as a fault (Ma, 2002) yet is juxtaposed above Carboniferous rocks while 

the upper contact is marked by faulted and folded Ordovician rocks. Strata strike 239° 

and dip 40° SE. 

The Shitanjin section is 30 km northwest of Dawukou City (Fig. 5), and is the 

only measured section from the Helan Shan. These rocks are mapped by Ma (2002) 

as Middle and Upper Cambrian. This section is 270 m thick. The basal contact is a 

thrust-fault against Carboniferous strata and the upper contact is contact to the Upper 

Cambrian limestone. The Shitanjin section strata have an average strike of 230° and 

dip 10° SE. 

Outcrop and Petrographic Lithologic 
Observations and Interpretations 

Strata in the mountains of northwestern Ordos are divided into twelve 

lithofacies assemblages, distinguished by lithology, stacking patterns and sedimentary 
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Figure 5. Outcrop map of the Zhouzi Shan and Helan Shan of northwestern 
Ordos Basin, showing field locations of measured sections . D=Dawukou 
City, W=Wuhai City. (Map locations adapted from Ma, 2002 , major 
structural interpretations from Darby and Ritts, 2002) 
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structures. These lithofacies assemblages include mudrock and shale; argillaceous 

limestones ; quartz sandstone ; intraclastic conglomerate; breccia; thin, fossiliferous 

packstone; thin-bedded lime mudstone to wackestone; microbial mounds; banded , 

bioturbated lime mudstone to wackestone; fossiliferous, massive packstone to 

grainstone; oolitic packstone to grainstone and dolomitic limestone. These 

assemblages are nan1ed for their dominant lithologic component ; assemblages may 

contain nun1erous lithologies and sedimentary structures. 

M udrock/Shale 

The mudrock/shale lithofacies assemblage is predominantly composed of 

calcareous shale and mudstone with minor interbedded thin , fossiliferous packstone , 

oolitic grainstone and thin-bedded lime mudstone and siltstone . Mudrock and shale 

colors are variable between sections , ranging from tan , green, brown , purple to gray­

black. Grain size in mudstone and shale units ranges from clay to silt-size ; coarser 

grains also are present. Mudrock beds can be massive, however fissile shales are also 

exposed (Fig. 6A). Thicknesses range from meter-scale packages down to thin , cm­

scale , interbeds. This lithofacies assemblage also includes thin shales that are 

interbedded in limestone packages. Interbeds within shale packages range in 

thickness from centimeter scale to 1 m and are composed of intraclastic 

conglomerate, glauconitic, cross-stratified oolitic lime grainstone, thin-bedded, 

hummocky cross-stratified, rippled calcareous siltstone (Fig. 68), thin beds of shell­

rich grainstone , and fossiliferous , bioturbated lime wackestone. Individual ooids 

within interbeds exhibit "chewed" margins while other oolitic beds are thick with 
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Figure 6. A) Mudrock/shale packages with interbedded thin-bedded lime 
mudstone and intraclastic conglomerate. B) Mudrock/shale lithofacies from 
WZA section with interbedded, nodular, thin-bedded calcareous siltstone . 
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cross-stratification. Thin ( 5-15 cm) limestone nodules were encountered in the lower 

portion of the WZA section. 

Interpretation 

Interpreting the depositional environment of shale and mudstone is 

complicated. The fundamental criterion necessary for fine particles to settle out of 

suspension is low-energy , quiet-water (Wignall, 1994). This type of environment is 

found in both deep and shallow water (Wignall , 1994). 

What makes the shale of this lithofacies assemblage even more of a 

conundrum are the sedimentary structures contained within interbedded units. 

Interbedded lithofacies contain sedimentary structures found in both shallow and 

deep-water environments. Interbeds include thin, oolitic beds, fossiliferous packstone, 

and thin-bedded lime mudstone and siltstone, with ripples and hummocky cross-strata 

(HCS). At the base of the WZA section , shale occurs between two microbially­

laminated limestone beds that are interpreted as intertidal to supratidal facies. 

Because distal shale models require rapid , high-magnitude sea-level changes at the 

base of all sections , and most shale beds are bounded by shallow-water facies , 

mud.rock and shale lithofacies are interpreted as deposited in a near-shore, restricted 

lagoon rather than at a deep-water setting. Both shallow water shale and deep water 

shale models will be presented in the sea-level interpretation section later in the 

paper. 
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Argillaceous Limestone 

The arigillaceous limestone lithofacies assemblage is composed of lime 

mudstone to wackestone with a significant proportion of detrital siliciclastic material 

that gives this unit a recessive and brittle appearance (Fig. 7 A). Fresh and weathered 

surfaces are tan to gray. Individual beds are usually thin ; packages range from few 

ems to 1 m thick. The limestone component of the argillaceous lithofacies assemblage 

is dominantl y mudstone to wackestone with shell grains and trilobite fragments. 

Petrographic investigation of a sample of argillaceous lime mudstone from 

Suhaitu section indicates a more grain-rich lithology than is apparent in the field. 

Grains include pelloids , glauconite , trilobite fragments , echinoderm plates , tabular 

muscovite crystals and a large component of fine quartz silt. The matrix is composed 

of microspar (Fig. 7B). 

Interpretation 

Paucity of sedimentary structures combined with high, fine-grained , 

siliciclastic content suggest that this assemblage was deposited in a bioturbated , low­

energy environment (Enos, 1983; Tucker and Wright , 1990; Wignall , 1994). This 

facies assemblage was likely deposited in a subtidal environment below normal wave 

base (Enos, 1983; Wilson and Jordan , 1983). 

Quartz sandstone 

The quartz sandstone lithofacies assemblage is more common in the Lower 

and Middle Ordovician portions of lower Paleozoic sections and is composed 



Figure 7. A) Argillaceous limestone from WZA section with thin lime mudstones 
and interbedded, mud-rich layers. Middle layer is composed of carbonate mud 
mounds and intraclastic conglomerates. Hammer is circled for scale. B) 
Photomicrograph of similar facies showing numerous silt-sized grains of quartz, 
opaques and one large trilobite fragment (bottom of photo) in a calcareous matrix . 
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of fine to coarse sand-sized, calcareous and quartz-cemented quartz sandstone, 

usually interbedded with dolomitic limestone. Fresh surfaces are tan to red-pink, and 

weathered surfaces are reddish-brown to dark brown. Quartz sandstone bed thickness 

ranges from 10 cm to 1 m. Quartz sandstone is frequently rippled, planar cross­

stratified (Fig. 8A) and less commonly shows hummocky cross-stratification . Planar 

cross-strata foresets are on the order of 0.3-1 min height. Coarsening upward beds of 

medium to coarse sand with scoured bases and cross-stratified tops outcrop at the 

Xima section . Contrasts in cementation of sand grains make some well-cemented , 

quartz-cemented quartz sandstone beds appear extremely resistant and resemble 

quartzite , interbedded with more friable , calcareous-cemented quartz sandstone . 

24 

Thin section analyses of quartz sandstone from northwestern Ordos reveal a dominant 

quartz composition (Fig. 8B). Grains are subround to rounded , ranging in size from 

silt to medium sand sized and are poorly sorted. Most thin sections show numerous 

quartz grain-to-grain contacts and pressure-solved margins. Clay jackets are evident 

on quartz grains, however quartz overgrowth cement is the primary cement. 

Remaining porosity is low; pore spaces appear to have angular margins and are filled 

by calcite, an unidentified clay mineral and euhedral dolomite rhombs and 

subhedral calcite crystals . Other mineral grains include chert, rounded hornblende and 

small (0.01 mm) grains of mica (muscovite). 

Interpretation 

Quartz sandstone units of northwestern Ordos were deposited in a relatively 

shallow-water, shoreface environment (Tucker and Wright , 1990). Subrounded to 



Figure 8. A) Cross stratification in quartz arenite strata from Xima section. 
B) Photomicrograph from Suhaitu section. Note pressure-soluted quartz 
grains and calcite filling pore spaces . 
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rounded, fine to coarse quartz grains are the dominant mineral component, indicating 

compositional maturity (Boggs, 2001). Planar, ripple and hummocky cross 

stratification all indicate traction transport in bedload (Walker, 1979; Tucker and 

Wright, 1990), and ripple marks and hummocky cross strata suggest, storm affected, 

lower shoreface deposition (Tucker and Wright, 1990). Quartz sandstone units are 

frequently interbedded with carbonate rocks and do not mark the end of carbonate 

production in the lower Paleozoic, thus siliciclastic input was not great enough to shut 

down the carbonate factory (James and Kendall, 1992). Sand was likely input from a 

continental source, and reworked into the shallow shoreface. Quartz-cemented, 

pressure-solved quartz sandstones resemble quartzites but are actually quartz 

sandstones. Based on the shape of pore spaces and pore-fill , host pores for calcite and 

dolomite were likely a result of dissolution of a less stable mineral (feldspar?); 

replacement of feldspars by clay or calcite is common in quartz sandstones (Tucker , 

2001 ). Thin section analyses imply at least four stages of diagenesis; initial 

cementation , burial compaction and pressure solution resulting in quartz overgrowth 

cements , dissolution of an unstable framework grain and porosity filling by calcite 

and dolomite . 

Intraclastic Conglomerate 

The intraclastic conglomerate lithofacies assemblage is composed of beds of 

flat, granule to pebble-sized clasts of lime mudstone with a fine-to-coarse matrix (Fig. 

9A). These beds are interbedded with nearly all lithofacies assemblages described 
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rnJ 
Figure 9. A) Intraclastic conglomerate lithofacies assemblage from Suhaitu section; 
note imbricated clasts. B) Intraclast-filled gutter within thin-bedded lime mudstone 
beds. 
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from the lower Paleozoic section. This lithofacies assemblage is one of the most 

pervasive lithofacies assemblages found in the lower Paleozoic section of 

northwestern Ordos. Fresh and weathered surfaces are gray to dark gray. Relatively 

minor clast components in the intraclastic conglomerate assemblage are fossiliferous 

material, usually thick-walled molluscan fragments (hyolithids?) . Intraclasts are 

usually matrix supported; clast supported units were also encountered. The 

composition of matrix support varies from the more common lime mud matrix to, less 

frequent, coarse matrix containing shell fragments , quartz sand grains , ooids and 

oncoids. Intraclastic lithofacies assemblage bedding thickness varies from 1 cm beds 

to thick packages containing beds up to 50 cm thick. Intraclastic conglomerate within 

the lithofacies assemblage frequently have scoured bases and are laterally 

discontinuous with interrupted margins in bedding planes . The Suhaitu section 

contains excellent exposures of gutter casts , approximately 20-30 cm wide, 

containing both locally-derived lime mudstone clasts and coarse grainstone , preserved 

as isolated pods cross-cutting bedding within thin-bedded lime mudstone packages 

(Fig. 98). Reddish fringes were observed on clasts at the Suhaitu section. Intraclastic 

conglomerate are frequently associated with thin-bedded lime mudstone, bioherms 

and banded, bioturbated limestone; however, intraclastic conglomerate also are found 

with oolitic lithofacies assemblages and as dolomitized beds within dolomitic strata. 

Interpretation 

The intraclastic conglomerate lithofacies assemblage represents storm 

deposition (Aigner, 1985; Myrow et al., 2004) and is a common component of 
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Cambrian and Lower Ordovician strata worldwide (Sepkoski, 1982), including 

northwestern Ordos (Liang et al., 1993). Myrow et al. (2004) document Upper 

Cambrian and Lower Ordovician intraclastic conglomerate units of the Snowy Range 

Formation of northern Wyoming and southern Montana that are representative of a 

multitude of depositional environments and processes in both shallow and deep water. 

Liang et al. (1993) examined Middle to Upper Cambrian lithologic associations of the 

Helan Shan of western Ordos and developed a cyclicity model for the Upper 

Cambrian by using facies associations as proxies for sea level. Intraclastic 

conglomerate are categorized as nearshore beach deposits, more distal mass­

movement-derived and winnowed , nodular limestones based upon clast type, matrix 

and bounding units (Myrow et al., 2004). Although intraclastic conglomerate 

lithofacies assemblages are not the primary focus of this paper and, thus, were not 

described in the same amount of detail as in the Myrow et al. (2004) paper. 

The sedimentary mechanics of intraclastic conglomerate depend on deposition 

and partial lithification of lime mud at a middle to outer ramp, low-energy position, 

which is later disturbed and transported by storm currents (Fig. 10) (Sepkoski, 1982; 

Myrow et al., 2004). The discontinuous bedding relationships encountered at 

approximately 250 m above the base of Suhaitu section exemplify storm deposition at 

a distal setting. Lime mud was deposited and allowed to firm slightly, and was later 

scoured by storm-generated bottom currents with subsequent coarser deposition 

within the scoured channel. Thin beds of lime mudstone, which overlie intraclastic 

conglomerate lithofacies assemblages in this setting, imply a return to relative 

quiescence and indicate the episodic nature of storm activity . Scoured bedding 
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Figure 10. Cai1oon depicting the effects of storms on sedimentation. This model predicts 
onshore material transport in shallower settings and offshore material transport in more 

distal facies (Aigner, 1985). 



relationships of this style are exposed in nearly all sections visited in northwestern 

Ordos. Depositional environments of intraclastic conglomerate lithofacies 

assemblages are inferred from bounding units. As stated above , matrix components 

also are useful for interpreting depositional environment (Myrow et al., 2004 ), 

however , the details of upsection intraclastic conglomerat e matrix changes were 

noted but not recorded in great enough detail to provide such information . For the 

purposes of this paper, a more simplistic method is used. Because intraclastic 

conglomerate lithofacies are ubiquitously interbedded with almost all units, those 

associated with shallower lithofacies (i.e., grainstone or microbially-laminated 

mudstones) are inferred to have been deposited at a shallower position , while 

intraclastic conglomerates occurring within more distal facies assemblages such as 

banded and bioturbated mudstone and wackestone and mounded strata are interpreted 

to be deposited at a distal position. These interpretations are generally similar to 

interpretations of intraclastic facies associations of the Helan Shan by Liang et al. 

(1993) . 

Breccia 

The breccia lithofacies assemblage is composed of granule to boulder sized 

(Fig. 11) breccias (Fig. 12) with reddish-brown sandy matrix, usually associated with 

sand-rich limestone, dolomite and blue-gray packstone. Clast composition within the 

breccia lithofacies assemblage varies from banded and bioturbated limestone to sandy 

mudstone, quartz sandstone, whole bioherm heads and fossiliferous limestone. 

Breccias range in thickness from 1-10 cm to 1-2 m. The thickest breccias are 
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Figure 11. A) Granule/pebble paleokarst surface with a reddish-brown matrix 

from Unit C of Suhaitu section. B) Paleokarst breccia in a microbially­

laminated lime mudstone from the base of WZA section in Unit A. 
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Figure 12. A) Thick paleokarst from Unit Bat Suhaitu section; hammer is circled 
for scale. B) Paleokarst below the Middle Ordovician-Middle Carboniferous 
contact observed -20 km northeast of WZA section. 
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concentrated near the top of stratigraphic sections, however thinner breccia intervals 

are distributed throughout the upper half of sections in northwest Ordos, particularly 

Suhaitu. Brecciation style ranges from chaotic infill to crackle type (Loucks, 1999). A 

mega breccia located at 320 m above the base of Suhaitu section overlies slump­

folded quartz sandstone. 

Interpretation 

Breccia lithofacies in northwestern Ordos represent periods of subaerial 

exposure, which caused dissolution of carbonate material , cave formation and 

subsequent collapse and infill (Este ban and Klappa, 1983 ; Loucks, 1999). 

Thin-bedded, Fossiliferous Packstone 

The thin-bedded fossiliferous packstone lithofacies assemblage is 

composed ofrelatively thin , skeletal-rich beds interbedded with shale and thin­

bedded lime mudstone rocks. Fresh and weathered surfaces are gray to dark gray 

(Fig. 13). Grains include trilobite fragments, hyolithids , brachiopod fragments , 

gastropods, bivalve shells, ooids , pelloids and oncoids. Thin-bedded fossiliferous 

packstone lithofacies assemblages at Suhaitu are associated with numerous cycles of 

thin-bedded lime mudstone capped by intraclastic conglomerate. Bedding thickness in 

thin-bedded fossiliferous packstone is commonly 2-15 cm. Sedimentary structures are 

not common , although planar cross-stratification was observed in one bed at WZA 

section. Thin sections of this thin bedded fossiliferous packstones show an abundance 

of trilobite fragments and ooids (Fig . 13 ). Trilobite thorassic segments and genal 

spines are present as free grains and as nuclei of ooids. Intraclasts of trilobite and 



Figure 13. A) Typical outcrop appearance of thin-bedded, fossiliferous grainstone, 

from Suhaitu section. B) Photomicrograph of thin-bedded fossiliferous packstone 

facies assemblage showing oolite content, echinoid plates and trilobite fragments. 
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ooid wackestone-packstone are present; some show multiple coating events. 

Infrequent pelmatozoan echinoderm plates are present. Fine sand to silt-sized, 

subrounded,quartz grains are an abundant component of the matrix. All ooids are 

replaced by microspar, leaving only faint relic exterior coatings; some ooids have 

been completely replaced by sparry calcite , leaving only the interior trilobite fragment 

nuclei remaining . Matrix has been replaced by fine crystalline calcite. 

Interpretation 

The lack of intact, whole fossils, combined with bounding strata composed 

mainly of shales and thin-bedded lime mudstone suggests two different depositional 

interpretations. Deposition was either by: (a) storm currents , which washed more 

grain-rich material into deeper water or into a quiet water lagoon (Aigner, 1985), or 

(b) a product of low sedimentation rates (Emery and Myers , 1996). Depositional 

environments in northwestern Ordos basin were heavily influenced by storms during 

the early Paleozoic (especially the Cambrian); thus transported , thin interbeds within 

thick shale ( e.g. the lower Suhaitu section) is likely. 

Thin-Bedded Lime Mudstone to Wackestone 

The thin-bedded lime mudstone to wackestone lithofacies assemblage is 

composed of packages of thin (1-20 cm) lime mudstone with interbedded, banded , 

bioturbated mudstone to wackestone, intraclastic conglomerate , oolitic packstone to 

grainstone, mudstones and shale (Fig. 14 ). Fresh and weathered surfaces are gray to 

tan-gray. Grains in the thin-bedded lime mudstone lithofacies assemblage include 



Fig. 14. A-Typical thin-bedded lime mudstone outcrop character, taken from WZA 

section. B-The association of thin-bedded lime mudstone with banded and 

bioturbated units and intraclastic conglomerate (LC.). 
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trilobite, gastropod and brachiopod fragments. Average bedding thicknesses are 3-20 

cm on average. Major sedimentary structures within thin-bedded lime mudstone units 

are laminations, ripple cross-laminae, horizontal burrows, sinuously-deformed beds 

and hummocky cross strata. Individual beds within larger packages of lime mudstone 

are sometimes discontinuous and sinuous, producing sedimentary boudinage texture. 

Interbeds of lime mudstone within thicker shale packages encountered at the WZA 

section are nodular with starved rippled tops. Thin-bedded lime mudstone at the 

Suhaitu , and Xima section commonly have a high quartz silt content and show 

hurnrnocky cross-stratification. These rocks are usually interbedded with fine 

siliciclastic beds; beds with higher percentages of fines result in more recessive 

slopes. Outcrop character also varies with bioturbation ; heavily biotrubated strata are 

more recessive and crumbly. Bedding contacts vary from gradational contacts with 

shale, to sharp, scoured bedding contacts with banded bioturbated limestone and 

intraclastic conglomerate. 

Thin section analyses indicate that some thin-bedded lime mudstone samples 

are more grain-rich than initial outcrop observations, while others are dominantly 

composed of lime mud . One sample collected from the Xima section shows an 

abundance of silt-sized quartz, tabular crystals of muscovite and minor biotite and 

numerous trilobite fragments. An additional sample collected from a stratigraphically­

higher position at the Xima section is dominantly composed of pyrite-stained lime 

mud with no apparent fossil materials. 
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Interpretation 

As with other lithofacies assemblages in northwestern Ordos , thin-bedded 

lime mudstone and wackestone are not limited to a single depositional environment. 

Sedimentary structures within individual beds and bounding lithofacies aid in 

interpretation. With the exception of microbially-laminated lime mudstone , most thin­

bedded lime mud was deposited subtidall y (Cook and Taylor , 1977; Morgan, 1988; 

Tucker and Wright , 1990). Individual interbeds with laminations and hummocky 

stratification are interpreted to have been deposited more distally between fair­

weather and storm wave base (Tucker and Wright , 1990), whereas thicker packages 

associated with ripples , mounded strata or oolitic rocks are interpreted to have been 

deposited more proximally , above fair-weather wave base (Tucker and Wright , 1990; 

Boggs , 2001) . 

Microbial Mounds 

The microbial mound lithofacies assemblage includes mounds with 

either no internal structure (mud mounds) or a simple , thin vertical columns (true 

microbial mounds) (Fig. 15). Mud mounds are dominantly composed of lime mud, 

usually lacking texture; microbial mounds in the WZA, and Xima sections have 

internal , vertical layered columns , 2-7 cm wide . Most microbial mounds are 

hemispheroidal in shape and highly variable in size; widths range from 0.1 to 3 m and 

heights from 0.05 to 3.5 m. Mounds are commonly associated with thin-bedded lime 

mudstone , banded and bioturbated mudstone to wackestone and intraclastic 

conglomerate. Surrounding beds commonly onlap at microbial mound margins and 



Figure 15. Microbial mounds of northwestern Ordos basin. A) Microbial mound 

in thin-bedded lime mudstone from unit B of WZA section. B-Large microbial 

mound within thin-bedded lime mudstone from unit B of Xima section 
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overlie the apex of the mound. One specimen at Suhaitu section exhibits a possible 

stromatolitic overgrowth on top of a mound; this is the only example of a stromatolite 

encountered in northwestern Ordos . 

One thin section from a microbial mound in the WZA section was examined 

and is composed of lime mud; a clotted texture is apparent when the thin-section is 

observed under diffuse light. 

Interpretation 

Most carbonate mounds are formed by microbial growth trapping carbonate 

mud (James and Bourque, 1992). Mounds at the WZA and Xima sections are 

internally structured , which represents microbial growth and entrapment. Mounds 

without internal structure can originate hydrodynamically from concentration of 

carbonate mud or from mud producing organisms (James and Bourque, 1992). 

Mounds are rather ubiquitous within carbonate environments (Boggs, 2001). The 

association with microbial growth implies clear water depositional environments 

within the photic zone, which is roughly to 100 m depth in clear water (James and 

Bourque, 1992; Boggs, 2001 ). Most microbial mounds in northwest Ordos are domal 

and hemispherical in shape, which may be a high energy, wave-resistant morphology 

(James and Bourque, 1992) and are, therefore, interpreted as shallow, subtidal 

features. Sedimentological connotations of surrounding units and mound margins 

imply that the structure was existent at or before the time of deposition of the 

surrounding strata. The size of mounds is likely directly proportional to 

accommodation space, which, in this case, is water depth. As demonstrated by thin-
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bedded lime mudstone eventually overlapping them, microbial mounds were 

eventually terminated as a result of sea-level outpacing growth , thus either placing the 

microbial mound at a sub-photic depth or causing an increase in turbidity (James and 

Bourque, 1992). 

Banded, Bioturbated Lime Mudstone-Packstone 

The banded, bioturbated iime mudstone to packstone lithofacies assemblage is 

composed of thick beds of bioturbated limestone and is characteristically resistant in 

outcrop profile. Banded and bioturbated lime mudstone to packstone lithofacies 

assemblages are commonly associated with shale, thin-bedded lime mudstone and 

microbial mounds (Fig 16). Fresh surfaces are gray to dark gray and weathered 

surfaces are commonly reddish and gray and mottled in texture . Grains in this 

lithofacies assemblage include brachiopods , gastropods, hyolithids , trilobite 

fragments, pelloids , ooids and oncoids. Profound bioturbation and preferential 

dolomitization of porous material within burrows can give the banded, bioturbated 

lithofacies assemblage a reddish appearance. Individual beds range in thickness from 

0.1-1 .5 m. Within the lithofacies assemblage, bedding contacts with intraclastic 

conglomerates are usually scoured at the base and margins while bedding contacts 

with thin-bedded lime mudstone are more frequently sharp to gradational. 

Thin sections range from lime mudstone to packstone. Major grain types in 

this lithofacies assemblage are trilobite fragments , ooids , and silt-sized, angular to 

subrounded quartz grains. Bioturbation is evident in both cases, and burrows are 

infilled with finely crystalline dolomite rhombs. Ooids frequently have pitted exterior 



Figure 16. A) Association of banded and bioturbated facies with scoured intraclastic conglomerate and thin­

bedded lime mudstone. B) and C) Typical banded and bioturbated outcrop character from Suhaitu and WZA 

sections, respectively. 



margins. Dolomitization is also evident along stylolitic fronts. Matrix support is 

mainly fine crystalline calcite (microspar). A lime mudstone sample from Suhaitu 

section shows excellent geopetal filling of burrows. 

Interpretation 

Generally , this lithofacies assemblage is interpreted as a result of shallow , subtidal 

deposition , above storm wave-base (Tucker and Wright , 1990; Emery and Meyers , 

1996). Grain content and composition , combined with elevated levels of bioturbation, 

suggest that these rocks were deposited adjacent to a relatively high-energy position. 

Increased carbonate mud content within this lithofacies assemblage reflects 

fluctuation to a more distal-ramp position. 

Fossiliferous, Massive, Packstone to Grainstone 

The massive fossiliferous packstone to grainstone lithofacies assemblage (Fig. 

17) is composed of limestone, rich in both articulated and disarticulated skeletal 

material, interbedded at the base with sandstone and dolostone. The massive 

fossiliferous packstone to grainstone lithofacies assemblage crops out in the upper 

portions of all sections. The weathered surfaces of this lithofacies assemblage are 

light gray; fresh surfaces are blue-gray. This lithofacies assemblage contains 

numerous whole fossils . Fossil grains include straight and coiled nautiloid shells, 

gastropods, brachiopods, rugose corals, trilobite fragments, bivalves, pelmatozoan 

echinoderm fragments , sponges, bryozoans, ooids and oncoids. Large, whole 

nautiloid shells are frequent fossil constituents within this unit. Coiled specimens 

have radii up to 30 cm, whereas straight, orthocone specimens are up to 40 cm long. 
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Figure 17 A) Bedding-plane view of fossiliferous, massive, packstone to grainstone 

with gastropod, bryozoan, and brachiopod fossil fragments. B) Photomicrograph of 

blue-gray fossiliferous packstone to grainstone facies with abundant pelloids, 

intraclasts and quartz silt grains. 
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Numerous Craterospongia sinica (new genus, new species; Rigby et al., 2006) (Fig. 

18) sponges were found in this interval ; sponges are dome shaped and generally 3-5 

cm high and approximately 5 cm in diameter with thick, corrugated exterior walls. 

Individual sponges are numerous and may form small buildups. Large gastropods (6-

10 cm) are also abundant and are likely Maclurites sp. (Liddell, personal 

communication). Bedding thickness ranges from 20 cm to 2 m. Most lithologies of 

the massive fossiliferous packstone to grainstone lithofacies assemblage are 

bioturbated. Some pervasively bioturbated strata are similar in appearance to banded , 

bioturbated strata lower in the section. Burrows in this lithofacies assemblage are 

preferentially replaced with reddish-pink dolomite. 

In thin section, massive fossiliferous packstone to grainstone rocks are rich in 

intraclasts , pellets , echinoderm plates , pelmatozoan echinoderm fragments, 

brachiopod shell fragments, gastropod shells and ostracodes. Thin sections from this 

lithofacies assemblage are almost completely recrystallized , with few original 

textures remaining. The majority of cement is finely crystalline calcite (microspar), 

while pods of carbonate mud (micrite) remain. Bladed and prismatic cements are 

visible on the rims of clasts , and, while distinction is difficult , cements seem to rim 

grains in an even coating. Fine sand-to silt-sized, subround quartz grains are common 

constituents. Several brachiopod and molluscan grains are coated with the 

cyanobacterium Epiphyton sp. (Shoelle and Ulmer-Schoelle , 2003). Euhedral 

dolomite rhombs within this lithofacies assemblage are most frequently concentrated 

along burrowed margins or along stylolites. Small (0.2-0 .5 mm) ostracode shells are 

also abundant grains; most are disarticulated, but otherwise intact. Pellets are small, 



Figure 18. Bedding plane photos of Craterospongia sinica, a new genus and 

species of Middle Ordovician sponge. A) Individual specimen. B) Two 

individuals; note cross section. 
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ovate grains with no apparent microstructure and are the most abundant grain 

constituent within units. Trilobite fragments, which are very common in 

stratigraphically lower lithofacies assemblages, are notably lower in abundance in this 

portion of the stratigraphic section. 

Interpretation 

Massive fossiliferous packstone contains a wide variety of fossils indicative of 

shallow-subtidal, open marine deposition above fair-weather wave base. Fossil 

assemblages containing brachiopods, echinoids, crinoids and nautiloids suggest 

normal marine salinity (Wilson and Jordan, 1983). Variations within lithofacies , such 

as localized concentrations of pelloids , oncoids and lime mud, may suggest 

deposition within a back-ban-ier lagoon (Enos , 1983; Tucker and Wright, 1990). 

Articulated , open-marine fauna within beds interpreted as lagoonal either suggest 

open-marine circulation (Tucker and Wright, 1990) or transport by storm cun-ents 

(Aigner , 1985). Overall , this lithofacies assemblage was deposited at a shallow depth, 

ranging from the landward low-energy zone to locations proximal to high-energy 

depositional environments (Tucker and Wright, 1990; Emery and Myers , 1996). 

Oolitic Packstone to Grainstone 

The oolitic packstone to grainstone lithofacies assemblage consists of locally 

cross -stratified, oolitic limestone interbedded with shale, thin-bedded lime mudstone, 

and banded and bioturbated lime mudstone to wackestone. Fresh and weathered 

surfaces are usually gray to dark gray; however they can be reddish as well (Fig . 19). 

Ooids range in size from medium sand-size to greater than 2 cm (pisoid). Some ooid 



Figure 19. A) Outcrop of glauconitic, oolitic grainstone, younging direction is to 
the left. B) Photomicrograph showing glauconite (g) "roses", ooids nucleating 

upon trilobite fragments and a silty matrix. 
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packages contain glauconitic grains; these packages are often oxidized, giving the 

entire bed a reddish-purple hue. Bed thickness is also variable from thin centimeter­

scale interbeds to thick, meter-scale packages that are commonly planar cross 

stratified. Horizontal burrows were observed in Xima section oolitic rocks . 

In thin section, oolitic microstructures are obscured by diagenetic overprints 

that have leached the original material and replaced it with spaiTy calcite. Concentric 

laminae are obscured, but more apparent when thin sections are viewed through 

diffuse light. There is a significant amount of microcrystalline calcite between grain 

boundaries. In addition, dolomitization has replaced the interior of ooids proximal to 

stylolites and fractures with zoned, dolomite rhombs, leaving only the micritic 

envelope. Ooid nuclei are dominantly trilobite fragments, but fine-grained, quartz 

sand nuclei were also observed. Trilobite tborassic fragments are abundant fossil 

grains within this litbofacies assemblage. The original calcite microstructure bas been 

completely replaced; however, undulose extinction and typical "shepherd 's crook" 

(Tucker, 2001) morphology still remain. The matrix within oolitic lithologies is 

dominantly fine-grained crystalline calcite (microspar). Glauconite grains found in 

oolitic rocks have a pellet-shape, or a less-distinct , "rose -petal" morphology, 

replacing coatings in oncoids (Fig. 19). Additional grains observed are intraclasts , 

echinoderm plates , oncoids, trilobite genal spine fragments and reddish opaque 

mineral grains (hematite?). Grain-to-grain contacts are few; little pre-cement 

compaction occurred. Although multiple diagenetic overprints obscure original 

cement morphologies , Suhaitu section samples show consistent, down-side stalactitic 

cementation. 
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Interpretation 

Thick oolitic lime grainstone lithofacies assemblages with cross-stratification 

are interpreted after Halley et al. (1983) as nearshore , high-energy deposits , deposited 

above fair weather wave-base. In the Read (1981) model, ooid sand shoals potentially 

form the primary boundary between the nearshore and offshore low-energy 

environments . Thin section analyses show a significant amount of recrystallized lime 

mud between grains, indicating that some oolitic samples are not true grainstone. 

Oolitic packstone beds within this lithofacies assemblage are interpreted as subtidal 

and more distal relative to grainstone, far enough above fair weather wave base to 

winnow most , but not all, carbonate mud (Halley et al., 1983; Tucker and Wright , 

1990; Emery and Meyers, 1996). Glauconite is commonly formed at mid to outer 

ramp positions at moderate water depths (Schoelle and Ulmer Schoelle , 2003). 

Glauconite within a storm-affected depositional environment may have been brought 

up by bottom currents and worked into sand shoal bodies (Aigner, 1985). Vadose 

zone cements are not unexpected for this depositional environment; oolitic sand 

shoals may have been periodically exposed. 

Dolomitic Limestones 
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Dolomitic limestone lithofacies assemblages in northwestern Ordos 

(Fig. 20A) are almost always interbedded with quartz sandstone beds in the upper half 

of most stratigraphic sections. Fresh and weathered surfaces are tan to brownish-gray 

and red-brown. Some dolostone beds are laminated, while others are massive with no 

apparent preserved sedimentary structures. Limestone texture varies from mudstone 
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Figure 20. A) Typical outcrop appearance of dolomitic lithofacies from Xima 
section. B) Bedding plane view of dolomitized intraclastic conglomerate, also from 

Xima. 



to packstone, and quartz sand grains, oncoids and intraclasts were observed . Xima 

section observations yielded at least two horizons of completely dolomitized 

intraclastic conglomerate (Fig. 20B). Bedding thickness ranges from 1 cm beds, up to 

1.5 m thick. Bioturbation is also apparent in dolomitic limestones, especially at 

Suhaitu. 
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Dolomitic limestone thin-sections are more variable texturally and 

compositionally than was observable at the outcrop . Most can be grouped into true 

dolomitic mudstones with little to no remaining original texture . Laminae observed at 

the outcrop were also observed at the microscopic scale as alternating bands of finely­

and coarsely-crystalline dolomite crystals (Fig. 2 lA). Some dolomitic limestone 

samples contain superb examples of zoned dolomite crystals with a darker nucleus 

and euhdral, rhombic margin (Fig. 21B). Dolomite rhombs nucleated upon dark 

grains. Fine-sand sized, subround grains of quartz are present within dolomite 

samples. Diffuse light observation reveals spherical halos , some of which are 

completely encased in single dolomitic rhombs , likely former ooids before 

replacement. Calcite is also usually present , typically limited to the interstices of 

dolomitic rhombs. A dolomitic limestone sample from the base of WZA section 

shows a definite microbially-laminated structure that was not observed at the outcrop. 

Interpretations 

The variability in dolomitic limestone textures and sedimentary structures in 

northwestern Ordos basin suggests that dolomitization is a function of association. A 

number of relic structures are observed within dolomite thin -sections ( ooids, 



Figure 21. A) Laminated, totally recrystallized, dolostone. B) Grain­

rich bed in which dolomitization is occurring along the periphery of 

larger, hyolithid grains and micritic intraclasts. 
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intraclastic conglomerate, microbial laminite) , thus dolomitization in northwestern 

Ordos is interpreted to be a post-depositional, diagenetic process. 
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Dolostones in the Zhuozi Shan are nearly always associated with potentially higher 

porosity lithofacies , mainly quartz sandstone. Though highly debated, most models of 

post-depositional dolomite formation involve mechanisms for hydraulic flow through 

a carbonate platform (Tucker , 2001 ). Quartz sandstones may have acted as conduits 

for magnesium-rich fluid flow through the NCCP, causing dolomitization of any 

surrounding bed with high enough permeability to allow for the transfer of 

magnesium-rich fluids (Tucker, 2001 ). Lithofacies assemblage descriptions , 

interpretations that make up individual units are summarized in Table 2. 

Stratigraphy 

The stratigraphic succession of lower Paleozoic rocks is similar in both the 

Zhuozi Shan and the Helan Shan. The lack of biostratigraphic indicators in this study, 

coupled with the vague descriptions of the lower Paleozoic stratigraphic section of 

western Ordos in the literature , make applying Chinese formation names and 

equivalents difficult. In light of this complication and consistent lithostratigraphic 

successions across the study area, this study breaks away from Chinese formation 

divisions and subdivides the lower Paleozoic of the Helan Shan and Zhuozi Shan into 

4 lithostratigraphic units that make up the composite type section (Fig. 22). The basal 

portion of all of the stratigraphic sections is rich in shale and is designated as Unit A. 

There is a distinct upsection change from shale-rich litholofacies assemblages to lime 

mudstone and wackestone with local microbial mounds . This marks the change from 
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T bl 2 L'th f a e . I o ac1es A ssem bl ages, D 'f escnp ions an d I t t f n erpre a ions 
Lithofacies Field Description Interpretation Unit 
Assemblage 

Tan, green, brown, purple, gray-black rocks in Lagoon al A,B 

Mud rocks/Shale 
thin to thick packages, interbedded with thin-
bedded lime mudstone , intraclastic 
con.glomerate and thin fossiliferous packstone 
Generally thin bedded and recessive, with Deep Subtidal A,B , 

Argillaceous Limestone minor shell grains and trilobite fragments c 
Brown, purple, to white, fine to coarse, ripple, Shallow Subtidal A,B, 

Quartz Sandstone planar and hummocky cross stratified c 

Jntraclastic 
Thin to medium beds, with scoured bases, All Enviro nment s A,B , 

Conglomerate 
gutter casts, reddish fringes; associated with c 
all units 

Thin-Bedded 
This lithofacies contains trilobite fragments, Shallow Subtidal A 

Fossiliferous Packstone 
ooids, pelloids, gastropods , oncoids, and 
bivalves; rare planar cross strata 

Breccia 
Granule to boulder sized associated with Unit Paleokarst A, B, 
c C,D 

Thin-Bedded Lime 
Trilobites, gastropods, brachiopods, Deep Subtidal A,B, 

M udstone/Wackestone 
laminations, ripple cross-strata, burrows , c 
deformation, nodular , starved riooles 
Thin, vertical internal structures , frequently Deep Subtidal A, B 

Microbial Mounds 
associated with thin-bedded lime 
mudstone/banded and bioturbated 
m udstone /wackestone 

Banded Bioturbated Reddish , very resistant mudstone to Deep Subtidal A,B 
Lime Mudstone, packstone , with silty interbeds, and are 

Packstone heavily bioturbated 
Blue-gray packstone to grainstone with Shallow Subtidal C,D 

Fossiliferous Massive abundant whole fossil content (sponges, coiled 
Packstone/G rainstone and orthocone nautiloids , gastropods); also 

rich in pelloids 

Oolitic Reddish/purple , with glauconite, commonly Shallow Subtidal A,B 

Packstone/Grainstone tabular cross-stratified 

Dolomitic Limestone 
Laminated , microbial , quartz sand, oncoids, Shallow(?) c 
intraclasts, bioturbated 
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Figure 22. Composite type section of northwestern Ordos basin 



Unit A to Unit B, composed of banded and bioturbated lithofacies. Upsection 

gradational changes from lime mudstone and wackestone to quartz sandstone and 

dolostone characterizes the boundary between Unit B and Unit C. Quartz sandstone 

and dolostone beds are capped by Unit D, an open marine, fossiliferous limestone. 

This general upsection pattern is repeated in all measured sections in the Zhuozi Shan 

and Helan Shan and there are several lateral trends in thickness, sedimentary 

structures, and lithology that will be discussed below. 

Unit A 

The composite type section consists of a lower, shale-rich portion ranging 

from 40 to 225 m in thickness deemed Unit A. This unit is composed of several 

lithofacies assemblages, including mudrock and shale, intraclastic conglomerate , thin­

bedded dominant lithofacies assemblage within Unit A is mudrock and shale, lime 

mudstone to wackestone, thin , fossiliferous packstone, oolitic lime packstone to 

grainstone and lesser banded and bioturbated mudstone to wackestone (Table 2). The 

which can be up to several meters thick. Thin shale beds act as interbeds in limestone 

packages whereas thicker mudrock packages are interbedded with numerous 

lithofacies assemblages. Interbeds within shale packages range in thickness from 5 

cm to 1 m and are composed of intraclastic conglomerate, glauconitic, cross-bedded 

oolitic lime grainstone, thin-bedded, hummocky cross-stratified, rippled limestone 

and thin shell-rich packstone, and fossiliferous, bioturbated lime wackestone. 

Unit A changes laterally from the northern Suhaitu section to the southern 

Xima section. Unit A at the Xima section contains banded and bioturbated units , thick 
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shale interbedded with thin intraclastic conglomerate, oolitic packstone and 

grainstone and fossiliferous packstone. Unit A at the WZA section contains 

microbially-laminated lime mudstone and dolostone, quartz sandstone and breccia. 

These lithofacies are interpreted at representing shallow, intertidal to supratidal 

depositional environments. The boundary between intertidal facies and overlaying 

shales is sharp, without evidence for stagnation and development of a hardground 

surface. Unit A thickens to the south (Fig. 23), as the Xima section is the thickest at 

- 225 m and contains thick shale at the base grading into thin shale and argillaceous 

units upsection, with no evidence of microbial laminae or brecciation. Upsection 

lithofacies changes support a shallow water, lagoonal depositional environment for 

the shale lithofacies assemblage. Overall lateral trends place the shallowest facies in 

the north, and support a southward-dipping ramp model. 

At the Suhaitu section, meter-scale cycles consist of lower shale and 

argillaceous limestone capped by thicker , more resistant beds of thin fossiliferous 

lime grainstone and intraclastic conglomerate (Fig. 24). This sequence is repeated 

several times at the meter scale; 25 individual cycles are visible at the base of the 

Suhaitu section. Similar sequences are present at the WZA and the Xima sections. 

Basal cycles again are composed of lower mudrock and shale, argillaceous limestone 

capped by intraclastic conglomerate. Upsection, parasequences have frequent thin­

bedded lime mudstone, oolitic lime packstone and grainstone beds; intraclastic 

conglomerate and shale become less frequent. The progression of cycles from more 

proximal, argillaceous basal sequences to shoal -derived grainstone reflects 

transgressive sea-level changes at this point within the section. 

59 



t 
E 

I() 
00 

• 

i 
I() 
M 
...... 

i 

l 

N 

Suhaitu 

D 

D 

WZA 

-�

E A. --
00 
I() 

i 

Paleokarst 

Mounds 

23 km 

E 
I() 
0 
!"') 

r 
E 

I() 
M 
M 

l 
21 km 

s 

Xlma 

A.:� 

Figure 23. Measured section data from most complete (primary) sections. 
Sections are scaled from north to south to illustrate lateral trends in section 

thickness, unit thickness, paleokarsts (blue), and mud mound (red) 

abundances. 
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Figure 24. A) Cycle of thin-bedded lime mudstone capped by intraclastic 
conglomerate from Suhaitu section. B) Intraclastic conglomerate overlain by thin­
bedded lime mudstone . Bedding is parallel to vertical direction of the photo . 
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UnitB 

Shale and mudrock-dominated , lower portions of northwest Ordos 

stratigraphic sections grade into packages dominantly composed of banded and 

bioturbated lime mudstone to wackestone called Unit B. Other lithofacies 

assemblages contained within Unit Bare thin-bedded lime mudstone to wackestone 

and thin, fossiliferous packstone. Lateral variability in Unit B is limited to thickness , 

microbial mound abundance and size and paleokarst abundance . Unit B thickens to 

the south from 175 to 243 and 305 m (Fig. 23) at the Suhaitu, the WZA and the Xima 

sections , respectively. North to south mound abundance and size trends are apparent 

across Unit Bin the Zhuozi Shan. The Suhaitu section contains one mounded horizon 

horizon comprised of a few, relatively small (40 cm diameter) mounds and one bed 

containing a small microbial mound with a digitate stromatolite cap (Fig. 23). Moving 

south , the WZA section contains more mounds of larger size, occurring at a relatively 

higher stratigraphic position. The Xima section contains large microbial mounds at an 

even higher stratigraphic position; the Xima section microbial mounds reach up to 3 

min height and are the largest mounds encountered in northwestern Ordos (Fig. 23). 

Paleokarsts are thicker and more abundant in the north at the Suhaitu section; 

the WZA section has one paleokarst horizon in Unit B while the Xima section has 

none (Fig. 23). Lateral trends in Unit B support a southward-dipping, (landward-to­

the-north) ramp depositional model. Cyclicity typical of Unit B reflects a 

transgression relative to Unit A. At the Suhaitu section sequences are composed of 

thin-bedded lime mudstone, with interbedded and sometimes scoured intraclastic 

conglomerate beds capped by resistant, banded and bioturbated units (Fig. 25B). This 



Figure 25. A) Large-scale sequence from Xima section showing more 
argillaceous units capped by strata rich in oolitic grainstone. B) Sequences 
from Suhaitu section showing an upward progression from thin-bedded lime 
mudstone and intraclastic conglomerate to banded and bioturbated units . 
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sequence is also exposed at the WZA and Xima sections. Farther upsection in Unit B, 

basal portions of cycles include mounds; mounds are more frequent components of 

sequences in the southern Zhuozi Shan at the WZA and Xima sections. These cycles 

represent transgressive, shallowing-upward sequences from more distal thin-bedded 

lime mudstones to relatively, proximal banded and bioturbated lithofacies 

assemblages. 

Unit C 

Unit C is found in the upper portion of the composite type section and 

contains a marked , gradational transition to a dolomitic and quartz sandstone-rich 

package of strata (Table 2). Intraclastic conglomerate lithofacies assemblages are 

nearly nonexistent above this point in the type section. Unit C varies in thickness 

from 60 to 140m. Dolomitic limestone lithofacies asseblages are thin to medium 

bedded and contain laminations , while quartz sandstone lithofacies assemblages are 

moderately to well cemented, and contain planar and hummocky cross stratification. 

Intraclastic conglomerate is a common constituent of Cambrian through 

Lower Ordovician outcrops in North America ( c.f., Cook and Taylor , 1977; Sepkoski, 

1982; Pratt , 2002), while examples from the rest of the Paleozoic through the Recent 

are scarcely encountered (Myrow et al., 2004). The absence of intraclastic 

conglomerate in rocks younger than Lower Ordovician is attributed to an increase in 

diversity of infauna! dwelling organisms near the end of the Lower Ordovician that 

constantly agitated sediment and disrupted any potential for early sub-lithification 

(Sepkoski, 1982). 



Cyclicity is less apparent within sandstone and dolostone of Unit C. 

Parasequences are characterized by argillaceous limestone grading into dolostone and 

sandstone. This sequence of lithologies is interpreted as shallowing upward cycles of 

lagoonal, argillaceous limestone lithofacies assemblages to shallower, shoreface 

sandstone . At Xima section, coarsening upwards sequences are observable within 

sandstone , grading from fine calcareous sandstone to coarse calcareous sandstone. 

Coarsening upwards packages in quartz sandstone beds are likely representative of 

pro gradation of the siliciclastic system (Boggs , 2001 ). 

A rather striking trend from north to south in the Zhuozi Shan is the 

percentage of quartz sandstone per section. Quartz sandstone beds are interbedded 

with both the dolomitic limestone of Unit C and lime packstone in Unit D. Section 

comparisons show that quartz sandstone is concentrated in the northernmost Suhaitu 

section. To demonstrate this trend quantitatively , a simple quartz sandstone to total 

thickness ratio was calculated (Table 3) using the total thickness of quartz sandstone 

beds in Units C and D to the total thickness of Units C and D. Suhaitu section has a 

significantly larger percentage of quartz sandstone at ~48%. The southernmost 

section, Xima, has less quartz sandstone (25%) , while WZA section contains the least 

amount of quartz sandstone at ~ 16%. The non-linear relationship in quartz sandstone 

percentages between the southernmost sections (WZA and Xima) is interpreted as an 

offshore sand bar, which is common in shallow water carbonate systems (Halley et 

al., 1983). Quartz sandstone trends suggest that the northern Suhaitu section was 

more proximal to the source of siliciclastics and shoreline. 

As in Unit B, paleokarsts in Unit Care concentrated in the north and are not 
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Table 3. Quartz Sandstone and Dolomitic Limestone Ratios Per Units C and D 

Section Quartz Dolomitic Units C and D % Quartz % Dolomitic 
Sandstone Limestone Thickness (m) Sandstone Limestone 
Thickness Thickness 
(m) (m) 

Suhaitu 100 12 211 48 6 

WZA 24 33 149 16 22 

Xima 42 71 168 25 43 

found in the south. Paleokarst horizons are more frequent at the Suhaitu section, and 

are not exposed in Unit C at the WZA or Xima sections. As stated for Unit B, 

paleokarst abundance trends suggest that lower Paleozoic landward was located 

north. 

Unit D 

Overlying the quartz sandstone and dolomite of Unit C is an interval of more 

massive, blue-gray skeletal packstone and grainstone lithofacies assemblage, 50-90 m 

thick, deemed Unit D (Table 2). Abundant articulated, whole fossil material and 

disarticulated fossil grains are present and consist of brachiopods, sponges, coiled and 

conical nautiloid shells, rugose corals and echinoderm fragments. Beds in Unit D are 

generally thin to medium bedded, but can contain heavily bioturbated, thick beds with 

a banded appearance. Other minor lithofacies assemblages contained within Unit D 

are quartz sandstone, dolomite, and banded and bioturbated packages. Paleokarst 

surfaces are locally abundant within this horizon. 

The transition from Unit C to Unit D contains some of the best exposures of 

meter scale cycles representative of this part of the northwest Ordos composite type 
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section. The Xima and WZA sections contain well-exposed examples of interbedded 

sandstone and dolostone of Unit C grading into sand-rich limestones, and massive, 

blue-gray fossiliferous packstone lithofacies of Unit Din the scale of one to two 

meters (Fig . 26). This transition is representative of meter-scale transgressive sea-

level changes affecting the basin, exemplified by lithologic contrasts of the shallow 

sandstone and dolostone of Unit C and the open marine packstone of Unit D. 

Coarsening upward sequences from pelloid-rich packstone to grainstone are likely 

representative of sea-level transgression , with high-energy shoals migrating over 

lagoonal strata. 

Incomplete Sections 

All measured sections in the Zhuozi Shan follow the general stratigraphic 

succession described above , yet lateral changes in lithofacies assemblage between 

sections are apparent. Measured section localities form a rough, north-south transect 

along the trend of the Zhuozi Shan (Fig. 5; Fig. 23). Several differences become 

evident when comparing stratigraphic columns , most notably the variation in section 

thicknesses. Complete sections (Suhaitu, WZA, and Xima) show an increase in 

thickness from north to south, from 540, to 550, and 700 m, respectively (Fig. 5). 

One of the southernmost sections, Chipanjing, is significantly thinner at 

approximately 200 m; the reason for this trend is unclear. The basal and upper 

portions at Chipanjing show a familiar lithofacies succession, similar to the composite 

type section. However , a significant portion of the middle section is absent and 

covered. Lack of section of this magnitude is possibly the result of a depositional 



Figure 26. A) Meter scale cycle of sandstone, and sandy limestone, capped by 

limestone as exposed at Xima section. B) Larger scale example of similar 

transition from WZA section. 

68 



hiatus , low sedimentation rates, or a fault cutting out nwnerous units . An 

unconformity or depositional hiatus omitting this much section should show a 

paleokarst surface or major hardground , however, such a surface was not 

encountered. Similarly a major fault contact would be expected to be large , exposing 

evidence such as fault breccia, gouge, mineralization or a slip surface, which was not 

encountered . Without a surface to observe , the answer to this question is speculative , 

but given the proximity relative to other sections and to major thrusts in the vicinity , 

and a conspicuous covered interval in a finer-grained unit , this is most likely either a 

faulted contact , or a series of faults responsible for cutting out a major portion of this 

section . Additionally , the Chipanjing section is located in the southern part of the 

Zhuozi Shan. Therefore , a depositional hiatus omitting a large part of the section is 

not expected in this more distal part of the early Paleozoic ramp . 

Black shale is exposed in the southernmost Zhuozi Shan at Laosunmiao 

section , which is mapped as Lower Ordovician (Ma, 2002). This is the only 

occurrence of black shale encountered in the Zhuozi Shan. Basal black shales are 

laminated , contain graptolites , are several meters thick and grade into thin-bedded, 

laminated lime mudstone with infrequent chert nodules. Graptolite assemblages 

indicate a Middle Ordovician age (Charles Mitchell, persona l communication) . In 

comparison to the Middle Ordovician , fossiliferous limestones of Unit D north of 

Laosunmiao, these rocks indicate a rapid change in slope to the south, and a change 

from shallow carbonate ramp to deeper, shelf deposition. 
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Age Assignments 

Biostratigraphic constraints are poor for lower Paleozoic stratigraphic sections 

of northwestern Ordas. Index fossils , such as trilobites and graptolites, were not 

encountered frequently enough to gain proper age control. Meng et al. (1997) discuss 

formation lithologies and thicknesses for western Ordas, but these formation 

descriptions are vague in both location and description . By using a combination of the 

stratigraphic descriptions of Meng et al. (1997) and the thickness estimates of Yang et 

al. (1992), some preliminary formation assignments have been proposed. 

The 1 :500,000 map of Ordas basin interprets lower Paleozoic sections in the 

Zhuozi Shan as Middle Cambrian through Lower Ordovician (Ma, 2002). The stage 

of the Middle Cambrian is unclear. Middle Cambrian strata of western Ordas are 

described as three sequences of lower terrigenous elastic rocks and upper oolitic 

lithofacies 322-333 m thick (Yang et al., 1992; Meng et al., 1997). Literature 

estimates of Upper Cambrian strata of western Ordas range from 60-180 m thick, 

comprised of siltstone, calcareous shale, intraclastic conglomerate and bioherms 

capped by microbially-laminated dolomite (Meng et al., 1997). On average, strata of 

the Upper Cambrian are thought to be 100 m thick in Ordas (Yang et al., 1992). The 

Lower Ordovician is described as compositionally similar to the Upper Cambrian, 

except finer in texture, varying from 98-222 m (Yang et al., 1992; Meng et al., 1997). 

The average total thickness of Middle Cambrian through Lower Ordovician rocks is 

approximately 600 m (Yang et al., 1992; Meng et al., 1997). Upper Cambrian strata 

are variable in thickness and, in some parts of the basin, are completely eroded, 

juxtaposing Middle Cambrian and Lower Ordovician units (Meng et al., 1997). 



Lower Ordovician rocks are possibly absent from western Ordos due to a major 

unconformity (Yang et al., 1992); most unconformity surfaces reported in NCCP 

strata are marked by irregular surfaces with visible relief (Meng et al., 1997). 
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The Suhaitu, WZA and Xima measured sections average 520 m thick. Units A 

and B are lithostratigraphically similar to Cambrian units from outcrops in eastern 

Ordos described by Meng et al. (1997). There is a rather thick (1.5 m) brecciated 

horizon, interpreted to be a paleokarst , 320 m above the base of Suhaitu section that 

can be traced to WZA section. NCCP literature suggests that Upper Cambrian and 

Lower Ordovician are bounded by a paleokarst surface (Meng et al., 1997). Thus, the 

major paleokarst -32 0 m above the base of Suhaitu section is interpreted to represent 

the Upper Cambrian-Lower Ordovician boundary in northwestern Ordos. Using this 

boundary and Upper Cambrian thickness estimates, Suhaitu section likely reaches 

down to at least the upper part of the upper Middle Cambrian. Above the proposed 

Cam bro-Ordovician boundary at Suhaitu section, there should be at least 100-200 m 

of Lower Ordovician rocks (Meng et al., 1997; Yang et al., 1992), which would place 

the Lower-Middle Ordovician boundary somewhere near the upper part of Unit Cat 

Suhaitu. At Suhaitu , another thick paleokarst occurs approximately 485 m above the 

base of the section. This paleokarst likely represents the Lower and Middle 

Ordovician boundary. 

In both WZA and Xima sections, there is a brachiopod-rich packstone horizon 

encountered at 420 m and 630 m, respectively, composed of concavo-convex 

brachiopod shells of the Rafinesquinidae family, a group no older than Middle 

Ordovician (Fig. 27 A) (Schuchert, 1893). Maclurites (sp.) gastropods, found in Unit 



Figure 27. A) Raflnesquinina sp. brachiopods which indicate Middle Ordovician 

age. B) Graptolites from a black shale unit in the southern Zhuozi Shan of the 

Archiclimacograptus riddellensis, and Pterograptus elegans biozones, which 

indicate a Late Middle Ordovician age (Charles Mitchell, personal 

communication, 2005). 
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D of Suhaitu and Chipanjin sections, is a Middle Ordovician gastropod (Lesueur, 

1818). Outcrop evidence for a major unconformity horizon such as paleokarst or 

paleosol development is not present stratigraphically lower than the first appearance 

of the Rafinesquinidae horizon. Hence, there is no evidence to assume that these 

sections are missing major portions of the Lower Ordovician , as suggested by Yang et 

al. (1992). The age of Rafinesquinidae horizon, combined with the presence of 

Maclurites (sp.) gastropods, implies that units are at least Middle Ordovician near the 

top of WZA and Xima sections. Also , with no observable , major unconformities 

below , the sections are dominantly Upper Cambrian to Lower Ordovician. Future 

workers should examine more detailed biostratigraphic indicators (i.e. , conodonts) as 

a way to refine the stratigraphic assun1ptions of this study. Laosunmiao section is 

mapped as Middle Ordovician (Ma, 2002) and is composed of black shales 

interbedded with dark-gray to black , thin-bedded lime mudstone. Two identifiable 

species of graptolites (Fig. 27B) found within black shale outcrops are 

Archiclimacograptus riddellensis and Haddingograptus intermedius, indicative of the 

Archiclimacograptus riddellensis , and Pterograptus elegans Zones (Charles Mitchell, 

personal communication). These zones indicate a late Middle Ordovician age for 

Laosunmiao section (Charles Mitchell , personal communication). 

It is important to remember that these age assignments for northwestern Ordos 

basin are based upon a few key assumptions. First of all, literature thickness estimates 

are assumed to be applicable to western Ordos. Second, paleokarsts are thought to not 

omit significantly thick packages of strata. These assumptions for northwestern Ordos 



basin are initial estimates, and further illustrate the need for additional 

biostratigraphic work. 

Paleokarst: Description, Stratigraphic Position 
and Interpretation 

Major hydrocarbon accumulations of central Ordas basin are reservoired in 

Middle Ordovician Majiagou Formation paleokarst (Wang and Al-Aasm , 2002). 
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Occurrences of other potential paleokarst surfaces are described in the literature 

(Yang et al., 1992; Meng et al., 1997); however , data regarding stratigraphic positions 

are absent. Furthermore , the existence of the Middle Ordovician to Middle 

Carboniferous w1conformity reported from various localities on the NCB is not 

documented or described in literature pertaining to northwestern Ordas basin ( c.f. 

Yang et al., 1992; Wang and Al-Aasm , 2002). 

The major , post-Ordo vician, NCB-wide unconformity between the 

Lower and Upper Paleozoic is exposed in the Zhuozi Shan. Stratigraphic sections 

measured in the Zhuozi Shan did not include exposures of this unconformity ; the 

upper portion of Suhaitu section is overlain by Jurassic pebble conglomerate , whereas 

lime packstones of the upper portions of the remaining sections are topographic ridge 

caps (WZA) or inaccessible (Xima). However, reconnaissance work along the 

northeastern margin of the Zhuozi Shan anticline revealed the unconformity , 

expressed as a covered slope-forming zone between Middle Ordovician , massive 

fossiliferous packstones and Carboniferous elastics (Fig. 28A). Major paleokarst 

horizons are below the Upper Paleozoic units and into coherent Middle Ordovician 



Figure 28. A) Angular relationships between Middle(?) Ordovician and 
Carboniferous. Kevin Randall circled for scale. B) Sub-unconformity 
paleokarst character showing alluvium-filled, stained pits that Chinese 

workers are extracting bauxite. 
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units. This unconformity is the represents the most missing section due to a 

paleokarst-related feature encountered in the Zhuozi Shan. Along the covered interval 

and marking the inferred contact are numerous mining pits where Chinese miners are 

extracting bauxite (Yang et al., 1992) from what appear to be paleocaves (Fig. 28B), 

some as deep as 20+ meters. Relatively large (2 m high, 1 m wide) caves are exposed 

lower in the Middle Ordovician section , below the unconformity , as basal collapse 

breccias overlain by coarse conglomerates and quartz sandstones. Several modem 

karst (neokarst) dissolution breccias propagating along fractures were also obsen ,ed 

with paleokarst breccias. 
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Paleokarst horizons were observed most commonly in the northern-most 

section, Suhaitu. Paleokarst surfaces are chaotic, pebble to cobble-sized breccias, with 

a reddish-brown, sandy matrix. Most range in thickness from 10 cm up to 1 m thick. 

The upper portions of sections contain nearly all the paleokarsts present. Near the top 

of the Suhaitu section in the quartz sandstone and dolomitic interval is a rather large, 

brecciated bed of granule-to cobble-sized sandy limestone and dolomite . 

Also at the Suhaitu section are two horizons oflarge, boulder-sized breccia 

containing blocks of banded and bioturbated lime mudstone to wackestone, 

intraclastic conglomerate , biohermal limestone , fossiliferous limestone and lime 

mudstone. The lower interval (at approximately 320 m) caps a bed of sinuously 

folded, sand-sized grainstone that is bounded by truncations at the base and top. The 

WZA section has three exposure surfaces, none of which are very thick. The lower 

two exposure surfaces are pebble-sized breccias that bound a package of off lapping 

sandy limestone beds. This feature is interpreted as an accretion set produced by tidal 
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channel bar migration. Stratigraphically above is a microbially-laminated unit 

suggesting intertidal to supratidal deposition, and supporting shallow water deposition 

of this part of the section. Thin, brecciated surfaces represent relatively short periods 

of exposure without significant paleokarst development. The uppermost paleokarst 

surface at the WZA section crops out at approximately 305 m above the base of the 

section , and is a thin , granule-sized conglomerate composed of lime mudstone and 

wackestone. This unit is between a wavy-bedded , lime mudstone containing 

microbial mounds and possible microbial lan1inae, and a lower, cross-bedded 

fossiliferous packstone , typical of shallow, intertidal to subtidal deposition. Based 

upon association with shallow water facies , paleokarst development is interpreted to 

represent brief periods of exposure similar to those observed lower in the section. No 

paleokarsts or paleokarst related-features were observed in sections south of the 

WZA. 

Interpretations 

Based on the location of thinner paleokarst interbeds within the stratigraphic 

section , and the association of these paleokarsts with shallow-water lithofacies , these 

surfaces probably reflect fluctuating sea level and cave development during early 

Paleozoic time . Meng et al. (1997) interpret the Middle Ordovician unconfom1ity as a 

post-highstand systems tract sequence boundary as Ordovician seas regressed off the 

craton. In northwest Ordos , the abundance of minor paleokarsts leading up to the 

thickest , most developed paleokarst are clues that minor sea-level regressions 



exposed parts of the platform for a relatively short time periods, which were 

subsequently overlain by shallow-water, transgressive limestone. 
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DISCUSSION 

Depositional Environments and Models 

Late Middle Cambrian to Early Ordovician 

Based upon lithostratigraphy described above , deposition of Middle Cambrian 

through lowermost Lower Ordovician strata in northwest Ordos basin occurred on a 

storm-influenced , mixed siliciclastic and carbonate, shallow-water ramp. The 

fundamental quality of a carbonate ramp is low-angle geometry, which is sometimes 

less than 20 cm per km, without a clear break in slope (Irwin , 1965, Emery and 

Myers , 1996). Ramp -style geometries are distinguished from other carbonate 

depositional systems by the lack of seaward slope-derived facies ( e.g. thick 

successions of slump folded deposits or breccia) (Emery and Myers, 1996), such 

facies are not observed in northwest Ordos. Nearshore, low-energy ramp facies are 

commonly separated from more distal facies by a high-energy wave barrier (i.e., 

shoal) (Emery and Myers , 1996). Oolitic grainstone and packstone lithofacies are 

common in Units A and B of the composite type section of northwestern Ordos and 

represent shoals (Emery and Myers, 1996). 

The depositional environment of fine-grained units in northwestern Ordos 

basin is unclear from lithologic observations alone. Low-energy conditions required 

for mudstone and shale deposition exist in deep water environments (Halley et al., 

1983), and shallow back reef, lagoon-type depositional environments (Enos, 1983). In 

order to clarify fine-grained elastic rock deposition and gain a better understanding of 

upsection sea-level changes, measured sections are tested against two different 
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depositional models. The two models of lower Paleozoic depositional environments 

for northwest Ordos generated for this study are based upon several published 

interpretations of ramp and general carbonate facies depositional environments (Fig. 

29) (Enos, 1983; Halley et al., 1983; Bond et al., 1989; Tucker and Wright, 1990; 

James and Bourque, 1992; Liang et al., 1993; Emery and Myers, 1996). In the simple 

ramp model (Halley et al., 1983; Emery and Myers, 1996), shales are deposited 

exclusively at distal ramps settings, below storm wave base and grade into more 

grain-rich strata landward, without a significant barrier. The lagoonal model differs 

from the simple ramp model in that it contains a landward back-barrier low-energy 

lagoon where fine-grained elastics are also deposited. In addition , relative depth 

interpretations of intraclastic conglomerate packages (Liang et al., 1993) and sea­

level depths of carbonate lithofacies (Bond et al., 1989) were employed in both 

models to generate sea-level histories. 

Both the lagoonal and simple ramp models are based upon ramp and shelf 

carbonate model interpretations of Halley et al. (1983) and Wilson and Jordan (1983) 

respectively, and have unique, seaward facies transitions. In the simple ramp model, 

the intertidal coastal zone is characterized by tidal flat, possibly microbially­

laminated muds, that grade laterally into the shallow subtidal zone, above fair weather 

wave-base (Halley et al., 1983). The lagoonal model is composed of a nearshore, low­

energy zone, protected by a barrier of oolitic and skeletal grainstone to packstone. 

Seaward of the barrier, the simple and lagoonal ramp models have similar 

facies transitions. Facies transitions seaward of the barrier in the lagoonal model are 

similar to the simple ramp model. The shallow subtidal zone is characterized by a 
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Figure 29. Depositional models proposed for carbonate ramp environments of northwest Ordos basin. 
A) Simple ramp profile with wave energy and grain percentage decreasing seaward. B) Lagoonal

ramp model showing a high energy ba1Tier separating a landward, low-energy lagoon (after Read,

1981; Enos, 1983; Halley et al., 1983; Bond et al., 1989; Tucker and Wright, 1990; James and

Bourque, 1992; Liang et al., 1993; Emery and Myers, 1996)
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abundance of cross-stratified, rounded skeletal and oolitic grains (Halley et al., 1983; 

Emery and Myers, 1996). Farther seaward, shallow facies grade into deep-water 

facies composed of packstone, wackstone and deeper subtidal ribbon-limestone and 

shale; sedimentary structures are limited to hummocky cross stratification and 

laminations (Halley et al., 1983; Emery and Myers, 1996; Tucker and Wright, 1990). 

Sea-level curves for the lagoonal ramp model are presented in Plate 2, and 

have significant implications for shale deposition in the basal portion of measured 

sections. In all complete measured sections, basal shales are bounded and interbedded 

with lithologies interpreted to represent shallow subtidal to peritidal depositional 

environments. Sea-level curves generated on the assumption that shales are deposited 

at a deep, distal-ramp setting require several high-magnitude (30+ m) sea-level shifts. 

Using the lagoonal depositional model in conjunction with bounding units of the 

lower shale packages, shifts in sea level are reduced and are significantly lower in 

magnitude ( < 1 Om) than the first model. Based upon the magnitude of facies shifts, 

the lagoonal model is more reasonable for deposition of lower Paleozoic shales in 

northwestern Ordas. Thus, only the lagoonal model is shown in Plate 2. Relative sea 

level curves for each section show high frequency flooding with more gradual 

progradation. These curves are compared to other established sea-level curves, both 

local (NCCP; Meng et al., 1997) and global (Vail et al., 1977; Hallam, 1992), and 

will be discussed later in this paper. 

Enos (1983) advises that, although difficult, vertical and lateral stratigraphic 

transitions are crucial in distinguishing strata deposited in restricted environments in 

the sedimentary record. To statistically model vertical transitions, lower Paleozoic 
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lithofacies assemblages of northwestern Ordos were coded with numbers and entered 

into a Markov Chain Analysis program developed by Dan Lehrmann and Bob 

Goldhammer. The data set output by this program includes a lithofacies assemblage 

transition matrix showing the frequency of vertical transitions between coded units 

(Table 4). Shale to intraclastic conglomerate and shallow-water-derived oolitic 

grainstone is a common transition, yet shale to banded and bioturbated units and thin­

bedded lime mudstone interpreted as deeper water strata, does also occur. This may 

imply shale deposition at both lagoonal and distal subtidal positions on the ramp. 

Middle Ordovician Deposition 

Upsection and lateral lithofacies assemblage contrasts indicate an upsection 

change in deposition in Middle Ordovician. Lithofacies assemblages of Unit D in 

most sections of the Zhuozi Shan are composed of lime packstone to grainstone with 

numerous, whole fossils, that suggest an open marine, middle to upper shelf 

depositional setting. Unit D is interpreted as Middle Ordovician based upon the 

presence of numerous Maclurites (sp.) gastropods (Lesueur, 1818), and brachiopods 

of the Rafinesquinidae family (Schuchert, 1893). Black, laminated shale rocks 

encountered in the southern Zhuozi Shan contain graptolitic assemblages of Middle 

Ordovician age, and are interpreted as deposited in a deep-water setting. This lateral 

contrast between similar-aged, shallow and deep-water lithofacies suggests a change 

in seaward slope-angle. Moreover, this change in lithofacies assemblage indicates the 

evolution of the late Middle Cambrian-Early Ordovician ramp system to a Middle 



Table 4. Subfacies Transition Matrices 
Suhaitu subfacies transition matrix 

to 
from calc. ss Qtz, c ss shale siltstone dolomite int. cong. bg. ps/gs oolrtic gs/ps mounds bib ws/ps tbfps tblms silty lms ara. Ls breccia total 
calc. ss 5 9 1 2 2 2 5 26 
qtz. C SS 14 1 2 1 1 2 2 1 24 
shale 5 5 1 6 3 20 
siltstone 0 
dolomite 3 1 2 1 1 8 

int. cong. 5 2 1 5 4 23 11 1 52 
bg. ps/gs 11 1 3 2 17 

oolitic gs/ps 5 1 2 8 

mounds 0 
bib ws/ps 2 2 2 6 2 5 2 3 24 
tbfps 3 2 6 11 
tblms 2 5 2 24 2 8 1 44 

silty lms 2 3 11 1 1 1 1 20 
arg Ls 2 2 1 1 6 

breccia 2 5 3 2 1 1 14 
total 26 24 20 0 8 52 16 B 0 25 11 44 20 6 14 274 

WZA subfacies transition matrix 
to 

from calc. ss Qtz c ss shale siltstone dolomite int COOQ bQ. ps/as oolitic asJps mounds bib ws/ps tbfps tblms siltvtms ara. Ls breccia total 
calc ss 1 6 2 3 1 13 
qtz. C SS 2 3 3 2 1 2 13 
shale 3 4 2 3 5 17 

sil!stone 0 
dolomite 5 1 1 3 1 11 
int. cong 4 1 2 3 12 1 19 10 52 
bg. ps/gs 1 17 1 3 22 
oolitic gslps 2 4 6 
mounds 3 2 5 
bib w.;/ps 1 1 10 2 2 3 6 1 26 
tbfps 6 3 1 1 11 
tblms 4 22 2 4 1 33 
siltylms 10 1 11 
arg Ls 3 3 1 2 1 10 
breccia 0 
total 11 14 17 0 11 52 23 6 5 28 11 33 11 B 0 230 

Xima subfacies transition matrix 
to 

from calc ss atz C SS shale siltstone dolomite int cona. ba oslas ootit1C as/os mounds bib ws/os tbfos lblms siltv lms ara Ls breccia total 
calc ss 0 
qtz. C SS 10 3 10 1 3 27 
shale 10 3 3 14 2 32 
siltstone 1 1 2 
dolomte 4 13 17 

int cong. 1 9 2 1 1 B 1 6 1 BB 38 156 
bg. ps/gs 9 4 2 2 17 

oolitic gs/ps 3 3 2 1 1 2 2 18 6 38 
mounds 3 1 2 1 2 g 
bib ws/ps 9 2 1 B 2 22 
1bfps 3 2 1 6 

tblms 15 89 17 5 7 5 1 139 
siltylms 1 38 3 5 3 50 
arg. Ls 3 2 5 
breccia 0 
total 0 27 31 2 17 156 18 38 9 22 6 139 50 5 0 520 

calc. ss=calcareous sandstone, qtz. css=quartz cemented sandstone, int. cong=intraclastic 
conglomerate, gs/ps=grainstone/packstone, bb ws/ps=banded, bioturbated wackestone/packstone, 
tbfps=thin-bedded fossiliferous packstone, tblms=thin-bedded lime mudstone, lms=lime 
mudstone, arg. ls=argillaceous limestone 
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Ordovician platform and shelf margin depositional system in northwestern Ordos 

(Fig. 30). 

The Storm Sedimentation Model 

The Aigner (1985) storm sedimentation model encompasses the effects of 

barometric pressure, wind, offshore currents and oscillatory waves (Fig. 10). During 

storms, bottom waters and sediments are affected by both onshore and offshore stonn 

wave oscillations (Aigner, 1985). Stonns increase barometric pressure on offshore 

waters and, combined with winds from storms blowing onshore, coastal water levels 

are raised an average of 0.5 m (Aigner, 1985). Return-flow of displaced sea-water is 

accommodated by offshore-directed bottom currents circulating sea-water back 

offshore (Aigner, 1985). Thus, this model predicts onshore sediment transport by 

storms in shallow water and offshore transport in deeper waters (Aigner, 1985). 

Upper Cambrian and lowermost Lower Ordovician strata in northwestern 

Ordos support aspects of the storm sedimentation model of Aigner (1985). Fine­

grained, lagoonal beds contain thin interbeds of grain-rich lithofacies, such as ooids 

and fossiliferous packstone, that are expected in higher energy settings. Ooid margins 

in samples from banded and bioturbated units at Suhaitu are noticeably pitted and 

pockmarked. Although northwestern Ordos lithologies record numerous diagenetic 

events which may be responsible for obscuring and altering grain margins, evidence 

suggests that some grain-rich interbeds were transported and abraded by storm 

activity. 
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Sequence Stratigraphy 

Detailed sequence stratigraphic interpretations are difficult to make without 

proper age constraints. However, stacking patterns of lithofacies have implications for 

the sea-level history of Ordos basin. Suhaitu section was first evaluated in terms of 

cyclicity and the location of significant flooding surfaces, and then compared to other 

sections of northwestern Ordos. As stated above, numerous cycles are evident. The 

following lower Paleozoic sequence stratigraphy of northwest Ordos is presented on 

relative sea-level shifts of the parasequence set (41h order) and sequence (3rd order) 

scales. Major sea-level changes (2°d to 3 rd order scale) correspond with Units A, B, C, 

andD. 

Unit A at the base of the Suhaitu section is composed of four, meter-scale, 

shallowing upwards parasequence sets. These sets consist of lower, distal carbonate 

rocks (e.g., banded and bioturbated mudstone to packstone) capped by mudrock and 

shale (e.g., mudrocks with oolitic and intraclastic interbeds) lithofacies assemblages, 

interpreted as lagoonally derived. The WZA section parasequence sets consist of 

shallow subtidal rocks, such as oolitic grainstone, grading upwards into lagoonal 

shale and microbially-laminated dolostone and breccia, which supports a shallow 

water interpretation. Unit A at Xima consists of four shallowing upward sequences, 

similar to those described at Suhaitu section. Unit A stacking patterns suggest two 

different implications for Middle Cambrian sea-level. Cambrian seas may have been 

transgressing and regressing at a higher frequency, causing shallowing upward 

sequences in the rock record. An alternative to high frequency sea-level shifts 

involves the interplay of sedimentation and sea-level rise. Cambrian seas may have 



transgressed while carbonate deposits prograded, shown as shallowing upward 

sequences in the stratigraphic record, which is common in carbonate systems (Emery 

and Myers, 1996). North American sea-level curves suggest that global sea-level was 

transgressing throughout much of the Cambrian (Vail et al., 1977; Hallam, 1992), 

thus the progradational explanation may be more applicable to northwestern Ordos. 

Unit B of Suhaitu section was deposited in deeper water relative to Middle 

Cambrian lithofacies of Unit A. At least four parasequence sets are recognized from 

Unit B, all of which are characterized by subtidal, distal carbonate rocks (e.g. banded 

and bioturbated lithofacies) capped by shallow-water rocks (e.g. oolitic grainstone, 

paleokarst). Parasequence sets in Unit B are characterized in all sections by less 

frequent intertidal to supratidal rocks relative to Unit A and more frequent thin­

bedded lime mudstone and banded and bioturbated mudstone to wackestone. This 

change in deposition reflects a continued transgression during Late Cambrian and 

Early Ordovician times. Again, shallowing upward sequences within Unit B are likely 

a result of carbonate sedimentation rates outpacing sea-level, resulting in 

progradation of the entire system (Emery and Myers, 1996). This agrees with North 

American sea-level curves that suggest continued transgression during the Late 

Cambrian and Early Ordovician (Vail et al., 1977). 

Unit C is rich in quartz sand, dolomitic rnudstone and paleokarsts, and 

probably reflects the shallowest sea-level within the stratigraphic succession. 

Generally, sequences within Unit C are not apparent. Coarsening upward sequences 

at the sub-meter scale are exposed in quartz sandstone beds at Xima section, 

indicating pro gradation of siliciclastic systems. Relative to Unit B, Unit C represents 
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a sea-level regression. Sequences in Unit Dare composed of quartz sandstone beds, 

capped by sand-rich limestone and fossiliferous packstone to grainstone. These 

sequences are interpreted as transgressive packages. Overall, stacking patterns in 

Units C and D suggest a major regression during the Early Ordovician, followed by a 

sea-level transgression during the Middle Ordovician. This pattern is also observed in 

North American lower Paleozoic sea-level curves (Vail et al., 1977; Sloss, 1988). 

Thus, Cambra-Ordovician sea-level at the 2nd order scale (Plate 2) in 

northwestern Ordos was transgressing from the Middle Cambrian through the Lower 

Ordovician. Lower Ordovician seas lapped off the continent forming paleokarsts and 

quartz sandstone deposits, which is equivalent to the boundary between the Sauk and 

Tippecanoe cratonic sequences in North America (Sloss, 1988). Sea level rose again 

in the Middle Ordovician, as evidenced by transgressive sequences at the top of the 

Suhaitu, WZA and Xima sections. Middle Ordovician transgression in northwest 

Ordos is concordant with North American stratigraphy, as the Middle Ordovician 

marks the transgressive phase of the Tippecanoe 211d order sequence (Bond et al., 

1988; Sloss, 1988; Jan1es et al., 1989) 

Paleogeography and Lower Paleozoic 

Tectonic Events 

Multiple phases of tectonic and georneiric tvulution on the NCCP occurred 

during the lower Paleozoic (Fig. 30) (Meng et al., 1997). Lower Cambrian elastics, 

phosphorites and minor carbonates represent initial flooding and ramp initiation, 

capped by widespread carbonate deposition as the platform was established (Meng et 

al., 1997). Middle Cambrian units were deposited during the ooid-dominated stage, 
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Figure 31. Map of Ordos basin showing shoreline positions through the lower Paleozoic, as 

interpreted from Meng et al. (1997). Arrows on shorelines indicate landward direction; 

diagonal pattern represents paleoislands. Note dual positions of Late Cambrian sea-level 

surrounding suggested paleoislands and in the southern portion of the platform, with landward 

direction opposite of older shorelines, post-platform tilting. (Modified from Meng et al., 1997) 
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while the Upper Cambrian was a time of storm-influenced deposition (Meng et al., 

1997). The upper part of the Upper Cambrian through Lower Ordovician stratigraphic 

succession is interpreted as a result of epeiric carbonate platform deposition, later 

terminated by platform exposure (Meng et al., 1997). 

Meng et al. (1997) state that a tilting event changed the shoreline position of 

the whole North China Carbonate Platform before the start of the Upper Cambrian 

(Fig. 31 ). The Middle Cambrian shoreline in western Ordos was oriented 

approximately NW-SE, landward to the northeast (Meng et al., 1997). The whole 

platform was tilted at the end of the Middle Cambrian, inverting the shoreline to a 

WNW-ESE position, exposing the formerly deepest parts of the basin as landward 

was located to the south (Meng et al., 1997). Mechanisms for tilting are described as a 

"collision with a marginal basin to the north and the subsequent loading and flexural 

response of the platform" (Meng et al., 1997). The only evidence presented for NCCP 

tilting is an increase in the abundance of the storm-influenced intraclastic 

conglomerates in the Upper Cambrian; tilting to the northwest places the platform in 

the path of more frequent storm currents (Meng et al., 1997). Conflicting information 

is presented in figure 4 of Meng et al. ( 1997), which shows two Late Cambrian 

shorelines (Fig. 31 ). Therefore, the following discussion examines the relevancy of 

both shoreline positions to Ordos in orde1 to detc:rmine which one is most applicable. 

Although an increase in intraclastic conglomerate is observed in northwest 

Ordos and seemingly corresponds with the boundary between the Middle and Upper 

Cambrian as described by Meng et al. (1997), shoreline positions are not consistent 

with observations from northwest Ordos. The percent of Lower Ordovician quartz 



sandstone beds and thicknesses increase to the north, which suggests that the 

northern part of the platform was proximal to the source of siliciclastic influx. Quartz 

sandstone beds are composed of well-sorted, rounded quartz with carbonate cement, 

showing planar cross-strata and minor hummocky cross-stratification, deposited in a 

nearshore environment. Microbial mound trends also question the Meng et al. (1997) 

shoreline model, as larger mounds are found toward the south, indicating that 

accommodation space was greater in the southern part of the Zhuozi Shan relative to 

the north. Measured sections increase in thickness to the south (Plate 1 ), suggesting 

that more accommodation space was being created to the south. All of this evidence 

implies accommodation space in northwestern Ordos basin increased to the south and 

a more plausible shoreline for this area during the Cambrian and Ordovician was 

most likely oriented roughly E-W, with seaward to the south. An increase in 

intraclastic conglomerate abundance is likely attributable to climate change, as 

suggested for the Helan Shan by Liang et al. (1993). 

Another conflict with the paleogeographic model presented by Meng et al. 

( 1997) are paleokarst horizons. Paleokarst surfaces are exposed in the upper portion 

of the northernmost section, Suhaitu, while few were observed at WZA section and 

none were encountered at Xima. This trend suggests that northern exposed 

u.11conformities may grad� into correlative conformities (Emery and Myers, 1993)

farther south, further supporting that strata in the south were deposited in relatively 

deeper water. However, paleokarsts exposed at Suhaitu are generally thin, and similar 

surfaces farther south may be obscured due to poor outcrop exposure. 
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Shale trends are less apparent, yet the presence of black shale in the southern 

Zhuozi Shan may also support the proposed shoreline position herein. The only 

reliable signatures of black shale are low depositional energy and low oxygen 

conditions allowing for preservation of organic matter, conditions that occur in both 

deep and shallow water depositional environments (Wignall, 1994). However, 

Laosunmiao shale beds contain graptolites and minor chert nodules, both of which 

suggest deep water deposition (Bulman, 1955). Therefore, if Laosunmaio facies are 

assumed distal ramp, deep-water depositional facies and equivalent to the upper part 

of Unit D, their presence has implications in support of new paleogeographic models 

presented in this paper (Fig. 30). In comparison to the Middle Ordovician shallow, 

lagoonal to sub-tidal carbonates of Suhaitu, WZA and Xima sections, deep-water 

shales at Laosunmiao imply increasing of accommodation space southward (Plate 1 ). 

Lower Paleozoic Tectonics 

Numerous authors cite aulacogen subsidence (Sun et al., 1989; Yang et al., 

1992; Yin and Nie, 1996; Meng et al., 1997; Darby and Ritts, 2002) in north China 

during the lower Paleozoic, yet the evidence to support the presence of an aulacogen 

is lacking. Aulacogens are thought to be major forces in Middle Ordovician tectonics, 

and are suggested to have accommodated greater than 2000 m thick successions of 

lower Paleozoic carbonates and lesser siliciclastics in the western part of Ordos (Sun 

et al., 1989; Yang et al., 1992; Yin and Nie, 1996; Meng et al., 1997). Deemed the 

Helan Aulacogen (Sun et al., 1989), this trough is interpreted to be a major factor in 

the structural evolution of Ordos basin not only in a depositional sense, but also as a 
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control on subsequent tectonic evolution. Lower Paleozoic aulacogen-controlling 

normal faults are cited as potential structures for re-activation during Mesozoic 

shortening of the WOFTB (Darby and Ritts, 2002). In spite of its importance and 

widespread acceptance, evidence for an early Paleozoic aulacogen is lacking. 

Columnar stratigraphic sections and facies distributions demonstrating thickness 

changes have not been published as evidence. Thus, the simple question of whether or 

not aulacogen-induced deposits exist in northwestern Ordos is relevant. 

Evidence such as subsurface data or abnormally thick Ordovician sections are 

not presented in the literature supporting the presence of the Helan Aulacogen. This 

study did not encounter any outcrop evidence in support of the existence of lower 

Paleozoic aulacogens in western Ordos. It is possible that rapidly subsiding troughs 

such as the proposed Helan Aulacogen simply did not extend to the Zhuozi Shan. 

Field observations in southwest Ordos in the summer of 2004 found that thick, lower 

Paleozoic outcrops shown on geologic maps (NBGMR, 1991) are covered (Appendix 

A). It also seems plausible that western Ordos aulacogens are a product of inaccurate 

mapping, creating inflated stratigraphic thicknesses. 

Ordovician strata encountered in the Zhuozi Shan do not exceed 300 m in 

total thickness. Meng et al. (1997) report thicknesses upwards of 2000 m for 

Ordovicia.'1 units in the "Ordos area" related to aulacugen movement. Due to iack of 

access, sections were not measured in lower Paleozoic strata of the southern Helan 

Shan. Nonetheless, Helan Shan Ordovician units were observed and were not 

thousands of meters thick (Appendix A). 



Paleokarsts 

Karst reservoirs are complex features that are highly variable in both lateral 

and stratigraphic position. As a general rule, carbonate rocks are initially deposited 

with high porosity and low permeability, which can be altered by post-depositional 

diagenetic events, such as karstification (Selley, 1998). Porosity in karst systems is a 

result of dissolution, fracturing, erosion and collapse, and can be enhanced or 

destroyed by added dissolution, cementation or influx of detrital matrix (Esteban and 

Wilson, 1993). Esteban and Wilson (1993) suggest that an understanding of the 

location, timing and evolution of karstification processes is fundamental to predicting 

porosity in karst reservoirs. Furthermore, outcrop analogs allow the geometry, style 

and heterogeneity of paleokarst intervals to be described. 

Carbonate depositional systems are sensitive recorders of sea-level changes 

(Emery and Myers, 1996). For example, a rapid rise in sea level during the initial, 

building stages of a carbonate platform may drown the system, causing carbonate 

production to step back to a shallower location (Emery and Myers, 1996). 

Fluctuations in eustatic sea level can be a product of large-scale changes in the shape 

of ocean basins or in the volume of water within those basins (climatic) (Emery and 

Myers, 1996). Therefore, sequence stratigraphic control of lower Paleozoic carbonate 

rocks within western Ordos Brrsin helps constrain global sea-level fluctuations during 

this period and enables additional interpretations on probable causes. Meng et al. 

(1997) noted major karst surfaces within the Lower Cambrian-Middle Ordovician 

strata of northeastern China, with a major, craton-wide unconformity separating 

Middle Ordovician from Middle Carboniferous strata. Pinpointing duration and extent 
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of subaerial exposure surfaces within marine, carbonate rocks can be useful for 

interpreting sea level fluctuations (Esteban and Klappa, 1983). 

The thickest paleokarst exposed in northwestern Ordos basin is at the Middle 

Ordovician to Middle Carboniferous boundary. However, paleokarsts occur in the 

Lower Ordovician part of Unit B, and are concentrated along the boundary between 

Units C and D. Sea-level models generated for northwestern Ordos show major sea­

level regressions during the upper part of the Middle Cambrian and Lower 

Ordovician. Thus, these parts of the section are the primary candidates for 

paleokarsts. Outcrops paleo-landward of lower Paleozoic units in no1thwestern Ordos 

may contain thicker, more-developed paleokarsts. Porosity in lower Paleozoic 

paleokarsts is enhanced by crackle and chaotic breccias, interpreted to represent 

dissolution and collapse of cave systems, respectively (Loucks, 1999). The major 

post-Ordovician paleokarst horizon shows the most evidence for porosity decrease by 

influx of detrital matrix as paleocaves are filled with cobble conglomerates. 

Paleokarsts lower than the uppermost unconformity surface are less-frequently in­

filled with coarse elastics, and commonly are filled with fine-grained detrital material. 

The next best prospect for potential hydrocarbon reservoirs within the central 

subsurface of Ordos basin after the Middle Ordovician-Middle Carboniferous 

paleokarst is ir.. consolidation of thinner palcokarsts in Units C and D. 

Comparisons to the Meng et al. (1997) Model 

Lower Paleozoic sections in northwestern Ordos basin are broadly similar to 

those described by Meng et al. (1997). Middle and Upper Cambrian lithofacies 
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assemblages described by Meng et al. (1997) in the NCCP model contain numerous 

cycles of lower, siliciclastic-rich rocks capped by cross-stratified oolitic lithofacies. 

Also, for the broad NCCP model (Meng et al., 1997), Upper Cambrian cycles are 

similar to those in the Middle Cambrian, with a greater abundance of intraclastic 

conglomerate, capped by thick sequences of fenestral dolomitic mudstone and 

bioherms (Meng et al., 1997). 

Middle and Upper Cambrian strata in northwestern Ordos, however, do not 

contain the abundant oolitic packages and microbially-laminated dolomitic mudstone 

as described from other areas of Ordos basin (Meng et al., 1997). Intraclastic 

conglomerate is abundant within the Upper Cambrian, but is also found in the Upper 

part of the Middle Cambrian in northwestern Ordos. Quartz sandstone beds are not 

described in Middle and Upper Cambrian strata by Meng et al. (1997), but are 

dominant components of the lower part of the upper Middle Cambrian section of 

WZA. 
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The Meng et al. ( 1997) study states that "great changes in the regional tectonic 

framework" occun-ed in Early Ordovician time in the western and southwestern 

margins resulting in deposition of distal, nodular, cherty limestone and mudrock 

within the Helan aulacogen. Lower and Middle Ordovician carbonate assemblages 

encountered within the Zhuozi Shan. by this study show markedly different 

lithologies. Ordovician strata in northwest Ordos contain a significant amount of 

quartz sandstone and shallow-water carbonate facies. The only deep-water facies 

encountered in northwestern Ordos were found at Laosun1iao section, in the southern­

most Zhuozi Shan. This section contains thick, black shale and dark gray lime 



mudstone; graptolites from this section indicate an upper Middle Ordovician age 

(Mitchell, pers. comm., 2005). The Middle Ordovician deep-water packages' 

relationship to older units is unknown since Laosurniao is an incomplete �ower 

Paleozoic section. 
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Quartz sandstone encountered in the lower Paleozoic lithofacies assemblages 

of northwestern Ordos basin have unclear origins and implications. Quartz sandstone 

strata in the Lower and Middle Cambrian of northwestern Ordos are interpreted as 

upper shoreface deposits from their sedimentary structures and associated facies 

characteristics (Walker, 1979; Tucker and Wright, 1990). Rapid influx of siliciclastic 

material can be detrimental to carbonate systems, effectively shutting down the 

carbonate system through increased turbidity (James and Kendall, 1992). Since lower 

Paleozoic carbonate rocks in northwest Ordos are interbedded with siliciclastics, 

siliciclastic sedimentation is not interpreted to have been rapid enough to terminate 

carbonate production. Quartz sand bodies are interpreted as isolated pods, input into 

the system from a cratonic source and reworked by ocean currents. The abundance of 

quartz sand in the Ordovician may be a result of a change in sea level, or may indicate 

tectonic change landward, pushing alluvial systems farther seaward (Emery and 

Myers, 1996). The shift from carbonates to siliciclastics was not permanent, as 

younger c::trbonate strata of the :Middle O�dovician overlie quartz sandstone units. 

Paleogeographic reconstructions and, most specifically, shoreline trends of the 

NCCP model, are proved inapplicable to northwestern Ordos. The proposed Upper 

Cambrian shoreline orientation change of the larger NCCP model (Meng et al., 1997) 

does not apply to northwestern Ordos. Tilting of the NCCP and shoreline change is 



evidenced by an increase in the abundance of intraclastic conglomerate across the 

Middle and Upper Cambrian boundary (Meng et al., 1997), an increase that is also 

present in northwestern Ordos. However, there is no evidence for tilting in the lower 

Paleozoic of northwestern Ordos. Lower Ordovician sections contain a high 

percentage of siliciclastic material, suggesting that northwestern Ordos was proximal 

to a siliciclastic source during the Ordovician. Meng et al. (1997) do provide a caveat, 

suggesting that patterns of sedimentation and relative sea level are influenced by local 

tectonics, especially in western pru1s of the NCCP. 

Sea Level 

While there are some discrepancies between this research and previous work, 

lower Paleozoic sea level models for northwestern Ordos are consistent with previous 

models ru1d established sea level curves. At the sequence scale, sea level curves 

generated by this project closely resemble those of Meng et al. (1997) and the global 

eustatic signature work ofVail·et al. (1977) and Bond et al. (1988) (Fig. 32). The 

lower Paleozoic lithologic stacking patterns of northwestern Ordos suggest overall 

sea level transgression throughout the Upper Cambrian and Lower Ordovician; Unit 

B was deposited in the deepest sea-level conditions. The Lower-Middle Ordovician 

boundary is marked by a paleokarst, implying a major regression near the top of Unit 

C. Shallow sand and dolomite-rich sequences grade into fossiliferous packstone and

grainstone and mark the second phase of transgression. This upward progression of 

facies is consistent with the lower Paleozoic sea-level interpretations of North 

America by Vail et al. (1997) (Fig. 32) (Hallam, 1992) and lower Paleozoic sea level 
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evolution of the NCCP presented by Meng et al. (1997). While the exact placement 

of the Sauk and Tippecanoe boundary is variable, all North American, lower 

Paleozoic sea level curves recognize a major regression, interpreted to be this 

boundary, sometime during the Early or Middle Ordovician (Vail et al., 1977; Bond 

et al., 1988; Read, 1989; Hallam, 1992). 

In North America, the end of the Lower Ordovician is interpreted is marked 

by a large-scale regression, which is interpreted to be the boundary between the Sauk 

and Tippecanoe cratonic sequences (Sloss, 1988; Levin, 1999). During this interval, 

regressive tongues of quartz sandstone traceable back to cratonic arches in the interior 

show up (Sloss, 1988). Consistent with North American cratonic sequences, Lower 

and Middle Ordovician sections in northwestern Ordos are also marked by quartz 

arenite, which are most likely derived from a source north of the present-day Zhuozi 

Shan. Similar-aged lithologies and successions are present in western North America, 

specifically the Lower Ordovician Garden City Formation of northern Utah (Morgan, 

1988), the Upper Cambrian and Lower Ordovician Whipple Cave and House 

Formations in Nevada (Cook and Taylor, 1977), and the Upper Cambrian and Lower 

Ordovician Snowy Range Formation of Montana (Myrow et al., 2004). Stratigraphic 

similarities support the similar, eustatic signature between the North China Block and 

North America in the early Paleozoic time. 

Uncertainties 

A major source of uncertainty in interpreting the geologic history of northwest 

Ordos basin is the paucity of age control. Index fossils used in previous work ( e.g. 
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Meng et al., 1997) for biostratigraphy included trilobites, graptolites and conodonts. 

Trilobites and graptolites are the most readily-preserved macrofossils that can be 

collected at outcrop scale. Conodont biostratigraphy sampling requires more time and 

laboratory preparation, taking large samples, acidizing the carbonate content, sieving 

and finally picking conodonts from the residue. Unfortunately, trilobites and 

graptolite specimens were rarely encountered; those encountered were either non­

diagnostic fragments, or were transported within alluvium. Other fossils, such as 

brachiopods, have been used to give an estimate on age, but these samples are 

sporadic in distribution. Volcanic ash layers are also an effective way to date 

stratigraphic columns, however none were encountered in this study. 

Measured sections from northwest Ordos are thick, and were measured with 

the intention of covering a large area within a short amount of time. The laser range 

finder method accurately describes the upward progression of strata for thick sections 

and large-scale interpretations, yet more detail can be pulled from individual 

formations. This research has set up a framework for the stratigraphic succession of 

northwest Ordos, to be built upon by future researchers examining details at a finer 

resolution, such as biostratigraphy, isotopic indicator and magnetostratigraphy. An 

important step will be to tie trends observed in the northwestern Ordos composite 

type section to other stratigraphic databases ( e.g. SPICE isotopic excursioa of 

Saltzman et al., 1998) in order to further investigate lower Paleozoic eustacy, global 

tectonics and paleogeography. 
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CONCLUSIONS 

All lower Paleozoic measured sections in northwestern Ordos follow similar, 

upsection trends. The basal portion of sections is composed of shale and mudrocks of 

Unit A, followed by thin bedded lime mudstones and wackestones of Unit B, overlain 

by the sandstones and dolostones of Unit C, all capped by fossiliferous packstones 

and grainstones of Unit D. These upsection lithofacies patterns are generally similar 

to those described by Meng et al. (1997), with the exception of a higher abundance of 

sandstones in northwestern Ordos. Second order sea level curves suggest that sea 

level was transgressing during the Late Cambrian, with a transgression and regression 

in the Early Ordovician, followed by a Middle Ordovician transgression. This sea 

level history is similar to North American sea level curves of Vail et al. (1977), which 

suggests eustatic sea level control. Based on the stratigraphic thicknesses, tectonic 

changes, such as early Paleozoic aulacogen movement, and platform tiliting, reported 

by Meng et al. (1997) in the larger NCCP model are not applicable to northwestern 

Ordos. Paleokarsts are concentrated in the northern part of west Ordos, suggesting 

early Paleozoic sea level became deeper to the present day south. The major 

unconformity separating Middle Ordovician carbonate rocks from Carboniferous 

siliciclastics is exposed in the Zhuozi Shan and is the largest paleokarst-related 

feature encountered in the Zhuozi Shan. Relatively large (2 m high, 1 m wide) caves 

are exposed lower in the Middle Ordovician section, below the unconformity, as basal 

collapse breccias overlain by coarse conglomerates and quartz sandstones. All 

stratigraphic sections in northwest Ordos basin reveal that deposition of carbonate 
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and lesser siliciclastic rocks occurred on a shallow water carbonate platform that was 

tilted to the south throughout the Lower Paleozoic. The early Paleozoic 

paleogeographic picture interpreted from stratigraphic evidence collected northwest 

Ordos differs from that of prior studies (Meng et al., 1997), showing that deposition 

of carbonate and elastic strata across the NCCP was dependent upon local changes in 

sedimentation and tectonics. 
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APPENDIX A-SOUTHWEST/SOUTHERN ORDOS RECONNAISSANCE 

The original field plan in the summer of 2004 was to measure complete lower 

Paleozoic sections along the roughly 700 km of the entire western margin of Ordos 

basin. This work started in the Zhuozi Shan in the north, and moved south into the 

Helan Shan and Liupan Shan towards Xian, where relatively complete, lower 

Paleozoic sections are shown on the geologic map (Ma, 2002). There were several 

problems encountered south of the Zhuozi Shan, which included lack of outcrop 

access, vegetation cover and structural complexities. Although sites were visited 

along the western margin of Ordos, south of the Zhuozi Shan, data from this part of 

the basin are sparse, and difficult to correlate to other areas of west Ordos ( e.g. 

Zhuozi Shan). This section presents observations from the western margin of Ordos 

basin, south of the Zhuozi Shan. 

Helan Shan 

Both the northern and central Helan Shan contain exposures of lower 

Paleozoic rocks. In the central Helan Shan west of Yinchuan (Fig. A 1 ), canyons 

expose stratigraphic sections from the Proterozoic-Cambrian boundary through the 

Ordovician (Fig. A2A) (Ma, 2002). Unfortunately, these outcrops are part of a nature 

reserve and Chinese authorities deny foreign access to them. However, initial 

reconnaissance work was conducted in the summer of 2004, described in the 

following lithofacies assemblage observations. 
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Figure Al. Geologic map of the central and southern Zhouzi Shan and Liupan 

Shan (Modified from Ma, 2002). 
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Figure A2. A) Ordovician strata exposed in Helan Shan. Note person in 

lower left for scale. B) Rugose coral in Ordovician blue-gray fossiliferous 

packstone in the Helan Shan 
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The Proterozoic west of Yinchuan is characterized by banded, cherty grayish-

black lime mudstone and dolomitic lime mudstone containing mounds and 

laminations. 

The Proterozoic-Cambrian contact was not observed. The lower part of the 

lower Paleozoic section is composed of green shale, siltstone, oolitic grainstone and 

flaggy lime mudstones. Near the top of the section, lime mudstones are more massive 

and seem to become more fossil-rich with gastropods, rugose corals (Fig. A2B) and 

burrows. This part of the section also contains interbedded green shale and 

intraclastic conglomerate. Although this section was not measured, it is likely not 

more than 1000 m thick from the basal Proterozoic contact. 

Southwest ofChingtongsha in the southern Helan Shan (Fig. Al), lower 

Paleozoic sections are poorly exposed and most outcrops are cut with complex 

fractures and faults. Outcrops mapped as Lower Cambrian (Ma, 2002) in this area are 

breccias and conglomerates, with clasts of lime mudstone, sand-rich limestone and 

quartz arenite: Less than 5 km south of the breccia and conglomerate, outcrops are 

heavily faulted and contain greenish-black, laminated, silt-rich mudstones, some of 

which are metamorphosed. Approximately 25 km south-southwest of Chingtongsha 

(Fig. Al) is a pod of well-exposed Lower Ordovician thin-bedded lime mudstones, 

siltstones and rnudstones. Al.:cc:ss to stratigraphic sections in this area is difficult and 

is further complicated by military training exercises, and quarrying. 



Northern Liupan Shan 

Lower Paleozoic sections near the city of Zhongning (Fig. Al) in the northern 

Liupan Shan are heavily faulted and fractured. 40 km southeast of Zhongning is an 

interesting locality, mapped as Cambrian in unconformable contact with Silurian 

rocks (Ma, 2002). These outcrops contain poorly exposed thin-bedded quartzite and 

red shale; the Cambra-Silurian contact was not exposed. Another interesting contact 

is mapped 20 km due south of Zhongning mapping Ordovician rocks in contact with 

Silurian rocks (Ma, 2002). This contact is exposed as a thrust fault, placing 

Ordovician dark gray, lime mudstones over Silurian (Fig A3A), pink and purple 

feldspathic sandstones (Ma, 2002). Numerous faults cut this section making a 

measmed section impossible. 30 km southwest of Zhongning, one small Ordovician 

section was measured. The lower portion of the section is composed of thin bedded to 

massive, dark gray lime mudstone, with brachipod, gastropod and bivalve fragments. 

Higher up in the section are sand-rich limestones and bioturbated, massive packstone 

containing gastropods (Fig A3B), brachiopods and trilobite fragments. Outcrops 

mapped as Ordovician contain sparse, coherent pieces of section, characterized by 

thin to thick beds of gray to dark gray lime mudstone to wackestone with minor 

packstone. This section seems to coarsen upward, and may represent a shallowing 

upward cycle in the Ordovician. However, several faults and fractures slice through 

these rocks making interpretations unreliable. 

50 km southeast of Hongsipu is Green Dragon mountain (Fig. A 1 ), where 

some of the best exposures of lower Paleozoic rocks of the Liupan Shan are 

contained. Nun1erous faults cut this section, some omitting as much as 50 m of 
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Figure A3. A) Thrust contact juxtaposing Ordovician limestone on top 

of Silurian(?) sandstone near Zhongning. B) Blue gray fossiliferous 

packstone lithofacies assemblage contaning gastropod shells (G) near 
Zhongning 
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section, which make its significance as a primary source of data questionable. Green 

Dragon section is mapped as spanning the Lower Cambrian through the Lower 

Ordovician (Ma, 2002), and follows the northwestern Ordos type section described in 

this paper. Unit A is characterized by thick packages of red to green mudrock and 

shale, interbedded with thin fossiliferous grainstone, intraclastic conglomerate, and 

sandstone. These elastic and carbonate rocks are capped by several, thick beds of 

planar cross-stratified, oolitic lime grainstone. In Unit A, there are at least 3 cycles of 

lower mudrock and shale, capped by oolitic lime packstone and grainstone; oolitic 

rocks increase in abundance upward (Fig A4A). Above the shale and oolitic beds of 

Unit A, rocks change to thin-bedded lime mudstone, argillaceous limestone, 

intraclastic conglomerate and cross stratified oolitic grainstone (Fig. A4B) 

interbedded with thin shale, which marks the change to Unit B. The upper portion of 

Unit B contains thin-bedded lime mudstone with mounds, and intraclastic 

conglomerate, capped by a major thrust fault. Unit C is missing from the Green 

Dragon section; a large thrust fault of unknown offset caps the top of Unit B at Greed 

Dragon section, which is the likely cause. Unit D strata are exposed near Green 

Dragon Mountain and are dark gray-to-gray, thin and thick-bedded dolomitic lime 

mudstones and lime mudstones, which are frequently bioturbated. Lithofacies get 

more grain-rich 11ear the top of the section and contain gastropods, nautaloids, 

brachiopods and sponges (Craterospongiella sinica). The top of this section is 

covered by Quaternary rocks. Unit D strata are darker in color, and less grain-rich 

compared to those in the Zhuozi Shan, supporting the south-dipping ramp model. 
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Figure A4. A) Shale and mudrock lithofacies capped by cross-stratified 

oolitic grainstone in Unit A at the Green Dragon section. B) Cross­

stratified oolitic grainstone. 
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25 km west of the Green Dragon Mountain is an outcrop of Middle 

Ordovician (Ma, 2002) rocks (Fig. A6). Exposure is poor in this region and sections 

are complicated by faults of unknown offset. Rocks exposed at this outcrop are 

brown-green cherts and siltstones. It is interesting to note that other Chinese maps 

( e.g. NBGMR, 1991) trace the Ordovician part of Green Dragon section to these 

Middle Ordovician beds as a single coherent outcrop. Most of the portion between 

Green Dragon and the Middle Ordovician is covered, thus the data suppo1ting this 

linkage is unknown. 

Southern Liupan Shan 

Outcrops in the southern Liupan Shan are heavily faulted and covered by 

dense vegetation. Some fragments of lower Paleozoic section were observed in small 

quarries and roadcuts no complete stratigraphic sections were recorded. In the 

Pinaliang area (Fig. A6), units mapped as Cambrian (Ma, 2002) are composed of 

argillaceous limestone, thin-bedded lime mudstone, interbedded with thin, calcareous 

siltstone, intraclastic conglomerate and oolitic lime grainstone. Most lower Paleozoic 

outcrops near Pingliang shown on the geologic map (Ma, 2002) were either covered 

or dangerous due to active quarrying. One Cambrian section was measured 

approximately south of Pingliang, approximately 20 km northwest of Langshia. 

However, this section was abruptly terminated by a fault of unknown offset. The 

portion measured contains silty, argillaceous, lime mudstone with hummocky cross­

stratification, capped by thicker, oolitic lime grainstone beds with planar cross­

stratification; oolitic beds thicken upsection. These strata are similar to Unit A 
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lithofacies observed in the north. 15 km northwest of Langshia are outcrops of 

Lower and Middle Ordovician rocks. These rocks are generally more siliciclastic, 

composed of thin beds of green, shale, siltstone, thick packages of calcareous 

cemented quartz arenite and feldspatruc arenite. One measured section in Middle 

Ordovician(?) rocks in this area is made of gray, brown and green shale and mudrock, 

calcareous sandstones, and thin lime mudstones (Fig ASA). All beds are thin (less 

than 20 cm); siltstones and sandstones are frequently rippled. As in other parts of the 

southern Liupan Shan, this area contains numerous faults of unknown offset (Fig. 

ASB) and dense vegetation obscuring exposure. 

Southern Ordos/Zhangjia Shan 

This region of Ordos basin is densely covered by vegetation. Several outcrops 

visited 5-10 km southwest of Qianyang yielded no complete stratigraphic sections. 

Sporadic exposures yielded dark gray, thin-bedded, bioturbated lime mudstones, light 

gray lime wackestones, calcareous siltstones, argillaceous lime mudstones and 

dolostones. 10 km north of Qishan (Fig. A6) is mapped as a continuous, lower 

Paleozoic section. A road cut through this area exposes a thick succession of faulted, 

Proterozoic dolomites, yet all lower Paleozoic strata on this road are covered by a 

combination of loess and vegetation. Other road cuts through this region do expose 

what appear to be lower Paleozoic carbonate rocks; however, numerous, large faults 

of unkno\\-n offset cut these strata, making measured sections impossible to record. 

Lithofacies observed in this area are thin and thick beds of light gray to gray, lime 

mudstone with no apparent fossil material. In the Zhangjia Shan (Fig. A6), a nearly 
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Figure A5. A) Lower and Middle Ordovician dark brown shales and fine 
sandstones exposed near Langshia in the southern Liupin Shan. B) 

Folded and faulted Ordovician strata, west of Langshia 
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conformable section of thin , dolomitic limestones mapped as Upper Cambrian (Ma, 

2002) is exposed above a large quarry. Again , large faults with unknown offset pierce 

the exposed section ; exploration in other parts of this area is difficult due to extremely 

rough terrain and quarry operations . 
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II Shale <O Cephalopod 

Oncoid 

~ Siltstone Bl valve 

D Dolomite C3 Bfacti,opod 

Bryozoan 

lntraclastic Conglomerate Burro." 

Massive Fossiliferous Lime 
OoJd 

Packstone /Mudstone Ripples 

II Laminanons 
Oolitic Lime Grainstone 

Wavy lam,niae n Mounded Strata _,<0- Cross stratincatlon 

B Banded/Bioturbated HCS 1-tlmmocky Cross Stratification 
Wackestone /Packstone 

D 
Mudcrad< 

Thin-bedded Fossiliferous Packstone sh Shale 

8 ms Lime Mu<!stone 
Thin-bedded Lime Mudstone ws Lime Wackestone 

~ Argillaceous Limestone ps Lime Pad<stone -
gs Lime G<alnstone 

D Sand-Rich Limstone ic lntraclaSl!c Conglomerate 



Suhaitu 1 

Sample Photo Comments/Description 

200 
04BOZ-15 

190 

180 
Outcrop becomes more resistant; "flaggy" banded and 
bioturbated units become more abundant 

170 OBK4-1 Dark gray and red banded and bioturbated lime 
mudstone to wackestone capped by irregular. stylolitic 

160 
surface with pebble lag 

150 

OBK3-6 .7,8,9 Tan. recessive shale 
140 

130 
Red-green shale 

120 OBK3-6 ,7,8,9 
Red-brown calcareous shale with mudcracks. microbial 
laminae 

110 Oxidized . bored rims on intraclasts 

100 
OBK3-3.4.5 

Numerous cycles of thin . argillaceous limestone . 
interbedded with greenish -white calcareous siltstone 

90 
gapped by intraclastic conglomerate 

80 

70 Argillaceous limestone 
OBK3-1 Tan to brown shale 

60 
04BOZ-14 OBK2-32 , Cross-bedded , reddish -purple oolitic grainstone with 

50 
33 glauconite 

40 Fissile. green to brown micaceous shale with 
interbedded thin shell hash limestones with hummocky 

30 
cross strata 

OBK2-30 , 
Dark gray and red banded and bioturbated lime 
mudstone to wackestone 

20 31 
04BOZ-13 Cycies of shale, thin-bedded lime mudstone and shale 

04BOZ-12 
OBK2-27 ,28 

10 Laminations evident 
OBK2-25 , 

Proterozoic quartzite 26 
'Jttmswsps i,t \c 
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Sample 

04802-24 

127 

Suhaitu 2 
Photo Comments/Description 

Dolomitic lime packstone with sand grains. oncoids. 
and bioturbation 

0480Z-21 . 08K4 -8,9 
22.23 

Well-rounded. calcareous cemented medium sand­
sized sandstone 

0480Z -19 

04802 -18 

04802 -17 

Laminations evident in reddish. bioturbated mudstone 

08K3 -22.23. 8reccia overlies sinuously-folded. strata-bounded 
24.25.26 grainstone 

Sand-rich dolomitic mudstone 

Erosive. argillaceous lime mudstones 
08K3 -18.19, -2 m of chaotic, boulder to pebble-sized clasts in a 
20.21 reddish. sandy matrix 

08K3-15 .16, 
17 

8ioturbated 

Recessive. arg!!laceous !ime m:.idstonss 

Digitate stromatolite on top of mound 

0480Z-16 Heavily bioturbated bedding planes; burrows are cross­

08K3-11 ,12, 
cut by smaller, mineralized burrows 

200 ~~~~~jJ0~48~0~Z~-]15Ll_~13~~~_L~~~~~~~~~~~~~~~ 
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Suhaitu 3 

Sample Photo Comments/Description 

540 

I 
Cl 04BOZ-38 OBK6-1415 

16 Generally finer/muddier in texture near the top of the 
section 

' Cl OBK6-9,10, 
11, 12, Extremely fossiliferous with thin interbedded oolitic 

:-i ( . "· ;'- grainstones ; articulated crinoid calyx 
f ~ L' OBK6-5,6 .7. 

'.o -f 04BOZ-37 Numerous Craterospongia sinica individuals observed 
Cl OBK6-2.3.4 0 forming small buildups ; first appearance 

0 

•. . OBK4-28.29 , 

530 

520 

510 

500 

... ! .,.. 30.31 
r' Thin-bedded . blue-gray lime packstone to grainstone ,_;.;,, OBK4-33 with interbedded , thin (-20 cm) sandy limestones 

-;:.~"-... :..:...,·.,.,. 

490 

480 . 

OBK4-26.27 Thin. pebble breccias and minor conglomerate ; 
·· · ···· · ····· thickness seems to increase to the north . 470 
!,~,!:.!:.!'\{:.~~~ 

460 u 
:-:,·.·.·.·.·.·.·.·.·.·.-.· .. Thick , reddish-brown . gravel-to-cobble sized, breccia .......... 450 

. . . . . . . ' . . . ....... 
~~~~~ 

l":1 ,,..,,..,,. 
l";J 440 

..... ·· ·· ···· -·· 
... :.:_,:.:::.~.;,: .. :;:: .. · 04BOZ-26 OBK4-24 Thin. pebble-s:zed , ;eddish-brown , breccia 

lf:f.:.!l!~f:,r:'(':!] 430 
········ ······ ""i:'"J.•·•·· ._. .... -"" •" OBK4-22.23 .... .... .. 

420 . .._ . ...._ ...... .._., ............ 

~ -th - Brecciated horizon with basal scoured contact 

' 04BOZ-25 
410 

f=, .-... .... .. 
,...-,~~~:.!t{,!:.{:."] 

I I I I I I 400 
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WZA1 

Sample Photo Comments/Description 

Heavily bioturbated , recessive outcrop profile 

OBK5-28 Trilobite pygidia within float 

150 

140 OBK5-22.23 Large mounds 
24,25 

130 
Bioturbated grainstone 

120 

110 OBK5-21 Finely laminated sandy siltstone. possible mudcracks 

100 Purple-green shale . interbedded nodular limestone 

90 
Shell-hash topped by ripples 

80 

70 Green . micaceous shale interbedded with lime 
mudstones and minor siltstone 

60 
Microbial laminae 

50 
Strata-bounded folds 

40 Sand infilling burrows 

Sandy dolomite 
30 OBK5-7 ,8 Sand infilling burrows 

20 Green/brown silty shale 

10 Thin bedded calcareous . wavy bedded sandstone 

OBK5-5,6 Microbial laminae 



Sample 

390 

380 

370 

360 

350 

340 

330 

320 

310 

300 

290 

280 

270 

260 

250 

0 
240 0 

230 

220 

210 

F1 m1wspt gSM: 

WZA2 
Photo Comments/Description 

Mounds are composed of wavy. vertical columns 

Scoured basal contact 

Small mounds , with interbedded . cross-bedded 
OBK6-30.31. fossiliferous grainstones 
32 

130 

Mounded, "flaggy" lime mudstone with interbedded 
shaley siltstones 

More resistant outcrop profile 

Heavily bioturbated . laminated , wavy bedding 

OBK5-29 Deformed sedimentary bedding 
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WZA3 

Sample Photo Comments/Description 

550 

Heavily bioturbated , with chert nodules 
540 

530 

520 

0 

510 

500 
.,.,.,., .... ,., 

490 

480 
....... ., .... ., . ., . ., . ., . .,.' 

470 

460 

450 

440 OBK5 -29 

430 

Nun,erous concave-convex brachiopods witnin 
420 recessive sandy limestone 

410 Gradational contact between medium bedded, 
brownish-gray dolomitic mudstones and thin bedded 
lime mudstone 

400 
WI IM wt ps 11 IC 



Xima 1 

Sample Photo Comments/Description 

200 

190 

180 
Argillaceous lime mudstone : less resistant profile 

170 
0 

160 
0 

150 
OBK?-30 Change from more shaley to more resistant. "flaggy " 

outcrop profile 

140 

130 

120 OBK?-29 

110 OBK?-27 ,28 Burrow mottled : sand infilling burrows : iron nodules 

lnterbedded yellow-brown mudstone . and bioturbated, 100 thin-bedded lime mudstone 

90 

80 
0 

OBK?-25 ,26 
Thin ooid grainstones interbedded with thin lime 

70 mudstones. heavily bioturbated . burrows filled with 
yellow . silty interbeds 

60 
OBK7-24 

Crumbly , burrowed lime mudstones interbedded with 
50 more resistant intraclastic conglomerates . and oolitic 

04802-48 grainstones 

40 CBK7-23 Oolit:c units are ttiin (.2-.8 m): oncoids with brachiopod 
nucleus. interbedded with thin lime mudstones 

30 

20 

10 OBK?-21 ,22 
Thin-bedded , heavily rippled , thin-bedded lime 
mudstones, with interbedded tan/brown. massive shale 

04802-46 and banded , bioturbated lime wackestones 

thrM" ,. gs te 



Sample 

04BOZ-51 
340 

330 

300 

280 

240 

220 

210 

Photo 

OBK8-3.4 

Xima 2 
Comments/Description 

Minor mounds . poorly preserved 

Change to more erosive profile 

Heavily bioturbated w/ yellow fine silt infill 

133 

Basal, crumbly mudstones grade upwards into more 
resistant bioturbated lime wackestones 

g~~~:J
5

.
36 

Resistant, cliff-forming beds of banded . bioturbated 
lime mudstone to wackestone and intraclastic 
conglomerate. 

More argillaceous . less resistant profile 

OBK?-33.34 lntraclastic conglomerates usually capped by thicker 
oolitic grainstones 



600 

590 

580 

570 

560 

550 

540 

530 

520 

510 

500 

490 

480 0 

470 

460 

450 

440 

430 

420 

410 

400 
ltlms W'S pt gt k 

Sample 

04BOZ-55 

Photo 

OBK8-10 

OBK8-9 

OBK8--0,7 

134 

Xima 3 
Comments/Description 

Dolomitized intraclastic conglomerate 

Tan to brown . well-rounded . calcareous . fine sand­
sized quartz arenite 

Medium to thin bedded , heavily fractured , fine sand 
rich . dolomit ic lime mudstones with burrows 

Calcareous sandstone 

Thin-bedded . green . calcareous siltstone. interbedded 
with intraclastic conglomerate 

Thin-bedded , green. calcareous siltstone. interbedded 
with intraclastic conglomerate 

Smaller mounds 

Large mounds ; 2-3 m high, 1.5-2 m wide , numerous 
individuals 
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Xima4 
Sample Photo Comments/Description 

~ : 
690 

. 
---- More massive beds of bluei)ray , fossiliferous packstone 

~ -
680 

670 . 
r-----, .. .. .. .... 
. . . . . . . . . . . . . . 

lnterbedded thin . blue-gray. fossiliferous packstones . 
.... OBKB-17,18 sand-rich limestones and sandstones 

660 

.. . ······ .. 

~ 
•l . 650 

I 

640 
..... .. .. 

... ... .. 
( 

Raftnesqui!lic!ae brachicpcd-rich grai:1stor:e 
' 04802 -58 OBK8-13, 14 630 

·.·.·.·.·.·.·.· .. ·.·.··· Cross-bedded , medium to coarse sand-sized quartz .. 
:-:-·.·-:.;-:,:, .;-·-:-.· arenite composed of rounded quartz grains; bioh.Jrbated .... ... .. 620 
... ...... Cross -bedded , fine to medium sand-sized quartz ..... ... .. ·.·.·.·.·.·.··.·.··.··.· .·.·.·.·.·.·.·.·.·.·.·.·.·. arenite composed of rounded quartz grains 

~I l l 

OBK8-12 
610 

600 



90 

80 

70 

60 

50 

40 

30 

20 

10 

136 

Chipanjing Section 

Sample Photo 

0480Z -79 OBK9-9.10 

OBK9-8 

OBK9-6 

OBK9-5 

OBK9-4 

OBK8-35 ,36 
OBK9-1 ,2 ,3 

04BOZ-76 

OBK8-33 

Comments/Description 

Blue-gray, mottled lime wackestone to packstone ; 
abundant gastropod fossils (OBK9-11 to 16) 

More massive sandstones relative to other sections. 
calcareous sandstone , abundant x-bedding 

Interval covered by sandstone boulders 

Greenish -yellow siltstone with thin-bedded lime 
mudstone interbeds 

Sandy. biotubated dolomitic lime mudstone to 
wackestone 

Silty/argillaceous limestones 

Similar reddish, glauconitidoolitic interbeds as Suhaitu 
section 

Shale interbedded with thin-bedded fossiliferous 
grainstones 

Abundant oncoids with reddish fringes 

Green calcareous siltstone 

lnterbedded , medium sand-sized, well-cemented , 
calcareous sandstones. green shales and skeletal 
packstones 



20 

10 

Sample 

04BOZ-8,9, 
10 

137 

Laosunmiao 

Photo Comments/Description 

Thin. bi o turb ated beds 

OBK2-15,16 Thicker li m e m udstone beds 

Fewer sh ale beds 

04BOZ-6.7 OBK2 -10,11 , 
Thin b ands of black chert
Abundant grapto li tes 
Heavily f ractured 12 ,14 

OBK2-5.6 , 7. 
8,9 lnterbedded black sh ales and dark, la m inated li m e 

04BOZ-1 ,2 , OBK 1 _35.36 m udstone-graptoli tes
oi;::;:::;........-T"..-----L-3-, 4-._s��.i-�����S�am

_!.:,.p _le_s _fo_ r _ s_o _u _rc_e_ e_v _a _lu_a_t io_ n�������----l 



Sample 

04BOH-5 

Shitanjin 1 

Photo Comments/Description 

Resistant 

Erosive 

OBK10-7,8,9 Large dunes 

Resistant 

Green. fissile shale 
Red siltstone 

Green limestone color 

OBK10-1.2 ,3 Microbial laminae 

OBK9-33.34. Bioturbated
35,36 

138 

OBK9-31,32 Large storm channels, with trilobite fragment hash 

OBK9-30 

More recessive 

Individual bed thicknesses range from 1-40 cm thick 
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Shitanjin 2 

Sample Photo Comments/Description 

270 

Slope forming 

210 

200-.����L-���--1...����..L...����������������__J 
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