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INTRODUCTION 

This paper is based on Landau's book "Foundations of Analysis" whi ch 

constitutes a development of the number system founded on the Peano axioms 

for natur al numbers . 

In order to show mastery of the subject matter this paper gives a 

somewhat different organization of material and modified or more detailed 

proofs of theorems, In situations where proofs become rather routine 

repetitions of previously noted tech~iq _ues the proofs are omitted. 

The following symbols and notation are used. Natural numbers are 

denoted by lower case letters such as a,b,c, . .. x,y,z. Sets are denoted 

by upper case letters such as M, N, .•. X, Y, Z. If a is an element 

of M, this will be written a EM. The denial of this is written a1:, M. 

The symbol 3 /x is read "There exists an unique x". If x and y are 

names for the same number we write x=y. It is assumed that the relation= 

is an equivalence relation; i.e., (1) x=x, (2) if x=y, then y=x, (3) if 

x=y and y=z, then x=z. Throughout this paper there will be no special 

attempt to distinguish between the name of a number and the number itself. 

For example, the phrase" if xis a number" will be used in place of 

"if xis the name of a number." 



· NATURAL NUMBERS 

Definition , 1.1. A set N of elements is called the natural numbers 

~f and only if the following axioms are satisfied: 

Axiom l.I. For each Xe N, there exists an unique element of N 

called the successor of x, denoted by x'; i.e., if x=y then x'=y'. 

Axiom 2.I. There exists an element of N, denoted by 1~ such that 

x'#l for every XE: N. 

Axiom 3.I. If x'=y', then x=y. 

Axiom 4.1. If a set M of natural numbers contains the element 1 

and it contains x' whenever it contains x, then M is the same set as N. 

Addition and Multiplication 

In this section two binary operations called addition and multiplica

tion are defined on the natural numbers. It is shown that these operations 

obey the commutative and associative laws; also, that multiplication is 

distributive with respect to addition. One main result of the definition 

of addition will be that either . two natural numbers, x and y, are the 

same natural number; or, there exists uniquely a natural number u such 

that x=y+u; or, there exists uniquely a natural number v such that 

y=x+v. 

Theorem 1. 2 . If x:/: 1 , 3 / u such that x=u 1 
• 

Proof. The uniqueness of u is easily established. Suppose there 

exist u and v such that x=u' and x=v'. Then u'=v' which implies 

v=u by Axiom 3. To show there ex1sts such an u let M = {x: x E. N and 

if xf-1, there exists u € N such that u '=xJ U £ 1) . We note that 



1 EN by Axiom 2 and that 1 EM by the construction of set M. And to 

see that x' f M whenever x E: M we note that x' E N by Axiom 1 and so 

there exists an uF.:N such that u'=x'; namely, x'=x'. Therefore, 

by Axiom 4 , M is the same set as N. 

Theorem 1.3. , There exists an unique binary operation to be called 

addition, denoted by +, which assigns to each ordered pair of natural 

numbers (x,y) a natural number, to be denoted by x=y, such that for 

every x and y : 

i) x+l=x' 

and ii) x+y'=(x+y)'. 

Proof . The uniqueness of the operation will be established first . 

Suppose there exists two operations denoted by + and * such that : 

iii) x+l=x', and x+y'=(x+y)' 

and iv) x*l=x 1
, and x*y'=(x*y) 1

• 

Let X be given and let M = lY: x+y=x*y J Now 1 E. M since x+l=x '=x*l 

by (iii) and (iv) . If y € M, y 'E. M since 

x+y' = (x+y)' by (iii) 

= (x*y) ' because y €. M 

= x*y' by (iv). 

Therefore x+y'=x*y' and M is the same set as N by Axiom 4. Hence 

x+y=x*y for every x and y; that is, if the binary operation exists, 

it is unique. 

Now it will be shown that such an operation exists which satisfies 

(i) and (ii). Let y be given and let M = fx: for the ordered pair 

(x,y) such an x+y existsj. For x=l, define (v) l+y=y'. If YE"N, y' 

exists and y'E. N by Axiom 1. Thus l+y exists and is an element of N. 

We need to show that for x=l, x+l=x' and x+y'=(x+y)'. 
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For the first: x+l = l+l since x=l 

= l I by (v) 

= x' by Axiom l since x=l. 

As to the latter: x+y' = l+y' since x=l 

= (y I) I by (v) 

= (l+y) I by (v) 

= (x+y) I since x=l. 

Thus, l E: M. 

If x EM, there exists an x+y for the ordered pair (x ,y) which 

satisfies (i) and (ii). For x', define (vi) x'+y = (x+y)'. Again (i) 

and (ii) must be satisfied with this definition for x'; i.e., x'+l = 

(x')' and x'+y' = (x'+y)'. 

For the first: x'+l = (x+l)' by (vi) 

= (x')' by (i) since xE:M. 

As to the second: x'+y'= (x+y')' by (vi) 

= ((x+y) V ' by (ii) since xf M 

= (x'+y)' by (vi) 

Hence, x '+y' = (x '+y)'. Therefore, l E: M and x' £ M whenever x e. M. 

Thus, M is the same set as N by Axiom 4. The existence of the unique 

binary operation addition which assigns to each ordered pair of natural 

numbers (x,y) the natural number named x+y satisfying: 

a) x+l = x' = l+x 

and b) x+y' = (x+y)' = x'+y 

has been established. 

Theorem 1.4. (Associative Law of Addition). For every x,y ,z €: N 

(x+y) + z = x + (y+z). 

Proof. Let x and y be given, and let M = {z: (x+y)+z - x+(y+zJ. 
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Now lE M s in ce 

(x+y) + 1 = (x+y) 0 by 1.3 (i ) 

= x+y 1 by 1.3 (ii) 

= x+(y+l) by 1.3 (i). 

and thus (x+y) + 1 = x+(y+ l ). If z f M, z' EM since 

(x+y) + z 1 = ( (x+y) + z) 0 by 1.3 (ii) 

= (x + (y+z)) 0 because zE M 

= X + (y+z) 1 by 1. 3 (i i ) 

= X + (y+z 1
) by 1,3 (ii) 

and thus (x+y) + z' = x + (y+z'). Therefore, M is the same set as N 

and the proof of this theorem is complete. 

Theorem 1.5. (Commutative Law of Addition). For every x,yE N, x+y = 

y+x. 

Proof. Let x be given, and let M = {y : x+y = y+x}. For y=l, 

x+l = x' = l+x by 1.3 (i) and (v). Hence, lE M. 

If YEM, y'E M since x+y' = (x+y) I by 1.3 (ii) 

= (y+x), since yE M 

= y'+x by 1.3 (vi) 

and thus x+y' = y'+x. Therefore, M is the same set as N. 

Theorem 1.6. Giv en x and y, one and only one of the following 

must occur: i) x=y 

or ii) There exists an unique u such that x=y+u 

or iii) There exists an unique v such that x+v=y. 

Proof. (The proof of this theorem involves the following theorems 

whose proofs we do not include since they are rather straightforward 

applications of the axiom of induction: a) yly+u for all uf N 

b) if y/z, then x+yix+z) 
I 
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First, it will be shown that the three cases are incompatible. If 

(i) and (ii) both occur then x=y and x=y+u imply y=y+u which is impossible 

since y~y+u for all u by a). Similarly, (i) and (iii) are incompati ble. 

For (ii) and (iii), x=y + u and x+v = y imply y = (y+u) +v = y + (u+v) 

by 1.4. Therefore, y=y + (u+v) whi ch is impossible since y F y + u for 

all u. Hence, only one of the three cases occurs. 

Next, it will be shown that the u in (ii) is unique. Assume there 

exist two natural numbers, u and t, such that x=y+u and x=y+t. Hence 

y+u = y+t which implies u=t; since if UFt, y+uFy+t by b). Thus, the u 

is unique. Similarly, the v in (iii) can be shown to be unique. 

Last, it will be shown that one of the three cases must occur. Let 

x be given and let M = { y: one of the three cases occurs}. If y=l; 

either x=l and x=y [ Case (i) for 1] , or x#l and x=u' by 1.2. If x=u' = 

l+u by 1. 3 (v~ then x=y+u since y=l ~iase ' ii) for 1] • Therefore, 1 E M. 

If yE M, one of the three cases must occur. Case (i) for y, y=x. Thus, 

y' = 

then 

x' = x+l [case (iii) for y '] 

x=y+l=y' [case U) for y 9
]. 

X = y+w' 

= y + (l+w) by l.3(v) 

= (y+l) + w by 1.4 

= y 0 + w by l.J(i) 

Case (ii) for y, x=y+u. If u=l, 

If u#l, u=w0 by 1.2. If u=w1 then 

Thus, x = y 1 + x [case (ii) for y 1
]. Case (iii) for y, y = x+v. 

Hence y' = (x+v) 0 

= x+v 0 by 1.3 (ii) 

[ Case (iii) for y 1] • In any case y O E M whenever y E: M. Thus• M is 

the same set as N and the theorem is established. 
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Theorem 1.7. There exists an unique binary operation, to be called 

multiplication, denoted by· , which assigns to each ordered pair of 

natural numbers (x,y) a natural number, to be denoted by x•y, such that 

for every x and y: i) x•l = x 

and ii) x·y' = x•y + x. 

Proof. The uniqueness of the operation will be established first. 

Suppose there exist two operations, denoted by• and* such th4t: 

iii) x·l = x and x·y' = x·y + x 

and iv) x*l = x and x*y' = x*y + x. 

Let x be given and let M • { y:x·y • x*yJ • Now, lf M since x•l = x = 

x*l by (ii1) and (iv). If yf. M, y' €. M since 

x•y'= x•y + x by (iii) 

= x*y + x since y f M 

= x*y' by (iv) 

Therefore x·y' = x*y' and M is the same set as N. Thus, the binary 

operation is unique, if it exists. 

Now to show that it is possible to define a binary operation so that 

for every x and y; x·l=x and x•y' = x •y+x. Let y be given and let 

M = { x: for the ordered pair (x,y) such an x·y exists). 

For x=l, deftne (v) l·y=y. We need to show that x·l=x and x·y' = 

x•y + x. Now x·l = 1·1 since x=l 

= 1 by (v) 

= x since x=l. 

Thus the first condition is satisfied. 

As for the second: x•y' = 1.y' since x=l 

= y' by (v) 
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= y+l by 1.3 (i) 

= l •y+l by (v) 

= x·y+x since x~l 

Hence, if xzl, x·y' = xy+x. Thus, lE M. 

If xE M, there exists an x•y for each ordell'ed pair (x,y) which 

satisfies (i) and (ii). For x', define vi) x'•y = x•y+y. Again 

conditions (i) and (ii) are satisfied for: if y=l then 

x'·l = x·l + 1 by (v) 

= x+l by (i) since x E M 

= x' by 1.3 (i) 

Thus , XI • l = XI • 

Now, x'·y' = x•y' + y' by (vi) 

= (x•y+x) + y' by (ii) 

= x•y + (x+y') by 1.4 

= x·y + (x+y) I by 1.3 

= x·y + (x'+y) by 1.3 

= x•y + (y+x') by 1.5 

= (x•y+y) + x' by 1.4 

= x'y + x' by (vi). 

since xEM 

(ii) 

(vi) 

I I 
Therefore, x' ·y = x •y + x'. Henc·e, lE M and y'€ M if Ye. M. 

Thus, M is the same set as N and the bin~ry operation multiplication 

which assigns to each ordered pair of natural numbers (x,y) the natural 

number named x•y such that a) x•l = x = l•x 

and b) x•y' = x•y + x 

and c) x'•y = x•y + y 

exists and is unique. 
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Hereafter, the sign of multiplication will be omitted. Thus, x•y 

will be written xy. 

Theorem 1. 8. (Connnutative Law of Multiplication). For every x,y E N, 

xy = yx. 

Proof. The proof of this theorem is similar to the proof of theorem 

1.5 and will be omitted. 

Theorem 1.9. (Distributive Law). For every x,y,zEN, x(y+z) = 

xy + xz. 

Proo f . Let x and y be give n , and let M ={ z:x( y+z) = xy + xzj. 

Now, lE M since x(y+l) = xy' by 1.3 (i) 

= XY + X by 1.7 (ii) 

= xy + x•l by 1.3 (i). 

and so x(y+l)=xy+x·l. If zEM,z'EM 

since x(y+z') = x(y+z)' by 1.3 (ii) 

= x(y+z) + x by 1.7 (ii) 

= (xy + xz) + x since z € M 

= xy + (xz + x) by 1.4 

= xy + xz' by 1.7 (ii) 

and thus x(y+z') = xy + xz'. Therefore, Mis the same set as N and the 

theorem is shown. 

Theorem 1.10. (Associative Law of Multiplication) For every x,y, 

z EN, (xy)z = x(yz). 

Proof. Let x and y be given, and let M = { z: (xy)z = x(yz)j. 

Now, lE M since (xy)•l = xy by l. 7 (i) 

= x(y•l) by 1.7 (i) 
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If z EM, z 'f. M since (xy)z' = (xy)z + xy by 1. 7 (ii) 

= x(yz) + xy since zc: M 

= X (yz+y) by 1.9 

= X (yz 1
) by 1.7 (ii). 

Thus, (xy)z' = x(yz') and M is the same set as N. 

Ordering 

I n t h is sect i on th e ba sic defin i tio ns of gr eat er th an an d l es s t han 

are given. The main result to be established is that every nonempty set 

of natural numbers contains a least one. 

Definition 1. 11. x > y if and only if there exists a natural number 

u such that x = y+u. 

Definition 1.12. x < y if and only if y '? x. 

Theorem 1. 13. Let x and y be given, then one and oply one of the 

following occur: x=y or x '? y or x <. y. 

Proof. The proof follows directly from 1.6, 1.11 and . 1.12. 

Definition 1.14. x~ y if · and only if x=y or X;> y • 

Definition 1.15. x~ y if and only if y~ x. 

Theorem 1.16. If x< y and Y< z, then x< z. 

Proof. Trivial 

The.orem. 1.17. For all xEN, x+y;,,x. 

Proof. Now, x+y = x+y. Therefore, x+y;,, x by 1.11. 

Theorem 1.18. x=y or x.> y or x< y if and only if x+z = y+z 

or x+z>y+z or x+z<y+z, respectively. 

Proof. Suppose x=y. Then obviously x+z = y+z. If X7 y then there 

exists u such that x=y+u. Hence, 
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x + z = (y+u) + z by first part. 

= y + (u+z) by 1.4 

= y + ( z+u) by 1. 5 

= (y+z) + u by 1.4. 

Therefore, x+z .> y+z by 1. 11. If x ~ y then y :> x by 1. 12. Henc.e by above 

part y+z ;, x+z and by 1.12, x+z < y+z. 

The converse follows immediately from the preceding proof, and the 

11 

fact that the three cases are mutually exclusive and exhaust all possibilities. 

Theorem 1.19. x=y or x;::,,y or x~y if and only if xz = yz or xz;;,,yz 

or xz < yz, respectively . 

Proof. Suppose x=y. Then obviously xz = yz. If x;,, y there exists 

u such that x=y+u. Thus, xz = (y+u)z by first part 

= z(y+u) by 1.8 

= zy + ZU by 1.9 

= yz + zu by 1.8. 

Hence, xz ;,yz by 1.11. If x.cy · then y? x and by preceding part yz?xz 

which implies xz <: yz by 1.12. 

The converse follows immediate~y from the preceding proof and the fact 

that the three cases are mutually exclusive and exhaust all possibiliti~s. 

Theorem 1.20. For all x,y€ N if y;;, x then y.?. x+l. 

Proof. Since Y> x there exists u such that y = x+u. Either u=l, 

hence y=x+l; or uil and so u=w' by 1.2. Hence, 

x+u = x+w' by 1.18 

= X + (l+w) by 1.3 (v) 

= (x+l) + w by 1.4. 

Thus, y; x+l by 1.11. In either case if y,>x then y.2x+l by 1.14. 



Theorem l. 21. For every x E N, x ::. 1. 

Proof. Either x=l or xll in which case x=u' by 1.2. Therefore if 

x=u' = l+u by l.3(v), x>l by 1.11. Hence, x~l by 1.14. 

Theorem 1.22. In every nonempty set T of natural numbers, there is 

one which is less than every other element of the set. That is, there 

exists an xfT such that x~y for all y~T. 

Proof. Let M be the set of all z such that z EN and z ~ y for all 

y f: T • M is not empty because 1£ M by 1.21. M does not contain all 

natural numbers since for any yE T y+l> y by 1.17 and thus y+li M. 

There exists an element of M, denote it by x, such that x+1¢ M. For if 

x+l EM whenever xE M, M would be the same set as N by Axiom 4 since 

lE M. This contradicts the fact that M does not contain all the natural 

numbers. Since xE M, x~ y for all yE. T. Now, x is also an element 

of T. Toshowthisassume xtT. Then x<y forall yET. Therefore 

x+l~ y for all yr;_ T by 1.20. Thus, x+lE M which contradicts the fact 

that x+l ¢ M. Hence, x ET and is less than every other element of the 

set. 
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RATIONAL NUMBERS 

Two new types of numbers are defined in this section. The first, the 

fraction, is defined in terms of natural numbers; and° the second, the 

rational number, is defined in terms of fractions. The binary operations 

of addition and multiplication on the rational numbers are defined, then 

the associative, commutative, and distributive properties are establisheq; 

as well as the facts that there is no greatest or least rational number, 

and given any two distinct rational numbers there is at least one rational 

number which is less than one of the given rational numbers and greater 

than the other. One of the most interesting results is that there is a 

set of rational numbers, to be called integers,which obeys the ba~ic 

axioms of the natural numbers and thus is isomorphic to the set of natural 

numbers. 

Definition 2.1. A fraction is an ordered pair of natural numbers 

(x,y) denoted by x/y. 

Definition 2.2. Two fractions x/y and z/w are said to be equivalent, 

to be denoted by x/y -v z/w, if and only if xw = zy. 

Theorem 2. 3 • The relation ,v is: 

i) Reflexive: a/b11.1 a/b 

ii) Symmetric: if a/b/\, c/d, then c/ d ,v a/b 

iii) Transitive: if a/bN c/d and c/drve/f, then a/b ,v e/f 

Proof. (i). ab=ab. Therefore, a/brva/b by 2.2. 

(ii). If a/b~c/d then ad= cb by 2.2. Thus, cb = ad which 

implies c/d = a/b by 2. 2. 

(iii). If a/brvc/d and c/dr.,; e/f then ad = cb and cf= ed by 2.2. 
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Hence, (ad}f = (cb}f and (cf}b = (ed}b. 

Now, (cb) f = f(cb} by 1.8 

= (fc}b by 1.10 

= (cf}b by 1. 8. 

Thus, (cb}f = (cf}b and hence (ad}f = (ed}b. Similarly, (ad}f = (af}d 

and (ed}b = (eb}d. Therefore, (af}d = (eb}d which implies af = eb by 

1.19. Hence, alb,v elf by 2.2. We have shown that the relation rv 

defined by rv = { (alb, cld}: a,b,c,dE N and ad = be J is an equivale nc e 

relation. 

Def inition 2.4. A rational number is the set of all frac tions which 

are equivalent to a given fraction. If xly is the given fraction, the 

rational number will be denoted by [xly] . 

Definition 2.5. Two rational numbers [xly J and [z!wJ are said 

to be equal if and only if every element of lxly] is an element of 

[zlw] and every element of is an element of 

definition will be denoted symbolically as follows: 

and only if [xl~c.[zlw] 

Theorem 2. 6. [alb] 

and 

= 

[zlw]c [xly] • Otherwise, [xly] 

[cldJ if and only if alb ...,cld 

This 

[zlw ] if 

# [zlw]-

Proof. Assume ~lb] = [cl d} Now, alb f [alb] and since 

[cld], alb€.lcld] by 2.5. Thus alb"'cld by 2.4. 

To show the converse assume albf'V cld. Let elf be any element of 

[alb] . Then elf rvalb by 2.4 which 

elf e [cld] • Hence, [alb] C [cld J . 
[alb ] = [cld] by 2.5. 

implies elfNcld by 2.3 (iii). Thus, 

Similarly, [cl d] C. [alb] . Therefore, 

Theorem 2. 7 (alb] = [cl d] if and only if ad = cb. 

Proof. Assume [alb J = ~Id ] • Then alb ,v cl d by 2. 6 and thus ad = 

cb by 2.2. For the converse assume ad= cb. Then alb,v cld by 2.2 and 
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thus [alb] = [cld] by 2.6. 

Theorem 2.8. The relation = is: 

i) Reflexive : [alb] = [al bJ 

ii) Symmetric : if [alb J = [ cld] , then [cla'J = [alb] 

iii) Transitive: if [alb] = lcld] and [cld J = ~If] , 

then [alb] = [elf] 

Proof. (i) alb ,v alb by 2.3 (i). Therefore, [alb] = [alb] by 2,6. 

(ii) If [alb J = [cld] , then alb rv cl d by 2.6. Hence, clb rv alb 

by 2.3 (ii) and thus [cld] = [alb] by 2.6. 

(iii) If [alb] = [cld] and [cld] = [elf] , then alb rv cld 

and c/drv elf by 2.6. Hence, alb -v elf by 2.3 (iii) and so 

[alb] = [elf] by 2,6. 

Thus= is an equivalence relation on the set of rational numbers. 

Definition 2. 9. By the sum of two rational numbers [alb] and [cld] , 

to be denoted by [a lb ] (±) [cld] , is meant the following: [alb] (±) [cld] 

= [<ad + cb )lbd] 

Theorem 2.10. (±)is a binary operation on the set of rational numbers. 

Proof. It is obvious that the sum gives a rational number. It must 

now be shown that the sum is unique; that is, it doesn't depend on the 

particular fractions used to name the rational numbers. Symbolically, 

if ~lb] = [cld] and [elf] = [glh] then we wish to show that 

[(af + eb)lbf] = I<ct + gd)ldhJ . Since [alb J = [cld] and 

[e/f] = [slh] ad = cb and eh= gf by 2. 7. Hence, (ad)(fh) == (cb)(fh) 

and {eh) {bd) = (gf ){bd) by 1.19. 

Now, (ad) (fh) = (a(df))h by 1.10 

= ( a(fd))h by 1.8 

15 



= ( (af)d) h by 1. 10 

= (af)(dh) by 1.10 

and so (ad)(fh) = (af)(dh). Similarly, (cb)(fh) = (ch)(bh); (eh)(bd) = 

(eb)(dh), and (gf)(bd) = (gd)(bf). Therefore, (af)(dh) + (eb)(dh) = 

(ch)(bf) + (gd)(bf). Now (af)(dh) + (eb)(dh) = (af + eb)(dh) and (ch)(bf) 

+ (gd)(bf) =(ch+ gd)(bf) by 1.9. Hence, (af + eb)(dh) =(ch+ gd)(bf). 

Therefore, [<af + eb)lbf J = [<ch+ gd)ldh] by 2.7 and the theorem is 

shown. 

Theorem 2.11. (Commutative Law of(±)). = 

Proof: [alb] (£) [cld] = [(ad + cb)lbdJ by 2.9 

= [(cb + ad)ldb] 

= [cld](t)rlb] by 2.9. 

Therefore, ~lb] (±) [cld] = [cld] (±) [alb] . 

Theorem 2.12. (Associative Law of(£)). ([alb] G) [cld]) (±) 

~/f] = [alb] G) (~Id] @ [elf J). 
Proof. {~lb] G) [cld ]) G) [elf] = [(ad + cb)lbd] (£) [e/f] 

= [ ((ad + cb) f + e (bd) J I (bd)f] 

= [(((ad)f + (cb)f)+ e(bd)) lb(df)J 

.;. ~a(df) +(o(cf) + b(ed))) lb(df)] 

= Ka(df) + b(cf + ed)) lb(df)J 

= [alb] (±) [(cf + ed)ldf] by 2. 9 

= ~lb J G) ([cl d] Ct) ~If J) by 2. 9. 

Thus, ([alb](£) [cld])s [elf] = ~lb] G-) ([cld] 0 [elf]). 
Definition 2.13. By the product of two rational numbers [alb] and 

[cld] , to be _ denoted by [alb] 0 [cld J is meant the following: 

[alb] 0 [cld J = Bac)/(bd)] • 
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Theorem 2.14. Q is a binary operation on the set of rational numbers. 

Proof. It is obvious that the product is a rational number. To show 

that the product gives an unique rational number it mus~ be shown that the 

particular given fraction used to name the rational number is arbitrary; 

that is, if ~/b] = [c/d] and fe/fJ = [s/h J then we must show that 

fe)/(bf)] = [cg)/(d1i/ Since fa/b] = [c/dJ and[e/f] = [s/h], ad = cb 

and eh= gh by 2.7. Thus, (ad) (eh) = (cb)(gf). Now (ad)(eh) = (ae)(dh) 

and (cb) (gh) = (cg)(bf). Hence, (ae)(dh) = (cg)(bf). Therefore ,CTa£7/(bf)] = 

[cg)/(dh)J by 2. 7 and the theorem is shown. 

Theorem 2.15. (Commutative Law of0 ). [a/bl 0 [c/d] = 

[c/d] 0 [a/b J . 
Proof. [a/b] 0 [cl d J = fac>/tbd)] by 2. 13 

= ~s)/(dtY] 

= [cld] Q [alb] by 2.13. 

Theorem 2.16. (Associative Law of 0 ). ([a/b] G [c/d]) 0 [elf] = 

~/b] 0 ([cld] 0 [elf]). 

Proof. ([alb] 0 [cl d l) 0 [elf J = [atj/(bdD 0 [e/ f] by 2. 13 

= ~ac)e)/~bd)f~ by 2.13 

= [a(ce)) / (b(df)fl 

= [alb] 0 ~ce)/(df~ by 2 .13 

= [alb] 0 ([c/d] 0 [elf]) by 2.13. 

Thus, (~lb] 0 [c/d]) G [e/f] = fa/b] G ([c/d] 0 [e/f]) and the 

theorem is proved. 

The ore ,;, 2 .17. ·~./b] = ~xa)/(xbu • 

Proof; a(xb) = (ax)b by 1.10 

= (xa)b by 1.8 
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Therefore, a(xb} = (xa)b and so i!1lb] = f,call(xb~ by 2.7. 

Theorem 2.18. (Distributive Law) • [albJ 0 {[cld] (±) [elf])= 

[alb] 0 ~ldl (±) [alb] 0 [e/f] • 

Proof. ~lb] 0([cldl 0 [elf])= [alb] 0 l(cf+ed}ldfJ by 2.9 

= ~(cf+ ed})l(b(df})J by 2.13 

= f (cf) + a (ed}} · I (b (df})] 
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= ~b(a(cf) + a(ed}})l(b( b(dO))Jby 2.17 

= [((ac) (bf} + (ae) (bd}) I ((bd) (bf))] 

= ~cj/tbd~ 0 ~aeVtb fD by 2. 9 

= [alb] 0 [clJ](±) [alb}0 [elf]by 2.17. 

Therefore,&lb] 0([cld] (t) [elf])= [alb] 0 [cld] (±) lalb] Q ~If]. 

Definition 2.19. [alb]> [cld] if and only if ad> cb. To show this 

definition is valid it must be shown that it in no way depends upon the 

particular given fractions used to name the rational numbers. Thus, the 

following theorem is needed. 

Theorem 2. 20. If [alb].> [cl d J , [alb] = [e/f] , and ~Id] = [glh], 

then [elf].> [slh J. 
Proof. From the hypothesis ad> cb, af = eh, and ch= gd. Hence, 

(i) (be} (ch} = (af) (gd}. Since ad;, ch ] lu such that (ii} ad = ch + u. 

Now, (eh}(cb} = (be}(ch} 

= (af)(gd} by (i) 

= (gf)(ad} 

= (gf){cb + u) by (ii} 

= (gf)(cb} + (gf)u 

Hence, (eh}(cb) > (gf)(cb} by 1.11 and thus eh> gf by 1.19. 

Therefore, [elf J ,> [glh J by 2 .19. 

Definition 2.21. [albJ< ~Id] if and only if [cld]> [alb] • 



Theorem 2.2 2 . Given any two rational numbers [alb] and [cld], 

one and only one of the following must occur: [alb ] = [cld] or [alb]> 

[cld] or [alb]< [cld] . 
Proof. ad = cb or ad > cb or ad < cb by 1. 13. 

Therefore, if ad=cb then [alb] = [ clb] by 2. 7; if ad -, cb then 

[alb]> [cld] by 2.19 ; if ad<cb then cb)ad by 1.12 and so [cld]>[alb] 

which implies [alb]<[cld] by 2.21. 

Theorem 2 . 23. [alb ] = [cld] or [alb]> [cld] or [alb] ( [c ld] 

if and only if [alb] (±) [xlyJ = [cld] 0 [xly} or ~lb] (±) [xly] > 

[alb] (±) [xly J or [alb J (£) [xly J < [cld] (±) [xly J , respectively. 

Proof. Suppose [a lb] = [cl d] , then ad = cb. Now, 

[alb](±) [xly] = [(ay+xb)lby] 

= [d(ay + xb)) I (d(by)n by 2.17. 

= 

= 

~ad)y + b(xd))l(b(dy)~ 

~cb)y + b(xd))l(b(dy~ since ad= cb. 

~ (cy + xd)) I (b"(dy))] 

= ~cy + xd)ldy] by 2.17 

= [cld] (t) [xlyJ • 

And so, [albJ (±) [xly} = [cldJ <£) [_xly]. 

Suppose [alb]> [cld] then ad> cb. Then (ad)(yy)> (cb)(yy) by 1.19 

and (ad)(yy) + (xb)(dy) .> (cb)(yy) + (xb)(dy) by 1.18, Now (ad )(yy) = 

(ay)(dy); (cb)(yy) = (cy)(by); and (xb)(dy) = (xd)(by). Also, (ay)(dy) 

+ (xb)(dy) = (ay + xb)(dy) and (cy)(by) + (xd)(by) = (cy + xd)(by). 

Hence, (ay + xb)(dy) > (cy + xd)(by) which implies [(ay + xb)lby J -;, 
~cy + xd)ldy] by 2.19. Therefore, ~lb] (±) Ixly]> [cldJ (±) [xlyJ. 

If [alb]< fld] then [cld] > [alb] and by preceding part [clb] (±) 

[xly] > rib] (±) [xly] and so by 2.21 [alb J 6) [xly]< [clb] (±) [xly] . 
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The converse follo ws i mmediately from the prec eding proof and the fact 

that the three cases a r e mutually exclusiv e and ex ha ust all pos s ibilities. 

Theorem 2.24. [a/b ] = 

and only if 1a /b 1 0 [x/y l 
~ Id ] 0 [xly J or [alb] 0 

lcld] or [a/b]> [cld] 

= @Id] 0 [x/y J or 

[xly] <. [c/d] 0 [xly] 

or [a/b]< ~Id] 

~lbJ 0 Ix !~> 

, re s pectively. 

if 

Pr oof . Sup pose [a /b] = [cld] , then ad = ch. Hence (ad)(xy) = 

(cb)(xy) by 1.19. Now (ad)(xy) = (ax)(dy) and (cb)(Ky) = (cx)(by). Thus, 

(a x )(dy) = (cx)(by) and s o [ax /b y] = [cxld y]. The re fore , [alb ] @ [x ly] 

= fld] G) [xly] • 

Suppose [a/b] > [cld] then ad> ch. Hence, (ad)(xy) > (cb )(xy) by 1.19. 

Again (ax)(dy) = (ad)(xy) and (cx)(by) = (cb)(xy). Thus (ax)(dy)> (cx)(by) 

which implies ~xlby] > [cxldy] • Therefore, / alb1 0 [xly] > [ cld] 0 [xly l 
If [alb] ( [cld] then [cld] > [a/~ and so by preceding part [cld] 

0 [xly J > [alb] 0 [xlyJ . Therefore, [alb] 0 [xly] <. Eld] 0 IxlyJ . 

The converse follows immediately from the preceding proof and the fact 

that the three cases are mutually exclusive and exhaust all possibilities. 

Theorem 2.25. Given any rational number [alb ] there exists a 

rational number [xly] such that [xly J > [alb] . 

Proof. (a-+ a)b =ab+ ab. Also, ab+ ab>ab by 1.17. Therefore 

(a + a)b > ab and so [(a + a)lbJ.> [alb]. Let x = a+ a and y = b. Then 

[xly] = [(a + a)lb J and hence [xly] > [alb J. 
Theorem 2.26. Given any rational number [alb] there exists a 

rational number [ xlyJ such that [xly J <. [alb J . 
Proof. ab+ aa = aa + ab. Thus, ah< aa + ab by 1.12 and 1.11. 

Also, aa +ab= a(a + b). Therefore, ab<a(a + b). Hence [al(a + b)Jz. 

~lb] Let x = a and y = a + b. Then [x/y] = [al (a + b)J and thus 
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Theorem 2.27. Given any rational numbers [alb] and [c/d} such 

that ~/b] < [c/d] , there exists a rational number [x/y] such that 

~/bJ< [xly] and [x/y]< [c/d]. 

Proof. First an Lx/y] will be found such that [alb]<. [x/y] • 

From the hypothesis ad L.., cb. Therefore, J /u such that ad . + u = cb. 

Thus, ab+ (ad+ u) =ab+ cb. Since ab+ (ad+ u) = (ab+ ad)+ u, 

(ab + ad) + u = ab + cb. Therefore, ab + ad < ab + cb. But a b + ay = 

a(b + y) and ab+ cb =(a+ c) b. Hence a(b + d)< (a+ c)b and so 

(alb]< ~a+c)/(b+d)] . 

Now, it will be shown that ~a+c)/(b+d)]< fld} Since ad+ u = cb, 

(ad+ a)+ cd = cb + ed. But (ad+ u) +cd = (ad+ cd) + u. Therefore, 

(ad + cd) + u = cb + cd and thus ad+ cd < cb + ed. Now, ad + cd = (a+c)d 

and cb + cd = c (b+d). Hence (a+c)d < c (b+d) which implies [(a+c)/ (b+d)] < 
~/d]. Let x = a+c and y = b+d. Then, [x/y] = [Ca+c)/(b+d)] Hence, 

[alb]< [x/y J and [xly] <--[c/d] and the theorem is proved. 

Theorem 2.28. Given any rational numbers [alb] and [c!d]31 [x/y] 

such that [a/b] G [x/y J = [c/d J . 
Proof. The uniqueness of [x/y] , if it exists , will be shown first. 

Assume there exists another rational number [z/w] such that ~/b] 0 ~/w] 

= ~/d] . Then, ~/b] 0 [x/yJ = [a/b] 0 [z/w] by 2.8 (iii). 

Hence [x/y] = [z/w] by 2.24. 

To show that such a rational number exists let x = be and y = ad. 

Then [x/y] = jg,c)/(ad)J. Hence, [a/b] 0 ec/y J = [ a/b] 0 Ei>c)/(adJ] 

= ~ (be))/ (b (ad)~ 

= ~ab)c)/ ((ab)d~ 

= [cl d J by 2. 17 • 
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~/y] will be called the quotient of [c/d J by [a/b J and will be denoted as 

follows: [x/y} = [(c/d) / (a/b)]. 

Theorem 2.29. If (alb]< ffd] 3/ ~/yl su ch that rib} @ [x/y] 

= [cl d ] • 

Proof. As for the uniqueness assume [z/w J also satisfies [a/b J 0 

§lw} = ~Id] . Then ~/b] @ fx/y J = [alb] 0 [z/w J which implies 

[x/y J = [z/w ] by 2.23. 

Now, it wi ll be sh own such a n [x /y ] ex is ts. Si nce [alb]<[cld] , 
ad < cb and so ad + u = cb for some suitable u. Let x=u an d y=bd. Then 

Now, [a/b]+ [x/y] = [a!bJ + [u/(bd)] 

= ~ (bd) + ub )! (b (bd))J 

= ~b(ad + u)) / (b(bd)~ 

= [(ad + u)/lbd)] by 2.17 

= ~b)/(bd)] since ad+ u = cb 

= [c/d] by 2.17 

Thus, [x/yJ exists and is unique. [x/y] will be called the difference 

betw~en [c/dj and [a/b ] and will be denoted as follows: [x/y ] = [ c/d] 

[a/b J . 
Definition 2.30. · A rational number is called an integer if and only 

if it contains an element of the form x/1. This x i s uniquely determined 

for if the rational number contains two such elements say x/1 and y/1, 

then x/l,vy/1. Therefore, x • 1 = y • 1 and thus x = y. 

Theorem 2.31. There exists a one-to-one correspondence between the 

set of integers and the set of natural numbers. 

Proof. Set up a correspondence as follows: x and [x/1] correspond 

for every xi: N. To show there corresponds one and only one natural number 

to each integer, let x and y correspond to [x/1] and [y/1 J respectively 
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with[x/1] = [y/1]. Then x•l=y·landsox=y. 

For the converse, let x and y correspond t o [x/1] and [y/1] 

respectively, with x=y. Then x • 1 = y • 1 which impli es [x/1] = [y/1]. 

And so the theorem is proved. 

Theorem 2,32. The integers obey the axioms of natural numbers if 

~ '/1 J is assigned the role of the successor of [x/1 J and [1/1] plays 

the role of 1 ; i. e • , 

Axiom 1.II. If [ x/1} = [ y/1] then [x'/1} = [y'/1] • 

Axiom 2. II. There exists an integer [1/1] such that [x'/1] -I= [111]. 

Axiom 3.II. If [x'/1] = [y'/1] ' 
then [x/1] = [y/ 1] • 

Axiom 4.II. If a set I of integers contains [111] and it con ta in 

~'/1] whenever it contains x/1, then I contains all the integers. 

Proof. Since [ x/ 1] = G, / 1] , x • 1 = y • 1. Thus x=y and by 

Axiom 1.I, x'=y'. Hence, x' • 1 = y' • 1 which implies [x'/1] = [y'/1] 

The existence of [111] is obvious. To show [x'/1] -I= [1/1] the 

proof is by contradiction. Suppose [x'/1] = [1/lJ . Then x' · 1 = 1 · 1 

which implies x'=l. But by Axiom 2.I, x'-1= 1. Hence, [x'/11 -I= [i/1] . 

From the hypothesis x' . 1 = y' . 1. Therefore, x' = y' and x = 

by Axiom 3. Hence, X • 1 = y . 1 and so [x/1 ] = [y/l J . 
Let M be the set of all natural numbers x such that [x/1 J E I 

From the hypothesis [ 1/1] E I, thus lE M. Also, x' E: M whenever x G. M 

since if lx/1] £ I, [x'/1] EI. Hence, Mis the same set as Nand so 

contains all the natural numbers. Thus, I contains all the integers. 

y 

. 

With [1/1] playing the rote of 1 and [x '/1] being the unique 

successor of [x/1] it can be shown that the set of integers is ismorphic 

to the set of natural numbers. 
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CUTS 

Cuts will be defined in terms of sets of rational numbers. Their 

basic properties will be established and again it will be pointed out that 

a subset of the set of cuts, under appropriate defi nitions, is isomorphic 

to the integers and thus to the natural numbers. 

24 

Definition 3.1. A set of rational numbers is called a cut if and only if: 

1) it contains a rational number, but not all rationa l numbers; 

2) every rational number of the set is less than every rational 

number not in the set; 

3) it does not contain a greatest rational number. 

Cuts will be denoted by upper case letters such as W,X,Y,Z. 

Definition 3.2. Two cuts X and Y are equal; i.e., X=Y, if and 

only if XCY and YCX. Otherwise, X,/,Y. 

Theorem 3.3. The relation = is: 

i) Reflexive: X=X. 

ii) Symmetric: X==Y, then Y=X 

iii) Transitive: X=Y and Y=Z, then X=Z 

Proof. Trivial. 

And so= is an equivalence relation on the set of cuts. 

Theorem 3 .4. If [alb] (E. X and if [cl d] > [alb] , then [cl dJ 4, X. 

Proof. The proof is by contradiction. Assume [cldJ~ X. Then 

fld ]< [alb] by 3.1(2), and this is• contradiction of the hypothesis. 

Thus, [cld] 4,. X. 

Theorem3.5. If [alb] €Xand CcldJ<talbJ, t hen tcld]Ex. 

Proof. Assume fld}tix. Then, [alb]<.. fld] by 3.1(2) and this 



contradicts th e hypothesis. Thus, ~ld]E-X. 

Theorem 3.6. ""Theor _em 3.5 and definition 3.1(2) are equivalent. 

Proof. That definition 3.1(2) implies Theorem 3.5 was shown in the 

proof of Theorem 3.5. To show that Theorem 3.5 implies Definition 3.1(2) 

let [alb j be any element of X and [cld] be any element not in X. 

Obviously, [alb] :/= ~Id]. Assume [cld] < [alb] • By 3.6 sin ce ~lb] EX, 

~Id] EX and this contradicts the hypothesis. Hence, [alb}<. [ cl d] • 

The orem 3.5 may now be used in p lace of definition 3. 1( 2) in showing 

that a set of rational numbers is a cut. 

Definition 3. 7. X > Y if and only if there exists [alb] such that 

~lb] EX and ~lb J f. Y. 

Definition 3.8. X< Y if and only if Y > X. 

Theorem 3.9. Given X and Y, one and only one of the following can 

occur ; X=Y or X ) Y or X <. Y. 

Proof. To show that only one of the three case s can occur let X=Y 

and X<. Y. Then, Y< Y and this contradicts Theorem 3 .3(i). Similarly, 

X=Y and X ;> Y cannot occur simultaneously. If X > Y and X <:. Y, then there 

e·xists [alb] such that ~lb]$ X and [alb] ~ Y, and there exists [cld] 

such that [cld]E: X and [cld] ~ Y. Thus [alb};,, [cld] and [alb]'-. ~Id] 

by 3.1(2) and this contradicts Theorem 2.22. So, only one of the cases 

can occu r. 

To show that one of the cases must occur we note that either X=Y 

or X#Y. If X/Y there exists [alb] such that [alb J 6. X and talb] ¢" Y 

which implies X > Y by 3. 7; or, there exists [cld] such that [cld J¢ X 

and · [cld] E Y which implies Y;>X by 3.7 and so by 3.8, X.C:::.Y. Hence, one 

of the three cases must occur. 
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Theorem 3 .10. If X..C:::. Y and Y <. Z, then X<.. Z. 

Proof. Trivial. 

Definition 3.11. By the sum of X and Y, denoted by X+Y, is meant 

the set of all rational numbers which are expressible in the form [alb J + 

~I~ where [~lb] EX and ~Id] EY. 

We note that although the above symbol is the same as the addition 

symbol for natural numbers. the corresponding operations are not the same. 

This symbol will from now on be used to represent the binary operation 

addition on any set to avoid cumb-ersome notation and it will be clear from 

the context which is meant. Similarly, from now on • will represent the 

binary operation multiplication on any set and usually will be omitted. 

Theorem 3.12. + is a binary operation on the set of cuts. 

Proof. To establish this theorem, the following lennna is needed. 

Lemma 3.13. No element of X + Y can be written as ~lb] + [cld] 

where [alb] is any element not in X and ~Id] is any 

element not in Y. 

Proof. Let [xly] be any element of X and [zlw J be any element 

Y. Then [xly] <: [alb] and [zlw J < [cld] by 3.1(2) and this 

of 

implies that ~ly] + [zlw}:: .. ~lb] + [cl d] . Since all elements 

were arbitrary the lemma is proved. 

Now to show that X + Y is a cut 

1) Let X and Y be any two cuts with [alb]€ X and [cld]4,Y. Then, 

~lb] + (?Id] EX+ Y by 3.11. Thus, X+Y has an element. If [xly] ~X 

and ~lwJ ¢. Y, then [?cly] + [zlw] ¢ X + Y by 3.13. Hence, there is 

an element not in X + Y. 

2) Given any ~ly] <£ X + Y then [ xly J = [alb J + [cld] where 
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Ei!b] ~ X and _E:Jd1 ~ Y by 3 .11. Let [z/w] be any element less than 

[x/y J . We no.te that if we can show that [z/w] is expressible as the 

sum of two rational numbers contained respectively in X and Y, then 

Theorem 3.5 is satisfied and thus this implies Defin i tion 3.1(2) by 

Theorem 3,6. 

Now, [z/w] 

[a/b J + 

= ([alb] + [c/d1) {[z/w]!([a/b]+ [c/d])) by 2.28, 

[c/d] = {[alb] +- [c/d]) [1/1] . Since [z/w]< [alb] + 

[c/d] ,([alb] + [c/d]) ([zlw]!([alb] + (c/ d]))<([a/b} + [c /d]) [i/1] . 

Thus; ~/w ] / {~/bJ + ~/d]) <~/1] by 2.24. Now, ~ /b] {f/w]/ {1i!b]+ [cdJ)) 

< [alb] [1/1] = [a/b] and so is an element of X. Also, [c/d} 

(~lw]l([a/b] + [c/d]~~ [c/d] [l/1] = [c/d] and so is ~n element 

Also, 

of Y. Hence, [z/w ] = ([a/b] + [c/dJ) {[z!w]!(~lb] + [c/d])) = [alb} 

(E1w] I ~lb] + ~Id]))+ ~Id] {[zlw] t(Jalb] + [cld]))by 2 .18. Therefore, 

~/w] can be expressed as the sum of elements of X and Y respectively and 

thus (zlw]E X + Y. Thus, part(2) in Definition 3.1 is satisfied. 

3) Given any [x/y J EX + Y then [x/y] = [a/b] + [c/d] where 

[alb] EX and [c/dJ E. Y. There exists [z/w}~ X such that [z/w].> (alb] 

since X is a cut, Hence, ~/b] + [c/d]<. [z/w ] + [c/d] by 2.25. Since . 

[z/wJ + [c/d] is obviously an element of X + Y and ~x/y] was any element 

of X + Y, X + Y has no greatest element and part(3) in Definition 3.1 is 

satisfied. Hence, X + Y is a cut. 

X + Y is unique since each of its elements is an unique sum of 

rational numbers. 

Theorem 3 .13. X + Y > X. 

Proof. Let [c/d] be any element of Y. Now there exist [alb] 6-X 

6.X such that [alb] 

[x/yJ) + [x/y} = 

[x/yJ 

[c/d] + 

= fl d} Thus, [alb] = 

[x/y] . Thus [cl d] + [x/yJ ¢ X 
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and is an element of X + Y. Hence X + Y>X by 3.7. 

Theorem 3 .14. X = Y or X > Y or X < Y if and only if X + Z = Y + Z or 

X + Z > Y + Z or X + Z < Y + Z respectively. 

Proof. If X = Y then obviously X + Z = Y + Z: X>Y implies there 

exists [alb} such that [alb 1 ~ X and ~lb J ~ Y • Choose [xly] such that 

~lyJ < [zlw] where 

~Is J f z 

[zlw] 6 X by 2.26. Now there exists ~Iv 1 (= Z and 

such that @lvj - t rls J = [zlw] [xly J . 
Thus, [ulv] + [xlyJ = ([ulvJ [rls]) + ([ rls] + Lxly J) 

= ([zlw] [xly ]) + ([rls] + Ix 1y 1) 
= [zlw] + [rl~. 

Hence, [zlw] + [rl s1 f: X + Z and eilvj + [xly] f Y + Z. Thus, 

X + Z> Y + Z. 

If X ~ Y then Y > X by 3. 8 which implies that Y + Z '> X + Z by above 

and so X + Z < Y + Z by 3. 8. 

The converse follows immediately from the preceding proof and the 

fact that the cases are mutually exclusive and exhaust all possibilities. 

Theorem 3.15. X + Y = Y + X 

Proof. Trivial. 

Theorem 3.16. (X+Y) +z = X + (Y+Z). 

Proof. Trivial. 

Theorem 3.17. If X>Y, JIZ such that X = Y + z. 

Proof. Z is unique for if Tis also a solution then Y + T = Y + Z 

which implies T = Z by 3.14. 

To show such an Z exists, look at the set of all rational numbers 

expressible in the form [alb J - [cl d J where ~lb] EX, [cl d] f Y, and 

This set is a cut since: 
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1) X)Y implies there exists ~lb] such that ~lb] ~ X and ~lb].Y. 

Let [cld] be any element of X such that [cldJ > talb] by 3.1(3). Thus, 

(cld J - [alb] exists and is . an element of the set, Let [xly J be any 

element not in X, and let [zlw} be any element in the set. Then [zlw] = 

[ulv] - (_rlsJ where [ulvJ EX, [rls] t$·Y, and [ulv]_;;. (!Is}. 
Now, Gxlv] - [rlsj < ([ulv J - [rls J) + [rls] 

= [ulv] by 2.29 

< [xly] by 1.3(2). 

Hence, [xlyJ exists since Xis a cut and is not an element of the set, 

and so property (1) in 3.1 is satisfied. 

2) Let ~lw J be any element of the set. Then [zlw J * ~lb] 

~Id] where [alb J G: X, [cld] ¢ Y and 

element such that ~ly] <.. [zlw J. Now, 

(albJ ~ (c/dJ. Let [xlyJ be any 

[x/y} + [cld] ~([alb] - lcldJ) 

+ &Id] by 2.23. Thus ·, xly + zlw • cld . 

Thus [xly} + ~ld1 EX by 3.5. Now, ~lyJ + tcld] - [xly] + [c/d] 

implies /itly] - (Cxly J + (cldJ) - [cld} where [xly] + ~Id] ~x, 

B:ld] f Y and (xly l + [cld] > ~Id] . Hence [xly] belongs to the set 

and by 3.6 part (2) of Definition 3.1 is shown. 

set. Then [xly] = [alb] [c/d] 3) Given any [xly] in the 

where [alb] EX, [cld)(},:Yand 

~/w }> i!ilb] . Then, ([z/w] -
[alb J > ~Id} . Let [zlw J ~ X such that 

[_c/d] which implies \ [z/w] -

[cld]) + 

[cld})~lb] 

~/d].> (~lb] • ~Id])+ 

[cld] by 3 .14. Hence, no 

greatest element exists and part (3) in Definition 3.1 is shown. Thus our 

set is a cut and it will be denoted by z. 

It remains to show that Z is the ·cut which satisfies the relation 

X = Y + Z, 
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Show Y + ZC X. Let [xi:) E Y + Z, then [ x/yJ = [alb] + 

([c/d) - [elf]) where [alb] t:Y, [cld] 6 X, [e / fj 1,Y, and [c/dJ> 
~/fJ . Now, [alb_] L [elf] by 3.1(2) which implies [alb] + ([cld] -
[e/fJ) ,z ~/f] + ( [c/d] - [elf_]) by 2 . 23. 

= [cld] by 2 . 29. 

Hence [xlyJ e-X by 3.5 and so Y + ZC:::.X. 

Show XC:.Y + Z. Let [x/yJ~x and [xly] +Y. Si nce Xis a cut [alb] 

~ X [alb]>[xly]. For t he cut Y] [ ulvJ 1 Y and [z / wj 6 Y s uch t hat ~/v ] -

[z/w] = [alb] - [xly] , Thus, [ulvJ 

Now, ( [u/v J + ([ xly J - {zlw])) + [zlw] 
+ [ x/y J = [alb] + [zlwJ 

=[ulv) + (([xly) - [z/wJ) + [zlwJ) 
= [ulv] + [x/y) 

Hence, [ulv) + ([xly J -
- [ulv] = [xly) 

[z/wj) = 

- [z/wJ . 

= [alb] + [zlw) . 
[xly) by 2. 23 which implies 

Since [xly} - [zlw] exists, [alb] 

[alb} - [ulvj exists. Let [alb) - [ulv] · = [rls) Then [ulvJ = 

+ [rls] . Hence, ([albJ - [r/~) [alb] - [rls) . Now, [alb]< [al~ 
+ [rlsJ I... [alb] + Iris] which implies [alb] [ rlsj ~[alb] by 2.23. 

[xly] =(fxly) - [zlwJ) + [z/wj 
= ([a/b J - [ u/vJ) + [z/w J 

Thus, [ u/v J < ~lb] and so 

= [ z/w J + ([ a/b J - [ulv J) 
is an element of Y + Z. Hence, XCY + z. Therefore, X = Y + Z by 3.2. 

The cut Z is denoted by X - Y and is called th e difference X minus Y. 

Definition 3.18. By the product of X and Y, denoted by XY, is meant 

the set of all rational numbers which are expressible in the form 

Theorem 3.19. • is a binary operation on the set of cuts. 
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Proof. To prove this theorem the following lemma is needed. 

Lemma 3. 20. No element of XY can be writ ten as [a/bJ [ c/dJ where 

[alb] ¢x and [c/dj cp-Y. 

Proof. Let {x!y} be any element of X and [z!wj be any element of 

Y. Then [x!y] <( [alb] and [z/wJ <-[c!dJ . Hence, [x/yJ [z/wJ i[a!b] [cl~ . 
Since all elements were arbitrary, the lennna is proved. 

Now, to show that XY is cut. 

1) Since X and Y are cuts, there exists [alb] e.X and [ c!d) E: Y. 

Therefore, Ia/b] [c!dJ exists and is an element of the set. Let [x/yJ 

be any element not in X and [z!wJ be any element not in Y. Then, 

Ix/yj [ z!w] exists and is not an element of the set by 3 .20. 

2) Let [ z!w) t XY then [z/w J = [ alb] [c!dJ where [a/bJ EX 

and [c/dJ f Y. Let [xi~ be any element less than [z!w) . Then 

31 [u!v] such that [x/yJ [u/v] = [a/b] [c!d] by 2.28. Thus, 

[x/y] = ([alb] Ic!d]) I [u!v) . Now, {[alb] [c/dJ) /«u/vJ [u!vJ) 
= [alb] [cl d J 
= [alb] (<&!d]/ [ulv]) [u!v]) 

= {[alb] {[c!d] I [u!vJ)) [u!vJ by 2.16, 

Hence, {[alb] [c!d])l[u!vJ = [alb] ([c!d]! [u!vJ) by 2.26. 

Also, [x/yJ = [alb] ([c!d] I [u!vJ) <[alb} [c!d) . Hence [c!ci)! [u!v_] 
[c!d] and so [c/dJ / [u/v]E.Y. Since [a/b] EX, [x/y] 1: XY and so part (2) 

in definition 3.1 is satisfied. 

3) Let [a/bJ f X and [c/d] E Y. Then there exists [x/y] E:X such that 

[x/y] ::.[a/b]. H~nce, [x/y] [c/d]E XY and [_x/y] [cldJ >[x/yJ [a/b] 

by 2.26. 

Hence, the set XY is a cut. 



XY is unique since each of its elements is a unique product of 

rational numbers. 

Theorem 3.21. XY = YX. 

Proof. Trivial. 

Theorem 3.22. (XY)Z = X(YZ) 

Proof. Trivial 

Theorem 3.23. X(Y+Z) = XY + XZ. 

Proo f . To sh ow X( Y+Z )CXY + XZ let [ x /yJ be any e leme nt of X(Y+Z). 

Then [ x/y] 

[e/f] E z. 

= [a /b] ([ c/d J + [e/fJJ where [a /b] E X, [c / d] E Y a nd 

Now [a/b] (lc/d} + [e/f]J = [ a/b') [c/d ] + [ a/b ) [c;/f] 

by 2 .18. Thus , [_x/y J E XY + XZ. 

To show XY + XZ C X(Y+Z) let [_x/y] E. XY + XZ. Then lx/yJ = [a/b} 

Eld] + [e/fj [g/h] where [a/b] EX, [_c/d]f Y, [e/f] E. X, [g/h]E Z. 

Choose the greater rational number of [a /b] and [_e/ f J . Suppose [ a/b] 

is the greater. Then [e/ fl .: [a/b] implies le/fJ[ g/h J.r. [a/bJ [g/hJ . 

Hence, [a/b J [ c/d J + Ce/f] [ g/h].:: [a/b J [c/d] + [a/b] [g/h] 

= [a/b]([c/d] + [g/h)) by2,18. 

Thus, [ x/y J E X(Y+Z) and hence, XY + XY C X(Y+Z). Therefore, by 3. 2 the 

theorem is proved. 

Theorem 3.24. Given [r/sJ , the set of all rational numbers less 

than [r/s] constitutes a cut. 

Proof.l) By 2.28 there exists [z/w] such that [z/wJ c.. [r/s] . So the 

set has an element. The number [r/sJ exists and doesn't belong to the 

set. 

2) Let [a/b] belong to the set, Let [x/y] be any rational 

number less than [a/bJ . Since La/b] '- [r/s] and (2c/y] ~ [a/bJ 
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[x/yJ L [r/s] • Hence, [x/y] belongs to the set. 

3) Let [a/b] belong to the set then [a/b]L [r/sJ . By 2.27 

there exists [ x/y J such that la/b] L [x/y] L [r/s] Thus, the set con-

tains no greatest number. Hence, the set is a cut. 

Definition 3.25. The cut in Theorem 3.24 wil l be called a rational 

cut and will be denoted by [r /x] *. In general rational cuts will be 

denoted by rational numbers with asterisks with the exception that in the 

f oll owing developme nt l l /1] * will be denot ed by 1. 

Theorem 3.26. X=Y or X>Y or XLY if and only if XZ = YZ or XZ > 

YZ or XZ "-YZ respectively. 

Proof. The following lennna is used in the proof of this theorem. 

Lemma 3. 27. If X = Y+Z, then X > Y. 

Proof. Either X=Y or X > Y or X £. Y by 3. 9. If X=Y then Y=Y+Z and 

this contradicts 3.13. If X<::Y thenJ/T such that X+T = Y by 3.17 and 3.8. 

Hence X = (X+T)+Z 

= X + (T+Z) by 3.16 

which again contradicts 3.13. Thus X..>Y. 

Now, suppose X=Y then obviously XZ = YZ. 

If X ;,y 3 /T such that X = Y+T. Thus XZ = (Y+T)Z = YZ + TZ by 3.23. 

Hence , XZ > YZ by 3. 2 7 . 

If X < Y then Y > X which implies YZ > XZ which implies XZ L. YZ. 

The converse follows immediately from the preceding proof and the fact 

that the three cases are mutually exclusive and exhaust all possibilities. 

Theorem 3.28. X·l = X. 

Proof. To show that X• lC X let [z/w] E X• l. 

where [x/y] ~ X and [a/b] E 1. Since [_a/b] E 1, 

Then [z/w] = [x/y] [a/bJ 

[_a/b J ,:;. [1/1] • Thus, 
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[x/y] [a/b]"'~/y] (!.Ji] = [x/y] . Hence, [z/w] t-: X and X·lCX. 

To show XCX·l let [x/y] f. X. Since X is a cut there exists 

(_z/w] f X such that [x/y] ~ [z/w] . Now, [1/1] / [z/w] fl</y] = {ic!i} / {j/w] . 

Thus, [x/y"} / [.z/w] = ([1/1] / [z/w]) [x/y] ~([1/D / [z!w]) [z/w] = [1/lJ. 

Hence, [x/y]/[z/w]fl. Therefore, [x/y] = [z/w] ([x/y] /[z/w])~X · l. 

Hence, X C X • 1. Thus , X · 1 = X. 

Theorem 3 . 29. Given X, 3/Y such that XY = 1. 

Proof. The uniqueness of Y is ea sily e s tablished sin ce i f Z is also 

a solution then XY = XZ which implies Y=Z by 3.26. 

Consider the set of all rational numbers of the form (1/1] / [x/yj 

where (:c/y]fX, excepting the least rational numbe r which is not an 

element of X, if one exists. 

1) Let [x/y]f X. The rational number [(x+x) /y] > [x/y] since ' (x+x)y = 

xy + xy .::>xy. Thus, [!x+x)/y}f X by 3.4 and is not the least such element. 

So [ln] /((x+x)/ylbelongs to the set. Let {Ji/b] fX then[l/1] / ~/l?J is not 

an element of the set for if it were then Q./1] /&,lb]= [JJD I [!:/dJ where 

G:!d] ~ X. Hence, ([c/d] [a/b })([l/1] / &!~) = (~le[} Qi!b_]) ([1/(l I~!<!)) which 

implies (3/b] = [c/d]. Hence [a/o] f X which contradicts hypothesis that 

[a/b] t X. 

2) Let (1/lJ / ~/y] belong to the set where [x/yJ ~ X and is not the 

least such element, if one exists. Let [z/w] ~ [l/tj / [x/yJ . Now, 

[ z/w] [ w/z] = gz~)/(wz)J 

Thus, [z/w] 

= ({wz)·l/(wz·l~ 

[111] 

[l/y / [w/z] and so [1/1] /[w/z]~ [1/1] / [x/y]. Hence , 
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([w/zJ [x/y]) ( [1/1] / ~!zJ) <. ([w/z] [x/yJ) ( [1/1] / [x/yJ) which implies 

[x/y] < G-i/z] . Therefore, [_w/i] ~ X and is not the least such element. 

Hence [z/w] is an element of the set. 

3) Let [x/y] ~ X where [x/y] is not the least such element, if one 

exists. Now there exists [a/b] such that [a/b] <. [x/y] . By 2.27 

there exists [ c/ d J such that [a/b J < [c/ d J and [c/ d] < [x/y J . Thus, 

[c/d] f X and is not the least such element. Since [c/d)< [x/yJ , 

(( [1/1] / [x/yJ) ([111] / ~/d])J ~/d] <t(.111J I [x/yJ) ((!11] / [c/d])) [x/y] 

implies [1/ij / [x/y] < [1/1] / [c/d] . Hence no greatest element of the set 

exists. The set is a cut and will be denoted by Y. 

It remains to show that XY = 1. To show XYC 1 let [x/y] be any 

element of XY then [x/y] = [a/b] ([_i/1] / [c/d])where [a/b] E X and 

[1/1] / [c/d] E Y. Thus, [c/d] f X and so [a/b] < [c/d] . Hence, [a/b} 

([1/1] / [c/dJ) = la/b] / [c/d] < [1/1] and so [x/y] E. 1. Thus, XY C 1. 

To show lC XY let [a/b] be any element of 1. Thus, [a/b] < [111]. 

Now, there exists [ x/y] 4 X and [z/w] E X such that [x/y] - [z/w] = 

([1/1] - [a/bJ) (_c/d] where lc/d] E X. Since [x/y] > [cfdl 

[x/y] [z/wJ ~ ([1/1] - [.a/bJ) [x/y] 

= [1/1] [x/y] - [a/b] [x/y] 

= [x/y J - [a/b] (x/yJ . 

Thus, ([x/yJ - [z/w]) + ( lz/w] + (_a/b] [x/y]) = [x/yJ + [a/b} 

[x/y] < ([x/y] - [a/b] [x/y]) + ([z/w] + [a/b] [x/yJ) = [x/yJ + 

[z/wJ which implies [a/b] [x/y] < [z/w] . Thus, ([a/b] [x/yJ) [lliJ/[a/1?] = 

[x/yJ <. [z/w] ( [.ill] / ~/b]) = lz/w] / [a/b] • Hence, [z/w] / [_a/bJ i X and 
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is not the least such element. Therefore, [a/b) = [z/w] ( [1/1] / ([z/w] / [!ifb] )) 

where [_z/w] E X and (z/w] / ~/b] ¢ X • Hence, [a/b] E XY and lC XY. 



And so XY = 1. 

Theorem 3.30. Given X and Y, 3/Z such that XZ = Y. 

Proof. The uniqueness is obvious. By 3.29 3/W such that XW = 1. 

Then Z = WY is the solution since XZ = X(WY) = (XW) Y = l"Y = Y. 

Z is called the quotient of Y by X and is denoted by Y/X. 

Definition 3.31. A cut of the form [x/1]* is called an integral cut. 

Theorem 3.32. [a/b] = [c/d] or [a/b] > [c/d] or [a/b] < [c/d] 

if and only if [a/b]* = [c/d] * or [a/b] * > [c/dJ * or [a/b] * < [c/d] * 

respectively. 

Proof. If [a/b] = [c/d] , then obviously [.a/b]* = [c/b]* 

If [a/b]> [c/dJ then [c/d] E [a/b] * By 3.24 and 3.25 [c/d] t 
[c/d]*. Hence, [a/b]* > (_c/d]* • 

If [a/b] < ~/d] then ~/d] > [a/b] • Thus, by above proof [c/d]* 

[a/b]* and .so [a/b]* < [c/d]* • 

The converse follows inunediately from the preceding proof since the 

three cases are mutually exclusive and exhaust all possibilities. 

Theorem 3.33. The integral cuts satisfy the axioms of the natural 

numbers if the role of 1 is assigned to 1 and if([_x/1]*)' = [x'/~*; i.e., 

Axiom LIII. If [x/1]* = [y/1]* then [x'/1]* = [y'/1]*. 

Axiom 2.III. There exists an integral cut 1 such that [x'/1]* # 1. 

Axiom 3.III. If [x'/1]* = [y 1 /l]*, then x/1 * = y/1 * • 

Axiom 4.III. Let M* denote a set of integral cuts possessing the 

following properties: 

a) l EM* , and 

b) if [x/1]* fM*, then ([x/1]*)' EM* 

Then M* contains all integral cuts. 

Proof. Since [x/1]* = [..Y/1] * [x/1] = [y/1] by 3.32. Thus, 

36 



[x'/1] = [y'/1] by 2.32 Axiom 1.11. And so [x'/(1* = [y'/fJ* by 3.32. 

The existence of 1 is obvious. To show [x'/1]* I 1 suppose [x'/1]* 

= 1. Then [x'/1] = [1/lj and this contradicts 2.32, Axiom 2.11. 

Hence, lx'/1]* I 1. 

Since [x'/1]* = [y'/1]*, [x'/1] = [y'/1]. Thus by 2.32 

Axiom 3.11., [x/1.J = [y/1] and so [x/1]* = [y/1]*. 

Let M be the set of all [x/1] for which [x/1] *EM*. [1/ilt M 

since 1 EM*. Also, [x '/1] EM whenever [x/1}:M since (Cx/1) *) '~ M* 

whenever [x/~*EM*. Hence, M contains all integers and M* contains all 

integral cuts. 

With 1 playing the role of 1 and [x'/~* being the unique successor 

of [x/1] * it can be shown that the set of integral cuts is isomorphic to 

the set of integers. 

Theorem 3 . 34. A cut is rational if and only if there exists a least 

element [a/b] which is not an element of the cut. [a/b]* is then the cut. 

Proof. Suppose the cut is rational. Denote the cut by [a/b]*. Now 

[a/b] ~ ~/bJ * and is the least such element, for if there exists another 

such element [c/d] such that lc/d]<[a/b] then [c/d] E [a/b]*. 

Suppose there exists a least element [a/b] which is not an element 

of the cut. Then every [x/y]: [a/~ is not an element of the cut and 

every [z/w] < [a/b] belongs to the cut. Hence by definition [a/bJ * 

is the cut. 

Theorem 3 .35. Let X be a cut. Then [a/b] E X if and only if 

[a/b] *~ X, and hence is not an element of X if and only if [a/b] * ~ X. 

Proof. If (a/b] EX then [a/bJ ~ (a/b]*. Hence, la/b]*<X. 

If [a/b) ~ X and is the least such element then [a/b]* = X by 3.34. 
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If [a/b] 4 X and is not the least such element choose [x/y] ~ X 

such that [x/y] <. [a/b] • Thus [.x/y J f [a/bJ * • Hence, [a/b j * >X. 

The converse follows inunediately from the preceding proof and the fact 

that the three cases are mutually exclusive and exha ust all possibilities. 

Theorem 3.36. If X<-Y there exists [a/b]* such that X4:[a/b]*c:::Y. 

Proof. X < Y implies there exists [x/y] such that [x/yJ i X and 

L x/y] E. Y. By Theorem 3. 35, X ~ [x/y] * c::: Y. Choose [a/b] (: Y such that 

lx/y] <. ~/b] • Then [x/y) * < [a/b] * and thus Xi (x/y] * 4 [a/b] * < Y which 

implies X <: [a/b] *" Y. 

Theorem 3.37. For each X, YY = X has an unique solution. 

Proof. To show the uniqueness assume T and Z are solutions with 

T<Z. Then TT<ZT and ZT<ZZ. And so, TT<ZZ. Hence the solution is 

unique, if it exists. 

To show the solution exists consider the set of all [a/b] such that 

[..a/b J [a/b] €'. X. This set is a cut for : 

1) If [a/b] E 1 and (.a/bJ E X then [a/b J [a/b] E l ·X = X. Hence 

X contains an element of the form [_a/b] [a/b] and our set has an element. 

If (a/b]~l and [a/b]¢'x then [a/b] [a/b] ~ l•X = X by 3.20. 

Thus the set does not contain all rational numbers. 

2) Let [a/b] be any element less than [x/y] where [x/y] [x/y]E-X. 

Then [a/b] [a/bJ c:. [x/y] [x/y] and so ~/b J [a/b] E. X. Hence [_a/bJ 

belongs to the set. 

3) Let [z/w] be any element of X then [z/w] = [x/y] [x/y] 

Choose [a/b] such that [_a/b"] ~ 1 and [ a/b J ( [x/y J + ( [x/y J + [11:U)) 
+ [x/yJ [x/y] f X. Now [x/y] + [a/b] > (x/y] • Hence, ([x/y] + 

[a/b]) ([x/y] + [a/b]) = ([x/y] + [a/b]J[x/yl + ([x/y) + [a/bJ)· 

[a!b)<(G/y] fuly] + [a/b] ~/y]) + ([x/y] + [1/l]J [a/b] = [x/y]• 
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[xly J + ( [alb] [xly] + ([xly J + [1/1]) [_alb]) = [ xly] [xlyJ + 

[xly] + ((xlyJ + ([xly] + (111J)) [alb] E X. 

Hence, ([x/y] + [alb]) ([xly] + (alb]) f X .and the set contains no 

greatest number. Denote this set by y. 

It remains to show that YY = X. 

Suppose YY >X. Then there exists [xly] such that [xlyJ £ YY and 

[xly] ¢ X. Now [xly] = [alb] ~Id] where [alb] E. Y and [cld] E Y. 

Choose the larger of [alb] and [cld) . Suppose it is [alb] . Then 

[xly] != ~lb] ~lb] f X. Thus, [xly] EX and this contradicts that [x/yJ 4' X. 

Hence YY is not greater than X. 

Suppose YY<X. By 3.36 choose [xly]* such that YY~[xly]* ~ X. 

Now [x/y]* = [albJ* [cldJ* where [a/b]*~Y and [cld]* 2 Y. Let 

[a/b} * denote the lesser of [_alb}* and [cld] * . Then [alb]* ~ Y 

which implies [_alb)* [alb]*~ X. Hence [ xly] E.. X and [ xly] 4 X which 

is impossible. Thus, YY cannot be < X. Hence, YY = X. 

Theorem 3.38. (.alb)* [cld]* = (lac)l(bdD* 

Proof. To show [a/b]* [cld]*c.({ac)/(bdfl* let [.zlw] E. [alb]* [cldJ* . 

Then [ zlw] = [ulvJ ~ I sJ where lulvJ E. [_a/bJ * and t! / s J E [cl dj * • Now, 

(ulv]<.[albJ and [rls] < [cldJ which implies [u/vJ [rlsJ "- [alb] [cld] = 

Kac}/{bd)) . Hence, [.zlw]E ~ac)AbdB* and [alb]* G:ld]*C. [lacJl<bdB*· 

To show [(atjl(bdB* C. [a/bJ * [cldJ* let [_z/w] E ~ac)/4bd)J* • Then 

(zlw]<[(ac)/(bdLJ. Now there exists [x/yJ such that [zlw]< (xly]<:.~acl/tbdLJ = 

(a/bJ [cldJ. Thus [xly]/[c/dJ~ la/bJ. Also given (z/w] and [xlyJ/[c/d] 

there exists (ulvJ such that [z/w] = [u/v] (lx/yJ I [.cld]) ..c:: [cld} 

(Cxly]l(s:ld]) = [c/d]. Thus, [u/v]< [c/d]. Hence, [zlw] = [ulv]• 

([xly]/[c/dJ)<[.c/d] ([xly]l(cldJ)< (cldJ [a/b] = [a/bJ [c/d] where 

39 



[u/v]E [_a/bJ* and [x/y]/[c/d]E [c/d]*. Thus [z/w]E [a/b]* [ ,c/d]* 

and so [(ac) / (bdD* C. [ a/bJ * [c/ dJ * . Hence [ a/b J * [ c/d]* = 

[(ac) / (bdD* • 

Definition 3.39. Any cut which is not rational is called irrational. 

Theorem 3.40. There exists an irrational number. 

Proof. That the solution of XX= 1' is irrational will be shown in 

what follows. We note that the existence of the solution is guaranteed 

by 3.37. Assume that X is rational; i.e., X = [a/b]*. By Theorem 

1.22 choose the representative of [a/bJ such that b is as small as 

possible. Since 1' = [a/b]* [a/bJ* = [(a~/(bb2]* = XX, bb~l' (bb) = aa 

= (l'b)b "(l'b)(l'b). Thus, h<a~l'b. Set a-b = u. Then b+u = a,l'b 

.. b+b which implies u <. b. Set b-u = t. Then aa + tt = (b+u)(b+u) + tt 

= ((b+u)b + (b+u)u) + tt 

= ((bb _+ (ub + bu)) + uu) + tt 

= ((bb + l'(ub)) + uu) + tt 

= ((bb + (l 'u) (t+u)) + uu) + tt 

= (bb + 1' (uu)) +((uu + l' (ut)) + tt) 

= ( bb + 1 1 (uu)) + (u+t) (u+t) 

= (bb + 1' (uu)) + bb 

= l'(bb) + l'(uu) 

= aa + 1' (uu) 

Hence t t = 1' (uu) which implies (tt) • l = l' (uu) and so [(tt) / (uu))* = l'. 

Thus [_t/u] * [t/u] * = 1'. Hence u > y since y was the smallest such 

natural number. But this contradicts u.(y, Thus, l' is irrational. 
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REAL NUMBERS 

A new number, called a real number, defined in terms of ordered pairs 

of cuts is introduced in this section. It will be shown that the real 

numbers possess the commutative, associative, and distributive properties. 

Again it will be pointed out that a subset of the real numbers obey the 

axioms of the natural numbers under the appropriate definitions . The set 

of all real numbers will be denoted by R. 

Definition 4.1 . The ordered pair (X,Y) is equivalent to the ordered 

pair (Z,W) if and only if X+W = Y+Z. The relation will be denoted by"-' 

and the ordered pair by X-Y. 

Theorem 4.2 , The relation is: 

i) Reflexive: :x-Y r-..; X-Y 

ii) Symmetric: if X-Y ,,.._, Z-W then .z-w ~ X-Y 

iii) Transitive : if X-Y - Z-W and Z-W ,.._, T-U , then X-Y ,..,_ T-U 

Proof. Trivial. 
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Hence,"- is an equivalence relation on the set of ordered pairs of cuts. 

Definition 4.3 . By a real number we mean the set of all ordered pairs 

equivalent to a given ordered pair. If (X,Y) is the given ordered pair, 

then the real number is denoted by [x-Y] . 

Definition 4.4. Two real numbers, [x-Y] and [_z-w] are said to be 

equal if and only if [x-Y]C. [z-wl and [z-w]c [x-YJ . This will be 

denoted by [x-Y] = [z-w] . Otherwise, Lx-Y] ,. [z-wJ . 
Theorem 4.5. [x-Y] = [_z-w J if and only if X-Y "'-' z-w 

I 

[x-YJ [z-w J. X-Y t. [x-Y] x-Y f [z-w] Pro~£. Assume = Since 
' 

by the hypothesis. Hence, X-Y "'--Z -W by 4. 3. To show the converse, assume 



X-Y-z-w. Let T-U ~ [x-Y]. Then T-u-x-Y. Thus , by 4.2 (iii), 

T -U""' Z-W and so T-U~ [z -w]. Hence, [x-Yj C [z-wl. Similarly, [z-w]c 

[x-Y]. Therefore, [x-Y_] = [z-wJ by 4.4. 

Theorem 4.6. [x-YJ = lz-w] if and only if X+W = Y+Z. 

Proof. Trivial. 

Theorem 4.7. The relation= is: 

i) Reflexive: [ X-Y] = [x-rj. · 

ii) Symmetric : if [x-YJ = [z-w] , then [z-w J = [x-YJ • 

iii) Transitive: if [x-Y ] = [z-w] and [z-wJ = [r-uJ , then[x-uJ = [r-tiJ 

Proof. Trivial. 

Hence,= is an equivalence relation on R. 

Definition 4.8. By the sum of two real numbers, to be denoted by+, 

is meant the following: [x-YJ + [z-w] = [<x+z) - (Y+w)] . 

Theorem 4.9. + is a binary operation on R. 

Proof. It is obvious that the sum gives a real number. It must now 

be shown that the sum is well defined; that is, it doesn't depend on the 

particular ordered pairs of cuts used to name the real numbers. Symboli-

cally, if [x-Y] = [z-w J and [.T-u ] = [P-vJ , then we wish to show 

that [x-YJ + [T-u ] = [.z-w J + [P-Vj. Now, X+W = Y+Z and T+V = U+P 

by 4.6. So, (X+w) + (T+V) = (Y+Z) + (.U+P). Thus, (X+T) + (W+V) =· (Y+U) + 

(Z+P) which implies (X+T) - (Y+U) = (Z+P) - (W+V) by 4.6 and so 

[x-Y] + [r -uJ = [z-wJ + [P-V] by 4.8. Hence, the theorem is shown. 

Theorem 4 .10. [x -Y] + [z-w] = [z-w] + [_x-Y] 

Proof. [ X-Y] + [z-w] = [<x+z) - (Y+w)] by 4.8 

= [<z+x) - (W+Y)] 

= [z-w ] + [X-Y J by 4.8. 
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Theorem 4.11. (lx -Y] + [z-wl) + [!-u] = [x-YJ + ( [z-w] + [T-uJ). 

Proof. ([x-Y1 + [z-wl) + [_T-u] = [x+z Y+wJ + [T-uJ 

= a(X+Z) + T) - ((Y+W) + u)] 

= l(x + (Z+T)) - (y + (W+U))J 

= L X-Y] + uz+T) - (W+U)j 

= Lx-Y] + ([z-wJ + [r-u J) 
Definition 4.12. By the product of two real numbers, to be denoted 

by • , is meant the following: [x-Y] [z-w] = [ (XZ + YW) - (YZ + xw)] 

Theorem 4.13. • is a binary operation on R. 

Proof. It is obvious that the product is a real number. To show 

that the product gives an unique real number it must be shown that the 

particular given pair of cuts used to name the real number is arbitrary; 

that is, if [x-Y] = [z-wJ and [T-uJ = [P-V], then we must show that 

[x-Y] [T-uJ = ~-wJ [P-v J . 

Proot. It is easy to show that (XT +YU)+ (WP+ ZV) =(YT+ XU)+ 

(ZP + WV). Then (XT + YU) - (YT+ XU) = (ZP + WV) - (WP+ ZV) 

Hence, [x-Y] [T-u] = Lz-w] [P-v]. 

Theorem 4.14. [x-YJ [z-w] = [?-wJ [x-YJ . 

Proof. [_x-Y] [z-w] = [(XZ + YW) - (YZ + XW)] 

= [czx + WY) - (ZY + wx)] by 3.21 

= l Z -W] [ X -Y]. 

Hence, [x-YJ [z-w] = (z-w] [x-YJ • 

Theorem4.15. (lx-Y] [z-wJ) [P-VJ = [x-Y] ([z-w] [P-v]) 

Proof. (lx-Y] [z-w]) C!>-vJ = [cxz + YW) - (YZ + xw)] [P-v] 

= ~xz + YW)P + (YZ + XW)V) -

((YZ + XW)P + (XZ + YW)V )J 



= UX(ZP + WV) + Y(WP + ZV)) 

(Y(ZP + WV) + X(WP + ZV))J 

= [x-Y] [(ZP + WV) - (WP+ zv)] 

= lx-Y] [z-wJ P-v 

Hence, l l x-Y] [z -w]) \]>-vJ = [_x-Y] ( [ z -wJ [P -V J) 
Theorem 4.16. [x-Y] ([z-wJ + [P-V~= [x-Y] [z -w] + [x-YJ [P-v]. 

Proof. [x-Y]([z-wJ + [?-vJ) = [x-Y] l<z-+P) - (W+V)] 

= ~X(Z+P) + Y(W+V)) - (Y(Z+P) + X(W+V)~ 

= [l (XZ + YW) + (XP + YV)) - ((YZ + XW_) -t (YP + XV))] 

= [ ((XZ + YW) - (YZ + XW)) + ((XP + YV) - (YP + XV))j 

= (.x-Y] [z-w] + [x-Y] [P-v]. 

And so the theorem is proved. 

Theorem 4.17. If Lx-Y] + [!,-v] = [z-w] + [P-V], then 

L X -Y] = [ Z -W J . 
Proof. [x-Y] + [_p-v] = (jx+P) - (Y+v)J and (z-wj + [P-vJ = 

~Z+P) - (W+V)] . Thus, (X+P) + (W+V) = (Y+V) + (Z+P). Hence, by 3 .14 

i+w = Y+Z which implies (2c-YJ = [z-wJ by 4.6. 

Theorem 4.18. 3 / [_P-v] such that for every [_x-Y] , [_x-YJ + 

(_p-vJ = [x-YJ. 

Proof. The uniqueness follows immediately from 4.17. , Now (j-v] = 

[z-z] is the solution since [x-Y] + [P-v] = [x-YJ + [z-z] 

= [<x+z) - (Y+z)J 

= lx-Y] since (X+Z) + Y = 

(Y+Z) + X. 

[z-z] is called the additive identity on R. 

Corollary. [z-z] + [x-Y] = [x-Yj. 
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Theorem 4 .19. For each [x-Y] 3 I [P-v] such that [_x-YJ + 

[!-v] = ~-z]. 
Proof. The uniqueness is obvious from 4.17. Now, [P-V] = [Y-~ 

is the solution since [x-Y] + [P-v] = [x-Y] + [_y-x] 

= [<x+Y) - (Y+x)J 

= [z-z] since (X+Y) + z = (Y+X) + Z 

[Y-x] is called the additive inverse of LJ{-Y] and will be 

denoted by - [x-YJ. 

Corollary. - [_x-YJ+ [x-Y] = Lz-zJ. 

Theorem 4.20. For every [_x-Y], [x-Yj [<z+l) -z] = [x-Y] . 

Proof. ~-Y] [<z+l) -z] = [x(Z+l) + yz) - (Y(Z+l) + xz~ 
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= [x-Y] since (x(z+l) + yz) +Y =(Y(Z+l) +xz)+ x 

Corollary. ~Z+l) - z l [x-Y] = [x-YJ . 

Theorem 4.21. If [x-Y J [_P-v] = [ X-YJ for every lx-YJ, then 

(_p-v J = l<z+1) - z] 

Proof. Now [_p-v] [(z+l) - zJ = [P-Vj by 4.20. 

Also, !E-v J ljz+l) - z] = \Jz+l) - z] [P-vJ by 4.14 

= [<z+l) - z] by hypothesis. 

Hence, L_P-v] = (sz+l) - z] by 4.7 {iii). ~Z+l) - z] will be called 

the multiplicative identity on R. 

Theorem 4.22. For each (x-Y] there exists [P-v] such that 

[x-YJ (P-vJ = ~z+l) - z] if lx-i} I [z-zJ . 

Proof. [_p-vJ = [x/((XX + YY) - l' (XY)) - Y/((XX + YY) - 1' (XY))] 

= [<xx + YY)/ ((XX + YY) - l' (XY)) (YX + XY) / ((XX + YY) - 1 1 (XY))] 

= [_(Z+l) -z] since ((XX + YY)/ ( (XX + YY) - l' (XY))) + Z = 

(1' (XY) / (<xx + YY) - 1' (XY))) + (Z+l) 



We note that it can be shown that (XX+ YY) - l'(XY) is a cut. 

Thus, the theorem is shown. 

Corollary. [P-V] [x-Y] = UZ+l) - z] 

Hereafter, real numbers will be denoted by upper case letters such 

as A,B,C.... [z-z] will be denoted by O and [<z+l)- ~ will be denoted 

by 1. 

Theorem 4.23. A·O = 0 for every A. 

Proof. A·O = A·(O+O) 

= A·O + A·O. 

Thus, A'O = 0 by 4.18. 

Corollary. O·A = 0 

Theorem 4.24. A·B = 0 if and only if A=O or B=O. 

Proof. If A=O, then A·B = O•B = 0 by 4.23 corollary. If B=O, 

then A·O = 0 by 4.23. 

Assume A·B = 0 and AIO. Then there exists C such that CA= 1 by 

4.22 corollary. Hence, C(AB) = (CA)B by 4.15. 

= l·B 

= B by 4.20 corollary. 

Also, C(AB) = C·O 

= 0 by 4.23. 

Hence, B=O. Similarly if BIO, A=O. 

Theorem 4.25. (-A) B = -(AB) 

Proof. AB+ (-A) B =(A+ (-A)) B 

= O•B 

= o. 

Hence, ( -A) B = -(AB) 

Corollary A (-B) = -(AB). 
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Theorem 4.26. (-A)(-B) = AB 

Proof. (-A)(-B) = (-A)(-B) + 0 

Hence, (-A)(-B) = AB. 

= (-A)(-B) + (-AB + AB) 

= ( -A)( - B) + ( ( -A) B + AB) 

= ((-A)(-B) + (-A) B) + AB 

= (-A)(-B+B) +AB by 4.16 

= (-A)· O + AB 

= -(A · 0) + AB 

= 0 + AB 

= AB 
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by 4.25. 

Theorem 4 . 27. If AB = AC and A/,0 then B=C. Now, AB+ -(AB) = O. Also, 

Proof. AB+ -(AB) = AB+ A(-B) 

= AC + A(-B) 

=A(C+ (-B)) 

Hence A (c + (-B)) = O. A/,0, so C + (-B) = 0 by 4.24. 

Now, B = B+O 

= B + (c + (-B)) 

= ( B + ( - B )) + C 

= 0 + C 

= C . 

And so B = C if A/, 0. 

Theorem 4.28. The (P-v] in 4.22 is unique . 

Proof . The proof follows directly from 4.27 

~-v] is called the multiplicative inverse of [ X-~ and will be 

denoted by 1/[x-Yl 



Theorem 4.29 . -(-A)= A 

Proof. -(-A)= -(-A)+ 0 

=-(-A)+ ((-A)+ A) 

= ( - ( -A) + ( -A~ + A 

= 0 + A 

= A 

Theorem 4 .30. -(A+B) =-A+ (-B) 

Proof. (A+B) + ( -(A+B)) = 0 

Also, <A+B) +((-A)+ (-B)) = (B +(A+ (-A))) + (-B) 

= (B+O) + (-B) 

= B + (-B) 

= 0 

Hence, -(A+B) = -A + (-B). 

Theorem 4.31 . Given any A and B 3/C such that A= B+C. 

Proof. The uniqueness is obvious . C = -B+A is the solution 

since B+C = B + (-B+A) 

= \B + (-B~ + A 

= 0 + A 

= A. 

C is called the difference of A and Band is denoted by A-B. 

Corollary, A-B =A+ (-B) 

Theorem 4.32. Given A,B 3/C such that A= B·C if B#O. 

Proof. The uniqueness follows directly from 4.27. 

To show a solution exists let C = 1/B · A. We note that 1/B 

exists since B#O. Then B·C = B·(l/B · A) 

= (B · 1/B) · A 
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= l·A 

= A. 

Hence, BC= A. C is called the quotient of A over Band is denoted by A/B. 

Corollary. A/B = A · l/B = 1/B · A. 

Theorem 4.33. -(A-B) = B-A. 

Proof. -(A-B) = - (A+ (-B» 

= -A + (- (-B~ 

=-A+ B 

= B + (-A) 

= B-A 

Theorem 4.34. A(B-C) = AB - AC 

Proof. A (B-C) = A (B + (-c)) 

= A B + A (-C) 

= A B +(-(Ac)) 

= A B - A C 

Definition 4.35. X-Y is called a positive number if X Y and 

a negative number if Y X. 

Definition 4.36. A> B if and only if A-B is a positive number. 

Definition 4.37. A<. B if and only if B >A. 

Theorem 4.38. One and only one of the following can occur: A=B or 

A> B or A<. B. 

Proof. Let A-B = [x-YJ. Either X=Y or x>y or XC: Y. If X=Y, then 

A-B = [x-x] = 0. Hence, A=B. If X>Y then A-B = [x-Y] where X>Y. 

And so by 4.36, A>B. If X-'.Y, then Y>X. Now -(A-B) = -[X-~ and so, 

B-A = [Y-x] where Y>X. Hence by 4.36 B>A which implies A<B by 4.37. 

Thus, the theorem is proved. 



Theorem 4 . 39 . A=B or A>B or . A.('.B if and only if A+C = B+C or 

A+C>B+C or A+C<::B+C respectively. 

Proof . If A=B, then obviously A+C = B+c . If A >B, then A-B is a 

po~itive number by 4 . 36 , Also A-B =A+ (-B) 

= (A+O) + ( -B) 

=(A+ (C +(-C)~ + (-B) 

= (A+C) + ((-B) + (-C)) 

= (A+C) + (-(B+ C)) 

= (A+c) - (B+C) . 

Hence, (A+C) - (B+c) is a positive number . Therefore , A+c >B+C by 4 .36 . 

If AL. B, then B>A by 4 . 37. And by preceding part B+C)A+c which implies 

A+C ~ B+C by 4 . 3 7 • 

The converse follows immediately from the above proof a!'.d the fact 

that the three cases are mutually exclusive and exhaust all possibilities. 

Theorem 4.40. A is a positive ·numbei or A is a negative number if 

and ·only if A"> 0 or A~ 0 respectively. 

.. 

Proof . If A is a positive real number, let A = A+O. Then A- 0 = A. 

Hence, A> O. 

If A is a negative number, let A= [x-YJ. Th.en Y.>X by 4.35. 

Now -A= - [X-Yj = lY-Xj where Y>X. Hence, -A= 0 +(-A)= 0 - A= 

[Y-Xj where Y '> X. And so O > A by 4. 36 which implies A<. 0 by 4. 37. 

As for the converse, if A>O then A= A-0 = [x-Y] wher~ X>Y. 

Hepce, by 4.35, A is a positive number. 

If A~ O, then O>A. Hence -A = 0 + (-A) = 0-A = [X~Y] where X> Y. 

Thus -A= [x-Y] and -(-A) =A= [Y-x] where X>Y . And so by 4.35 A is 

a negative number. 
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Theorem 4 .41. If A ) 0 or A=0 or A ~ 0, then -A'- 0 or --A=0 or 

-A> 0 respectively . 

Proof. If A> 0 then A = [x -YJ where X":> Y. _ Hence, -A = [Y-x] . And 

so by 4.40, -A <.0 . I f A=0 then obviously -A=0 . If AL.. 0 then A = [X-Y] 

where Y .:>X. Hen ce -A = [Y -X J and so by 4 . 40, -A> 0. 

The converse follows from the above proof and the fa c t that the three 

cases are mutually exclusive and exhaust all possibilities ·. 

Theorem 4 .42. A:> B or A = B or A<: B if and only if A- B> 0 or 

A- B = 0 or A- B <. 0 respectively. 

Proof . Trivial . 

Theorem 4 . 43. If A>B and B > C, then A:>C. 

Proof. B > C implies B-C=D where D> 0 . 

Hence, B=C+D. Thus , A> B 

= C+D. 

Now, A >c + D and so A-C >D which implies A-C >0 and so, A?C. 

Theorem 4 .44 . If A> 0 and C > 0 or A<..· 0 and C > 0 then AC > 0 or 

AC<:: 0 respectively. 

Proof. If A >0 and C >0 then A = [x-Y] where X >Y and C= [.z-wJ 

where Z :>W. Hence, Z-W exists and X(Z -W) > Y(Z-W) which implies XZ - XW 

> YZ - YW and so XZ + YW )XW + YZ. Hence [(XZ + YW) - (XW + YZ)]>O. 

And so AC >O. 

If A~0 and C<..0 then -C >0 and A(-C) = -(AC)>0 . Hence, AC.::::.0. 

Theorem 4 .45. A > B if and only if AC> BC or AC = BC or AC C::: BC for 

C ':> 0 or C=0 or C <:: 0 respectively. 

Proof. SinceA>B thenA-B>0 . 

If C >O, (A-B)C >0 by 4 .44. Hence AC-BC> 0 which implies AC> BC. 
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If C=O then (A-B)C = 0 Thus AC - BC= 0 which implies AC= BC. 

If C .(.0 then (A-B)C<. 0 by 4.44 . 

Hence AC-BC<: 0 implies AC <BC. 

The converse following from the above proof since the cases are 

mutually exclusive and exhaust all possibilities. 

Theorem 4.46. If A )0 and B >O, then A+B >0. 

Proof. Let A = [x-Y] where X '> Y and B = [ Z -wJ where Z > W. Thus, 

x+z >Y+w. Now A+B = [cx+z) 

Definition 4.47. 

A 

Theorem 4 .48. \A\~ 0. 

= 

- (Y+w~ Since x+z > Y+w, A+B > 0. 

A if A >O 

OifA=O 

-A if A< 0 

Proof. IfA>Othen IAI =A and so IAl>O. IfA=Othen lAI =O. 

If A"-0, then !Al = -A . By 4 . 41, -A>O. Hence, \Al.:20. In any case 

\A\ ~ O. 

Theorem 4.49. IAI ::.,A. 

Proof. If A.? 0, then I A I = A. If A<. 0 then I Al = -A 

and -A >0 by 4.41. Hence, by 4.43, A~ -A and so IA/ >A . In any case, 

I Al~ A. 

Theorem 4.50. The set of . all real numbers of the form [x-YJ where 

X>Y and X-Y is an integral cut which hereafter will be called integral 

real numbers satisfy the axioms of the natvral numbers if the role of 1 

is assigned to land if [x-Y]' = [x'-Y]; i.e., 

Axiom LIV. If [x-Y] = [z-w], then [x'-Yl = [z'-w] 

Axiom 2.IV. There exists an element of R, denoted by l such that 

(x' -Y] i= 1. 
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Axiom 3.IV. If [x'-Y] = (z•-w] , then [x-Y] = [z-w] 

Axiom 4.IV. Let M be the set of integral real numbers such that 

lE M and [.x' -Y] ~ M whenever C.x-Y] 6 M. Then M contains all integral 

real numbers. 

Proof. If (.x-Y] = [z-w], then X+w = Y+Z. Hence, (X+w)' = 

(Y+Z)' by Axiom 1.III. Thus, X'+W = Y+Z' and so[X'-Y]=~'-~and the 

axiom is proved. 

The existence of 1 is obvious . [ x' -Y] -/: 1 for if it did then 

X' + Z = Y + (Z+l). Thus, X' = Y+l = Y' and X = Y. If X=Y, then 

[x-Y] is not an integral real number and so [x'-Y] is undefined. 

Hence, [x'-YJ -/: 1. 

If [x' -Y] = [z' -w] , then X' + w = Y + z'. Hence (X+w)' = 

(Y+Z)' and x+w = Y+Z by Axiom 3.III. Hence, [x-Y] = [z-w]. 

Let M* be the set of all integral cuts for which [x-Y] f M and 

Z = X-Y. Now, 1 e M* since 1 EM. Also, Z' e M* whenever z E: M* since 

[x'-Y]E M whenever [_x-Y]c M. Hence, M* contains all integral cuts 

and M contains all integral real numbers. 

It can be shown that the set of integral real numbers is isomorphic 

to the set of integral cuts, 

Theorem 4.5. Let~ land t;2 be two nonempty classes of real numbers 

such that if C is any element of~ l and D is any element of ~ 2 , then 

C <--D. Then there exists one and only one real number A such that every 

B < A belongs to -C:1 and every B ':> A belongs to t; 2. 
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Proof. A is unique for if B < C and B and C satisfy the requirements then 

(B+c)/(1+1) would belong to both C\ and r; 
2 

since (l+l)B = B+B~ B+c ~ 

C+C = (l+l)C. Hence, B ~ (B+c)/(1+1.)~ C. 



To prove that A exists, consider four cases as follows: 

I. Suppose ~ 1 contains a positive number. Consider the set C{_ = 

([a/b J [ a/b] c t; 1j except the greatest positive rational number if one 

exists. It will be shown that {{_ is a cut. 

(1) Since ~ 1 contains an element :} /[a/bJ* by 3.35 less than 

this element such that [a/b] * is not the greatest such element. Hence, 

Also, since '(: 2 contains an element 3 [c/dJ* by 3.35 greater than 

this element. Hence, [c/dJ* E(/2 and [c/d]* (CA... 
(2) If <; 

1 
contains no greatest element, then every [a/b] * 

is less than every [c/d]*EC2, Hence, [a/bJ;:::. [c/d] where [a/b]~t{ 

and lc/d] ~ a. 
If (/ 1 contains a greatest element say [x/y]*, then every ~/b] * 

'Ii lx/~ * such that [a/b] * t. ~ 1 is less than [x/yJ *. Hence, [a/b] c::: 

[x/yJ where [a/b] c q and f_x/yJ ~ (A_ • Since [2c/yj * E ~ 1 , [x/~ * c:::. 

[z/~ * where [_z/w] *€ ¢:'2. Thus [.x/y] ~ [z/w] and [_a/b] ~ [x/y] implies 

~very element of the set is less than every element not in the set. 

(3) If t:; 1 has a greatest member say [x/y]*, then if [a/b]* 

is any other element of <; 1 then [ a/bJ * .C [x/rj * . By 3. 36, there exists 

[z/w)* such that [a/b]*' G:tw]* '- [x/y]* . Thus [z/w]* f- <; 1 . Hence 

(.a/b]~ [z/w] and a_ has no greatest element, 

If f; 
1 

has no greatest element, then if [.a/b] * € ¢>
1 

there exists 

[ z/w] * c ¢; 
1 

such that [a/b] * ~ [z/wJ* which implies [_a/b] L [?!w] . 

Thus, a_ has no greatest element. 

Hence, C{ is a cut. Since Cl is a rea 1 number denote it by A. 
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Now to show that A satisfies Theorem 4.51. Let H be any real number such that 

H~A. If H )0, there exists [a/b]* such that H«::~/b]*..:::. A 



by 3. 36. Since [.a/b] € A, [.a/b] * ~ {; 
1

. Hence, H €. C:
1

• 

If H.('0, then ff., A1U+l)~ A. By 3.36 there exists [a/b]* such 

that H ~ A/(1+1).:: [a/b] * ~ A. Thus La/b] f A and (a/b] * G-C1 • Hence, H €: ¢' 1 . 

Let H be any real number such that H > A. Then 3 [a/W * such that 

H >[a/Ji]*> A. Thus, [a/b]t A by 3.35 and [_a/b]*fc;: 2 . Hence, H~¢' 2 . 

And so the theorem is proved for Case I. 

II. Suppose every positive number lies in (; 2 and O ! ¢'
1

. Then 

eve ry negative number lie s in~ 1 an d O satisfies th e requ i r ements. 

III. Suppo se O lie s in ~
2

, and every negative numbe r l i es in~ 1 • 

Then every positive number lies in(: 2 and O satisfies the requirements. 

IV. Suppose there exists a negative number in the second class. 

Consider the following new division, If Hl, Ec;'1 , put -Hl , in new (:
2

• 

If Hz E C 2, put -H2 in new <:; 
1

. ~e new division satisfies the conditions 

of the theorem for : 

(1) Each class contains a member . 

This new division comes under Case I for since there exists a negative 

number C in~ 2 , -C is positive and is an element of the new(/; 1 • Thus, 

there exists D such that every B< D lies in the new (/. 1 and every B> D 

lies in the new~ 2 • Set D = -A . Then B~D or B>D implies -B'?A or 

-B<:A respectively. If Bis an element of the new <::;
1 

or the newc:;;' 2 ; 

then-Be ~
2 

or -BE ~l respectively. Hence, the theorem is satisfied. 
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COMPLEX NUMBERS 

The complex number will be defined in terms of the real numbers. The 

binary operations of addition and multipli ca tion (again denoted by+ and•) 

will be defined on the set of complex numbers. The associative, commuta

tive and distributive properties will be established for the complex 

numbers. The definit ,ions of complex conjugate and absolute value will be 

given with the basic theorems of absolute value and complex conjugates 

proved. Finally, it will be pointed out that there exists a subset of the 

complex number s which is isomorphic to the real numbers . 

Definition 5.1. A complex number is an ordered pair of real numbers 

A,B, denoted by [A,B] . 

Definition 5.2. Two complex numbers [!.,Bj, @,DJ are equal; i.e., 

(!.,BJ = [C,D] if and only if A = C and B = D. Otherwise, ~,B] /: !C,o]. 

Lower case Greek letters will stand fo r complex numbers. 

Theorem 5.3. The relation= is: 

i) Reflexive : <><. = o<.. 

ii) Symmetric: Ifo(=~, then,8=o<. 

iii) Transitive: If o< =f and /J= Y , then oi.= Y. 

Proof. Trivial. 

Hence,= is an equivalence relation on the complex numbers. 

Definition 5.4. 7 = @,OJ. 
Definition S.S. e = [1,0]. 

Definition 5.6. i = [0,1] . 

Definition 5. 7. If<><= [A,B] and~= [c,DJ , then -<-+(3 = [A+C, B+D]. 

Theorem 5.8. <:>< +(J = 8+ d.. • 
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Proof. Let <>\ = I/\' B] and P= re' DJ ' then 

o< + fl = [!,.+C, B+I?] by 5 • 7 

= [c+A' o+l!] 

= [C, D_] + J!., B] by 5. 7 

=~+o{. 

Hence , <oJ. + /3 = f1 + ~ . 
I 

Theorem 5. 9. ,;,( + l = o< for every oi • 

Pr oo f . Le t..(= [A,B] , th en 

o< + '[ = [A+O, B+O] 

= [A,B] by 4.18 

= o( 

Hence, o<. + l = o< . 1 is called the additive identity for complex numbers. 

Corollary. l +-< = o<., 

Theorem 5 . 10. If o<. + (3 = c< for all o{, then/= 7. • 

Proof. Let fi = [ E, F] and c<. = [A, B] • Then, 

~ + ~ = [A+E, B+F j by 5 • 7 • 

= [A, BJ since ..,< + (3 = ~ 

Hence, A+E = A and B+F = B by 5 . 2 . Thus E=O and F::.Q and so fJ = 'l, . 

Theorem 5 . 11. (o('+f) + Y = « + (p'+Y) . 

Proof. Let a<= (A, B], p = [C,D] and Y=[E,F]. 

Then (o<:+ /3 ) +Y = ( (A,BJ + [c ,n])+ [E,FJ 

= [A+C , B+D] + [E ,F] 

= [(A+C) + E , (B+D) + Fj 

= [A + (C+E) , B + (D+Fij 

= [A,B] + [c+E, D+F J 
= (A ,B] + ([c,D] + [E,F]) 

= ~ + ((3 + Y). 

by 4.11 
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( 

Hen ce,(-+/) +Y =o<+ (!+Y). 

Theorem 5 .12. Given ,,i., .and /J J /Y such that<>(= fl+ Y . 

Proof. Let e,,1.= [A,B], /= (c,DJ and Y= [E,F]. 

Y is unique for if J = [ G,H] is also a solution then /3 + Y = / +S 

which implies C+E = C+G and D+F = D+H by 5.2 and so E=G and F=H by 4.39 

corollary. Hence J = Y . 

Y = (A-C, B-DJ is the solution since /+Y = [f + (A-C), D + (B - D~ 

= [A , B] by 4. 3 1 

Vis called the difference of°' and/ and is denoted by c< -13. 
Theorem 5. 13. For every--'- 31 fJ such that °'-+/ = 'l_ • 

Proof. The uniqueness was shown in the first part of 5.12. 

If<><= [A, B] then (3 = [-A, -BJ is the solution 

since oi.+f3 = [A,BJ + [ -A, -B_] 

= [A + (-A)~ B + ( - B)] 

= [ 0, 0 J by 4 . 19 

= 11 by 5.4. 

(3 is called the additive inverse of c( and is denoted by -o(. Thus, 

i f o< = [ A , B] , - o< = [ -A , -B] . 

Corollary. -o<+ o< = '{_. 

Theorem 5.14. 

Proof. If ..i_= 

"' [A,B] by 4. 29. 

-(- o<) =o(. 

[A,B], then -o<= [-A,-B]. 

Thus, 

Theorem 5. 15. o( -/ = o< + ( - /J ) • 

Proof. c<. - (i = ( o< - (J) + 1l_ by 5. 9 

Hence - ( - o<) = [ - ( -A) , - ( - B)] 

= <Q( -# > + < f8 + < - I >) by s . 13 
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= (( ""- - (J ) + (3) + ( - (J) by 5. 11 

= <><+ (- (3 ) by 5 .12. 

Hence , °' -(3 = o<. + ( - f1) . 

Theorem 5.16. - («+,A)= =o< + (-t9) 

Proof. - o(+ ( - A) = ( -o< + ( -µ )) ,- ' 'I 

= (-"".+ (-/3)) + ((o<.+p) + (-(<><+,8)» 

= ((-o<+ <-.B>)+ <<><+,~n) + (-<«+1n) 
= ( ( - ~ + ( -13 + i8 ~ +« )+ ( - < o< + ,8 ) ) 

by 5 . 11 and 5 • 8. 

= (<-o(+l) + o<..) + (-(«-+fl))by 5.13 corollary 

= ( - -=-< + o< ) + ( - ( e< + ,8 ) ) by 5 • 9 • 

= ~+ (-<« + p> >) 
= -(ct+p>). 

Hence, - o<+ (- tS) = -(o< +fl)· 

Theorem 5. 17. - (.o< - /) = rS - o<. 

Proof. -( o< - ,8) = -(o( + ( -11 ) ) by 5 .15 

= - ""+ ( - ( - .6' ) ) by 5 • 16 

= - c<. + {J by 5 . 14 

=~+(-..<)by 5.8 

= (i -c( by 5. 15. 

Hence , - ( o< -1 ) = f3-o( • 
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Definition 5.18. If'°'= [A,B] and~= [C,D], then oi..(3 = [AC - BD, AD = BC]. 

Theorem 5 • 19. °'/3 = f3 o< • 

Proof. Let o< = [A,B] and fi = [c,D], then °'/3 

= ~C - BD, AD+ BC] by 5.18 

= (CA - DB, DA+ CB] by 4.14 



= (c,oJ (A»BJ by s.18 

= (3o<.. 

Hence, o<fl = flo<.. 

Theorem 5. 20. o<'7. = ( for every o< • 

Proof. Letc<= [A,BJ then a<'(= [A,B] (o,<i] 

Hence o<1_ = 'I'{ • 

=(AO - BO, AO+ BO] 

= [o,oJ 

= "7. 

Corollary. ·7. o1.. = ( for every o< . 

Theorem 5.21. °'-rd = (. if and only if oi..=( or (3= 1._ • 

Proof. If~ =1l_ then "'-/3 = '( by 5,20 corollary. Similarly, if 

fl =1 then ol./3 = 'l . 

Let -'/=1 ando<= [A,B_] and/= [C,D]. 

Then °'-/= [A,B] [c,D] = [Ac - BD, AD+ BC] = [o,o]. 

Hence, AC - BD = 0 and AD+ BC= 0 by 5.2. 

Then AC= BD and AD= -(BC) by 4,42 

And so, (AC)(AD) = (BD)(-BC) 

= - ((BD)(BC)) by 4.25. 

Hence, (AA)(CD) + (BB)(CD) = 0 and so, (AA + BB)(CD) = O. Assume e<F "(_ 

i.e., A-1,0 or B,-0. Now AA+ BB> 0 if A-/=0 or B-/=0 since AA> 0 by 4.24 if 

A-/=O. Thus, CD= 0 by 5.21 which implies C=O or D=O, also by 5.21. If 

C=O, then BD = 0 and AD = 0 , o< F 1 implies D=O. Similarly, if D=O, then 

C=O. Thus if..x.-1=~, then,8=1£'.· Similarly if(l-1=7_, then«'=1l_and the 

theorem is proved, 

Theorem 5.22. (c.<' f3 )Y = o((;1Y). 
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Proof. Let c<= [A,B], (3= [c,D] and Y= [E,F]. 

Then (el. f3 ) Y = ( [A,B] [c,o]) [E,FJ 

= [AC - BD, AD+ BC] [E,~ 

= [(AC - BD) E - (AD + BC) F, (AC - BD) F + (AD + BC) EJ 

= [A ( CE - DF) - B ( CF + DE) , A ( CF + DE ) + B ( CE - DF) 

= 0, BJ [ CE - DF, CF + DE] 

= [A,BJ ([c,nJ [E,F]) 

= o<<(JY>-

Hence, ( o1. /J ) Y = o<'( f3 Y). 

Theorem 5. 23. a< ( (3+ Y) = d f3 + o< Y. 

Proof. Let--c'= [A,B], fi = [c,oJ and Y= [E,F] • 

Then -<(fi+Y) =(!.,BJ ([c,nJ + [E,FJ) 
= [A,B] [c+E, n+rj 

= [A(C+E) - B(D+F), A(D+F) + B(C+E)] 

= [ (AC - BD) + (AE - BF), (AD + BC) +(AF + BEi/ 

= [ AC - BP, AD + BC J + [ AE - BF, AF + BE] 

= [A,B] [c,nJ + [A,,BJ [E,F] 

= °'-(3 + ~ y. 

J{ence , o( ( (3 + Y) = d (3 + oi Y . 
Corollary. (t1 + Y )o( = f3<><+ Y cl. • 

Theorem 5.24. -(o<.f8) = (-o<)/3 . 

Proof. (- o<.)(3 = (-e{.)fl + 1 
= (-ol.)(3 + («fl+ (-(ot.f3 >)) 
= ((-ci..)f3, +otfJ)+ (- (d./)) 

= (-«.+°'-)(3 + (-<c,(f3))by 5.23 corollary. 

= 1 (1 + (-< d. f1 >) 
=17.+ (-(oc'.,6)) 

= -(e,/.!3), 
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Hence, · ( o< (3) = ( - a<) f3 . 

Corollary. - (dfJ) = ...(. (-,.S). 

Theorem 5 .25. (-""" )(-p') = o<:(8 • 

Proof . ( - ~ )( - f) = ( - « )( - ,6' ) + 1._ 

= (-«)(-(3) + (-(.t..(l) + ~13) 
= (- oO <-(3) + ( (- o1.) f3 + oi/) by s .24 

= ( (-o<)(-p') + (-o<)f)+°'-(3 by 5.22 

= < - o< >< -11 + f3 > + o< r8 by s. 23 

= -o<1_ +df3 
= 1l + ~ff 
= o1(1. 

Hence, (- o<)(-p') = ~-

Theorem 5. 26. If o<.' f3 = o< y and d. I: 1, , then (3 = Y . 

Proof. ~(3 +(-(<><Y>) = o<Y+ (-(o<. Y)) = ( 

c1..f3 + (-(<><'( >) = o<./3+o<.(- 'r) by 5.24 corollary 

= o<. ( fJ + ( - '/ ) ) by 5 • 2 3 

Hence, o( ( (3 + ( - Y)) = ( • Since o< I: 17_ , (3+ ( - Y ) = l by 5. 21. 

Thus, f8 = (5 + 1_ 

=(i+ (-y+Y) 

= (4 + <-Y>) + y 

= 1_+ y 
= y . 

Hence , f3 = Y . 

Theorem 5 .27. o( e = .,,t.... 

Proof. Let of= [A,B], then o< e = [A,B] [1,oJ 

=[A-1 - BO , AO + &D 
= [A,B] 

= c{. 
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e is called the multiplicative identity for complex numbers. 

Corollary. e c,(,,= c:,< • 

Theorem 5.28 . I f ~~ =d for . allc;{ then (3 = e . 

Proof. fl = e fl by 5. 2 7 corollary 

= e s i nc e .if = °"- • 

Hence fl= e 

Theorem 5 . 29. Giveno(-/=7 , 31(3 such that...<'p'= e. 

Proof. The uniqueness is obvious. Le t d = [A ,B]and si nceo(-/= 7Z 

either A-/=0 or B-/=0. Assume A-/=0. Then if A> 0, AA>A0 = 0 by 4.44 . If 

A<." 0, then AA>A0 = 0 by 4 . 45 - Thus, AA> 0 if A-/=0. Hence AA = BB.> 0. 

Then f3 = [Al (AA + BB) , -B/ (AA + BB>] is the solution since 

d..(-3 = (!.,~ [A/(AA + BB) , -B/(AA + BB)] 
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= [A ( A/ (AA + BB)) -B ( -B/ (AA + BB)) , A ( -B/ (AA + BB))+ B ( A/ (AA + BB~ 

= (AA) (1/(AA + BB)) - B(-B)(l/(AA + BB)), (A (-B)) 1/(AA +BB)+ (BA) 

ll (AA + BB)_] 

= [ (AA + BB) 1/ (AA + BB) , ( -·(AB) + AB) 1/ (AA + BBil 

= [1, oJ 
= e 

fJ is called the multiplicative inverse of o< and is writ ten as e/o< • 

Corollary. (e/o<,)o< = e. 

Theorem 5.30. Givenc(and(l, 3/'I such that d=(J'I if (5-1=1_. 

Proof. The uniqueness is obvious. Y =d. (e/ fJ) is the solution 

since /Y = (3 (<><' (el r3 >) 
= ts(<el ~ )o<) 
= (fl (el (J >) ol. 

= eo<: 

= co< • 



Yis called the quotient of o< and f and is denoted by o</ (3 . 

Corollary. ol./!3 =o<.(e/(3) = (e/(3)o<... 

Definition 5.31. Ifo<' = [A, BJ , then a( = [A, -BJ is called the 

complex conjugate of<"( • 

Theorem 5.32. o< = ~-

Proof. Let .,.(,, = [A,B], then~= [A, -BJ by 5.31. Hence c..( 

= [A, -(-B)J 

= [A, B] by 4.29. 

= o< • 

And so o<. = ~. 

Theorem 5.33. =< =1_ if and only ife>{= 1_ • 

Proof. If<><...= 1._ then ifo< = [A, BJ , A=O and B=O. But B=O implies 

-B=O by 4.41. Then o< = [A, -ifl = [o, <2] = "7. • 

If ;:;_ = l then A=O and -B=O which implies A=O and B=O. Hence, o< = i'/.. • 

Theorem 5 • 34. ol. + fl = o<. + p 

Proof. Leto<= [A,B] , (3= [c,D] , then<><'+,8 =[A+c, B+D] • 

Thus, o<:: +(3 =[A+C, - (B+D)] by 5.31 

=[A+C, -B + (-Dl by 4.30. 

= [A,-B] + [c, -DJ 

= ::i + 7" by 5 • 31. 

Hence , ot.. + I = ex + 11 

Theorem 5 .35. o<.f3 = of.~ • 

Proof. Let a< = [A ,BJ and f3 = [c ,D], then ~l3 = [A~ - BD, AD + BCj • 

Also ol(i = [AC - BD, -(AD + BC)J 

= [AC -(-B(-D)) , A(-D) + (-B) o] 
== [A,-BJ[c,-~ 

= "'- 1· 

64 



Hence , c<f = o< ~ • 

Definition 5.36 . If A> 0 the symboL[A means the positive real 

number B of the equati on BB= A (see 3 . 37). 

Definition 5 .3 l. Jo = O. 

Definition 5.38. )[_A, BJj = ~ AA + BB. 

Theorem 5.39. l~I >O for o< -I='( and lo1.l = O for o< = 'Z . 

Proof. Let o< = [ A,B J , then if c,< -I= 7_, I.,.. I= ~AA + BB where AA + BB ;>0. 

Hence lc,{I > 0 by 5.36. If""'-='?._ then lot.I = ~00 + 00 = .[a = 0 by 5 .3 7. 

Theorem 5.40 . llA,BJj~IAI and l[A,BJI~ IBI. 

Proof. Suppose the hypothesis is false: i.e., l[A,B]j.c:. IAI. Then 

~AA + BB ..:: IAI If A=O then I A I =0 and ~AA + BB c:::. 0 which contra-

diets 5.36 if B#O since BB ;:,,O or 5.37 if B=O. 

If A/:0 then (Al #=O and AA + BB> 0. By 3 .37 ~AA + BB ~AA + BB ,e_ 

IA! IA!. If A<O, IAI = -A and so IAI IAI = (-A)(-A) = AA. If A>O, 

IAI = A and/Al IAI = AA. Hence, !Al IAI= AA. Thus, AA+ BB4'AA =AA+ 0. 

And so, BB< 0 by 4.39 coro1lary. But BB~ 0 and thus we have a contradiction. 

Hence, j[A,B]j ~\Al. Similarly j[A,B]j ~ IBI • 

A=B. 

Theorem 5 .41. If A~ 0 and B ~O and if [A, O] [A ,O] = [B ,o] [B ,Oj then 

Proof. (A,0] [A,~ = ~ - 00 , AO + OA] 

=[AA,O] 

=[BB,O] since [A,o] [A,o] = [B,O] [B,oJ. 

Hence AA = BB. Now, A=B or A'- B or A >B. Suppose A<. B then B;l:O. And so, 

AA~ AB 4 BB by 4 .45and 4 .24. Hence, AA< BB. If A>B, then A-/:0 and so 

AA>-AB~ BD by 4 .• 45. Hence AA >BB. Therefore, A=B. 

Theorem 5 .42 . [1.,,{ I , 0] Uo< I , oJ =-1-7. 
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Proof. Let oi. = [A,B] then uo(.1.0] Gcil,O] = Qe1.1 1.,.(1 ,g = [AA+ BB,o] 

= [AA -(-(BB)), ~(AB) + ABj =[AA - B(-B) , A(-B) + BAJ = [A,iij[A,-aj =-<'~. 

Hence, 0«1 ,o] Uoil,O] = o<'.;:. 

Theorem 5.43. !<><f'I = /c<'/ lf3/ • 

Proof. LJo< ~I , o] ~ ~p'l, o] = (d.ffl) °'t1 by 5 .42 

= (ot (3 HC::Z i§> by s .34 

= (o<1o<.) ((3 f) 
= (C1«1 ,cD 0<><1 ,oJ) (u~1.0J Dr31 ,oJ) 
= Qo1. I /.). I , oJ [ 1 f3 ll;d I , oJ 
= [<1~11~1 ><1~\ lf31 >,oJ 
= [lol/ 1<31,o][le,(I li61 .~] 

Hence, I <><p' I = I oe!I 1(-3) by 5. 39 -

Theorem 5.44.l«/f'I = loll /li81 if (3 'F 1_· 
Proof. If f ,/, ~ , then I~/,; 0 by 5.39. Now ~ (of./ (3) = o< 

by 5.30. Hence by 5.43, 

/ {3/ lo<!fl = lol.l . Since If) I: o,l.(/fl =l~l!lfl. 

Theor;m 5.45. If<:,<+{!>= e, then lo<j + t(3f ~l. 

Proof. Let c:,( =[A ,B] and (1 = [c ,DJ then lo<'/ ~IA/ and lf3) ~ IC/ 
/ 

by 5.39. Since IAI ~A and !Cl~ C by 4.49, loll+ 1,8/ > A+C. By 

the hypothesis , A+c = 1. Hence, Io< I + I r8 I > I • 

Theorem 5.46· I=<-+~ I~ lo(.I + lf?I 

Proof. If o<. + (3 = 7l then lot +(3i = O. Thus lo< +,41~ /ol/+ yJI, 

If o< + r8 I= 17_ , then lo<+~ I > O. Hence Q(./(o<+/) ·+/:3 I (o<:+ ,.3) 

=o<.(e/o<+~) + (J(e/(o<+fi)) 

= (°'- I !9) (e/(,:,1.,+ ~ )) 

= e. 

Hence, by 5.45. l<><!~+,8)1 +lp'/~+f)l 2=.l. 
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Therefore, I~/+ lf'I = lo<. +;3 I 11"'-I l(~+p>I -f /...<+/JI i 113l l/o1+i6l 

= I~+ p' 1(\o<l(o< +rS)I +I iS "1 (o(+ f3)1)5.43 

~lo<+11-1 

= toZ+ i<SI • 

Hence, /o< + f / =. Io( I+ Ip' I • 

Theorem 5.47. The compl ex numbers of the form [A,OJ where A is an 

' 
integral real number satisfy the axioms of the natural numbers if the role 

of 1 is as sign ed t o [1,0 ] a nd if [ A, O]' = [A ' , O] ; i .e., 

Axiom 1.V. If [A, 0] = [B ,0] then [ A' , OJ = [B' ,OJ 

Axiom 2.V. There exists a complex number ll,O] such that [A',O] I ~.o] 

Axiom 3.V. If [_A',o] = [B',o], then (A,O) = [B,0] 

Axiom 4.V. Let [M] = {[A,o] :Xis an integral real numbetjwhich 

has the following properties: 

a) L 1 , 0] E. [M] 

and b) if [A,0] E(M] , then [A,o] ' E. [M] • 

Then [MJ contains all complex numbers of the form (A,Oj where A is an 

integral real number. 

Proof. Since [A,O] = [_B,<B , A=B and so A'=B' by Axiom LIV. 

Thus, [A' ,o] = [B' ,o] by 5.2. 

That 1 exists is obvious. Suppose [A',o] =(!..,o] then A'= 1 by 5.2. 

But this contradicts Axiom 2.IV. Hence, [A',O] # [_1,oJ. 

Since [A',o] = [B~o] , A'=B' and so by Axiom 3.IV, A=B. Hence, 

(A,O = B,0] 

Let M be the set of all A for which [A,0] E: [M]. Then ltM since 

(1,o] E: (Ml Also A' E M wherever AEM since if [A,0] E [M] so is [A,o j. 

Thus M contains all integral real numbers and hence [MJ contains all 

complex numbers of the form (A, o] where A in an integral real number. 
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Moreover, if by definition [A,O] .::,.[B,0] if and only if A>B and 

[A,o], [B,0] if and only if [B,0] >[A,O] , it can be shown that the 

subset of complex numbers, { [A ,OJ: At R J is ismorphic to R relative to 

the corresponding operations of addition and multiplication. 

In the following, A will stand for [A,O] and will be called a real 

number. 

Theorem 5.47. ii = -1. 

Proof. ii = [0,1] [ 0 ,1] 

= Loo - 1 1 , 01 + 10] 

= [ - 1,oJ 

= - 1. 

Hence, ii= -1 • 

Theorem 5.49. The complex number [A,B] may be written uniquely in 

the form A+ Bi where A and Bare real numbers. 

Proof. [A,B]= [A,o] + [_o ,B] 

= [A,0] + [BO - 01, Bl + oo] 

= [A,O] + [BO] [oJJ 
= A + Bi. 

Hence, [A,BJ = A+ Bi 
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