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ABSTRACT 

Effect of Blue Light and Temperature on 

Leaf Expansion, Stem Elongation, and Growth 

by 

Tracy A.O. Dougher, Doctor of Philosophy 

Utah State University, 1999 

Major Professor : Dr. Bruce G. Bugbee 
Department : Plants, Soils, and Biometeorology 

Ill 

Short height and high yield per unit energy in controlled environments are essential 

to the success of a food production system for spaceflight. Temperature and light quality 

can be manipulated in controlled environments to reduce plant height and increase yield. 

Although the effects of temperature on height and yield are well studied at ambient CO2, 

temperature effects at elevated CO2 with a hydroponic root zone are not well 

characterized . We studied soybean yield and height under two lamp types over a broad 

range of temperatures. Temperature had little effect on yield or height, but lamp type had 

a significant effect on canopy height. This first study highlighted the importance of 

understanding spectral quality in controlling plant growth, especially canopy height. 

Numerous studies have compared lamp types and suggested that profound 

differences in leaf area, canopy height, yield, and total dry mass responses were due to 

blue light differences . Unfortunately, the most energy-efficient light sources have the least 



IV 

blue light. We have a poor understanding of the specific morphological and histological 

effects of blue light on leaves and stems. Three species, soybeans, wheat, and lettuce, 

were grown at five blue light fractions (0, 2, 6, 12, and 26%) and two light levels (200 

and 500 µmol m·2 s·1 
). Phytochrome photoequilibria were constant among treatments. 

Blue light responses were species dependent. Wheat leaf area, dry mass, and stem length 

were insensitive to blue light fraction. Increasing blue light to 26% decreased soybean 

stem length, but leaf area was greatest at 6% blue. Lettuce leaf area, stem length, and dry 

mass were highly sensitive to blue light fraction between 0% and 6% under high pressure 

sodium lamps, but were insensitive between 6% and 26% under metal halide lamps. These 

results may be complicated by sensitivity to other wavelengths . The decrease in soybean 

stem length with increasing blue light was caused by an inhibition of cell division, while the 

decrease in leaf area was caused primarily by a decrease in cell expansion. Increased 

lettuce leaf area with increasing blue light fraction was caused by both cell division and 

expansion . This research indicates that lamps high in blue photons are not only 

energetically wasteful, but do not benefit, and in some cases reduce, plant growth. 

However, some blue light is necessary for controlling plant height in soybean and even 

required for proper growth and development in lettuce. 

(197 pages) 
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CHAPTER 1 

INTRODUCTION 

This research, funded by the NASA Advanced Life Support (ALS) program, 

sought to improve production efficiency of crop plants in controlled environments. 

Astronauts in an ALS system depend on plants for food, air revitalization, and water 

purification. Plants are grown under controlled conditions so that light intensity, spectral 

quality, CO2, plant nutrients, and temperature can be altered to optimize yield per unit of 

input energy . Growth volume is limited, so plant height needs to be minimized. There is 

considerable potential to manipulate temperature and light quality to reduce height 

without reducing yield. 

Temperature 

Temperature affects both yield and height in many species . Most of these results 

are from studies done in the field or growth chambers at ambient CO2 and in soil. In 

controlled environments, the reduced plant water potential usually associated with high 

temperatures can be minimized by growing plants hydroponically at high humidity and 

elevated CO2. Elevated CO2 reduces photorespiration, which generally increases with 

temperature . Thus crops grown in controlled environments should have higher 

temperature optima than field-grown plants. Optimal field temperatures for many species 

have been characterized, but the results may be affected by reduced plant water potential 

and increased photorespiration. 



Light 

ALS systems will rely on electric lamps or filtered sunlight for plant growth 

lighting, which provides an opportunity to alter light quality relative to sunlight. Light 

quality is known to affect plant morphology. High pressure sodium (HPS) lamps and 

more recently, red light emitting diodes (LEDs) are widely used to improve energy 

efficiency , but they have little to no blue light. Lamps with a higher blue content such as 

metal halide (MH) and cool white fluorescent are less energy efficient. Blue photons are 

energetically expensive to generate. In spite of several decades of research, the 

mechanisms underlying the effects of blue light on leaf and stem morphology are still 

poorly understood . Small amounts of blue light appear to be important for normal 

development of some species; however, too much blue light may be detrimental . 

2 



Stem morphogenesis 

CHAPTER2 

LITERATURE REVIEW 

Temperature 

3 

High temperatures increase the elongation of soybean stems . Thomas and Raper 

(1978) found that at day temperatures of 14 to 18°C stems were relatively short . 

Increasing temperature from 18 to 30°C at ambient CO 2 increased stem length by at least 

20 cm for each 4°C . Increasing night temperature had a much smaller effect on stem 

elongation than increasing day temperature . A maximum stem length occurred at 30/26°C 

and a minimum at 14/ 10°C. 

Elevating CO2 can alter temperature optima . Sionit et al. (1987a) compared CO2 

levels from 350 to 1000 µmol moi-1 and found that stem height increased with increasing 

CO 2 , but height was more responsive to temperature . Previous studies on soybeans at the 

Utah State University Crop Physiology Lab showed that increasing CO2 level from 350 to 

1000 µmol moi-1 increased canopy height from 28.5 to 39 .5 cm when grown at 26/22°C 

day/night temperature. 

Erwin and Heins (1995) showed that plant height could be affected by the 

difference between day and night temperatures (DIF). The typical condition of warm days 

an.d cool nights results in a positive DIF. Controlled environments and greenhouses can 

be controlled to maintain cool days and warmer nights, which results in what is called 

negative DIF. The more positive the DIF, the taller the plant. However, some large-
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seeded species and legumes show little sensitivity to DIF (Erwin, 1991; Erwin and Heins, 

1995) . Thomas and Raper ( 1978) examined several combinations of day/night 

temperatures in ambient CO2. A reexamination of their data indicated that holding day 

temperature constant and increasing night temperature from 10 to 26°C (decreasing DIF) 

increased stem length in soybean. This result is opposite that of Erwin ( 1991) and Erwin 

and Heins ( 1995). However, increasing night temperature only increased stem length by 

20 cm. In the same study, increasing day temperature and holding night temperature 

constant (increasing DIF) more significantly increased stem elongation . This result agrees 

with Erwin (1991) and Erwin and Heins (1995) . 

Leaf morphogenesis 

Thomas and Raper ( 1978) found that warm night temperatures and cool day 

temperatures reduced soybean leaf area. Maximum and minimum leaf areas were achieved 

at 26/10°C and 14/26°C, respectively . Increasing CO2 from 330 to 740 µmol mol"' can 

also increase leaf area but the response appears to be temperature dependent (Baker et al., 

1989; Sionit et al., 1987a; Ziska and Bunce, 1995). 

Effect of temperature on yield 

Temperature affects soybean yield, yield components, and harvest index (Thomas 

and Raper, 1978; Sionit et al., 1987b ). A day/night temperature of 26/20°C appears to be 

optimal for soybean growth and yield in the field (Raper and Kramer, 1987) and controlled 

environment at ambient CO2 (Gibson and Mullen, 1996). High CO2 typically increases 

temperature optima, and yield is more responsive to CO2 at higher temperatures 
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(Campbell et al., 1990; Ziska and Bunce, 1995; Sionit et al., 1987b; Baker et al., 1989). 

Interaction of temperature and light quality 

Numerous studies of temperature have been conducted in controlled environments, 

each under different lamp types (Thomas and Raper, 1978; Downs and Thomas, 1990; 

Bunce, 1991; Gibson and Mullen, 1996) . However, the interaction oflight quality and 

temperature on morphogenesis and growth is not well characterized . 

Light Quality 

Stem morphogenesis 

Internode elongation may be controlled by both phytochrome balance and blue 

light (Ritter et al., 1981 ). Changes in the red to far red ratio (R :FR), specifically 

wavelengths affecting phytochrome 660 :730nm, caused by neighbor detection, shading, 

and end-of-day light quality are well documented (Pausch et al., 1991; Smith, 1982; 

Ballare et al., 1995). The typical phytochrome response associated with low R:FR is an 

increase in apical dominance and increased internode elongation . 

Blue light appears to profoundly influence stem elongation in many species, such 

as soybeans (Wheeler et al., 1991; Hunt et al., 1989; Britz and Sager, 1990); 

chrysanthemum (Rajapakse et al., 1992); white clover (Gautier et al., 1997); sorghum 

(Britz and Sager, 1990; Warrington and Mitchell, 1976); mustard, spinach, and lettuce 

(Tibbitts et al., 1983); potato (Yorio et al., 1995); and pepper (Brown et al., 1995). 

A threshold intensity, above which blue light has no further effect, has been reported for 
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soybean at a photosynthetic photon flux (PPF) of30 µmol m·2 s·1 (Wheeler et al., 1991) 

and for lettuce at 15 µmol m·2 s"1 (Hoenecke et al., 1992). Beyond these thresholds, stem 

and hypocotyl elongation, respectively, did not decrease significantly. Both studies were 

at moderate (500 µmol m·2 s·1 
) to low (100 µmol m·2 s·1 

) light levels but reports claim 

that these thresholds may be PPF independent (Wheeler et al., 1991; Hoenecke et al., 

1992; Tibbitts et al., 1983). 

Other studies have attempted to explain unusual results by suggesting that a 

balance between red and blue light regulates stem length (Drumm-Herrel and Mohr , 1984; 

Mohr , 1987; Britz and Sager, 1990). Casal and Smith (1989) suggest a high phytochrome 

photoequilibrium (PPE) is necessary to trigger blue light effects, but PPE does not interact 

with blue light once triggered . No conclusive studies have been completed. 

Leaf morphogenesis 

Leaf morphology under differing lamp types is less well studied . Leaf morphology 

is here defined as the ratio ofleaf area to leaf mass ( specific leaf area, m2 kg·1 
) . Specific 

leaf area (SLA) can be affected by cell size and number . The effects that are apparently 

related to blue light may also be attributed to other wavelengths associated with the type 

oflamps compared . Hoenecke et al. (1992) found that addition of blue light to red LEDs 

increased leaf area oflettuce, but the lamps in this study completely lacked FR. Brown et 

al. ( 1995) later found these same results in pepper plants, but also found a combination of 

red and far red LEDs still had a leaf area less than metal halide, which has spectral 

qualities similar to sunlight. Under filtered and unfiltered broad-spectrum metallic iodure 
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lamps, Gautier et al. ( 1997) saw no change in total leaf area of white clover with 

decreased blue light. However, area of leaves on the main stolon was increased . 

Morphology can also be altered by leaf number, which affects total leaf area . 

Yanagi et al. ( 1996) found that leaf number oflettuce was greater under red than under 

blue LEDs . Leaf length was similar under these two light sources, but leaf width was less 

under red LEDs . A combination of red and blue LEDs produced the highest leaf widths 

and lengths . 

Total PPF can interact with the effects of light quality. Tibbitts et al. (1983) found 

that mustard, lettuce , and spinach tended to have larger leaves under HPS than MH at low 

PPF (320 µmol m·2 s·') but results were mixed at high PPF (700 µmo! m·2 s·1) . Wheat 

showed no response to lamp type in these studies. However, Barnes and Bugbee (1992) 

found reduced leaf length in wheat with increasing blue light at a PPF of200 µmo! m·2 s·1. 

At low R :FR and low blue light, as in shade settings, reduced leaf expansion occurs in 

shade-avoiding species (Dale, 1988). In this setting, however, R:FR and blue light effects 

are not separable . In soybean, specific leaf mass (mass per unit area) was significantly less 

under low pressure sodium lamps than under daylight fluorescent lamps, suggesting 

broader, thinner leaves (Britz and Sager, 1990). 

Effects of morphology on light 
interception and yield 

Wells et al. ( 1993) found that leaf and stem morphology altered light interception, 

growth, and, ultimately, yield in field-grown soybeans. PPF interception increased with 

increasing plant height. Cultivars with narrow leaves also had reduced light interception 



8 

and seed yield (Wells et al., 1993). In field grown wheat , light interception and yield of 

dwarfisolines were reduced by 13% compared to tall isolines (Gent, 1995). 

Blue light effects on stem cells 

The phototropi sm and elongation of stems is well studied under blue light. Blue 

light rapidly suppresses elongation in dark grown seedlings of many species (Cosgrove , 

1981; Kigel and Cosgrove , 1991; Liscum et al., 1992). Dark-grown ( etiolated) soybean 

seedlings had downregulated levels of P-tubulin compared to light-grown seedlings 

(Bustos et al., 1989). This downregulation was correlated with cell elongat ion because P­

tubulin is a building block of rnicrotubules. The effect of light quality, if any, on the 

regulation of P-tubulin production is not known. Blue light affects the orientation of the 

rnicrotubules . In stem tissue, rnicrotubules align longitudinally rather than transversely 

under blue light, but the importance of this response is not clear (Short and Briggs, 1994). 

Longitudinal alignment may inhibit cell elongation. Blue light may cause changes similar 

to a stress response , protecting cells from invasion by changing the properties of the cell 

wall (Horwitz and Gressel, 1987; Voigt and Munzner, 1994). Possible blue light 

photoreceptor precursor genes affecting stem elongation have been elucidated (Ahmad 

and Cashmore, 1993; Short and Briggs, 1994). 

Blue light effects on leaf cells 

Blue light effects on leaf expansion may be caused by changes in cell number 

and/ or cell size. Leaf size is mostly determined by cell number (Dale and Milthorpe, 1983; 

Wenzel et al., 1997). However, there is no clear evidence that blue light affects cell 
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division more than cell expansion. Blue light delays cell division in Ch/amydomonas 

reinhardtii (Munzner and Voigt, 1992). Blue light increased leaf epidermal cell area in 

birch plantlets in vitro over red light (Saebo et al., 1995). In Phaseo/us vulgaris, blue 

light did not decrease cell number for primary leaves but accounted for most of the 

increase in leaf area of trifoliates (Dale, 1988). This was true for various fluence rates. In 

the primary leaves of P. vulgaris, cell division is complete before most cell expansion 

begins (Van Volkenburgh et al., 1985), so cell expansion can be studied without cell 

division affecting results . Using this technique, Van Volkenburgh et al. (1985) found cell 

elongation was due to a proton efflux associated with the acid growth hypothesis. Staal et 

al. (1994) found that red and blue light stimulated a proton efflux in pea epidermal cells, 

also agreeing with the acid growth hypothesis . However, these tests were done on a 

mutant strain and in vitro cells. In wheat, Guerra et al. (1985) found that the lignin 

precursors phenylalanine ammonia lyase and tyrosine ammonia lyase were lowest under 

LPS lamps, which contain no blue light. A decrease in these lignin precursors suggests a 

decrease in lignin synthesis, which would decrease cell wall rigidity and allow for more cell 

expansion. Blue light is known to affect turgor pressure in soybean pulvini (Donahue et 

al., 1990) and leaf stomata (Short and Briggs, 1994), probably via a potassium shift. It is 

unlikely, though, that continuous blue light could sustain a lower turgor pressure . 
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CHAPTER3 

EFFECT OF LAMP TYPE AND TEMPERATURE ON DEVELOPMENT, 

CARBON PARTITIONING, AND YIELD OF SOYBEAN 1 

ABSTRACT 

15 

Soybeans grown in controlled environments are commonly taller than field-grown 

plants . We studied canopy height, carbon partitioning, and yield of soybeans under two 

lamp types and a range of temperatures . In controlled environments , including liquid 

hydroponics, height of the dwarf cultivar 'Hoyt' was reduced from 46 to 33 cm when 

plants were grown under metal halide lamps compared to high pressure sodium lamps at 

the same photosynthetic photon flux. Metal halide lamps reduced total biomass 14% but 

did not significantly reduce seed yield. Neither increasing temperature nor altering the 

difference between day/night temperature affected plant height. Increasing temperature 

from 21 to 27°C increased yield 32%. High temperature significantly increased carbon 

partitioning to stems and increased harvest index. 

INTRODUCTION 

Short-stature, high yielding cultivars are desirable in controlled environments 

because space is often limited. However, soybeans grown in controlled environments are 

taller than field-grown plants (Downs and Thomas, 1990). Red :far red ratios, specifically 

phytochrome 660 :730 nm, have been implicated as the cause of internode elongation 

1Reprinted from Advances in Space Research, vol. 20, T.A.O . Dougher and B. Bugbee, 
Effect of lamp type and temperature on development, carbon partitioning and yield of 
soybean, pp. 1895-1899, Copyright 1997, with permission from Elsevier Science 



16 

(Pausch et al., 1991 ), although soybeans may also respond to a balance of red and blue 

light (Britz and Sager, 1990). Wheeler et al. (1991) reported that there was a threshold 

intensity of blue light (30 µmol m·2 s·1) necessary to reduce stem elongation. However, 

elongation is also dependent upon the total photosynthetic photon flux (PPF) from lamps 

(Tibbitts et al., 1983 ). Differences in the spectral quality of high pressure sodium (HPS) 

and metal halide (MH) lamps could alter the stem length and thus alter carbon partitioning 

of soybeans . 

Another factor affecting stem length is temperature, which is easily manipulated in 

a controlled environment. The reduced plant water potential usually associated with high 

temperatures can be minimized by growing plants hydroponically at high humidity and 

elevated CO 2. Elevated CO2 reduces photorespiration, which generally increases with 

temperature. Thus crops grown in controlled environments should have higher 

temperature optima than field-grown plants . Optimum field temperatures for soybean 

have been characterized (Raper and Kramer, 1987), but the results may be affected by 

reduced plant water potential and increased photorespiration. 

Our objective was to study soybean canopy height, carbon partitioning, and yield 

under HPS versus MH lamps at varied and constant day/night temperatures in a C0 2-

enriched, hydroponic, controlled environment. 

MATERIALS AND METHODS 

Dwarf soybean cv. 'Hoyt' (maturity group 2.5) canopies were grown in Plexiglas 

chambers (0.47 x 0.36 x 0.61 m) at a density of 36 plants m·2 (6 plants per chamber). This 



choice of density was based on preliminary trials, which indicated that higher densities 

increased stem elongation and lower densities increased time to canopy closure . An 

extensive controlled environment screening showed 'Hoyt', a determinate cultivar , to be 

the shortest and highest yielding. All indeterminate cultivars were unacceptably tall . 

Chambers were positively pressurized for an open gas exchange system as described by 

Bugbee ( 1992). Seeds were germinated in moist diatomaceous earth (Isolite) and 

transplanted when the hypocotyls had elongated to at least 4 cm (about 6 days). Plants 

were transferred to an aerated nutrient solution, 21 cm deep, in a 30 L tub . Closed cell 

foam plugs in a blue Styrofoam lid supported the plants. Nutrient solution was 

replenished to maintain solution level. Nutrient solution electrical conductivity ( 14 ± 4 .4 

mS m·1
) and pH (5.6 ± 0.6) were monitored and controlled as necessary . Ammonium 

sulfate was added as needed to counteract the rise in pH caused by nitrate uptake . 

17 

Five day/night temperature regimes were used to test a range of temperatures 

typically utilized in controlled environments : 29/25, 26/22, 24/24, 23/19, and 21/21 °C. 

Root temperatures were kept constant at the average daily temperature of the shoot : 27, 

24, 24, 21, and 21 °C, respectively . Shoot air and root-zone temperatures were measured 

with thermocouples and maintained by computer-controlled heaters. Each set of 

temperature treatments (5 chambers) was placed under either MH or HPS lamps. All 

chambers were in a single growth room with light treatments separated by a heavy Mylar 

sheet. A photosynthetic photon flux of 450 µmol m·2 s·1 was maintained at the top of the 

canopy. This supplied approximately 40 and 140 µmo! m·2 s·1 of blue light in HPS and 

MH lamps, respectively. Intensity was maintained within 4% by shading each chamber 
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with neutral density filters. Aluminized Mylar around the chamber was maintained at 

canopy height to minimize the edge effect caused by side lighting. The photoperiod was 12 

hours . Carbon dioxide concentration was enriched to 1100 µmol mo1·1 based on known 

optimum enrichment levels for controlled environments. 

Days to first flower was recorded as appearance of visible flower color . Plants 

were harvested at physiological maturity as indicated by loss of green color from the pods 

(Gbikpi and Crookston, 1981). At harvest, canopy height, from stem base to the top of 

the leaves, was measured in situ. Then plants were extended to their full height and 

measured to the growing tip of the main stem and longest branch . These different length 

measures were used as a more specific indication of intemode elongation. Plants were 

separated into leaves, stems, pods, and roots, dried at 80°C for 48 hours, and weighed . 

Seed and pod number were recorded. Yield parameters and carbon partitioning ( organ 

DWI total DW) were calculated from the harvest data . Main effects were tested using the 

light by temperature interaction error term with SAS ANOV A (SAS Institute, NC) 

(Appendix D) . Net canopy photosynthesis (PneJ was calculated from the measured 

change in CO2 (infrared gas analyzer in differential mode) times air flow rate through the 

chamber divided by chamber ground area (Bugbee, 1992). 

RESULTS 

Effect of Lamp Type 

MH lamps significantly reduced canopy height but slightly increased relative 

branch length compared with HPS lamps (Table 3.1). The main stem ofHPS plants was 
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87% the length of the longest branch while MH main stem was 75% of the longest branch . 

MH canopy height was greater than the longest branch length because canopy height 

included petiole lengths. Although not measured, petioles appeared to contribute more to 

height in MH canopies . Plants grown under MH lamps had 14% less biomass compared 

to plants under HPS lamps (Table 3.1). Reduced stem mass in MH plants was associated 

with an increase in harvest index (HI) (Table 3.2) . All other component partitioning was 

similar. MH lamps also had 7% less seed yield than HPS lamps (Table 3.1). Lower pod 

number and seeds per pod accounted for the lower in seed yield under MH than HPS . P net 

measurements were consistent with the yield differences between lamp types (Figure 

3. la) . 

Effect of Temperature 

Higher temperatures increased seed yield via increased number of pods per square 

meter and seeds per pod (Table 3.3) . We were surprised to find that cooler temperatures 

reduced the duration of the seed fill period . Higher temperatures increased P net early in the 

life cycle (Figure 3. lb) but no trend was apparent after 35d . Total biomass (Table 3.3) 

and HI (Table 3.4) tended to decrease with lower temperatures. 

Percent leaf mass decreased with increasing temperatures probably because of 

hastened leaf senescence. Warm temperatures also tended to decrease percent root mass. 

The day/night temperature scheme did not affect canopy height. Erwin and Heins 

(1995) showed that altering the difference (DIF) between day/night temperature changed 

plant height for some species but larger-seeded species showed little response to DIF 



(Erwin, 1991 ). In our experiment, the canopies at +4 DIF ( 42 cm at 26/22°C, 41 cm at 

23/19°C) were not significantly taller than at zero DIF (38 cm at 24/24°C, 36 cm at 

21/21 °C) . 

DISCUSSION 

20 

While short-stature canopies are desired in controlled environments, high yield is 

also a priority. The mechanism underlying biomass differences with spectral quality, 

specifically orange bias (HPS) versus a balanced spectrum (MH) , is unknown. However , 

a 14% biomass difference generated only a 7% difference in yield. Because plant height 

and seed yield commonly are positively correlated (Wells et al., 1993), a slight difference 

in yield was to be expected . Taller plants under HPS lamps may have had better light 

interception . 

Higher P
0
c,, longer intemodes, larger leaves (data not shown), and more rapid 

canopy closure (data not shown) suggest that there is better light distribution and capture 

in the HPS canopy . Increasing plant density under l\1H lamps might overcome canopy 

closure differences but this would probably increase stem elongation after canopy closure, 

which would reduce the height advantage for conserving space in a controlled 

environment. 

A lack of significant effect on plant height indicates temperature can be 

manipulated to some extent to maximize yield without increasing canopy height. The high 

temperatures increased yield by increasing pod and seed number . Rapid canopy closure 

and higher photosynthesis contributed to the yield differences. High temperatures also 
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hastened development as evidenced by shorter time to final vegetative-stage ( data not 

shown) and decreasing time to first flower . We are currently testing temperatures above 

29°C (Appendix A). 

Measurement of P ne1 is important for calculating oxygen production for a 

bioregenerative life support system. Regardless of treatment, there was a broad peak in 

P0e, between days 25 and 45. Early life cycle rate of increase in P0e, was caused by rate of 

canopy closure and radiation capture. Differences between lamp types and between 

temperatures were apparent during this part of the life cycle. The decrease in P net was due 

to senescence and treatment had no effect on the rate of decrease . Therefore we are 

focusing on environmental changes early in the life cycle to increase canopy closure . 
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Table 3. I. Three plant length measures, seed yield, and yield components of soybeans grown under two lamp types . 
parameter is an average of the five chambers with different temperature regimes. 

lamp 
type 

HPS 

MH 

canopy 
height 
(cm) 

46.4 

33.2 

main stem 
length 
(cm) 

41.2 

19.9 

E,-value <0 .01 <0 .01 

t grams of seed per mol of PPF 

longest photo-
branch synthetic 
length seed yield efficiencyt 
(cm) (g m-2 d-1

) (g moJ-1) 

47 .1 4.99 0.257 

26.6 4.62 0.238 

<0 .01 0.24 0.24 

total biomass 
(g m-2 d-1) 

13.7 

12.0 

0.04 

pods per 
m2 

1486 

1385 

<0 .01 

seeds 
per 
pod 

1.91 

1.85 

0.10 

Each 

mass per 
seed 
(mg) 

159 

167 

0.42 

Table 3 .2. Carbon partitioning of soybeans under two lamp types . 
components equals I 00%. 

Measures are a percent of total dry mass . Sum of the five 

lamp type seed (harvest index) stem 

HPS 

MH 

E,-value 

36.4 

37.7 

0.18 

14.7 

12.2 

<0 .01 

leaves 

27.9 

28.6 

0.14 

pod 

12.8 

12.2 

0.19 

root 

8.2 

9.3 

0.18 

N 
w 



Table 3.3. A comparison of yield and yield components for soybeans grown under five temperature regimes. Each parameter is 
an averase of the two chambers of differins lamE !rEe*. 

day/night seed yield PEt total biomass pods per seeds per mass per days to first days to seed fill 
temperature (g m·2 d-1) (g mol"1) (g m·2 d-1) m2 pod seed (mg) flower harvest (days) 

29/25 5.46 0.281 13.6 1483b 1.96ab 167 19c 87 68 

26/22 5.43 0.280 13. l 1550ab 2.03a 153 24b 87 63 

24/24 5.02 0.258 12.9 1594a l.89bc 160 27b 90 63 

23/19 4.13 0.213 12.6 1321c 1.79cd 167 32a 90 58 

21/21 3.98 0.205 11.9 1230d 1.73d 169 33a 90 57 

p-value 0.06 0.06 0.46 <0.01 0.01 0.74 <0.01 0.67 

tpE = photosynthetic efficiency 
*Letters within a column indicate significant differences using least significant difference mean separation test at a=0 .05 

Table 3.4 . Carbon partitioning of soybeans under five temperature regimes•. Data are a percent of total dry mass. Sum of the 
five comEonents eguals 100%. 

day/night temperature seed (harvest index) stem leaves pod root 

29/25 40.0a 15.8a 24.3ab 13.0 7.1 

26/22 40.9a 12.9b 25.5a 13.8 6.9 

24/24 38.9a 12.5b 27. lb 12.9 8.5 

23/19 32.6b 13.5b 32.3c 11.2 10.4 

21/21 33.0b 12.5b 32. lc 11.5 10.9 

p-value <0.01 0.03 <0.01 0.07 0.06 

*Letters within a column indicate significant differences using least significant difference mean separation test at a=0 .05 
N 
~ 



-'<ll 

<";fe 25 

] 20 
:, -<ll 

-~ 15 
.c: 
i 
~ 10 .... 
_g 
p... 5 
tS z 

0 
E 20 
:, -<ll 

-~ 15 
.c: .... 
~ 
~ 10 .... 
0 .c: 

p... 

~ 
5 

23/19 

21/21 

--- 29/25 
--- 26/22 
--- 24/24 
- 23/19 
--- 21/21 

0 ~....L-.._._ ........... ~_,___.__,__....._.___,_...._._~ .......... ~ 

0 20 40 60 80 100 
Days After Transplanting 

25 

Fig. 3.1. Net photosynthesis (CO2 uptake) of soybean canopies. Endpoints are an average 
day of harvest. a) Comparison oflamp types. Measurements are an average of the five 
chambers of different temperatures . b) Comparison of temperatures . Measurements are 
an average of the two chambers of differing lamp types. 



CHAPTER4 

EFFECT OF BLUE LIGHT ON LEAF EXP ANSI ON, 

STEM ELONGATION, AND GROWTH 

Abstract 
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Blue photons are energetically expensive so the most energy-efficient lamps 

contain the least blue light. Blue photons are not used efficiently in photosynthesis, but 

blue light has dramatic effects on plant development. We studied the growth and 

development of soybean, wheat, and lettuce plants under high pressure sodium and metal 

halide lamps with yellow filters creating 5 fractions of blue light(< 0.1%, 2%, 6%, 12%, 

and 26%) at 200 and 500 µmol m·2 s·1. The response was species dependent. Soybean 

responses were attributable to blue light fraction, whereas lettuce responses were 

attributable to absolute blue light. Lettuce was highly sensitive to blue light fraction 

between 0% and 6% blue, but results were complicated by sensitivity to lamp type . For all 

parameters tested, wheat did not respond to blue light. Soybean stem length decreased 

with increasing blue light fraction and leaf area was greatest at 6% blue, but total dry mass 

was unchanged. The data suggest that lettuce growth and development requires some 

added blue light, but soybean and wheat may not. 

Introduction 

Energy efficiency of electric lamps has always been important in Earth-based 

research and it plays an even larger role in space-based life support systems. Photons at 
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short wavelengths are more energetically expensive than longer wavelengths so the most 

efficient lamps have reduced blue light. Recent studies have utilized high pressure sodium 

(HPS) and red light emitting diodes (LEDs) . This raises the question of how critical blue 

light is to plant growth and development. 

Blue light has been shown to reduce cell expansion (Cosgrove, 1981) and long­

term exposure to blue light could thus reduce leaf area and stem elongation, altering 

canopy architecture . This, in turn, would affect radiation capture, photosynthesis , and, 

ultimately, yield (Board et al., 1992; Gent, 1995). Indeed, several studies have shown that 

reducing blue light can have a positive effect. A decrease in blue light can increase 

specific leaf area (SLA) (Britz and Sager, 1990; Dougher and Bugbee 1997) . Soybeans 

grown under HPS had more biomass yield than those grown under metal halide (MH) 

(Dougher and Bugbee, 1997). Increase in total dry mass under HPS versus MH has also 

been reported for potato (Yorio et al., 1995) and lettuce (Wheeler et al., 1994). 

Several studies indicate that blue light does not alter growth. Tibbitts et al. (1983) 

found that lettuce, spinach, and mustard tended to have increased leaf area under lamps 

with less blue light, but there were no consistent changes in dry mass of these species 

under different lamp types . Barnes and Bugbee (1992) also found that blue light did not 

affect dry matter accumulation, but low blue light increased leaf length in wheat . Goins et 

al. ( 1997) also found no change in wheat dry matter accumulation when blue fluorescents 

were added to red LEDs . White clover grown under orange-filtered (<0.1% blue) metallic 

iodure lamps had similar total biomass as plants under unfiltered lamps (23% blue) 
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(Gautier et al., 1997) . However, non-photosynthetic thermal radiation was not filtered in 

this experiment. 

By the same token, reducing blue light has been shown to have a negative effect. 

Wheat tended to have decreased leaf area under lamps with less blue light (Tibbitts et al., 

1983). A decrease in blue light greatly elongates stems of soybean (Wheeler et al., 1991) 

and lettuce (Hoenecke et al., 1992). Brown et al. (1995) found that supplementing with 

blue light increased pepper plant biomass when plants were grown under red LEDs . 

Some studies compared lamp types and the authors suggested that differences 

were due to blue radiation (Sager and McFarlane , 1997) . Other studies added blue 

fluorescents but the treatments did not have identical non-blue wavelengths (Brown et al., 

1995; Hoenecke et al., 1992; Yorio et al., 1998). Due to lamp limitations , these studies 

have only been conducted at low light levels. Our objective was to test multiple blue light 

fractions at high and low light. We compared six levels of blue light by filtering blue from 

two lamp types . We also compared unfiltered HPS and filtered MH lamps at the same 

blue light level to test if other wavelengths alter blue light effects . 

Materials and Methods 

Lettuce (Lactuca saliva, cv. 'Grand Rapids'), soybean (Glycine max, cv. 'Hoyt'), 

and wheat (Triticum aestivum, cv. 'USU-Apogee') were grown in six blue light treatments 

comprising five blue light fractions (Table 4.1) at a photosynthetic photon flux (PPF) of 

500 µmol m·2 s·1 and 200 µmol m·2 s·1. A single growth room was divided into six 

compartments for the light treatments . Each of the six light banks was filtered with 
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tempered glass and had a chilled, circulating water barrier to minimize non-photosynthetic 

thermal radiation. Canary yellow acetate film (Roscolux #312, Oasis Stage Werks, Salt 

Lake City, UT) was used to reduce the amount of blue light of a given source 

(transmission curve, Figure 4.1). A comparison ofHPS and MH 6% blue was used to 

determine if any pararneter differences were caused by other wavelengths . Spectral output 

of the lamps was measured with a spectroradiometer (LI-1800, LICOR, Lincoln, NE) . All 

treatments were shaded with neutral density fiberglass screening to obtain the desired PPF . 

Definition of blue light 

We defined blue light as ranging from 320 to 496 nm. UV A wavelengths (320-400 

nm) are present in many lamps and are known to be involved in photomorphogenic 

responses (Salisbury and Ross, 1992; Munzner and Voigt, 1992; Baskin and Iino, 1987). 

The UV A wavelengths increase the blue light fraction in HPS lamps by only 0.2% and in 

MH lamps by 3.6% (Table 4.2). Wavelengths from 496-500 nm were not included in the 

blue fraction because HPS lamps have a spectral peak from 494-502 nm and 

photomorphogenic responses rapidly decrease above about 490 nm (Salisbury and Ross, 

1992). Including the 496-500 nm wavelengths tends to exaggerate the effective blue from 

HPS by 20% (Table 4.2) . 

Phytochrome photoequilibrium differences 

Plant morphology and growth are known to respond to the balance of active 

phytochrome to total phytochrome, measured as phytochrome photoequilibrium (PPE) 

(Sager and Mcfarlane, 1997; Barnes and Bugbee, 1991). PPE estimates the balance of 
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active and inactive phytochromes from response curves of the purified phytochrome in 

vitro. There is still controversy as to the in vivo role of chlorophyll altering the radiation 

absorbed and thus PPE (Sager and McFarlane, 1997). However, measuring the 

phytochrome response in vivo has not yet been achieved and researchers rely on the use of 

PPE as an estimate. The PPE in these experiments, calculated from spectroradiometric 

data, ranged from 0. 81 at the highest blue light fraction to 0. 86 at the lowest blue light 

fraction. While phytochrome response cannot entirely be ruled out, the magnitude of the 

responses observed was likely too large to be elicited by such a small change in PPE. 

Plant culture and harvest 

Germination. Blue light treatments began at imbibition. Plants were given light 2 h 

at a PPF of 200 µmol m·2 s·1 or 1 h at a PPF of 500 µmol m·2 s·1 for the first 4 days. At 

the end of 4 days, lettuce and wheat were at emergence and with soybean was fit for 

transplanting . Temperature was maintained at 24/22 °C day/night during the germination 

period. Lettuce seeds were sown directly in Ethafoam plugs with a diatomaceous earth 

(Isolite) core. Lettuce plugs were kept in a shallow pan of nutrient solution until 

emergence, 4 days after planting, and then they were transferred to the aerated 

hydroponic system. Wheat seeds were stratified at 4 °C in moist paper towels for 48 h 

prior to planting. Wheat seeds were also planted in Ethafoam plugs with an Isolite core . 

Wheat plugs were placed directly in the system. Soybean seeds were germinated in trays 

of moist Isolite. Seedlings were transferred to Ethafoam plugs and into the system when 

the hypocotyl was at least 2 cm long, 4 days after planting. 
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Plant Growth . Plants were grown in an aerated hydroponics system under a 16-h 

photoperiod. The environment was maintained at 26/22 °C day/night± 0.3/0 .2 between 

sections within a trial and 68% relative humidity. CO2 was elevated to 860 µmol moJ-1. 

All sections were connected to a common air conditioning system via a manifold, so 

carbon dioxide, humidity, and temperature differences between sections was minimal. 

Measurements and Harvest. Chlorophyll measurements were made 2 days before 

harvest with a chlorophyll meter (SP AD-502, Minolta Corp., Ramsey, NJ). Meter 

readings were in SP AD units, which is based on the ratio of chlorophyll absorbance at 650 

nm to nonchlorophyll absorbance at 940 nm. SP AD units are linearly related to 

measurement made colorimetrically (Monje and Bugbee, 1992). An average of three 

chlorophyll readings was taken on the middle leaflet of the first trifoliate of soybean, the 

second true leaf of lettuce, and the second leaf of wheat. Plants were harvested at canopy 

closure (Appendix B) to test blue light effects without complicating changes in spectral 

quality caused by canopy closure . Lettuce and soybean were harvested 18 and 17 days 

after transplanting, respectively . Wheat was harvested 17 days after emergence. Fresh 

mass and leaf area were taken immediately upon harvest and branch/tiller number and stem 

length determined. Roots were blotted dry and then weighed for fresh mass. Plant 

material was dried for 48 hat 80°C and dry mass determined. Specific leaf area was 

calculated as total leaf area divided by mass of the leaves. Carbon partitioning to each 

plant part was calculated as dry mass of plant part divided by the total dry mass (times 100 

to give percentage). Relative water content (RWC), a potential indicator of cell size, was 
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calculated for each plant part as fresh mass minus dry mass all divided by fresh mass (times 

100 to give percentage) . 

Statistical procedures 

Six plants (pseudo-replicates) of each species were grown under each blue light 

fraction . Each PPF level was replicated twice in time. Differences between blue light 

fractions were tested using analysis of variance using a split-plot design with lamp type as 

the main plot (Appendix D) . Mean comparisons were made using LSD at a=0 .05 (SAS 

Institute , NC) . To compare relative and absolute blue light, the data were fit using 

regression analysis (Sigma Plot 4 .0, SPSS Inc., Chicago, IL) . 

Sensitivity to lamp type with constant 
blue light fraction 

Results 

MH lamps were filtered to 6% blue to compare with unfiltered HPS lamps at the 

same blue light fraction. None of the plant responses for wheat and soybean were 

significantly different between HPS and MH at 6% blue, suggesting that their blue light 

responses are not affected by the remaining spectral composition (Table 4.3). Wheat and 

soybean blue light effects were thus considered to be continuous between lamp types over 

the five blue light fractions . 

In contrast to wheat and soybean, lettuce blue light response may be affected by 

non-blue wavelengths. Chlorophyll concentration, dry mass, leaf area, and specific leaf 

area oflettuce were significantly different for plants grown under 6% HPS blue and 6% 
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MH blue (Table 4 .3). This indicates that caution must be used in claiming a blue light 

response when other parts of the spectrum vary. Blue light effects on lettuce chlorophyll 

concentration , dry mass accumulation, leaf area, and specific leaf area were graphed 

separately for each lamp type, but other parameters were not significantly different 

between lamp types and blue light fraction responses were considered continuous. 

Dry mass accumulation and partitioning 

Wheat dry mass tended to decrease with increasing blue light fraction, but means 

were not significantly different (Figure 4.2). Wheat carbon partitioning was similar under 

all blue light treatments (Figure 4.3). Because plants were harvested early, small 

differences could become larger as the plants matured . However, Barnes and Bugbee 

( 1992) also found no significant difference between 1 % and 25% blue light for mature 

wheat dry mass. Goins et al. ( 1997) did see a reduction in wheat shoot dry matter 

between 31 % and 0.85% blue, but grain yield was not affected . 

Soybean leaf and total dry mass were not responsive to blue light fraction (Figure 

4.4a,d) . Stem dry mass decreased with increasing blue light fraction (Figure 4.4b) . Root 

dry mass was significantly less at high (26%) and low (0%) blue light fraction (Figure 

4.4c). Carbon partitioning to stems at lower blue light fraction was mostly at the expense 

of the roots (Figure 4.5). 

Although lettuce dry mass could not be graphed continuously due to significant 

differences caused by lamp type at 6% blue, there was a trend for increasing dry mass with 

blue light fraction under each lamp type (Figure 4.6). More carbon was partitioned to the 
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stem at low blue at the expense of the leaves (Figure 4. 7). Both stem and leaf carbon 

partitioning changed drastically between 0% and 2% blue. Leaf carbon partitioning 

recovered by 2% blue, but carbon partitioning to the stem was still significantly higher at 

2% blue than 6% blue or above. Some of the carbon partitioning compensation came 

from the roots, but the change in percent root dry mass with blue light fraction was not 

statistically significant. 

Stem length 

Stem length of wheat decreased by only 11 % as blue light fraction increased from 

0% to 26% , but this response was not significant (Figure 4.8a). Increasing blue light from 

0% to 2% decreased soybean stem length only 7%, but a further increase to 6% decreased 

stem length by 44% (Figure 4.8b). Overall, increasing blue light fraction to 26% 

decreased soybean stem length 67% from 0% blue. Lettuce stem length decreased 72% 

between 0% and 2% blue and a further 13% from 2% to 6% blue (Figure 4.8c). Overall, 

lettuce stem length decreased 88% from 0% to 26% blue. 

Leaf area and specific leaf area 

Wheat leaf area and SLA were constant under all blue light treatments (Figure 

4.9). Soybean leaf area was highest between 2% and 12% blue and decreased at extreme 

low (0%) and high (26%) blue (Figure 4.10a). Contrary to the findings of Britz and Sager 

(1990), soybean SLA was not significantly affected by blue light fraction (Figure 4.1 Ob). 

Both leaf area and SLA of lettuce were affected by lamp type and could not be 

drawn as a continuous response curve for blue light fraction . However, there was a 



drastic increase in leaf area from 0% to 6% blue under HPS (Figure 4.1 la) . There was 

little response to blue light fraction under the MH treatments. SLA decreased with 

increasing blue light fraction under each lamp type (Figure 4.1 lb). There was a 54% 

decrease in SLA between 0% and 2% blue. The mean SLA of 152 m2 kg·' at 0% blue is 

extremely high, reflecting the thin, almost transparent, leaves. 

Chlorophyll concentration 
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Wheat chlorophyll was not affected by blue light fraction (Figure 4.12a) . Soybean 

chlorophyll increased 13% between 0% and 2% blue, but was constant from 2% to 26% 

blue (Figure 4.12b). Although lettuce chlorophyll was significantly different between the 

two 6% blues, the chlorophyll concentration increased significantly under each lamp type 

with increasing blue light fraction (Figure 4.12c). 

Tillering/branching 

Although wheat tiller number tended to decrease with increasing blue light 

fraction, differences were not significant (Figure 4.13). This is contrary to Barnes and 

Bugbee ( 1992), who found that tillering increased 25% between 1 % and 25% blue, and 

Goins et al. (1997), who found no increase in tillering between 0% and 0.85% blue, but a 

71% increase between 0.85% and 8.5% blue. Differences in soybean branch numbers 

were statistically significant (data not shown), but means ranged only from 5.25 to 5.95, 

which is not physiologically important to light interception and canopy closure. 
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Relative water content 

RWC of wheat leaves, stems, and roots was not affected by blue light fraction 

(Figure 4.14). RWC of soybean leaves and stems increased significantly with increasing 

blue light fraction , but root RWC was not significantly affected (Figure 4. I 5). Lettuce 

leafRWC decreased with increasing blue light fraction (Figure 4. 16a). Most of the 

change in leafRWC occurred between 0% and 2% blue. Lettuce stem and root RWC did 

not change significantly (Figure 4.16b,c). 

Discussion 

Species differences 

Blue light effects were species dependent and the differences may be associated 

with differences in plant morphology . Wheat, whose meristematic leaves and stems are 

sheltered from direct light by upper leaves and leaf sheathes, showed no response to blue 

light. Both lettuce and soybean have exposed meristematic cells in expanding leaves and 

stems and both responded to blue light fraction. Interestingly, the response of lettuce was 

more pronounced than soybean (Figure 4.17). 

The many planophile species tested have shown a response to blue light (Brown et 

al., 1995; Hoenecke et al., 1992; Tibbitts et al., 1983; Yorio et al., 1995). Ryegrass, 

whose growth habit is erectophile and whose expanding tissues are also shielded, leaf area 

and shoot length did not respond to red- versus blue-biased lamps (Warrington and 

Mitchell, 1976). Under similar treatment, however, sorghum, also erectophile in growth 

habit, did respond. Although indicative that some erectophile species may not be blue 
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light insensitive, Warrington and Mitchell (1976) only tested lamp type and not blue light 

response. Direct blue light investigation of these and other grass (erectophile) species is 

needed to test if a generalization can be made between erectophile and planophile plants . 

Inconsistencies with other research 

Although Barnes and Bugbee (1992) saw a longer wheat leaf length with low blue, 

only the longest fully extended leaf was measured and there was no significant difference 

in dry matter accumulation . Contradiction of our tillering data with Barnes and Bugbee 

(1992) may be genetic differences in cultivars, as their experiments utilized 'Fielder', an 

extremely high-tillering cul ti var compared to 'Apogee'. Goins et al. ( 1997) used a low 

tillering cultivar, but tillering differences were also evident and may be due to the short­

duration of our experiments, which did not allow time for blue light effects to be 

manifested . Goins et al. ( 1997) saw an increase in wheat dry mass with increased blue 

light, but compared narrow band red LEDs (0% blue) with broad spectrum white light. It 

is important to point out that our lowest blue treatment was not truly zero blue and our 

lamp sources also contained far red. However, the phytochrome photoequilbrium of red 

LEDs is 0.88, similar to our treatments . Therefore, interactions with phytochrome are 

probably not responsible for the difference seen between our 0.1 % blue and red LEDs . 

Results for soybean and lettuce were mostly consistent with previous reports, 

especially under the <0.1 % blue treatment compared to red LEDs (0% blue) (Hoenecke et 

al., 1992). Surprisingly, soybean SLA did not decrease with increasing blue light as seen 

previously in a comparison of daylight fluorescent and blue-deficient low pressure sodium 
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(Britz and Sager, 1990). Although blue light between these lamps does vary considerably, 

non-blue wavelengths also vary. 

Consideration of yield photon flux 

The most widely used definition of measurement of photosynthetically active 

radiation (PAR) is the photosynthetic photon flux, which weights each photon between 

400 and 700 nm equally. In reality, the photosynthetic efficiency of blue photons is 30% 

less than that of red photons and the range extends beyond 400- 700 nm (McCree , 1972). 

A more precise definition of PAR is called the yield photon flux (YPF) (Barnes et al., 

1993) . YPF is a weighting of each photon according to the "average leaf' photosynthetic 

efficiency curve elucidated by McCree (1972) . In these experiments PPF was equivalent 

between blue light treatments, but YPF declined by as much as 10% as blue light fraction 

increased (Table 4.4). Considering that photosynthetic efficiency directly affects plant dry 

mass, caution must be used when claiming blue light effects on dry mass accumulation. 

YPF is a more theoretically exact definition of the trends for total dry mass in wheat and 

soybean . The graph of YPF distributes points across quantum flux (µmol m·2 s·1 
) more 

accurately (Figure 4.18) and may explain the response better than blue light fraction does 

(Figure 4.2, 4.4) . 

Accurate measurements ofYPF can only be made with a spectroradiometer. 

Under these lamp types, a commercial YPF sensor can have substantial errors (Barnes et 

al., 1993) . 

YPF differences do not explain the difference in dry mass between the two 6% 



blue treatments in lettuce. Indeed, 6% blue :MlI has 3% lower YPF than 6% blue HPS . 

However, the 3% difference in YPF is not enough to account for the 81 % difference in 

total dry mass. 

Morphology and carbon partitioning 
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Although total dry mass is better explained by YPF, the dry mass partitioning of 

soybean is attributable to the morphological changes caused by altering blue light fraction . 

The change in stem elongation at low blue came at the expense of the roots and to a lesser 

extent, the leaves . It is difficult to ascertain whether these shifts in carbon partitioning, 

although not affecting total biomass yield, would affect seed yield. Where small 

differences occur early on, large differences in yield could result, especially when dry mass 

accumulation is affected (Board et al., 1992; Gent, 1995). 

Relative versus absolute blue light 

Blue light can be described two ways, the absolute amount of blue light or the 

fraction of blue light relative to the photosynthetically active radiation. It is not clear 

which definition best describes physiological responses. Hoenecke et al. ( 1992) found .. 1at 

lettuce hypocotyl extension responded to absolute rather than relative blue light. 

Similarly, Wheeler et al. ( 1991) suggested that soybean stem elongation was responsive to 

absolute rather than relative blue light. We conducted studies using two PPF levels so we 

could quantify relative versus absolute blue light effects (Table 4.4). If absolute blue light 

determines plant response, the blue light fraction response curves at the two PPF levels 

should overlap when graphed on an absolute blue light axis. 



40 

Indeed, our data for lettuce agree with Hoenecke et al. (1992), where the data 

better fit on an absolute blue light ax.is (Figure 4.19a) . Soybean stem length, on the other 

hand, is better fit with a relative blue light ax.is (Figure 4.19b,c). This discrepancy in the 

soybean data may lie with the fact that Wheeler et al. (1991) only tested 6% to 26% blue 

light where stem length is less responsive to blue light. 

Because means for wheat response to blue light were not significantly different, it 

is a moot point to make comparisons between relative and absolute. Because of the 

complicating factors in other lettuce parameters , we were unable to evaluate the effects of 

relative versus absolute blue light. For soybean, using stem dry mass and leaf area as 

typical examples, there is a response to blue light fraction, but the responses are different 

at the two PPFs (Figure 4.4b, 4.1 0a). However , graphing the data as absolute blue light 

does not cause the two PPF levels to overlap (Figure 4.20a,c) . The responses do overlap 

when graphed with blue light fraction and as a percent of maximum (Figure 4.20b,d) . This 

also holds true for leaf, root, and total dry mass and SLA. Although the percent of 

maximum response can be predicted by blue light fraction, the absolute magnitude of the 

response is determined by PPF. 

Other wavelengths affecting lettuce growth 

As mentioned previously, we included two 6% blue treatments, one with HPS, one 

with filtered MH. For soybean and wheat, the means of these treatments were statistically 

similar, but for lettuce the two 6% blue treatments produced significantly different 

chlorophyll concentrations, dry masses, leaf areas, and SLAs (Table 4.3). This 



phenomenon was apparent in each trial in this experiment and in trials before this 

experiment (Dougher and Bugbee, 1998). It is extremely unlikely that these differences 

were caused by differences between compartments because: i) treatments were 

randomized each time and ii) atmospheric differences between compartments were 

minimized by the use of a common air conditioning system. Apparently in lettuce, some 

wavelength(s) acts in conjunction with blue to affect plant growth. Using data for 

chlorophyll concentration at a PPF of200 µmo! m·2 s·1 as an example (Figure 4.21a) 

(results for the other parameters and PPF of 500 µmol m·2 s·1 are similar), I will discuss 

the other wavelengths we have considered . 

Absolute blue light. Absolute blue light could be more important than blue light 

fraction, but the 6% blue treatments of the two lamp types have the same absolute blue 

light at each PPF : 12 µmo! m·2 s·1 blue at 200 µmo! m·2 s·1 or 30 µmol m·2 s·1 blue at 500 

µmol m·2 s·1 (Table 4.4) . Graphically, data points for 6% blue between PPF levels shift 

apart, but the two data points within PPF levels are still not separated (Figure 4.21 b ). 

Phototropic blue. Considering that our cutoff points for "blue light" may not be 

accurate, we tried using the blue response curve for phototropism, developed by Baskin 

and Iino (1987). Weighting our data with this curve yielded blue levels that were also 

similar as our 6% blue treatments (Table 4.4) . So the curves look very similar to the 

absolute blue light curves (Figure 4.21c). 
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Absolute UV . Although :MI-I emits much more UV (300-400nrn) than HPS lamps, 

our system had a water and tempered glass barrier that greatly reduced the UV from either 

source . However, not all UV was filtered out and the :MI-I treatments still had 3 to 4 times 



more UV (Table 4.4) . While there is a UV difference between the two 6% blue 

treatments, it only serves to further separate the data (Figure 4.21 d). 
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UV as a percent of blue. We considered UV-A (320-400nm) as part of the blue 

range, but MH attains more of its "blue light" from the UV range. Indeed at 6% blue UV 

as a percent of blue is different for HPS and MH (Table 4.4) . However, graphing the data 

this way also separates the data in the wrong direction (Figure 4.2le) . 

Phytochrome photoequilibrium . The PPE for all treatments ranged from 0.82 to 

0.86 (Table 4.4) . This range is too small to elicit a phytochrome effect and also tends to 

separate the data (Figure 4.2lf). 

Blue to red and blue to far red ratios . Other researchers have suggested the blue 

response could be altered by the blue and red (B :R) or blue and far red (B :FR) interaction 

(Goins et al., 1997). Once again, there is a difference between 6% blue HPS and MH 

values for B:R and B :FR (Table 4.4), but these ratios also tend to separate the data 

(Figure 4.2lg,h). 

Red to far-red ratio. Although we should be able to more accurately calculate PPE 

utilizing the spectroradiometer, perhaps the response is to R:FR but not a phytochrome 

response. There is a difference in R:FR of the two 6% blue treatments (Table 4.4), but 

again graphing on a R:FR axis only separates the data (Figure 4.21i). 

Yell ow-green wavelengths. At a loss for a known physiological response to 

explain the difference at 6% blue, we graphed the output of the treatments to find which 

wavelengths could shift the data to fit their significance (Figure 4.22). We were looking 

for a shift in lamp output that would make the 6% MH roughly equivalent to the 2% HPS, 
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because their means are not statistically different. At 5 70-610 run we see an overlap of the 

middle range blue treatments (2, 6, 12%). Using this range, we not only achieved 6% MR 

equivalent to 2% HPS, but also 12% MR shifts to about 6% HPS (Table 4.4) . While 

these wavelengths fit the response (Figure 4.2 lj), there is no physiological explanation for 

it. Green light from 545 to 555 run has been shown to repress growth, but repression was 

not seen beyond this range (Klein, 1992). 

Thermal radiation . Although the thermal radiation emitted by unfiltered HPS and 

MR lamps is considerable and different for the two lamp types, the thermal radiation in 

these experiments was filtered out by water barriers . 

Predicting cell expansion using relative water 
content and dry mass 

The change in leaf area and stem length with blue light fraction raises the question 

of which cellular process is being altered by blue light to achieve these changes : cell 

division, cell expansion, or both. Without directly measuring the cells, we hypothesized 

that an increase in R WC without a change in dry mass predicts that cell expansion is 

primarily responsible for the increase in area or length. For lettuce, leaf area increased 

from 0% to 6% blue, leafRWC decreased, but the leaf dry mass increased. This suggests 

that the increase in leaf area is primarily caused by an increase in cell division . For 

soybean, leaf area decreased with increasing blue light fraction from 6% to 26% blue and 

leaf R WC increased, while leaf dry mass was constant. This would suggest that the 

decrease in soybean leaf area was also caused by a decrease in cell division. For soybean 

stems, length decreased with increasing blue light fraction, stem R WC increased, but stem 



dry mass decreased . This suggests that cell division may be primarily responsible for the 

change in stem length with blue light fraction . 

Conclusions 
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Blue light effects were species dependent. When considering dry mass and leaf 

area, soybean and wheat do not benefit from added blue light. However, in an Advanced 

Life Support system where plant height is important, well-knovm effects on stem 

elongation (Britz and Sager, 1990; Dougher and Bugbee , 1997; Wheeler et al., 1991) do 

not have the same optimum blue light fraction . Lettuce dry mass and leaf area, on the 

other hand , benefitted from as little as 2% blue, which is also beneficial for suppressing 

excessive stem elongation (Hoenecke et al., 1992). For some plant growth parameters , 

blue light responses were small, but the crops were harvested early in the life cycle and 

effects may not have fully manifested . This research indicates that lamps high in blue 

photons, such as MI-I, are not only energetically wasteful, but do not benefit and, in some 

cases reduce, plant growth . 
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Table 4.1. Blue light fractions used in our experiments. Two lamp types were used for the 
blue light treatments, high pressure sodium (HPS, Sylvania Lumalux) and metal 
halide (MH, Sylvania Metalarc). 

Lamp Type Blue Light Fraction(%) 

MH 

HPS 

26* 

0.1 

12 

1.7 

6 

6* 

*blue fraction from the lamp filtered only with tempered glass and water 

Table 4 .2. Blue light fractions(%) calculated for the six blue light treatments with and 
without UV A (320-400 run) and with the HPS 496-500 nm spike. The 320-496 
nm range was used in this study. Data are based on quantum flux (moles), not 
energy flux (watts). 

Lamp Type 

HPS HPS Unfiltered MH MH Unfiltered total 
Blue Range High filter Low filter HPS High filter Low filter MH range 

- UV A 400-496 0.49 3.41 5.5 5.3 15.5 22 .7 400-700 

+ UV A 320-496 0.49 3.56 5.7 6.0 18.7 26.3 320-700 

320-500 0.93 4.52 7.1 6.5 19.4 27.2 320-700 



Table 4.3. Effect oflamp type at the same blue light fraction (6%) on dry weight, carbon partitioning, leaf area, specific leaf area, 
chloro~h;z'.11, stem length2 and relative water content. Means were tested using an LSD test at a= 0.05. 

Wheat Soybean Lettuce 

Parameter I-IPSO MHt I-IPSO MHt HPS 0 MHt HPS/MH 

leaf dry weight (g) 0.28 0.23 1.34 1.29 0.52 0.29* 1.79 

stem dry weight (g) 0.13 0.10 0.48 0.47 0.028 0.015* 1.87 

root dry weight (g) 0.18 0.16 0.49 0.47 0.088 0.050* 1.76 

total dry weight (g) 0.59 0.50 2.32 2.22 00.63 0.35* 1.80 

leaf as % of total 47 .3 46 .9 58.0 57.8 81.6 81.2ns 1.00 

stem as % of total 21.6 20.5 20.8 20.9 4.6 4.2ns 1.10 

root as % of total 31.4 32.6 21.2 21.2 13.8 14.6ns 0.95 

leaf area ( cm2
) 67 .5 59.0 497 492 258 181* 1.43 

specific leaf area (m2 kg-1
) 27 .1 27.2 37.7 39.2 54.6 66.7* 0.82 

chlorophyll (SP AD) 52.3 52.3 36.3 34.2 7.9 4.2* 1.88 

stem length (mm) 74.4 72.5 159 154 18.3 15.6ns 1.17 

leafRWC (%) 84.5 84.2 84.7 85.0 93.6 94.0ns 1.00 

stemRWC (%) 89.3 88.9 90.4 90.1 92.1 93.2ns 0.99 

rootRWC (%} 92.9 92.8 94.1 94.2 95.3 95 .5ns 1.00 
0 unfiltered High Pressure Sodium lamp (6% blue), t Metal Halide lamp filtered with canary yellow acetate film (6% blue) 
* significant at o: = 0.05, ns = not significant 

.i,. 
00 



Table 4.4 Ratios of radiation for the blue light fractions in these studies. 

Absolute Yield Photo- 570-
Blue Light Blue Photon tropic Absolute 610 
Fraction Light* Flux* Blue* UV* UV R:FR B:R B:FR nm• 
(%of (320-496 (300- (300-520 (320-400 (% of PPE (600-700nm (320-496 nm (320-496 nm (¾ of 

PPF* total) nm) 800 nm) nm) nm) blue) (P c/P,
0
.J 700-800nm) 600-700 nm) 700-800 nm) total) 

0.1 0.2 194 0.1 0.0005 0.25 0.86 2.80 0.003 0.012 32 

1.5 3 192 1.8 0.05 1.7 0.85 2.71 0.033 0.155 26 

6 12 190 6.8 0.22 1.8 0.86 2.86 0.133 0.661 25 
200 

6 12 184 6.3 0.72 6.0 0.84 4.39 0.220 1.306 21 

12 24 182 13 1.99 8.3 0.83 4.13 0.453 2.593 25 

26 52 177 29 3.88 7.5 0.82 5.11 1.209 7.818 19 

0.1 0.5 484 0.3 0.0005 0.1 0.86 2.80 0.003 0.012 32 

1.5 7.5 480 4.1 0.05 0.7 0.85 2.71 0.033 0.155 26 

6 30 474 17 0.22 0.7 0.85 2.86 0.133 0.661 25 
500 

6 30 458 16 0.71 2.4 0.85 4.39 0.220 1.306 27 

12 60 454 31 1.97 3.3 0.84 4 .13 0.453 2.593 25 

26 130 441 71 3.61 2.8 0.82 5.11 1.209 7.818 19 

* in (µmo! m·2 s·1 
), PPF = Photosynthetic Photon Flux, PPE = Phytochrome Photoequilibrium 
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Figure 4.1. Transmission curve for canary yellow cellulose acetate film (#312, Roscolux, 
Oasis Stage Werks, UT) obtained from Roscolux . 
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Figure 4.2. Effect of blue light fraction on wheat (a) leaf, (b) stem, (c) root, and (d) total 
dry mass . A represents PPF of 500 µmol m·2 s·1 and • represents PPF of 200 
µmol m·2 s·1• Each point is an average of six plants (pseudo replicates). Replicate 
data points at each blue light fraction represent replicate trials in time. Error bars 
represent the least significant difference at the a=0 .05 level between blue light 
fractions within a PPF . 
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Figure 4.3. Effect of blue light fraction on wheat (a) leaf, (b) stem, and (c) root dry mass 
as a percent of total dry mass. ~ represents PPF of 500 µmol m·2 s·1 and • 
represents PPF of 200 µmol m·2 s·1. Each point is an average of six plants (pseudo 
replicates) . Replicate data points at each blue light fraction represent replicate 
trials in time. Error bars represent the least significant difference at the a=0 .05 
level between blue light fractions. 
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Figure 4.4 . Effect of blue light fraction on soybean (a) leaf, (b) stem, (c) root, and (d) total 
dry mass. /1 represents PPF of 500 µmol m·2 s·1 and • represents PPF of 200 
µmol m·2 s·1. Each point is an average of six plants (pseudo replicates) . Replicate 
data points at each blue light fraction represent replicate trials in time. Error bars 
represent the least significant difference at the a=0.05 level between blue light 
fractions within a PPF . 
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Figure 4.5. Effect of blue light fraction on soybean (a) leaf, (b) stem, and (c) root dry mass 
as a percent of total dry mass. d represents PPF of 500 µmol m·2 s·1 and • 
represents PPF of 200 ,umol m·2 s·1. Each point is an average of six plants (pseudo 
replicates) . Replicate data points at each blue light fraction represent replicate 
trials in time. Error bars represent the least significant difference at the cx=0.05 
level between blue light fractions . 
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Figure 4.6. Effect of blue light fraction on lettuce (a) leaf, (b) stem, (c) root, and (d) total 
dry mass. Closed symbols represent blue light fractions created under HPS and 
open symbols represent blue light fractions created under MH . Triangles represent 
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light fraction represent replicate trials in time. Error bars represent the least 
significant difference at the a=0.05 level between blue light fractions. 
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Figure 4.7. Effect of blue light fraction on lettuce (a) leaf, (b) stern, and (c) root dry mass 
as a percent of total dry mass. /l. represents PPF of 500 µmol m·2 s·1 and • 
represents PPF of 200 µmol m·2 s·1. Each point is an average of six plants (pseudo 
replicates) . Replicate data points at each blue light fraction represent replicate 
trials in time . Error bars represent the least significant difference at the a=0.05 
level between blue light fractions . 
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Figure 4.8. Effect ofblue light fraction on (a) wheat, (b) soybean, and (c) lettuce stem 
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Figure 4. 9. Effect of blue light fraction on wheat (a) leaf area and (b) specific leaf area . Ll 
represents PPF of 500 µmol m·2 s·1 and • represents PPF of200 µmol m·2 s·1. 
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least significant difference at the a=0 .05 level between blue light fractions within a 
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Figure 4.10. Effect of blue light fraction on soybean (a) leaf area and (b) specific leaf area . 
fl. represents PPF of 500 µmol m·2 s·1 and • represents PPF of200 µmol m·2 s·1. 

Each point is an average of six plants (pseudo replicates). Replicate data points at 
each blue light fraction represent replicate trials in time. Error bars represent the 
least significant difference at the a=0.05 level between blue light fractions within a 
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Figure 4. 11. Effect of blue light fraction on lettuce (a) leaf area and (b) specific leaf area . 
Closed symbols represent blue light fractions created under HPS and open symbols 
represent blue light fractions created under MH. Triangles represent PPF of 500 
µmol m·2 s·1 and circles represent PPF of 200 µmol m·2 s·1. Each point is an 
average of six plants (pseudo replicates). Replicate data points at each blue light 
fraction represent replicate trials in time. Error bars represent the least significant 
difference at the a=0.05 level between blue light fractions (within a PPF for figure 
(a)). 
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Figure 4.12. Effect ofblue light fraction on (a) wheat, (b) soybean, and (c) lettuce 
chlorophyll concentration. Each point is an average of six plants (pseudo 
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trials in time. Error bars represent the least significant difference at the a=0 .05 
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Figure 4.14. Effect of blue light fraction on wheat (a) leaf, (b) stem, and (c) root relative 
water content. ~ represents PPF of 500 µmol m·2 s·1 and • represents PPF of 200 
µmol m·2 s·1. Each point is an average of six plants (pseudo replicates). Replicate 
data points at each blue light fraction represent replicate trials in time. Error bars 
represent the least significant difference at the cx=0.05 level between blue light 
fractions within a PPF . 



64 

Soybean 
87 

a Leaf A 

86 

85 ~ 

84 

83 • 
82 I LSD05 

,-... 81 
~ 94 

b Stem 
-...,_,/ 

93 ILSD os +-I 
C 
(1) 92 • +-I 
C 91 
0 • u 
~ 

89 (1) 

~ 88 
~ 87 
(1) 

> 95 
C Root ·-~ -(1) 

~ 94 
A 

I:,, 

93 

92 
0 s 10 15 20 25 30 

Blue Light Fraction(%) 

Figure 4.15. Effect of blue light fraction on soybean (a) leaf, (b) stem, and (c) root relative 
water content. ti represents PPF of 500 µmol m·2 s" 1 and • represents PPF of 200 
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data points at each blue light fraction represent replicate trials in time . Error bars 
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Figure 4.16. Effect ofblue light fraction on lettuce (a) leaf, (b) stem, and (c) root relative 
water content. fl represents PPF of 500 µmol m·2 s·1 and • represents PPF of 200 
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represents regression of the combined data. Each point is an average of six plants 
(pseudo replicates) . Replicate data points at each blue light fraction represent 
replicate trials in time. Error bars represent the least significant difference at the 
a=0 .05 level between blue light fractions within a PPF. 
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CHAPTERS 

BLUE LIGHT EFFECTS ON THE IDSTOLOGY 

OF LEA YES AND STEMS 

Abstract 

Cell division, cell expansion, or both processes may be affected by blue light. 
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Most studies on changes in cell expansion or division with altered light quality are short­

term, cell-level experiments . Long-term , whole-plant effects are not well characterized . 

We measured cell size and number for stems of soybean, and leaves of soybean and 

lettuce, at two blue light fractions . Stem cell expansion is known to be rapidly inhibited by 

blue light when switched from darkness , but we found that decreased soybean stem length 

over the long term was caused by an inhibition of cell division. Leaf area, on the other 

hand, was altered by a change in cell expansion for soybean and by a change in both cell 

expansion and division for lettuce . 

Introduction 

Blue light effects on leaf expansion and stem elongation at the cellular level are still 

controversial as to whether cell division or expansion is primarily altered . Blue light­

mediated inhibition of stem elongation is often assumed to be caused by changes in cell 

expansion . However, three key studies measured only hypocotyl elongation and cell wall 

properties and did not measure cell size (Shinkle and Jones, 1988; Cosgrove, 1981; Kigel 

and Cosgrove, 1991 ). Blue light does appear to regulate cell division in Ch/amydomonas 
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reinhardtii (Munzner and Voigt, 1992; Voigt and Munzner, 1994 ). In Phaseo/us vu/garis 

leaves, blue light stimulated cell expansion (Van Volkenburgh et al., 1990) . However, 

these studies were short-term hypocotyl or leaf disc experiments . In a longer-term study, 

Rahim and Fordham ( 1991) found shade versus sun conditions altered garlic leaf area 

primarily by changes in cell expansion . 

Leaf expansion, however, characteristically has a larger change in cell number than 

cell size (Dale and Milthorpe, 1983). One would then predict that in response to long-term 

light exposure, changes in leaf size could be more readily mediated by altered cell division . 

Based on the current view that the epidermis limits stem and leaf expansion (Dale, 1988; 

Kutschera, 1992), we measured epidermal cell size and number to account for differences 

in stem length of soybean and leaf area of soybean and lettuce at two blue light fractions. 

Material and Methods 

Soybeans and lettuce were cultured in the same system described in Chapter 4. 

Plants were grown at a photosynthetic photon flux of 500 µmol m·2 s·1
, 530 µmol CO2 

mol"1
, 25/22°C day/night temperature, and 73% relative humidity . Plants grown for stem 

sections were treated with a 16-h photoperiod and plants grown for leaf impressions were 

treated with a 12-h photoperiod . While these conditions varied from those described in 

Chapter 4, the blue light response was the same, namely: soybean leaf area decreased 

between 6% and 26% blue, lettuce leaf area increased between 0% and 6% blue, and 

soybean stem length decreased between 0% and 26% blue. Blue light treatments were as 

follows : soybean stem sections 0% (HPS) and 26% (MH), soybean leaf impressions 6% 
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(HPS) and 26% (MH), and lettuce leaf impressions 0% (HPS) and 6% (HPS) . Six plants 

were sampled under each blue light fraction and blue light fractions were repeated in 

another location. Leaf and intemode samples were taken when expansion was complete . 

Change in expansion was tested by measuring intemode length and leaf length and width 

every day until three consecutive days of measurements were the same. 

Microscopic examination and measurement. Both stem sections and leaf 

impressions were viewed under a microscope (Leitz, Laborlux 12 Pol, Wetzal , Germany) 

and photographed using an attached microcamera (WILD, Heerbrugg, Switzerland) . A 

stage micrometer was photographed separately at the same magnification and used for 

calibration of the analysis software (Arc View, ESRI, Redlands, CA) . The analysis 

software determined cell areas from tracings of the cells. Stem cell number was 

determined by dividing the intemode length by the average longitudinal cell length . Leaf 

cell number was determined by dividing leaf area by the average cell area . 

Stem sections . Eighteen days after transplanting, soybean plants were transferred 

to single bottles, two at a time, one from each blue light treatment, to be moved to the lab. 

Stems were sectioned in the intemode just above the cotyledonary leaves. The fresh 

sections were cut on glass slides in water and the epidermis was peeled away from the 

section. Samples were covered with a cover slip and immediately viewed at 25X and 

photographed . 

Leaf impressions. The middle leaflet of the soybean first trifoliate and the second 

true leaf oflettuce were sampled in the middle of the leaf(let) 18 and 17 days after 

transplanting, respectively . A 4% (w:v) solution of Formvar resin in chloroform 
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(polyvinyl-formaldehyde) was painted in a thin layer on each leaf The solution was 

allowed to dry for at least 30 seconds . Samples were then covered with cellophane tape, 

peeled off the leaf, and mounted on a glass microscope slide. The sampled leaf was then 

measured with a leaf area meter (LI-COR, Lincoln, NE) . Leaf impressions were viewed 

and photographed at 40X. All sampling, viewing and photographing took place within 2 h 

(see Appendix C). 

Results and Discuss ion 

The effect of blue light treatments on soybean stem epidermal cells was visually 

apparent in microscope photographs (Figure 5.1). Plant and cell measurement revealed a 

4.7-fold increase in soybean stem length (Figure 5.2a) was associated with a 4.5-fold 

increase in cell number (Figure 5.2c). This suggests that blue light fraction alters cell 

division to elicit the inhibition of soybean stem length. Blue light suppression of cell 

expansion in etiolated seedlings ( Cosgrove, 1981; Ki gel and Cosgrove , 1991) explains 

dark to light inhibition of growth , but does not explain the blue light effects of light-grown 

soybeans . 

Microscope photographs did not reveal, to the human eye, any difference in 

soybean leaf epidermal cells between blue light treatments (Figure 5.3). The 23% 

decrease in soybean leaf area (Figure 5.4a) caused by changing blue light fraction from 6% 

to 26% was associated with a 15% decrease in cell area and an 11 % decrease in cell 

number (Figure 5.4b,c). However, only the differences in cell area were statistically 

significant. This suggests that changes in cell expansion may be the primary driver for 
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changes in leaf area, but cell division may aid in the change. It is important to note that 

leaf expansion in soybean is greatest at 6% blue and that blue light enhances leaf 

expansion from 0% to 6% blue (Chapter 4). According to Van Volkenburgh et al. (1990), 

blue light is as effective as red light at stimulating cell expansion in P. vulgaris leaf discs, 

but the effectiveness of red light is suppressed by far-red light. The curvilinear response of 

leaf area to an increase in blue light fraction suggests that this hypothesis may not be true . 

In our experiments, there were changes in red to far-red ratio with increasing blue light 

fraction (Table 4.4), but the changes in the ratio do not coincide with the variations in leaf 

area. More directly, the decrease in cell size with increased blue light fraction between 6% 

and 26% blue more strongly suggests that, in the long term, blue light at high levels may 

not be as effective as red light in affecting cell expansion . 

An increase in lettuce leaf epidermal cell size was visually apparent in microscope 

photographs (Figure 5.5). Indeed, the 4.4-fold increase in lettuce leaf area between 0% 

and 6% blue (Figure 5.6a) was caused by a 3.1-fold increase in cell area and a 1.6-fold 

increase in cell number (Figure 5.6b,c). The change in lettuce leaf cell expansion, although 

opposite that of soybean, also raises the question of the effectiveness of blue light 

compared to red in stimulating cell expansion. For lettuce leaves, both blue and red light 

may be necessary to trigger the expansion responses. Even so, it appears that blue light is 

more effective at eliciting the expansion response . These discrepancies in cell expansion 

may be due to the fact that our plants were started from imbibition under their respective 

treatments, whereas Van Volkenburgh et al. (1990) used leaf discs from plants that were 

grown first under white fluorescents and were only treated under red or blue lights for a 
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short time. 

While blue light signal transduction pathways for phototropism have been 

elucidated (Short and Briggs, 1994), the pathways for blue-light-induced cell expansion 

and cell division have not, and are likely separate pathways due to the very different 

kinetics (Short and Briggs, 1994; Liscum et al., 1992). The most likely mechanism 

suggested for blue light to alter cell expansion is a photoreceptor . A blue light 

photoreceptor may act to stimulate proton efflux, thus affecting calcium channels (Staal et 

al., 1994), calcium-calmodulin signaling (Elzenga et al., 1997), and auxin-binding (Jones 

et al., 1998) . 

In cell division, the formation of a new cell wall is mediated by Golgi vesicles, 

which are guided by microtubules . Two light mechanisms known to alter microtubules 

may also be mechanisms for blue light to alter cell division. P-tubulin, a building block of 

microtubules, is known to be downregulated in dark versus light-grown soybean seedlings 

(Bustos et al., 1989). More specifically, blue light causes microtubules to align 

longitudinally rather than transversely (Short and Briggs, 1994). The recent elucidation of 

the HY4 gene, believed to code for a blue-light receptor (Ahmad and Cashmore, 1993), 

may shed light on how blue light might alter microtubule formation or orientation to affect 

cell division. 
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Figure 5 .1. Microscope photographs of soybean stem epidermal cells at 0% and 26% blue. 
Photographs were taken at 25X. 
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Figure 5.2 . Effect of 0% and 26% blue light on soybean stem length, stem epidermal cell 
area, and stem epidermal cell number per intemode . Error bars represent the least 
significant difference at a= 0.05. 
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Soybean Leaf 
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Figure 5 .3. Microscope photographs of soybean leaf epidermal cells at 6% and 26% blue. 
Photographs were taken at 40X. 
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Figure 5. 4 . Effect of 6% and 26% blue light on soybean leaf area, leaf epidennal cell area, 
and leaf epidennal cell number. Error bars represent the least significant difference 
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Lettuce Leaf 

0% blue 

6% blue 

Figure 5. 5. Microscope photographs of lettuce leaf epidermal cells at 0% and 6% blue. 
Photographs were taken at 40X. 
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Figure 5. 6. Effect of 0% and 6% blue light on lettuce leaf area, leaf epidermal cell area, 
and leaf epidermal cell number . Error bars represent the least significant difference 
at a= 0.05. 
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Growing plants in controlled environments, such as for an Advanced Life Support 

system, provides an opportunity to manipulate environmental conditions without 

complicating plant stress factors . Ultimately, all environmental factors could be 

manipulated to optimize system efficiency. We know that high carbon dioxide (excluding 

super-elevated carbon dioxide), high relative humidity, and direct nutrient delivery 

(hydroponics) provide a luxury environment for plant water potential and growth. 

Soybean canopy height responded minimally to temperature changes under these luxury 

conditions. A lack of elongation sensitivity means that temperature can be manipulated to 

optimize other productivity parameters such as yield and harvest index without drastically 

altering plant height. 

The manipulation of light quality under these same luxury conditions causes 

greater differences in plant height and affects productivity depending on species. 

Although red light is the least energetically expensive to make, exclusively or narrow­

range red light sources greatly enhance stem elongation and, in some cases, compromise 

productivity . In our experiments, soybeans grown under HPS lamps had more elongated 

stems, but higher total biomass than under MH lamps. Because phytochrome 

photoequilibrium was nearly identical for the two light sources, the differences in leaf 

expansion and stem elongation were hypothesized to be caused by blue light. Specifically 

examining blue light effects in further experiments, we found the effect of blue light was 
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very much species dependent. Wheat, which has an erectophile habit where expanding 

leaves and stems are shaded from light, showed little to no sensitivity to blue light. The 

small decrease in total dry mass with increasing blue light fraction could better be 

accounted for by differences in yield photon flux rather than blue light. To this end, wheat 

can be grown without blue light provided no other life cycle processes are affected by the 

lack of blue light. Soybean, which has a planophile habit where expanding leaves and 

stems are exposed to light, was much more sensitive to blue light. Differences in soybean 

dry mass could not be entirely explained by yield photon flux differences . Our data also 

indicated that soybean stem elongation responded to blue light fraction rather than 

absolute blue light. Soybean can be grown without blue light, but where canopy height is 

a concern, as in Advanced Life Support, some blue light may need to be added to control 

the height. The general division of species blue light sensitivity by plant growth habit, 

erectophile versus planophile, requires further investigation using other cultivars and 

species . 

The leafy crop, lettuce, was even more sensitive to blue light fraction and required 

blue light to develop properly. The fact that lettuce, grown under equivalent phytochrome 

photoequilibrium and blue light fraction but variable "green" wavelengths, had differing 

yields suggests lettuce is very sensitive to spectral quality . This raises further questions of 

which wavelengths also affect lettuce growth and whether other leafy crops have a similar 

response. 

The blue light effect at the cellular level was dependent on both species and plant 

part. A decrease in soybean stem length was effected by altered cell division while a 
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decrease in soybean leaf area was effected primarily by altered cell expansion . The fact 

that blue light affects cell division or expansion, depending on location, suggests sites of 

perception and/or signal transduction are different for stems and leaves . However, in 

lettuce leaves, both cell division and expansion were altered by blue light. In some 

species, the signal perception may not be separate. 

Lastly , because we harvested our plants early in the life cycle, our results are only 

an indication of what might happen to yield. Our early soybean experiments indicated that 

there may be a change in total biomass and carbon partitioning such that edible yield is not 

affected . The long-term effects of stem and leaf morphological changes need to be 

investigated further . 
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APPENDIX A. SUPPLEMENTARY EXPERIMENT TO: EFFECT OF 

LAMP TYPE AND TEMPERATURE ON DEVELOPMENT, CARBON 

PARTITIONING, A.~ YIELD OF SOYBEAN 
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Abstract 

Parameters sensitive to lamp type in Chapter 3 retained their sensitivity at higher 

temperatures . Increasing the temperature to 32/28°C was significantly detrimental to total 

biomass but did not affect seed yield and photosynthetic efficiency. Lowering root zone 

temperature did not aid in reducing dark respiration and increasing carbon partitioning to 

the shoot. 

Materials and Methods 

Soybeans were grown as described in Chapter 1 except only three day/night 

temperature regimes were used : 32/28, 29/25, and 26/22°C . Root temperatures were kept 

constant at the average daily temperature of the shoot: 30, 27, and 24 °c, respectively. 

Two additional shoot chambers were treated at 29/25 and 26/22°C but root zone 

temperatures were kept constant at 23 and 20°C, respectively . These comprised the five 

temperature treatments for each lamp type . 

Results 

Effect of lamp type 

The results of this experiment confirm the results of Chapter 3. Even at higher 

temperatures, a significant difference in canopy height, stem and branch length, and total 

biomass occur between HPS and MH (Table A. I) . The trend of reduced stem mass in 

MH plants associated with an increase in HI was also apparent, but not significant (Table 
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A.2) . There was a greater and significant change in partitioning to the leaves . Although a 

trend for decreased seed yield under MH was apparent, once again this trend was not 

significant (Table A. I) . No single yield parameter could account for the trend . No 

significant changes between treatments were noted in photosynthetic efficiency . Canopy 

P net measurements were consistent with yield differences between lamp types (Figure 

A la) . 

Effect of temperature 

Extreme high temperature of 3 2/28 ° C was detrimental to total biomass production 

but had a small non-significant effect on seed yield and photosynthetic efficiency (Table 

A.3) . We confirmed that cooler temperatures reduced the seed fill period . The higher 

temperatures also increased P0c, early in the life cycle (Fig. A. lb) . 

At these temperatures there was no difference in carbon partitioning (Table A.4), 

but the trend for decreased percent root mass with warm temperatures was apparent 

agam . The day/night temperature scheme did not affect canopy height. 

We hypothesized that a cooler root zone would have less dark respiration thus 

making more carbon available for biomass and seed production. However, there was no 

significant change in biomass or seed production at either shoot temperature regime 

(29/25 , 26/22°C) (Table A.3) and carbon partitioning was not significantly affected (Table 

A.4) . 



Table A.1. Supplementary data: Three plant length measures, seed yield, and yield components of soybeans grown under two 
lamp types. Each parameter is an average of the five chambers with different temperature regimes . 

lamp canopy main longest seed yield photo- total biomass pods seed 
type height stem branch (g•m· 2·d- 1

) synthetic (g•m· 2·d-1
) per m2 s per 

(cm) length length efficiencyt pod 

HPS 

MH 

48 .6 

42 .2 

(cm) (cm) (g•mol"1
) 

42 .2 51.2 5.04 0 .232 

22.0 29 .2 4.97 0.236 

£,-value 0.04 0.02 <0 .01 0 .84 0 .84 
t grams of seed per mol of PPF 

14.8 

13.0 

<0 .01 

1402 

1410 

0.93 

1.82 

1.90 

0 .17 

mass per seed 
(mg) 

158 

152 

0.34 

Table A.2 . Supplementary data : Carbon partitioning of soybeans under two lamp types . 
mass. Sum of the five components equals 100% . 

Measures are a percent of total dry 

lamp type seed stem leaves 

HPS 

MH 

E,-value 

(harvest index) 

34 .1 

38.2 

0.14 

17.6 

15.4 

0.12 

25.9 

22.5 

0.03 

pod 

13.0 

14.2 

0 .19 

root 

9.4 

9.8 

0.70 

'° .i:,. 



Table A.3. Supplementary data: A comparison of yield and yield components for soybeans grown under five temperature 
regimes. Each parameter is an average of the two chambers of differing lamp tyPe. 2 

day/night seed yield PEt total biomass pods seeds mass per 
temperature (g m·2 d"1

) (g mol"1
) (g m·2 d"1

) per m2 per pod seed (mg) 

32/28 4.73 0.219 12.9c 1520 1.85 135 

29/25 5.20 0.244 14.4a 1441 1.90 154 

29/25* 

26/22 

5.22 

5.16 

0.247 

0.240 

14.3a 

13.6b 

1473 

1344 

1.83 

1.90 

158 

164 

days to first 
flower 

19d 

19d 

21c 

23b 

days to 
harvest 

81 

81 

81 

81 

26/22* 4.70 0.221 14.2a 1253 1.84 164 26a 81 

p-value 0.73 0.69 <0.01 0.42 0.72 0.15 <0.01 1.00 

tpE = photosynthetic efficiency *reduced root zone temperature 
2different letters within a column indicate significant differences using a mean separation test of LSD at a=0.05 

seed fill 
(days) 

62 

62 

60 

58 

55 

Table A.4. Supplementary data : Carbon partitioning of soybeans under five temperature regimes. Data are a percent of total 
dry mass. Sum of the five components equals 100%. 

day/night temperature seed (harvest index) stem leaves pod root 

32/28 36.7 

29/25 36.1 

29/25* 36.5 

26/22 38.1 

26/22* 33.4 

p-value 0.77 

*reduced root zone temperature 

17.4 24.2 

18.2 24.6 

15.9 23.7 

14.1 24.6 

17.0 23.8 

0.33 0.96 

13.9 

12.6 

14.2 

13.5 

13.9 

0.66 

7.8 

8.6 

9.8 

9.8 

11.9 

0.25 
\D 
V'I 
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APPENDIX B. A COMPARISON OF SEQUENTIAL HAR VEST OF 

SOYBEAN UNDER TWO LAMP TYPES 

97 



Purpose 

The objective of this experiment was to gain an understanding of when 

morphological differences between plants grown under high pressure sodium and metal 

halide become apparent. 

Materials and Methods 

Soybeans were grown at a density of 36 plants m-2 in ten Plexiglas chambers (see 

system description in Chapter 3) . HPS or MH lamps were placed over five chambers 

each . Mylar sheets around the chambers were maintained at canopy height to minimize 

edge effect. Plants were grown in aerated nutrient solution (pH=5 .6, EC=70 mS m-1
), 

replenished as necessary to maintain solution level. Shoot (26/22°C) and root-zone 

(24°C) temperatures were measured with thermocouples and maintained by computer­

controlled heaters . A photosynthetic photon flux (PPF) of 550 ± 15 µmol m-2 s-1 was 

maintained at the top of the canopy . This supplied 49 and 170 µmol m-2 s-1 of blue light 

( 400-500nm) from HPS and MH lamps, respectively. Photoperiod was 12-h. Carbon 

dioxide concentration was enriched to 1100 µmol moi-1
. Canopy height, percent PPF 

absorption, and top of the canopy PPF were measured every other day. 

Absorption was measured with a line sensor integrating 10 quantum sensors . 

98 

Light was measured above the canopy (incident), below the canopy (transmitted), upside 

down above the canopy (reflected), and upside down below the canopy (reflected­

transmitted). Absorption was then calculated as incident minus transmitted plus reflected 
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plus reflected-transmitted all divided by incident. 

One chamber from each lamp type was harvested every six days starting 7 days 

after transplanting . The following were measured at harvest : node, branch , and leaf 

number ; main stem, branch and internode lengths; and leaf area . Plants were separated 

into leaves, stems, and roots, dried at 80°C for 48 hours, and weighed. Growth rates were 

calculated as the first derivative of length measurements versus time . 

Results 

Stem elongation . HPS stems elongate rapidly so the canopy quickly becomes 

taller than the :MlI canopy (Figure B. la) . The growth rate under HPS increased quickly 

to a maximum of 1. 5 cm d-1 by day 17 (Figure B .1 b ). :MlI had a shallower but broader 

peak at 0.5 cm d-1
. The calculated ratio of main stem length :branch length is an indicator 

of apical dominance . A phytochrome-mediated response, such as elongation due to 

competition, would have a high apical dominance ratio (>> 1) (Ballare et al., 1995) . The 

apical dominance of plants under HPS and :MlI lamps were not significantly different from 

one (Figure B.2) . This suggests differences in elongation were not phytochrome related . 

Individual internode lengths were consistently 2-3 times greater under HPS than MH 

lamps (Figure B.3). 

Leaf expansion. More rapid leaf expansion under HPS than :MlI was apparent by 

day 13 (Figure B.4a). However, by day 18 HPS leaf growth was only 10% greater than 

:MlI (Figure B.4b). Increased leaf area was not caused by an increase in leaf number 

(Figure B.5). A more rapid leaf expansion allowed for faster canopy closure and increased 
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light capture (Figure B.6). A 5.4% increase in absorbed light under HPS corresponded to 

a 5.2% increase in total dry mass as compared to MH (Figure B. 7a). Carbon partitioning 

to the stems accounted for most of the difference in total dry mass with a disparity of 

32.5% between lamp types (Figure B.7b). 

Literature Cited 

Ballare, C.L., AL. Scopel, and RA Sanchez. 1995. Plant photomorphogenesis in 
canopies, crop growth, and yield. HortScience 30: 1172-118 I. 
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APPENDIX C. A COMPARISON OF FOUR LEAF IMPRESSION 

METHODS 
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Introduction 

Leaf impressions have been used to measure cell size and cell number in grasses 

(Hilu and Randall, 1984; Rahim and Fordham, 1991) and pea leaves (Lecoeur et al, 1995). 

Cellulose acetate has long been used as the casting compound. However, these 

impressions tend to shrink and cloud making them useless for measuring cell size (Hilu 

and Randall, 1984; Rahim and Fordham, 1991). Hilu and Randall (1984) used nail polish 

as the casting compound to prevent shrinkage. A film of clear nail polish is brushed on the 

leaves, dried for 2 to 4 hours, and then carefully removed . This impression provides an 

outline of individual cells because it dissolves some of the waxes that may obscure cell 

outlines. Tests indicate a commercially available casting compound, Formvar 

(polyvinylformaldehyde), may work better (Schaefer and Harter, 1942). A simpler 

method, similar to cellulose acetate, using cellulose triacetate film is available but has not 

been previously referenced. Four methods, nail polish, Formvar, Hartopane (a butyrate 

film), and cellulose triacetate film, were compared to test for durability and ease of use. 

Materials and Methods 

Soybeans were grown under high pressure sodium lamps in conditions described in 

Chapter 4. Eighteen days after transplanting, four leaf impression methods were tested : 

nail polish (Strong Nail, Cutex, New York, NY), Formvar (Ted Pella Inc., Redding, CA), 

Hartopane (Hartwig-Hartoglass, Woodstock, IL), and cellulose triacetate. All four 

methods were tested simultaneously on the middle leaflet of the first trifoliate of 12 
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soybean plants. The middle region of the leaf was sampled to obtain a distribution of cell 

size closest to the mean cell size of the entire leaf (Wenzel et al, 1997). Nail polish and 

Formvar (4% Formvar resin in chloroform) were painted on the leaf and allowed to dry. 

Nail polish took at least 30 seconds to dry and Formvar took only 10-20 seconds to dry. 

Samples were then peeled off with cellophane tape and mounted on a glass microscope 

slide. Immediately after the leaf was treated with a drop of acetone, pieces (l x 2 cm) 

cellulose triacetate and Hartopane were pressed into the leaf for 10 seconds . The pieces 

were then taped to a glass microscope slide. All four method samples were immediately 

viewed under a microscope at 40X and photographed . Cells were traced and areas 

calculated in Arc View (ESRI, Redlands, CA) calibrated with a photograph of a stage 

micrometer at 40X. The same cells were photographed and measured again after 6 days 

to determine if sample shrinkage had occurred . 

Results 

Both cellulose triacetate and Hartopane curled severely in six days, compromising 

the plane of focus . Samples had to be re-taped in order to be photographed again after 6 

days. Nail polish impressions were easy to view provided the polish was spread thinly 

enough, which was difficult to do. Formvar was the easiest method to use and produced 

the best impressions, but the active ingredient (polyvinylformaldehyde) is a relatively 

hazardous chemical. None of the methods tested appeared to cloud within 6 days. All 

methods shrank significantly in six days, except Formvar (Figure C. I) . However, the 

variance in shrinkage was much less than the variance caused by differences in sample cell 
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size. Because of the simplicity of its use and minimal shrinkage, Formvar was used for all 

leaf impressions . 
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Figure C. l - Shrinkage over time of four leaf impression methods . Each bar is an average 
of 12 leaves . Asterisks indicate significant differences at a=0.05. 
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Table D. l - ANOVA tables for parameters cited in Chapter 3. 

Analysis ofVariance 
Procedure 
Dependent Variable : Main Shoot Length 

Source DF Sum of Squares Mean Square F Value Pr> F 

Model 5 1266.3200 253 .2640 12.3300 0.0153 

Error 4 82.1840 20.5460 

Corrected Total 9 1348.5040 

R-Square C.V . Root MSE Mean 

0.939055 14.83236 4.5328 30.5600 

Source DF Anova SS Mean Square F Value Pr> F 

LAMP 1 1132.0960 1132.0960 55 .1000 0.0018 

TEMP 4 134.2240 33.5560 1.6300 0.3231 

Analysis ofVariance 
Procedure 
Dependent Variable : Longest Branch 

Length 
Source DF Sum of Squares Mean Square F Value Pr>F 

Model 5 1162.4190 232.4838 43 .7300 0.0014 

Error 4 21.2660 5.3165 

Corrected Total 9 1183.6850 

R-Square C.V. Root MSE Mean 

0.982034 6.257133 2.3058 36.8500 

Source DF Anova SS Mean Square F Value Pr> F 

LAMP 1 1054.7290 1054.7290 198.3900 0.0001 

TEMP 4 107.6900 26.9225 5.0600 0.0726 

Analysis ofV ariance 
Procedure 
Dependent Variable : Percent Stem 

Source DF Sum of Squares Mean Square F Value Pr> F 

Model 5 29.9976 5.9995 13.5300 0.0129 

Error 4 1.7739 0.4435 

Corrected Total 9 31.7714 

R-Square C.V. Root MSE Mean 

0.944168 4.957062 0.6659 13.4340 

Source DF Anova SS Mean Square F Value Pr> F 

LAMP 1 15.1782 15.1782 34.2300 0.0043 

TEMP 4 14.8193 3.7048 8.3500 0.0318 
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Table D.l - continued 

Analysis ofVariance 
Procedure 
Dependent Variable : Percent Leaf 

Source DF Sum of Squares Mean Square F Value Pr> F 

Model 5 112.5158 22.5032 63 .1700 0.0007 

Error 4 1.4249 0.3562 

Corrected Total 9 113.9408 

R-Square C.V. Root MSE Mean 
0.987494 2.112160 0.5969 28 .2580 

Source DF Anova SS Mean Square F Value Pr> F 

LAMP 1 1.1972 1.1972 3.3600 0.1407 

TEMP 4 111.3187 27.8297 78 .1200 0.0005 

Analysis ofVariance 
Procedure 
Dependent Variable : Percent Pod 

Source DF Sum of Squares Mean Square F Value Pr> F 

Model 5 10.2200 2.0440 4.8100 0.0766 
Error 4 l.6992 0.4248 

Corrected Total 9 11.9192 
R-Square C.V . Root MSE Mean 

0.857437 5.221297 0.6518 12.4830 

Source DF Anova SS Mean Square F Value Pr> F 

LAMP 1 l.0304 1.0304 2.4300 0.1944 

TEMP 4 9.1896 2.2974 5.4100 0.0655 

Analysis ofVariance 
Procedure 
Dependent Variable : Percent Seed 

Source DF Sum of Squares Mean Square F Value Pr> F 

Model 5 127.9173 25.5835 16.2200 0.0092 

Error 4 6.3101 l.5775 

Corrected Total 9 134.2274 

R-Square C.V. Root MSE Mean 

0.952989 3.388823 1.2560 37.0630 

Source DF A.nova SS Mean Square F Value Pr> F 

LAMP 1 4.1088 4.1088 2.6000 0.1819 

TEMP 4 123.8085 30.9521 19.6200 0.0068 



116 

Table D. l - continued 

Analysis ofVariance 
Procedure 
Dependent Variable : Percent Root 

Source DF Sum of Squares Mean Square F Value Pr> F 

Model 5 29.5312 5.9062 4.9300 0.0738 

Error 4 4.7954 1.1989 

Corrected Total 9 34.3266 

R-Square C.V. Root MSE Mean 

0.860300 12.49914 1.0949 8.7600 

Source DF Anova SS Mean Square F Value Pr> F 

LAMP 1 3.2036 3.2036 2.6700 0.1775 

TEMP 4 26.3276 6.5819 5.4900 0.0639 

Analysis ofVariance 
Procedure 
Dependent Variable: Pods per Square 

Meter 
Source DF Sum of Squares Mean Square F Value Pr> F 

Model 5 217707 .1000 43541.4200 53.4700 0.0009 

Error 4 3257 .0000 814.2500 

Corrected Total 9 220964 .1000 
R-Square C.V. Root MSE Mean 

0.985260 1.988091 28.5351 1435.3000 

Source DF Anova SS Mean Square F Value Pr> F 

LAMP 1 25502 .5000 25502 .5000 31.3200 0.0050 

TEMP 4 192204.6000 48051 .1500 59.0100 0.0008 

Analysis ofVariance 
Procedure 
Dependent Variable : Mass per Seed 

Source OF Sum of Squares Mean Square F Value Pr> F 

Model 5 507.4000 101.4800 0.5600 0.7302 

Error 4 722.6000 180.6500 

Corrected Total 9 1230.0000 

R-Square C.V. Root MSE Mean 

0.412520 8.245773 13.4406 163.0000 

Source DF Anova SS Mean Square F Value Pr> F 

LAMP 1 144.4000 144.4000 0.8000 0.4218 

TEMP 4 363.0000 90.7500 0.5000 0.7393 
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Table D. l - continued 

Analysis ofVariance 
Procedure 
Dependent Variable : Seeds per Pod 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 5 0.1202 0.0240 13.1000 0.0137 
Error 4 0.0073 0.0018 
Corrected Total 9 0.1275 

R-Square C.V. RootMSE Mean 
0.942427 2.279771 0.0428 1.8790 

Source DF Anova SS Mean Square F Value Pr> F 
LAMP 1 0.0084 0.0084 4.5800 0.0990 
TEMP 4 0.1117 0.0279 15.2200 0.0109 

Analysis of Variance 
Procedure 
Dependent Variable : Effective Canopy 

Height 
Source DF Sum of Squares Mean Square F Value Pr> F 
Model 5 484 .2000 96.8400 25 .1500 0.0040 
Error 4 15.4000 3.8500 
Corrected Total 9 499 .6000 

R-Square C.V . Root MSE Mean 
0.969175 4.930004 1.9621 39.8000 

Source DF Anova SS Mean Square F Value Pr> F 
LAMP 1 435 .6000 435 .6000 113.1400 0.0004 
TEMP 4 48 .6000 12.1500 3.1600 0.1458 

Analysis ofVariance 
Procedure 
Dependent Vatiable: First Flower 
Source DF Sum of Squares Mean Square F Value Pr> F 
Model 5 260 .9000 58.1800 29 .0900 0.0031 
Error 4 8.0000 2.0000 
Corrected Total 9 298 .9000 

R-Square C.V. Root MSE Mean 
0.9732 5.2573 1.4142 26.9000 

Source DF Anova SS Mean Square F Value Pr>F 
LAMP 1 22.5000 22.5000 11.2500 0.0285 
TEMP 4 268.4000 67.1000 33.5500 0.0025 
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Table D. l - continued 

Analysis ofVariance 
Procedure 
Dependent Variable : Days to Harvest 
Source DF Sum of Squares Mean Square F Value Pr > F 
Model 5 91.0000 18.2000 1.9500 0.2692 
Error 4 37.4000 9.3500 
Corrected Total 9 128.4000 

R-Square C.V. Root MSE Mean 
0.708723 3.412698 3.0578 89.6000 

Source DF Anova SS Mean Square F Value Pr> F 
LAMP 1 67.6000 67.6000 7.2300 0.0547 
TEMP 4 23.4000 5.8500 0.6300 0.6696 

Analysis ofVarian ce 
Procedure 
Dependent Variable : Seed Yield Rate 
Source DF Sum of Squares Mean Square F Value Pr> F 
Model 5 4.5704 0.9141 4.4700 0.0859 
Error 4 0.8177 0.2044 
Corrected Total 9 5.3882 

R-Square C.V. Root MSE Mean 
0.848234 9.4829 0.4521 4.7680 

Source DF Anova SS Mean Square F Value Pr> F 
LIGHT 1 0.5954 0.5954 2.9100 0.1631 
TEMP 4 3.9751 0.9938 4.8600 0.0774 

Analysis ofVariance 
Procedure 
Dependent Variable: Photosynthetic 

Efficiency 
Source DF Sum of Squares Mean Square F Value Pr> F 
Model 5 0.0114 0.0023 4.7400 0.0785 
Error 4 0.0019 0.0005 
Corrected Total 9 0.0133 

R-Square C.V. Root MSE Mean 
0.855514 8.8826 0.0219 0.2471 

Source DF Anova SS Mean Square F Value Pr> F 
LIGHT 1 0.0009 0.0009 1.8700 0.2429 
TEMP 4 0.0105 0.0026 5.4500 0.0646 
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Table D. l - continued 

Analysis ofVariance 
Procedure 
Dependent Variable: Total Biomass Rate 
Source DF Sum of Squares Mean Square F Value Pr> F 
Model 5 10.3809 2.0762 2.8100 0.1690 
Error 4 2.9513 0.7378 
Corrected Total 9 13.3322 

R-Square C.V. Root MSE Mean 
0.778634 6.6971 0.8590 12.8260 

Source DF Anova SS Mean Square F Value Pr> F 
LIGIIT 1 7.0560 7.0560 9.5600 0.0365 
TEMP 4 3.3249 0.8312 1.1300 0.4554 
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Table D.2 - General linear model tables for lettuce parameters in Chapter 4. 

General Linear Models 
Procedure 
Dependent Variable: Chlorophyll 

Concentration 
Source DF Sum of Squares Mean Square F Value Pr>F 

Model 22 2615.5529 118.8888 44.96 0.0001 

Error 115 304.1033 2.6444 

Corrected Total 137 2919.6562 
R-Square C.V . Root MSE Mean 
0.895843 26.7664 1.6262 6.0754 

Source DF Type III SS Mean Square F Value Pr> F 

REP 1 48.0438 48.0438 18.17 0.0001 

PPF 1 297.0943 297.0943 112.35 0.0001 

LAMP 1 561.9551 561.9551 212 .5 l 0 .0001 
PPF*LAMP 1 0.5807 0.5807 0.22 0.6402 
BLF(LAMP) 4 1379.5035 344.8759 130.42 0.0001 
PPF*BLF(LAMP) 4 76.4115 19.1029 7.22 0.0001 
REP*PPF l 63.6865 63.6865 24 .08 0.0001 
REP*PPF*LAMP 2 18.2682 9.1341 3.45 0.0349 
REP*PPF*BLF(LAMP)7 72.2565 10.3224 3.90 0.0007 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
PPF l 297.0943 297.0943 4 .66 0.2760 

Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source OF Type III SS Mean Square F Value Pr>F 

LAMP 1 561.9551 561.9551 61.52 0.0159 

Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source OF Type III SS Mean Square F Value Pr> F 

PPF*LAMP l 0.5807 0.5807 0.06 0.8245 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 1379.5035 344.8759 33.41 0.0001 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source OF Type III SS Mean Square F Value Pr> F 

PPF*BLF(LAMP) 4 76.4115 19.1029 1.85 0.2240 



Table D.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Leaf Area 
Source DF Swn of Squares Mean Square F Value 
Model 22 1028177.7066 46735.3503 9.08 
Error 115 592044 .3672 5148.2119 
Corrected Total 137 1620222.0738 

R-Square C.V. Root MSE Mean 
0.634591 42.1250 71.7510 170.3288 

Source DF Type III SS Mean Square F Value 
REP 1 91423.6506 91423.6506 17.76 
PPF l 106742.7372 106742.7372 20.73 
LAMP l 11059.6895 11059.6895 2.15 
PPF*LAMP 1 10684.7803 10684.7803 2.08 
BLF(LAMP) 4 588804.7873 147201.1968 28.59 
PPF*BLF(LAMP) 4 125865.3489 31466.3372 6.11 
REP*PPF 1 323.3359 323.3359 0.06 
REP*PPF*LAMP 2 556.4908 278.2454 0.05 
REP*PPF*BLF(LAMP)7 60864.4551 8694.9222 .69 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value 
PPF 106742.7372 106742.7372 330.13 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 
LAMP 1 11059.6895 11059.6895 39.75 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 
PPF*LAMP 1 10684.7803 10684.7803 38.40 

Pr> F 

0.0001 

Pr> F 
0.0001 
0.0001 
0.1455 
0.1524 
0.0001 
0.0002 
0.8026 
0.9474 
0.1185 

Pr> F 
0.0350 

Pr> F 
0.0242 

Pr> F 
0.0251 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 588804.7873 147201.1968 16.93 0.0011 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 125865.3489 31466.3372 3.62 0.0664 
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Table D.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Leaf Dry Mass 

Source DF Sum of Squares Mean Square F Value 

Model 22 6.0200 0.2736 12.41 
Error 115 2.5353 0.0220 

Corrected Total 137 8.5553 
R-Square C.V. Root MSE Mean 
0.703654 48.9024 0.1485 0.3036 

Source DF Type III SS Mean Square F Value 
REP 0.7342 0.7342 33.30 
PPF 1 0.8770 0.8770 39.78 
LAMP l 0.0945 0.0945 4.29 
PPF*LAMP 0.0069 0.0069 0.31 
BLF(LAMP) 4 3.0468 0.7617 34.55 
PPF*BLF(LAMP) 4 0.4084 0.1021 4.63 
REP*PPF l 0.1924 0.1924 8.73 
REP*PPF*LAMP 2 0.0040 0.0020 0.09 
REP*PPF*BLF(LAMP)7 0.4238 0.0605 2.75 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value 
PPF 0.8770 0.8770 4.56 

Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 
LAMP 1 0.0945 0.0945 46 .80 

Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 

PPF*LAMP 0.0069 0.0069 3.41 

Pr> F 

0.0001 

Pr> F 
0.0001 

0 .0001 

0.0407 

0.5775 

0.0001 
0.0017 

0.0038 
0.9126 

0.0113 

Pr> F 
0.2789 

Pr>F 
0.0207 

Pr> F 

0.2061 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 3.0468 0.7617 12.58 0.0026 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 0.4084 0.1021 1.69 0.2561 
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Table D.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable: Stem Dry Mass 
Source DF Sum of Squares Mean Square F Value 
Model 22 0.0165 0.0007 5.15 
Error 115 0.0167 0.0001 

Corrected Total 137 0.0332 

R-Square C.V. Root MSE Mean 
0.496185 62.7105 0.0121 0.0192 

Source DF Type III SS Mean Square F Value 
REP 1 0.0017 0.0017 11.61 
PPF 0.0029 0.0029 19.75 
LAMP 1 0.0001 0.0001 0.89 
PPF*LAMP 0.0001 0.0001 0.81 
BLF(LAMP) 4 0.0065 0.0016 11.22 
PPF*BLF(LAMP) 4 0.0020 0.0005 3.35 
REP*PPF l 0.0002 0.0002 1.64 
REP*PPF*LAMP 2 0.0010 0.0005 3.34 
REP*PPF*BLF(LAMP)7 0.0013 0.0002 1.26 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value 
PPF 0.0029 0.0029 12.01 

Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 

LAMP 1 0.0001 0.0001 0.27 

Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 
PPF*LAMP 1 0.0001 0.0001 0.24 

Pr> F 

0.0001 

Pr> F 

0.0009 

0.0001 
0.3464 

0.3693 
0.0001 

0.0124 
0.2023 

0.0390 

0.2788 

Pr> F 

0.1788 

Pr> F 

0.6563 

Pr> F 

0.6706 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 

BLF(LAMP) 4 0.0065 0.0016 8.94 0.0070 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 

PPF*BLF(LAMP) 4 0.0020 0.0005 2.67 0.1218 
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Table D.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable: Root Dry Mass 
Source OF Sum of Squares Mean Square F Value 
Model 22 0.2120 0.0096 15.13 
Error 115 0.0732 0.0006 
Corrected Total 137 0.2853 

R-Square C.V. Root MSE Mean 
0.743222 47 .5144 0.0252 0.0531 

Source OF Type III SS Mean Square F Value 
REP 0.0122 0.0122 19.22 
PPF l 0.0541 0.0541 85.00 
LAMP I 0.0103 0.0103 16.23 
PPF*LAMP l 0.0000 0.0000 0.05 
BLF(LAMP) 4 0.0958 0.0239 37.59 
PPF*BLF(LAMP) 4 0.0204 0.005 l 7.99 
REP*PPF l 0.0041 0.0041 6.36 
REP*PPF*LAMP 2 0.0003 0.0001 0.22 
REP*PPF*BLF(LA..\.1P)7 0.0080 0.0011 1.80 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source OF Type III SS Mean Square F Value 

PPF 1 0.0541 0.0541 13.36 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source OF Type III SS Mean Square F Value 

LAMP 1 0.0103 0.0103 73.77 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source OF Type III SS Mean Square F Value 

PPF*LAMP 1 0.0000 0.0000 0.22 

Pr> F 

0.0001 

Pr> F 

0.0001 

0.0001 

0.0001 

0.8276 
0.0001 

0.0001 
0.0130 

0.8028 
0.0943 

Pr> F 

0.1700 

Pr> F 

0.0133 

Pr> F 

0.6874 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source OF Type III SS Mean Square F Value Pr> F 

BLF(LAMP) 4 0.0958 0.0239 20.91 0.0005 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source OF Type III SS Mean Square F Value Pr> F 

PPF*BLF(LAMP) 4 0.0204 0.0051 4.44 0.0421 

124 



Table D.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Total Dry Mass 
Source DF Sum of Squares Mean Square F Value 
Model 22 9.0539 0.4115 12.87 
Error 115 3.6777 0.0320 
Corrected Total 137 12.7316 

R-Square C.V. RootMSE Mean 
0.711138 47.5626 0.1788 0.3760 

Source DF Type III SS Mean Square F Value 
REP 1 1.0173 1.0173 31.81 
PPF 1 1.4953 1.4953 46.76 
LAMP 0.1581 0.1581 4.94 
PPF*LAMP 0.0060 0.0060 0.19 
BLF(LAMP) 4 4.5337 1.1334 35.44 
PPF*BLF(LAMP) 4 0.6432 0.1608 5.03 
REP*PPF 0.2681 0.2681 8.38 
REP*PPF*LAMP 2 0.0087 0.0044 0.14 
REP*PPF*BLF(LAMP)7 0.5771 0.0824 2.58 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value 

PPF 1.4953 1.4953 5.58 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 

LAMP 0.1581 0.1581 36.19 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 
PPF*LAMP 1 0.0060 0.0060 1.38 

Pr> F 

0.0001 

Pr> F 

0.0001 

0.0001 

0.0281 

0.6652 
0.0001 

0.0009 

0.0045 

0.8724 
0.0166 

Pr> F 

0.2550 

Pr> F 

0.0265 

Pr> F 

0.3613 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 

BLF(LAMP) 4 4.5337 1.1334 13.75 0.0020 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 

PPF*BLF(LAMP) 4 0.6432 0.1608 1.95 0.2069 
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Table D.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable: Percent Leaf 
Source DF Swn of Squares Mean Square F Value 
Model 22 3384.7205 153.8509 17.10 
Error 115 1034.6408 8.9969 
Corrected Total 137 4419.3613 

R-Square C.V. Root MSE Mean 
0.765885 3.8209 2 .9995 78.5025 

Source DF Type III SS Mean Square F Value 
REP I 34.0889 34.0889 3.79 
PPF l 185.3436 185.3436 20.60 
LAMP 1 305.9006 305.9006 34.00 
PPF*LAMP l 9.8418 9.8418 1.09 
BLF(LAMP) 4 2071.5034 517.8759 57.56 
PPF*BLF(LAMP) 4 361.0678 90.2670 10.03 
REP*PPF 1 14.3079 14.3079 1.59 
REP*PPF*LAMP 2 118.6777 59.3388 6.60 
REP*PPF*BLF(LAMP)7 225.1564 32. 1652 3.58 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value 

PPF 185.3436 185.3436 12.95 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 
LAMP l 305.9006 305.9006 5.16 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 
PPF*LAMP l 9.8418 9.8418 0.17 

Pr> F 

0.0001 

Pr> F 
0.0540 
0.0001 

0.0001 
0.2978 
0.0001 
0.0001 
0.2098 
0.0019 
0.0016 

Pr> F 
0.1725 

Pr> F 
0.1512 

Pr> F 
0.7233 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 2071.5034 517.8759 16.10 0.0012 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 361.0678 90.2670 2.81 0.1108 
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Table D.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Percent Stem 
Source DF Sum of Squares Mean Square F Value 
Model 22 4873 .3968 221.5180 23.99 
Error 115 1061.7103 9.2323 
Corrected Total 137 5935.107 l 

R-Square C.V. Root MSE Mean 
0.821114 38.8785 3.0385 7.8153 

Source DF Type III SS Mean Square F Value 
REP l 5.44 71 5.4471 0.59 
PPF l 7.4945 7.4945 0.81 
LAMP 1341.2497 1341.2497 145.28 
PPF*LAMP 1 52.7208 52.7208 5.71 
BLF(LAMP) 4 2985 .0023 746.2506 80.83 
PPF*BLF(LAMP) 4 114.0869 28.5217 3.09 
REP*PPF l l.0616 l.0616 0.11 
REP*PPF*LAMP 2 106.4027 53.2014 5.76 
REP*PPF*BLF(LAMP)7 169.3837 24.1977 2.62 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value 

PPF l 7.4945 7.4945 7.06 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 
LAMP 1 1341.2497 1341.2497 25.21 

Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 
PPF*LAMP 1 52.7208 52.7208 0.99 

Pr> F 

0.0001 

Pr> F 

0.4440 

0.3695 

0.0001 

0.0185 

0.0001 
0.0186 

0.7352 
0.0041 

0.0151 

Pr> F 

0.2292 

Pr> F 
0.0375 

Pr> F 

0.4244 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 2985.0023 746.2506 30.84 0.0002 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 114.0869 28.5217 l.18 0.3972 
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Table D.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable: Percent Root 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 22 1045.8156 47.5371 8.43 0.0001 
Error 115 648.3264 5.6376 
Corrected Total 137 1694.1419 

R-Square C.V. Root MSE Mean 
0.617313 17.3536 2.3744 13.6822 

Source DF Type III SS Mean Square F Value Pr>F 
REP I 66.7892 66.7892 11.85 0.0008 
PPF I 267.3784 267.3784 47.43 0.0001 
LAMP I 366.0740 366.0740 64 .93 0.0001 
PPF*LAMP 1 17.0053 17.0053 3.02 0.0851 
BLF(LAMP) 4 147.6967 36.9242 6.55 0.0001 
PPF*BLF(LAMP) 4 95.7401 23 .9350 4.25 0.0031 
REP*PPF I 23.1643 23.1643 4.11 0.0450 
REP*PPF*LAMP 2 23.6482 11.8241 2.10 0.1275 
REP*PPF*BLF(LAMP)7 72.8575 10.4082 l.85 0.0850 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF I 267.3784 267.3784 11.54 0.1822 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
LAMP l 366.0740 366.0740 30 .96 0.0308 

Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*LAMP I 17.0053 17.0053 1.44 0.3532 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 147.6967 36.9242 3.55 0.0693 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 

PPF*BLF(LAMP) 4 95.7401 23.9350 2.30 0.1585 



Table D.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable: Specific Leaf 

Area 
Source DF Sum of Squares Mean Square F Value 
Model 22 198012.4487 9000.5659 76.50 
Error 115 13529.3901 117.6469 
Corrected Total 137 211541.8388 

R-Square c.v. Root MSE Mean 
0.936044 14.1704 10.8465 76.5433 

Source DF Type III SS Mean Square F Value 
REP 1 1533.4103 1533.4103 13.03 
PPF 1 148.5769 148.5769 1.26 
LAMP l 37654 .4270 37654.4270 320.06 
PPF*LAMP l 3693.6400 3693.6400 31.40 
BLF(LAMP) 4 135420.0067 33855 .0017 287 .77 
PPF*BLF(LAMP) 4 11123.4320 2780 .8580 23 .64 
REP*PPF 1 3138 .3091 3138.3091 26.68 
REP*PPF*LAMP 2 866.6295 433.3147 3.68 
REP* PPF* BLF(LAMP)7 1821.6285 260.2326 2.21 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value 

PPF l 148.5769 148.5769 0.05 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 

LAMP 37654.4270 37654.4270 86.90 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 

PPF*LAMP 3693.6400 3693.6400 8.52 

Pr>F 

0.0001 

Pr> F 

0.0005 

0.2634 
0.0001 

0.0001 

0.0001 

0.0001 
0.0001 

0.0282 
0.0381 

Pr > F 

0.8636 

Pr> F 

0.0113 

Pr> F 

0.1000 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 

BLF(LAMP) 4 135420.0067 33855 .0017 130.10 0.0001 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 

PPF*BLF(LAMP) 4 11123.4320 2780 .8580 10.69 0.0042 
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Table D.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Stem Length 

Source DF Swn of Squares Mean Square F Value 

Model 22 228459.4348 10384.5198 110.81 
Error 115 10777.6667 93.7188 

Corrected Total 137 239237 .1014 

R-Square C.V . Root MSE Mean 
0.954950 25.6029 9.6808 37.8116 

Source DF Type III SS Mean Square F Value 

REP 2377.0396 2377.0396 25.36 
PPF 553.9830 553.9830 5.91 

LAMP 1 63676.1248 63676.1248 679.44 

PPF*LAMP 3.3201 3.3201 0.04 
BLF(LAMP) 4 150317.2810 37579.3203 400 .98 
PPF*BLF(LAMP) 4 3855.0185 963.7546 10.28 

REP*PPF l 357.1012 357.1012 3.81 
REP*PPF*LAMP 2 1440.8889 720.4444 7.69 
REP*PPF*BLF(LAMP)7 5021.3889 717.3413 7.65 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value 
PPF 553.9830 553.9830 1.55 

Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 
LAMP 1 63676.1248 63676 .1248 88.38 

Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 
PPF*LAMP 3.3201 3.3201 0.00 

Pr> F 

0.0001 

Pr> F 

0.0001 

0.0166 

0.0001 

0.8510 
0.0001 
0.0001 

0.0534 
0.0007 

0.0001 

Pr> F 

0.4307 

Pr> F 

0.0111 

Pr> F 

0.9521 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 

BLF(LAMP) 4 150317.2810 37579.3203 52.39 0.0001 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 3855.0185 963.7546 1.34 0.3431 
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Table 0.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable: Leaf Relative 

Water Content 
Source OF Sum of Squares Mean Square F Value 
Model 22 164.0490 7.4568 23.76 
Error 115 36.0933 0.3139 
Corrected Total 137 200.1423 

R-Square C.V. Root MSE Mean 
0.819662 0.5953 0.5602 94.1151 

Source OF Type III SS Mean Square F Value 
REP 8.5939 8.5939 27.38 
PPF 1 0.0811 0.0811 0.26 
LAMP 1 19.4906 19.4906 62.10 
PPF*LAMP 6.4259 6.4259 20.47 
BLF(LAMP) 4 86.9469 21.7367 69.26 
PPF*BLF(LAMP) 4 7.1279 1.7820 5.68 
REP*PPF 1 16.4739 16.4739 52.49 
REP*PPF*LAMP 2 2.2700 1.1350 3.62 
REP*PPF*BLF(LAMP)7 11.6806 1.6687 5.32 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source OF Type III SS Mean Square F Value 

PPF 0.0811 0.0811 0.00 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source OF Type III SS Mean Square F Value 
LAMP 1 19.4906 19.4906 17.17 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source OF Type III SS Mean Square F Value 
PPF*LAMP 1 6.4259 6.4259 5.66 

Pr> F 
0.0001 

Pr> F 
0.0001 
0.6122 
0.0001 

0.0001 
0.0001 
0.0003 
0.0001 
0.0300 
0.0001 

Pr> F 

0.9554 

Pr> F 
0.0536 

Pr>F 

0.1404 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source OF Type Ill SS Mean Square F Value Pr> F 
BLF(LAMP) 4 86.9469 21.7367 13.03 0.0023 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source OF Type III SS Mean Square F Value Pr > F 
PPF*BLF(LAMP) 4 7.1279 1.7820 1.07 0.4391 
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Table D.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Stem Relative 

Water Content 
Source DF Sum of Squares Mean Square F Value 
Model 22 1506.8955 68.4952 1.78 
Error 115 4436.1847 38.5755 

Corrected Total 137 5943.0802 

R-Square C.V. Root MSE Mean 
0.253555 6.6752 6.2109 93.0444 

Source DF Type III SS Mean Square F Value 

REP 1 3.2681 3.2681 0.08 

PPF 141.2977 141.2977 3.66 

LAMP l 262.3557 262 .3557 6.80 

PPF*LAMP 1 105.3606 105.3606 2.73 
BLF(LAMP) 4 409 .0566 102.2642 2.65 
PPF*BLF(LAMP) 4 112.8530 28 .2132 0.73 
REP*PPF I 34.7292 34.7292 0.90 
REP*PPF*LAMP 2 179.8305 89.9152 2.33 
REP*PPF*BLF(LAMP)7 345.0543 49 .2935 1.28 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value 

PPF 1 141.2977 141.2977 4.07 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 

LAMP 262.3557 262.3557 2.92 

Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 

PPF*LAMP 1 105.3606 105.3606 1.17 

Pr> F 

0.0273 

Pr> F 

0.7715 

0.0581 

0.0103 

0.1011 
0.0367 

0.5723 
0.3447 

0.1018 
0.2674 

Pr> F 

0.2930 

Pr> F 

0.2297 

Pr> F 

0.3922 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error tenn 
Source DF Type III SS Mean Square F Value Pr> F 

BLF(LAMP) 4 409.0566 102.2642 2.07 0.1878 

Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 

PPF*BLF(LAMP) 4 112.8530 28.2132 0.57 0.6918 
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Table D.2 - Continued 

General Linear Models 
Procedure 
Dependent Variable: Root Relative 

Water Content 
Source DF Sum of Squares Mean Square F Value 
Model 22 83.8420 3.8110 3.26 
Error 115 134.3240 1.1680 
Corrected Total 137 218.1660 

R-Square C.V. Root MSE Mean 
0.384304 1.1361 1.0808 95.1315 

Source DF Type III SS Mean Square F Value 
REP l 19.8207 19.8207 16.97 
PPF 1 3.3579 3.3579 2.87 
LAMP 7.6872 7.6872 6.58 
PPF*LAMP 1 0.2185 0.2185 0.19 
BLF(LAMP) 4 4.6028 1.1507 0.99 
PPF*BLF(LAMP) 4 4.3599 1.0900 0.93 
REP*PPF 1 22.1804 22.1804 18.99 
REP*PPF*LAMP 2 4.0730 2.0365 1.74 
REP*PPF*BLF(LAMP)7 18.9812 2.7116 2.32 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value 
PPF 1 3.3579 3.3579 0.15 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 
LAMP 1 7.6872 7.6872 3.77 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value 

PPF*LAMP 1 0.2185 0.2185 0.11 

Pr> F 
0.0001 

Pr > F 
0.0001 

0.0927 
0.0116 
0.6662 

0.4186 
0.4474 
0.0001 
0.1795 
0.0298 

Pr> F 
0.7638 

Pr> F 
0.1915 

Pr> F 

0.7744 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as aa error term 
Source DF Type III SS Mean Square F Value _Pr> F 
BLF(LAMP) 4 4.6028 1.1507 0.42 0.7872 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF (LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 4.3599 1.0900 0.40 0.8020 
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Table D.3 - ANOVA tables for soybean parameters in Chapter 4 

Analysis of Variance 
Procedure 
Dependent Variable : Chlorophyll 
Source DF Sum of Squares Mean Square 
Model 23 2029 .7675 88.2507 
Error 120 779.2100 6.4934 
Corrected Total 143 2808 .9775 

R-Square C.V. Root MSE 
0.7226 7.3656 2.5482 

Source DF Anova SS Mean Square 
REP 1 39.9002 39.9003 
PPF 1 594 .5469 594.5469 
LAMP 1 1.6044 1.6044 
PPF*LAMP 1 0.0100 0.0100 
BLF(LAMP) 4 311.5372 77.8843 
PPF*BLF(LAMP) 4 27.8706 6.9676 
REP*PPF 1 957.9025 957 .9025 
REP*PPF*LAMP 2 10.2444 5.1222 
REP*PPF*BLF(LAMP) 8 86.1511 10.7689 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source DF Anova SS Mean Square 

PPF 594.5469 594.5469 

F Value 
13.59 

Mean 
34.5958 

F Value 
6.14 

91.56 
0.25 

0.00 
11.99 

1.07 
147.52 

0.79 

1.66 

F Value 

0.62 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 

LAMP 1.6044 1.6044 0.31 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 
PPF*LAMP 1 0.0100 0.0100 0.00 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
BLF(LAMP) 4 311.5372 77.8843 7.23 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
PPF*BLF(LAMP) 4 27.8706 6.9676 0.65 
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Pr> F 

0.0001 

Pr > F 
0.0146 

0.0001 

0.6200 

0.9688 
0.0001 

0.3730 

0.0001 

0.4567 
0.1156 

Pr> F 

0.5752 

Pr> F 

0.6320 

Pr>F 

0.9688 

Pr> F 

0.0091 

Pr> F 

0.6446 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable : Leaf Area 
Source DF Swn of Squares Mean Square 
Model 23 2824428 .2469 122801.2281 
Error 120 1016736.2341 8472.8020 
Corrected Total 143 3841164 .4811 

R-Square C.V. Root MSE 
0.7353 19.3168 92.0478 

Source DF Anova SS Mean Square 
REP I 395110 .7211 395110 .7211 
PPF 1676429.3529 1676429.3529 
LAMP I 16844.5788 16844.5788 
PPF*LAMP 1 5300 .0827 5300 .0827 
BLF(LAMP) 4 186310.2714 46577 .5678 
PPF*BLF(LAMP) 4 102767.4 795 25691 .8699 
REP*PPF I 321273 .5761 321273 .5761 
REP*PPF*LAMP 2 28171.8094 14085.9047 
REP*PPF*BLF(LAMP) 8 92220 .3751 11527.5469 

Tests of Hypotheses using the Anova MS for REP*PPF as an error tenn 
Source DF Anova SS Mean Square 

PPF 1676429.3529 1676429.3529 

F Value 

14.49 

Mean 

476 .5160 

F Value 

46 .63 

197.86 

1.99 
0.63 

5.50 

3.03 

37.92 

1.66 

1.36 

F Value 
5.22 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error tenn 
Source DF Anova SS Mean Square F Value 

LAMP I 16844.5788 16844.5788 1.20 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error tenn 
Source DF Anova SS Mean Square F Value 
PPF*LAMP I 5300 .0827 5300.0827 0.38 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error tenn 
Source DF Anova SS Mean Square F Value 
BLF(LAMP) 4 186310.2714 46577 .5678 4.04 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error tenn 
Source DF Anova SS Mean Square F Value 
PPF*BLF(LAMP) 4 102767.4795 25691.8699 2.23 
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Pr> F 

0.0001 

Pr> F 

0.0001 

0.0001 

0.1611 
0.4306 

0.0004 

0.0202 

0.0001 

0.1940 

0.2208 

Pr> F 

0.2627 

Pr> F 
0.3883 

Pr> F 

0.6021 

Pr> F 

0.0442 

Pr> F 

0.1555 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable : Leaf Dry Mass 
Source OF Sum of Squares Mean Square 
Model 23 29.0927 1.2649 
Error 120 10.1833 0.0849 
Corrected Total 143 39.2760 

R~Square C.V. Root MSE 
0.7407 22.3403 0.2913 

Source DF Anova SS Mean Square 
REP l 2.9237 2.9237 
PPF 1 20.1972 20.1972 
LAMP 1 0.3253 0.3253 
PPF*LAMP 1 0.0435 0.0435 
BLF(LAMP) 4 0.7602 0.1900 
PPF*BLF(LAMP) 4 0.5142 0.1286 
REP*PPF l 3.0106 3.0106 
REP*PPF*LAMP 2 0.3377 0.1688 
REP*PPF*BLF(LAMP) 8 0.9802 0.1225 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source DF Anova SS Mean Square 

PPF 1 20.1972 20.1972 

F Value 

14.91 

Mean 

1.3040 

F Value 
34.45 

238 .00 

3.83 
0.51 

2.24 
1.51 

35.48 

1.99 

1.44 

F Value 

6.71 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 

LAMP 0.3253 0.3253 1.93 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 
PPF*LAMP 1 0.0435 0.0435 0.26 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
BLF(LAMP) 4 0.7602 0.1900 1.55 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
PPF*BLF(LAMP) 4 0.5142 0.1286 1.05 
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Pr> F 

0.0001 

Pr> F 

0.0001 

0.0001 
0.0526 

0.4752 

0.0688 
0.2021 
0.0001 

0.1412 

0.1853 

Pr> F 

0.2346 

Pr> F 

0.2995 

Pr> F 

0.6620 

Pr> F 
0.2764 

Pr> F 

0.4398 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable: Stem Dry Mass 
Source DF Swn of Squares Mean Square F Value 
Model 23 5.3676 0.2334 14.29 
Error 120 1.9601 0.0163 

Corrected Total 143 7.3278 
R-Square C.V. Root MSE Mean 

0.7325 25.9084 0.1278 0.4933 
Source DF Anova SS Mean Square F Value 
REP 1 0.5201 0.5201 31.84 
PPF 1.9939 1.9939 122.07 
LAMP 1 0.6981 0.6981 42 .74 
PPF*LAMP 0.0016 0.0016 0.10 
BLF(LAMP) 4 0.5221 0.1305 7.99 
PPF*BLF(LAMP) 4 0.1614 0.0404 2.47 
REP*PPF 1 1.2090 1.2090 74.02 
REP*PPF*LAMP 2 0.0139 0.0070 0.43 
REP*PPF*BLF(LAMP) 8 0.2475 0.0309 1.89 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source DF Anova SS Mean Square F Value 
PPF 1 1.9939 1.9939 1.65 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 

LAMP 1 0.6981 0.6981 100.25 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 
PPF*LAMP 1 0.0016 0.0016 0.23 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
BLF(LAMP) 4 0.5221 0.1305 4.22 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
PPF*BLF(LAMP) 4 0.1614 0.0404 1.30 
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Pr>F 

0.0001 

Pr> F 

0.0001 

0.0001 

0.0001 
0.7540 

0.0001 
0.0482 

0.0001 
0.6539 
0.0669 

Pr> F 

0.4212 

Pr> F 

0.0098 

Pr> F 

0.6780 

Pr> F 

0.0397 

Pr> F 

0.3462 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable : Root Dry Mass 

Source DF Sum of Squares Mean Square 

Model 23 3.7202 0.1617 
Error 120 1.1648 0.0097 
Corrected Total 143 4 .8850 

R-Square C.V. Root MSE 
0.7615 21.0591 0.0985 

Source DF Anova SS Mean Square 

REP 1 0.2482 0.2482 

PPF 1 3.0150 3.0150 

LAMP 1 0.0005 0.0005 

PPF*LAMP 1 0.0034 0.0034 
BLF(LAMP) 4 0.1740 0.0435 
PPF*BLF(LAMP) 4 0.0863 0.0216 
REP*PPF l 0.0949 0.0949 
REP*PPF*LAMP 2 0.0251 0.0126 

REP*PPF*BLF(LAMP) 8 0.0728 0.0091 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source DF Anova SS Mean Square 

PPF l 3.0150 3.0150 

F Value 

16.66 

Mean 
0.4678 
F Value 
25.57 

310 .60 

0.05 

0.35 

4.48 
2.22 

9.78 
l.29 

0.94 

F Value 

31.77 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 
LAMP l 0.0005 0.0005 0.04 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 
PPF*LAMP 1 0.0034 0.0034 0.27 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
BLF(LAMP) 4 0.1740 0.0435 4 .78 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
PPF*BLF(LAMP) 4 0.0863 0.0216 2.37 
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Pr> F 

0.0001 

Pr> F 

0.0001 
0.0001 

0.8296 
0.5541 

0.0021 
0.0707 

0.0022 

0.2782 
0.4882 

Pr> F 

0.1118 

Pr>F 
0.8670 

Pr> F 

0.6538 

Pr> F 

0.0290 

Pr> F 

0.1392 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable : Total Dry Mass 
Source DF Sum of Squares Mean Square 
Model 23 87.2863 3.795 I 

Error 120 30.2805 0.2523 

Corrected Total 143 117.5668 

R-Square C.V. Root MSE 
0.7424 22.1770 0.5023 

Source DF Anova SS Mean Square 

REP l 8.5803 8.5803 

PPF I 58.4088 58.4088 
LAMP I 2.0367 2.0367 
PPF*LAMP I 0.0515 0.0515 
BLF(LAMP) 4 3.1447 0.7862 
PPF*BLF(LAMP) 4 1.7820 0.4455 
REP*PPF 1 9.8768 9.8768 
REP*PPF*LAMP 2 0.5985 0.2993 
REP*PPF*BLF(LAMP) 8 2.8070 0.3509 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source DF Anova SS Mean Square 

PPF I 58.4088 58.4088 

F Value 
15.04 

Mean 
2.2651 

F Value 

34.00 

231.47 

8.07 

0.20 
3.12 

1.77 
39.14 

1.19 
1.39 

F Value 

5.91 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 

LAMP I 2.0367 2.0367 6.81 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 
PPF*LAMP I 0.0515 0.0515 0.17 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 

BLF(LAMP) 4 3.1447 0.7862 2.24 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 

PPF*BLF(LAMP) 4 1.7820 0.4455 1.27 
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Pr> F 
0.0001 

Pr> F 

0.0001 

0.0001 

0.0053 

0.6522 
0.0177 

0.1403 

0.0001 
0.3090 
0.2074 

Pr> F 

0.2484 

Pr> F 

0.1209 

Pr> F 

0.7185 

Pr> F 

0.1540 

Pr>F 

0.3574 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable : Percent Leaf 

Source DF Sum of Squares Mean Square 

Model 23 365.8129 15.9049 

Error 120 358.2880 2.9857 

Corrected Total 143 724.1009 

R-Square C.V. Root MSE 

0.5052 3.0039 1.7279 

Source DF Anova SS Mean Square 

REP 1 2.1833 2.1833 

PPF 1 30.5479 30.5479 

LAMP 123.0568 123.0568 

PPF*LAMP 1.0940 1.0940 

BLF(LAMP) 4 123.3096 30.8274 
PPF*BLF(LAMP) 4 19.7581 4.9395 

REP*PPF 1 15.5226 15.5226 
REP*PPF*LAMP 2 15.4555 7.7278 

REP*PPF*BLF(LAMP) 8 34.8849 4.3606 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source DF Anova SS Mean Square 

PPF 1 30.5479 30.5479 

F Value 

5.33 

Mean 

57.5232 
F Value 

0.73 

10.23 

41.21 

0.37 

10.32 
1.65 

5.20 

2.59 
1.46 

F Value 
1.97 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 
LAMP 1 123.0568 123.0568 15.92 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 

PPF*LAMP l 1.0940 1.0940 0.14 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
BLF(LAMP) 4 123.3096 30.8274 7.07 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 

PPF*BLF(LAMP) 4 19.7581 4.9395 1.13 
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Pr> F 

0.0001 

Pr> F 

0.3942 
0.0018 

0.000 1 

0.5461 

0.0001 
0.1651 

0.0244 

0.0793 

0.1788 

Pr> F 

0.3943 

Pr> F 

0.0574 

Pr> F 

0.7429 

Pr> F 

0.0097 

Pr> F 

0.4064 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable: Percent Stem 

Source OF Sum of Squares Mean Square 

Model 23 1696.0549 73.7415 

Error 120 396.9207 3.3077 

Corrected Total 143 2092.9757 

R-Square C.V. Root MSE 

0.8104 8.3979 1.8187 

Source OF Anova SS Mean Square 

REP l 0.1869 0.1869 
PPF 1 197.6523 197.6523 

LAMP 1 567.6235 567.6235 
PPF*LAMP 1 6.4000 6.4000 
BLF(LAMP) 4 401 .8607 100.4652 
PPF*BLF(LAMP) 4 12.4462 3.1115 
REP*PPF 1 419.0011 419.00ll 
REP*PPF*LAMP 2 5.6382 2.8191 
REP*PPF*BLF(LAMP) 8 85.2460 10.6557 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source OF Anova SS Mean Square 
PPF 197.6523 197.6523 

F Value 

22.29 

Mean 

21 .6567 

F Value 

0.06 
59 .76 

171.61 

l. 93 

30.37 

0.94 

126.68 
0.85 

3.22 

F Value 
0.47 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source OF Anova SS Mean Square F Value 
LAMP 1 567.6235 567.6235 201.35 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source OF Anova SS Mean Square F Value 
PPF*LAMP 1 6.4000 6.4000 2.27 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source OF Anova SS Mean Square F Value 
BLF(LAMP) 4 401.8607 100.4652 9.43 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source OF Anova SS Mean Square F Value 

PPF*BLF(LAMP) 4 12.4462 3.1115 0.29 
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Pr> F 

0.0001 

Pr> F 

0.8125 
0.0001 

0.0001 
0.1668 

0.0001 

0.4430 

0.0001 
0.4290 
0.0024 

Pr> F 
0.6169 

Pr> F 

0.0049 

Pr> F 
0.2709 

Pr> F 

0.0040 

Pr> F 

0.8752 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable : Percent Root 
Source DF Swn of Squares Mean Square 
Model 23 673.3762 29.2772 
Error 120 428.6502 3.5721 
Corrected Total 143 1102.0264 

R-Square C.V. Root MSE 

0.6110 9.0778 1.8900 
Source DF Anova SS Mean Square 
REP 1.0925 1.0925 
PPF 1 72.7929 72.7929 
LAMP l 162.0976 162.0976 
PPF*LAMP 1 2.2018 2.2018 
BLF(LAMP) 4 109.4111 27.3528 
PPF*BLF(LAMP) 4 20.3998 5.1000 
REP*PPF 1 273.2291 273.2291 
REP*PPF*LAMP 2 3.2243 1.6122 
REP*PPF*BLF(LAMP) 8 28.9271 3.6159 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source DF Anova SS Mean Square 

PPF 1 72.7929 72.7929 

F Value 

8.20 

Mean 

20.8200 

F Value 

0.31 

20.38 

45 .38 
0.62 

7.66 
1.43 

76.49 
0.45 

1.01 

F Value 
0.27 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 

LAMP 1 162.0976 162.0976 100.55 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 

PPF*LAMP 1 2.2018 2.2018 1.37 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 

BLF(LAMP) 4 109.4111 27.3528 7.56 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
PPF*BLF(LAMP) 4 20.3998 5.1000 1.41 
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Pr> F 

0.0001 

Pr> F 

0.5813 

0.0001 

0.0001 
0.4339 

0.0001 
0.2289 

0.0001 

0.6379 

0.4305 

Pr> F 

0.6967 

Pr> F 

0.0098 

Pr> F 

0.3630 

Pr> F 

0.0080 

Pr> F 

0.3139 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable : Specific Leaf 

Area 
Source OF Sum of Squares Mean Square 
Model 23 1356.1913 58 .9648 
Error 120 1609.0444 13.4087 
Corrected Total 143 2965 .2358 

R-Square C.V. Root MSE 
0.4574 9.7524 3.6618 

Source OF Anova SS Mean Square 
REP 1 17.2721 17.2721 
PPF 1 848.8364 848.8364 
LAMP 1 41.5256 41.5256 
PPF*LAMP 1 1.8111 1.8111 
BLF(LAMP) 4 155.6552 38 .9138 
PPF*BLF(LAMP) 4 70.3708 17.5927 
REP*PPF 1 22.6297 22 .6297 
REP*PPF*LAMP 2 36 .6656 18.3328 
REP*PPF*BLF(LAMP) 8 161.4247 20.1781 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source OF Anova SS Mean Square 

PPF 1 848 .8364 848.8364 

F Value 

4.40 

Mean 
37.5478 

F Value 

1.29 

63.30 

3.10 

0.14 

2.90 

1.31 

1.69 

1.37 

1.50 

F Value 

37.51 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source OF Anova SS Mean Square F Value 

LAMP 1 41.5256 41.5256 2.27 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source OF Anova SS Mean Square F Value 

PPF*LAMP 1 1.8111 1.8111 0.10 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source OF Anova SS Mean Square F Value 

BLF(LAMP) 4 155.6552 38.9138 1.93 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source OF Anova SS Mean Square F Value 

PPF*BLF(LAMP) 4 70.3708 17.5927 0.87 

143 

Pr> F 

0.0001 

Pr> F 

0.2587 

0.0001 

0.0810 

0.7139 
0.0247 

0.2694 

0.1964 

0.2588 

0.1625 

Pr > F 

0.1030 

Pr> F 

0.2712 

Pr> F 

0.7830 

Pr> F 

0.1991 

Pr> F 

0.5208 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable : Stem Length 
Source DF Sum of Squares Mean Square 
Model 23 927038 .6597 40306 .0287 
Error 120 411048 .1667 3425.4014 
Corrected Total 143 1338086.8264 

R-Square C.V. Root MSE 
0.6928 32.0537 58.5269 

Source DF Anova SS Mean Square 
REP l 8296.1736 8296.1736 
PPF 1 6019 .1736 6019 .1736 
LAMP l 421742 .0069 421742 .0069 
PPF*LAMP l 18112.6736 18112.6736 
BLF(LAMP) 4 260261.111 l 65065 .2778 
PPF*BLF(LAMP) 4 4373 .7778 1093.4444 
REP*PPF 1 134995.0069 134995.0069 
REP*PPF*LAMP 2 21892 .1806 10946.0903 
REP*PPF*BLF(LAMP) 8 51346 .5556 6418 .3194 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source DF Anova SS Mean Square 
PPF l 6019 .1736 6019 .1736 

F Value 

11.77 

Mean 
182.5903 

F Value 

2.42 

1.76 

123.12 
5.29 

18.99 

0.32 

39.41 
3.20 
1.87 

F Value 
0.04 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 

LAMP 1 421742 .0069 421742 .0069 38.53 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 
PPF*LAMP 1 18112.6736 18112.6736 1.65 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
BLF(LAMP) 4 260261.1111 65065 .2778 10 .14 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
PPF*BLF(LAMP) 4 4373 .7778 1093.4444 0.17 
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Pr> F 

0.0001 

Pr> F 

0.1223 

0.1875 

0.0001 
0.0232 

0.0001 

0.8646 

0.0001 
0.0445 
0.0703 

Pr> F 
0.8675 

Pr> F 

0.0250 

Pr> F 
0.3271 

Pr> F 
0.0032 

Pr> F 
0.9475 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable : Branch Nwnber 

Source DF Swn of Squares Mean Square 

Model 23 132.7500 5.7717 

Error 120 101.0000 0.8417 

Corrected Total 143 233.7500 

R-Square C.V. Root MSE 

0.5679 16.5550 0,9174 

Source DF Anova SS Mean Square 

REP l 72.2500 72.2500 

PPF l 8.0278 8.0278 

LAMP 0.1111 0.1111 

PPF*LAMP 1 0.0000 0.0000 

BLF(LAMP) 4 9.3889 2.3472 
PPF*BLF(LAMP) 4 22 .2222 5.5556 

REP*PPF 1 17.3611 17.3611 

REP*PPF*LAMP 2 1.0000 0.5000 
REP*PPF*BLF(LAMP) 8 2.3889 0.2986 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source DF Anova SS Mean Square 

PPF 1 8.0278 8.0278 

F Value 

6.86 

Mean 

5.5417 

F Value 

85.84 
9.54 

0.13 
0.00 

2.79 
6.60 

20 .63 
0.59 

0.35 

F Value 

0.46 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 
LAMP 1 0.1111 0.1111 0.22 

Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 

PPF*LAMP l 0.0000 0.0000 0.00 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
BLF(LAMP) 4 9.3889 2.3472 7.86 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
PPF*BLF(LAMP) 4 22.2222 5.5556 18.60 
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Pr> F 

0.0001 

Pr> F 

0.0001 

0.0025 

0 .7170 

1.0000 

0.0295 
0.0001 

0 .0001 
0 .5537 

0.9420 

Pr> F 

0.6198 

Pr> F 

0.6838 

Pr> F 
1.0000 

Pr> F 
0.0071 

Pr> F 

0.0004 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable: Leaf Relative 

Water Content 
Source DF Sum of Squares Mean Square 
Model 23 168.9639 7.3463 
Error 120 219.0910 1.8258 
Corrected Total 143 388.0548 

R-Square C.V. Root MSE 
0.4354 1.5985 1.3512 

Source DF Anova SS Mean Square 
REP 2.7840 2.7840 
PPF l 0.0137 0.0137 
LAMP l 80.7845 80.7845 
PPF*LAMP l 0.0714 0.0714 
BLF(LAMP) 4 42.7713 10.6928 
PPF*BLF(LAMP) 4 10.1511 2.5378 
REP*PPF l 18.4968 18.4968 
REP*PPF*LAMP 2 0.4476 0.2238 
REP*PPF*BLF(LAMP) 8 13.4434 1.6804 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source DF Anova SS Mean Square 
PPF l 0.0137 0.0137 

F Value 

4 .02 

Mean 
84.5285 

F Value 

1.52 
0 .01 

44.25 

0.04 
5.86 
1.39 

10.13 
0.12 
0.92 

F Value 

0.00 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 
LAMP 1 80.7845 80.7845 360.98 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 

PPF*LAMP l 0.0714 0.0714 0.32 
Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
BLF(LAMP) 4 42.7713 10.6928 6.36 
Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
PPF*BLF(LAMP) 4 10.1511 2.5378 1.51 
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Pr> F 

0.0001 

Pr> F 

0.2193 

0.9311 
0.0001 

0.8435 
0.0002 
0.2415 
0.0019 
0.8847 
0.5023 

Pr> F 

0.9827 

Pr> F 

0.0028 

Pr> F 

0.6290 

Pr>F 
0.0132 

Pr> F 

0.2868 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable : Stem Relative 

Water Content 
Source OF Sum of Squares Mean Square F Value 
Model 23 87.4775 3.8034 4.60 
Error 120 99.2927 0.8274 
Corrected Total 143 186.7701 

R-Square c.v. Root MSE Mean 
0.4684 1.0091 0.9096 90.1429 

Source OF Anova SS Mean Square F Value 
REP 1 8.5597 8.5597 10.34 
PPF 1 1.3994 1.3994 1.69 
LAMP 1 22.7158 22.7158 27.45 
PPF*LAMP 1 1.5684 1.5684 1.90 
BLF(LAMP) 4 25.8577 6.4644 7.81 
PPF*BLF(LAMP) 4 2.2345 0.5586 0.68 
REP*PPF 1 9.3235 9.3235 11.27 
REP*PPF*LAMP 2 3.1490 1.5745 1.90 
REP*PPF*BLF(LAMP) 8 12.6694 1.5837 1.91 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source OF Anova SS Mean Square F Value 
PPF 1.3994 1.3994 0.15 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source OF Anova SS Mean Square F Value 
LAMP 1 22.7158 22.7158 14.43 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source OF Anova SS Mean Square F Value 
PPF*LAMP 1 1.5684 1.5684 1.00 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source OF Anova SS Mean Square F Value 
BLF(LAMP) 4 25.8577 6.4644 4 .08 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source OF Anova SS Mean Square F Value 
PPF*BLF(LAMP) 4 2.2345 0.5586 0.35 
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Pr> F 
0.0001 

Pr> F 
0.0017 

0.1959 
0.0001 
0.1711 
0.0001 

0.6105 
0.0011 

0.1536 
0.0639 

Pr> F 
0.7647 

Pr> F 

0.0629 

Pr> F 
0.4234 

Pr> F 

0.0431 

Pr> F 

0.8353 



Table D.3 - Continued 

Analysis of Variance 
Procedure 
Dependent Variable : Root Relative 

Water Content 
Source DF Sum of Squares Mean Square F Value 
Model 23 14.0861 0.6124 2.75 
Error 120 26.6772 0.2223 
Corrected Total 143 40.7632 

R-Square c.v. Root MSE Mean 
0.3456 0.5008 0.4715 94.1517 

Source DF Anova SS Mean Square F Value 
REP 1 1.0805 1.0805 4 .86 
PPF 1 1.5879 1.5879 7.14 
LAMP 1 2.9832 2.9832 13.42 
PPF*LAMP 1 1.5793 1.5793 7.10 
BLF(LAMP) 4 2.2396 0.5599 2.52 
PPF*BLF(LAMP) 4 0.3721 0.0930 0.42 
REP*PPF 1 0.5823 0.5823 2.62 
REP*PPF*LAMP 2 0.3811 0.1905 0.86 
REP*PPF*BLF(LAMP) 8 3.2801 0.4100 1.84 

Tests of Hypotheses using the Anova MS for REP*PPF as an error term 
Source DF Anova SS Mean Square F Value 
PPF 1 1.5879 1.5879 2.73 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 

LAMP 2.9832 2.9832 15.66 
Tests of Hypotheses using the Anova MS for REP*PPF*LAMP as an error term 
Source DF Anova SS Mean Square F Value 

PPF*LAMP 1 1.5793 1.5793 8.29 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
BLF(LAMP) 4 2.2396 0.5599 1.37 

Tests of Hypotheses using the Anova MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Anova SS Mean Square F Value 
PPF*BLF(LAMP) 4 0.3721 0.0930 0.23 
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Pr> F 

0.0002 

Pr> F 

0.0294 
0.0086 
0.0004 

0.0088 
0.0448 

0.7950 
0.1082 

0.4270 

0.0753 

Pr> F 

0.3467 

Pr> F 
0.0583 

Pr> F 

0.1024 

Pr> F 

0.3271 

Pr> F 

0.9158 
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Table D.4 - General linear model tables for wheat parameters in Chapter 4 . 

General Linear Models 
Procedure 
Dependent Variable: Chlorophyll 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 23 8612.0795 374.4382 11.49 0.0001 
Error 117 3813.3728 32.5929 
Corrected Total 140 12425.4523 

R-Square C.V. Root MSE Mean 
0.693100 11.3837 5.7090 50.151 

Source DF Type III SS Mean Square F Value Pr>F 
REP 1 241.5683 241.5683 7.41 0.0075 
PPF I 6169.6192 6169.6192 189.29 0.0001 
LAMP 1 18.4638 18.4638 0.57 0.4532 
PPF*LAMP I 31.4862 31.4862 0.97 0.3277 
BLF(LAMP) 4 259.6953 64.9238 1.99 0.1002 
PPF*BLF(LAMP) 4 142.5690 35.6423 1.09 0.3631 
REP*PPF 1 1554.7206 1554.7206 47.70 0.0001 
REP*PPF*LAMP 2 30.8628 15.4314 0.47 0.6240 
REP*PPF*BLF(LAMP) 8 304.7154 38.0894 1.17 0.3239 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF 1 6169.6192 6169.6192 3.97 0.2962 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
LAMP I 18.4638 18.4638 1.20 0.3882 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*LAMP I 31.4862 31.4862 2.04 0.2894 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 259.6953 64.9238 l.70 0.2413 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 142.5690 35.6423 0.94 0.4900 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Leaf Area 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 23 88839.5500 3862.5890 18.23 0.0001 
Error 117 24783.9320 211.8280 
Corrected Total 140 113623.4820 

R-Square C.V. Root MSE Mean 
0.781877 22.6730 14.5540 64.192 

Source DF Type III SS Mean Square F Value Pr> F 
REP 1 2241.3480 2241 .3480 10.58 0.0015 
PPF l 70150.0640 70150.0640 331.16 0.0001 
LAMP l 3769.0750 3769.0750 17.79 0.0001 
PPF*LAMP l 1003.7050 1003.7050 4.74 0.0315 
BLF(LAMP) 4 2977.0620 744.2660 3.51 0.0095 
PPF*BLF(LAMP) 4 445.9270 111.4820 0.53 0.7166 
REP*PPF 1 1724.3620 1724.3620 8.14 0.0051 
REP*PPF*LAMP 2 372.0000 186.0000 0.88 0.4183 
REP*PPF*BLF(LAMP) 8 6963.3200 870.4150 4.11 0.0002 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF 1 70150.0640 70150 .0640 40 .68 0.0990 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
LAMP l 3769.0747 3769 .0747 20 .26 0.0460 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*LAMP 1 1003.7049 1003.7049 5.40 0.1458 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 2977.0620 744.2655 0.86 0.5293 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 445.9271 111.4818 0.13 0.9679 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Leaf Dry Mass 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 23 2.3313 0.1014 34.69 0.0001 
Error 117 0.3419 0.0029 
Corrected Total 140 2.6731 

R-Square C.V. Root MSE Mean 
0.872104 21.1877 0.0541 0.2551 

Source DF Type III SS Mean Square F Value Pr> F 
REP l 0.0689 0.0689 23.58 0.0001 
PPF 2.0400 2.0400 698.14 0.0001 
LAMP l 0.0557 0.0557 19.04 0.0001 
PPF*LAMP l 0.0254 0.0254 8.70 0.0038 
BLF(LAMP) 4 0.0219 0.0055 1.87 0.1198 
PPF*BLF(LAMP) 4 0.0049 0.0012 0.42 0.7968 
REP*PPF l 0.0185 0.0185 6.31 0.0133 
REP*PPF*LAMP 2 0.0100 0.0050 1.72 0.1841 
REP*PPF*BLF(LAMP) 8 0.0967 0.0121 4.14 0.0002 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF l 2.0400 2.0400 110.57 0.0604 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
LAMP l 0.0557 0.0557 l 1.09 0.0795 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*LAMP l 0.0254 0.0254 5.07 0.1532 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 0.0219 0.0055 0.45 0. 7684 
Tests of Hypotheses using the Type Ill MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 0.0049 0.0012 0.10 0.9792 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Stem Dry Mass 

Source OF Sum of Squares Mean Square F Value Pr> F 
Model 23 0.5515 0.0240 32.50 0.0001 
Error 117 0.0863 0.0007 
Corrected Total 140 0.6378 

R-Square C.V. Root MSE Mean 
0.864657 23.7524 0.0272 0.1144 

Source OF Type III SS Mean Square F Value Pr> F 
REP l 0.0077 0.0077 10.39 0.0016 
PPF l 0.4734 0.4734 641.62 0.0001 
LAMP l 0.0236 0.0236 31.94 0.0001 
PPF*LAMP 0.0126 0.0126 17.09 0.0001 
BLF(LAMP) 4 0.0083 0.0021 2.81 0.0285 
PPF*BLF(LAMP) 4 0.0022 0.0005 0.73 0.5725 
REP*PPF l 0.0018 0.0018 2.42 0.1224 
REP*PPF*LAMP 2 0.0012 0.0006 0.81 0.4454 
REP*PPF*BLF(LAMP) 8 0.0208 0.0026 3.53 0.0011 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
PPF l 0.4734 0.4734 264.94 0.0391 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
LAMP l 0.0236 0.0236 39.22 0.0246 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
PPF*LAMP l 0.0126 0.0126 20.98 0.0445 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 0.0083 0.0021 0.80 0.5596 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 0.0022 0.0005 0.21 0.9274 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Root Dry Mass 

Source OF Sum of Squares Mean Square F Value Pr> F 
Model 23 l.2146 0.0528 30.54 0.0001 
Error 117 0.2023 0.0017 
Corrected Total 140 l.4169 

R-Square C.V. Root MSE Mean 
0.857213 24.4491 0.0416 0.1701 

Source OF Type III SS Mean Square F Value Pr> F 
REP 1 0.0010 0.0010 0.59 0.4436 
PPF l.0550 1.0550 610.11 0.0001 
LAMP 1 0.0295 0.0295 17.06 0.0001 
PPF*LAMP 0.0116 0.0116 6.69 0.0109 
BLF(LAMP) 4 0.0029 0.0007 0.42 0.7931 
PPF*BLF(LAMP) 4 0.0059 0.0015 0.86 0.4909 
REP*PPF 1 0.0151 0.0151 8.74 0.0038 
REP*PPF*LAMP 2 0.0026 0.0013 0.75 0.4745 
REP*PPF*BLF(LAMP) 8 0.0800 0.0100 5.79 0.0001 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
PPF 1 l.0550 1.0550 69.84 0.0758 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
LAMP 1 0.0295 0.0295 22.74 0.0413 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
PPF*LAMP l 0.0116 0.0116 8.92 0.0962 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 0.0029 0.0007 0.07 0.9885 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 0.0059 0.0015 0.15 0.9585 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Total Dry Mass 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 23 11.1912 0.4866 38.31 0.0001 
Error 117 1.4861 0.0127 
Corrected Total 140 12.6773 

R-Square C.V. Root MSE Mean 
0.882772 20.8876 0.1127 0.5396 

Source DF Type III SS Mean Square F Value Pr> F 
REP l 0.1012 0.1012 7.97 0.0056 
PPF 1 9.8813 9.8813 777.93 0.0001 
LAMP 1 0.3149 0.3 149 24.79 0.0001 
PPF*LAMP 1 0.1439 0.1439 11.33 0.0010 
BLF(LAMP) 4 0.0721 0.0180 1.42 0.2319 
PPF*BLF(LAMP) 4 0.0216 0.0054 0.42 0.7903 
REP*PPF 1 0.0906 0.0906 7.13 0.0086 
REP*PPF*LAMP 2 0.0341 0.0170 1.34 0.2655 
REP*PPF*BLF(LAMP) 8 0.5215 0.0652 5.13 0.0001 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF 1 9.8813 9.8813 109.06 0.0608 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
LAMP 1 0.3149 0.3149 18.49 0.0501 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr > F 
PPF*LAMP 0.1439 0.1439 8.45 0.1008 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 0.0721 0.0180 0.28 0.8851 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 0.0216 0.0054 0.08 0.9854 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Percent Leaf 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 23 1128.2406 49 .0539 7. 14 0.0001 
Error 117 804.3016 6.8744 
Corrected Total 140 1932.5422 

R-Square C.V. Root MSE Mean 
0.583812 5.5065 2.6219 47.614 

Source DF Type III SS Mean Square F Value Pr> F 
REP 1 695 .5703 695.5703 101.18 0.0001 
PPF 88.7210 88 .7210 12.91 0.0005 
LAMP 27 .3764 27 .3764 3.98 0.0483 
PPF*LAMP l 1.3411 1.3411 0.20 0.6595 
BLF(LAMP) 4 74.2083 18.5521 2.70 0.0340 
PPF* BLF(LAMP) 4 39.2121 9.8030 1.43 0.2297 
REP*PPF l 111.5252 111.5252 16.22 0.0001 
REP*PPF*LAMP 2 2.9435 1.4718 0.21 0 .8076 
REP*PPF*BLF(LAMP) 8 118.0829 14.7604 2.15 0.0366 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF 1 88.7210 88.7210 0.80 0.5363 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
LAMP 1 27.3764 27.3764 18.60 0.0498 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*LAMP 1.3411 1.3411 0.91 0.4405 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 74.2083 18.5521 1.26 0.3617 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 39 .2121 9.8030 0.66 0.6343 



156 

Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Percent Stem 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 23 203.4762 8.8468 1.84 0.0186 
Error 117 562.0872 4.8042 
Corrected Total 140 765.5633 

R-Square C.V. Root MSE Mean 
0.265786 10.5098 2.1918 20.855 

Source DF Type III SS Mean Square F Value Pr> F 
REP l 4.9750 4.9750 1.04 0.3110 
PPF l 40.6299 40.6299 8.46 0.0044 
LAMP I 32.6308 32.6308 6.79 0.0103 
PPF*LAMP I 10.2001 10.2001 2.12 0.1478 
BLF(LAMP) 4 37.9782 9.4946 1.98 0.1026 
PPF*BLF(LAMP) 4 22.1161 5.5290 1.15 0.3362 
REP*PPF l 3.9275 3.9275 0.82 0.3678 
REP*PPF*LAMP 2 4.9201 2.4600 0.51 0.6006 
REP*PPF*BLF(LAMP) 8 45.6776 5.7097 1.19 0.3118 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF 1 40 .6299 40.6299 10.34 0. I 9 I 9 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr > F 
LAMP 32.6308 32.6308 13.26 0.0678 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*LAMP 1 10.2001 10.2001 4.15 0.1787 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 37.9782 9.4946 1.66 0.2503 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 22.1161 5.5290 0.97 0.4750 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Percent Root 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 23 1296.2155 56.3572 3.70 0.0001 
Error 117 1781.5174 15.2266 
Corrected Total 140 3077.7328 

R-Square C.V. Root MSE Mean 
0.421159 12.3758 3.9021 31.530 

Source DF Type III SS Mean Square F Value Pr> F 
REP 1 818.1966 818.1966 53.73 0.0001 
PPF l 9.2722 9.2722 0.61 0.4368 
LA..\1P 1 0.2305 0.2305 0.02 0.9023 
PPF*LAMP 18.9382 18.9382 1.24 0.2670 
BLF(LAMP) 4 120.0547 30.0137 1.97 0.1034 
PPF*BLF(LAMP) 4 71.6637 17.9159 1.18 0.3247 
REP*PPF I 73.5949 73.5949 4.83 0.0299 
REP*PPF*LAMP 2 0.2525 0.1263 0.01 0.9917 
REP*PPF*BLF(LAMP) 8 255.3636 31.9204 2.10 0.0414 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF I 9.2722 9.2722 0.13 0.7829 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr > F 
LAMP 1 0.2305 0.2305 1.83 0.3092 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*LAMP 1 18.9382 18.9382 149.99 0.0066 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 120.0547 30.0137 0.94 0.4879 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 71.6636 17.9159 0.56 0.6977 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Specific Leaf Area 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 23 3735.7062 162.4220 46.78 0.0001 
Error 117 406.2622 3.4723 
Corrected Total 140 4141.9684 

R-Square C.V. Root MSE Mean 
0.901916 6.7656 1.8634 27.542 

Source DF Type III SS Mean Square F Value Pr> F 
REP I 343.9440 343.9440 99.05 0.0001 
PPF I 3028.1775 3028.1775 872.09 0.0001 
LAMP 1 4.4718 4.4718 1.29 0.2588 
PPF*LAMP 2.9786 2.9786 0.86 0.3563 
BLF(LAMP) 4 87.9490 21.9873 6.33 0.0001 
PPF*BLF(LAMP) 4 12.4365 3.1091 0.90 0.4691 
REP*PPF l 174.3310 174.3310 50.21 0.0001 
REP*PPF*LAMP 2 10.7476 5.3738 1.55 0.2171 
REP*PPF*BLF(LAMP) 8 111.8238 13.9780 4.03 0.0003 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source OF Type III SS Mean Square F Value Pr > F 
PPF 1 3028.1775 3028 .1775 17.37 0.1499 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
LAMP 1 4.4718 4.4718 0.83 0.4579 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
PPF*LAMP 2.9786 2.9786 0.55 0.5342 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 87.9490 21.9873 1.57 0.2711 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source OF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 12.4365 3.1091 0.22 0.9184 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable: Stem Length 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 23 5570.9149 242.2137 5.64 0.0001 
Error 117 5024.3333 42.9430 
Corrected Total 140 10595.2482 

R-Square C.V. Root MSE Mean 
0.525794 8.9568 6.5531 73.163 

Source DF Type III SS Mean Square F Value Pr> F 
REP 1 251.3428 251.3428 5.85 0.0171 
PPF 1 1874.0148 1874.0148 43.64 0.0001 
LAMP 1 840.8165 840.8165 19.58 0.0001 
PPF*LAMP 1 34.0148 34.0148 0.79 0.3753 
BLF(LAMP) 4 498.8828 124.7207 2.90 0.0247 
PPF*BLF(LAMP) 4 214.2684 53.5671 1.25 0.2948 
REP*PPF 1 1230.2901 1230.2901 28.65 0.0001 
REP*PPF*LAMP 2 128.1897 64.0949 1.49 0.2290 
REP*PPF*BLF(LAMP) 8 551.7968 68.9746 1.61 0.1303 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF 1 1874.0148 1874.0148 1.52 0.4335 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
LAMP 840.8165 840.8165 13.12 0.0685 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*LAMP 1 34.0148 34.0148 0.53 0.5421 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 498.8828 124.7207 1.81 0.2206 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAM:P) 4 214.2684 53.5671 0.78 0.5704 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Tiller Nwnber 

Source DF Swn of Squares Mean Square F Value Pr> F 
Model 23 736.1670 32.0073 36.43 0.0001 
Error 117 102.7833 0.8785 
Corrected Total 140 838.9504 

R-Square C.V. Root MSE Mean 
0.877486 21.0440 0.9373 4.4539 

Source DF Type III SS Mean Square F Value Pr> F 
REP l 0.0082 0.0082 0.01 0.9234 
PPF 619.9029 619.9029 705.65 0.0001 
LAMP 1 36.8503 36.8503 41.95 0.0001 
PPF*LAMP l 13.1229 13.1229 14.94 0.0002 
BLF(LAMP) 4 11.8803 2.9701 3.38 0.0117 
PPF*BLF(LAMP) 4 8.0538 2.0134 2.29 0.0636 
REP*PPF 1 1.9272 1.9272 2.19 0.1413 
REP*PPF*LAMP 2 0.1400 0.0700 0.08 0.9235 
REP*PPF*BLF(LAMP) 8 37.8754 4.7344 5.39 0.0001 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF l 619.9029 619 .9029 321.66 0.0355 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
LAMP 1 36.8503 36.8503 526.42 0.0019 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*LAMP 1 13.1229 13.1229 187.46 0.0053 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 11.8803 2.9701 0.63 0.6565 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 8.0538 2.0134 0.43 0.7868 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Leaf Relative 

Water Content 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 23 573.8760 24.9511 29.63 0.0001 
Error 117 98.5207 0.8421 
Corrected Total 140 672.3968 

R-Square C.V. RootMSE Mean 
0.853478 1.0871 0.9176 84.415 

Source DF Type III SS Mean Square F Value Pr> F 
REP 1 21.1394 21.1394 25 .10 0.0001 
PPF 498 .7506 498.7506 592.30 0.0001 
LAMP 1 15.9113 15.9113 18.90 0.0001 
PPF*LAMP 1 0.5262 0.5262 0.62 0.4308 
BLF(LAMP) 4 7.0679 1.7670 2.10 0.0854 
PPF*BLF(LAMP) 4 9.1263 2.2816 2.71 0.0335 
REP*PPF 1 0.3510 0.3510 0.42 0.5198 
REP*PPF*LAMP 2 0.7894 0.3947 0.47 0.6270 
REP*PPF*BLF(LAMP) 8 21.1581 2.6448 3.14 0.0030 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr > F 
PPF 1 498.7506 498.7506 1421.15 0.0169 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
LAMP 1 15.9113 15.9113 40.31 0.0239 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*LAMP 1 0.5262 0.5262 1.33 0.3676 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 7.0679 1.7670 0.67 0.6320 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 9.1263 2.2816 0.86 0.5254 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Stem Relative 

Water Content 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 23 102.6964 4.4651 11.18 0.0001 
Error 117 46.7422 0.3995 
Corrected Total 140 149.4386 

R-Square C.V. Root MSE Mean 
0.687214 0.7094 0.6321 89.1040 

Source DF Type III SS Mean Square F Value Pr> F 
REP 1 2.9518 2.9518 7.39 0.0076 
PPF I 71.8970 71.8970 179.96 0.0001 
LAMP 3.5527 3.5527 8.89 0.0035 
PPF*LA.~P 5.4439 5.4439 13.63 0.0003 
BLF(LAMP) 4 2.0330 0.5082 1.27 0.2849 
PPF*BLF(LAMP) 4 3.9311 0.9828 2.46 0.0492 
REP*PPF 1 4.1219 4.1219 10.32 0.0017 
REP*PPF*LAMP 2 0.4958 0.2479 0.62 0.5394 
REP*PPF*BLF(LAMP) 8 7.9295 0.9912 2.48 0.0160 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF 1 71.8970 71.8970 17.44 0.1496 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
LAMP 1 3.5527 3.5527 14.33 0.0632 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*LAMP 1 5.4439 5.4439 21.96 0.0426 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 2.0330 0.5082 0.51 0.7289 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 3.9311 0.9828 0.99 0.4646 
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Table D.4 - Continued 

General Linear Models 
Procedure 
Dependent Variable : Root Relative 

Water Content 

Source DF Sum of Squares Mean Square F Value Pr> F 
Model 23 131.0041 5.6958 6.94 0.0001 
Error 117 96.0658 0.8211 
Corrected Total 140 227.0698 

R-Square C.V. Root MSE Mean 
0.576933 0.9760 0.9061 92.8410 

Source DF Type III SS Mean Square F Value Pr> F 
REP 2.0858 2.0858 2.54 0.1137 
PPF 2.8035 2.8035 3.41 0.0672 
LAMP l 0.6785 0.6785 0.83 0.3652 
PPF*LAMP l 8.5095 8.5095 10.36 0.0017 
BLF(LAMP) 4 9.9248 2.4812 3.02 0.0206 
PPF*BLF(LAMP) 4 11.9899 2.9975 3.65 0.0077 
REP*PPF 1 88.7927 88.7927 108.14 0.0001 
REP*PPF*LAMP 2 0.1065 0.0533 0.06 0.9372 
REP*PPF*BLF(LAMP) 8 13.2452 1.6557 2.02 0.0502 

Tests of Hypotheses using the Type III MS for REP*PPF as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF 2.8035 2.8035 0.03 0.8880 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
LAMP l 0.6785 0.6785 12.74 0.0703 
Tests of Hypotheses using the Type III MS for REP*PPF*LAMP as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*LAMP 8.5095 8.5095 159.74 0.0062 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP )as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
BLF(LAMP) 4 9.9248 2.4812 1.50 0.2898 
Tests of Hypotheses using the Type III MS for REP*PPF*BLF(LAMP) as an error term 
Source DF Type III SS Mean Square F Value Pr> F 
PPF*BLF(LAMP) 4 11.9899 2.9975 1.81 0.2201 



Table D.5 - General linear model tables for lettuce leaf parameters in Chapter 5. 
General Linear Models Procedure 
Dependent Variable: Cell Area 
Source DF Sum of Squares Mean Square F Value 
Model 18 1680.7063 93.3726 20.22 
Error 4 18.4720 4.6180 
Corrected Total 22 1699.1783 

R-Square C.V. Root MSE Mean 
0.989129 16.41512 2.1490 13.091 

Source DF Type III SS Mean Square F Value 
REP 5 101.7820 20.3564 4.41 
BLUE 1 1267.7627 1267.7627 274.53 
BLUE*REP 5 44.7062 8.9412 1.94 
LOCALE l 0.7605 0.7605 0.16 
LOCALE*REP 5 25.6195 5.1239 1.11 
BLUE*LOCALE 1 10.6580 10.6580 2.31 

Tests of Hypotheses using the Type III MS for BLUE*REP as an error term 
Source DF Type III SS Mean Square F Value 
BLUE I 1267.7627 1267.7627 141.79 
Tests of Hypotheses using the Type III MS for BLUE*REP as an error term 
Source DF Type III SS Mean Square F Value 
REP 5 101.78200 20.35640 2.28 
Tests of Hypotheses using the Type III MS for LOCALE*REP as an error term 
Source DF Type III SS Mean Square F Value 
LOCALE l 0.7605000 0.7605000 0.15 
General Linear Models Procedure 
Dependent Variable : Leaf Area 
Source DF Sum of Squares Mean Square F Value 
Model 18 12.603956 0.700220 4.78 
Error 4 0.586148 0.146537 
Corrected Total 22 13.190104 

R-Square c.v. RootMSE Mean 
0.955562 29.16535 0.3828 l.3125 

Source DF Type III SS Mean Square F Value 
REP 5 0.3154296 0.0630859 0.43 
BLUE 1 8.5012107 8.5012107 58.01 
BLUE*REP 5 0.7470651 0.1494130 1.02 
LOCALE l 0.4305156 0.4305156 2.94 
LOCALE*REP 5 0.6584938 0.1316988 0.90 
BLUE*LOCALE l 0.3312738 0.3312738 2.26 

Tests of Hypotheses using the Type III MS for BLUE*REP as an error term 
Source DF Type III SS Mean Square F Value 
BLUE I 8.5012107 8.5012107 56.90 
Tests of Hypotheses using the Type III MS for BLUE*REP as an error term 
Source DF Type III SS Mean Square F Value 
REP 5 0.3154296 0.0630859 0.42 
Tests of Hypotheses using the Type III MS for LOCALE*REP as an error term 
Source DF Type III SS Mean Square F Value 
LOCALE I 0.4305156 0.4305156 3.27 

Pr>F 
0.0050 

Pr> F 
0.0878 
0.0001 
0.2709 
0.7057 
0.4731 
0.2033 

Pr> F 
0.0001 

Pr> F 
0.1938 

Pr> F 
0.7159 

Pr> F 
0.0701 

Pr> F 
0.8099 
0.0016 
0.5066 
0.1617 
0.5567 
0.2071 

Pr> F 
0.0006 

Pr>F 
0.8171 

Pr> F 
0.1304 
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Table D.5 - Continued 

General Linear Models Procedure 
Dependent Variable : Nwnber of Cells 

Source DF Swn of Squares Mean Square F Value 
Model 18 3.462E+l4 1.923E+l3 3.21 
Error 4 2.395E+13 5.988E+l2 
Corrected Total 22 3.702E+l4 

R-Square C.V. Root MSE Mean 
0.935291 25.52937 2447093 9585403 

Source DF Type III SS Mean Square F Value 
REP 5 1.071E+l4 2.141E+l3 3.58 
BLUE 1 8.176E+l3 8.176E+l3 13.65 
BLUE*REP 5 l.866E+ 13 3.731E+l2 0.62 
LOCALE l.635E+ 13 l.635E+l3 2.73 
LOCALE*REP 5 9.491E+l3 l.898E+ 13 3.17 
BLUE*LOCALE I l.874E+ll l.874E + l l 0.03 

Tests of Hypotheses using the Type III MS for BLUE*REP as an error term 
Source DF Type III SS Mean Square F Value 
BLUE 1 8.176E+l3 8.176E+l3 21.91 
Tests of Hypotheses using the Type III MS for BLUE*REP as an error term 
Source DF Type III SS Mean Square F Value 
REP 5 l.071E+l4 2.141E+l3 5.74 
Tests of Hypotheses using the Type III MS for LOCALE*REP as an error term 
Source DF Type Ill SS Mean Square F Value 
LOCALE 1 1.635E+l3 l.635E+l3 0.86 

Pr>F 
0.1334 

Pr> F 
0.1204 
0.0209 
0.6949 
0.1738 
0.1433 
0.8682 

Pr> F 
0.0054 

Pr>F 
0.0390 

Pr> F 
0.3959 
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Table D.6 - ANOVA tables for soybean leaf parameters in Chapter 5. 
Analysis of Variance Procedure 
Dependent Variable: 
Source DF 
Model 18 
Error 
Corrected Total 

5 
23 

Source DF 
REP 5 
BLUE l 
BLUE*REP 5 
LOCALE l 
LOCALE*REP 5 
BLUE*LOCALE l 

Cell Area 
Sum of Squares 
0.1625687 
0.0477351 
0.2103038 

R-SquareC. V. 
0.77301815.63488 

Anova SS 
0.0333438 
0.0581938 
0.0329357 
0.0102424 
0.0165082 
0.0113448 

Mean Square 
0.0090316 
0.0095470 

RootMSE 
0.0977 
Mean Square 
0.0066688 
0.0581938 
0.0065871 
0.0102424 
0.0033016 
0.0113448 

Tests of Hypotheses using the Anova MS for BLUE*REP as an error tenn 

F Value 
0.95 

Mean 
0.6249 
F Value 
0.70 
6.10 
0.69 
1.07 
0.35 
1.19 

Source DF Anova SS Mean Square F Value 
BLUE 1 0.0581938 0.0581938 8.83 
Tests of Hypotheses using the Anova MS for BLUE*REP as an error term 
Source DF Anova SS Mean Square F Value 
REP 5 0.0333438 0.0066688 1.01 
Tests of Hypotheses using the Anova MS for LOCALE*REP as an error term 
Source DF Anova SS Mean Square F Value 
LOCALE 1 0.0102424 0.0102424 3.10 
Analysis of Variance Procedure 
Dependent Variable : Leaf Area 
Source DF 
Model 18 
Error 5 
Corrected Total 23 

Source 
REP 
BLUE 

DF 
5 
1 

BLUE*REP 5 
LOCALE 1 
LOCALE*REP 5 
BLUE*LOCALE 1 

Sum of Squares 
806.33000 
226.79000 
1033.12000 

R-SquareC . V. 
0.78048021.79558 

Anova SS 
111.44000 
396.90667 
207.13333 
6.82667 
75.38333 
8.64000 

Mean Square 
44.79611 
45.35800 

RootMSE 
6.7348 
Mean Square 
22.28800 
396.90667 
41.42667 
6.82667 
15.07667 
8.64000 

Tests of Hypotheses using the Anova MS for BLUE*REP as an error term 

F Value 
0.99 

Mean 
30.900 
F Value 
0.49 
8.75 
0.91 
0.15 
0.33 
0.19 

Source DF Anova SS Mean Square F Value 
BLUE 1 396.90667 396.90667 9.58 
Tests of Hypotheses using the Anova MS for BLUE*REP as an error term 
Source DF Anova SS Mean Square F Value 
REP 5 111.44000 22.28800 0.54 
Tests of Hypotheses using the Anova MS for LOCALE*REP as an error term 
Source DF Anova SS Mean Square F Value 
LOCALE 1 6.8266667 6.8266667 0.45 

Pr> F 
0.5842 

Pr> F 
0.6483 
0.0566 
0.6531 
0.3478 
0.8656 
0.3254 

Pr> F 
0.0311 

Pr> F 
0.4948 

Pr> F 
0.1385 

Pr> F 
0.5610 

Pr>F 
0.7729 
0.0316 
0.5384 
0.7140 
0.8740 
0.6807 

Pr>F 
0.0270 

Pr>F 
0.7436 

Pr>F 
0.5309 

166 



Table D.6 - Continued 

Analysis of Variance Procedure 
Dependent Variable: Number of Cells 

Source DF Sum of Squares Mean Square 
Model 18 l.252E+l5 6.953E+l3 
Error 5 l.027E+I5 2.053E+14 
Corrected Total 23 2.278E+l5 

R-SquareC. V. RootMSE 
0.54936528 .82168 14329120 

Source DF Anova SS Mean Square 
REP 5 3.047E+l4 6.093E+l3 
BLUE 1 2.073E+l4 2.073E+l4 
BLUE*REP 5 2.544E+l4 5.088E+l3 
LOCALE 1 l.749E+l3 l.749E+l3 
LOCALE*REP 5 2.740E+l4 5.479E+l3 
BLUE*LOCALE 1.937E+l4 l.937E+l4 

Tests of Hypotheses using the Anova MS for BLUE*REP as an error tenn 
Source DF Anova SS Mean Square 
BLUE I 2.073E+l4 2.073E+l4 
Tests of Hypotheses using the Anova MS for BLUE*REP as an error tenn 
Source DF Anova SS Mean Square 
REP 5 3.047E+l4 6.093E+13 

F Value 
0.34 

Mean 
49716466 
F Value 
0.30 
1.01 
0 .25 
0.09 
0.27 
0.94 

F Value 
4.07 

F Value 
1.20 

Tests of Hypotheses using the Anova MS for LOCALE*REP as an error term 
Source DF Anova SS Mean Square F Value 
LOCALE 1 l.749E+l3 l.749E+13 0 .32 

Pr>F 
0 .9594 

Pr> F 
0.8957 
0 .3611 
0.9240 
0.7821 
0 .9133 
0.3760 

Pr> F 
0.0996 

Pr>F 
0.4240 

Pr> F 
0.5965 
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Table D .7 -ANOVA tables of soybean stem parameters in Chapter 5. 
Analysis of Variance Procedure 
Dependent Variable : Cell Area 
Source DF Sum of Squares Mean Square F Value 
Model 18 0.0375165 0.0020843 1.01 
Error 5 0.0103633 0.0020727 
Corrected Total 23 0.0478798 

R-Square C.V. Root MSE Mean 
0.783555 14.51817 0.0455 0.3136 

Source DF Anova SS Mean Square F Value 
REP 5 0.0133808 0.0026762 1.29 
BLUE l 0.0024402 0.0024402 1.18 
BLUE*REP 5 0.0072888 0.0014578 0.70 
LOCALE 1 0.0001127 0.0001 i27 0.05 
LOCALE*REP 5 0.0118133 0.0023627 1.14 
BLUE*LOCALE l 0.0024807 0.0024807 1.20 

Tests of Hypotheses using the Anova MS for BLUE*REP as an error term 
Source DF Anova SS Mean Square F Value 
BLUE 1 0.0024402 0.0024402 l.67 
Tests of Hypotheses using the Anova MS for BLUE*REP as an error term 
Source DF Anova SS Mean Square F Value 
REP 5 0.0133808 0.0026762 1.84 
Tests of Hypotheses using the Anova MS for LOCALE*REP as an error term 
Source DF Anova SS Mean Square F Value 
LOCALE 0.0001127 0.0001127 0.05 
Analysis of Variance Procedure 
Dependent Variable : Number of Cells 
Source DF Sum of Squares Mean Square F Value 
Model 18 26179466 1454415 4.91 
Error 5 1480135 296027 
Corrected Total 23 27659601 

R-Square c.v. RootMSE Mean 
0.946487 39.56133 544.08 1375.3 

Source DF Anova SS Mean Square F Value 
REP 5 1736887 347377 1.17 
BLUE 1 18474885 18474885 62.41 
BLUE*REP 5 2049327 409865 1.38 
LOCALE 1 1249897 1249897 4.22 
LOCALE*REP 5 1540502 308100 1.04 
BLUE*LOCALE 1 1127967 1127967 3.81 

Tests of Hypotheses using the Anova MS for BLUE*REP as an error term 
Source DF Anova SS Mean Square F Value 
BLUE 1 18474885 18474885 45.08 
Tests of Hypotheses using the Anova MS for BLUE*REP as an error term 
Source DF Anova SS Mean Square F Value 
REP 5 1736887.2 347377.4 0.85 
Tests of Hypotheses using the Anova MS for LOCALE*REP as an error term 
Source DF Anova SS Mean Square F Value 
LOCALE 1 1249897.0 1249897.0 4.06 

Pr> F 
0.5513 

Pr>F 
0.3930 
0.3274 
0.6456 
0.8249 
0.4446 
0.3238 

Pr> F 
0.2523 

Pr> F 
0.2605 

Pr> F 
0.8358 

Pr>F 
0.0432 

Pr> F 
0.4325 
0.0005 
0.3649 
0.0951 
0.4830 
0.1084 

Pr> F 
0.0011 

Pr>F 
0.5698 

Pr> F 
0.1001 
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Table D.7 - Continued 

Analysis of Variance Procedure 
Dependent Variable : Internode Length 

Source DF Sum of Squares Mean Square F Value 
Model 18 5226.9167 290.3843 3.07 
Error 5 473.7083 94.7417 
Corrected Total 23 5700.6250 

R-Square C.V. Root MSE Mean 
0.916902 48.97375 9.7335 19.875 

Source DF Anova SS Mean Square F Value 
REP 5 158.3750 31.6750 0.33 
BLUE l 4030.0417 4030.0417 42.54 
BLUE*REP 5 239.7083 47.9417 0.51 
LOCALE l 247.0417 247.0417 2.61 
LOCALE*REP 5 364.7083 72.9417 0.77 
BLUE*LOCALE 1 187.0417 187.0417 1.97 

Tests of Hypotheses using the Anova MS for BLUE*REP as an error term 
Source DF Anova SS Mean Square F Value 
BLUE l 4030.0417 4030.0417 84.06 
Tests of Hypotheses using the Anova MS for BLUE*REP as an error term 
Source DF Anova SS Mean Square F Value 
REP 5 158.37500 31.67500 0.66 
Tests of Hypotheses using the Anova MS for LOCALE*REP as an error term 
Source DF Anova SS Mean Square F Value 
LOCALE l 247.04167 247.04167 3.39 

Pr> F 
0.1094 

Pr> F 
0.8728 
0.0013 
0.7637 
0.1673 
0.6094 
0.2190 

Pr> F 
0.0003 

Pr> F 
0.6698 

Pr> F 
0.1251 
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Table D.8 - ANOVA tables for parameters in Appendix A. 

Analysis of Variance Procedure 
Dependent Variable : Main Stem Length 
Source OF Sum of Squares Mean Square F Value Pr> F 
Model 3 560.5000 186.8333 10.83 0.0217 
Error 4 69.0000 17.2500 
Corrected Total 7 629.5000 

R-Square C.V. Root MSE Mean 
0.890389 13.7300 4.1533 30.2500 

Source OF Anova SS Mean Square F Value Pr> F 
LIGHT 512.0000 512.0000 29.68 0.0055 
TEMP 1 40.5000 40 .5000 2.35 0.2002 
LIGHT*TEMP 8.0000 8.0000 0.46 0.5333 

Analysis of Variance Procedure 
Dependent Variable: Longest Branch Length 
Source OF Sum of Squares Mean Square F Value Pr> F 
Model 3 773.0000 257 .6667 14.12 0.0136 
Error 4 73.0000 18.2500 
Corrected Total 7 846.0000 

R-Square C.V. Root MSE Mean 
0.913712 10.9539 4.2720 39.0000 

Source OF Anova SS Mean Square F Value Pr> F 
LIGHT l 760.5000 760 .5000 41.67 0.0030 
TEMP l 12.5000 12.5000 0.68 0.4544 
LIGHT*TEMP 1 0.0000 0.0000 0.00 1.0000 

Analysis of Variance Procedure 
Dependent Variable : Percent Leaf 
Source OF Sum of Squares Mean Square F Value Pr> F 
Model 3 33.5830 11.1943 7.13 0.0441 
Error 4 6.2837 1.5709 
Corrected Total 7 39.8667 

R-Square C.V. Root MSE Mean 
0.842383 5.1880 1.2534 24 .1588 

Source OF Anova SS Mean Square F Value Pr> F · 
LIGHT 1 28.9941 28.9941 18.46 0.0127 
TEMP 1 0.0136 0.0136 0.01 0.9303 
LIGHT*TEMP 1 4.5753 4.5753 2.91 0.1631 
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Table D.8 - Continued 

Analysis of Variance Procedure 
Dependent Variable: Percent Stem 
Source OF Sum of Squares Mean Square F Value Pr>F 
Model 3 21.6526 7.2175 1.52 0.3390 
Error 4 19.0162 4.7540 
Corrected Total 7 40.6688 

R-Square C.V . RootMSE Mean 
0.532414 13.3653 2.1804 16.3138 

Source OF Anova SS Mean Square F Value Pr> F 
LIGHT l 9.4830 9.4830 1.99 0.2307 
TEMP l 4.5451 4.5451 0.96 0.3835 
LIGHT*TEMP l 7.6245 7.6245 1.60 0.2741 

Analysis of Variance Procedure 
Dependent Variable : Percent Seed 
Source OF Sum of Squares Mean Square F Value Pr> F 
Model 3 83.6587 27.8862 4.08 0.1041 
Error 4 27.3633 6.8408 
Corrected Total 7 111.0220 

R-Square C.V. Root MSE Mean 
0.753533 7.2617 2.6155 36.0175 

Source OF Anova SS Mean Square F Value Pr> F 
LIGHT 1 39.4272 39.4272 5.76 0.0743 
TEMP 1 0.5202 0.5202 0.08 0.7964 
LIGHT*TEMP 1 43.7113 43 .7113 6.39 0.0648 

Analysis of Variance Procedure 
Dependent Variable : Percent Pod 
Source OF Sum of Squares Mean Square F Value Pr> F 
Model 3 4.3407 1.4469 0.94 0.4997 
Error 4 6.1485 1.5371 
Corrected Total 7 10.4892 

R-Square C.V. Root MSE Mean 
0.413823 9.1685 1.2398 13.5225 

Source OF Anova SS Mean Square F Value Pr> F 
LIGHT 1 2.8322 2.8322 1.84 0.2462 
TEMP l 0.1800 0.1800 0.12 0.7494 
LIGHT*TEMP 1 1.3285 1.3285 0.86 0.4052 
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Table 0.8 - Continued 

Analysis of Variance Procedure 
Dependent Variable: Percent Root 
Source OF Sum of Squares Mean Square F Value Pr> F 

Model 3 13.8734 4.6245 2.80 0.1725 

Error 4 6.6025 1.6506 

Corrected Total 7 20.4759 

R-Square C.V. Root MSE Mean 

0.677550 12.8589 1.2848 9.9913 

Source OF Anova SS Mean Square F Value Pr> F 

LIGHT l 0.2485 0.2485 0.15 0. 7178 

TEMP I 5.3628 5.3628 3.25 0.1458 

LIGHT*TEMP l 8.2621 8.2621 5.01 0.0889 

Analysis of Variance Procedure 
Dependent Variable : Mass Per Seed 
Source OF Sum of Squares Mean Square F Value Pr> F 

Model 3 292.3750 97.4583 1.32 0.3837 

Error 4 294.5000 73.6250 

Corrected Total 7 586.8750 

R-Square C.V. Root MSE Mean 
0.498190 5.3586 8.5805 160.1250 

Source OF Anova SS Mean Square F Value Pr>F 

LIGHT 171.1250 171.1250 2.32 0.2021 

TEMP l 120.1250 120.1250 l.63 0.2706 

LIGHT*TEMP l l.1250 l.1250 0.02 0.9076 

Analysis of Variance Procedure 
Dependent Variable : Seeds per Pod 
Source OF Sum of Squares Mean Square F Value Pr> F 

Model 3 0.0164 0.0055 0.91 0.5122 

Error 4 0.0242 0.0060 

Corrected Total 7 0.0406 

R-Square C.V . Root MSE Mean 

0.404989 4.1691 0.0777 1.8638 

Source OF Anova SS Mean Square F Value Pr>F 

LIGHT l 0.0153 0.0153 2.54 0.1865 

TEMP 0.0001 0.0001 0.02 0.8980 

LIGHT*TEMP 0.0010 0.0010 0.17 0.7031 
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Table D.8 - Continued 

Analysis of Variance Procedure 
Dependent Variable : Pods Per Meter Squared 
Source DF Sum of Squares Mean Square F Value Pr> F 

Model 3 104722.3750 34907.4583 7.13 0.0440 

Error 4 19572.5000 4893 .1250 

Corrected Total 7 124294.8750 

R-Square C.V. Root MSE Mean 

0.842532 5.0767 69.9509 1377.8750 

Source DF AnovaSS Mean Square F Value Pr> F 

LIGHT l 3916.1250 3916 .1250 0.80 0.4216 

TEMP l 50403 .1250 50403 .1250 10.30 0.0326 

LIGHT*TEMP l 50403 .1250 50403 .1250 10.30 0.0326 

Analysis of Variance Procedure 
Dependent Variable : Photosynthetic Efficiency 
Source DF Sum of Squares Mean Square F Value Pr> F 

Model 3 0.0025 0.0008 5.26 0.0712 

Error 4 0.0006 0.0002 

Corr ected Total 7 0.0031 

R-Square C.V. Root MSE Mean 
0.7979 25 5.2988 0.0126 0.2379 

Source DF Anova SS Mean Square F Value Pr> F 

LIGHT l 0.0002 0.0002 0.96 0.3818 

TEMP l 0.0005 0.0005 2.93 0.1622 

LIGHT*TEMP l 0.0019 0.0019 l l.90 0.0261 

Analysis of Variance Procedure 
Dependent Variable : Seed Yield Rate 
Source DF Sum of Squares Mean Square F Value Pr> F 

Model 3 l.0112 0.3371 3.60 0.1237 

Error 4 0.3741 0.0935 

Corrected Total 7 1.3853 

R-Square c.v. Root MSE Mean 

0.729984 6.0300 0.3058 5.0713 

Source DF Anova SS Mean Square F Value Pr> F 

LIGHT l 0.0001 0.0001 0.00 0.9740 

TEMP l 0.1596 0.1596 l.71 0.2614 

LIGHT*TEMP 1 0.8515 0.8515 9.11 0.0393 
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Table D.8 - Continued 

Analysis of Variance Procedure 
Dependent Variable : First Flower 
Source DF Sum of Squares Mean Square F Value Pr> F 
Model 3 36.3750 12.1250 4.62 0.0867 
Error 4 10.5000 2.6250 
Corrected Total 7 46.8750 

R-Square C.V. Root MSE Mean 
0.776000 7.3229 1.6202 22.1250 

Source DF Anova SS Mean Square F Value Pr> F 
LIGHT l 0.1250 0.1250 0.05 0.8379 
TEMP 1 36.1250 36.1250 13.76 0.0207 
LIGHT*TEMP 1 0.1250 0.1250 0.05 0.8379 

Analysis of Variance Procedure 
Dependent Variable : Days to Harvest 
Source OF Sum of Squares Mean Square F Value Pr > F 
Model 3 16.3750 5.4583 3.36 0.1362 
Error 4 6.5000 1.6250 
Corrected Total 7 22.8750 

R-Square C.V. Root MSE Mean 
0.715847 1.5762 1.2748 80.8750 

Source DF Anova SS Mean Square F Value Pr> F 
LIGHT 1 6.1250 6.1250 3.77 0.1242 
TEMP 1 0.1250 0.1250 0.08 0.7953 
LIGHT*TEMP l 10.1250 10.1250 6.23 0.0670 

Analysis of Variance Procedure 
Dependent Variable : Total Biomass Yield Rate 
Source DF Sum of Squares Mean Square F Value Pr> F 
Model 3 6.2080 2.0693 21.01 0.0065 
Error 4 0.3940 0.0985 
Corrected Total 7 6.6020 

R-Square C.V. Root MSE Mean 
0.940329 2.2184 0.3138 14.1463 

Source DF Anova SS Mean Square F Value Pr> F 
LIGHT 1 5.7970 5.7970 58.86 0.0016 
TEMP l 0.4095 0.4095 4.16 0.1111 
LIGHT*TEMP 1 0.0015 0.0015 0.02 0.9074 
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Table D.8 - Continued 

Analysis of Variance Procedure 
Dependent Variable : EffectiveCanopy Height 
Source DF Sum of Squares Mean Square F Value Pr> F 
Model 5 221.8000 44 .3600 4.17 0.0958 
Error 4 42.6000 10.6500 
Corrected Total 9 264.4000 

R-Square C.V. Root MSE Mean 
0.838880 7.188180 3.2634 45.400 

Source DF Anova SS Mean Square F Value Pr> F 
LIGHT 1 102.4000 102.4000 9.62 0.0362 
TEMP 4 119.4000 29 .8500 2.80 0.1711 
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Table D.9 - ANOVA table for Appendix C. 

Analysis of Variance Procedure 
Dependent Variable : Cell Area 

Source DF Sum of Mean Square F Value Pr> F 
Squares 

Model 62 0.7621834 0.0122933 107.33 0.0001 
Error 33 0.0037797 0.0001145 
Corrected Total 95 0.7659631 

R-Square C.V . Root MSE Mean 
0.995065 1.664804 0.0107 0.6429 

Source DF Anova SS Mean Square F Value Pr> F 

BLOCK 11 0.3989239 0.0362658 316 .63 0.0001 

METHOD 3 0.0452033 0.0150678 131.55 0.0001 
METHOD*BLOCK33 0.3114385 0.0094375 82.40 0.0001 

TIME 1 0.0046802 0.0046802 40 .86 0.0001 
TIME*BLOCK 11 0.0011738 0.0001067 0.93 0.5233 
TIME*METHOD 3 0.0007636 0.0002545 2.22 0.1040 

Tests of Hypotheses using the Anova MS for METHOD*BLOCK as an error term 
Source DF Anova SS Mean Square F Value Pr> F 
METHOD 3 0.0452033 0.0150678 1.60 0.2089 
Tests of Hypotheses using the Anova MS for TIME*BLOCK as an error term 
Source DF Anova SS Mean Square F Value Pr> F 

TIME 1 0.0046802 0.0046802 43 .86 0.0001 
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