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ABSTRACT 

A Middle to Late Holocene Record of Arroyo Cut-Fill Events in 

Kitchen Corral Wash, Southern Utah 

by 

William M. Huff, Master of Science 

Utah State University , 2013 

Major Professor: Dr. Tammy M . Rittenour 
Department: Geology 

111 

This study examines middle to late Holocene episodes of arroyo incision and aggradation 

in the Kitchen Corral Wash (KCW) , a tributary of the Paria River in southern Utah. Arroyos are 

entrenched channels in valley-fill a lluvium , and are capable of capturing decadal- to centennial­

scale fluctuations in watershed hydrology as evidenced by the Holocene cut-fill stratigraphy 

recorded within near-vertical arroyo-channel walls . KCW has experienced both historic (ca. 

1880-1920 AD) and prehistoric (Holocene) episodes of arroyo cutting and filling . The near-

synchronous timing of arroyo cut-fill events between the Paria River and regional drainages over 

the last - 1 have led some researchers to argue that arroyo development is climatically driven . 

However , the influence of allogenic (climate-related) or autogenic (geomorphic threshold) 

forcings on arroyo dynamics are less clear. 

Uncertainty in influence of the controlling mechanisms of arroyo cutting and filling is 

partly due to the limited or poorly dated alluvial chronologies. This study tests the applicability 

of AMS radiocarbon and optically stimulated luminescence (OSL) dating to reconstruct alluvial 

chronologies in dryland fluvial systems, such as the KCW arroyo. Results from 12 arroyo-wall 

study sites in KCW indicate that 24 of the 39 analyzed AMS radiocarb on sample s and 



preliminary result s from 12 of the 14 OSL sample s returned strati graphically consistent ages. 

Applying a combination of the se two dating techniques allowed for increased sampling 

opportunities and cross-checking of ages to determine aberrant age results. 

By usin g detailed stratigraphic panel s, sediment ologic de scr iptions, and the age control 

from AMS radiocarbon and OSL datin g, this study produ ces a new chronostratigraphy that 

suggests at least five arroyo cut-fill cyc les during the middle to late Holoce ne wit h periods of 

aggra dation at : - 4.3 5 - 3 .4 ka (Qfl ), - 3 .2 - 2.25 ka (Qf2), - 2. 15 - 1 .45 ka (Qf3), - 1.3 - 0.8 ka 

(Qf4 ), - 0. 7- 0.12 ka (Qf5), and an o lder perio d of aggra dat ion from - 7 .3 - 4.85 ka identified in 

an ear lier stud y. This new ly developed KCW cut-fill chronostratigra phy is comp ared to regional 

alluv ial and paleoclimate records to test hypotheses regarding a lloge nic or autogenic forcings. 

Regio nal alluvia l chrono logies do not show coherent patterns of arroyo cut -fill dynamics , but 

instead appear to be affected by both al loge nic and autogenic influences. 
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PUBLIC ABSTRACT 

A Middle to Late Holocene Record of Arroyo Cut-Fill Events in 

Kitchen Corral Wash, Southern Utah 

by 

William M. Huff, Master of Science 

Utah State University, 20 13 

Major Professo r: Dr. Tammy M. Rittenour 
Department: Geo logy 

V 

Arroyos are steep ly entrenched channels that form by incision into weakly consolidated 

valley-fi ll alluvium. This study attempts to offers clues into the processes behind their formation 

by dating arroyo st'.diments using luminescence and radiocar bon techniques. The importance of 

understanding arroyo format ion is due to a poss ible linkage with decadal to centennial-scale 

climate fluctuations. In the late 1800s and early 1900s , many of the shallow, perennial streams 

throughout southern Utah that used for a variety of agricultural and domestic uses were incised up 

to - 30 111 into their alluvium by frequent and high-magnitude flood events. The economica l and 

eco logica l effects of these floods were substantial, and a poss ible link to changes in climate could 

prov ide insight to futur e implications. 

To better understand the poss ible influence of c limate change to arroyo formation over 

the last - 7,500 years, field and lab work focused on identify ing, describin g, and dating sediments 

from arroyo outcrops in Kitchen Corral Wash, southern Utah. Arroyo outcrops were identified 

based on cross-cutting relationships in the stratigraphy. Using luminescence and radiocarbon 

dating to obtain the age of arroyo sediments allows us to reconstruct the alluvial history of 

Kitchen Corral Wash. To est imate the poss ible effects of climate change, this study compared the 



V I 

alluvia l history of Kitchen Corral Wash with other regional arroyos in southern Utah to identify 

similarities and differences in the timin g of sediment depos ition or flood-re lated incision. 

A similar timing in deposition and incision might suggest a stronger climate effect, 

whereas a different timin g in these processes might sugges t a geo log ic threshold within each 

regional arroyo. Findings in th is study indicate that climate effec ts and geo log ic thresholds both 

play an important role in the processes of arroyo format ion. Funding for this project was obtained 

from the National Sc ience Foundation grant (NSF-EA R I 057 192), a resea rch grant from the 

Co lorado Scientific Soc iety Memorial Funds, and awards from the Utah State Univers ity 

Depa1iment of Geology . 

William M. Huff 
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CHAPTER 1 

INTRODUCTION 

Fluvial sys tems in the semi-arid southwestern United States have the potential to cap ture 

deca dal- to centennial-scale fluctuations in watershed hydrology , which is evident in the historic 

and prehistoric (Holocene) cut-fill strati gra phy within the walls of arroyo drainage syste ms. 

Arroyos are entrenched, steep-walled and ofte n ephemeral drainage s that form after a stream has 

incised into valley-fill alluvium. Episodes of arroyo incisi on and aggradation in the so uthwe stern 

U.S. have been considered some of the most significant geo morp hic events over the past centu ry 

(Graf, 1983). Accord ingly, the dynamic natur e of these syste ms has initiated the stud y of arroyo 

systems and spu rred the ongoing debate of the triggering mechanisms necessary for arroyo 

incision. Thesis research foc uses on cut-fill eve nts in Kitchen Corra l Wash (KCW) , a tributary of 

the Paria River in southern Utah , in an attempt to temp ora lly constrain how Holocene climate 

perturbations (a lloge nic control s) and intrin sic geomo rphi c thresholds (autogen ic controls) drive 

arroyo inci sion and aggradation. 

The near-synchronou s natur e of arroyo cuttin g and filling eve nts w ithin KCW and other 

regional drain ages has led to the prop osa l that c limate may be the pivotal trigge ring mechani sm 

(Her efo rd, 2002). Howev er, prev ious attempts to constrain the timing of cut-fill events in KCW 

have resulted in poor temporal resolution (Hereford, 2002 ; Harvey et al., 20 11) and have limited 

the ability to determine if arroyo dynamic s are synchronou s between regional drainag es . The 

main project goal of this study is to update and expand the arroyo cut-fill chronology from KCW 

by building a detailed chronostratigraphic framework , which will better aide in answering 

questions related to dynamic processes of arroyo formation and the possible linkages to climate. 

The second chapter of this thesis (Chapter 2) will offer procedural suggestions for the 

use of accelerator mass spectrometry (AMS) radiocarbon and optically stimulated luminescence 

(OSL) methods to date alluvial deposit s in arroyo systems. The advantages and shortcomings of 
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field and laboratory applications of both geochronologic dating techniques and previ ously 

recommended strategies for improving the reliability of each technique will be discussed. The 

implementation of both technique s and results from KCW will then be pre sented and examined in 

an effort to assess the effectiveness of each strategy. This chapter will be revi sed for submittal to 

the journal Quaternary Geochronology. 

Chapter 3 will discuss the methods used in creating strat igrap hic panel s and strati grap hic 

co lumn s from the arroyo wa lls and will exa min e age res ult s drawn from alluvial deposi ts usin g 

AMS and OSL datin g. Result s from the newl y developed chron ostra tigrap hic framework of 

KCW will be corre lated to chronologies derived from regional drainages of s imilar s ize and 

paleoclimate records to test the hypotheses related to the t imin g of arroyo format ion and possible 

connections to changes in climate. Chapter 3 wi ll be revised for submitta l to the journal 

Quaternary Science Reviews. 

Lastly , Cha pter 4 wi ll summari ze the impli cations of thi s resea rch and wi ll offer 

cons iderations for future studies. Details of the OSL and AMS result s wi ll be presented in an 

Appe ndi x along with any figures not presented in the text. 
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CHAPTER2 

ASSESSING THE USE OF AMS RADIOCARBON AND SINGLE-GRAIN LUMIN ESCE NCE 

DATING TECHNIQUES ON ARROYO SEDIMENTS: A CASE STUDY FROM 

KITCHEN CORRAL WASH , SOUT HERN UT AH 

ABSTRACT 

Arroyo sys tems throughout the southw estern United States pre serve a lluvia l deposits and 

stra tigra phic seq uences that record periods of inci s ion separa ted by prol onged periods of 

aggradation. In southern Utah, sediments preserved in arroyo wa lls provide an important archive 

of these cut-fi ll responses to Holocene climate change or other internal controls . Test ing 

hypotheses related to the forcing mechanisms that have influ enced the fluvial dynamics of these 

arroyo systems requires suffi cient age contro l. Previous studi es have foc used on dating and 

corre lat ing arroyo events between regional drainages using acce lera tor mass spectromet ry (AMS) 

radiocarbon and optica lly stim ulated lumin esce nce (OSL) dating techniques . However , poor age 

contro l due to problems or limitations wit h eac h technique ha s made arroyo sediments diffi cu lt to 

date. Whereas radiocarbon dating may have problems due to redeposition of charcoal or limit ed 

material for dati ng, drawbacks with OSL dating can arise from incom plete bleaching , e ither of 

wh ich can preclude a mea ningfu l regional correlation of arroyo dynamics . Usi ng Kitchen Corra l 

Wash (KCW) as an exa mple , thi s stud y addresses these and ot her problem s, and reco mm end s 

new considerations to datin g arroyo sedim ents when using AMS radiocarbon and OSL dating 

tec hnique s. 

Collectively, 39 AMS radiocarbon and 29 OSL samples were sampled to update and 

ex pand an existing alluvial chronology of KCW. Result s indicate that 24 of th e 39 radiocarbon 

sample s returned accurate ages based on their stratigraphic context within identifi ed Holocene 

alluvial fills . In comparison, all OSL samples showed significant signs of limited so lar exposure 
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and required the application of the single-grain analyses and analyses using the minimum-a ge ­

model (MAM) to attenuate the effects of partial bleachin g. However , 12 of the 14 single-grain 

OSL sa mples that were analyzed produ ce d stratigraphically consistent results once partial 

bleac hing was taken into account. Samples collected from depo sits whose sediments were 

so urc ed upstream of the stud y area , pres umabl y ha v ing a lon ge r tran sportati on distance and 

transport mec hani sm conducive to so lar ex po sure , showed the leas t amount of partial bleaching. 

Additionally, four of the mo st we ll-dated arroyo-wall outcro ps from KCW indicate that OSL 

dating can be used to identi fy anomalous AMS radiocarbon ages. Accordingly, this st udy 

provides evidence that app ly ing a combinatio n of dating tec hniqu es to a lluvi a l deposits and cross­

checki ng the results ca n yield the accurate chronostratigraphies needed to develop millennial­

scale arroyo cut-fi ll chronologies. 

2.1 Introduction 

Fluvial sys tems in the se miar id so uthwes tern United Sta tes have the potential to capt ure 

decadal- to ce ntennial-sca le hydrologic fluctuations as indicated by Ho loce ne cut-fi ll seque nces 

recorded within the strat igrap hy of arroyo drainage syste ms. Arroyos are steep-wa lled channels 

entre nched into fine-grained va lley alluvium (e.g. Bryan , 1925 ; Bull, 1997) . T he arroyos 

curr ently exp resse d in the so uth ern Utah land scape and throughout much of the so uth western 

U.S . developed throu ghout a peri od of region-wide entr enchment eve nt s durin g the late 1800s to 

ea rly 1900 s, which left former floodplain s behind as terraces (see review s by Coo ke and Reeves , 

1976 ; Webb et al. , 1991 ; Herefo rd , 2002) . Hi storic observa tion s suggest that period s of frequent , 

high-magnitude flood events promote rapid entrenchment and head ward migration of arroyos. 

However , no unifying hydrologic or climatic conditions needed for arroyo entrenchment have 

been proposed . Current hypotheses for the cause of arroyo cutting include land mismanagement 

and overgrazing following pioneer settlement (Bailey, 1935 ; Thornthwaite et al., 1942 ; Antevs , 

1952 ; Patton and Baison , 1986) , autogenic geomorphic adjustments (Schumm and Hadley , 1957 ; 



Patton and Schumm, 1981; Patton and Boison, 1986 ; Tucker et al., 2006), and climate change to 

wetter or drier conditions (Antevs, 1952; Karlstrom, 1988; Hereford, 2002; Mann and Meltzer, 

2007). 
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Reliable ages from alluvial deposits stored in arroyo drainages or other dryland fluvial 

systems are needed to test competing arroyo hypotheses and determine the hydrologic conditions 

needed for incision and aggradation. Researchers have applied a number of dating techniques to 

help determine the age of channel alluvium in efforts to resolve the timing and processes of 

incision and aggradation, which include repeat photography (Graf, 1983; Webb and Leake , 2006) , 

tree-ring records from partially buried trees (Patton and Boison , 1986; Karlstrom, 1988; Hereford , 

2002), and stratigraphic relationships of archaeological sites or artifacts (Hall , 1977; Hereford , 

2002 ; Harvey et al. , 2011 ). Currently , two of the most commonly applied techniques include 

accelerator mass spectrometry (AMS) radiocarbon and , to a lesser extent, optically stimu lated 

luminescence (OSL) dating . However , obta ining accurate ages for alluvial sediments has often 

been difficult due to inherited limitations of each dating tec hnique in fluvial sett ings. 

For example, although radiocarbon dating is perhaps the most widely app lied technique 

for dating alluvial deposits and has been recently used in a number of studies invo lving 

so uthwestern arroyo systems (e .g. Hereford , 2002; Mann and Meltzer, 2007: Jones et al.. 20 I 0), 

its use may be limit ed if organic material is scarce or is sourced from old wood or redeposited 

material. On the other hand , OSL dating is a relatively new technique that can be used to date 

fine-grained sediments . However , problems with applying OSL dating in fluvial environments 

can arise due to the presence of grains that were not exposed to sufficient sunlight needed to reset 

their luminescence signal , termed partial bleaching (e .g . Olley et al. , 1999 ; Jain et al., 2004; 

Rittenour, 2008). While both techniques have clear problems and limitations , often resulting in 

age over-estimations , they have also had considerable success. Additionally , both techniques are 

currently the basis of most Holocene alluvial chronologies and are noteworthy for their 
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application to dating arroyo sediments (e.g. Arnold et al., 2007; Summa-Nelson and Rittenour, 

2012). 

The purpose of this paper is to test the use of AMS radiocarbon and OSL dating in 

tandem to date alluvial sediments in dryland fluvial systems, specifica lly those currently occupied 

by arroyos, by addressing and attempting to resolve some of the primary problems and limitations 

of each technique. This study uses Kitchen Corral Wash (KCW), an arroyo system in southern 

Utah, to show that the combination of both dating techniques not only allows for greater sampling 

opportunities in the field, but also provides a means for cross-checking to help eliminate 

anomalous ages. Further, an overview of the AMS radiocarbon and OSL field sampling 

techniques , analyses , and results from KCW provides noteworthy considerations and guidelines 

that can be used to construct a high-resolution dryland alluvial chronology . Accordingly , the 

radiocarbon and OSL ages obtained using these guidelines have updated and improved the 

existing chronology of KCW. This chronology is used in Chapter 3 to construct a complete 

chronostratigraphic framework of KCW in order to help to test competing hypotheses related to 

the timing and climate implications of Holocene arroyo cutting and filling in southern Utah. 

2.2 Background 

2.2.1 Geographic Setting and Previous Chronologies 

Kitchen Corra l Wash is a tributary of the Paria River located in Kane County, Utah 

approximately 45km east of the town of Kanab (Fig. 2.1 ). It is the main trunk stream of a 

drainage that assumes several names from its headwater s to its confluence with the Paria River 

(e.g. Park Wash, Deer Springs Wash, Kitchen Corral Wash, Kaibab Gulch , and Buckskin Gulch). 

However, for the purpose of this study the name Kitchen Corral Wash will encompass the Park 

Wash and Deer Spring Wash reaches from the base of the White Cliffs and the main Kitchen 

Corral Wash alluvial valley that extends from the base of the Vermillion Cliffs to the head of 

Kaibab Gulch (Fig. 2.1 ). The total drainage area of the KCW catchment upstream of Kaibab 
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Gulch is 511 km2 and ranges in elevation from - 25 00m as! to just below 1800m asl. KCW flow s 

approximately north to south and is currently entrenched with steep , mostly ve rtical wall 

Original alluvial chronologies from KCW were partly derived from three unconformity­

bound valley-fill alluvial packages described by Hereford (2002), and were correlated to similarl y 

aged fills in regional draina ges to test for near- sy nchronou s and climate-induced arroyo inc ision 

and aggra dation . Howeve r, only four radiocarbon ages from two separate sites were used to help 

build this alluvial chronology in KCW. Later, Harvey et a l. (20 11) used a combination of AMS 

radiocarbon and OSL dating techniques to date one arroyo exposure that contained four va lley-fi ll 

a lluvial packages. Results from Harvey ' s study indicate a tempora l offset in arroyo incision and 

aggradation whe n compared to those identified by Hereford (2002) . 

2.2.2 AMS Radiocarbon Dating in Arroyos 

Radiocarb on dating is the most w idely appli ed dating technique for alluvi a l deposits in 

genera l and for arroyo syste ms in particular. It relies on the meas urement of the remainin g 

concentration of radioactive carbo n ( 14C) that orig inal ly accum ulat ed in an orga nism and bega n to 

decay since its death (L ibby et al. , 1949) . In genera l, the age of orga nic mate ria l (e.g . the time 

since deat h) can be ca lculated by comparing the concentration of 14C remainin g in a sampl e to 

sta ndardized pre- I 950 14C concentrations and taking into accou nt the decay rate for 14C (e .g. 

Stuiv er and Polach , 1977 ; Coo k and Van der Plicht , 20 07). Radi ocar bon datin g is generall y 

limited to estimating the age of organic material s that are less than - 50 ka BP and has problems 

dating material s less than 300 years BP becau se of high rates of natural va riability in 14C 

production and anthropogenic changes in atmospheric and biogenic 14C concentrations due to 

nuclear weapons testing (Reimer et al. , 2009). Production rate variability of 14C can be 

reconciled by calibrating radiocarbon ages using a tree-ring based data series such as the IntCal09 

dataset of Reimer et al. (2009). Radiocarbon dating has been previously applied to arroyo 

sediments KCW (Hereford , 2002; Harvey et al. , 2011) and regional southwestern drainages (Ely, 
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1997; Delong and Arnold , 2007; Summa-Nelson and Rittenour , 2011 ). While each study had its 

own successes with radiocarbon dating charcoal samples , they also encountered age 

overestimations and stratigraphic age reversals most commonly due to problems caused by fluvial 

redeposition or the presence of coal. 

The potential for redeposition of older organic material is an important concern in 

arroyos and other semiarid fluvial systems where charcoal, wood and other organic materials can 

be stored in hillslopes or alluvial deposits prior to being eroded and redeposited downstream 

(Baker, 1987; Gillespie et al., 1992). Accordingly , an analysis of isolated or mixed materials that 

were redeposited will only represent a maximum age for an alluvial deposit. Post-depositional 

processes , such as pedoturbation or bioturbation , may also cause downward mov ement and 

repo sitioning of organic material within a deposit. Percolation of youn g humic or fulvic acids 

through a deposit due to root penetration can also cause contamination by young carbon (Bird, 

2007) . These complications may also result in anomalou sly old ages if old material is brought up 

or age inversions if young material is shifted down . 

Additional problems when using radiocarbon dating may arise when wood y debris or 

charcoal from ancient trees on the semiarid landscape are transported and deposited into the 

system (McFadgen , 1982; Gavin , 2001 ). Also referred to as the "old wood " problem by Schiffer 

( 1986) , the radiocarbon age for a piece of charcoal or woody debris from the inner-rings of a tree 

will be significantly older than the outer and more recent ring growths . Limestone from 

surrounding sedimentary bedrock in the study area (e .g. Triassic Moenkopi Fm) can also cause 

problems because of its hard-water effect, in which dissolution of non-atmospherically 

equilibrated or geologically old carbonate can interact and deplete 14C levels in organic material 

(Taylor , 1987). 

Prioritized field sampling can be employed to help reduce age discrepancies. In situ 

burned horizons or annually to semi-annually produced plant litter (e.g . twigs , leaves, and seeds) 

are optimal over samples from heartwood because their radiocarbon age will more closely 



Fig. 2.2. Representation of (a) charcoal-rich lens in a ripple crossbedded (Sr) sand deposit from 

which sample 14C-l l was collected (Table 2 .3) and (b) isolated angular charcoal in a massive 

(Sm) sand deposit . Note the charcoal in (a) is "floating " near the top of the Sr sand bed. 

10 
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represent the time of depo sition due to their fragile nature a short residence times on the 

land sca pe (McFadgen , 1982; Baker , 1987) . In absence of these materials , concentrated lenses of 

angular charcoal likel y repre sent minimal tran sport and original depo sition fo llow ing a fire­

related event (Fig. 2 .2). If only iso lated charcoal fragments are available , large(> I mg) and 

angular pieces should be prioritized to reduce the possibility ofre depos ition. To avoid 

bioturbation , organ ic mate rial should be co llected from beds wit h intact sed imentary struct ures 

devoid of evidence for burrows or roots. 

The presence of local coa l-beari ng geo log ic rock unit s can also comp licate radiocarbo n 

dating , wherein erosion of these rock units can lead to the deposition of coa l within a lluvia l 

depos its. When analyzed , coa l samples wi ll produce anomalo usly old or infinite radiocarbon 

ages. Harvey (2009) and Hereford (2002) both indicated the presence of coa l with in alluv ial 

deposits at or near KCW, wh ich were like ly derived from the coa l-beari ng strata of the local 

Cretaceous Dakota Sandstone and Strai ght C liffs Formatio n. While it is difficult to identify 

charcoa l and coa l in the field, magnification of a samp le using a hand lens or microscope can he lp 

distinguish the car bonized rings in char coa l from the homoge neo us stru ctu re of coa l. 

Additi onall y, charcoal has a lower density and spec ific grav ity and can be easi ly discerned from 

coa l based on these prop erties. 

2.2.3 OSL Dating in Arroyo Systems 

While AMS radiocarbon dating is a main stay of alluvial datin g techniqu es because of its 

numerou s benefits, not all setting s or deposits of intere st contain sufficient or strat igra phicall y 

releva nt material for dating . In these cases , or where charcoal redeposition and contamination are 

co mmon , OSL dating can enhance age control. OSL dating provides an age estimate of the last 

time a grain of quartz or feldspar was exposed to sunlight (or heat). More specifically , it 

estimates the amount of time s ince the luminescence signal of a grain was reset (bleached) due to 

the relea se of electron charges from light sensitive mineralogical defects (traps) (Huntley et al. , 
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1985; Aitken, 1998). Following deposition , the luminescence signal grows over time as empty 

crystal lattice defects accumulate electrons produced by exposure to ionizing radiation from 

surrounding sediments (e.g . radioisotopes of K, Rb , Th, U) and from cosmic rays. The 

environmental dose rate can be measured by techniques such as beta-counting, a portable gamma 

spectrometer , or high-resolution gamma spectrometry and ICP-MS (this study). The rate at 

which energy is absorbed from the radiation (dose rate) can be determined from elemental 

concentrations using conversion factors (Aitken , 1998; Guerin et al. , 2011 ). The contribution of 

cosmic --rays can be estimated as a function of depth, elevation above sea level, and geomagnetic 

latitude (Prescott and Hutton , 1994) . Electrons trapped within the quartz grains will produce a 

natural luminescence signal when stimulated by light (or heat). OSL ages are calculated by 

dividing the equivalent dose (De), which is the radiation required to produce a luminescence 

signal equal to the natural signal measured in grays (Gy) , by the dose rate (Aitken , 1998) as 

indicated by equation I: 

A Ck ) _ Equivalent Dose (Gy) 
ge a - G 

Dose Rate CK;) 
(I) 

OSL dating is complementary to 14C dating because samples can be collected from sand­

rich deposits where radiocarbon material may be scarce. Unlike 14C dating , OSL provides a 

direct estimation of the time of deposition , and so sediments ( quartz grains) within arroyo 

allostratigraphic sequences can be dated to constrain the timing in which alluviation initiated or 

was interrupted by an incision event. 

Problems with OSL dating in semiarid drainages are related to the amount of sunlight 

exposure prior to deposition , post-depositional mixing, and microdosimetric effects. Ephemeral, 

semiarid systems , such as KCW, are dominated by flashy flows and high sediment loads that 

promote rapid deposition and limit sunlight exposure prior to burial (Wallinga , 2002; Jain et al. , 
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2004; Rittenour , 2008). Additionally , sediment sourced from highly erodible bedrock , local 

hillslopes, small tributaries, and slope-bank collapse may also be subject to limited solar exposure 

and incomplete resetting (Summa-Nelson and Rittenour , 2012) , and residual luminescence signals 

acquired during a previous deposition will be measured during analysis. This is of particular 

concern for younger (Holocene) fluvial sediments where residual signals of only a few grays can 

lead to large age overestimations (Wallinga et al., 2001; Murray and Otley , 2002). Anomalously 

old De measurements can be objectively identified and reduced in weight when calculating ages 

by applying the minimum-age-model (MAM) of Galbraith et al. ( 1999). The MAM truncates a 

De distribution in order to statistically isolate a population of grains with the lowest equivalent 

doses , which are assumed to have been fully bleached at deposition. The central-age-model 

(CAM) is used for samples with limited evidence for partial bleaching and calculat es the 

weighted mean of all De values . 

Post-depositional mixing is also problematic throughout southwestern drainages because 

of bioturbation (Fig. 2.3) . Root penetration and animal burrow s (e .g . krotovina) can cause the 

mixing of older and younger grains to produce a mixed OSL signal that can result in erroneous 

OSL results (Bateman et al. , 2003) . Hence , deposits containing evidence of incipient soil 

formation should be identified and avoided prior to sampling , and deposits with recent insect 

burrows from the arroyo-wall surface should either be avoided or cleared beyond the depth of 

their penetration to evade mixed or recently exposed sand grains . 

Other sources of error in OSL dating include broad variations in dosing due to 

microdosimetry (e.g. heterogeneous dosing at grain-scale) . For example , a feldspar-rich sand bed 

can cause a localized increase of beta dosing from 4°K decay and significantly alter the dose rate 

(Vandenberghe et al. , 2003) or a deposit with variable grain sizes can be heterogeneously dosed 

due to radiation shielding by larger grains. Additionally , in situ water content affects the dose 

rate because water in pore spaces absorbs energy and attenuates some of the natural dose 

radiation. It is important to make an estimation of the average wetness of a sample over its burial 



Fig. 2.3. Krotovina commonly seen in sand beds. These are representative of potential 

bioturbation or post-depositional mixing processes that can contribute to anomalous OSL ages if 

sampled: (a) desiccated , clay-filled krotovina in a trough crossbedded (St) depo sit and (b) silty­

sand filled krotovina in a low-angle crossbedded (St) deposit. 

14 



period to correct for thi s attenuation, which can be done by calculating the weight difference s in 

sample s before and after they were dried in an oven. In this study , an assumed value for the 

moisture content was used because all samples were dry at collection . 

2.3 Methods 

15 

In order to test the applicability of AMS radiocarbon and single-grai n OSL dating , twe lve 

outcrop s (A-L) were identifi ed and exa mined in detail in the KCW stud y area (Figure 2.4a). 

A lluvial fill packages at eac h site were largely identifi ed by prominent arroyo cut-fi ll 

charac terist ics which included buttress unconformities and buried soi l horizons separat ing at least 

two alluvial fills. Prior to samp ling, sites were described and surveyed using a G PS, and the 

a lluvia l stra tigraphic and arroyo cut-fi ll arc hit ect ure was sketched. Descriptions are based on the 

a lluvial strat igrap hy and sed imento logy in each fill and specifica lly focused on facies 

assemb lages and interpretations of depo sit ional environme nts (see Chapt er 3). A total of thirty­

seven radiocarbon ( 14C) and 29 OSL samples were co llected from the study area for AMS and 

single-grain OSL ana lyses. In add ition , two AMS radiocarbon and two small-a liquot OSL ages 

from Harvey (2009) were used to help reconstruct the a lluvia l chrono logy. 

2. 3.1 Depositional Facies and Sedimento logy 

Detailed stra tigrap hic and sedim ento log ic descriptions we re made at eac h arroyo-wa ll 

expos ure prior to radiocarbon and OSL field samplin g. These desc ripti ons were used to extrac t 

and compil e a list of the most frequently observe d depositional facies compri sing KCW alluvia l 

fills (Fig. 2.5). Description s were mad e in order to test for relationships between leve ls of partial 

bleaching or occurrences of redeposited charcoal and facies type . A total of IO depositional 

facies (Table 2.1) have been identified within beds of the 12 arroyo study sites in KCW and have 

been given a faci es code primaril y based upon grain size and sedimentary textures or structures 

closely following those described in Mia!! (2000). 
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Alluvial sediments throughout KCW are primarily sourced from bedrock lithologies, 

Pleistocene terrace deposits , other Quaternary surficial deposits , and modern channel deposits. 

Accordingly , the stratigraphy of KCW is distinguished by alternating beds of sediment from the 

upstream or local sediment sources. In general, sediments from upstream sources are derived 

from Jurassic Navajo Sandstone bedrock and consist of very pale brown ( I 0Y R 8/3, 7 /4), fine- to 

coarse-grained, sub- to well-rounded, well sorted , frosted, quartz-rich sand grains. Sediments 

derived from local sources are generally darker in color ranging from reddish yellow (5YR 6/6) , 

light red (2.5YR 6/6), and red (2.5YR 4/6), sub-angular to sub-rounded, poorly to moderately 

so rted , very fine- to fine-grained sands containing variable amounts of silts and clays. These 

sediments are likely derived from Jurassic Kayenta and Moenave bedrock (sandstones) , Triassic 

Chi n le Fm (sandstone , siltstone, claystone) , or heterogeneous mixtures of sand , silt , and clay from 

local hillslopes and tributaries . Upstream and local sediments were subjectively identified in the 

field and lab based on a visual assessment using the characteristics described above . 

The mo st common facies in KCW primarily consist of trough crossbedded (St) or ripple 

cross bedded (Sr) , very fine to medium-grained sands. In addition , low-angle ( < 15°) cross bedded 

sand (SI) that represents lower to upper flow regimes and horizontally or planar bedded deposits 

representative of upper flow regimes are also common in the arroyo-wall exposures studied. 

Deposits with these facies are generally - 20 to 50 cm thick and display tabular or broadly 

lenticular geometries. This facies assemblage is most often representative of a medium to low 

energy channel-margin (CM) depositional environment (see Ch. 3) and indicative of relatively 

modest unidirectional flow events. 

The second most common facies assemblage throughout KCW alluvial fills is 

represented by very fine- to coarse-grained , massive , structureless sands, which often have 

variable amounts of clays and silts. These sand units range from a few centimeters to tens of 

centimeters thick that are broadly tabular and fall into three sedimentary facies classifications: 

massive sands (Sm) , thinly laminated or desiccated clays and silty-sands (Fl), variegated clay , 



Table 2.1 
KCW facies cooes 

Facies Code a 

SI 

St 

Sh 

Sr 

Sm 

Fl 

Fsmv 

p 

Gh 

Gt 

Sedimentary Structures 

Low-angle crossbeds 

Trough crossbeds 

Horizontally/Planar bedded 

Ripple crossbeds 

Massive 

Isolated, thinnly laminated or 

dessicated beds 

lnterbedded massive and thin 

laminat ions 

Incipient soil, bioturbation 

Horizontally bedded or massive 

Cross bedded 

Sedimentology 

Sand, very fine to coarse with variable 

amounts of gravels and pebbles 

Sand, very fine to coarse with variable 

amounts of gravels and pebbles 

Sand, very fine to coarse with variable 

amounts of gravels and pebbles 

Sand, very fine to coarse with variable 

amounts of gravels and pebbles 

Sand, very fine to coarse with variable 

amounts of gravels and pebbles 

Clay, Silt 

Variegated clay, silt, very fine sand 

Clay, silt, very fine sand often containing 

root s and burrows 

Clast or matrix supported gravels and 

pebbles 

Clast or matrix supported gravels and 

pebbles 

Flow Regime 

Lower-Upper 

Lower-Upper 

Upper 

Lower 

Upper 

Lower 

Lower 

Upper 

Upper 

Depositional 

Interpretation 

Scour-fill, transverse or 

linguoid bedforms 

Bedform migration 

Plane bed flow 

Supercritical climbing 

ripples 

Inner channel flood , 

overbank flood, levee 

deposit 

Overbank or waning 

flood depos it 

Backswamp, marsh 

deposit 

Soil formation along a 

stab I e surface 

Lag deposits 

Channel Fills 

alist of the most common sedimentary facies evident within the KCW study area. Facies codes closely follow those described 

in Miall (2000). OSL and radiocarbon samples were primarily targeted w ithin the lithofacies highlighted in gray . 

00 



Fig . 2 .5. Common lithofacies in KCW alluvial fills (see Table 2.1 for descriptions). Scale bar 

represents IO cm and facies codes are represented at base of photographs . 
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silt, and very-fine sand interbeds (Fsmv). Massive sands (Sm) are typified by moderately to well 

sorted, fine to coarse grained sands likely deposited during high energy and high sediment yield 

events (upper flow regimes) and are most often interpreted to be channel-margin (CM) deposits 

(see Ch. 3). Individual beds of thinly laminated (< !Ocm) or dessicated clays and silty-sands (Fl) 

are often interbedded with very very fine- to coarse-sand facies (Sh, St, Sr, SI) and are deposited 

as a high flow event begins to wane within the channel. Thinly bedded (<5cm) , commonly 

variegated , clayey-silt to very fine-grained and laminated sands (Fsmv) deposits are typically 

over 30cm thick , and are one of the most recognizable facies throughout KCW . Fsmv facies 

deposits are often laterally traceable for tens of meters , and were likely deposited in slackwater 

settings. In this study , incipient soil horizons are grouped separately even though they have 

developed within other sedimentary facie s and therefore may share a similar grain size 

distribution ( clay , silt , very-fine sand). Incipient soils are given the facies designation (P) and are 

commonly distinguishable as highly bioturbated or buried entisols or inceptisols that are typically 

part of the valley surface. The protofacies of an incipient soil may be one of any previously 

mentioned facies textures (e.g. SI, St, Sm, Fsmv) . 

The least common facies assemblage includes matrix- or clast-supported gravels and 

pebbles that are horizontally bedded or imbricated (Gh) or crossbedded (Gt) . These facies are 

most commonly seen in basal deposits that generally occur as lenticular beds extending only a 

few meters. They are commonly seen within or underlying other lenticular deposits of Sh, St, SI, 

Sr, or Sm and . Because of the grain size and bedding of these deposits , Gh and Gt facies are 

interpreted to have been deposited in channel-bottom (CB) depositional environments (see Ch. 3). 

2.3.2 Radiocarbon Collection 

Techniques for radiocarbon sampling closely followed the suggestions described in the 

previous section. Although preference would have been given to in situ burned horizons or 

annual plant material , samples were collected based on their availability and stratigraphic context. 
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Consequently, target material typically consisted of large concentrations of charcoal or thin lenses 

of charcoa l separating sedimentary beds near the base or top of an allu vial fill. In a few instances , 

iso lated charcoal fragments were sampled where opportunities for OSL dating were limit ed and 

no other source s of charcoal or woody debris were available. Howev er, isolated charcoal was 

avoided in the presence of a highly bioturbated bed or beds indicating incipi ent soil formation. 

Once a charcoal rich lens or iso lated charcoal fragment was targeted for collection, attention was 

pa id to the size and angularity of indi vidual pieces in order to reduc e the odds of co llect ing a 

redeposited samp le. 

Prior to co llection , the stratigraphic context of each sample was noted and samp le 

locations were photo-documente d. Charc oa l and woody debris sampl es we re collected using a 

steel trowel and immediately preserved in aluminum foi l and stored in a pla stic samp le bag . If 

large , concentrated charcoa l lenses were present , severa l fragments of charcoa l may have been 

samp led as these were assumed to be so urced from the same fire event. However , only one 

charcoa l fragment from eac h sampl e collected was typica lly analyzed in order to avoid averaging 

different radiocarbon ages . After co llection, charcoa l sample s were extrac ted from the a luminum 

fo il, exa min ed under a micro sco pe to check for annual rings and ensure coa l was not sampled , 

weig hed , and sto red in 20 ml g lass via ls marked with uniqu e numb ers until being processed and 

analyzed . Additionally , sampl es containing mor e than the req uired amount of charcoal for 

analys is were separa ted and archived . 

2.3.3 Radiocarbon Preparation and Analys is 

Sixteen of the 3 7 samp les collected were sent to the UC Irvine Keck AMS Laboratory for 

processing and AMS ana lysis. An additiona l 17 samp les were pretreated and combusted by the 

author at the Unive rsity of Arizo na (UA) NSF AMS Laboratory and later ana lyze d by the AMS 

lab staff. Two sam ple s collected by Harv ey (2009) are also used in thi s study and were sent to 

Beta Analytic Inc. for AMS analysis . Each sampl e was subject to a carbonate, fulvic acid and 



22 

humic acid removal pretreatment using a standardized acid-base-acid wash and rinsed with 

deionized water. Following pretreatment, approximately I .5-3mg of each sample was packed 

with CuO and combusted (- 1000°C) in order to convert and isolate CO 2 in gas form. A mixture 

of the CO 2 gas and Fe powder was then reduced to a graphite target for AMS measurements. 

Resulting 14C ages were converted into radiocarbon years , calibrated using Calib 6.0 and the 

lntcal09 dataset of Reimer et al. (2009), and are reported in BP 20 10 as a maximum probability age 

and asymmetric 2-sigma error (Telford et al. , 2004) (Table 2.2). Reporting as cal. kyr BP 20 10 

allows for a direct correlation to ages derived from OSL dating . 

2.3.4 OSL Collection 

OSL sampl es were collf'cted concurrent with the collection of organic material for 

radiocarbon dating. In general , OSL samples were extracted where charcoal was scarce or where 

sandy alluvium was optimal for sampling. Where possible , samples were collected near the base 

or top of alluvial fills . A total of29 (two from Harvey , 2009) OSL samples were collected from 

12 alluvial outcrops displaying context for arroyo cut-fill events. Sample collection was 

performed following the guidelines provided by the Utah State University Luminescence 

Laboratory (http ://\\\\\\.usu.edu /Q.eo/ lum in lab/ ). 

As described above , varying levels of partially reset (bleached) sediments were expected 

in the alluvial deposits , so special attention was paid to the sedimentology and stratigraphy of 

targeted alluvium prior to sampling, wherein sedimentologic facies and stratigraphic context were 

observed and noted. Deposits displaying signs of soil formation, burrows, or roots were avoided 

(i.e. P beds) because of potential age inaccuracies resulting from broad equivalent dose values 

(e.g. Bateman et al., 2003). In general, sampling preference was given to beds under 40 cm thick 

with a ripple cross-laminated facies (Sr), indicated by Summa-Nelson and Rittenour (2012) to 

have been more likely exposed to adequate sunlight due to their deposition during a low flow 



Table 2.2 
Summary of radiocarbon ages 

2aTotal la Median 

Oralnilge 
la Calibrated A1e Rance 

Calibrated ••• 2o Weighted Mun 

~mple Number lab ID Basin/Profile uCAre Errort Age Range {rounded Error t cal yr BP1010 
Error+/ -

••• (yr BP1010t (rounded yr cal yr (rounded)11 
(round ed) 

BP101ol BPioul 

14(-1 113985 A 2015 15 
1964-1966(0 .005), 1984-2058 

(0 .995) 
1960-2060 2010 so 2020 40/60 

14(-2 113986 A 365 15 385-436 (0.357). 488-556(0 .643) 390-560 470 90 480 80/160 
14(-3 113981 B 500 15 571-598 (1) 570-600 590 10 580 20/10 

14(-4 113989 1235 15 
1142-1174 (0.107). 1180-1247 

(0.447) , 1261-1319 (0.446) 
1140-1320 1230 90 1240 80/130 

14(-5 X24136 C 2460 40 
2421-2679 (0.742), 2692-2767 

(0 .258) 
2420-2770 2590 170 2600 170/180 

14C-6 X24137 C 49,400 4000 49,400 4000 

14(-7 X24132 0 1488 38 
1363-1478 (0.924), 1525-1571 

(0.076) 
1360-1570 1470 100 1440 130/80 

14C-8 X24133 0 466 37 526-626 (1) 530-630 580 so 570 60/40 

14(-9 X24135 0 1208 38 
1073-]085(0 .016).1115-1250 

(0.811), 1257-1322 (0.173) 
1070-1320 1200 130 1200 120/130 

14( -10 0 not analyzed not analyzed 

14(-11 113987 1420 JS 1357-1404 (J) 1360-1400 1380 20 1380 20/20 

14(-12 X24138 879 38 
759-76] (0.003), 773-776 (0.004). 

785-974 (0.993) 
760-970 870 110 870 100/110 

57-95 (0.208).130-177 (0.228), 191-

14(-13 113988 140 15 221 (0.122), 223-289 (0.279). 321- 60-340 200 140 200 140/140 

335 (0.163) 
14(-]4 X241J9 42600 1600 42,600 1600 

l•C-15 X24140 600 37 603-717(1) 600-7720 660 60 660 60/60 
14(-16 X24141 >45700 >45, 700 

1049-1053 (0.003), 1057-1092 

14(-17 X24134 G 1194 38 (0.062), 1111-1245 I o.842), 1262- ]050-1320 1180 130 1180 140/130 

1304 (0.083), 1307-1316 (0.01) 
]4(-]8 113982 G 665 15 624-648 (0.451). 703-728 (0 .549) 620-730 680 50 680 50/60 
14(-19 G not analyzed 0 not analyzed 

14(-20 G not analyzed 0 not analyzed 

14(-21 113984 G 3420 15 
3692-3765 (0.993), 3767-3773 

(O 007) 
3690-3770 3730 40 3730 40/40 

14(-22 105792 H 3480 30 
3756-3841 (0.633), 3846-3888 

(0 .367) 
3760-3890 3820 70 3820 70/60 

14( -23 H not analyzed not analyzed 
14( -24 105793 H 1115 30 1034-1118 (J) 1030-1120 1080 40 1080 40/50 
14C-25 105794 H 2200 40 2069-2079 (0.01), 2100-2404 (0.99) 2070-2400 2240 170 2280 120/210 
14(-26 113983 3735 JS 4053-4099 (0.31), 4135-4209 (O 69) 4050-4210 4130 80 4140 70/90 

14(-27 X24142 849 40 
743-862 (0.843), 870-889 (0.038). 

818-964 (0.119) 
740-%0 850 110 830 130/90 

14(-28 105788 1755 30 1674-J 772 ( l) 1670-1770 1720 so 1720 50/50 
14(-29 X24144 46600 2700 46,600 2700 
14(-30 105789 >31700 >3 1,700 

14(-31 105790 1730 30 
1629- 1644 (0.059), 1653-1759 

(0.941) 
1630-1760 1690 70 1700 60/70 

14(-32 105791 1860 30 
1789-1892 (0.858). 1898-1925 

1790-1930 1860 70 1850 80/60 
(0.142) 

14(-33 X24143 2395 40 
2400-2567 (0.829), 2587-2599 

(0.009). 2653-2674 (0.032), 2697- 2400-2760 2580 160 2520 240/120 

14(-34 X24129 993 46 849-1039 (0.993), 1099-1005 (0.007) 850-1110 980 130 950 160/100 

14(-35 X24130 2002 40 
1929-2120 (0.996). 2150-2152 

(0.004) 
1930-2150 2040 110 2010 140/80 

14(-36 X24131 368 37 376-469 (0.473). 481-563 (0 .527) 380-563 470 60 470 90/90 
14(-37 X24145 46700 2800 

14(-38' Beta-256838 610 40 600-730 (1) 600- 730 660 60 660 60/80 

14C-39t Beta -256840 2220 40 2210-2400 Ill 2210-2400 2300 90 2300 60/90 

'"2-s1gma calibrated age range calculated as a reh11ve probabtlrty using lntcaK>9 calibration curve of Reuner et al (2(X)9) 

1,2-s1gma cahbrated ages (rounded to nearest 10) us 111g Cahb 6 0 and the lntcal09 dataset of Reuner et al (2009}, and are reJX)ned 111 BP2010 as a maximum probability age 

and asymmetric 2-s,gma error 

CSameles OT1!l:1nal!x conected IJl Harver (2009) Also used in Harvel:'. el al {201 l )and this SIU~ Sameles ana~zed b~ Beta Ana~IC 



Ta ble 2.3 
Summ ary of radiocarbon ages and sampl e characteristics 

Drainage 
211 Weighted Mean cal yr Error+/ · Targeted 

Stratigraphic 

Sample Number Lab ID Basin/Prof ile Fades 14CAge Error ± Agreement/ 
Site 

BPi 0 10 (round e d) (rounded) Sample ' 
Oisa reem entb 

14C-1 113985 A St 2015 15 2020 40/60 CRL A 

14C-2 113986 A Sr 365 15 480 80/160 CRL A 
14C-3 113981 B Sh 500 15 580 20/10 CRL A 
14(-4 113989 B St 1235 15 1240 80/130 CRL A 
14C-5 X24136 C Fsmv 2460 40 2600 170/180 IAC A 

14C-6' X24137 C St 49, 400 4000 49,400 4000 IAC D (CC) 

14C-7 X24132 D SI 1488 38 1440 130/80 CRL A 
14C-8 X24133 D Fsmv 466 37 570 60/40 CRL A 
14C-9 X24135 D St 1208 38 1200 120/130 IAC D (RD) 

14C-10 D SI not ana lyzed not ana lyzed IBB 

14C-11 113987 E St 1420 15 1380 20/20 CRL A 

14C-12 X24138 E St 879 38 870 100/ 110 CRL A 

14C- 13 113988 SI 140 15 2DO 140/140 CRL A 
14C-14 X24139 St 42,600 1600 42,600 1600 CRL D (CC) 

14C-1S X24140 Sr 609 37 660 60/60 CRL A 
14C-16 X24141 F St >45,700 >45,700 IAC D (CC) 

14C-17 X24134 G St 1194 38 1180 140/130 CRL A 
14C-18 113982 G Fl 665 15 680 50/60 AWD A 
14C-19 G Sm not analyzed not analyzed IRL 

14C-20 G St not analyzed not analyzed CP.l 

14C-21 113984 G SI 3420 lS 3730 40/40 CRL A 

14C-22 105792 H SI 3480 30 3820 70/60 CRL A 

14C-23' H Sm not analyzed not analyzed IAC 
14C-24 105793 H Sm 1115 30 1080 40/50 CRL A 

14C-25' 105794 H Sm 22DO 40 2280 120/210 IRL D (RD) 

14C-26 113983 H Sr 3735 15 4140 70/90 CRL A 
14C-27 X24142 H St 849 40 830 130/90 IAC A 
14C-28 105788 SI 17S5 30 1720 50/50 CRL A 
14C-29 X24144 St 46,600 27D0 46,600 27DO CRL D (CC) 

14C-301 105789 Sh >317D0 >31,7D0 CRL D 

14C-31 105790 SI 1730 30 17D0 60/7 0 CRL A 
14C-32 105791 Fsmv 1860 30 1850 80/ 60 IAC A 
14C-33 X24143 St 2395 40 2520 240/120 CRL D (RD) 

14C-34 X24129 K Fsmv 993 46 950 160/100 CRL A 

14C-35' X24130 K St 2D02 40 2010 140/80 IAC D (RD) 

14C-36 X24131 K St 368 37 470 90/90 CRL A 

14C-37 X24145 SI 46,700 2800 46,700 CRL D (CC) 

14C-38' Beta -256838 SI 610 40 660 60/80 AWD A 

14C-39' Beta -256840 St/SI 2220 40 23DO 60/90 CRL A 

' Targeted samples for AMS radioca rbon dat 111g. CRL = Charcoa l-rich Le ns, IAC = Iso lated Anb'lllar CharcoaL IBB = Iso late Burned Branc h, 

IRL = Iso lated Round Charcoa L A WD = Anb'lllar Woody Deb ris 
h 1otes if We ighted Mean ca librated rad ioca rbon age (BP 10,o) of each rad,ocarbo n samp le Agrees (A) or Disagree s (D) with stra t1graph1c 

rela tionships or OSL age s. Disagreemen t interprested as CC = Cretaceous Co al, RD = Redepo s ited Samp le . 

' Sa mples Co llected from within or near a co lluvial de posit . 

d Sam ples originally co llected in Harvey (2D09) Also used in Ha rvey et a l. (20 11) and this study . 

c Sample did not undergo AMS measurement because it did not survive pretreatment chemistry 

r Fn1e~• dissemuiated eieces of charcoa l in dee£ Sit. Lar~e uncerta in!}'. due to sma ll sa mele size (0 .056 mil) or eoss ible mcxin!l of Cretaceo us coa l. 
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reg11ne. However, if this depositional facies was not present , secondary consideration was 

typically given to thin beds (<40 cm) with low to upper flow regime facies, such as trough 

crossbedded (St) or low-angle crossbedded (SI) sand, or in some cases deposits that were 

horizontally bedded (Sh). Beds displaying thick( > 1 m) massive sand (Sm) devoid of sedimentary 

struct ure s were avoided because of the possibility of rapid deposition and limited sunlight 

exposure during a high-magnitude flow event. Variegated clays and silty-sand (Fsmv) beds were 

not sampled for OSL because they contained a much larger fine-grained fraction and sand beds 

were general ly <5 cm thick. 

Opaque metal tubes were hammered into targeted alluvial deposits within the arroyo 

walls , and samples were collected at least one meter below the original ground surface in order to 

resolve the cosmic contribution to the dose rate and avoid problems with soils or bioturbation 

(Fig. 2.6) . In addition , the longitude , latitude , elevation , and depth below the ground surface were 

recorded to ca lculate the cosmic dose contribution to the overall dose rate following Prescott and 

Hutton ( 1994). Samp les were also collected at least one meter from an erosional contact or 

colluvia l deposit in order to reduce the potential for partial bleaching due to erosion from an older 

fill or short sediment transport. After the OSL tube was extracted and packed securely to prevent 

mixing, a bulk representative sample of surround ing sediment was col lected from a - 30 cm 

radius surrounding the samp le location for environmenta l dose rate determination and a sma ll 

sample (- 50 g) was co llected in an air-tight container for analysis of in situ water content. 

2.3.5 OSL Preparation 

Samples were processed in the Utah State University (USU) luminesc ence lab. Each 

sample was opened under dim amber light (590 nm) and the ends of each sample tube were 

removed because they may have been exposed to light during collection. The center of each 

sample was then excavated and wet sieved at grains-size fractions of 150-250 µm or 180-250 µm. 

Samples were then pretreated with 10% hydrochloric acid wash to dissolve carbonates followed 



Fig. 2.6. OSL sample extraction from the KCW study area: (a) Example of a >40 cm thick , very pale brown , low-angle cross bedded sand deposit 

prior to extraction, (b) hammering an opaque metal tube into a targeted sand bed, (c) end result of hammering that is followed by extraction of an 
OSL sample (USU-1026) and analysis at the USU Luminescence Laboratory. 

N 
0\ 
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by household bleach to remove organics. Pretreated samples were then floated in sodium 

polytungstate (2 . 7 g/c m3
) to separate any heav y minerals from the quartz and feldspar fraction 

and then were subject to three 30 minute bath s of concentrated (47%) HF to remove feldspars and 

etch the quartz gra ins, followed by one 30 minute bath of concentrated (37%) HCl to prevent the 

precipitation of flourites. Subsequent to the HF treatment , samples were dried and resieved at 75 

µm to remove any partially dissolved feldspars . Sample purity was checked on all aliquots by 

monitoring respo nse to infrared (IR) stimulation (e.g. Duller et al. , 2003) . A number of sample s 

indicated a s ignal depleti on response following IR expos ure, suggesti ng feldspar contamination , 

and were re-treated wit h HF and re-sieved at 75µm to remove any partially dissolved feldspar 

until they no longer produced a lumine scence response to IR stimulati on. 

Conc urrent with sample processing , representative splits of the sampl es collected for dose 

rate deter min ation were sent to ALS Chemex in Elko, NV for ICP-MS ana lysis of Rb, U, and Th 

content and ICP-AES analysis of K. Dose rate co nvers ions fo llowed Guerin (2010) and are 

presented in Table 2.4. Most of the sampl es co llected from KCW had a moisture content < 1% 

and were ge nera lly dry upon collection because of semi- ar id climate in so uthern Utah . Due to the 

expec ted var iabili ty of past ground -wate r leve ls and c limate co nditi ons, a moist va lue of 3 ± 3% 

was used in age calculation. 

2.3.6 OSL Analysis 

Of the 29 OSL samples collected and proces sed, seve nte en sampl es from KCW 

und erwent quartz s ing le-g rain (SG) anal yses using the single-aliquot rege nerative (SAR) do se 

protocol from Murray and Wintle (2000). Optical mea surements were performed on a Ris0 

TL/OSL Model DA-20 reader and grains were stimulated using a focused green laser (532 nm) at 

90% power ( 135 mW /cm 2
) (B0tter-Jensen et al., 2000) and at 125°C for 1 second over 60 

channels with a 0.1 s pause before and after stimulation. Detection of the luminescence signal 

was achieved through a 7.5-mm UV filter (U-340) for 40 seconds at 125°C. The initial signal 



Table 2.4 
Dose rate chemistry data for analyzed KCW OSL samp les 

Elevation 
USU Lab ID Study Site Latitude/Longitude Depth (m) K{%) Rb (ppm) 

(masl) 

USU-1189 A N37.25507, Wl12.16564 1748 1.5 0.77± 0.02 29.4 ± 1.2 

USU-1176 B N37.25423, Wl12 .13139 1721 1.5 1.77 ± 0.04 71.6 ± 2.9 

USU-1177 B N37.25423, Wl12 .13139 1721 6 0.77 ± 0.02 29.4 ± 1.2 

USU-1187 C N37.22864, Wl12 .15267 1726 5 0.92 ± 0.02 35 ± 1.4 

USU-1178 D N37.23512, Wl12 .12296 1711 7.5 1.06 ± 0.03 41.2±1.6 

USU-1192 E N37.21745, Wl12 .13931 1705 4 0.96 ±0.02 35.2 ± 1.4 

USU-1194 F N37.22137, Wl12 .12116 1689 5 0.54 ± 0.01 20.8 ±0 .8 

USU-1181 G N 37. 21581, Wl12 .12551 1686 1.5 0.46 ± 0.01 18.8 ± 0.8 

USU-1101 H N37.18361, Wl12 .11550 1668 8 .5 0.44 ± 0.01 14.9 ± 0.6 

USU-1103 H N37.18361, Wl12 .11550 1668 7.5 1.2 ± 0.03 45.9 ± 1.8 

USU-530' I N37.17752, Wl12 .10266 1653 8 1.04 ± 0.03 47.2 ± 1.3 

USU-531' I N37.17752, Wl12.10266 1653 4 1.39 ± 0.04 63 ± 1.7 

USU-1026 J N37.17012, Wl12 .09731 1640 4 1.05 ± 0.03 44.5± 1.8 

U5U-1027 J N37.17012, Wl12 .09731 1640 4 0.99 ± 0.02 38.2 ± 1.5 

USU-1028 J N37.17012, Wl12 .09731 1640 3 0.73 ± 0.02 26.5± 1.1 

USU-1029 J N37.17012, Wl12.09731 1640 1 1.02 ± 0.03 36.5±1.5 

• Lat itude/Long itude : 37°N , I !2°W; eleva tion: - 1.65 to I. 75 km asl sediment dens ity: 2 g/cm', depth in table used for cosmic dose 

ca lculation. Dose ra te calcuations made using equa tions from Pre scott and Hutton ( 1994) with an ass umed 10% error. 

b A 3±3 wt% H2O was used to repr ese nt moisture content during burial. 

' Chemistr y values from Harvey (2009) . As in this studv. setit sametes were sent to ALS Chcmex in Elko. NV for ICP -MS analysis . 

Th (ppm) U(ppm) 

2 ±0 .20 0.8±0.10 

6.2 ± 0.56 1.7±0 .12 

2 ±0.20 0.7± 0.10 

2.6 ±0.23 0.8±0.10 
2.7±0.24 0.9±0 .10 

2.1 ± 0.20 0.8±0 .10 

1.8 ± 0.20 0.7±0 .10 

2.1±0 .20 0.6±0.10 

1.4 ± 0.20 0.5±0 .10 

3.2 ± 0.29 1 ± 0.10 

3.2 ± 0.29 1 ± 0.10 

5.8 ± 0.52 1.5±0.11 

2.5 ± 0.25 0.9 ± 0.10 

2.5 ± 0.23 1 ±0 .10 

2.4 ± 0.22 0.7 ± 0.10 

2.1±0 .20 0.6±0.10 

Cosmic 

Contribution 

{Gy/Ka) 

0.24 ± 0.02 

0.24 ± 0.02 

0.14 ± 0.01 

0.16 ± 0.02 

0.11 ± 0.01 

0.18 ± 0.02 

0.15 ± 0.02 

0.24 ± 0.02 

0.10 ± 0.01 

0.11 ± 0.01 

0.11 ± 0.01 

0.17±0.02 

0.17±0.02 

0.17±0.02 

0.19 ± 0.02 

0.25 ± 0.02 

Dose Rate 

{Gy/Ka) 

1.28 ± 0.07 

2.71 ± 0.14 

1.15 ± 0.07 

1.38 ± 0.08 

1.50 ± 0.08 

1.40 ± 0.08 

0.94±0.06 

0.94 ± 0.06 

0.73 ± 0.05 

1.70±0 .09 

1.56 ± 0.07 

2.25±0 .10 

1.54 ± 0.08 

1.50 ± 0.08 

1.20 ± 0.07 

1.49 ± 0.08 

N 
00 



was calculated from 0. 1 - 0.14 s of stimulati on and the background signal was calculated from 

0.7-0.9 seconds of stimulation. 

2. 3. 6.1 Preheat-Plateau Thermal-Transfer (PP-TT) Test 
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Thermal transfer can cause un stabl e electrons to move to shallo w electron traps and result 

in age ove restimati ons in yo un g sample s. As samp les from KCW were expected to be under Ska 

yea rs old, a preaheat-plat ea u and thermal-tran sfe r ( PP-TT) test was given to samples USU- I 026 

and USU -110 I to determine the appropriate preheat temperature to use durin g analysis to remove 

unstable e lectro ns from the shallo w traps in quartz (e .g. Murray and Wintle , 2003) and reduc e 

thermal tran sfe r effects (e .g . Rhodes , 2000 ; Li and Li. 2006) . Steps for thi s test close ly fo llowed 

those identified in Li and Li (2006) . Initi ally , five smal l-aliquots ( I-mm diameter) from samp les 

USU-I 026 and USU- I IO I , ass umed to be representative of sed iments in the study area , were 

subj ect two optica l bleaching exposures at roo m temperature using 90% blue-green LED power 

( 4 70 nm , 36 mW /cm 2
) for 40s to remove natural sig nals. Eac h expos ure was followed by a I 000-

s pause at room temperature to allow therma lly tran sferred charges to thoroughly decay (Li and 

Li, 2006). After bleaching , the lumine sce nce s igna l in both sample s were assu med to have been 

fully reset (De = 0 Gy) and th e De was meas ured using the SAR prot oco l ( I 60°C cut heat) 

fol lowin g ex posure to increasing preheat temperatures (20 °C increments) from 180°C to 280 °C 

for IO seco nd s eac h . Optical meas urement s of sma ll aliqu ots were then made at I 25°C for 40 sa t 

90% LED pow er. 

Based on result s from the PP-TT test (Fig . 2. 7a) , meas urements mad e at 240°C and below 

yielded the ex pected near-z ero De mea surements . How ever, the De values for both samples ro se 

significantly after the preheat temperature exceeded 240°C, indicating a thermal-tran sfer affected 

measurement. Recycling ratios from repeated doses do not indicate a trend with increasing 

preheat temperatures and fall within error of one another (Fig. 2. 7a). Accordingly , a preheat 

temperature of 220°C was se lected for all KCW samples based on these PP-TT tests . 
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2.3.6.2 Overdispersion Test 

To test for inherent overdispersion values of the De in KCW sediments not related to 

partial bleaching, an overdispersion test was conducted on two samples whose sediments were 

originally sourced from upstream (e.g. dominated by very pale brown, fine- to medium grained , 

frosted quartz sand) or local ( e.g. dominated by red , silty-clay to very-fine grained sand) deposits. 

Subsamples from USU-I IOI and USU-1103 , both collected from site KCW-H (Fig. 2.4) , were 

placed on four single-grain aliquots each and bleached in direct sunlight for 2 hours during early 

afternoon (e .g. 12-2 p.m.) to completely zero the luminescence signal. Aliquots were then given 

a known dose of 14Gy and analyzed using the SG SAR sequence with a 220 °C preheat and l 60°C 

cut-heat. One aliquot from sample USU-1103 was lost prior to being to being dosed. These 

analyses were conducted to see if there are differences in the inherent overdispersion of sediment 

sourced from upstream and local sediments. It is possible that the red-coloring of local sediments 

would increase grain opacity thereby limiting solar resetting and increasing inherent 

overdispersion . 

Results from the overdispersion test indicate that the upstream sediment (USU- I IO 1) had 

an inherent overdispersion of 19 ± 4.8% while the local sediment (USU-] 103) had an inherent 

overdisperion of 17 ± 4% (Fig. 2. 7b ). The resulting ratios of given to recovered doses were 1.0 I 

for USU-110 I and 0.98 for USU-1103 (Fig. 2.7b). Original assumptions were that the red­

coloring of the local sediments would have affected their bleaching characteristics . However , this 

does not appear to be the case . These overdispersion values were used to assess best-case 

intrinsic overdisperion values for KCW sediments used for MAM calculations (see below). 

2.3.6.3 Equivalent Dose and Age Calculation 

Equivalent dose values were calculated from De distributions using the CAM, 3-

parameter MAM (MAM-3), or 4-parameter MAM (MAM-4) of Galbraith et al. (1999) (Table 

2.5) . At least 75 accepted grains are preferred for CAM or MAM-4 calculation, but SG 



0 

~ 
~ 
8 
c ., 
~ 
5 
C, 
w 

20 

400 

300 

200 

100 

000 

-1 00 

-200 

+ 

'60 180 

Cumulative Probabllty Curve 

200 220 240 

Preheat Temperature (°C) 

+ USU-1026 

• USU-1101 

260 28C 

USU-1101 Overdispers,on Test 

D CAM 

300 

1 50 

Q 
125 <ti 

c,: 
O> 
C: 

n 
~ 

100 ~ 

0 75 

n=31 (400) . ' 
Overdispersion: 19 ± 4.8% 

"' "' "' Ratio of given recovered dose: 1.01 
Oe(Gy) 

USU-1103 Overdispersion Test -----------------. 

- 10 

CumuYti ve ProbabUlty Curve 

10 "' 30 
Oe(Gy) 

n= 25 (300) 

40 "' "' 

D CAM 

! 

I 
; :~ .. . , . 

i 
" " " 

Overdispersion: 17 ± 4% 
Ratio of given recovered dose : 0.98 

31 

271 

"' 

Fig . 2.7. (a) Results from a preheat-plateau thermal-tran sfer (PP-TT) test on sam ples USU- I 026 
and USU-110 I: Equivalent dose values increa se significantly when preheat temperatures surpass 
240°C. Recycling ratios for measurements are aiso shown . A preheat temperature of 220 °C 
(outlined in green) was used for all SG measurements in this study. (b) Inherent overdispersion 
SG test result s for naturally bleached and beta-dos ed USU-1101 and USU-1103 



32 

analyses are currently preliminary and more accepted gra ins will come from future analyses . 

Rejection criteria for single-grain data were similar to tho se described in Summa-Nelson and 

Rittenour (2012). First , quartz sand grains were rejected if they showed evidence of feldspar 

co ntamination , as indicated by an IR depletion ratio of > 1.6, when OSL results with and without 

IR stim ulation are compared (modified from Duller et al. , 2003). Additionally, s ingle-grai n disc s 

were exposed to IR diode st imulati on prior to every OSL measurement. Grains were then 

rejected if they gave a low signa l respon se (initial sig nal was less than 3 times the background) of 

a ll rege nerativ e doses excluding the zero dose . If grai ns were suffici ent ly bright , they were 

rejected due to poor recycling ratios ( <0.5 or > 1.5) of repeated doses, equ iva lent doses greater 

than the highest regenerative dose , negative De values and a poor dose-response growth curve fit. 

Due to the yo ung nature of these samp les from KCW , the typical 30% cut-off for recuperation 

used by Summa-Ne lson and Rittenour (20 12) was not fo llowed (simi lar to Feathers et a l., 2006). 

Prior to age model app lication and age analysis, a 7% error was unifor mly added to all single­

gra in De erro rs in orde r to acco unt for uncertainties unrelated to lumin escence intensities as 

described in Thomsen et al. (2005 ), which include differences in beta so urce act ivity , illumination 

variabi lity from indi vidual meas urement s, and genera l probl ems w ith instrum ent reproducibility . 

The choice of stati stical mod e ls used to calculate De for age ca lculati on was dependent 

on a combinati on of partially bleached gra ins and the numb er of singl e-grai n De va lues available 

for analysis. For thi s study, partial bleachin g was indicated by high overdispersion va lues (>30%) 

or sig nificant positive skew in De distribution. In these cases , a MAM was used because it 

stati stically se lects the lowe st De values in a sample that were most likel y to have been zeroe d 

prior to deposition (Galbraith et al., 1999) . In contrast , the CAM was used on samples whose De 

va lues did not show significant overdispersion or skewness. Additionally, the usage of MAM-3 

and MAM-4 stati stica l mod e ls in this study was generally based on criteria set forth in a stud y by 

Arnold et al. (2007). However , the MAM-4 was most commonly used for s ingle-grain De values 

(Table 2.5) . 



Table 2.5 
Preliminary single-grain OSL ages and parti al bleaching statistics 

# Grains Primary Appro ximate 
Overdispersion 

USU Lab ID Study Site Accepted Facies' Sediment Bed Thickness Skew' Kurtosis ' Mean / median ' CAM/MAM ' OSL age (cal ka) 

(Analyzed) Source• (cm) 
(%)' 

USU-1189 A 25 (700) SI Mixed 40 0.95 ± 0.49 -0.27± 0.98 54.6± 16.0 1.43 1.87 1.38 ± 0.64 
USU-1 176 B 22 (600) Sh Local 55 2.67 ± 0.52 6.30 ± 1.04 87 .6 ± 20.2 2.15 1.50 0.74 ± 0.19 

USU-1177 1 B 16 (500) Sh Local 20 1.83 ± 0.61 3.14± 1.22 50 .1 ± 25.6 1.25 1.54 2.02 ± 1.09 
USU-1187 C 25 (700) St Mixed 40 2.1 1 ± 0.49 3.78 ± 0.98 63.1 ± 20.5 1.41 1.88 1.14 ± 0.36 
USU-1178 D 26 (700) Sr Upstream so 3.33 ± 0.48 13.07 ± 0.96 59 .5 ± 14.3 1.4 1.25 1.77 ± 0.31 
USU-1 192 E 29 (800) St Local 45 1.76 ± 0.45 1.75 ± 0.91 75.2 ± 17.8 1.93 2.59 0.92 ± 0.20 
USU-1 194 F 28 (700) St Upstream 55 0.86 ± 0.46 0.35 ± 0.93 26.4 ± 11.6 1.15 1.36 2.97 ± 0.70 
USU-1 18 1 G 36 (1300) SI Mixed 45 1.54 ± 0.41 2.42± 0.82 58.8± 13.8 1.38 2.14 1.47 ± 1.08 
USU-1101 H 41 (1300) SI Upstream so 0.82 ± 0.38 1.48 ±0.77 36.4 ± 8.4 1 .1 1.34 4.21 ± 1.46 
USU-1103 H 38 (1000) Sh Local 40 2.19 ± 0.40 5.24 ± 0.79 42 .3 ± 9.3 1.31 1.32 1.56 ± 0.37 

USU-530• I 29 (45) SI Upstream 25 0.98 ± 0.45 0.41 ± 0.91 36 .7 ± 7.4 1.14 1.66 2.25 ± 0.85 

USU-531• I 33 (41) St Upstream 45 1.93 ± 0.43 3.31 ± 0.85 48 .9 ± 7.2 1.42 1.48 2.82 ± 0.32 

USU-1026 J 45 (1500) SI Mixed 40 1.27 ± 0.37 0.82 ± 0.73 62.4 ± 10.3 1.55 2.02 1.29 ± 0.37 
USU- 1027 J 52 (1300) SI Mixed 35 1.17 ± 0.34 0.74 ± 0.64 50.7 ± 9.3 1.29 1.86 1.58 ± 0.30 
USU-1028 J 25 (600) SI Upstream 40 2.92 ± 0.49 10.66 ± 0.98 48 .5 ± 12.5 1.37 1.76 1.52 ± 0.74 

USU-1029
1 J 25 (600) Sm Local 60 2.59 ± 0.49 8.20 ± 0.98 70.4 ± 14.7 1.79 1.68 1.67 ± 0.35 

"Facies used for OSL sample collect ion. Sec Table 2. I for descriptions. 

h Primary sediment source based on sedimentologic charac tensttes of each sample deposit. See text for details. 

' Statistics (e .g. Skew , Kurtosis , Overd,spers ion, Mean/Median , and CAM/MAM) used to tdenttfy partially bleached samples and used to suggest appropriate age model for De calc ulation. 

Bold text indicates significant partia l bleaching character,sttcs based on statistics and suggesttons from Arnold et al. (2007) l-lighhghted samples (USU-\ i 77 and USU- 1029) 

indicate age overestimatio ns based on preliminary results In this study, ovcrd,sperion was primarily used as an indicator of'parttal bleaching and was compared to results from Summa-Nelson and Ritte nour (2012). 

"De calcu lated using the central-age model (CAM) or mmunum-age model (MAM) of Galbraith ct al. ( 1999). 

'OS L samples originally analyzed in Harvey (2009) . Samples were re-analyzed m thtS study using the small-ahquot SAR sequence of Murray and W tntle (2000). 

'P reliminary results suggest a!le overestimat ions based on stratigraphic E£Stlion and rek1tcd to other a~e control. Ali results may chan~e with further analrses . 

Age 

Modeld 

MAM-4 

MAM-4 

MAM-4 
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MAM-4 

MAM-4 
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MAM-4 
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2.4 Results 

The objective of this study was to test the applicability of AMS radiocarbon and OSL 

dating to semiarid fluvial deposits to discuss the best practices for developing an alluvial 

chronology. In total, 35 of the 39 radiocarbon samp les and 17 of the 29 OSL sample s collected 

were analyzed using AMS and single-grain dating techniques respectively (Tables 2 .2 and 2.5). 

One unanalyzed samp le (14C-23) did not survive the chemistry pretreatment and three additional 

radiocarbon samp les were deemed unnecessary for analysis because of their stratigraph ic location 

(Table 2.2) . During a subsequent trip to the study area, the approximate location in which the 

sample lost during pretreatment was re-sampled and analyzed . Nea rly all of the radiocarbon 

samples analyzed returned straitgraphically consistent ages . However, five samples returned ages 

that were significantly older than expected (>42 ka) and are suspected to be Cretaceo us coal. 

Additiona lly, four other sample ages were determined to be out of stratigraphic context and are 

considered to have been redeposited o lder charcoa l (Table 2.3). Results for radioca rbon samples , 

ca librat ed to BP20 10, are shown in Tables 2 .2 and 2 .3, and displayed on arroyo-wa ll stratigraphic 

panels where samp led . 

As expected , nearly every OSL samp le was partially bleached , requiring the use of 

sing le-grain dating . Partial bleaching is ev ident based on the equi va lent doses for eac h sample 

plotted as a probability density function (i.e. the cumul ative frequency plot of De distribution) 

and radial plots (see Appendix A for all KCW De dist ributi ons) . Table 2 .5 contains results from 

16 OSL sam ple s that underwent single-grain datin g analyses and display s OSL ages as calendar 

years ka with 2-sig ma error. The total number of grains used for SG analysis and the number of 

accepted grains used in age calculation (- 50-100 grains preferred) are indicated in Table 2.5 

along with the chosen age models (e.g. MAM-3 or MAM-4) for De calculation. In general, the 

leve l of De rejection was relativel y high , largely due to non-luminescent gra ins. 

The four study sites containing the most temporally constrained alluvial fills from AMS 

radiocarbon and OSL dating are presented to help evaluate the utility of the sample collection and 
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analysis techniques employed for both geochronometers (Fig. 2.4). In general , results indicate 

that the sampling techniques and dating analyses resolved many of the conventional problems and 

limitations , effectively generating stratigraphically consistent ages. However, three of the four 

study sites (KCW-8, KCW-H, and KCW-J) show that erroneous ages or age inversions were still 

encountered. These sites are discussed here. 

2.4.1 KCW-B 

KCW-8 is a 9 m tall , west -facing arroyo cut-fill exposure located in the Park Wash (PW) 

reach of the KCW study area approximately 16km upstream of Kaibab Gulch (Figs. 2.4 and 

2 . 13). Cut-fill stratigraphic evidence and age results helped identify two distinct alluvial fill 

packages that are mostly composed of 20-50cm thick , tabular beds of very fine- to medium­

grained sand. The older alluvial fill is dominantly characterized by the presence of low-angle (SI) 

and trough (St) crossbedded sands that are separated or capped by massive (Sm) or variegated 

clay , silt , and very-fine sand (Fsmv) deposits that show evidence of incipient soil formation (Fig. 

2.8). A radiocarbon sample ( 14C-4) that yields an age of 1.24 ~~--~~cal ka BP2010 (Table 2 .5) was 

collected from a charcoal rich lens in a basal St sand bed - 2m from the channel bottom and - I m 

upstream of the incision unconformity . An OSL sample (USU-1175) was collected - Im above 

this radiocarbon sample in a SI bed but was not analyzed . A stratigraphically higher OSL sample 

(USU-1176) collected from a 50cm thick , very pale brown , fine- to medium-grained , horizontally 

bedded (Sh) sand deposit nearly 6.5m above l 4C-4. Using the MAM-4 statistical analysis, this 

sample yielded a preliminary age of 0. 74 ± 0.19 ka (Table 2.5). 

Similar to the older fill, the younger fill is typified by the presence of SI and St sand beds, 

but also contains significant number of ripple cross beds (Sr) and thinly laminated or desiccated 

silty-clay sand beds (Fl). To constrain the age of this deposit, one OSL sample was collected near 

the base of the deposit and a radiocarbon sample was collected - 3 m higher. The OSL sample 

(USU-1177) was extracted from a 20cm thick, very pale brown, tine- to medium-grained Sh 
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Fig . 2 .8. Fluvial architecture and geocrhonolgy of KCW- B. (a) Bold lines represent 

unconformable boundaries and thin lines represent fluvial sequences. OSL (circles) and 14C 

(triangles) samples are indicated within alluvial beds and have been used to constrain the timing 

of arroyo-cut-fill cycles. (b) Facies textures identified and used to help select 14C and OSL 

sa mples , and older and younger alluvial fill packages identified using detailed stratigraphic 

mapping and ages from both geochronometers. 
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deposit located - 1.5 m downstream from the toe of a colluvial wedge (Fig. 2. 8). This sample 

y ields a preliminary OSL age of 2.02 ± l .09ka using MAM-4 statistical analyses (Table 2 .5). The 

stra tigraphically higher radiocarbon sample (14C-3) was coll ected from a light red , SI sand 

deposit and has a calibrated age of 0.5 7 ~~--~~ ca l kyr BP 2010 (F ig. 2.8; Table 2.2). 

2.4.2 KCW-E 

KCW-E is a 6.9 m tall , north-facing arroyo cut-fill exposure loca ted in the Deer Sprin gs 

Wash (DSW) tributary of the main KCW trunk st ream approximately 12 km up stream from 

Kaibab Gulch (Figs. 2.4 and 2 .14). A buttr ess unconformity truncat ing alluvial beds and 

ev idence of a long- lived sta ble su rface with s igni fican t bioturbation and incipient soil forma tion 

were used to help identify two distinct a lluvia l fill packages. The oldest a lluvial fill is - 4m thick 

and mainly consists of St, Sh. and Sr beds that are commonly interbedded with thinly laminated 

s ilty sand bed s (Fl) . This fill is capped by a massive sand (Sm) show ing ev idence of soi l 

formatio n. A radiocarbon samp le ( I 4C- l I) was co llected from a concentrated lens of charcoa l 

wit hin a IO cm thi ck St bed and yields an age of 1.38 ± 0.02 ca l kyr BP2010 (Table 2.2) . An OSL 

sampl e (USU-1192) was co llected - 2.5 m above l 4C- l l in the lowe r half of a 40 cm thick , ve ry 

pale brown , fine- to coarse-gra ined St bed that showed very fa int evidence of incipient soi l 

fo rmat ion in the upp er IO cm of the deposit (Fig. 2.9). USU- 1192 return ed a preliminary s ingle­

gra in OSL age of 0.92 ± 0 .20 ka using the MAM-4 stati stica l analysis (Ta ble 2 .5) . 

The yo unges t alluvial fill is at least 5 m thick and is also dominated by St, SI, and Sr bed s 

that contain severa l interbeds of thinl y laminated or de siccate d c lays and silty -sa nds (Fl). A 

radiocarbon sample ( I 4C- l 2) was collected from a charcoal rich len s in a trough cross bedded 

depo sit approximately 1.75 m up stream of a thick colluvial wedge (Fig. 2 .9) . This sample has a 

calibrated age of 0.87 ~~--~~ cal kyr BP2010 (Table 2.2). In a very pale brown , fine- to medium­

grained SI sand bed nearly 2.3 m above l 4C-l 2, OSL sample USU-119 I was extracted but was 

not age-measured. A younger depo sit caps both alluvial fills as indicated by a radiocarbon 
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sample (14C-13) that was extracted from a charcoal rich lens in a light red SI deposited that has 

an age of 0.2 ± 0.14 cal kyr BP2010 (Table 2.2). 

2.4.3 KCW-H 

39 

KCW-H is 10.7 m tall cut-fill exposure with sediments underlying the axial terrace at a 

meander bend in the main trunk stream of KCW. This study site is located approximately 7.5 km 

upstream of Kaibab Gulch (Fig. 2.4). At least three alluvial fill packages are separated by 

unconformably bounding surfaces (Fig. 2.10). The oldest fill, is at least 9 m thick and primarily 

contains a mixture of SI, St, Sr, Sh , and Sm facies sourced from both upstream and and local 

sources. The stratigraphically lowest radiocarbon sample ( 14C-26) was collected - 1 m above the 

modern channel bottom from a charcoal rich lens in an Sr bed and yie lds an age of 4. 14 =~:~; cal 

kyr BP2010 (Table 2.2). Less than a meter above l 4C-26 , an OSL sample (USU- I l 0 I) was 

collected from an 80 cm thick , very pale brown , fine- to medium-grained SI bed. Using the 

MAM-4 statistical model , USU- I IO I gives a preliminary age of 4.21 ± 1.46 ka (Table 2.5). The 

stratig raphically highe st radiocarbon sam ple (14C-22) collected and analyzed from the o lde st 

alluvial fill yields an age of 3.82 =~ :~~ cal kyr BP2010 (Table 2.2). This sample was collected 4 .5 

m above the channel floor in a charcoal rich SI depo sit. A piece of iso lated , angular charcoal was 

collected 7.5 111 above the channel floor in a massive , very fine- to fine-grained sand deposit but 

was not measured. 

Buttressed against the oldest fill , an intermediate aged alluvial fill is dominantly 

composed of basal gravels (Gh) and overlying sandy , lenticular beds of SI, Sm, and St (Fig. 2.10). 

Within a younger channel migration deposit of this fill , an OSL sample (USU-I I 02) was 

collected from a 40 cm thick , light red , very fine- to fine-grained sand SI bed, but was not 

analyzed. At 4.5 m above the channel floor , a stratigraphically higher charcoal sample (14C-24) 

was collected from a charcoal rich lens in a massive sand (Sm) deposit and returned an age of 

1.08 =~:~: cal kyr BP2010 (Fig. 2.1 0; Table 2.2). In a thicker (-8 m) and apparently younger fill , 
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an OSL sample (USU- I I 03) was collected from a 45cm thick, light red, very fine- to medium­

grained, horizontally bedded (Sh) sand deposit. Single-grain analyses and use of the MAM-4 

model gives this sample a preliminary age of 1.56 ± 0.37 ka (Table 2.5) . Within the youngest 

alluvial fill , two radiocarbon samples were analyzed. One isolated, sub-rounded charcoal sample 

( 14C-25) was collected from a deposit identified as a colluvial wedge . This sample yielded an 

age of 2.28 ~~:~~ cal kyr BP20 10 (Table 2.2) and produces an apparent age inversion when 

compared with results of the intermediate fill (Fig . 2.10). Additionally , l 4C-25 shows an 

inverted age when compared to a radiocarbon sample ( I 4C-27) from a charcoal-rich , 

strati graphically lower SI sand bed in the youngest fill and yields a radiocarbon age of 14C-2 7 is 

0 .83 ~~ : ~ ! cal kyr BP2o,o (Table 2.2) . An OSL sample (USU- I I 04) was al so coll ected near the top 

of the younge st alluvi a l fill but was not analy zed (Fig . 2.10). 

2.-1.4 KC W-J 

KCW-J ranges from 5 to 6.6 m in height above the modern channel bottom , is west­

facing , and is located - 4 .5 km upstream from Kaibab Gulch (Fig s. 2.4 and 2. 16). Thi s exposure 

contain s three alluvial fill package s that were originall y identified based on unconformable 

buttres ses and bounding surfaces . The oldest alluvial package is dominantly characterized by the 

pre sence of 30 cm to I m thick , lenticular or broadly tabular , low angle crossbeds of sand. An 

OSL sample (USU- I 028) was collected from a 40cm thick , very pale brown , fine- to medium­

grained SI bed (Fig. 2 . 1 I) . Using the MAM-4 statistical model , this OSL sample gives a 

preliminary age of 1.52 ± 0.74 ka (Table 2.5) . This fill appears to contain a younger scour-fill 

deposit primarily composed of St and SI beds that is capped by a - 1.5 m thick, broadly tabular 

interbeds of variegated clay and silty-sands (Fsmv). An OSL (USU- I 027) and radiocarbon ( l 4C-

3 I) sample were collected from the same 40 cm thick , very pale brown , sandy SI bed 

approximately 1.25 m above the modern channel floor . The stratigraphically lower 14C-3 I was 

collected from a charcoal rich lens and yields an age of I . 70 ~~:~; cal kyr BP 20 10 (Table 2.2) 
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Fig . 2.11. Flu vial architecture and geocrhonolgy of KCW-J. (a ,b) Bold lines represent unconformable boundaries and thin lines represent flu vial 

sequences. OSL ( circles) and 14C (triangles) samples are indicated within alluvial bed s and have been used to constrain the timing of arroyo-cut-fill 

cycles . ( c,d) Facies textures identified and used to help select 14C and OSL sampl es, and older , intermediate , and younger alluvial fill packages 

identified using detailed stratigraphic mapping and age s from both geochronomet ers . 
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while USU-1027 (20 cm higher) produce s a preliminary age of 1.58 ± 0.30 ka (Table 2.5) . In the 

capping Fsmv deposit , an additional angular charcoal sample ( 14C-32) collected from a charcoal 

rich lens - 2 m above 14C-3 I yield a slightly inverted age of 1.85 ~~:~~ cal kyr BP20 10 (Table 2.2). 

Inset into the oldest fill , the strata of the intermediate fill are also primaril y composed of 

low-ang le crossbedded sand (SI) depo sits that are capped by a - 1 m thick Fsmv bed (Fig. 2. 11). 

All geoc hron ologic sampl es from this fill were collected from two lenti cular beds in a - 15 m 

w ide channel swa le. An OSL sample (USU- I 026) was co llect ed in the strati grap hically lower, 

ve ry pale bro wn, fine- to medi um- gra ined SI sand bed and an isolated , angular piece of charcoal 

was collected from a stratigraphically higher (- 1 m) Sh deposit. Us ing the MAM-4 model, USU­

I 026 yie lds a preliminary age of 1.29 ± 0.3 7 ka (Tab le 2.5). However , sample I 4C-30 was 

contaminated by coal. On a subsequent trip to KCW-J , an additiona l charcoal samp le (14C-33) 

was co llecte d from a charcoa l rich lens w ithin the same bed as USU- I 026. However , it produced 

an inverted age of2.52 ~~:~~ ca l kyr BP20 10 (Table 2.2) when compar ed to USU- 1026 and 

samp les from strati graph ica lly o lder deposits in the same outcrop (Fig. 2.1 1 ). A final OSL 

samp le (USU- 1029) was co llected from a 60 cm thick , very pale brown SI bed wit hin the 

yo unges t and uppermost alluvial fill. Using the MAM-3 sta tistica l, USU -10 29 y ields a 

preliminary age est imat e of 1.62 ± 0.39 ka (F ig 2. 16; Table 2.5). 

2.5 Discussion 

2. 5.1 Comparison of Radiocarbon and OSL Ages 

Chronostratigraphies from dynamic arroyo syste ms in the semiarid southw este rn United 

States can be used to infer landscape response to climate change or other hydro logic and 

geo morphic conditions. In KCW , the unique cut-fill stratigraphy and sedimentary facies 

pre served in the mostly fine-grained sand exposures allowed previous studies to identify 3 to 4 

incision and aggradation events ( e.g . Hereford , 2002; Harve y, 2009; Harve y et al. , 2011 ). 

However , temporally constraining the timing of each cut-fill event has been problematic due to 



44 

the lack of age control. Hen ce, thi s study used a combination of radiocarbon and OSL dating 

techniques in order to expand the existing chronology at KCW . The use of OSL dating alongside 

radiocarbon datin g not only allowed for expanded samplin g opportunities , as previou sly 

menti oned, but has also provided the opportunity to dir ect ly compare ages and eva luat e the 

effective ness of both geoc hron ometers on dating arroyo sedim ent s. Radi ocar bon and OSL ages 

of alluvia l deposits from twelve study sites throughout KCW suggest that both dating methods 

genera lly work we ll. Along wit h strat igrap hic descriptio ns, ages from these techniques provide 

ev idence for six episodes of alluviation and incision in KCW throughout the late Holocene . 

2.5.2 Evaluation of Radiocarbon Dating 

Results from this study indicate that 26 of the 37 AMS radiocarbon ages were in 

stratigraphic agreeme nt whe n compa red to one another and to OSL ages from similarly aged 

deposits. As expected , the least problematic radiocarbon ages came from charcoa l that was 

samp led from charcoa l rich lenses or annua l plant litter (Tab le 2.3). In genera l, isolated charcoa l 

pieces , though rarely sampled or analyzed, were on ly problematic if they were noticeabl y 

rounded ( e.g. 14C-25). Although an age bias cou ld not be discerned betwee n radiocarbon 

samp ling sed iment derived from upstream or local sediment sources, samp les extracted from 

trough crossbedded (St) , rippl e crossbedded (Sr) , low-ang le crossbed ded (SI) sand and variegate d 

c lay and si lt interbe ds (Fs mv) genera lly returned stratigraphica lly consis tent ages (Tab le 2.3). It 

is possible that the most ly low flow regimes from eac h associated facies allowed charcoa l to 

und ergo relatively minim al transport and rapid deposition. For exa mple , samp les 14C- I I, - 12, 

and -13 from stud y site KCW-E were collected from charcoal rich lenses in low flow regime 

facies and yielded stratigraphically consistent calibrated radiocarbon age s. 

While most radiocarbon samples show strati graphic agreement , three inherit problems of 

radiocarbon dating in southwestern dry land sys tem s are the most likely cause of age 

di sag reement: (1) collection of coal (2) redeposited charcoal and (3) sample size. The majority 
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(5) of the stratigraphically incon sistent radiocarbon ages produced age result s consistent with 

analyses of coal (Table 2.3). Study site KCW-F is a goo d example of the age-overestimation 

problems that can be encountered if Cretaceous coa l is analyzed despite strate gic samplin g (see 

Table 2 .3) . Samples l 4C- l 4 and 14C-16 were both collected from ideal facies (St) and while 

14C-16 was isolated, it was suitabl e for samp ling because of its locati on and angularity. Even 

though both sampl es were carefully exa min ed under 40x magnification prior to analys is, it 

appears that fragments of Cretaceo us coal were sti ll analyzed. Accordingly , whi le microscopic 

exa mination of sampl es may be somewhat beneficial when tryin g to separate charcoa l from coal, 

it may be necessary to set fort h other samp ling strategies to avoid these types of erroneous ages . 

Comparison of stra tigra phi ca lly consis tent rad iocarbon ages with field and photo 

evidence of charcoal-rich sand deposits in KCW reveal that a number of the least problematic 

rad iocarbon samp les were co llec ted near the top of a deposit most likely because the low density 

of charcoa l causes it to float (F ig. 2.2) . Moreover , when 17 of the sampl es we re pretreated at the 

Univers ity of Arizona AMS facility , it was noted that sampl es where radiocarbon material either 

staye d suspe nded or floated to the top of a test tub e returned strat igrap hica lly agreeab le ages (Fig. 

2 . 12) . By compariso n, nearly every sampl e which so me or all of the radiocarbon material su nk 

ret urned severe age ove restimati ons ( e.g. >42ka). Moreover , when Cretaceo us coa l ages were 

compar ed to the we ight of sample s submitt ed, fo llow ing AMS meas ureme nts, it was found that 

weight-to-size ratio of the coal-bearing radiocarbon mat er ial was significantly higher. 

Accordingly, sinkin g and relative weight prop erties can be exp lained beca use of differences in 

spec ific gravity betwee n charcoal (- 0.4) and coal (- 1 .2). Hence , it is sugges ted here that 

considering the apparent specific gravity of coal and charcoal in the field or lab can be a useful 

prev entativ e for samplin g or analyzing Cretaceous: (a) strategicall y sampling charcoal lenses 

deposited near or at the top of a sand bed , (b) closely examining whether radiocarbon material 

s inks or floats during pretreatment protocols and ( c) notin g the relative size-to-weight rati o when 

weighing material for radiocarbon analysis. 



Fig 2 . 12. Apparent density difference between charcoal and coal : (a) charcoal fragments from 

radiocarbon sample l 4C -26 remains suspended during AMS pretreatment and returned a 

stratigraphically agreeab le age (b) coa l fragment from radiocarbon sample l 4C- l 4 immediately 

sunk during pretreatment and returned an age overestimation. 
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Compared to Cretaceous coal, redepo sited charcoal also appears to have played a large 

role in the overall radiocarbon age discrepancie s of thi s study , affecting four samples (Table 2.3). 

While sampling strategies applied to prevent collecting charcoal with a considerably longer 

res idence tim es were generally effective, a few redepo sited samples were still collected. As 

indicated from sample 14C-25 at KCW -H (Fig. 2.1 0; Table 2.3) and 14C-35 from KC W-K (see 

Ch. 3), sampl e co llect ion at or near colluvial deposits were probl ematic. While sam ple 14C -25 

was collected from a depo sit that was later identified as a co lluvia l wedge (Fig. 2. 10), sam ple 

14C-35 was an angular piece of charcoal co llected from a basal St sand bed to help constrain the 

age of an aggradat ion eve nt. No nethe less , the apparent age inversion of l 4C-35 can be exp lained 

because of its proximity ( - 30cm) to a colluvia l wedge and disconformable surface (see Fig. 3.16 

in Ch. 3). Based on their age, other isolated angu lar pieces of cha rcoa l co llected away from these 

locations did not indicate redeposition (Tab le 2.3). However , because of the sample location, it is 

more like ly that 14C-35 was derived from the exposed and unstable surface of a previously 

deposited fill. Hence , both samp les provide su pport for why sampl e co llect ion at or near a 

colluvial wedge depos it should be avoided , and indicat es a stro ng like lihood that radiocarbon 

materia l w ill be so urced from older deposits and w ill be prone to overest imatin g the age of 

you nger alluvium . 

A final source of error in radi oca rbon ages was the amount of sampl e collected for 

analysis. Although a primar y advantage to using AMS radiocarbon dating is the ability to date 

re lativel y small samples , problem s arose in thi s stud y bec ause an inadequate sample vo lume was 

collected from a few study sites . In particular , radiocarbon material for sampl e l 4C-30 was 

collected from a smaller lens of finely dis seminated charcoal fragments in an Sh bed at study site 

KCW-J and returned an calibrated age of >31.7 kyr BP (Fig. 2.11). While this kind of 

overestimation is similar to that seen from Cretaceous coal , the error involved in this sample was 

partly due to the large age uncertainty caused by the dearth of charcoal material analyzed (0.056 

mg) following pretreatment of - 4 mg of material. Alternatively , thi s age overestimation might be 
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due to sample mixing prior to analysis. As individual fragment s of radiocarbon material collected 

from the charcoal rich lens weighed less than - 2 mg, several piece s of charcoal from I 4C-30 

were needed to closely meet the minimum weight criteria (5 mg) for pretreatment procedures and 

AMS mea surement. Hence , it is possible that fine-grained pieces of coal may have contaminated 

the charcoal. Additionally, since only 0.056 mg of material was mea sured , result s indicate that 

samp le I 4C-30 had radiocarbon activity very c lose to zero after back gro und subtra ct ion , and so 

its origi nal radiocarbon age was quoted as a 2-sig ma lower limit. However , while age-error 

uncertainty for this sampl e was high, sampl e contaminati on from coa l is the mo st like ly cause for 

the severely overestimated > 31. 7 ca l kyr BP age . Ot her studies hav e noted that combi ning 

smal ler sized fractions of organic material for AMS analys is have resulted in severe age 

overestimatio ns caused by coal and redeposited orga nic material contaminati on (Baker et al. , 

1983 ; Nelson et al. , 1988) . Therefore , findings from this study confirm that only one piece of 

charcoa l material large enoug h to w ithstand pretreatment be used for AMS analys is in order 

reduce averaging effects from materia l of different age s. 

2.5.3 Evaluation of Sing le-grain OSL Dating 

Resu lts for single-gra in datin g suggest that high amounts of partially bleached grains are 

present within alluvial fill s at eac h study site in KCW. As sugges ted earlier, thi s was to be 

expec ted g iven results from simil ar studi es that used OSL dating in dryland flu via l systems (e .g. 

Arnold et al. , 2007; Harvey et al. , 20 I I ; Summa-Nelson and Rittenour , 2012) . As complete 

zero ing of the luminescenc e signal is directl y re lated to the time and inten sity of solar ex posure 

pri or to depositi on, under standing of the flu vial processe s controlling sediment tran sport and 

depo sition were used as a proxy to help identify deposits that likely contained grains that were 

sufficiently bleached. Indeed , previous studies have used similar approaches with measurable 

success and have helped recommend sampling strategies for luminescence dating in different 

fluvial environments (e.g. Fuchs et al. , 2005 , 2007 ; Thrasher et al. , 2009). Specifically , a recent 
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study by Summa-Nelson and Rittenour (2012) recommended a number of sampling 

considerations for OSL dating arroyo systems based on small-aliquot and single-grain ages from 

Kanab Creek , southern Utah. Primary considerations from this study not only suggest that 

relatively thin( < 40 cm) beds with ripple-laminated facies are most suitable for OSL dating, 

mentioned earlier , but also that grains from the downstream reaches in an arroyo system are more 

significantly bleached. Moreover, this study indicated that the sediment-laden flows and 

transport mechanisms associated with Sm, SI, and Sh (>20 cm) facies are not conducive to solar 

resetting. These sediment facies and transportation distance bleaching considerations were based 

on SG and SA overdispersion values and CAM to MAM ratios respectively . However , SG 

results from KCW sediments indicate that other recommendations for identifying well-bleached 

sediments may be more useful. Hence , the following section will both build on suggestions 

offered by Summa-Nelson and Rittenour (2012) and will offer additional recommendations for 

OSL sampling in dryland tluvial systems. 

The alluvial stratigraphy and sedimentary facies preserved in the arroyo walls of KCW 

suggest that previous tluvial conditions were most conducive to depositing laterally continuous , 

<30 cm thick , low-angle crossbedded (SI) , trough crossbedded (St) , and horizontally bedded (Sh) 

sands. Consequently , these bedforms were most commonly sampled for OSL dating and only one 

50 cm thick ripple crossbedded (Sr) deposit (USU-1178) from study site KCW-D (see Ch . 3) was 

sampled (Table 2.5). In general , lower overdispersion values from De distributions of samples 

collected from low-angle crossbedded (SI) and ripple crossbedded (Sr) deposits may have a 

bleaching history more suitable for luminescence dating (Fig. 2.13; Table 2 .5). In contrast, 

sedimentary beds with horizontally bedded (Sh), massive (Sm), or trough crossbedded (St) facies 

have some of the highest overdispersion values (Fig. 2.13; Table 2.5). Additionally , a look at 

sample De overdispersion values and the original bed thickness for each sample also reveals that 

as bed thickness decreases , overdispersion typically decreases (Fig. 2.14). Similarly , Summa­

Nelson and Rittenour (2012) also suggested that beds <40cm thick were most adequately 
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Fig. 2.13. Overdispersion and facies comparison showing preliminary individual (diamond) and 

mean (square) overdispersion values. Triangle repre se nt mea n facies overdispersion values from 

Summa-Nelson and Rittenour (2012), where mas s ive sand (Sm) facies are averaged small-aliquot 

overdispersion values and all other facies are averaged small-aliquot and single-grain 

overdispersion values. In KCW , USU-1194 and USU- I I 01 have overdispersion values below 

35% (the single-grain threshold for adequate bleaching). Green line represents 30% 

overdispersion value. Samples with an overdispersion value greater than 30% are considered 

partially bleached based on suggestions from Arnold et al. (2007). 
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bleached. However , while some of the results from this study agree with those from Summa­

Nelson and Rittenour (2012) , depositional environment and sedimentation differences between 

the KCW and Kanab Creek drainages may have resulted in different overdispersion values. For 

example, USU-1176 was collected from a 55 cm thick , horizontally bedded sand deposit and has 

one of the highest overdispersion values (Table 2.5). Based on recommendations from Summa­

Neslon and Rittenour (2012) , this was to be expected and sampling this deposit should have been 

avoided. However , whereas relatively thick (>40cm) low-angle crossbedded deposits from Kanab 

Creek typically returned high single-grain overdispersion values (e.g. 40-80%) , two of the lowest 

overdispersion values in KCW came from a 50 cm thick (USU- I IO I) and a 40 cm thick (USU-

1028) SI facies deposit (Fig . 2 . 14; Table 2 .5) . Accordingly, sedimentary facies and bed thickness 

can be initially used to suggest three things from KCW : (a) sediment-laden flows in mostly upper 

flow regimes will deposit thick (> 50cm) deposits with Sh or Sm facies , and will usually have the 

highest potential for pa11ial bleaching , (b) low-angle and ripple cros sbedded sands in KCW are 

not always the most well-bleached and (c) an additional environmental factor controlling the 

bleaching potential for sediments must be in play. 

Sediment transport distance has often been attributed as a significant control of bleaching 

in tluvial environments because other problems associated with water-lain sediments , including 

transport mechanism and light attenuation , often result in insufficiently exposure to sunlight (e .g. 

Wallinga, 2003 ; Olley et al. , 2004; Rittenour, 2008). In general , it can be assumed that transport 

distance is proportional to sunlight exposure , so partial bleaching should be less problematic in 

sediments deposited downstream. In their study , Summa-Nelson and Rittenour (2012) found that 

samples collected from downstream reaches in Kanab Creek were more adequately bleached 

based on a comparison of small-aliquot and single-grain MAM ratios and CAM to MAM ratios , 

and overdispersion values. A similar approach was taken here by comparing overdispersion 

values from upstream to downstream study sites, starting at KCW-A and ending at KCW-J (Fig. 

2.15). The distance between these two sites is approximately 12km . Results indicated that 



bO 55 
120 

110 

100 

90 •• 
80 

l 
70 

0 ·;;; 

~ 60 
-;; 
iii 
> so 0 

40 

f I 
30 

20 

10 

0 

so 

tf 
•• 

•• 

Bed Thi ckne ss (cm) 
45 40 

i-· f f' f ! f f 

OSL Samples 

• Indivi dual 

• Mean 

35 20 

f • 

Fig . 2. 14. Overdispersion and bed thickne ss co mpari son showing preliminary individual 

(diamond) and mean (square) overdispersion values. Although overdispersion values roughly 

decrease with relative to bed thickness , no clear decreasing trend in overdispersion is apparent. 

Green line repre se nts 30% overdispersion value. Samples with an overdispersion value greater 

than 30% are considered partially bleached ba sed on suggestions from Arnold et al. (2007) . 

52 



53 

although the highest overdispersion value was obtained from study site KCW-8 (USU-1176) and 

one of the lowe st overdispersion values was obtained from study site KCW-J (e.g. USU-1028), a 

clear decreasin g trend in overdispersion with distance downstream is not expressed. High 

ove rdisperion values might be a reflection of the temporary storage of sediment s in arroyo 

settin gs. If storage is minimal, it is likel y that sediments co llected down stream w ill have been 

adequately bleached. Howeve r, when the timin g of sed iment storage increases, it is like ly that 

partial bleachin g w ill become problematic . Co nsequently , tar get ing sed iments so lely based on 

their dow nstream distance in KCW may not necessar ily result in a bette r-bl eac hed population of 

grams. 

In an ove rv iew of OSL dating of flu via l sediments, Rittenour (2008) noted that the direct 

input of non-zeroed sediment from the erosion of older deposits happ ens frequently in fluvial 

environ ments and can result in De scatter and anomalous ages. As implied earlier , the flashy 

flow and high-sediment discharge eve nts that create the >30c m thick and often high-energy 

bedforms (e.g . SI, Sm . St, Sh) sugges t this kind of rap id deposition occurs throughout a ll reaches 

of KCW and is another reason why both up stream and downstrea m sedim ents can show 

sig nificant signs of partial bleaching. In KCW , a s ign ificant fraction of sedim ent input is derived 

from reg ional bedro ck litho logies , and so a better understanding of the sedim ent source cou ld 

he lp e lucidat e bleaching history. Upstream so urces of sediment are primarily der ived from 

Jura ss ic Navajo sand ston e while local sedim ents are der ived from various tributary sedim ents and 

bedrock litholo gies (e.g. Jura ss ic Kaye nta , Triassic Chinl e, and other s) surrou ndin g the KCW 

study area. As describ ed above , sediment s from each lithology hav e diagno stic characteristics 

and, upon visual inspection , were able to be discerned . 

Accordingly , as an additional way to detect partial bleaching , sediment so urce was 

compared against overdispersion values (Fig. 2.16). Beds dominantly deriv ed from up stream 

sediments were expected to be more sufficiently bleach ed because of their increased tran sport 

distan ce and coarser grain size while sediments from local bedrock , tributary , and hillslope 
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sources were expected to be poorly bleached because of a shorter tran sport distance and a 

dominantly silt, clay and fine-grained sand composition. Additionally , the tran sport mechanisms 

of upstream and loca l sediments were expected to play a role in bleaching characteristics. Given 

their location , upstream sediments were likely deposited in less turbid , low- flow reg imes from 

eve nts such as snow- melt and regional precipitation eve nts. Conversely, the silty and clay-rich 

loca l sedim ents that are dom inantl y sourced from downstream bedrock and tribut aries we re more 

like ly to have been depo sited as hyp er-conc entrated flows with increa sed turbidity during local 

high-magnitude flow events such as with mon soo n-re lated precipitation. Evidence of mixed 

sed iment deposits suggests increased flow in the main KCW chann e l during input of the local ly 

so urced sediment. 

Not surpri sing ly, s ingle-gra in overdispers ion va lues were s ignifica nt ly lower (2 1-38.1 %) 

in samples co nta ining a large r population of upstream-sourced sand gra ins, making these deposits 

more su itable for single-gra in datin g (Fig. 2. 16). It is a lso ev ident that these low values may not 

be co ntin gent on the sed imentar y facies or thickness of the deposit sampl ed . For exa mpl e, USU-

I 194 was collected from a 55 cm thick trou gh-crossbe dded (St) sand deposit at study site KCW-F 

(propo sed by Summa-Nelson and Ritt enour (2012) to have high ove rdi spers ion values), but its 

s ingle-grai n De di stributi on show s one of the lowest over di sper sion values (26.4%). An outlier 

(USU-1178) with a s lightly higher overdispersion value was co llected from a thicker Sr bed at 

KCW -D. How ever , a ca lculated single- gra in CA M to MAM ratio of 1.25 (Table 2 .5) indicates 

that the sample was better -bleach ed becau se of its transportation di stanc e (e .g. ratios < 1.3; 

Summa-Nelson and Rittenour , 2012) . In contrast , deposit s containing a large portion of locally 

derived sediments returned single-grain De measurements with the highest overdispersion (70.4-

87 .6%) . Two outlying samples (USU-1177 and USU- I I 03) returned relatively modest 

overdispersion values of - 50.1 % and -42.3% respectively . However , the CAM to MAM ratio for 

USU-1177 was 1.54 and for USU- I I 03 was 1.32 (Table 2.5), which indicates a larger proportion 

of non-zeroed grains. These results imply that sample s collected with nearly equal proportions of 
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Fig . 2.16. Overdispersion and samples collected from different sediment sources comparison 

showing preliminary individual (diamond) and mean (square) overdispersion values . 

Overdispersion values show a clear decreasing trend from local (red , poorly sorted , silty-clay and 

very-fine grained sand) to upstream (very pale brown , well-sorted, fine- to medium-grained , 

frosted quartz sand) sediments , suggesting that targeting sediments based on their original 

sediment source (sedimentary bedrock lithology in KCW) is a better way to avoid problems with 

partial bleaching . Green line represents 30% overdispersion value. Samples with an 

overdispersion value greater than 30% are considered partially bleached based on suggestions 

from Arnold et al. (2007) . 
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upstream and locall y sourced grai ns should return intermediate overdispersion values. Indeed , 

samples with this mix returned overdispersion values ranging from -5 1-63.1 % (Fig. 2.16; Table 

2.5). 

As indicated earlier , no significant differences were found in the inherent overdispersion 

va lues of upstream and locally derived sediments . Accordingly , the clear decrease in single-grain 

overd isper ion va lues from loca l to upstream sediment sourc es suggests that sed iment source in 

dry land fluvial syste ms may be a good indicator of bleaching history. At the time of this writing , 

all OSL ages and therefor e overdispersion values and CAM to MAM ratios are preliminary. 

Hence , relationships betv,een facies, bed thickness , distance downstream , and sediment source 

may become more lucid w ith contin ued single-grain analyses and more accepted grains . 

2.6 Conclusions 

A comparison of stratigraphic relationships and age results from four of the most well­

constra ined arroyo cut-fil l exposures in KCW illustrates the benefits of using a combination of 

radioca rbon and OSL dating to construct an a lluvia l chronology in sem iarid fluvial systems . This 

approach and a carefu l considerat ion of samp le se lection ca n he lp mitigate the common 

limitati ons of each dating technique. Radi ocarbo n age inaccurac ies can arise when Cretaceo us 

coa l or rede posited charcoal fragments are analyzed. While identifying the car boni zed rings of 

charc oa l und er a micro scope may be difficult, observa tions from this study suggest that density 

and specific gravity differenc es between charcoal and coal can also be used to distinguish these 

material s. Additionally, it was determined that charcoal should be collected from low energy 

facies (e.g. Sr, St, SI, Fsmv) in a charcoal-rich lens locat ed severa l met ers away from co lluvial 

wedges and erosional unconformities . Finall y, large pieces of angular charcoal (>5 mg each) 

should be collected from each charcoal-rich lens so that only one piece of charcoal will be 

necessary for volume and weight requirements for AMS analysis. 
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OSL samples were expected to show signs of partial bleaching based on the flashy-flow 

and high sediment discharge conditions interpreted from the stratigraphy and sedimentology of 

each deposit and because the most common facies assemblages (SI, St, Sh) in KCW did not allow 

all strategies from Summa-Nelson and Rittenour (2012) to be closely followed. However , 

preliminary SG overdisperion values and a few CAM to MAM ratios from KCW samples 

suggested that not every strategy recommended by Summa-Nelson and Rittenour (2012) applied 

to KCW . For example, some observations from this study do support earlier suggestions that 

relatively thick (45 cm to meter-scale) deposits with facies from upper flow regimes (e.g. Sh, St, 

Sm) are more likely to be partially bleached and should be avoided when samp ling . However , 

preliminary overdispersion va lues from KCW samples do not sugge st better-bleached sediments 

with increasin g downstream distance. Rather , preliminary results found that in addition to 

strategies by Summa-Nelson and Rittenour (2012), specific emphasis should be placed on the 

original sediment source . For example, sediments identified as being so urced from upstream 

sandstone bedrock likely had a longer transport and were deposited less rapidly in the KCW 

system , which allowed for more adequate bleaching. In contrast, sediments input from local 

bedrock or tributaries were more likely to have been redeposited quickly and contain larger 

amounts of silts and clays , potentially decreasing the total amount of solar exposure. Hence , 

sample selection using a combination of facies , bed thickness , and sediment source analyses 

should be used to aid in sample collection and can help attenuate some problems with partial 

bleaching. Regardless of the methods applied, partial bleaching will still remain a problem for 

some sediment. Accordingly , a minimum-age-model combined with single-grain dating should 

be applied to mitigate age overestimations due to partial bleaching. 

Ultimately, the alluvial chronology built in this study has updated and filled in temporal 

gaps from existing KCW alluvial chronologies (e .g. Hereford , 2002; Harvey , 2009; Harvey et al., 

2011 ). The accomplishments of this study were largely dependent on merging both techniques , 



which allowed for increased sampling opportunities and cross-checking of results to determine 

age inaccuracies . 
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CHAPTER 3 

EPISODIC ENTRENCHMENT AND AGGRADA TION IN KITCHEN CORRAL WASH, 

SOUTHERN UT AH 

ABSTRACT 
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Fiuvial systems in the semiarid southwestern United States are sensitive to Holocene 

climate perturbations , evident from the entrenched, steep-walled arroyo channels throughout the 

region. Kitchen Corral Wash (KCW), a tributary of the Paria River in southern Utah , has 

experienced both historic and pre-historic (Holocene) episodes of arroyo cutting and filling . 

During the mo st recent arroyo-cutting event (- 1880-1920 AD), KCW and other regional 

drainages were entrenched up to 30 m into their fine-grained alluvial fills, leaving former 

floodplains perched above new channel bottoms. Although arroyo entrenchment and aggradation 

sequences have been studied for over a century , exact causes of arroyo cutting are still not fully 

under stood. Hereford (2002) argued that arroyo dynamics over the last - I ka are climatically 

driven based on near- synchronous timing of arroyo cutting in drainages from southern Utah and 

the surrounding region . However , recent results from KCW and nearby drainages suggest a more 

complex pattern of aggradation and incision . 

While previous studies have attempted to constrain the timing of arroyo cut-fill events in 

KCW , poor age control has limited the results . In order to better understand the timing of arroyo 

cutting events, this study updates and improves the arroyo cut-fill chronology from KCW by 

using alluvial stratigraphic descriptions and age control from optically stimulated luminescence 

(OSL) and accelerator mass spectrometry (AMS) radiocarbon dating. Results are based on 

twelve study sites, each exposing a number of cut-fill cycles in the arroyo-wall stratigraphy, and 

suggest at least six arroyo cycles over the last - 7.3 ka . These chronostratigraphic results are also 

used to test hypotheses related to climatic forcing of arroyo dynamics by comparing the 
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chronology from KCW to recently updated alluvial chronologies from nearb y arroyo sys tems and 

to paleoclimate record s. Results indicate temporally complex regional alluvial chronologies , 

suggesting a combination of allogenic and autogenic influen ces. 

3.1 Introduction 

For ove r a century , researchers and land mana ge rs have been interested in understanding 

the flu via l dynamic s of semi-arid environments , which are often characterized by the pre sence of 

arro yos in the southwest ern United States. Arroyos are an en d-m emb er geo morphic state typical 

of high sediment y ie ld flu via l syste ms, and are characterized by stee p-wa lled channe ls entre nch ed 

into fine-grained va lley-fi ll alluvium (e .g. Bryan , 1925 ; Bull , 1997). Ev idence for past cut-fill 

events exposed in arroyo wa lls suggests that entrenchm ent is tr iggered by stream disequilibrium . 

Arroyo wall strati grap hy suggests that incision into an a lluvia l fill is followed by channel 

wi dening and sedime nt deposition that promotes aggradation towards the origina l strea m profi le 

(Bu ll, I 997 ; Gellis and Elliot , 200 I). Region-wide flood events ca. 1880-1920 AD in sou thern 

Uta h caused shallow , perennial st reams to entrench tens of meters into thick val ley fills , leavi ng 

former flood plain s behind as terraces. This histor ic period of was wit nessed in many 

so uthw este rn Unit ed Sta tes drainages (e .g. Bryan , 1925 ; Hack , 1942; Webb et al. , 1991 ; 

Hereford , 2002). 

Pri or to this histo ric arroyo cutting eve nt , early pionee rs settled in areas throughout the 

so uthwestern U.S. where shallow, marsh y perennial stream s pro vided surfac e wa ter for a variety 

of domestic and agricultural uses (Webb et al. , 1991 ). Howe ve r, widespread and nea rly 

synchronous historical arroyo cutting resulted in severe property damage and the abandonment of 

many settlements in the region (Cooke and Reeves , 1976; Webb et al. , 1991). Moreov er, arroyo 

formation proved to be ecologically costly by disrupting riparian ecosystems and wildlife habitat 

due to rapid lowering of the groundwater table , increased flooding hazard s, and increased 

downstream sedimentation from lateral channel migration and headward incision (Webb and 
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Leake , 2006 ; Delong et al. , 2011 ). The detrimental effect and the apparent regionally 

contemporaneous timing of these incision events spurred the study of arroyo systems and 

hypotheses regarding the causes of valley-fill entrenchment (e .g. Cooke and Reeves , 1976; Webb 

et al. , 1991 ). In fact , the near synchronous nature of historic arroyo cutting is thought to be one of 

the most significant geomorphic events of the past century in the southwestern United States 

(Bryan , 1925 ; Hack , 1942) . 

Research has largely focused on identifying possible triggering mechanisms for arroyo 

evolution as a way to support or dispute the possibility of region-wide , nearly contemporaneous 

inci sion or aggradation events (e.g. Antevs , 1952; Schumm and Hadley , 1957 ; Cooke and Reeves , 

1976; Hereford , 2002 ; and others). Hypotheses related to the causes of arroyo incision range 

from land mismanagement or over grazin g during pioneer settlement (Baile y, 1935; Thornthwaite 

et al., 1942; Antev s, 1952), autogenic geomorphic controls (Schumm and Hadley , 1957 ; Patton 

and Schumm , 1981; Patton and Boison , 1986; Tucker et al. , 2006) , and climate changes related to 

sediment supply , stream discharge , or both (Bryan , 1941, Antevs , 1952; Karlstrom , 1988; 

Hereford , 2002 ; Mann and Meltzer , 2007). Hence , these competing arroyo cut-fill hypotheses can 

be grouped according to their possible triggering mechanism (autogenic or allogenic) or regional 

response to arroyo evolution (nearly synchronous and asynchronous) as seen in Table 3 . 1 

Early workers suggested that near -synchronous historic arroyo cutting events resulted 

from poor land management related to livestock overgrazing , soil compaction and desertification 

of the land which may have decreased soil infiltration capacity (e.g . Bryan , 1925; Bailey , 1935; 

Antevs, 1952; Cooke and Reeves, 1976). Other studies have suggested that the creation of cattle 

paths or ditches by early settlers would enhance runoff and increase stream power , resulting in 

channel incision (Webb et al. , 1991; Bull , 1997). Additionally , some studies have found 

geoarchaeological evidence for irrigation canals created in discontinuous gullies that were likely 

used for floodwater farming by Puebloan settlements in southwestern Colorado and New Mexico 

between - 600 and 1300 A.O . (e .g. Huckleberry and Billman , 1998 ; Huckleberry and Duff , 2008) 



Tab le 3.1 
Arroyo cut-fi ll competi ng hypothese s and expected results 

Possible Triggering Mechanisms and Possible Cause Controlling Effect 

Controls for Arroyo Formation 

Allogenic (Climate Dependent) 
Period!i of regionally drie r cond iti ons Weak and Infrequent Reduced effective moisture and lowered groundwater tables would result 

ENSO or Weakend North i n vegetation reduction and would lower a channel 's hydraulic roughness. 

American Monsoon These conditions generally promote regional alluviation but can cause 

channels to become more suscept ible to downcutting by enhancing peak 

runoff di scharge . Channel downcutting could continue to lower 

groundwater table and enhance degradatio n. 

Following a period of channe l downcutting. Vegetation reduces along axial 

terraces and hillslope s and increases potential sediment load. Groundwater 

table elevates and woody riparian vegetation is established within channel, 

promoting aggradation during small floods (Huntington, 1914; Webb and 

Hereford, 2001; Webb and Leake, 2006). 

Periods of regiona lly wetter conditions Increased Frequency and Increa sed regional precipitation and substantial increase in effective 

Inten sity of ENSO wet moisture lead to enhance d runoff resulting in larger and more frequent 

eve nt s or Strengthening flood eve nts causing channel en trenchment . 

of the North American 

Monsoon 

Autogenic (Independent of Climate) 

Land Use Overgrazing and tra mplin g Reduced vegeation and enhanced soil compaction coupled with the 

caused by a signif icant formation of canals, trenches, or ditches by Anglo or Pueblan settl ement. 

rise in livestock or land These conditions reduced infiltration of rainfall , resulting in enhanced 

modification from human and/or channe l ized runoff and increased stream power necessary for 

practices inci sison. This is able to account for the historic arroyo cutt ing events, but 

evidence of pale oarroyo s indicates cut -fill events pre-dating anglo 

sett lement. Some autho rs also note that Pueb\an sett lement s were 

abandoned prior to the most recent prehistoric arroyo cutting event. 

Additionally, time constraints between settlemen t and incision are not 

enough for an ove rgrazing effect. (Bryan, 1925; Bailey , 1935; Antevs, 1952; 

Hasting s, 1952; Cooke and Reeves, 1976; Webb et al., 1991) 

lithology Highly erodible bedrock Channels flowing through highly erodible bedrock or alluvial fill have high 

sediment yields that can overwhelm stream power and inhibit sediment 

removal. This may result in down stream aggradation . 

Resistant bedrock Channels flowing over or through resistant bedrock or alluvial fills enhance 

runoff , increase stream power , and may cause downstream incision. 

Intrinsic Channel Processes Complex Response High sediment yields in semia rid drainage s cause stream gradients to 

oversteepen, which induces channel incision followed by widening, and 

subsequent reaggradat ion. Channels continue to follow this feedback 

mechanism in a temporally complex manner . 

Expected Regional 

Response 

Synchronous channel incision. 

Synchronous channel 

aggradation 

Synchronous channel incision 

Possibility of synchronous 

channel incision if widespread 

or non-synchronous, 

catchment spe cific channel 

incision 

Non-synchronous, catchment 

specific channel aggradation 

Non-synchronous, catchment 

specific channel incision 

Non-synchronous, catchment 

specific channle incison or 

aggradati on 

References 

(Bryan, 1925; Antevs, 1952; Euler et al., 1979; 

Bull, 1997; Water s and Haynes, 2001; Webb 
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(Huntington, 1914; Webb and Hereford, 2001; 

Webb and Leake, 2006). 

(Huntington, 1914; Graf, 1983; Waters and 

Haynes, 2001; Webb and Hereford, 2001; 

Hereford , 2002; Mann and Melt zer, 2007). 

(Bryan, 1925; Bailey , 1935; Hack, 1942; 

Antevs, 1952; Cooke and Reeves, 1976; Webb 

et al., 1991; Webb and Hereford, 2001; 

Huckleberry and Duff , 2008) 

(Mdadden and Mcauliffe , 1997; Jones et al., 

2010). 
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(Schumm and Hadley , 1957; Schumm, 1973; 

Patton and Schumm, 1981; Bull, 1997; Tucker 

et al ., 2006; Daniels, 2008; Jones et al., 2010) 
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It is possible that these canals could have channelized run-off during periods of increased 

precipitation (following periods of drought) and initiated one of the prehi storic episodes of 

downcutting and channel-widening. Entrenchment and arroyo formation are thought to have 

lowered the gro undwater table (e.g. Webb and Leake, 2006), which could have possibl y lead to 

the abandonment of Puebloan settlements (Miller and Koc hel , I 999). However , there is limited 

ev idence for large prehi storic cultural population s or intensified aggradation practic es proximal to 

south ern Uta h drainages before the penultimate incision eve nt at - I 200 A.O. 

Other studies have sugges ted that autogenic thresholds within dra inages may drive arroyo 

cutting and filling (Sc humm and Hadl ey, 1975; Patton and Schumm , 198 I ; Tucker et al. , 2006). 

For examp le, field and lab analyses conducted on so uth western arroyos have suggested that 

arroyo cutti ng and filling is a fundamental fluvial response to knickpoint formation and recession , 

stream gradient fluctuations , and internal changes in sed iment yie ld that are not driven by 

allogen ic forcings (Sc humm and Hadley , I 957; Patton and Schumm , 1981 ). Rather, it has been 

sugges ted that internal mechanisms controllin g arroyo forma tion are merely perturbed by chan ges 

in c limate (Patton and Schumm , 1981 ). 

A final mec hanism, c limat e change , has received the most attention because it offe rs the 

bes t explanati on for a regionall y near-synchronous response ( e.g . Knox , 1983; Karlstrom , 1988; 

Herefo rd and Webb , 1992; Hereford , 2002). For example , in a period ofreg ionall y dri er 

conditions , reduced effective moi sture and a lowered gro undwater table could increa se pote ntial 

sediment load in upstream regional catchments and could promote regionally near-s ynchronou s 

channel aggradation ( e.g. Huntington , 1914 ; Webb and Leake , 2006) . Co nver se ly, durin g period 

of regionally wetter climate conditions, increased precipitation and effective moisture could lead 

to enhanced run-off and the potential for more regionally erosive floods that could cause near­

synchronous incision (e .g. Hereford and Webb , 1992). Hereford (2002) originally suggested that 

regionally synchronous arroyo cut-fill events over the past - I 000 years were due to regional 

climate shifts related to the Little Ice Age and Medieval Climate Anomaly . However , while it is 



obvious the climate plays a role in arroyo dynamic s, the exact climate conditions needed to 

initiate historic and prehi storic arroyo cutting and filling remain unre so lved . Additionally , 

climate-related incision and aggradation events primarily have been explored independent of 

other po ss ible forcing me chanism s. It is quite poss ible that a combination of triggering 

mecha nisms , such as catchment spec ific geo morphi c thresholds , have co ntribut ed to the 

for mati on and timin g of historic an d prehistoric arroyo cutting and filling . 
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This study exa min es the arroyo cut-fill chron o logy of Kit chen Co rral Wash (KCW), a 

tributary of the Paria River in southern Utah. KCW is currently in an incised state. Stratigraphic 

evide nce indicates that it has exper ienced prehistoric arroyo entrenchment and aggradation. As 

wit h many regional arroyo syste ms, KCW provides an arc hive of flu via l response to previous 

geomorph ic and climate co ndit ions . While Hereford (2002) suggested a climatica lly driven near­

sync hron ous response , chro nologies derived from the near-by drainages of Kanab Creek 

(Summa-Ne lson and Rittenour , 2012 ; personal comm uni cat ion wi th Summa-Nelson) and the 

upp er Esca lante River (Hayde n, 201 1) indi ca te prehistoric arroyo cutting and filling eve nts may 

be more tem pora lly comp lex . Moreover , Harvey et a l. (20 11) identifi ed four va lley-fi ll alluvia l 

packages in KCW that suggest a different arroyo cut-fi ll chronology than Hereford ' s (2002) 

stud y . However , the ages of these four alluvial packages are poorly co nstrain ed. Hence, the 

current chronology from KCW precludes th e ability to determine if arroyo dynamics between 

regional draina ges are contemporaneous and th erefo re related to climate change. 

The purp ose of thi s stud y is to construct a detailed chronostratigraphy of KCW by 

ex panding and updating the skeletal alluvial chronologies developed by Hereford (2002) and 

Harvey et al. (2011 ). This is achieved by combining detailed sedimentologic descriptions and 

stratigraphic panels at twelve study sites with age control derived from accelerator mas s 

spectrometry (AMS) radiocarbon and optically stimulated luminescence (OSL) datin g techniques . 

Ultimately , results from this study are used to better under stand the complex timing of arroyo 

aggradation and incision episodes. Evidence for temporally similar aggradation and 
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entrenchment episodes would suggest a more dominant allogenic control , such as regional 

climate forcing. Alternatively, catchment specific chronologies would suggest an autogenic 

control , such as internal geomorphic threshold s. A stro ng co rrelation between cut-fill cycles and 

paleoclimate reco rds might also support a dominant climate forcing . 

3.2 Background 

3.2.1 Physiographic Setting of KCW 

Kitchen Cor ral Wash is a tributary of the Paria River locat ed in Kane Co unty , Utah 

approximate ly 45km eas t of the town of Kanab. It is the main trunk strea m of a drainage that 

assumes several names from its headwa ters to its confluence wit h the Paria River ( e.g. Park 

Wash , Deer Springs Wash , Kitchen Corra l Wash , Kaibab Gulc h, and Buckskin Gu lch) . 

However , for the purpose of this study the name Kitchen Co rral Wash w ill enco mpass the Park 

Wash (PW) and Deer Sprin g Wash (DSW) reaches fro m the base of the White C liffs and the 

main Kitchen Corra l Wash alluvia l va lley that extends from the base of the Vermillion C liffs to 

the intersection wit h Kaibab Gu lch at U.S. Highway-89 (Fig . 3 . 1 ). From its headwaters in the 

Pausaugunt Plateau to the head of Kaibab Gulch , the total drainage area of KCW is 5 1 I km 2 and 

ranges in eleva tion from - 2500 m as! to ju st below 1800 m as!. KCW flows approx imate ly nort h 

to south and occup ies a co ntinuou s arroyo tha t is entrenched - 2- 12 m within its fine-grained 

alluvia l va lley fill. The total reach-length of the study area (co mbinin g PW , DSW , and KCW) is 

- 28 km . 

Kitchen Co rral Wash heads in Tertiary (upper Pale oce ne to middle Eoce ne) C laron 

Formation (Tep and Tew) sandstone s, siltstones , and mud stone of the Paunsau gunt Plateau (Fig. 

3.2). The Claron Formation forms the Pink Cliffs that are exposed as the uppermost unit of the 

Grand Staircase (GS) geomorphic province of the Colorado Plateau . From here the drainages 

continue incising through Cretaceous Kaiparowits Formation (Kk), Wahweap Fonnation (Kw) , 

and Straight Cliffs Formation (Ks) sediments as the lower Pink Cliffs change to the upper Gray 
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Cliffs. The Kaiparowits Formation lies unconformabl y beneath the Claron Formation and is 

composed of subarkose sandstone. The interbedded mud stone to sandstone of the Wahweap 

Formation overlies the Straight Cliffs Formati on, which is made of c liff-formin g sandstones , and 

s lope-fo rmin g mud stones and coal interbeds (Doelling et al., 2000) . The drainages continue 

th rough resista nt Dakota Formation (Kd) sand sto ne at the base of the Gray C liffs until 

transitioning into Late and Middle Jura ssic Entrada Sandstone (Je) and Carme l Formation (Jc) 

sed iments. Below these two sedimentary unit s, the Jura ssic Navajo Formation (Jn) sandstone 

composes the White C liffs, and has high-an gle cross-bedding becau se of its eo lian origin and is 

primarily composed of white to tan-colored fine and medium grained sand (Doelling et al., 2000) . 

Exiting the White Cliffs, the drainages headwaters converge into Park Wash and Deer Springs 

Wash and incise through Ju rassic Kayenta Formation (Jk ) and upper Vermillion Cliffs . The 

co nflu ence of Park Wash and Deer Springs Wash form the main channe l of Kitchen Co rra l Wash , 

w hich exits through the Moenave Formati on (Jmo) at the base of the Vermillion Cliffs and then 

cross Tr iassic Chinl e (T rc) and Moenkopi (Trm) Formations . The Chin le Format ion is primarily 

composed of interbedded mudstones , sandstone , and co nglomerates , and also contai ns fossi lized 

woo d of the Petrified Forest Member. Finally, after exiting the di sco nfor mity-bo und ed Moenkopi 

Formatio n, KCW is renamed Buckskin Gulc h as it narrows and beco mes entrench ed wit hin 

Permian limestones and sandsto nes of the Ka ibab Formation. 

The modern channel of KCW is typified by stee p, vert ical arroyo wa lls ranging from 12 

to <5 111 in hei ght, which were produced by the mos t recent arroyo cuttin g eve nt betwee n 1880 

and 1920 AD (Hereford , 2002) . The active channel is 20 to 100 m wide and is inset into 

Holocene alluvium which lies within a broad( > 1 km wide) Quaternary-aged alluvial valley 

bound by Pleistocene-aged terraces tens of meters high that are mantled with cobble to gravel 

s ized alluvium (Fig. 3 .3) . Although mainl y an alluvial channel , in plac es KCW narrows to 

severa l meters and is surrounded by bedrock outcrops where it tran sition s from weak lithologic 
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formations (e .g. Jc) to a more resistant lithology (e .g. Jn) and exposes >6 m tall knickpoints (Fig. 

3 .2). 

Structural features within and surrounding the KCW catchment include folds initiating 

from the Sevier orogeny , early-Tertiary faults formed during the Laramide Orogeny , and 

continued faulting following basin and range extension starting around 15Ma (Doelling et al. , 

2000) . The most significant features include the Paunsaugunt Fault and East Kaibab monocline. 

The Paunsaugunt Fault is a high-angle normal fault that extends from northern Arizona through 

central Utah (Doelling et al. , 2000) and crosses KCW near the channel head of DSW . The East 

Kaibab monocline , expressed as the Cockscomb near KCW , is a prominent , northeast trending 

feature that is locally faulted . Neither of these features crosses the project study area (Fig. 3.3) 

and no Quaternary activity has been reported along the several small-scale fault s that exist within 

the catchment of the KCW . 

Climate within the region is semi-arid and two Cooperative Observation Program 

(COOP) weather stations upstream and downstream within the Paria River drainage indicate 

mean maximum and minimum annual temperatures (ca. 2001-2012) rangin g from 22 .3°C to 

5.5°C (Paria RS COOP) and 13.7°C to -4.2 °C (Bryce Canyon Nat ' ! Park COOP) at 1341 m and 

2413 m elevation respectively. Additionally , difference s in mean annual precipitation for these 

same sites are indicative of an orographic influence (Paria RS COOP = 198.1 mm , Bryce Canyon 

Nat'! Park COOP = 364 .7mm). Climate in the region is also typified by a bimodal precipitation 

regime with the majority of precipitation falling primarily during the winter and late summer to 

fall (Fig . 3.4). Discharge records from the Paria River gage at Lee ' s Ferry (USGS 09382000) , 

downstream of KCW , indicate early spring and late summer peaks in discharge (Fig . 3.4). 

Moisture within the region is generated from North Pacific frontal storms during the winter (Dec­

March) , convective thunderstorms during the late summer (July-Sept) , and cut-off tropical storms 

and /or monsoons during the fall (Sept-Nov) .Variations in climate throughout the region are a 

function of fluctuations in sea-surface temperature (SST) , atmospheric pressure, and atmospheric 
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circulation patterns and operate on short , seaso nal (El Nino , La Nina , North American Monsoon , 

tropical cyclones) and multi-decadal (Pacific Decadal Oscillation) timescale s (Hereford, 2002; 

Sheppard et al. , 2002). 

Interannual fluctuations in sea-s urfac e temperatures and pre ssures in the tropical Pacific , 

related to ENSO (El Nino-Southern Oscillation) , produce interannual shift s in precipitation in 

sou thern Utah and surroundin g regions (Hereford et al. , 2002; Sheppard et al. , 2002). A warmin g 

of Pacific SST (E l Nino) tends to bring wet w inters the sout hwest and an increase in stream flow 

w hereas a coo ling of Pacific SST (La Nina) typically accounts fo r drier winters (Caya n et al. , 

1999). However , the strength and timing of ENSO activity w ithin this region are often variable 

(Sheppard et a l., 2002) . The Pacific Decadal Osc illation (PDO) can also account for multi­

decada l precipitation variability across the Colorado Plateau (Hereford et al. , 2002). Specifica lly, 

PDO and ENSO climate patterns are re lated both temporally and spatial ly suc h that positive and 

negative phases of the PDO (warmer or coo ler NPO) can influ ence the effect of El Nino-re lated 

act ivity in the sout hwestern U.S. (S heppard et al. , 2002). 

One of the main climatic features of war m-seaso n precipitation in the sou thwestern 

United States is the Nort h American Monsoon (NAM) . A lthou gh it is most not iceab le throughout 

Arizona and New Mexico , the effects of the NAM are ev ident throu ghout the entire sout hwest 

and inc lude the cent ral region of the Co lorado Plateau , which include s the KCW drainage area 

(S heppard et al. , 2002). By mid-Jul y, rep os itionin g of the lnt ertropi ca l Co nvergence Zo ne 

(ITCZ) into the northern hemi sphere allows preva ilin g w ind s to transport moistur e from the Gulf 

of Mexico and/or the Gulf of Ca lifornia over the plateau (Poore et al., 2005). Additionally, 

during the late summer and early fall , tropical cyclones are capable of penetratin g the so uthwest 

and delivering extreme amounts of precipitation over the plateau (Sheppard et al., 2002). 

Vegetation is spar se along the KCW system and primaril y consists of spruce and pine in 

the higher e levations and sage brush , pinyo n pin e, and juniper across the broad alluvial valley that 

spans the study area. Riparian vegetation is typically lacking become s very dense within several 
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meander bends beginnin g at the confluence or Deer Springs Wash and Park Wash , and along 

smaller tributaries at the south end of the study area. 
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The ongoing arroyo cut-fill activity in KCW has limited the effec t of so il-formation 

proce sses within alluvial deposits resultin g in widespread , but discernible enti so ls. Within the 

KCW study area , these soi ls may occur on top of the yo ungest alluvial terrace s or as buri ed so ils 

inset between alluvial depo sits. Since these incipi ent soi ls have formed in va lley -fill alluvium , 

they can be used as stra tigra phic marker s of a hiatu s in sed imentation . 

3.2.2 Previous Work in KCW and Regional Drainages 

Past research in Kitchen Corral Wash and surroundin g regional drainages ha s focused on 

constructing alluvial histories to help test hypotheses of the mechanism s lead ing to arroyo cuttin g 

and filling. As mentioned earlier , Hereford (2002) examined the strat igraphic and geomorp hic 

relationships between va lley-fi ll packages exposed wi thin arroyo wa lls in the Paria River basin , 

including KCW , to co nstra in the timing of reac h-w ide a lluvia tion and degradation events. Using 

a combination of tree-ring chrono log ies from partially buried juniper trees , Kayenta Anasazi 

potsherds , and radiocarbon datin g of charcoal depos its w ithin alluvium , Hereford (2002) 

constrai ned the ages of three a lluvia l packages within KCW (termed yo unge r, intermed iate and 

o lder alluvium) on the basis of their strati gra phic relationships . Hereford (2002) recognized that 

the yo un ges t va lley-fi ll alluvium (ca. A.O. 1400-1880) was correlative with Ho loce ne a lluv ium 

observe d and dat ed elsew here on the Co lorado Platea u (Fig. 3 .5a ), such as the "Nairn alluvium " in 

the Black Mesa reg ion (Hack , 1942) and post-Bonito alluvium in Chaco Canyon (Hall , 1977). 

Moreover , Hereford (2002) recognized that the timing of this regional aggradational episode was 

nearl y coincident with the Little Ice Ag e (LIA) climate anomaly, a regionally cooler period 

interpreted to have decreased high flow events and increased sediment yield from hillslopes due 

to below normal precipitation. In addition to thi s period of aggradation , Hereford (2002) 

provided evidence for region-wide prehistoric (ca. A.O. 1200-1400) and historic (post-1880) 
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arroyo cutting, which he attributed to increased flooding events during the Medieval Climate 

Anomaly (MCA) and increased ENSO activity at the end of the LIA. 
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Harvey et a I. (20 I I) revisited KCW and identified four episodes of Holocene aggradation 

and incision based on stratigraphic mapping from two study sites and ages derived from alluvial 

deposits using AMS radiocarbon and OSL dating methods. The youngest alluvial package 

(package IV) was deposited between - 0. 7-0.15 ka and correlates with Hereford's "younger" 

alluvium as well as other regional fills of the same age (e.g. post-Bonito , Naha alluvium, and 

others). The next oldest fill (package Ill) was not dated , the age of package Ir (- 1 .2-2.0 ka) is not 

tightly constrained , and the oldest fill (package I) has an age range of 2.8-2 . 15 ka based on a 

combination of AMS radiocarbon and OSL samples . A meaningful correlation could not be 

made between packages 111-1 from Harvey et al. (2011) and the ·' intermediate " or "older " 

alluvium described by Hereford (2002) (Fig. 3.5b). 

Another alluvial deposit, comprising the " settlement terrace and alluvium ," was identified 

along the upper alluvial valley of the Virgin River in Zion National Park (Hereford et al. , 1996a) , 

and is correlative to the youngest valley-fill alluvium of Hereford (2002) . In this study , Hereford 

et al. (1996a) linked natural variability in stream flow and sediment discharge to the geomorphic 

history of the Virgin River. Using repeat photography , historic records , and dendrochronology , 

Hereford et al. ( 1996a) identified three primary terrace deposits (prehistoric , settlement , and 

modern) whose deposition was interrupted by two periods of incision , similar to those identified 

by Hereford (2002) within the Paria River basin. In addition, estimations of annual stream flow , 

measured from tree-ring growth and modern streamflow , linked periods of anomalously high 

stream flow with incision and periods of low stream flow with aggradation. 

Previous work on the near-by Escalante River and its tributaries, northeast of KCW , has 

also focused on reconstructing the timing of arroyo incision and aggradation events (e .g. Patton 

and Boison , l 986; Webb and Baker , 1987; Webb and Hasbargen, 1997; Hayden , 2011 ). Webb 

and Hasbargen ( 1997) suggest four episodes of prehistoric arroyo entrenchment at approximately 



2ka , I .Ska , I ka, and 0.5 
14

C ka BP ( 1950) in the upper Escalante River. By identifying burned 

charcoal horizons , fossil mollusk shells , and alluvial pollen in the stratigraphy , the authors 

suggest that these prehistoric arroyo incision events often initiated during periods of low 

precipitation and relatively low groundwater tables . Studies of preserved alluvial terraces in 

tributaries of the lowe r Esca lante River have produced mix ed age result s due to sedim ent 

increa ses from mass wasting (Coyote Gulch) or othe r intrabasinal con trol s such as land-use 

changes and local changes in bedrock erodibility (Patto n and Baison , 1986). Most recently , 

Hayden (2011) reconstructed the timing of arroyo cut-fill cycles in the upper Escala nte River 

using AMS radiocarbon and OSL methods and detailed sedimentary and stratigraphic 

descriptions. She recognized at least six arroyo cutt ing events since the middle Holocene , with 

incision occ urrin g at - 4.4-4.2 ka , -2 .6-2.4 ka , - 1.8-1 .5 ka , - 1.0-0 .9 ka, - 0.5-0.4 ka and during 

historic arroyo cutting in 1909 AD. 
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Nearly 40 km to the west of KCW , Kanab Creek, a tributary of the Co lorado River , has 

also been recognized and studi ed for its histor ic and prehistoric arroyo cut-fi ll strat igrap hy (e.g. 

Smi th , 1990 ; Webb et al. , 1991 ). Webb et al. ( 1991) provide one of the most compre hens ive 

overv iews of the histor ic chann e l cuttin g in the Kanab Cree k arroyo , which he attributed to large­

mag nitud e flood events. Historic and prehistor ic arroyo cutting and filling eve nts in the canyon 

reach of Kanab Cree k have more recentl y been invest igate d by Summa (2009) and Summa­

Nelson and Ritt enour (2012) . In the se studie s, four alluvial fills along the Kanab Creek draina ge 

were identifi ed, w ith period s of entrenchment at - 3.5 ka, - 2 .2 ka , - I ka and post- 1882 AD. 

Ely ( 1997) reconstructed century-scale paleoflood records from multiple southwe stern 

U .S. drainage s, including Kanab Creek, the Paria River, and the Escalante River , which indicate a 

clustering of flood s throughout the Holocene (Ely , 1997) . These records show a sharp increase in 

flooding events around A.O. 1400 that is broadl y coincident with a prehistoric period of arroyo 

cutting (Ely, 1997; Hereford , 2002). Similar to Hereford (2002) , Ely ( 1997) also suggests that 

periods of increased flood frequency might occur near the transition from one climate regime to 



another , such as MCA to LIA , and could be linked to the frequency and intensity of ENSO 

activity. However , Harvey et al. (2011) sugges t that paleoflood records from Ely ( 1997) are 

di sparate and may not be correlative to the reco rds found in arroyo systems , such as KCW. 

3.3 Methods 

3.3.1 Stratigraphy and Sedimentologic Descriptions 

82 

In order to test if ep isodic arroyo cutting and filling has been regionally near­

synchro nou s, this research ex plores the strat igrap hic cut-fill relationships, sedim entology, and 

ages of KCW arroyo-wall outcrops . Approximately 28 km of the KCW al luvia l cha nne l, starting 

at the intersection of U.S. Highway-89 and inc luding Park Wash and Deer Springs Wash , was 

traversed in 201 1 and 2012 in order to identify outcrops wit h the best expressed arroyo cut-fill 

arc hitecture . Aside from wel l-expressed stratigraphy , each outcrop chosen for sampling and 

detailed descr iption was >2m in he ight and displayed at least on near- ve rtica l buttr ess 

unconformity wit h a co lluvia l wedge at the base . These cr iteria were chose n in order to reduce 

the chances of se lecti ng a chan ne l migration deposit. A total of 12 study sites were identified , 

whic h included three arroyo outcrops located in Deer Sprin gs Wash (KCW-A , KCW-C , and 

KCW-E) , fo ur arroyo outcrops loca ted in Park Wash (KCW-B , KCW-D , KCW-F , and KCW-G) , 

and five arroyo outcrops loca ted in the main- stem KCW strea m (KCW-H , KCW- 1, KCW-J , 

KCW- K, and KC W-L) (Fig . 3 . 1; 3.3). 

The alluvial stratigraph y and sedim ento logy within each arroyo outcrop was extensively 

delineated and describ ed. Outcrops were phot ogra phed with a high-resoluti on camera and 

loca tions were mark ed using a high-precision hand-held GPS. Each outcrop exposure was then 

sketched in detail and /or photographs were annotated. Field drawing and annotated photos were 

used to create detailed stratigraphic panels of each outcrop. Additionally , the arroyo-wall 

stratigraphy was separated into stratigraphic units . These stratigraphic unit s were initiall y 

selected in the field were used to more easily delineate and describe the outcrops . Stratigraphic 
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units were selected based on similar packages of sediment ( e.g. sediment source and thickness) or 

distinct erosional surfaces. 

Sedimentolgic descriptions of alluvial fills from each outcrop were compiled by noting 

bed thickness and geometry , Munsell color, grain size and sedimentary structures, grading and 

sorting, bioturbation or evidence of soil development , and character of the basal contact. Key 

depositional facies and facies associations were then identified and a list of the most frequently 

encountered depositional facies was compiled (see Chapter 2) . Additionally , interpretations of 

depositional environments for beds within each alluvial-fill package were made using bed 

geometry and facies analy ses . Finally , the stream profile of KCW (Fig . 3 .2) from its headwaters 

in Park Wash to its intersection at Kaibab Gulch and from the headwaters of Deer Springs Wash 

to the confluence with the main KCW channel was interpolated using an autocorrelated 5 m 

digital e levation model. The stream line used for profile interpolation was based on an 

identification of the active channel as defined by a flow accumulation dataset created in ArcGIS 

10.1. 

3.3.2 Geochronology 

Age control for KCW alluvial deposits was obtained using AMS radiocarbon and 

optically stimulated luminescence (OSL) dating. Using these dating techniques in tandem not 

only allowed for greater sampling opportunities in the field, but has also provided a means for 

comparing the ages of alluvial deposits and reconciling aberrant results. In general , samples were 

collected from near the base or top of unconformity-bound alluvial fills . 

3.3.3 AMS Radiocarbon Dating 

Thirty-seven samples for radiocarbon dating were collected from KCW . Two additional 

radiocarbon samples used in this study were collected by Harvey et al. (20 I I) and three were 

collected by Hereford (2002). Charcoal was targeted for sampling because of its abundance 
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Table 3.2 
Summary of radiocarbon samp le information and ages 

Drainage 
Weighted Mean cal yr Error+/- Targeted 

Stratigraphic 

Sample Number Sample ID Basin/Profile Fades 14C Age Error± Agreement/ 

Site 
BP201o (rounded) (rounded) Sample,. 

Oisa reementb 

14(-1 113985 A St 2015 15 2020 40/60 CRL A 

14( -2 113986 A Sr 365 15 480 80/160 CRL A 

14( -3 113981 B Sh 500 15 580 20/10 CRL A 

14(-4 113989 B St 1235 15 1240 80/130 CRL A 

14(-5 X24136 C Fsmv 2460 40 2600 170/180 IAC A 

14( -6' X24137 C St 49,400 4000 49,400 4000 IAC D (CC) 

14(-7 X24132 D SI 1488 38 1440 130/80 CRL A 

14(-8 X24133 D Fsmv 466 37 570 60/40 CRL A 

14(-9 X24135 D St 1208 38 1200 120/130 IAC D (RD) 
14(-10 D SI not analyzed not analyzed IBB 
14(-11 113987 E St 1420 15 1380 20/20 CRL A 

14(-12 X24138 St 879 38 870 100/110 CRL A 

14(-13 113988 SI 140 15 200 140/140 CRL A 

14(-14 X24139 St 42,600 1600 42,600 1600 CRL D (CC) 

14( -15 X24140 Sr 609 37 660 60/60 CRL A 

14(-16 X24141 F St >45, 700 >45,700 IAC D (CC) 

14(- 17 X24134 G St 1194 38 1180 140/130 CRL A 
14( -18 113982 G Fl 665 15 680 50/60 AWD A 

14(-19 G Sm not ana lyzed not ana lyzed IRL 
14( -20 G St no t analyzed not analyzed CRL 
14(-21 113984 G SI 3420 15 3730 40/40 CRL A 
14(-22 105792 H SI 3480 30 3820 70/60 CRL A 

14C-'1 1 H Sm not ana lyzed not analyzed IAC 
14( -24 105793 H Sm lllS 30 1080 40/50 CRL A 

14(-25 ' 105794 H Sm 2200 40 2280 120/210 IRL D (RD) 

14(-26 113983 H Sr 3735 15 4140 70/90 CRL A 

14( -27 X24142 H St 849 40 830 130/90 IAC A 

14( -28 105788 SI 1755 30 1720 50/50 CRL A 

14(-29 X24144 St 46,600 2700 46,600 2700 CRL D (CC) 

14C-3o' 105789 Sh >31700 >31,700 CRL D 

14( -31 105790 SI 1730 30 1700 60/70 CRL A 

14( -32 105791 Fsmv 1860 30 1850 80/60 IAC A 

14(-33 X24143 St 2395 40 2520 240/120 CRL D (RD) 

14( -34 X24129 Fsmv 993 46 950 160/ 100 CRL A 

14( -35' X24130 K St 2002 40 2010 140/80 IAC D (RD) 

14(-36 X24131 K St 368 37 470 90/90 CRL A 
14(-37 X24145 SI 46,700 2800 46,700 CRL D (CC) 

14( -38' Beta -256838 SI 610 40 660 60/80 AWD A 

14( -39' Beta-256840 St/SI 2220 40 2300 60/90 CRL A 

14(-40 ' Park Wash 4330 40 5000 250/380 

14( -41' Park Wash 5650 35 6490 70/110 

14( -42' Park Wash 6320 80 7300 180/220 

'T argeled samp les for AMS radiocarbon daling : CRL = Charcoal-rich Lens , !AC = lso la1ed Angu lar Charcoa l IBB = lsola1ed Burned Branch , 

IRL = lsolale d Round Charcoal A WO = Angular Woody Debris 

h Noles if Wcighled Mean cahb raled radiocarbon age (BP 20 ,o) of eac h radiocarbo n sa mple Agrees (A) or Disagrees (D) wi1h stral igraphic 

relationships or OSL ages . Disagrecmenl inlerpret ed as CC = Crelaceous Coa l, RD = Redeposiled Sample. 

' Samples Collec 1ed from within or near a colluvial deposit 

'Sa mples originally collected in Harve y (2009) . A lso used in Har vey el al. (20 1 I) and this study. 

' Samp les co llec ted from Hereford (2002) 01 years BP and ca hbrated with the ln1Cal data se 1 (Re imer et a l., 2009) . 

r Sample did not undergo AMS measurement because it did not survive pretreatment chemistry 

' Finely dissemniated pieces of charcoa l in deeo sit. Large uncertain':)' due to small sa mele size (0.056 mg) or eossib le mixing of Cretaceo us coal. 
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within eac h of the aggradational fill packa ges, allowing for se lective instead of opportunistic 

sampling . Due to potential age inaccuracie s from charcoal redeposition , and other sources of 

erro r detailed in Chapt er 2, sampling targeted material typically consisted of large concentrations 

of charcoal or thin lenses of charcoal separatin g alluvial depo sits . In a few instance s, iso lated 

(detrita l) charcoal fragments we re targeted where sedi ment for OSL datin g was poor and no other 

sources of charcoal or woody debris we re available. However , detrital char coal was avo ided if 

present in massive deposits and only co llected if sedimentary structur es were evi dent. Once a 

charcoal-rich laye r was targeted , attention was paid to the size and angularit y of the charcoal in 

order to reduce the odds of co llecti ng redeposited material. 

Sixteen of the 37 sam ples co llected were sent to the UC Irvine Keck AMS Laboratory 

ana lysis and an addit ional seve nteen samp les were pretreated by the aut hor at the University of 

Arizona NSF AMS Labortory in Tucson and later ana lyzed by the AMS lab staff. One of the 37 

radiocarbon samp les was not ana lyzed because it did not survive pretreatment chem istry and 

three other samp les were deemed unnecessary for ana lysis. Excess radiocarbon sampl es were 

arc hived in labeled , g lass v ials and are avai lab le fo r further analys is if nece ssary. Samp le ages 

were conve rted from radiocarbon years to ca lendar years BP20 10 using Ca lib 6.0 and the lnt Ca l09 

dataset (Reimer et a l., 2009). Res ults are reported in BP20 10 as a max imum probabili ty age and 

asy mmetric 2-sigma error (Ta ble 3.2). Reportin g as cal. kyr BP 2010 allows for a direct co rrelati on 

to ages derived from OSL datin g. 

3.3.4 Optically Stimulated Luminescence (OSL) Dating 

Optically st imulat ed luminescence (OSL) datin g pro vides an age-es timate of the last time 

sediment was exposed to light prior to burial (Huntley et al. , l 985). During tran sport , quart z or 

feldspar grains are exposed to sunlight (or heat) and their luminescence signal is reset (bleached) 

when electron charges stored in mineral defect s are released (Aitken , 1998 ). Following 

depo sition , defects in the crystal lattice begin to accumulate electrons produced by ionizing 
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radiation from surrounding sediments and from cosmic rays , which cause the luminescence signal 

to grow over time . The dose-rate environment can be measured by using multiple techniques, 

such as high-resolution gamma spectrometry or ICP-MS (this study) , and the rate at which energy 

is absorbed from the radiation ( dose rate) can be determined through a set of conversion factors 

(Aitken , 1998 ; Guerin et al. , 2011 ). The natural OSL signal of a sample is compared with an 

OSL signal that is derived from given doses of artificial laboratory radiation in order to determine 

the equivalent dose (De) , which is the radiation required to produce a luminescence signal equal 

to the natural signal. The mean or other statistical analyses of the De obtained from many 

aliquots or individual grains , mea sured in grays (Gy), is then divided by the dose rate (Gy /ka) in 

order to obtain the age of a sample (Aitken , 1998) . 

OSL dating is used in conc ert with AMS radiocarbon dating in this study becau se 

samples can be co llected from any sandy arroyo deposit not otherwis e containin g char coal or 

organic materials . However , as with radiocarbon datin g, OSL dating has its own set of problems 

that can lead to erroneous ages. In fluvial environments , such as KCW , the mo st challenging 

problem to overcome is the potential for incomplete resetting of the luminescence signal , 

commonly referred to as partial bleaching (see reviews by Wallinga , 2002 ; Rittenour , 2008) . 

Partially bleaching may occur for a number of reasons in dry land flu vial systems , such as KCW , 

due to flashy flow and high-magnitude discharge events , light attenuation through the water 

column , and /or rapid deposition (see Chapter 2) . In fact , a previous study from KCW (Harvey et 

al. , 2011) and studies in nearby drainages (Hayden , 20 I I ; Summa-Nelson and Rittenour , 2012) 

have identified partial bleaching as a significant problem. Partial bleaching can lead to 

significant overdispersion and high positive skew of equivalent dose values and might contribute 

to significant age overestimations (e.g. Wallinga et al. , 200 I ; Murray and Olley , 2002; Rittenour , 

2008) . 

The possibility of partially bleached sediments in KCW necessitated preferential 

collection of OSL samples based on guidelines set forth in Chapter 2 and from an earlier study by 
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Summa-Nelson and Rittenour (2012). Special attention was paid to the sedimentology and 

stratigraphy of alluvial fills targeted for sample collection. First , sampling preference was g ive to 

thin (>0.4m) ripple-cross laminat ed sand bed s, which were indicated by Summa-Nelson and 

Rittenour (2012) to have more likely been exposed to adequate sunlight. Bed s display ing 

sed imenta ry structur es indicati ve of rapid deposition and /or high sedim ent concentration s we re 

avo ided because they likely had limited sunli ght expos ure pri or to burial. Addi tionall y, 

bioturbated beds and soi ls were avoided becau se of the poss ibility of sed iment mixing. 

Twenty-nine OSL samples (two from Harve y et al., 20 11) were collected from the 12 

arroyo cut-fi ll outcrops in KCW and processed at the USU Luminescence Lab (Table 3 .3) . 

Samp les were wet sieved to specific grains size fractions ( 150-250 µm or 180-250 µm) , and 

pretreated with I 0% hydrochloric acid to dissolve carbonat es and a base wash (b leach) to remove 

organ ics . Heavy minerals were separated using sodi um polytungstate (2 . 7 g/cm 3
) , and then 

treated with concentrated HF fo r 90 minut es to remove fe ldspa rs and etc h quartz grains and re-

sieved at 75 µm to remove partially dissolved fe ldspa rs. 

Of the 29 OSL samples co llected , seventee n were chose n for age-de term ination. The two 

sample s from Harvey et al. (20 I I) were analyzed using the small-aliqu ot s ingle-a liquot 

regenerative (SAR) technique of Murray and Wintle (2000). All other sampl es were ana lyze d 

using the s ingle-grai n SA R prot oco l. Single-grain (SG) analysis has been widely appli ed to 

partially bleached sed iments because it a llows grains wit h diff erent bleaching histo ries to be 

identified (Duller, 2008) . In addition to SG datin g, the minimum-age-model (MAM) statistica l 

analysis of Galbraith et al. (1999) was applied to SG De distributions with significant 

overdisperion values and positive skew to help accurately iso late the population of grains that 

were bleached prior to depo sition. Those samples without significant overdispersion or positive 

skewness were analyzed using the central-age-model (CAM) of Galbraith et al. ( 1999) . SG OSL 

analysis and age data are presented in Table 3.3. 



Table 3.3 
Preliminary single-grain quartz OSL ages 

USU Lab ID Study Site Fill Facies" OSL age (cal ka) Age Mod el 

USU-1176 B Qf4 Sh 0.74 ± 0.19 MAM-4 

USU-1192 E Qf4 St 0.92 ± 0.20 MAM-4 

USU-1187 C Qf4 St 1.14 ± 0.36 MAM-3 

USU-1026 J Qf4 SI 1.29 ± 0.37 MAM-4 

USU-1189 A Qf3 SI 1.38 ± 0.64 MAM -4 

USU-1181 G Qf4 SI 1.47 ± 1.08 MAM-4 

USU- 1028 J Qf3 SI 1.52 ± 0.74 MAM-4 

USU-1103 H Qf4 Sh 1.56 ± 0.37 MAM-4 

USU-1027 J Qf3 SI 1.58 ± 0.30 MAM-4 

USU-1029 J QfS/ QfS' Sm 1.67 ± 0.35 MAM -4 

USU- 1178 D Qf3 Sr 1.77 ± 0.31 MAM-4 

USU- 1177 B QfS Sh 2.02 ± 1.09 MAM-4 

USU-530b Qf3 SI 2.25 ± 0.85 CAM 

USU-53 1b Qf2 St 2.82 ± 0.32 CAM 

USU-1194 F Qf2 St 2.97 ± 0.70 CAM 

USU-1101 H Qfl SI 4.21 ± 1.46 MAM -4 

a Facies based on des criptions from Miall (2000). See Table 2.1 in Chapter 2 for desc riptions. 

b Small aliquot ages from samples collected by Harve y (2009). 
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3.4 Results 

3. 4.1 Stratigraphy and Sedimentology of KCW 

The alluvial stratigraphy of KCW is characterized by very fine- to coarse-grained sand 

deposited as either broadly tabular or lenticular beds. Colors are primarily I OYR (yellowish­

brown) , 2.SYR (red), and SR (reddish-brown) . These distinct colors are a result of sediment 

being derived from upstream sources versus more local bedrock surrounding the study reaches 

and allowed individual beds and units to be more easily distinguished. The yellowish-brown sand 

units are fine- to medium-grained , well-sorted, sub- to well-rounded, and composed of frosted 

quartz grains predominately derived from the Navajo Sandstone Fm upstream of the field area 

(Fig . 3 .2). The red to reddish-brown sand units are poorly to moderately sorted and composed of 

very fine- to medium-grained , sub-angular to sub-rounded sands with variable amounts of clay 

and silt. These are predominately derived from bedrock litholo gies proximal to the study area 

including the Moenave , Chin le, and Moenkopi Formations. In agreement with Harvey (2009), 

the ye llowish-brown beds are considered mainstem sediments because of their upstream source 

whereas the red and reddish-brown sand were likel y sourced from smaller tributaries of the 

mainstem . 

Arroyo-wall exposures vary in height. Those located directly downstream of a 

knickpoint are the tallest (- 8-l 2m) , and sites located directly upstream of a knickpoint and in the 

downstream reach of KCW are the shortest (- 2-Sm). Consequently, the tallest arroyo-wall 

exposures were the most helpful in reconstructing the arroyo cut-fill stratigraphy of KCW and 

identifying the sedimentary facies in alluvial fills. 

A total of ten sedimentary facies were identified in KCW and are primarily defined by 

their grain size and sedimentary structures, which are explicitly described in Chapter 2. In this 

chapter , three depositional facies associations that are similar those described by Harvey et al. 

(2011) have been identified and include channel-bottom (CB), channel-margin (CM), and valley­

surface (VS). Additionally , two new subsets of these depositional facies associations were also 
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identified and includ e channel-margin slackwater (CMs) and va lley-surface colluvial wedges 

(VSc). 

Channel-bottom (CB) deposit s are commonly associated with the basa l stratum and 

includ e thalw eg or other axial channel depo sits. These deposits are relativel y coarse and include 

matrix or clast-supported pebble-gravel and medium- to coarse-grained sand that are often 

horizontally bedded (G h) or cross bedded (Gt) . They usuall y have a lenticular geo met ry and, 

because they are deposited during high-energy scour -fill eve nts in the active channe l, may be 

imbricat ed . 

The chan ne l-margin (CM) facies association is the most abundant in the arroyo-wa ll 

stratigraphy and are primarily composed of tabular to broadly lenticular , laterally extensive , very 

fine- to coarse gra ined sand that are deposited adjacent to the main channe l thalweg or as 

overbank sheet-flows. Upper flow regime sediments may be deposited as trough cross-be dded 

(St) , ripple cross-bedded (Sr) or as massive sand (Sm) deposits whereas low flow regime 

sedime nts may be low-a ngle crossbe dded (SI) or horizo ntall y bedded (S h) sand . Massive sand 

deposits are genera lly very fine- to medium -grai ned sands, but may a lso contain variab le amounts 

of clay, s ilt, or eve n coarse-gra ined sands dependin g on the source of the a lluvium . In addition , 

thick sand deposits may be ca pped with thinly bedd ed silty sand (Fl) that was depos ited durin g a 

wa nin g flow. Because these channel-mar gin dep os its are usuall y associated w ith vertica l 

accretion , they tend to display broadl y tabular beddin g geo metries with thicknesses that mo st 

ofte n range from thin (>20cm) to sub-met er sca le . 

Within the channel-margin but distal to the axial channel, depo sits may be comp ose d of 

thin , very fine-grained laminated sands and variegated clay beds (Fsmv) or as very fine to fine­

grained massive sands (Sm) . These beds are interpreted to have been deposited in quite water 

setting s and are generally identifiable as floodplain slackwater deposits (CMs). CMs deposits 

also display a broadl y tabular geometry that may be continuous for tens of meter s. As CMs 

depo sits are not part of the active channel , they are often subject to bioturbation or soil formation 
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and may so metime s appear as structurele ss mas sive sand dep os its (Sm) or contain incipient so ils 

(P) that include roots and organics. 

The valley- surfac e (VS) facies association is identifiable as either hill slope or eo lian 

sedim ents that were depo sited outside of the channel-margin or, more commonly , as incipient 

soi ls where the va lley floodplain was stabl e for an exte nded period. Incipi ent so ils are devoid of 

sed imentary structures due to considerable bioturbati on , and are composed of va riable amount of 

c lays , si lts, and sands. Hillslope are genera lly massive sand (Sm) resulting from scour-fi ll 

deposition at the va lley surfac e, while eo lian sediments are primaril y fine-grained and typica lly 

cap o lder incipient soi ls. 

The valley-surface facies association has been subdivided to identify colluvia l wedge 

(VSc) depo sition at the base of a buttress unco nformity. These deposits are primarily composed 

of clays, si lts, and very fine- to coarse-grai ned sands that have no sed imentary structures and 

co ntain grave l- to cobb le-size d rip-up clasts and blocks of co hesive o lder sedime nt. These 

deposits are commonly identified as col luvia l wedges that are genera lly derived from va lley 

surface a lluvium and deposited at the toe of paleoarroyo wal ls fo llowing incision. These deposits 

are sim ilar to a modern mass fai lure deposits at the base of arroyo-wal l expos ures . The presence 

of these VSc deposits at the toe of an arroyo is a good indicat ion that the arroyo surfa ce was 

stab le for a signific ant period. This helps di sce rn true arroyo expos ures from channe l migration 

deposits. 

3. 4. 2 Geochronology 

Thirty-five AMS radiocarbon (plus two compiled from Harvey et al., 2011 and 4 from 

Hereford , 2002) and 17 OSL ages were produc ed for this study. Nearly all of the radiocarbon 

samples returned age s that are stratigraphically consistent (Table 3 .2). However , nine radiocarbon 

ages revealed eviden ce of charcoal reworking or the analysis of Cretaceous coal (see Ch.2) . 

Additionally, every OSL sample showed evidence of partial bleaching , which necess itated using 
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the SG dating technique for analyses of all sample s and largel y relied on the MAM statistical 

analysis of Galbraith et al. (1999) to calculate De values (Table 3.3). In general, radiocarbon and 

OSL ages suggest the KCW cut-fill sequences are middle to late Holocene in age , ranging from 

- 7.3 to 0.2 ka. 

3.4.3 Chronostra tigraphic Observations and Interpretations 

Identificati on of alluvial fill packages was primarily based on cross-cutting relationships 

and the pre sence of buri ed soi ls, and secon dari ly based on stratigra phic a lly consistent ages from 

AMS radiocarbon and OSL results. Five Holocene-aged aggradational fill packages from this 

study and one older unit dated and descr ibed by Hereford (2002) have been identified in the 

KCW study area . This is more than the three aggradationa l packages identified by Hereford 

(2002) and the four aggradatio na l packages identified by Harvey et al. (20 I I). Based on a 

recalibrated radiocarbon age fro m Hereford (2002) , the o ldest fill package began to aggrade prior 

to 7.30 ~~--~~ cal kyr BP20 10, whereas the youngest fill package stopped aggrading prior to the 

- 1880-1920 AD arroyo entrenchment. The fo llowing secti ons describe the key stratigraphic and 

sed imentologic observat ions and deposit ages at each of the 12 described arroyo outcrops . 

Additionally , strat igra phic columns and sedi mentary descr iptions are found in Appendix B. The 

GPS locat ion of eac h study site is indicated in Table 2.4 of Chapte r 2. 

3 . ./.4 KCW-A Observa tions 

Outcrop KCW-A is a north-facin g arroyo wa ll locate d - I 8km up stream from Kaibab 

Gulch in the Deer Springs Wash tributary of KCW and rang es from 7.5 to 5.2 m in heig ht (F igs . 

3.1 and 3.6) . The lower - 2.5 m of the outcrop is obscured by unconsolidated sediment and a 

relatively shallow-dipping buttress unconformity separates two alluvial fill package s. The oldest 

alluvial fill is located upstream of the unconformity while the yo unges t fill is located on the 

down stream side . Sediments deposited within each of the se alluvial fills are primarily hues of 
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Fig. 3.6. Study site KCW-A showing a 7.5 m tall arroyo wall with evidence of two aggradation phases (Qf3, QfS) separated by an incision event 

with (a) radiocarbon and OSL age results and (b) stratigraphic facies and depositional facies associations . See Fig. B-1 in Appendix B for detailed 
sedimentary descriptions and stratigraphic columns from each fill. 
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I OYR, range from very fine- to medium-grained sand with few thin silt and clay beds (Fig. 8-1 ), 

and are interpreted to be derived from upstream Jn sandstone and from minor amounts of local 

bedrock units (e.g . Jk , Jmo). The base of the oldest alluvial fill consists of gravelly channel­

bottom (CB) and channel-margin (CM) deposits capped by channel-margin slackwater (CMs) 

deposits (Fig. 3.6) . The upper 3.7 m contains 12 thin , broadly tabular beds of low-angle 

crossbedded (SI), horizontally bedded (Sh) , and trough crossbedded (St) sand that contain a minor 

presence of bioturbation and roots upsection without clear evidence of soil formation. A 14C 

sample collected at the base of this older unit produced an age of 2 .02 ~~:~! cal kyr BP20 10, while 

an OSL sample (USU-1189) collected near the top of the fill yields a preliminary age of 1.38 ± 

0 .64 ka (Tables 3 .2 and 3.3). 

The inset younger alluvial package is a - 5 .2 m thick and is compo sed of channel-margin , 

broadly tabular , fine- to medium-grained , St, Sl, or Sh sands . A number of these beds on lap a 

small colluvial wedge that drapes the buttress unconformity , and the uppermo st bed in this 

deposit shows evidence of incipient soil formation . An OSL sample (USU - 1190) was collected at 

the base of the fill but was not analyzed , and a radiocarbon sample ( I 4C-2) collected - 3 m below 

top of the arroyo-wall surface yields an age of 0.48 ~~:~: cal kyr BP20 10 (Table 3.2) . 

3.4.5 KCW-A Interpretations 

Study site KCW-A shows stratigraphic evidence for two episodes of aggradation 

interrupted by a period of arroyo incision (Figs . 3.6 and B-1 ). Based on radiocarbon sample l 4C­

l, it appears that this section of the DSW reach was incised down to or near the modern channel 

and the older alluvial fill began to aggrade around 2 .02 ~~ :~! cal kyr BP 2010 and continued until 

after - 1.38 ± 0.64 ka . A buttress unconformity indicates at least 5 m of entrenchment sometime 

prior to 0.48 ~~:~: cal kyr BP20 10, and subsequent deposition of the younger alluvium. The end of 

youngest aggradation is indicated by the presence of a massive sand deposit with evidence of 

incipient soil formation (Fig. 3 .6). 
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3.4.6 KCW-B Observations 

Site KCW-B is a 9 m tall arroyo wall located in the Park Wash (PW) tributary of the 

main KCW trunk stream (Fig . 3.7). This west-facing arroyo wall study site is located 

approximately 16 km upstream of Kaibab Gulch and less than 1 km downstream from a 7.5 m tall 

bedrock knickpoint (Figs . 3.1 and 3 .2). It displays two alluvial fill packages that primarily 

contain broadly tabular beds composed of I 0YR and 2 .5YR hued, very fine- to medium-grained 

sand(Fig. B-2) . The older alluvial fill contains broadly tabular, SI, St, and Sh sands (Fig . 3 .7) . A 

radiocarbon sample (14C-4) was collected from at the base of the fill and yields an age of 

1.24 ~~ :~~ cal kyr BP2010 (Table 3.2) , and an OSL sample was collected - Im above this but was 

not analyzed. Additionally , an OSL sample (USU-1176) was collected - 1.5 m below the valley 

surface gives a preliminary age of 0. 74 ± 0. 19 ka (Fig . 3. 7; Table 3 .3). 

The buttress unconformity that separates the older alluvial fill from the younger alluvial 

fill is completely covered with a thick (- 4.5 m) colluvial wedge (VSc) containing an abundance 

of clay rip-up clasts and organic material. The younger alluvial fill on laps this colluvial wedge 

and contains broadly tabular finely-laminated sands (Fl) and ripple crossbedded sand (Sr) 

interbedded within St, SI, Sh, beds and a CMs deposit of variegated clay , silt and sand (Fsmv) 

(Figs. 3.7 and B-2). An OSL sample (USU-1177) extracted near the base of this fill yields a 

preliminary age of2 .02 ± 1.09 ka , and a radiocarbon sample (14C-3) collected at - 3.9 m depth 

returns an age of 0.57 ± 0.06 cal kyr BP2010 (Tables 3 .2 and 3.3). 

3.4. 7 KCW-B Interpretations 

The stratigraphy in KCW-B indicates two periods of alluviation interrupted by an episode 

of incision. Unlike KCW-A, the variable grains sizes and mixed population of red-colored 

sediments at this study site indicates a greater local and tributary source contribution . Based on 

radiocarbon and OSL age results, it appears that KCW had incised down to or below its current 

level prior to 1.24 ~~:~~ cal kyr BP 2010 at this location (Fig. 3.7; Table 3 .2). Channel-margin 
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aggradation followed thi s inci sion event and was nearl y continuous until shortly afte r - 0.74 ± 

0.19 ka. Between - 0.74 ± 0.19 ka and 0.57 ± 0.06 cal kyr BP 2010(Tables 3.2 and 3.3) , an incision 

event lowered the channel back to near its current depth until aggradation resumed once again. 

The OSL sample (USU -11 77) co llected from the base of the yo unges t fill is strat igra phicall y 

inconsistent and is assu med to be an age overesti mati on due to partial bleaching . Furt her analysis 

is expec ted to refine this preliminary estimate . 

3.4.8 KCW-C Observations 

Study site KCW-C is a I 0 .5 m ta ll, north-faci ng arroyo wal l that is located in DSW 

approximate ly 14.5 km upstream from Highway-89 and Kaibab Gulch (Figs. 3. I and 3 .8). The 

cut-fill architecture of KCW-C shows two alluvial fill packages whose sediments are 1 0YR and 

2.5YR hues. The o lder alluvia l fill is - 5 m thick and composed of CB , CM , CMs and VS 

deposits . These deposits contain basal lenticu lar beds of horizontally-bedded gravel (G h), 

massive sand (Sm) , SI and St, and over lying broadly tabu lar interbeds of St, SI, Sm, Fl, and Fsmv 

(Figs. 3 .8 and B-3) . Bioturbation , roots , and a loss of sedimentary structure s giv e evidence of soi l 

format ion near the top of this deposit and may reflect a former land surface . A radiocarbon 

samp le (14C-5) was co llected nea r the base of this fill y ie lds an age of2 .60 ~~--~; ca l kyr BP2010, 

and an OSL samp le (USU- 1188) was co llecte d near the top of this o lder fill but was not analyzed 

(Tab les 3 .2 and 3 .3) . 

The yo unge r inset alluvia l fill is separate d from the o lder fill by a buttress unconformity 

draped with a colluvial wedge (Fig . 3.8). This fill predo minatel y consists of basa l, lenticular , Gh , 

St, and SI bed s comprising the channel-bottom facies association. These are ove rlain by broadl y 

tabular , CM and CM s depo sits containing St, Sr, Fl, and Fsmv beds (Fig. B-3) . At - 3 m depth , a 

slackwater (Fsmv) depo sit shows evidence of soil formation and is capped by a thick channel­

margin sheetflow deposit that also has evidence of an incipient soil at the top of the arroyo-wall 

surface . A radiocarbon sample collected at the base of the deposit and near the toe of the 
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colluvial wedge produced an age of 49.4 ± 4 cal kyr BP 2010 and an OSL sample collected at - 5 m 

depth produce a preliminary age of 1.14 ± 0.36 ka (Tables 3 .2 and 3.3). 

3. 4. 9 KCW-C Interpretations 

Site KCW-C records two episodes of aggradation separated by a period of incision. Prior 

to at least 2.60 ~~--~~ cal kyr BP 2010, KCW was incised at or below its modern grade and began to 

fill at least 5 m to create the older fill exposure (Fig. 3.8) . Following some period of soil 

formation, KCW incised at least 5 m before re-aggrading at least 8 m to create the younger inset 

alluvial fill. Limited age control constrains this aggradation event to have occurred before 1.14 ± 

0.36 ka based on preliminary ages. Aggradation continued until reaching another hiatus in 

sedimentation as indicated by a buried soil at - 3 m depth. The upper 2.5-3 m of sheet-flood 

sediments overlying this buried soil are sourced from local sediments. The interpretation of these 

deposits will be discussed later in section 3.5.1. 

3. -I. 10 KCW-D Observations 

Study site KCW-D contains a north-facing - 10.8 m tall arroyo wall along a meander 

bend in PW approximately 14 km upstream from Highway-89 and Kaibab Gulch (Fig. 3 .9) . Just 

upstream from this study site (- 1.2 km), a 5 m tall knickpoint (knickpoint 2) of Triassic Chinle 

formation outcrops and arroyo wall heights immediately surrounding the knickpoint transition 

from - 10-12 min height downstream to less than 6 m in height upstream (Fig 3.2) . As indicated 

by the stratigraphy at this site, there are two alluvial fill packages separated by an unconformable 

surface. The older alluvial fill is - 6 m thick and dominantly composed of I OYR hued sediments 

that are broadly tabular, St, Sr, Sh, and SI beds (Fig. 8-4). An OSL sample (USU-1178) was 

collected - 4 m above the modern channel and returned a preliminary age of 1.77 ± 0.31 ka and a 

stratigraphically higher radiocarbon sample ( l 4C- 7) was collected from the uppermost channel-
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mar g in bed in QfJ and produced age of 1.44 ~~:~~ cal kyr BP 2010 (Tables 3 .2 and 3.3) . This bed 

also showed minor evidence of soil formation . The younger inset fill is at leas t I 0.8 m thick and 

contains a meter- scale colluvial wedge on lappin g the buttress unconformit y of the older alluvial 

fill and I 0YR , 2 .5Y R, and 5YR hued sediment s (Fig. 8-4 ). 

The you nger fill con tain s basal , lenticular channel-bottom depo sits (Gh) that are ove rlain 

by - I 0-30 cm thick interbeds of broadl y tabular and latera lly ex tensive Sm, Sr, St, Fl channel ­

margin and two Fsmv slackwater depos its (Fig . 3 .9) . The uppermo st Fsmv deposit has ev idence 

of so il formation and is capped by 2-3 m of St, SI, and Fl interbeds. A radi ocarbo n sampl e ( I 4C-

9) co llected -2 m above the modern channel produced an age of 1.20 ~~--~~ cal kyr BP2010 (Tab le 

3.2) , and an OS I samp le (USU- 1179) was collected from a strat igraphical ly higher deposit but 

was not analyzed. An additiona l radiocarbon samp le ( I 4C-8) was collected from the upp ermost 

CMs deposit and yie lds and age of 0.57 ~~--~~ ca l kyr BP2010 (Tab le 3.2) . 

3.-1.11 KC W-D Interpretations 

KCW-D indi ca tes two episodes of aggradatio n separated by an arroyo incis ion eve nt 

(F ig. 3 .9). The chann el reach surroundin g KCW-D began to incise near its modern gra de prior to 

- 1. 77 ± 0.3 I ka and then began to aggrade until short ly after 1.44 ~~--~!cal kyr BP2010, creating the 

o lder fill. The presence of a buri ed so il at the top of the o lder fill indic ates a hiatus in 

sedim entation, which was followed by at least 6 m of entrenchment sometim e befo re 1.20 ~~--~~ 

ca l kyr BP2010. The yo unger fill bega n to aggrade after this period of entr enchm ent until 

sometime before 0 .57 ~~--~~ ca l kyr BP2010• A buried so il near the top of thi s depo sit sugges ts that 

the arroyo-wall surface was stable until large , sediment-laden sheet-flow events deposited - 2.3 m 

of sediment, which was followed by historic channel incision . 

3.4.12 KCW-E Observations 

KCW-E is located in the Deer Springs Wash tributary of the main KCW study area 
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located along a meander bend approximately 9.5km upstream of Highwa y-89 and Kaibab Gulch 

(Fig. 3.2). This north-facing site is 6.9m tall , and its cut-fill architecture di splays two alluvial fill 

packages that are separated by a buttres s unconformity (Fig. 3.10). The older alluvial fill is at 

least - 4.5 m thick with basal channel-margin beds, and is composed of 2.5Y R to I 0YR colored , 

broadly lenticular and tabular, St, SI, and Fl san ds (F ig . B-5). An upper St bed shows evide nce of 

soi l formation and is capp ed with a - 1 m thick (Sm) bed that also shows ev idence of an incipient 

soi l. A radiocarbon samp le ( 14C-11) co llected near the base of this fill produced an age of 

1.38 ~~--~; ca l kyr BP2010 and an OSL sampl e (USU-1 192) collected - 1.1 m below the surfac e 

produced a preliminary age of 0.92 ± 0.20 ka (Fig. 3 . 1 0; Table 3.3) . 

The you nger - 6 .9 m thick inset fill contains a co lluv ial wedge draped across the buttress 

unconformity and channel-marg in deposits that are I 0-30 cm thick , basally lenticular 

trans itioning to broadly tabular , Sr, SI, St, and Fl bed. These are capped with a sub-meter thick 

s lack water (Fsmv) deposit showi ng evidence of soi l format ion (Fig . 3 . I 0). An erosio nal surfa ce 

extends across this Fsmv deposit and is over lain by the uppermost deposit of the younger fill. 

This deposit is - 2.5 m thick an d co ntain s broadly tabular interbeds of SI, St, and Fl. A 

radiocarbon samp le ( I 4C- I 2) co llected - 1 .5 above the mode rn channel grade produced an age of 

0.87 ~~--~~ cal kyr BP2010 and another 14C sam ple from the base of the upp ermost channe l-mar gin 

deposit return ed an age of0.2 ± 0.14 ca l kyr BP2010 (Ta ble 3.2). An OSL sampl e (USU- 1191) 

collected from the middl e of the yo unger channel fill was not analyzed. 

3.4.13 KCW-E Interpre tations 

Age control and stratigraphic ev idence at study site KC W-E sugg est the pre sence 

of two alluvial fills , and indicates that the channel inci sed at or below its current grade prior to 

1.38 ~~--~; cal kyr BP2010 (Fig. 3.10). This was followed by aggradation until a brief hiatus in 
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sedimentation shortly after 0.92 ± 0.20 ka, as indicated by an OSL sa mple age and buri ed so il. 

Depo sition resumed at thi s location for some amount of time until aggradation was interrupted by 

another episode of entrenchment prior to 0.87 ~~--~~ cal kyr BP 20 10. Channel mar gin sedimentation 

of the yo unger alluvial fill per sis ted until at least 5 m of alluvium had been depos ited, at which 

time CMs sedim entati on ensued and so il formation fo llowe d prior to 0.2 ± 0.14 ca l kyr BP20 10 . 

T his was fo llowed by loca lize d erosio n and sheettlow deposition pri or to historic cha nne l cuttin g. 

3.4.14 KCW-F Observations 

Approx imate ly 1.5 km downstream from KCW-D in Park Wash , study si te KCW-F 

contains a north-fac ing, 8.5 m tal l arroyo wa ll (Figs . 3.2 and 3.11 ). The cut -fill strat igrap hy of 

this site stretches along the length of a meander bed just south of a canyon tributary to PW , and 

shows evide nce for two alluv ial fill packages separated by a buttr ess unconformity with two thick 

co lluvial wedges along this contact . The older a lluvia l fill is composed of I 0YR hued sed iments 

whil e the you nger inset fill is dominated by 2 .5YR and 7.5YR colored sediments (F ig. B-6) . 

Basa l units of both fill s co ntain broadly lent icular , grave l and sand channel-bottom and channel ­

margin deposit s (e.g. Gt ,Gh, St , Fl, Fl, Sr) that are over lain by broadly tabular , - I 0-50 cm thick , 

channel-marg in beds (e.g . Sh, St, SI, Sm , Sr, Fl). Both fills a lso have ca ppin g massive sand 

deposits that show evide nce of incipient soi l formation , and the younger fill has an additional 

incipi ent so il < Im below its upp er eros ional co ntact. Ca ppin g the yo unger fill is a - 1.9 m thick 

deposit of broadl y tabular , I 0-40 cm thi ck interb eds of Sm , SI, and Fl w ith ev idence of so il 

fo rmati on at the surfac e . 

A radiocarbon sa mple ( l 4C- I 4) was collected near the base of the older fill and produced 

a near infinite age of 42.6 cal kyr BP20 10 and a OSL sample (USU-1194) was co llected - 3m above 

this and produced a preliminary age of 2.97 ± 0 .70 ka (Fig. 3 .11; Tables 3.2 and 3 .3). In the 

yo unger inset fill , a 14C sample ( I 4C- I 6) was collect ed - 2 m abo ve the modern channel grade and 

returned an age of >45.7 cal kyr BP 20 10 while another radiocarbon sample (14C-15) collected - 3 



m below the va lley surface produced an age of0.66 ~~--~: ca l cal kyr BP 2010 (Table 3.2). USU-

1193 was collected at the base of the youngest fill but was not analyzed. 

3. 4. 15 KCW-F Interpretations 

105 

Stratigraphic evidence and age results indicate that study site at KCW-F had incised at or 

below its current grade and had begun to deposit the older alluvial for some amount of time prior 

to 2.96 ± 0.70 ka (Fig. 3.11 ). Buried soils in the older alluvial fill suggest that hiatuses in 

sedimentation occurred near the top of this stacked fill package. Currently, the lack of reliable 

age data from the base of the younger fill makes it difficult to constrain the timing of the incision 

at this site prior to 0.66 ~~--~: cal kyr BP2010. Following this incision event , col luvial deposits 

onlapping the buttre ss unconformity suggest that the arroyo wall collapsed and caused material to 

be deposited at the channel-bottom. A buried incipient soil at - 1.5 m depth sugge sts a hiatus in 

channel-margin deposition , followed by a period of sheetflow deposition immediately prior to 

historic arroyo cutting (Fig. 3 .11 ). 

3.4.15 KCW-G Observations 

Study site KCW-G is located approximate ly 12 km upstream of Highway-89 and Kaibab 

Gu lch, and nearly 3 km upstream of a 6 m tall bedrock knickpoint (knickpoint 3) (Fig. 3.2). This 

site is a 5 m high west-facing arroyo wal l that shows evidence of two alluvial fill packages 

separated by an erosiona l unconformity (Fig . 3.12). The o ldest fill is composed of tabular St and 

SI beds overlain by a - I m thick Sm deposit , and a - 65 cm thick , red buried soi l that it highly 

bioturbated and has no visible sedimentary structures (Fig. B-7). A 14C sample ( 14C-2 I) was 

collected near the base of this fill and returned an age of 3 .73 ± 0.04 cal kyr BP2010 (Table 3.2). 

Overlying the oldest fill units is a tabular SI bed and overlying variegated silts and sands 

(Fsmv) and Sm depo sit with evidence of an incipient soi I (Figs. 3. 12 and B- 7). An OSL sample 

(USU-I 181) was collected from the SI bed (unit 3) of this intermediate fill and produced a 
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preliminary age of 1.47 ± 1.08 ka (Table 3.3). Onlapped against these beds is an intermediate fill 

composed of basal St and SI interbeds and is capped by an 80 cm thick Fsmv deposit that also 

show s evidence of so il fonnation. Radiocarbon samples 14C-17 ( 1. 18 ~~--~~ ca l kyr BP20 10) and 

14C-20 (not analyzed) were collected from the ba se of unit 5 (Table 3 .2). 

Inset against a buttres s unconformity covered with a thin colluvial wedge is the next 

you nges t fill pack ages that is primarily composed of four unit s of alternating SI, Sm, Sh, St and 

Fsmv bed s and two interbedded units of Fsmv (Fig. B- 7). A radiocarbon sampl e I 4C-18 

(0.68 ~~:~! cal kyr BP20,0) was collected from the base of thi s fill (Table I 3.2) and an OSL sampl e 

(USU-1186) was co llected from the middle of this package but was not analyzed. The uppermost 

s lackwater (Fsmv) bed in the youngest fill indicates - 20 cm of soi l format ion across an erosional 

upper contact with an overlying valley-surface deposit (Fig . 3 . 12). 

3. 4.16 KCW-G Interpretations 

The stratigrap hy at site KCW-G , sugges ts at least 3 alluvial fills with aggradation of the 

o ldest fill beginning somet ime afte r 3. 73 ~~--~: ca l kyr BP20 10, fo llowing a period of ent renc hm ent. 

Evide nce of a massive buried soi l suggest a long period of surfa ce stabi lity - 3 m above the 

modern channel-bottom that was eve ntu ally fo llowe d by an episode of aggradation that capped 

these o lder dep os its by 1.4 7 ± 1.08 ka (Fig. 3 .12). Aggradation of thi s intermediate fill was 

interru pted by a hiatu s in sed imentati on and subsequ ent channel inci sion prior to 1.18 ~~--~~ cal 

kyr BP20 10 . Aggradation of the intermediate fill continued with channel-margin and 

slackwaterdepo sition until sometime prior 0.68 ~~:~! cal kyr BP 20 10, when aggradation ceased 

and the stream entrenched to its modern grade, producing a buttress unconformity (Fig. 3.12). 

Ensuing aggradation continually shifted from channel-margin to slackwater deposition until a 

final hiatus in sedimentation at - 4.9 m above the modern channel. This was followed by a period 

of so il formation and sheetflood deposition prior to historic arroyo cuttin g. 
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3.4.17 KCW-H Observations 

The KCW- H study site is located approximately 7.5 km upstream of Kaibab Gulch and 

Highway-89 , and less than I km down stream from knickpoint 3 in the main trunk channel of 

KCW (Figs. 3.1 and 3.2). It is a mostly north-facin g, I 0.7 m tall arroyo wall that wraps around a 

meander bend, and whose sedim ents have been partially deposited along outcropping bedrock of 

Triassic Chi nle formation (Fig. 3.13). The arroyo-wa ll stratigrap hy at KCW-H shows ev idence of 

at least three alluvia l fills that are separated by erosional unconformities. An additiona l 4 m tall 

fill between the o ldest and intermediat e appears to be a separate allulvial fill. However , it 

conta ins discontinuous , lenticular shaped beds and is considered to be part of the intermediate fill. 

This outcrop predominantly contains I 0-50 cm thick beds that are composed of I 0YR , 7.5YR , 

and 2.5YR hued sed iments, suggesting a range of sediment sources (Fig. B-8). The o ldest 

alluvial fill consists of several tabu lar alternati ng SI, Sh, and Sm beds (Fig . 3. 13). A radiocarbon 

samp le ( I 4C-26) from the base of this al luvial fill and yielded an age of 4.14 ~~:~; cal kyr BP2010 

(Tab le 3.2) , and an OSL sample (USU - I IO I) was extracted - I m above this and produced a 

preliminary age of 4 .2 1 ± 1.46 ka (Tab le 3.3) . Anot her radiocarbon samp le ( 14C-22) was 

co llected - 2 m above this OSL sampl e and yie lded an age of 3.82 ~~:~~ ca l kyr BP2010. The 

uppermost portion of this o ldest alluvial package is co mposed of a thick (- 2.2 m) mass ive sand 

(Sm) that is now highly bioturbated and shows clear evi dence of soi l formation. This so il appears 

to be simi lar to that observed in th e o ldest fill at KCW-G. 

An intermediate fill inset against the o ldest fill package contai ns an erosiona l contact 

within the ge neral stratigraphy (Fig. 3.13). Basal channel-bottom (CB) deposits upstrea m of the 

eros ional contact contain lenticular Gh beds overlain by St and SI bed s and overlying I 0-20 cm 

thick , SI and Sm interbed s, of which radiocarbon sample 14C-24 (1.08 ~~:~; cal kyr BP2010) and 

OSL sample USU-I I 02 (not analyzed) were collected. Dow nstream of the eros ional surfa ce is a 

- 5 m thick packa ge of channel-margin St, Sm, Sh, and SI interbeds that are overlain by a 
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slackwater Fsmv deposit and massive bioturbated sand (Fig. B-8). An OSL sample (USU-1103) 

was collected - 4 m above the modern channel grade and produced a prelminary age of 1.56 ± 

0.37 ka. Compared to the radiocarbon ages from the same fill , it appears that USU-I I 03 is 

producing an age overestimation. 

Buttressed against this intermediate fill is a small colluvial wedge within the youngest fill 

that is on lapped by a sequence of channel deposits containing broadly lenticular beds Gt , Sh , SI, 

St, and Sr, and Fl. A radiocarbon sample (14C-25) was collected from the colluvial wedge and 

yielded an age of2 .28 ~~:~: cal kyr BP20I0 while a I4C sample (14C-27) collected outside of the 

colluvial wedge yielded an age of 0.83 ~~ :~! cal kyr BP 2010 (Fig. 3.13; Tables 3 .2 and 3 .3 ). An 

OSL sample (USU- I I 04) was collected - 1 m below the valley surface but was not anal yzed . 

3.-1.18 KCW-H int erpretations 

Stratigraphic evidence and age control suggests this outcrop exposes three alluvial fill 

packages (Fig. 3 .13). Entrenchment at or below the modern channel grade occurred prior to 

4.14 ~~ :~; cal kyr BP20 I0, and was followed by aggradation in the channel until sometime after 

3 .82 ~~:~~ cal kyr BP20 I0. A pause in sedimentation was caused by another incision event and 

allowed pedogenesis to occur along the stable surface of the older alluvial fill. The intermediate 

fill began aggrading prior to 1.08 ~~:~! cal kyr BP2010, and filled to a level similar in height as the 

older fill. A steep buttress unconformity suggests an arroyo cutting event lowered the channel 

near its modern depth prior to 0.83 ~~:~! cal kyr BP20I0 and was followed by at least 10.7 m of 

aggradation prior to historic arroyo cutting event. 

3. 4.19 KCW-1 Observations 

Study site KCW-1 contains a nearly 10 m tall arroyo wall that faces the west and is 

located just over 5.5 km upstream from Kaibab Gulch and Highway-89 (Fig. 3 . 1 ), and was 

previously studied by Harvey et al. (2011 ). Arroyo wall stratigraphy shows four alluvial fill 



111 

East KCW-H West 

10.7 m 

Sm -;,I,. .. 
n - -
S< -

./ / "T""T' Incipient Soil 

• Radiocarbon (cal kyr BP1010) 

-- • OSL (cal ka) 

Scale = l :1 CB II 
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Qf4, Qf5) separated by eros iona l surfaces with (a) radiocarbon and OSL age results and (b) 

stratigraphic facies and depositional facies associat ions. See Fig B-8 in Appendix B for detailed 

sedimentary descriptions and stratigraphic co lumn s. 



112 

packa ges separated by three buttress unconformitie s (Fig. 3.14). Beds in this outcrop are 

generally I 0-50 cm thick and mostly contain I 0YR and 2.5YR hued sediments (Fig. B-9). The 

o lde st fill is composed of tabular interbeds of Sm, St, and SI that are capped by a thick Fsmv bed , 

which shows signs of so il formation . An OSL (USU-53 I) and radiocarbon ( I 4C-39) sample s 

were previously co llecte d from thi s dep os it by Harvey et al. (20 11) and return ed ages of 2.82 ± 

0.32 ka and 2.3 =~:~:ca l kyr BP, respectively (Fig . 3.14 ; Tables 3 .2 and 3.3) . The next you nger 

a lluvia l fill is - 7 m thick and is co mpo sed of basal lent icular Gh and St beds that are ove rlain by 

broadly tabular Sh, St, Sm and SI beds and cap ped by a thick , red mass ive sand (Sm) bed. This 

Sm bed shows evid ence of incipient soi l formation and has an erosiona l base in places (Fig . B-9). 

A radioca rbon samp le (14C-29) was collected near the base of the fill and returned an age of >46 

cal kyr BP 20 10 and an OSL samp le (USU-530) col lected by Harvey et al. (201 1) from an inset 

channel-botto m deposit returned a small-a liqu ot age of2.25 ± 0.85 ka (Fig. 3.14 ; Tab le 3.3) . 

Anot her OSL sampl e (USU-I 025) was co llected fro m a slightly higher position but was not 

analyzed. 

Buttressed aga inst the intermediate fill is a yo unger fill package composed of basal Gh 

beds ove rla in with tabular chann el-mar gin (e.g . SI, Fl, SI, Sr, Sm) and slackwate r (e.g. Fsmv) 

beds (Fig. 3. 14). Capp ing this fill packa ge is a - 1 m thick incip ient so il (P) . A radiocarbon 

sampl e near the base of this fill y ields an age of 1.72 ± 0.05 cal kyr BP20 10 (Tab le 3.2). The 

younges t alluvial fill is at leas t 9 m thick , overtops all other a lluvia l fills , and is compose d of lens 

of Gh and tabular beds of SI, Sh, and Fl. These beds on lap a thick co lluv ial wedge which drape s 

the buttress unconformity of the intermediate fill (Fig. 3 . 14). A radiocarbon sample ( I 4C-38) was 

collected by Harve y et al. (2011) from the middle of thi s fill and yields an age of 0.66 =~:~! cal 

kyr BP 2010 (Table 3 .2) . Additional observations of KCW-1 are described in Harvey et al. (2011) 

under the name KCW-A . 
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3.4.20 KCW-1 /nterpretations 

Based on stratigraphic relationships , and OSL and radiocarbon results, four alluvial 

packages identified are present in KCW-1 (Fig 3 . 14). It appears that entrenchment at this site to 

or below its modern depth occurred prior to 2.30 ~~:~: cal kyr BP 2010. Ensuing aggradation of the 

oldest alluvial fill was briefly interrupted by a hiatus in sedimentation as indicated by a buried 

soil (Fig. 3.14). A second episode of entrenchment prior to 2.25 ± 0.85 ka is identified by a 

buttress unconformity , and was followed by deposition of the second oldest alluvial fill and 

incipient soil formation. Following a third prehistoric incision event , the second youngest fill 

started to aggrade prior to 1.72 ~~:~~ cal kyr BP 2010 and continued until overtopping the second 

youngest fill at 7.5 m above the modern channel grade . A buried soil at the top of this fill 

sugge sts another long hiatus in sedimentation until a final prehistoric arroyo cutting event prior to 

0 .66 ~~:~: cal kyr BP2010, which was followed by the vertical accretion of the youngest fill and 

historic arroyo cutting event. 

3.-1.21 KCW-J Observations 

Site KCW-J is located approximately 5 km upstream from Highway-89 and Kaibab 

Gulch , and has an exposed arroyo wall rising between Sm and 6 .6m above the modern alluvial 

channel (Figs . 3. 1 and 3 . 15). As one of the widest exposures in this study , the cut-fill architecture 

of KCW-J expands well over 50 m of a meander bend in a north-south direction , and 

unconformable bounding buttresses suggest three aggradational fill packages (Fig. 3.15). The 

oldest alluvial fill contains channel-margin deposits that are primarily composed of I 0YR and 

2.5YR hued, and broadly tabular St, SI, ansd Sm sands that are capped by a thick Fsmv deposit 

(Fig. 8-10). A massive sand deposit filled with 30-50 cm thick, blocky and tabular pebbles and 

cobbles with no evidence of sorting is inset below the Fsmv deposit and does not conform to the 

surrounding facies (Fig. 8-10) . OSL and radiocarbon samples (Tables 3 .2 and 3 .3) were 

collected near the base of this fill and yield preliminary single-grain ages of 1.52 ± 0.74 ka (USU-
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1028) and 1.58 ± 0.30 ka (USU-1027), and a calibrated 14C age of 1.70 ~~:~~ kyr BP2010 (14C-3 l). 

Additionally, a radiocarbon sample from the upper Fsmv deposit produced an age of 1.85 ~~:~: 

cal kyr BP2010. The next younger inset alluvial fill contains four units (5-8) consists of both 

broadly tabular and lenticular SI, St, and Sh beds that are capped by a 0.8 m thick slackwater 

Fsmv deposit (Figs. 3.15 and B-10). An OSL sample (USU- I 026) and two radiocarbon samples 

(14C-30, 14C-33) were collected from this middle of this alluvial fill and returned ages of 1.29 ± 

0.37 ka (preliminary), >31.7 cal kyr, and 2.52 ~~:~~ cal kyr BP 2010 respectively (Tables 3 .2 and 

3.3). The youngest alluvial deposit is erosionally inset in places but largely drapes over the two 

older fill packages and is characterized by three highly bioturbated , tabular beds with incipient 

soils. All beds show some evidenceof low-angle cross-bedding (SI) at their base but are primarily 

structureless due to bioturbation. An OSL sample was collected from - 1.5 m below the valley 

surface and yields a preliminary age of 1.62 ± 0.39 ka (Table 3.3). 

3.-1.22 KCW-J Interpre tations 

The stratigraphy and age control from site KCW-J suggests that three Holocene alluvial 

fills separated by buttress unconformities are preserved at this site. Prior to 1.52 ± 0 . 74 ka, KCW 

was at a grade similar to the modern channel. Aggradation of the oldest fill began proximal to the 

channel until the thalweg of the channel migrated past this site and left an inset channel scour that 

was later infilled by overbank and slackwater deposits . The tabular pebbles and cobbles in the 

Sm deposit are far from any bedrock source and may have been placed due to anthropogenic 

practices. Alternative interpretations of the stratigraphy in the oldest fill package may suggest 

two individually aged alluvial packages, but current age control suggest deposits on either side of 

the channel scour are contemporaneous. Age control from the next younger alluvial fill suggests 

aggradation was underway by 1.29 ± 0.37 ka. Sometime after 1.29 ± 0.37 ka the channel began 

to deposit tabular sheettlood beds at this site , with several lapses in sedimentation is indicated by 

presence of a buried soils (Fig. 3 .15). Age control for these upper capping deposits is limited due 
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to a stratigraphically inconsistent OSL age (USU- I 029) , but their stratigraphic position suggests 

they are some of the youngest alluvium and were deposited prior to historic arroyo cutting. 

3.4.23 KCW-K Observations 

Study site KCW-K contains a - 2.9 m tall arroyo wall that is located in the main KCW 

trunk stream just over I km north of Highway-89 and Kaibab Gulch (Fig. 3. 1 ). At this location , 

the modern KCW channel is nearly I 00 m wide and its sandy alluvial floor is covered in 

vegetation on its channel bars. Arroyo wall stratigraphy and sedimentology at KCW-K show two 

aggradational packages separated by an unconformable bounding surface that are dominantly 

composed of broadly tabular , reddish brown and light red sand beds (Fig. 3.16) . The oldest fill is 

composed of St and Fl interbeds capped by an Fsmv deposit (Fig. B-11 ). An OSL sample (USU­

! I 06) was collected from the basal deposit but was not analyzed and a radiocarbon sample ( I 4C-

34) was collected from the Fsmv deposit and returned an age of 0.95 ~~:~~ cal kyr BP2010 (Fig . 

3 . 15; Table 3.3) . Two separate inset deposits of the younger alluvial fill are separated by an 

erosional surface and either buttress against or overtop this older fill. The se two deposit s are 

composed of tabular St , SI, Sh , and Fsmv beds that are capped by separate thick Sm deposits , 

each showing evidence of soil fonnation (Figs . 3. I 6 and B-11 ). A radiocarbon sample ( I 4C-35) 

was collected from the base of the deposit and returned an age of2 .0I ~~:~! cal kyr BP2010, and 

- 50 cm above this an OSL sample (USU- I I 07) was collected but was not analyzed . An upper 

Sm deposit with evidence of soil formation is truncated by a shallowly dipping erosional surface 

to the south and overlain by broadly lenticular channel-margin beds. Radiocarbon ( I 4C-36) and 

OSL (USU-1108) samples were collected downstream of the erosional surface in this younger 

alluvial fill. The radiocarbon yielded an age of 0.47 ~~ :~: cal kyr BP 2010 (Table 3 .2) and the OSL 

sample was not analyzed. 
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3.4.24 KCW-K Interpretations 

Combined radiocarbon ages with strata! units and erosional surfaces at the KCW-K site 

indicate the two alluvial fills at this site (Fig. 3.16). Based on age control , it is evident that the 

channel floor at this site was incised prior to 0.95 ~~:~~ cal kyr BP. The broad geometry of the 

modern channel at this location and presence of mid-channel bars suggests that this incision event 

may have lowered KCW well below its modern depth. Aggradation of the older fill was followed 

by a subsequent entrenchment event that occurred sometime after 0.95 ~~:~~ cal kyr BP20 10. This 

event is hard to temporally constrain because the age of 14C-35 (2.0 I ~~:~! cal kyr BP2010 ) 

suggests that this sample has been redeposited. Following the initial deposition of the yo unger 

fill , a hiatu s is sedimentation occurred as the channel appears to hav e migrated and scoured into 

underlying depo sits to an unidentifiable depth . Depo sition of the yo unger till resumed prior to 

0.47 ~~:~: cal kyr BP20 10 and was followed by historic channel incision. 

3.-1.25 KCW- L Observations and Interpre tations 

Study site KCW -L is located approximately 400 m from Kaibab Gulch and Highway-89 , 

and contains a 2.2 m tall exposure containing two alluvial fill packages (Figs 3.1 and 3 . 17). OSL 

samples were collected from both the older and younger alluvial fill packages (USU-1183 , USU-

1184) but were not analyzed. A radiocarbon sample (14C-37) was collected from the younger till 

but returned an age of - 46.7 kyr BP (Table 3.2) , which is anomalously old and was likely a piece 

of Cretaceous coal. Unlike other arroyo wall exposures in KCW , KCW-L displays neither a 

characteristic colluvial wedge deposit between alluvial fill packages nor does is it show an 

accretionary sequence of thinly bedded sediment deposition common in all other arroyo 

exposures . Additionally , given its position downstream and less than 3 m height, it is likely that 

KCW-L is representative of a scour-till event or channel migration deposit rather than a larger 

scale arroyo cut-till episode . 
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3.5 Discussion 

3.5.1 Development of Holocene Chronostratigraphy 

OSL and radiocarbon dates combined with arroyo-wall stratigraphic relationships at each 

study site in KCW indicate that at least six episodes of middle to late Holocene aggradation that 

repeatedly refilled the arroyo system to varying levels above the modern channel floor , following 

four episodes of prehistoric arroyo entrenchment (Fig . 3 .18). The identification of these 

aggradation episodes was primarily based on stratigraphic evidence from the study sites and 

secondarily from 14C and OSL age control. From oldest to youngest, the six episodes of alluvial 

fill aggradation are : the older Hereford (2002) fill (- 7.3 -4.85 ka) , Qfl , Qf2 , QfJ , Qf4 , and Qf5. 

The older fill of Hereford (2002) is not described in this study because the exposure was not seen 

during field research. This exposure was described by Hereford prior to 2002 and may no longer 

be preserved. 

The oldest alluvial fill , Qfl , is evident at sites KCW-G and KCW-H and has an age range 

of - 4.35 to 3.4 ka . This alluvial fill package has a unique thick incipient red soil developed at its 

surface and is generally - 3 to 8.5 m above the modern channel floor. In this study , the older fill 

of Hereford (2002) has been identified as a separate aggradation episode from Qfl because age 

results from these two fills do not appear to overlap (see Table 3.2 and 3.3) . However, it is 

possible the Qfl alluvial fill is representative of continued aggradation of the older fill of 

Hereford (2002). Alluvial fill Qf2 is located at sites KCW-C , KCW-F, and KCW-1 and has an 

age range of - 3.2 to 2.25 ka. The preserved surface of the Qf2 ranges from - 5 to 7.5 m above the 

modern channel and is characterized by thinly developed soils. Alluvial fill QfJ is located at sites 

KCW-A, KCW-D, KCW-1, and KCW-J and has an age ranges of-2.15 to 1.45 ka. The 

preserved surface of this alluvial fill ranges from - 4.5 to 7.5 m above the modern cha nnel. The 

Qf4 alluvial fill shows up at sites KCW-B , KCW-C , KCW-E , KCW-G , KCW-H , KCW-1, KCW­

J, and KCW-K and has an age ranging from - 1.3 - 0.8 ka. Preserved surface heights of this 

al luvia l fill package ranges from - 2 to 9 m above the modern channel. The youngest alluvial fill, 
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Qf5, is evident at every s ite in KCW and has an age range of - 0. 7 to 0.12 ka. This alluvial fill is 

commonly the tallest or capping depo sit in the study area and reaches a maximum height of - 11 

m above the modern channel floor. Ultimately, this study successfully updated the existing 

chronology from the three Holocene episodes of aggradation as identified by Herefor d (2002) and 

the four poorly co nstrain ed a lluvial fills identified by Harvey et al. (201 1) (Fig . 3 .19). 

Compl icati ons involved in determinin g the timing of incision and deposition eve nts in 

KCW were primaril y ce ntered on eac h geochro nologic dating technique. These problems are 

detailed in Chapter 2, but are briefly mentioned here because of their overa ll impact on the 

alluv ia l chrono logy . One of the primary problems wit h rad iocarbon dating was mistakenly 

ana lyzing Cretaceous coa l. Five radiocarbon samples returned near-infinite ages ranging from 

- 42.6 to 49.4 ca l kyr BP (Fig. 3.18 ; Table 3.2). Redeposition of charcoal was eq ually 

problematic and acco unt ed for four age reversals at study sites KCW-D ( 14C-9) , KCW-H ( l 4C-

25) , and KCW-J (l4C-33) , and KCW-K ( 14C-35). Hence , constra inin g the timing of aggradation 

at eac h of these sites relied on OSL ages or stratigrap hica lly co nsiste nt radiocarbon ages. 

Moreover , a major ass umpti on wit h radiocarbon dating in genera l is that samp le deposition 

occurred shortly after the death of the orga nism dated . Hence , the radiocarbon ages only provide 

a maximum age of deposition. 

Partial bleaching of alluv ium was a particular co ncern for OSL dating . The flashy flow 

and high sedime nt-disc harge eve nts indicated in th e a lluvia l stratigrap hy suggest that most sand 

grai ns may not ha ve been sufficientl y exposed to light before bein g deposited . This was expec ted 

as indicated by previous OSL-related studies from dry land fluvial systems (e .g. Bailey and 

Arnold, 2006; Arnold et al. , 2007 ; Summa-Nelson and Rittenour , 2012). Mo st of these problem s 

were reduced by using s ingle-grain (SG) dating and a minimum-age-model (MAM) (e.g . 

Galbraith et al. , 1999) to calculate the equivalent do se for samples with high ove rdi sper sion or a 

significant po sitive skew in De di stribution . Despite the use of SG and MAM , OSL samples 

USU-1177 (KCW-B) and USU- I 029 (KCW-J) show preliminar y age inversion s when compared 
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to the arroyo-wall stratigraphy at each site (Fig. 3.18 ; Table 3.3), and other radiocarbon and OSL 

ages. However, further analyses of each sample may reconcile these aberrant ages. 

Besides problems with geochronologic dating techniques, preservation of alluvial fill 

packages varied throughout KCW. Only three sites (KCW-G, KCW-H, KCW-J) showed 

evidence for at least three alluvial fills in their arroyo wall exposures, while only one site (KCW-

1) showed evidence for at least four alluvial fills (Fig. 3.20). In general, the two youngest alluvial 

fill packages (Qf4 , Qf5) were most commonly preserved and so age reconstruction on the 

aggradation of these fills is the best constrained. Unsurprisingly, the oldest alluvial fi II packages 

(Qfl ,Qf2 , and Qf3) were preserved at fewer study sites and so age constraints of these fills , 

especially Qfl , are limited . Variability in preservation of alluvial fills at KCW was expected 

because of the dynamic nature of the arroyo system removes the sedimentary record over time 

and limits the preservation and exposure of older deposits . Importantly , identification of the 

oldest alluvial fill (Qfl) was largely aided by the presence of a thick (>65 cm) buried soil capping 

this fill (Figs. 3.12 and 3.13) . At KCW-G , radiocarbon and OSL age control initially seemed to 

conflict in what seemed to be a continuous alluvial fill package. However , though only - 3 m of 

the Qfl fi II is exposed , the stratigraphy of tabular channel-margin deposits underlying a meter­

scale thick , red buried soil was correlative to the better constrained Qfl fill at study site KCW-H. 

Additionally , radiocarbon ages at each of these sites show good correspondence (Figs. 3.12 and 

3. 13). 

3.5.2 Potential lntrabasinal Influences 

The modern channel profile along the length of Park Wash to the main KCW channel has 

knickpoints that formed as a result of locally exposed bedrock (Figs. 3 .2 and 3 .20). Within the 

main KCW alluvial channel , a - 7 m tall sandstone outcrop of the Triassic Moenkopi formation 

forms a topographic high (knickpoint 3) between two tributary study sites (e.g. KCW-E and 

KCW-G) and a main-stem study site (KCW-H). If downcutting has recurred across this 
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knickpoint during every episode of historic and prehistoric arroyo incision, it is possible that this 

knickpoint prevented or delayed upstream migration of the of the arroyo headcut, thereby creating 

a critical threshold for upstream incision during episodes of arroyo cutting. 

Collectively, Deer Springs Wash and Park Wash tributaries have every Holocene alluvial 

fill preserved in their arroyo wall exposures, which suggest that arroyo incision was never 

disconnected in the KCW study area (Fig. 3 .20). Additionally , reconstructed relict arroyo-wall 

heights suggest that aggradation likely overtopped this knickpoint prior to any Holocene arroyo 

cutting event. In this case, incision would not have initially been perturbed by knickpoint 3 and 

therefore upstream migration of the channel headcut would have likely proceeded uninterrupted. 

Finally, if it is assumed that incision occurred across this knickpoint during every 

entrenchment event, it must also be assumed that this knickpoint is laterally continuous across the 

alluvial valley. Currently , the only evidence for a continuous knickpoint is a bedrock outcrop of 

Triassic Moenkopi Fm exposed above the valley floor and located - 200 m to the east. However, 

bedrock outcrops at knickpoint I and knickpoint 2 located upstream in the Park Wash tributary 

are not evident in the Deer Springs Wash tributary (Fig. 3.3). This suggests that the knickpoints 

in the study area are localized and may not have been influential in prehistoric arroyo cutting 

unless incision continued over a fixed position. 

Holocene alluvial fill heights above the modern channel also suggest that arroyo cutting 

of the KCW channel was most likely influenced by changes in the channel profile geometry . The 

modern channel in the study area has a gradient of - 0.008 and an irregular profile caused by the 

removal of valley fill alluvium during the historic arroyo cutting event. When overlain by the 

heights of relict alluvial fills, it is evident that the KCW stream profile changes to more convex 

(Fig. 3.20) because alluviation causes steepening of the channel gradient along reaches 

throughout KCW. These oversteepened alluvial reaches likely created a catchment-specific 

critical threshold resulting from processes such as localized tributary debris fan deposition or 
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deposition downstream from a loss of sediment transport capacity due to bed infiltration (e.g. 

Graf, 1983; Harvey and Peder son, 20 I 1 ). When hit by high-magnitude flood events with enough 

stream power , arroyo incision could occur along a point of channel instability , as originally 

suggeste d by Schumm and Hadle y ( 1957). Inci sion and sub sequent channel widening would 

continue until some process (e.g . chan ge in channel gra dient , channel-wall failure, vegetation , or 

c limate ) began to prom ote reaggradation. In KCW , it appears that every episode of arroyo 

cutti ng signifi cantly changed the channel geometry or was unable to lower the channe l to its 

prev ious depth . In this case , reaggra dat ion of the syste m may have needed to attain a greater 

height to approac h a crit ica l threshold for incision (see Fig . 3 .20). However , this is based on the 

preserved arroyo-wall heights , which may or may not ind icate the maximum height of arroyo 

paleosurfaces. 

3.5.3 Deposition ofQ/5 'alluvium 

A number of arroyo wal l exposures in KCW are capped wit h - 1-3 m of cha nne l-marg in 

(CM) and va lley-surface (VS) , broadl y tabular sheetflow deposits (e .g . St, SI, Sm, Sr, Sh) that 

typica lly over lie a buried incipient so il. These deposits most commonly the ca ppin g unit s of 

a lluvial fill Qf5 , and are referred to as Qf5 ' . Downstream of knickpoint I in PW, Qf5 ' deposits 

are abse nt at KCW-8 , thicken to - 2.3 mat KCW-D , thin to 1.9 mat KCW-F , and begin to pinch 

out at KCW-G (Figs . 3.7 , 3.9 , 3. 11, and 3. 12). In the DSW tributary , these sheet- flow dep osi ts 

first appear as a - 2.4 m thi ck unit at KCW-C and thin to a 1.3 m thick dep osit at KCW-E (F igs. 

3.8 and 3. 10). In the main trunk channel of KCW , Qf5 ' deposits are initially miss ing be low 

k.nickpoint 3 at KCW-H and KCW-1, and then appear at KCW-J as a 50 cm thick low-angle 

crossbedded sand deposit s. A radiocarbon sample (14C-8) collected - 40 cm below the Qf5' 

deposit at site KCW-D returned an age of 0.57 ~0

0~~cal kyr BP 2010 while a radiocarbon sample 

(14C-20) collected above a buried soil in a Qf5 ' depo sit at site KCW-E return ed a near modern 
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age of 0.2 ~~-~~ cal kyr BP2010_ suggesting these deposits are considerably younger than the Qf5 

alluvial fills they overlie. 

The capping sheetflood deposits in this study are characteristically similar to the 03 

deposits described by Delong et al. (2011) from the Cuyama River arroyo in west-central 

California. In their study, Delong et al. (20 I I) suggested that arroyo entrenchment and the 

deposition of inset ti II terraces ( e.g. 03) within downstream and upstream reaches of the Cuyama 

River was correlative with valley-floor sheetflow deposition of capping alluvium (e.g. 03) along 

unentrenched reaches. Their interpretations were largely based off of depositional facies, soil 

development , and radiocarbon ages . Currently , radiocarbon age results from the present study 

cannot confirm that the Qf5 ' deposits are temporally correlative with historic channel incision, 

and so may not have been deposited by processes described in Delong et al. (2011 ). 

Alternatively , the near-modern radiocarbon ages from KCW suggest it is possible that a 

change in paleoflood hydrology along the Qf5 valley surface caused sheetflow deposition just 

before historic channel incision . Deposition of Qf5 ' may have resulted from an increase in 

overbank flow caused by an increase in the frequency and magnitude of flood events, or from 

overspilling at the valley surface as paleoarroyo channel was reaching its maximum fill. 

Additionally , buried soils that appear to be separating Qf5 ' alluvial deposits at KCW-J suggest 

sheetflood episodes may have been discontinuous (Fig. 3 .15). Moreover , the alluvial fills in 

KCW appear to show a trend of increasing alluvial surface heights following aggradation (Figs. 

3 .20 and 3 .21 ). Whatever the depositional mechanism , it appears that Qf5 ' is the highest fill 

deposit within the study area (Fig. 3.21). 

3.5.4 Comparing and Understanding Regional Chronologies 

Initial comparisons of chronologies from KCW, the canyon reach of Kanab Creek 

(Summa, 2009; Summa-Nelson and Rittenour, 2012) and the upper Escalante River (Hayden, 

20 I I) indicate a different number of cut-fill events throughout the Holocene that have been 
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inferred from stratigraphic relations, and radiocarbon and OSL ages of alluvial packages (Fig. 

3.22). Whereas KCW indicates at least six cut-fill events, results from the upper Escalante River 

indicate a higher frequency of arroyo cut-fill events (six) while canyon reach of Kanab Creek 

reveals a lower frequency (four) over the last - 5 to 7 ka. However, uncertainties in the frequency 

of arroyo cutting and filling in all studies are limited to arroyo-wall preservation and accurate 

identification of arroyo stratigraphic cut-fill relations. Further , correlating regional chronologies 

to either allogenic or autogenic forcings is difficult due to the temporal complexity of arroyo 

cutting and filling, and the centennial-scale age resolution from radiocarbon and OSL dating 

techniques. Nonetheless , alluvial chronologies can be used to make some general statements 

regarding the balance between allogenic and autogenic forcings in regional arroyos . 

When compared to the canyon reach of Kanab Creek (KC) , the KCW chronology 

suggests that there are some similarities in the timing of arroyo aggradation and incision over the 

last - I ka (Fig. 3.22) as originally described by Hereford (2002). Although it appears that 

incision at KCW may have initiated slightly later (- 0.8 ka) than the - 0.9 ka incision events at 

KC , the temporal resolution of the KCW radiocarbon and OSL ages are within error of this 

episode of incision. The start of this - 0.9 ka episode of incision is also evident when compared to 

the chronology of the upper Escalante River (ER). However , an intermediate cut-fill episode is 

indicated in the chronostratigraphy of Hayden (2011) which starts at - 0.5 ka and ends prior to the 

historic channel incision (- 1903 - 1932 AD) identified by Webb and Baker ( 1987) (Fig . 3.22). 

This transitional cut-fill episode suggests that the upper Escalante River may have been more 

geomorphically sensitive to climatic or hydrologic perturbations over the past - I ka when 

compared to KCW and KC. It is also possible that flashy flow events during this time were much 

more variable within the contributing area of the upper Escalante River. This variability may be 

due to fluctuations in the frequency and intensity of climate-related events such as late summer 

tropical storms or the North American Monsoon. Conversely , results from Hayden (2011) 

indicate significant age-over lapping between the Unit VI alluvial fi ll and preceding a lluvia l fill 
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(Unit V) . Thi s overlap suggests that the - 0 .5 to 0 . 12 ka cut-fill episode may have actuall y been 

continued aggradation of the Unit V fill from sheet-fiood deposition caused by a change in the 

paleohydrology , similar to the Qf5 ' alluvial deposits in KCW. Additionally , Hayden (2011) doe s 

not indicate that a buttre ss unconformity separate s Unit VI from Unit V that wo uld otherwise 

support arroyo cutting. 

Beyo nd the last - 1 ka, arroyo aggradation and incision episo de s between eac h of the se 

drainages are more temporally complex. For example , an episode of incision occur red betwee n 

- I .45 and 1.3 ka prior to the aggradation of alluvial fill Qf4 in KCW (Fig. 3.22) . This episode of 

entrenchmen t is wit hin error of incisio n at ER but over laps wi th a period of aggradatio n (Qa3 fill) 

seen in KC records. Hence , this near-synchronous relationship between KCW and ER may be a 

result of chara cteristica lly simi lar catc hment- speci fie geomorp hic thresholds during an interval of 

flood intensive regiona l c limate perturbations . On the other hand , aggradation of the Qa3 fill at 

KC might have been due to a less sens itive geomorp hic threshold in the face of s imilar climate 

perturbations . This one sce nario can be exp la ined by differences in regional arroyo morphology. 

The chann el geometry of KC may have reduced the overa ll sed iment transport capac ity , thereby 

only enabl ing co ntinu ed depos ition. Similarly , criti ca l thr esholds for incision in KCW and ER 

may have been approached mor e readily due to a small er sedim ent tran sport ca pac ity and rapid 

deposition derived from upstrea m, local tributary or hill slopes sed iments. 

Temporal offsets in arroyo dynamic s also exis t at - 3 .5 ka, wher e KCW and KC indicate a 

nea r-synchron ous episode of entrenchment but ER indi cates a - 1 .6 ka yea r episode of 

aggradation of the Unit II alluvial fill (Fig. 3 .22). Howeve r, g iven the approximate <700 year 

time span for complete channel aggradation and incision during the late Holocene in ER, it is 

likely that deposition of the Unit II alluvial fill was interrupted by channel cutting events. 

Moreover , Hayden (2011) acknowledges that cut-fill relationships in ER were genera lly inferred 

from depo sitional brea ks, not buttress unconformities , and so evidence of an incisi on event in ER 
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Fig. 3 .22. Regional correlation of alluvial chronologies and the chronology derived from KCW in 

this study . Modern alluvium ages from KCW (Hereford , 2002) , Kanab Creek (Webb et al. , 1991 ), 

and the upper Escalante River (Webb and Baker , 1987) are reported . 



134 

generally relied on distinct separations in the chronologies an alluvial package. Hence, a gap in 

the timing of Unit II deposition identified by Hayden (2011) suggests that there may have been an 

episode of incision at -3 .5 ka (Fig. 3 .22). This would be temporally consistent with the timing of 

entrenchment events in KCW and KC and would suggest that incision at this interval was likely 

caused by an allogenic (climate-related) forcing. As the oldest alluvial fills from KCW (Qfl ), 

KC (Qa4), and ER (Unit I) are poorly preserved and have limited age control, correlation between 

episodes of aggradation and incision is unclear. However, alluvial chronologies from regional 

drainages suggest an extensive period of aggradation was ongoing prior to - 4.35 ka and may have 

started as early as - 7 .3 ka ( e.g. Hereford , 2002). 

When taking into account the uncertainties involved with age resolution , alluvial fill 

preservation, and arroyo-wall stratigraphic cut-fill interpretation, it is clear that a near­

synchro nou s correlation between these three regi onal arroyo systems can be made . Co mparing 

the regional alluvial chronologies from - 3.5 ka to present suggests that an allogenic forcing (e.g. 

climate) was likely a driver of arroyo dynamic s. The frequency of arroyo cut-fill events between 

drainages becomes more similar if the episode of incision between Unit V and Unit VI in ER (see 

Hayden , 2011) is actually continued deposition and if the I .6 ka episode of aggradation in ER 

was interrupted by arroyo cutting events - 3.5 ka . While uncertainties in ER exist, radiocarbon 

and OSL ages from each regional alluvial fill are within error of one another and the cut-fill 

episode between KCW and ER are strikingly similar, as would be expected from a dominantly 

allogenic forcing. 

On the other hand , the Qa3 alluvial fill in KC suggests there may be an asynchronous 

relationship between regional drainages (Fig. 3.22). As mentioned earlier, this could be due to 

the difference in intrinsic geomorphic thresholds (autogenic controls) during the period from - 1.3 

to 1.8 ka. More importantly , historical documentation suggests a difference of -3 0 years between 

arroyo cutting between these three drainages ( e.g. Webb and Baker , 1987 ; Webb et al., 199 I; 

Webb and Hasbargen , 1997; Hereford, 2002). Hence , while climate played a role in historic 
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channel incision , it is also clear that catchment-specific thre sholds (in addition to anthropogenic 

activity) may have contributed to the temporal offsets in incision or aggradation. Ultimatel y, the 

temporal complexity or arroyo dynamics makes it difficult to qualify the effect allogenic or 

autogenic forcings by only comparing regional alluvial chronologies. While a climate-related 

forcing may be mor e influential to arroyo dynamics, as suggeste d from a compari son of regional 

stratigra phy and age result s, a qualitati ve comparison to paleoc limat e records is needed to test thi s 

assert ion. 

3.5.5 Comparison to Paleoclimate Records 

There is debate abou t the ro le of climat e in driving episo des of arroyo cutting and filling , 

and a number of studies have attempted to resolve this by comparing alluvia l chrono logies to 

paleoclimate records (e.g . Hereford , 2002; Mann and Me ltzer, 2007). Hereford (2002) compared 

his KCW and regional a lluvia l chro nologies with dendroclimatic reconstructions of the so uthern 

osci llat ion index (SO I) from Stah le et al. ( 1998) and suggested that historic and Late Holocene 

arroyo cutting events in the sout hern Utah were caused by extreme flood events resulting from 

increases in the frequency and intensity of El Nino-So uth ern Osc illation (ENSO) activity . Later , 

Mann and Meltzer (2007) suggeste d that it wo uld be unlikely for interannual or decadal-scale 

teleconnections, like ENSO , to drive century to mill ennia l-sca le inci sio n and aggradation eve nt s. 

Rather , they suggested that decadal-scale te leco nnections, suc h as ENSO, are imbedded and he lp 

modulate more influential and longer climatic perturbations , such as those associated with the 

North American Monsoo n (NA M). They compared their a lluvia l recor ds to isotopic 8 180 and 

8 13C from snail shell s and 8 15N from bison bone s (Meltzer, 2006) and regional paleoc limate 

records to propose that the strength of the NAM controls summer-wet (strengthened NAM) or 

summer-dry (weakened NAM) conditions respectively contribute to valley entrenchment or 

alluviation in northea stern New Mexico. The following sections will compare alternative ENSO, 



NAM , and representative regional paleoclimate records of the past -7.3 ka to the alluvial 

chrono logy from KCW to test for similar climatic forcings. 

3. 5. 6 Mid-Holocene Paleoclimate Records 
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Paleoclimate records suggest conditions during aggradation of the oldest fi II (- 7 .3 - 4.85 

ka) from Hereford (2002) were some of the warmest and driest of the mid-Holocene and directly 

align with the Altithermal warm period from - 7 to 5 ka (Antevs , 1952; Thompson et al., 1993; 

Menking and Anderson , 2003). For example , Reheis et al. (2005) noted dune activity from - 8.5-

6 ka in Canyonlands National Park, indicating a period of drought throughout the Colorado 

Plateau, and Ford et al. (20 I 0) indicated a later period (- 4 ka) of increased dune activity at Coral 

Pink Sand Dunes State Park in southern Utah which is attributed to reduced precipitation (Fig. 

3.22) . Moreover , winter precipitation in the southwestern United States is known to decrease 

during enhanced La N iiias in response to teleconnections with ENSO (Redmond and Koch, 1991) 

and periods of increased dune activity and dust emissions have often been linked to a weakened 

ENSO (Okin and Reheis, 2002 ; Reheis, 2006) . Weakened ENSO and enhance La Nina 

conditions are also corroborated by atmospheric-oceanic teleconnections from the mid-Holocene 

in which high boreal summer insolation and strong austral winter insolation likely contributed to 

the warm and dry Altithermal conditions (Liu et al., 2000) . Finally, data derived from decreased 

sedimentation in the Laguna Pallacocha (southern Ecuador) and the El Juno sand (Galapagos 

Islands) record proxies suggest a mostly weakened ENSO signa l from - 7.5 to 3.5 ka (e.g. Moy et 

al., 2002; Conroy et al., 2008). This long and relatively dry Altithermal interval not only aligns 

with the deposition of Hereford ' s (2002) older fill (- 7.3 - 4.85 ka) but also with the oldest fill in 

KC (Qa4, - 6.5 - 3.5 ka). 

Alluviation of the Qfl fill in KCW and Unit 1 fill in ER falls within the - 5 to 3.2 ka 

interva l of the early Neoglacial , a period of glacial advancement and some periglacial activity 
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characterized by regionally cooler temperatures and increased effective moisture (Denton and 

Karlen, 1973; Fall, 1997) (Fig . 3.23) . Castiglia and Fawcett (2006) noted distinct episodes of 

increased precipitation within this period are distinguished by periodic lake level highstands 

throughout the Palomas basin system in northern Mexico from - 4.25 to 3.8 ka, which correlate 

with glacial advance records in northwestern New Mexico (Armour et al. , 2002) . Additionally, 

records derived from Laguna Pallcacocha (Moy et al. , 2002) and El Junco sand (Conroy et al., 

2008) suggest a slight increase in ENSO variability starting after - 5 ka and extending to - 3.5 ka. 

As suggested by Webb et al. ( 199 I), increased effective moisture during this period may have 

increased sediment input regional systems due to physical and chemical weathering of bedrock 

and hillslope deposits , thereby promoting system aggradation. Additionally , it is possible that 

regional drainages would have aggraded to some critical geomorphic threshold during the length 

of the early Neoglacial , and the slight variability in ENSO strength may have contributed to 

arroyo episodes of arroyo incision up to - 3.2 ka (Fig. 3.23). 

3. 5. 7 Incr eased Climat e Variabiliry into the Late Holocene 

Following the end of the early Neoglacial at - 3.2 ka , paleoclimate records indicate a clear 

transition to a period of increased climate variability that extends through the late Neoglacial , 

Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) (Fig. 3.23 ; 3 .24) . It is also 

during this period that the frequency of episodic arroyo cutting and filling appears to increase. 

Hence , while a relatively stable climate from - 7 to 3 .2 ka may have allowed for infrequent 

episodes of arroyo aggradation and incision , increased climate instability in the late Holocene 

may also directly correlate with an increase in the frequency of arroyo cutting and filling. 

However , there is no clear correlation between arroyo cut-fill events and specific climate events, 

such as drought or increased precipitation. 

For example , the period of Qf2 (KCW) and Qa3' (KC) aggradation at - 3 .2 - 2.25 ka 

overlaps with peak values of elastic sediments in lake cores from Lake Ejod in Uinta Mountains 
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of northern Utah (Monroe et al., 2013) (Fig. 3.23). This paleoclimate record is a proxy of 

periglacial activity and could be used as a good indication of the warm and dry intervals often 

associated with arroyo aggradation. However , thi s record of periglacial activity also overlaps an 

interval of increased ENSO-related activity , as indicated in the Laguna Pallac ocha record of Mo y 

et al. (2002). A similar scenario comparing these two paleoclimate records is ev ident during the 

- 2 - 1 ka aggradation of alluvial Qa3 at Kanab Creek but episodes of cutting and filling w ithin the 

ER and KCW (Fig. 3.23). 

A poss ible explanation for this discrepancy is that corre lation does not always equate to 

causation . As ind icated earl ier , it is large ly accepted that frequent high-magnit ude discharge 

events promote incision whi le periods of infrequent , low-magnitude flow events promote 

aggradation (e.g . Leopo ld. 1951: Webb and Baker , 1987). However , because these high-flow 

events relate to particular weat her phenomenon , it is difficult to separate their freque ncy and 

magnitude from tempora lly comp lex paleoclimate records. Hence , while the hydrologic 

cond itions inferred from "wet " or "dry" paleoclimate records might impl y an mcrease or 

red uctio n in floods , this may not always be the case . 

Exa mples of thi s are also ev ident when compar ing paleoclirnate records to the historical 

chann e l cutt ing eve nts. Webb et al. ( I 991) indicates that the first erosive floods of historica l 

chann el cutting in Kanab Cree k occurre d in August of 1882 and July of 1883 and were related to 

monsoo nal eve nts . Similarl y, Webb and Bak er ( 1987) indicated that large flood eve nts in the 

Esca lante Rive r, startin g in 1909 and endin g in 1932, also occ urred in the later summ er and ea rly 

fall, and were coincident with mon soo nal rains. However, a period of intense drought 

reconstructed from summer-forming latewood tree-ring s in southeastern Arizona related to 

negative standardized precipitation indices (decrease in monsoonal precipitation) from 1882 to 

1904 (e.g . Griffin et al. , 2013) overlap histori c inci sion in KCW and KC, but an increase in 

mon soo nal precipitation per sisted from 1904 until the early l 920s. As di scussed earlier, Hereford 

(2002) attributed historic channel cutting in KCW to wet, flood-related El Nifio events with a 5-yr 
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recurrence interval and Webb et al. ( 1991) indicate that heavy flooding from heavy snowmelt due 

to increased ENSO-related winter snowfall caused continued incision at Kanab Creek into the 

early 1900s . Indeed, the El Junco sand record (e.g . Conroy et al., 2008) clearly show this spike in 

ENSO activity during the late 1800s (Fig. 3.23). However , Laguna Pallacocha record (e.g . Moy 

et al. , 2002) show a distinct decrease in ENSO activity (i .e . 2-8 year variance) starting at - 1.2 ka 

and extending to this time (Fig. 3.23). Hence , combining these records indicate that some of the 

major weather-related events which caused historic arroyo cutting are often imbedded in "warm 

and dry " paleoclimate records . For this reason , caution should be used when trying to directly 

correlate ENSO , NAM, or any other regional paleoclimate records to episodes of cutting and 

filling. Rather , it may be more accurate to relate the relati ve increase in climate variability to 

potential arroyo cutting and filling episode s. 

For example , drought reconstructions of the southwestern United States from 

dendrochronologic proxies and the Palmer Drought Severity Index (PDSI) indicate oscillating dry 

and wet periods over the last - 2.1 ka ( e.g. Cook et al. , 2008; Fig . 3 .24). Additionally , sub­

millenial-scale fluctuations in G. sacculifer abundance in the Gulf of Mexico from - 2.3 ka to 0.5 

ka is interpreted to correspond to precipitation variability due to increased or decreased 

monsoonal activity in the Colorado Plateau (Poore et al. , 2005 ; Fig. 3.24). These records may not 

indicate individual flood events , but they do suggest that the variability in monsoonal activity 

throughout the late Holocene may have contributed to increased arroyo activity . Thus , the role of 

intrinsic geomorphic thresholds must also contribute to arroyo dynamics in the face of increased 

climate variability. 

3.5.8 Climate and Geomorphic Threshold Interactions 

As expressed earlier , Schumm and Hadley ( 1957) suggested that arroyos must meet some 

intrinsic critical threshold for incision to occur. Thus , increased climate variability could increase 

the timing at which a system will meet a critical threshold. For example, following entrenchment , 
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a centennial-scale period of dry and warm conditions may initiall y increa se the amount of 

sediment stored in a drainage basin due to a reduction in stream power and a decline in vegetation 

along terrace s and hill slopes . Intermittent low -magnitude flows imbedded within this period of 

drou ght may cause a sys tem to slowl y aggrade by dep os itin g thin flood packa ges of sediment as 

woody riparian vegeta tion is esta bli shed within the channel due to stabi lizatio n of th e 

gro undwat er table at the channel bott om (e.g . Webb and Leake , 2006) . Indeed , the common 

<30cm thick and low-flow regime facies deposits in KCW , KC , and ER indicate this kind of 

flood-related deposition has occ urred . Moreover , at its current aggrading state , severa l reac hes 

throughout KCW are overw he lmed w ith riparian vegetation . 

A transition to a centennial-scale period of dominantly cooler and wetter c limate 

conditions would likely to continue aggradat ion , where a vege tation- strengthened hydraulic 

roughness cou ld a llow larger magnitude flows to deposit th icke r (>50cm) flood packages with 

high-flow regime fac ies . These character istic depo sits are also evident in KCW and other 

regionally drainages (e .g . thick , massive sand deposits) . However , in a system already near ing its 

critica l thr eshold, a high-m ag nitud e flood eve nt cou ld initiate arroyo cutt ing. If the climati c, 

biologic , and geo morphi c conditions described are simil ar within regional drainages , nea r­

synchro nou s chan ne l inc ision may occur. On the other hand , it is possible cont inued aggra dation 

wou ld occ ur in a system whose critical geo morp hic, and biologic , threshold was in dissimilar to 

near by drainages . Hence , if hydrol ogic condit ions chan ged due to a transition back to a 

regionally wa rm and dry climate , aggradation wo uld eve ntuall y increase the sensitiv ity of the 

dissim ilar sys tem toward a critical thre shold . Accordingly , increa sed strea m power from a series 

of flood events imbedded within regionally drier conditions would push a sys tem past its critical 

thr es hold and trigger incision , but the timing of incision may be asynchronous to other regional 

drainage s. 
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3.6 Conclusions 

In this study , a detailed chronstratigraphy of KCW was built usmg stratigraphic 

relationships from arroyo-wa ll exposures and age results from AMS radiocarbon and OSL dating. 

While each dating method was subject to potential problems , combining the two methods allowed 

for increased sampling opportunities and cross-checking of results to eliminate aberrant ages. 

Ultimately , this newly developed chronostratigraphy has expanded and updated the previous 

KCW alluvial chronologie s developed by Hereford (2002) and Harvey et al. (20 I I), and resulted 

in the identification of at least six episodes of Holocene aggradation from - 4.35 - 3.4 ka , - 3.2 -

2.25 ka, - 2.15 - 1.45 ka, - 1.3 - 0.8 ka , and - 0.7- 0.12 ka , plus an older fill (- 7.3-4.85 ka) of 

Hereford (2002), that are interrupted by cent ennial-scale periods of inci sion . 

Knickpoint s identified in the active channel appear to cau se local entrenchment depths to 

decrease imm ediately upstream of the knickp oints , but do not appear to affect the timing or 

development of arroyo entrenchment. Rather , the timing of arroyo cutting and filling in KCW 

may have been influenced by the transition from a shallower , irregular profile following 

entrenchment to a more convex and potentially more unstable profile during aggradation . 

Incision was likely induced a long reaches with increase convexity during high-magnitude flood 

events which caused channe l cutting to propagate upstream. Additionally , the identification of a 

young sheetflood deposit capping a number of alluvial fills may have been deposited concurrent 

with arroyo entrenchment or may have been deposited due to a change in channel paleohydrology 

immediately before channel incision. 

When the alluvial chrono logy of KCW is compared to regional chron ologies from the 

ca nyon reach of Kanab Creek and the upper Esca lante River, it is evident that the difference in 

the timing and frequency of arroyo cut-fill episodes may be due to uncertainties in arroyo -wall 

preservation , strat igraphic cut-fill relation ship s, and age results . However , when all available 

uncertainties are taken into account , it see ms that the timing and frequency of most regional cut­

fill episodes are near-s ynchronous. This near-s ynchronous relationship may indicate a strong 
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climate-related forcing. Additionally , when these regional alluvial chronologies are compared to 

paleoclimate records , it is apparent that the frequency of arroyo cut-fill episodes responds to the 

temporal variability of climate change. This appears to support Hereford's (2002) suggestion that 

regionally contemporaneous aggradation and incision events over the last - I ka could be tied to 

regional shifts in climate related to the Little Ice Age and Medieval Climate Anomaly . However , 

it is not easy to directly correlate periods of dominantly "wet " or "dry " climate condition (e.g. 

ENSO or NAM-related) to arroyo cutting and filling chronologies. The reason for this difficulty 

is two-fold. To begin , it is difficult to separate climate-related changes in hydrologic conditions , 

either erosional or depositional , from paleoclimate records. Additionally , some catchment­

specific geomorphic and biologic threshold must be met before incision can occur. It appears that 

thi s critical threshold make s it difficult to draw parallels between alluvial chronologies , causing 

disconnect between the timing of regional arroyo dynamics wherein arroyo aggradation and 

incision may not be contemporaneous. 

Given the results of this study , more work is needed to bridge the gap that exists with 

correlation uncertainties between the chronostratigraphy of KCW , and the regional alluvial 

chronologies and paleoclimate records. This can be resolved in a multi-step approach . To begin , 

additional alluvial chronologies from characteristically similar drainages proximal and distal to 

KCW need to be developed for a more meaningful temporal correlation of arroyo cutting and 

filling . For example , Johnson Wash is an arroyo system located - 25 km to the west KCW that 

shares similar reach elevations (2800 to 1500 m asl) and arroyo wall heights (< 15 m), but an 

alluvial chronology for this drainage does not currently exist. In addition, local paleoclimate 

records (e.g. tree-rings) could be reconstructed from specific catchments to help better resolve 

some uncertainties with the frequency and strength of aggradational or erosional flood events , 

which may be a function of annual increases in precipitation . 
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. CHAPTER4 

FINAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

Research for this thesis investigated the alluvial chronology of Kitchen Corral Wash, 

southern Utah. Chapter 2 tested the applicability of combining AMS radiocarbon and OSL dating 

to date alluvial sediments in order to construct a reach-wide alluvial chronology in a dryiand 

fluvial system . Both AMS radiocarbon and OSL dating have been previously reported to have 

both limitations and successes in semiarid systems. In Chapter 3, the reconstructed alluvial 

chronology from KCW was combined with detailed stratigraphic descriptions to create a robust 

mid to late Holocene chronostratigraphy of past arroyo cut-fill events. Results from this 

chronostratigraphy were compared to regional alluvial records from Kanab Creek and the upper 

Escalante River and regional paleoclimate records in order to test for an allogenic (climate­

related) or autogenic (internal geomorphic threshold) forcing of arroyo cut-fill dynamics . 

Chapter 2 discusses the benefits of using a combination of AMS radiocarbon and OSL 

dating to build alluvial chronologies in dryland alluvial systems. Benefits included increased 

sampling opportunities and a greater ability to cross-check results to identify age inaccuracies. 

Results highlighted potential problems with both dating techniques , but suggested these problems 

can generally be mitigated by sampling recommendations. 

Past studies have suggested that problems involving redeposition of organic material and 

sampling of Cretaceous coal would be encountered when using radiocarbon as a dating tool, and 

this was also the case in KCW. Despite using measures to avoid these and other problems 

associated with radiocarbon dating in dry land fluvial systems, most notably sampling of angular 

charcoal fragments from charcoal-rich lenses, ten of the 37 radiocarbon samples analyzed for this 

study still returned significant age overestimations or age inversions. Hence , in the absence of 

annual plant litter , it may not be enough to sample from a charcoal-rich lens to get a consistent 
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radiocarbon age. Rather , Chapter 2 suggests additional recommendati ons to mitigate problems 

with this datin g method . 

The fir st recommendation is to use alternative mean s beyond microscopic analysis to 

di sce rn charcoal from coal. In especially small sample s, it can be difficult di stingui sh the 

characteristic carbonized rings of charcoal from the heterogeneou s structur e of coal. Instead , 

density and specific grav ity differences between the se two organic materials may be a more 

useful identifi cation tool and can be tested byfield or lab analysis of the presence of suspe nded or 

floating charcoal. The second recommendation is to avoid redeposited organic mat eria l by 

samp ling for rad iocarbon material severa l meters away from a co lluv ial deposit. In thi s study, 

radiocarbon sampl es collected less than a meter from a colluvial wedge return ed inve11ed ages 

because of the likliehood that they were or iginally source from an o lder deposit and subsequent ly 

redeposited fo llowing slope failure of the incised arroyo wa ll. The final recommendation is to 

co llect relatively large pieces of angular charcoa l, or organic material , so that only a s ing le piece 

meets the weight and vo lume req uirements fo r AMS analysis , effective ly avo idin g conta min ation 

by mixin g diff erently aged mat eria l. 

The alluvial stra tigrap hy and sedim ento logy in KCW suggests the system has 

expe rienced multiple flashy-flow and high-sedim ent dischar ge eve nts. These conditions have 

ofte n been noted to be probl emat ic for OSL datin g because sedim ents tend to be deposited rapidly 

and with little so lar ex posure, which ultimat e ly results in partial resetting of the lumin esce nce 

signal and age ove restimation . The repre sentative beddin g characteri stic s in the KCW arroyo 

wall stratigraphy , inc ludin g bedding facies, bedding thickne ss , and original sed iment so urce, of 

each alluvial deposit were primarily used in Chapter 2 to discuss optimal sample strategies for 

OSL dating. Preliminary single-grain age result s and statistical analysis of De distribution s 

sugges t that previous OSL sampling strategies proposed by Summa-Nelson and Rittenour (2012) 

from a study in the Kanab Creek arroyo (e.g. Summa-Nelson and Rittenour , 2012) may not 

always be applicable to KCW , and additional strategies for OSL sampling based on bedding 
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characteristics may be more favorable. In addition to sampling deposits less than 40 cm thick , 

this study suggests that targeting alluvial deposit s based on their original sediment source could 

result in OSL samples that have been more adequately bleached , as evidenced in overdispersion 

values of the De and CAM to MAM ratios. In general , this study found that grains were more 

adequately bleached when the majority of sediments in a sampled deposit contained very pale 

brown , fine- to medium-grained, well sorted frosted quartz sand grains from upstream sources 

(e.g. Navaj o Sandstone). Poorly bleached sediments were red, very fine- to fine-grained , 

moderately to poorly sorted sands with variable amounts of clays and silts and were derived from 

local bedrock, hillslope , and tributary sources . Locally sourced sediments likely had a shorter 

transportation distance and were deposited more rapid ly, effect ively limiting the amount of solar 

expos ure prior to burial. 

It should be noted that these advised sampling strategies will not necessarily result in an 

increased number of accepted grains for single-grain dating because the majority of gra ins 

analyzed commonly do not produce a natural luminescent signal. Additionally, it is still likely 

that sediments attained from optimally targeted deposits will still show considerable signs of 

partial bleaching. For example, age overest imations would sti ll be produced if the natural 

luminescence signals are averaged or if the most appropriate De values are not correctly chosen. 

Consequently, this study also advises using a combination of single-grain dating and use of a 

statistical age model (CAM, MAM-3, or MAM-4) to help measure and select De values and 

obje ctively calculate the most accurate age of a sample. 

In addition to the recommendation s highlighted in Chapter 2, it would be valuable for 

future research to validate recommendations of strategic sampling based on sediment source for 

OSL dating . Originally, the separation of OSL samples into upstream, local, and mixed was 

subjectively based on field and lab observations. These observations could be validated for KCW 

sediments by measuring the particle size distribution of a sample using a Malvern particle size 

analyzer to objectively determine whether samples are more homogenou s, as expected of 
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upstream sediments derived from the well-sorted Navajo Sandstone, or heterogeneous, as 

expected of local sediments derived from poorly sorted siltstones and sandstones. If an upstream 

sample did not return the homogeneity expected, there could be some additional factor controlling 

the bleaching characteristics of KCW samples. Additionally, the sediment source strategy could 

be tested in other arroyos throughout the southwest where upstream and local alluvium sources 

can be differentiated. 

Chapter 3 indentified at least six episodes of aggradation and incision in the KCW arroyo 

walls by combining stratigraphic relationships with the age control from AMS radiocarbon and 

OSL dating . These aggradation events comprise the alluvial packages from 12 study sites , which 

can be identified from oldest to youngest as: - 7.3-4.85 ka older fill of Hereford (2002) , - 4.35 -

3.4 ka (Qfl) , - 3.2 - 2.25 ka (Qf2) , - 2.15 - 1 .45 ka (Qf3) , - 1.3 - 0.8 ka (Qf4) , and - 0.7- 0.12 ka 

(Qf5) . Th e chronostratigraphy of KCW was initially compared with the location of alluvial fi II 

preserved arroyo-wall heights along the modern stream profile to help reconstruct the cut -fill 

alluvial history of KCW . While field observations and the stream profile revealed the presence of 

>6 111 tall bedrock knickpoint s in the channel , the preservation of alluvial fills and preservation of 

paleosurface along the knickpoints suggest these topographic anomalies have not affected 

head ward migration of the channel cut. Rather , arroyo cut-fill events in KCW appear to have 

been influenced by the transition of an irregular profile following entrenchment to a more convex 

and critically unstable profile during aggradtion , which likely induced incision during high­

magnitude flood events . Additionally, the identification of Qf5 ' sheetflood deposit that cap 

several alluvial fills may have been deposited concurrent with arroyo entrenchment , as described 

by Delong et al. (2011 ), or may have been deposited due to a change in channel paleohydrology 

immediately before channel incision. 

In addition to reconstructing the fluvial history of KCW , results from the 

chronostratigraphy were also compared with alluvial chronologies from regional drainages and to 

paleoclimate records to test if the hypotheses related to arroyo formation and evolution. Hereford 
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(2002) originally suggested that the nearly synchronous nature of arroyo cut-fill events over the 

last - 1 ka could be tied to regional climate pattern, and so a primary goal of this study was to test 

alluvial chronologies from similarly sized catchments in southern Utah shared a near­

synchronous or asynchronous relationship. A comparison of the alluvial chronostratigraphy from 

KCW and alluvial chronologies from the canyon reach of Kanab Creek and the upper Escalante 

River reveals that a number of arroyo aggradation and incision episodes appear to be near­

synchronous , but some are asynchronous . Reasons for this variability can partly be attributed to a 

combination of uncertainties in the preservation of regional alluvial fills and an inaccurate 

interpretation of stratigraphic relationships. Nonetheless , it is also possible the temporal 

relationships of regional arroyo cutting and filling can be correlated with both climate and 

geomorphic conditions. Paleoclimate records suggest that the frequency of arroyo cutting and 

filling respond to changes in the variability of climate perturbations , potentially contributing the 

near-synchronous timing. However , even when uncertainties are accounted for , it appears 

catchment-specific geomorphic (and biologic) thresholds may also play a role because 

asynchronous cut-fill relationships do exist in the regional alluvial chronologies . 

Additional work should begin by focusing on building a tighter chronology of the valley 

surface sheet-flow alluvium (Qf5 ' ) to support or reject the hypothesis that this unit was deposited 

concurrent with the historic arroyo cutting event , as suggested by Delong et al. (2011 ). 

Constraining the age of these deposits might shed additional light on the fluvial processes specific 

of KCW that are occurring during or just prior to arroyo incision. Preliminary results indicate 

that single-grain OSL and radiocarbon dating using the recommendations of Chapter 2 may not 

be sufficient. Rather , for alluvial deposits this young , ring counting of buried Juniper trees may 

be best for dating. For this , alluvial deposits would be dated by locating the base of a buried 

Juniper trees and counting the number of annual tree-rings at that level. Ring counts on a buried 

tree would provide a maximum age of the surrounding deposit, and this dating technique has 

already been successfully used in KCW by Hereford (2002) and Harvey (2009). 
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An interesting observation is the relatively strong correlation of arroyo cut-fill events 

over the past - 1 ka between regional drainages not only discussed in this study but also between 

the proximal Virgin River (Hereford et al., 1996), Black Mesa region (Hall , 1977), and Chaco 

Canyon (Karlstrom, 1988). Historic arroyo cutting was initially tied to poor land practices by 

early pioneer settlers, and so it could be possible that the most recent prehistoric (- 0.7-0.8 ka) 

arroyo cutting event was also partly related to anthropogenic practices . Setting aside potential 

climatic and geomorphologic influences , it would be interesting to investigate the population 

densities and agricultural practices of Puebloan cultures surrounding KCW and regional drainage , 

and their potential effect on prehistoric arroyo cutting and filling. Archaeologist suggest that the 

presence of the Pueblo II and Pueblo Ill Anasazi cultures increased proximal to drainages in 

southern Utah around - 1.1 ka as precipitation and rising water tables gave rise to the cultivation 

of maize (Cuchs , 2000). Maize remained a large component of the Basketmaker 11 to Puebloan 

Ill and Fremont cultures , and its cultivation necessitated irrigation canals and flood-water farming 

(Barlow , 2002 ; Huckleberry and Billman , 2008) which could have channelized run-off and 

promoted incision during periods of intense precipitation. Archaeological artifacts found in a 

pithouse excavation in Park Wash suggested evidence for Basketmaker Ill or Puebloan I 

occupation at - 1.0 to 1.3 ka (Ahlstrom , 2000). Additionally, Harvey et al., (20 I I) reported 

evidence of a cultural horizon capping the Qf2 alluvial fill at study site KCW-1. Based on 

potsherds of the "black-and-white " style , he suggested this paleosurface was occupied by the 

Puebloan II or Ill Kayenta Anasazi culture ca. 0.8-1.2 ka. Hereford (2002) also provided 

evidence of Puebloan artifacts that dated to - 1.1-.13 ka. Although it is evident that occupation of 

the alluvial valley in this region existed, estimations of the total population and the timing of 

occupation remains unclear , and evidence of irrigation canals in KCW has yet to be suggested . 

Finally , more work is needed to bridge the gap that exists with the correlation 

uncertainties between the chronostratigraphy of KCW and the regional alluvial chronologies or 

paleoclimate records used in this study. Accordingly , future work could focus on obtaining 
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alluvial chronologies from characteristicall y s imilar drainages pro x imal and dista l to KCW. For 

exa mple , Johnson Wa sh is an arroyo system locat ed - 25 km to the west KCW that shares similar 

reac h elevations (2800 - 1500 m asl) and arroyo wall height s ( < 15 m) , but does not currently 

con ta in an alluvial chronology. Hence , creating a chron ostratigra hpy for Johnson Wash alluvial 

and corre latin g it with KCW may be meanin gfu l, and cou ld help reconcile cor relatio n 

uncertainties that co uld stren gthen arguments fo r an autogenic or allogenic forci ng. 

While a number of the paleoclimate records examined in this study were obtained from 

databases surroundin g the Co lorado Plateau , a few we re also obtai ned from more distal locations 

(i.e . the El Juno sand record from the Galapagos Islands) and may not have significantly 

correlated with the KCW chronostratigraphy. According ly , it would a lso be more meaningful to 

compare the alluvial chronology of KCW to locally derived paleoclimate records to more 

accurately resolve a cut-fi ll relationship to climate . In this case , a dendroclimatolo gical 

reconstruction for the KCW catchment or an expansion of existing tree-ring databases for the 

surrounding region might help resolve potential problems that are caused by corre lating arroyo 

respo nses to regional and distal cl imat e s igna ls or to orographic effects . 
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APPENDIX A. OPTICALLY STIMULATED LUMINESCENCE DATA 
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APPENDIX B. STRATIGRAPHIC COLUMNS AND SEDIMENTOLOGIC DESCR1PTIONS 
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Fig 8-1. Stratigraphic columns and sedimentologic descriptions of KCW-A .. 
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Fig 8-2. Stratigraphic columns and sedim entolog ic descripti ons of KCW-8 .. 
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KCW-C 

4 

Stratigraphic Column 1 
Relative FIii 

9 

8 

7 

Package 

?:::: .. ,::, .. :::-'.'.\ 

QfS' \ji /(\ Gh/Sm/S r 

'¼;~;{;;.';; 

Qf4 EY/\/ 
· .. ... . 

······:·······:··· 

:: :·-:::: :::: .. : :: ---~ 

:.:·.·.=::.=.:·:_:·:·:::··. 

.. ··.······-

. ~:2:;)·.J_~-::·o 
1:>'::::~-~:::=:6:-':°-

Fsmv 

St 

Sr/ Fl 

St 

Sr/ Fl 

St 

St/SI/Fl 

St 

0 
••••••• : ••

11
.:- ... Gh/Sh 

I I I I I I I I 

] 

14 1 1 2 6mllgrt reddish bro wnQ5YR 6/4) broadly tabua, , rnasslve sand (Sm)depostt 
con talrirq se-~ral la,ger gravel pebble stied clas2s.. This k>wer dep:>slt is overlain t7j a thin 
Sr bed To the ~st . this urit co rtaltlSa lowerbed ofGhandaddttk>nal thin St/f l s:heetOood 
de!X)Sltsthat Me,capped wtth a40.::rn th1ek soil CB.CM, VS 

] 

13 IJm Light reddish b1CM"n Q5YR 614) llghtred Q5YR6/6) and very pale brown 
( 1 OYR 714) t hln la1era/ly continuoo s. tabularbed s of va, legated days, sih s. and very 
fine t o fine poorly sorted sand s (f smv) lnopteot soil fo1malion ev lden1 In uppet 20 m 
ol deposit CMs 

12 I 3m Very pale brown (10YR8/J) broadly tabula! .iod L:llerally 
continuou s St sand bed containing a few lnt(.'fbedS of Fl An OSL 
sample (USU 1137) was col'ec.&ed In the lower SI depos::t CM ] 

] 

11 0.3 1.25m Very pa6e brown (10YR8/3), broadly tabula, rlpplecro~ -bedded 
defX)sHcontalnlng several interbedso f IIQht red (2 5YR6/6)to c:>'nk (7 SYR 7/4) 
thlnnly lanlnated silt s and sands (fl) . Sa"ds are very fine to medium , poo rty 
sor1edand no 1mallygacled. This deposit ls overlain be a Fsrrw bed to the 
v,,,est.CM. 

J 10:0 - 0.9mVery pale brown(10YR8/3) .dlscontlruous. tabular 

] 

St sard bed with grains rangln-;;i from fine to medium . CM. 

9: Q . 1.2m Very pale brown , b roadly tabular , ripple crossbedded 
sa nd s (Sr) within twoJO-<IOo n thick lnterbed s cl lightred QSYR 6/6) and 
very pale brown ( I0YR 7/ 4) discontinuou s Fl and Sr beds.Contacts between 
Sr and Fl beds are t ypica lly wavy. CM. 

J 8:0 -0.75m\lery pale brown CI0YR8/3),discontlruous. tabular 
St sard bed wllhgralns ranglr-.;, from fine to medium . CM. 

] 

7:0 - 1.9m ll,Jht red (2.5YR6l4) to very pale brown OOYR 7/-1). lentk:ul.ar beds of 
t rough cross-~ (St) sard overlain bv thin lentk:Ua, lnterbed sof St. Sl and 
A. Grains are very fine to medium, sub-angWr to Slb -rounded rormally ga::ied 
sands with some sill. A ra :Uocartx>n sample (l-1C-6) was collected from the k>wer St bed . 

] 

CM . 

6:0 I. lm thickcolluvlal v.edQe co ntaining very fine - to coarse .grained sand and 
sih y<layrtp-1.4) clasts.. VSc.. 

J S: 0 - 0.&-n (baSie nOI visible) . Very pale brown (IOYR 8/3) , 6entlcular . hortzontally 
bedded sands and gravel s fGh) overlain by a pink (7 5YR 7 / 4), lenticular , pl.ria, bedded s.1nd 
depsoit (Sh). CB. 

Fig. B-3 . Stratigraphic column and sedimento logic descriptions of KCW-C . 
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Stratigraph ic Column 1 
flelat ive I ill 
Pack,,gce 

II 

10 

ots·1> 

9 

8 
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OJ 6 
::'2' 
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···· .. :: 

SI 

SI/St/ Fl 

Fsmv 

St 

Fsmv 
St 

Fsmv 
St 

Fsmv 
St 

Fsmv 

St 

Fsmv 

St 

St/Fl 

Fl 
St 

Sh 

KCW-D 

·11. J. r:,n, Vc1y p,'IIC bruwn ( l OYR 8/3, / / 4), b.-o;irlly Tabu l,11, fh 1n ,..md m cdilJrn 

low an<Jll• (\ I) ,1111! 11ouyl1 oos,bt~ddL'f l C"t) c;,1nd<:. w i1h lhin 111lt.->l bclh l1r l .imin,11ed 
'.>illy '.>dlH.I (f I). St ,:1nd SI deposi ts rnos ll y conuin fin e to CUd l St' lJtdin ed, puo ll y '.>OI led, 
norm ,1lly 91,Hk:d "1nth . Tt1e upp(1m o-.1 <.1 dcp os 1 i, sliQhtl y fim •1 9 1 ;1i1wd (fine to me dium) 
;:ind j<;. c,1ppt!d w 11h ,1 /Oon ll1ic'k mcipi cnl ,oil th ,11 j,; <lc•vo id o f any ,<·t l 1men 1,11y 

suuctw es. Rad1ocd1bon dnd OSL Sdmples (14( -9, USU- 1180) we.e exuac1t"C1 flom the I 
owe , S1/Flclep<",i1. CM an1I V\. 

7,8,9, 10: ~ ) - 5.6m liq h t red (l .:iYl-t 5/6), b1n,HJly ldbu la1, t1ouut1 ou'.>Sbe<.ldell 
'.>dnds ()t) wi1l11ne dium tu I hi ck in l et be(h v fliqhl rtdll 1sh brow n (2.SYI~ 6/•I), hqh: 
rc·d (J .1IYR M6), ,m d vc.1·y p,1lc bH iWn (1 OYA 7/4) thin , IMc-r,llly rnn 11nuous, l,lbul ,u 
~, .h o f vctd t:!qdh::d cldy'>, '.>ill s, dnll \/e1y fin e 1u fin e, poorly w tt et.l '>,md s (I sn1V}. 
(u ntd Cb bdw te n )t ctml I snw bed'.> di e typi cdlly wavy. A ld tht1ca1Uon Sdmµie 
( 14( 8) wits rn llecte d f,oir, the upfX'I F._,nv <leposit . \ t lx"<ls ,1rc <M 
dnd I '.>llW IJt'th dte CM'.>. 

6: O l .J.m Vt'f y p,1le b!,, w n ( I OYR 8/~, 7/•ll b1 oddly t,1bul ,1r, 1r1iut1h om,;,b(i( lded 
sand s (Sr) w ith thin in tc1beds of laininittcd silty sand (11) St depo sit s conu 1n fine 
10 m cd iurn q r,1ine<I, q 1b rounde< I, poo r ly sm fed, nom);l tly q ritdC'rl, fro<;led <JU,lrf7 
<:,;ind .._ Thinnl y l,1n1in,1IC'd inK1bed ,;, itre p1irrn1ity ._illy ,m i l Vl'fY fin e q, itlfl (.'(J <,,H11l. 
A 1Mli ocMbon ._,1rnpl l' ( 14( q-,..v,1._ co llecrcd horn lh C' lowet <.1 bed ,md Ml 0\ 1 s,lll1ple 
(U) U I 1 79) W,lS COll(•( l l~<I horn the mickll e \ t bed c M 

V, 

;;; 
OJ 
::'2' 

bedd ed ..,,1r1d,; ,,1l1I 91,wd.., (Gh) <>vet lain by ,1 p ink (7. ':>YR 7/4), le,111a 1l,11. pta11ar bc.c"(Jded ,;and 

1, 

0 

t';·,~e;~:.2 '. "'" lil Gh J 5: o (J.8111 (b ,1c;c 1101 vi..,ible), Vc1ypale bf own ( IOYR Bil), li.111in,la1, lioriLunrally 

] 

dcp ,;oit (\h) (8. i 

4_: t) 4- 1 Sm !hick colluvial wedge contdining ve1y fine- 10 codrse-q1a1ned s,md anrJ 
,;illy da y111, up d,1 ,;t-; V';c ................................... 

,·Oo: Sm 

CJ 
>- -i3~ '";:..._Eu ~f .g 

Q. u 

Fig. 8-4. Stratigraphic columns and sedimentologic descriptions of KCW-D. 

KCW-0 

Stratigraphic Column 2 
R1•l.111v,, Fill 
Pd1. kd~ll' 

~-= v ~ 
'>'-C: v 5,~ -g 

Q. u 

l: 2.0 3.0 m Vety p;ilc bro w n ( 10YR 8/~) 10 pink (/.ti YR 7/4), 
b1odd ly ldbu la1, lo\v-,mql e, ripµle , dl1d ll uuQh aossbetlded s,md (St.Sr, ~I). 
Grain s ,11eve ry fin e to medi u1n m odc1.11ely 10 we ll soll ed, and ,;ub rnunrlcd . 
An 0\ 1 s,rn1ple (U\U 1178) ,1nd 1i1<.hocd 1bnn ,;ampl e (14 (. 7) weieco llected 
hom thi s depo sit . n1e uppt1 ~I dep us11 tn lhis unit shO\\I'> ev id ence 
o f soil fornldtio n . CM dnd V~. 

] 

2 1 c; I 6 m Very p,1lc b1own ( IOYI~ 8/1, 7/ 4), bro,ldly labu litr, \ I, <.t, \h, 
and \r beds w llh 1ntet·bed ,; o f l,1m11Hlerl ,;11 ry <;itncl (fl) . <.,r ,l in ._ itl e fin e 
lo n)e(:!ium ·~1a1n~t sub -1ound e<I, p0(>1ly sor led. noirrM ll y 91;.ided, 
hos ted QUdf tz '.>and s. Oeds are t1ene1 ally 20-40 cm thick . CM. 

I · 0.4 I 7m (bitse nnt visible), Vt-1y µ,1le b 1own ( IOYR Sn) to pink (7.1 YH 7/4), 
len 1icul.11, b,1<;,11 g,avel'> (Gh) in1e1 be<ldt'>cl 'M lh low -ang le ,1nd 1rouyh 
o ossbedded sand (St, SI). G1dins a,e fine to n--.ediu,n m ode.at ely to 
wel l ,;ort ed, .1nd <;Ubf ound ed C ll M~d c M 

-.J 



Eut KCW-E ..... 

Stratigraphic Column 1 
Relati ve 6 

Fill Package 

4 

s 
] 4 0 •I I m. h9h11ed (l SYR 6;8). h,o.,dly ,ab<,l.u mm1v, s,nd {Sm! 

Sm/P 
bed tha1 "h,ghly btotu,bated and dppedf\ to haYf' ~Yf'flll cm of 
1nc1p1f'nl wil (Pl CM 11nd v<i 

"' J J O • O 5 m "''' p.,I• b<own. b«>•dly t>bul•• de,,ouh ,on,~n•ng 
a; 4 

St OJ 10cm th1ek S1 be<h and a thmnly lam,na1f"d ithysd1ld (Fl) bed UPJ>f" 
~ j "~--.--··--' ·=-·""" ""' SI was colle,c led from tlw-lower SI b@d (M 

Fl 

'} 1 7 1.8 m. red, bro<t<fly tabular mAU•Vf' \dnd (Sml depcw1 wi•h 
SI several Fl 1n1e.beds Sm grains are Vt'I')' fine 10 lined. p;,o1ly s011ed 

11nd \ub angul111 10 \ub rounded This d('J)Os1t ltl-.o conuttm v11n11ble 
amounis of Sths and clays CM 

St 
] l OJ O 9 m a.,,. not ,...,,, "'Y p.,I• b<own l!OYR 7, 4' •nd l,gh1<ed 

{2 SYR 616) 1abuloll' bedded deposit contol1n1ng a bawl~ fine, to ~1um 
gta1ne-d r1pp(e crosw,e,ctcie,cl fS,) sand capped wi1h --10 20 cm 1h1ck 
St 1nterbt>d\ A rad10e11rbon ~mple (14{ l l)wasc.>flt-c:ted from tlw 
StdepoStn CM 

0 0 

f~ >-Ev ~i 8 

Fig. 8-5 . Stratigraphic columns and sedimentologic descriptions of KCW-E. 
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Stratigraphic Column 2 
Relative Fill 
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g SI 

Fsmv 
St 
St 
Sr 

St/Fl 
SI 

St/Fl 

St 
Sr/Fl 

St 
St 

Sm 
St 
Sr 

SI 

j] 
10 l .S 1.75 m, hqht rf"d (7 SYR 6/6) to rrd f2.!iYR 6/8:· broadly labular SI and fl 
sheet Hood mt4!'1bec;h C.,ams ,n th•s urnt are vefY firw, 10 ftrw, sub angular to sub roundf'd. 
poatly to modet'tHely s.ortf"d ,tnd hk~y d~,wd hom local KKJrce-s A ritdK>Carbon wmple 
{14C· ll l was collec1f!d from 1h15 d..,asn CM and VS 

9 OS -08 m Light rf!dd,sh brown (1 SYR 6/4) pale brown (10YR 6/3) and ~y 
pale brown {10YR8n) 7 lo 10cm 1h,ck, la1erallycont1nuous . t11bular 
1nt4>1bf.ds of var,egated clay\ and very fine to fine. sub rounded, poo rly 
sorled s.,nd5 (Fsmv). ThP upper 70cm of lh" un11 d'IOw, evid~e of ,nctptent 
,011 formation CM\ and VS 

8 O 9 2 6 m. ~ypalebrown (lOYR 7/4) tnterbedded dt"P0\11 of St Sr, SI. and Fl 
bed, Gr•ns v.ry from very fine to ~,um. mod~a,ely to "o¥ell-sor1ed. frosted 
quartz lndwtdual hed\ 11re 10 to SO cm 1hfck. An OSL \amplt, 1USU 1191)was 
co llec1«t from th•s unn CM 

J 7 -40 c:m thick. red. br0<1dly tabula,. -1ery fine 10 fine gramed 
SI bed CM 

] 

6 0 1 4m t8a~no t seen) Rrd 12 SYR 4/6).md wry pale brown (IOYR 7/41. br06dly lenl1Cul., 
ro 1abul111 ""Y Mt' to mechum grained low angj., crcmbedded (SO. npple c:rossbedded (Sf). 

and trough crossbfttdedsanch capped with• mass1v-t YOO (Sm) A rachocarbon sample ( 14( 12) 
w•Hollttted lrorn th,s un,1 CM 

f~ >-Ev~~ 8 

-.J 
N 
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Stratigraphic Column 1 
Relative Fill 
Package 
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P/Sm 
QfS' SI 8 

Sm 

SI 

7 Sm 
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6 SI 
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ai 

SI a, 
~ 

St 

4 Sh 
SI 

St 
3 

St 
Qf2 Sr 

Sm 

2 St 
Fl 

Sr 

St 

0 

>- -"' > - e u Ol~ -g "' --;:; ~ 0.. V 

KCW-F 

] 

14: 15 - 1.7m Light red (2.SYR o/4) and reddish yellow (7.SYR 6/6), broadly tabu lar and laterally 
continuous low .ang le cross bedded (50 and mass ive (Sm) sand depo sits. Grains are mode rate ly 
sorted silt to fine-grained sand. Upper Sm be shows soil formation evidence. CM and VS. 

J 13: 0.4 - 0.6m Light red (2.SYR 6/4), bro .dly tabu lar'. rnassive sand (Sm) deposit 
that is high ly bioturbat ed and contains rootes (inopient soil). CM. 

] 

12: 1.3 3 m Ligh t red (2.SYR 6/ 6) Jnd prnk (7.SYR 7/ 1). broadly tabular, 
very r111e tofme--gramed, poolly sorted, St and SI silty-sand beds wnh 
rl rnterbeds. A radioca rbon sarnpl e(14 C 1 S) was co llected from an upp er SI 
bed. CM. 

7: Colluvial wedge deposrt 

4: 1 .4 2.5 m Very pale brow n, broadly tabular, Sh. Sl and SI 
sands with - 10 crn thi ck inter bed s of hght red (2.SYR 6/6) and 
very pale brown (1 0YR 7 /4) lamin ated sands (rQ. Grains are gene rally 
very fine to med1ummoderately to V'IE'II so1ted sands. An OSL sample 
(USU-1194) was collected from this deposit. CMI. 

] 

3: 1.1 rn Very pale brow n (1 0YR 8/3), laterally cont inuous and tabu lar 
Sr, Sm, and St sand beds. CM. 

trough cross-bedded (St) sands. Grains are very fine to medium, sub-angular to sub rounded, 
normally graded sands. CM. 

West 

] 

2: 1.1-1.3 m very pale brow n (1 0YR 7 /4), tabular beds of tipp le crossbedd ed (Sr) and 

] 

1: 1-1.Sm (base not vis ibl e), Very pale brown (1 0YR 8/3, 7/4) and pink( 7.SYR 7/4), lenti cular, horizontally 
bedded sands and grave ls (Gh) th at are ove rlain with thin (- 15cm), rnassive(S m), ripp le crossbedded 
tr ough cross bedd ed, and lam inated sand int erbeds. A rad iocarbon samp le (14C-14) 
was co llected from an St deposit . CB and CM. 

Fig. B-6. Stratigraphic column and sedimentologic descriptions of KCW-F. 
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KCW-G 

Stratigraphic Column 1 
Relauve 
Fill Package 

St 
p 

Fsmv 
Sm 

Fsmv 

12.13 09 0.8m.hghtr«l(2.SYR6/81 brNdlytabul¥Fsmvde-pos1t 
ttwt gradei 10 .in W\C1p.ent ~ {P. O'1@f'l)'ln9 1h,s 11> • -20 cm thK.k 

Y 
shtttflood ~t containing tine to mechum ~mf'd. moot'fatPfy s.ort.-d 
trough croubedded 1!:.t, s.inds. (Ms underlying CM and VS 
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Fig. 8-7. Stratigraphi c co lumn and sedim ento log ic descripti ons of KCW-G . 
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] 
~~ ';--E v OI~ -g 
V VI a. V 
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SOI' ted, and normallyQfadi:,d qua1tz sands Beds a,e -10-30 cm th.ck Two rad,001bon 
samPes(14C·33, 14(-30) and an OSl sarrple(USU-10ll;)v.eecollected iomthu ~posit 
CM 

5 07 m (Basennot seen), l19ht1ed (2 SYR 6/6), lent1rular itndtab.Jlar, SI sand 1. 

G1a1ns 1nth1sun1t1angef1ornvey tin.,.to rredrum, sub~ounded,moderately 
:.o,tcd, and no,mally graded quartz sands 8edsare-20·30crn thick (M 

Fig . 8 - 10. Stratigraphic co lumn s and sedim ento log ic desc ription s of KC W-J. 
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0 1
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d~OO'S•L(M 
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