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INTRODUCTION

This paper is based on Landau's book ''Foundations of Analysis' which
constitutes a developmént of the number system founded on the Peano axioms
for natural numbers,

In order to show mastery of the subject matter this paper gives a
somewhat different organization of material and modified or more detailed
proofs of theorems, In situations where proofs become rather routine
repetitions of previously noted techniques the proofs are omitted.

The following symbols and notation are used, Natural numbers are
denoted by lower case letters such as a,b,c,...x,y,z. Sets are denoted
by upper case letters such as M, N, ,..X, Y, Z, If a 1is an element
of M, this will be written a€M. The denial of this is written a¢ M.

The symbol J/x is read '"There exists an unique x", If x and y are
names for the same number we write x=y, It is assumed that the relation =
is an equivalence relation; i.e., (1) x=x, (2) if x=y, then y=x, (3) if
x=y and y=z, then x=z, Throughout this paper there will be no special
attempt to distinguish between the name of a number and the number itself.

For example, the phrase " if x is a number'" will be used in place of

" if x is the name of a number."




NATURAL NUMBERS

Definition 1.1, A set N of elements is called the natural numbers
if and only if the following axioms are satisfied:

Axiom 1,I. For each xe N, there exists an unique element of N
called the successor of x, denoted by x'; i.e., if x=y then x'=y'.

Axiom 2.I. There exists an element of N, denoted by 1, such that
x'#1 for every xc<N.

Axiom 3.I. If x'=y', then x=y.

Axiom 4,I. If a set M of natural numbers contains the element 1

and it contains x' whenever it contains x, then M is the same set as N.

Addition and Multiplication

In this section two binary operations called addition and multiplica-
tion are defined on the natural numbers., It is shown that these operations
obey the commutative and associative laws; also, that multiplication is
distributive with respect to addition. One main result of the definition
of addition will be that either. two natural numbers, x and y, are the
same natural number; or, there exists uniquely a natural number u such
that x=y+u; or, there exists uniquely a natural number v such that
y=X+v,.

Theorem 1.2, If x#1, J/u such that x=u'.

Proof. The uniqueness of u 1s easily established. Suppose there
exist u and v such that x=u' and x=v', Then u'=v' which implies

v=u by Axiom 3. To show there exists such an u let M = {x:xe,N and

if x#1, there exists ueN such that u'=x} L} {1} . We note that




1¢N by Axiom 2 and that 1€ M by the construction of set M. And to
see that x'¢ M whenever xe¢M we note that x'€ N by Axiom 1 and so
there exists an u&N such that u'=x'; namely, x'=x'., Therefore,

by Axiom 4, M 1is the same set as N,

Theorem 1.3, There exists an unique binary operation to be called
addition, denoted by +, which assigns to each ordered pair of natural
numbers (x,y) a natural number, to be denoted by x=y, such that for
every x and y:

i)  x+l=x'

and ii) x+y'=(xt+y)'.

Proof. The uniqueness of the operation will be established first.
Suppose there exists two operations denoted by + and * such that:

iii) x+1l=x', and x+y'=(x+y)'

and iv) x*l=x', and x*y'=(x*y)'.

Let x be given and let M = {y:x+y=x*xj . Now 1€M since x+l=x'=x*1

by (iii) and (iv). If y&eM, y'e M since

x+y ' (x+y)' by (iii)

(x*y)' because yeM

x*y' by (iv).
Therefore x+y'=x*y' and M 1is the same set as N by Axiom 4. Hence
x+y=x*y for every x and vy; that is, if the binary operation exists,
it is unique.

Now it will be shown that such an operation exists which satisfies
(i) and (ii). Let y be given and let M = {x: for the ordered pair
(x,y) such an x+y exists}. For x=1, define (v) l4+y=y'. If yeN, y'

exists and y'e N by Axiom 1. Thus 1l+y exists and is an element of N.

We need to show that for x=1, x+l=x' and x+y'=(x+y)'.




For the first: x+1 = 1+1 since x=1

1' by (v)

x' by Axiom 1 since x=1.

As to the latter: x+y 1+y' since x=1

(y')' by (v)

(1+y)' by (v)

(x+y)' since x=1,
y

Thus, 1€M.

If x €M, there exists an x+y for the ordered pair (x,y) which
satisfies (i) and (ii). For x', define (vi) x'+y = (x+y)'. Again (i)
and (ii) must be satisfied with this definition for x'; i.e., x'+l =
(x')' and x'+y' = (x'+y)'.

(x+1)' by (vi)

For the first: x'+1
= (x")' by (i) since xe M.

As to the second: x'+y = (x+y')' by (vi)

]

((x+y)9 ' by (ii) since x€eM

(x'+y)' by (vi)
Hence, x'+y' = (x'+y)'. Therefore, 1€M and x'e M whenever x¢M.
Thus, M 1is the same set as N by Axiom 4. The existence of the unique
binary operation addition which assigns to each ordered pair of natural
numbers (x,y) the natural number named x+y satisfying:
a) x+1 = x' = 14x

and b) =x+y' = (x+y)' = x'+y
has been established.

Theorem 1.4. (Associative Law of Addition). For every x,y,z€N

(xty) + 2z = x + (y+z).

Proof. Let x and y be given, and let M = {z: (x+y)+z = x+(y+zl}.




Now 1€ M since

i

(x+y) + 1 (x+y)" by 1.3 (i)

[}

x+y' by 1.3 (ii)

x+(y+1) by 1.3 (i).

and thus (x+y) + 1 = x+(y+1). If zeM, z'€e M since

(eby) + 2" = (Geby) + 2)* by 1.3 (id)
B (x 4 (y+z)> " because z€ M
= x + (y+z)' by 1.3 (ii)
= x + (y+z') by 1.3 (ii)

and thus (x+y) + z' = x + (y+2'). Therefore, M is the same set as N
and the proof of this theorem is complete.
Theorem 1.5. (Commutative Law of Addition). For every x,ye N, x+y =
y+X. |
Proof. Let x be given, and let M = {y: Xty = y+x} . For y=1,
x+l = x' = 14x by 1.3 (i) and (v). Hence, 1€ M.

(x+y)' by 1.3 (ii)

If yeM, y'e M since x+y'

(y+x)' since yeM

y'+x by 1.3 (vi)
and thus x+y' = y'+x. Therefore, M is the same set as N,
Theorem 1,6. Given x and y, one and only one of the following
must occur: i) x=y
or ii) There exists an unique u such.that x=y+u
or iii) There exists an unique v such that x+v=y,
Proof. (The proof of this theorem involves the following theorems
whose proofs we do not include since they are rather straightforward

applications of the axiom of induction: a) y#y+u for all ué N

b) if y#z, then x+y#x+z)




First, it will be shown that the three cases are incompatible. 1If
(i) and (ii) both occur then x=y and x=y+u imply y=y+u which is impossible
since y#y+u for all u by a). Similarly, (i) and (iii) are incompatible.
For (ii) and (iii), x=y + u and x+v = y imply y = (y+u) +v = y + (u+v)
by 1.4. Therefore, y=y + (u+v) which is impossible since y # y + u for
all u. Hence, only one of the three cases occurs.

Next, it will be shown that the u in (ii) is unique. Assume there
exist two natural numbers, u and t, such that x=y+u and x=y+t. Hence
y+u = y+t which implies u=t; since if u#t, y+ufy+t by b). Thus, the u
is unique. Similarly, the v in (iii) can be shown to be unique.

Last, it will be shown that one of the three cases must occur. Let
x be given and let M = {y: one of the three cases occurs}, If y=1;
either x=1 and x=y [Case (i) for 1} , or x¢1 and x=u' by 1.2, If x=u' =
1+u by 1.3(v) then x=y+u since y=1 @ase 1i) for 1] . Therefore, 1€ M,
If ye¢ M, one of the three cases must occur. Case (i) for y, y=x. Thus,
y' = x' = x+1 [Case (iii) for yi . Case (ii) for y, x=y+u. If u=l,

then x=y+l=y' {Ca@e (i) for y“}. 1f ufl, u=w' by 1.2. If u=w' then

X = y+w'

]

y + (14w) by 1.3(v)

(y+1) + w by 1.4
=y' 4+ wby 1.3(1)
Thus, x = y' + x [Case (ii) for y{‘. Case (iii) for y, y = x+v.
Hence y' = (x+v)'
= x+v' by 1.3 (ii)
Case (iii) for y“] . In any case y'¢ M whenever yeM. Thus, M is

the same set as N and the theorem is established.




Theorem 1.7, There exists an unique binary operation, to be called
multiplication, denoted by * , which agssigns to each ordered pair of
natural numbers (x,y) a natural number, to be denoted by x:y, such that
for every x and y: 1) x°1 = x

and ii) x°y' = x°y + x.
Proof. The uniqueness of the operation will be established first.
Suppose there exist two operations, denoted by * and * such that:
iii) x°1 = x and x°'y' = X'y + x
and iv) x*1 = x and x*y' = x*y + x.
Let x be given and let M = {’y:x'y = x*y} . Now, 1l€M since x°'l = x =
x*]l by (iii) and (iv). 1If ye¢ M, y'€ M since
xy = x'y + x by (iii)
= x*y + x since ye M
= x*y' by (iv)
Therefore x°*y' = x*y' and M 1is the same set as N, Thus, the binary
operation is unique, if it exists.

Now to show that it is possible to define a binary operation so that
for every x and y; x°l=x and x°y' = x°y+x. Let y be given and let
M= {_x: for the ordered pair (x,y) such an x'y exists}.

For x=1, define (v) l'y=y. We need to show that x°l=x and x'y' =

1°1 since x=1

L}

X*y + x. Now x°1

i

1 by (v)
= x since x=1,

Thus the first condition is satisfied,

As for the second: x-y l.y' since x=1

y' by (v)




il

y+1 by 1.3 (i)

l-y+1 by (v)

X*y+x since x=1
Hence, if x=1, x'y' = xy+x. Thus, 1€ M.

If x€&M, there exists an x'y for each ordered pair (x,y) which
satisfies (i) and (ii). For x', define vi) x':y = x'y+y. Again
conditions (i) and (ii) are satisfied for: if y=1 then

x'1

]

x*l + 1 by (v)

x+1 by (i) since xeM

il

x' by 1.3 (i)
Thus, x'°1 = x',

Now, x'*y' = x*y' + y' by (vi)

(x°y+x) + y' by (ii) since x€eM

X'y + (x+y') by 1.4

X'y + (x+y)' by 1.3 (ii)

X'y + (x'+y) by 1.3 (vi)

]

X'y + (y+x') by 1.5

]

(x:y+y) + x' by 1.4

x'y + x' by (vi).

Therefore, x"y' = x"y + x', Hence, 1€M and y'¢e M if ye&M,

Thus, M is the same set as N and the binary operation multiplication
which assigns to each ordered pair of natural numbers (x,y) the natural
number named x*y such that a) x°*1 = x = 1°x

and b) x'y' = xy + x

and c) x'.y = x°y + y

exists and is unique.




Hereafter, the sign of multiplication will be omitted. Thus, x°y
will be written xy.

Theorem 1.8, (Commutative Law of Multiplication). For every x,yé N,
Xy = yX.

Proof. The proof of this theorem is similar to the proof of theorem
1.5 and will be omitted.

Theorem 1.9, (Distributive Law). For every x,y,z€N, x(y+z) =
Xy + xz.

L

Proof. Let x and y be given, and let M =f"z:x(y+z) = Xy + Xzj.

Now, 1€ M since x(y+l) = xy' by 1.3 (i)

]

xy + x by 1.7 (ii)

]

Xy + x°1 by 1.3 (i).

and so x(y+l) = xy + x*1, If zeM, z'eM

]

since x(y+z') = x(y+z)"' by 1.3 (ii)
= x(y+z) + x by 1.7 (ii)
= (xy + x2) + x since ze M
= xy + (xz + x) by 1.4
= xy + xz' by 1.7 (ii)
and thus x(y+z') = xy + xz'., Therefore, M is the same set as N and the
theorem is shown,
Theorem 1.10. (Associative Law of Multiplication) For every x,y,
ZEN, (xy)z = x(yz).

Proof. Let x and y be given, and let M ={'z:(xy)z = x(yz)}.

xy by 1.7 (i)

]

Now, 1€M since (xy)°l

x(y+1l) by 1.7 (i)
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If z€M, z'¢ M since (xy)z' (xy)z + xy by 1.7 (ii)

x(yz) + xy since ze M

x (yz+y) by 1.9

1]

]

x{yz') by 1,7 (iL):

Thus, (xy)z' = x(yz') and M is the same set as N.

Ordering

In this section the basic definitions of greater than and less than
are given. The main result to be established is that every nonempty set
of natural numbers contains a least one.

Definition 1.11. x>y if and only if there exists a natural number
u  such that x = y+u,

Definition 1.12. x<y if and only if 1y x.

Theorem 1.13. Let x and y be given, then one and only one of the
following occur: =x=y or x>y or x<y.

Proof. The proof follows directly from 1.6, 1.11 and 1.12.

Definition 1.14. x>y if and only if x=y or x> y.

Definition 1.15. x<y if and only if y2 x.

Theorem 1.16. If x<y and y<z, then x< z,

Proof., Trivial

Theorem. 1.17. For all x€ N, x+y> X.

Proof. Now, x+y = x+y. Therefore, x+y> x by 1.11.

Theorem 1.18. x=y or x>y or x<y if and only if x+z = y+z
or x+z> y+z or x+z<y+z, respectively.

Proof. Suppose x=y. Then obviously x+z = y+z., If x>y then there

exists u such that x=y+u. Hence,
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(y+u) + z by first part.

»x
+
N

L]

y + (u+z) by 1.4

y + (z+u) by 1.5

(y+z) + u by 1.4,

Therefore, x+z> y+z by 1.11. If x<y then y> x by 1.12, Hence by above

part y+z > x+z and by 1.12, x+z< y+z.
The converse follows immediately from the preceding proof, and the

fact that the three cases are mutually exclusive and exhaust all possibilities,
Theorem 1.19. x=y or x>y or x<y 1if and only if xz = yz or xz> yz

or xz< yz, respectively.
Proof. Suppose x=y. Then obviously xz = yz. If x>y there exists

u such that x=y+u, Thus, xz = (y+u)z by first part

z(y+u) by 1.8

]

zy + zu by 1.9

yz + zu by 1.8.
Hence, xz >yz by 1,11. If x<y then y> x and by preceding part yz > xz
which implies xz<yz by 1,12, |

The converse follows immediately from the preceding proof and the fact
that the three cases are mutually exclusive and exhaust all possibilities.

Theorem 1,20. For all x,yé N if y>x then y=> x+1.

Proof. Since y> x there exists u such that y = x+u, Either u=l,
hence y=x+1; or u#l and so u=w' by 1.2, Hence,

x+tu = x+w' by 1.18

x + (14+w) by 1.3 (v)

(x+1) + w by 1.4,

Thus, y, x+1 by 1.11. In either case if y >x then y= x+l1 by 1.14.




Theorem 1.21. For every x€N, x21.

Proof. Either x=1 or x#1 in which case x=u' by 1.2. Therefore if
x=u' = 1l+u by 1.3(v), x>1 by 1.11, Hence, x>1 by 1.14,

Theorem 1.22. In every nofiempty set T of natural numbers, there is
one which is less than every other element of the set. That is, there
exists an x¢e T such that x<y for all yeT.

Proof. Let M be the set of all z such that zeN and z<y for all
y&€T. M is not empty because 1€ M by 1l.21. M does not contain all
natural numbers since for any y&€T y+l>y by 1.17 and thus y+1¢ M.
There exists an element of M, denote it by x, such that x+l¢M. For if
x+1l € M whenever x€ M, M would be the same set as N by Axiom 4 since
1€ M. This contradicts the fact that M does not contain all the natural
numbers. Since x€M, x<y for all y&T. Now, x is also an element
of T. To show this assume xé T. Then x<y for all yeT. Therefore
x+1£y for all y&€T by 1.20. Thus, x+1€ M which contradicts the fact

that x+1¢ M. Hence, x €T and is less than every other element of the

set.

12
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RATIONAL NUMBERS

Two new types of numbers are defined in this section, The first, the
fraction, is defined in terms of natural numbers; and the second, the
rational number, is defined in terms of fractions, The binary operations
of addition and multiplication on the rational numbers are defined, then
the associative, commutative, and distributive properties are established;
as well as the facts that there is no greatest or least rational number,
and given any two distinct rational numbers there is at least one rational
number which is less than one of the given rational numbers and greater
than the other. One of the most interesting results is that there is a
set of rational numbers, to be called integers,which obeys the basic
axioms of the natural numbers and thus is isomorphic to the set of natural
numbers.

Definition 2,1, A fraction is an ordered pair of natural numbers
(x,y) denoted by x/y.

Definition 2.2. Two fractions x/y and z/w are said to be equivalent,
to be denoted by x/ywz/w, if and only if xw = zy.

Theorem 2.3, The relationw is:

i) Reflexive: a/ba a/b
ii) Symmetric: if a/ba c/d, then c/dwn a/b
iii) Transitive: if a/ba c/d and c/d~re/f, then a/bre/f
Proof. (i). ab=ab., Therefore, a/b~a/b by 2.2,
(ii). If a/ba~c/d then ad = cb by 2.2. Thus, cb = ad which

implies c/d = a/b by 2.2.

(iii). 1If a/b~c/d and c¢/dre/f then ad = cb and cf = ed by 2.2.
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Hence, (ad)f = (cb)f and (cf)b = (ed)b.

Now, (cb)f = f(cb) by 1.8

(fc)b by 1.10

(c£)b by 1.8.

Thus, (cb)f = (cf)b and hence (ad)f = (ed)b. Similarly, (ad)f = (af)d
and (ed)b = (eb)d. Therefore, (af)d = (eb)d which implies af = eb by
1.19. Hence, a/bn e/f by 2.2. We have shown that the relation ~~
defined by ~ = {'(a/b, c/d): a,b,c,déN and ad = bc} is an equivalence
relation.

Definition 2.4. A rational number is the set of all fractioms which
are equivalent to a given fraction. If x/y is the given fraction, the
rational number will be denoted by [x/y] ~

Definition 2.5. Two rational numb;rs [x/y} and [z/w} are said
to be equal if and only if every element of x/yJ is an element of
[z/w} and every element of [é/w] is an element of [x/y] . This
definition will be denoted symbolically as follows: E%/y] = [z/w} if
and only if [x/y]c_{:z/w] and [z/w]c[x/y} . Otherwise, [x/y] # [z/w].

Theorem 2,6, [a/b] [c/qJ if and only if a/b ~vc/d

Proof. Assume[%/bj [}/d} . Now, a/b é[g/b] and since [g/b] =
[c/d 1. a/béj[g/d] by 2.5. Thus a/bnrc/d by 2.4.

To show the converse assume a/b~ c/d. Let e/f be any element of
[é/b] . Then e/f~ra/b by 2.4 which implies e/f~c/d by 2.3 (iii). Thus,
e/fé [c/d] . Hence, [a/b}C[e/dJ . Similarly, Ec/djj(_ [a/b] . Therefore,
[a/b] = [c/d] by 2.5.

Theorem 2,7 j}/b] = [g/d]_ if and only if ad = cb.

Proof. Assume [}/b} = [%/d] . Then a/b~ c/d by 2.6 and thus ad =

cb by 2.2. For the converse assume ad = cb. Then a/b~a ¢/d by 2.2 and




thus [a/b} = [c/dj by 2.6.
Theorem 2.8. The relation = is:

fa/bw

| —

i) Reflexive: [a/b}

i:c/d:l , then [c/d] = {a/b]

ii) Symmetric: if [a/b}

iii) Transitive: if Ea/b] = [e/d] and l'_c/d] - [_e/f_—J,
then [a/b] = [e/£] -
Proof. (i) a/b~s a/b by 2.3 (i). Therefore, [a/b_J - ]:a/b:l by 2.6.
(i) 1f [a/p] = [c/dj, then a/b ~ cfd by 2.6. Hence, cfb & afb
by 2.3 (ii) and thus [c/d| = [a/b] by 2.6.
(i11) 1f [a/b] = [c/d] and [c/d] = [e/ijJ , then a/b . c/d

and c¢/d~ e/f by 2.6. Hence, a/b~ e/f by 2.3 (iii) and so
Ea/b] = [e/f] by 2.6.
Thus = is an equivalence relation on the set of rational numbers.
Definition 2.9. By the sum of two rational numbers [a/b] andréld] 5
to be denoted by [é/b] (E) &/d] , is meant the following: [g/bj (E)[c/d]
= Bad + cb)/bd}
Theorem 2,10, C:)is a binary operation on the set of rational numbers.
Proof. It is obvious that the sum gives a rational number. It must
now be shown that the sum is unique; that is, it doesn't depend on the

particular fractions used to name the rational numbers, Symbolically,

if a/ﬁ} = [}/d} and [?/f] = [g/h] then we wish to show that
[(af + eb)/bf] = '[(ct + gd)/dh| .  Since [a/b] = [c/d] and
[e/f] = |:g/h:| , ad = cb and eh = gf by 2.7. Hence, (ad)(fh) = (cb)(fh)

and (eh)(bd)

(g£)(bd) by 1.19.

Now, (ad)(fh) = (a(df))h by 1.10

(a(fd))h by 1.8

15
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((a£)d) h by 1.10

(af) (dh) by 1.10

and so (ad)(fh) = (af)(dh). Similarly, (cb)(fh) = (ch)(bh); (eh)(bd) =
(eb)(dh), and (gf)(bd) = (gd)(bf). Therefore, (af)(dh) + (eb)(dh) =
(ch) (bf) + (gd)(bf). Now (af)(dh) + (eb)(dh) = (af + eb)(dh) and (ch)(bf)
+ (gd) (bf) = (ch + gd)(bf) by 1.9. Hence, (af + eb)(dh) = (ch + gd)(bf).
Therefore, [(af + eb)/bf} - [(ch + gd)/dh} by 2.7 and the theorem is
shown.
Theorem 2.11. (Commutative Law of(¥)). [a/b:j@ [c/d] = [e/d]@ [a/b}.
Proof: |a/b| @ [c/d]

[ad + cb)/bdj by 2.9

[(cb % ad)/db]
[e/d|®far/b] by 2.9.
Therefore, [a/b] @ [c/d] = [c/d] @ [asb] .
Theorem 2.12. (Associative Law of (%)). ([a/b_-j @ [c/dD @
e/e] = [an] @ ([erd] @ [ere]).
Proof. ([a/b] @ [c/d]) @ [el/f]

[ad + cb)/bd] @ [e/f]
[(ad + b £ + e b)) / (ba)t]
[(((ad)f + (cb)E)+ e(bd)) /b(df):]
(2> +(oc8) + beea))) /ban)]
[(a(df) + b(cf + ed)) /b(df)J
= [a/] @ [t + edysas] by 2.9

. - @/b]@([c/d] ® [ca/f]> by 2.9.

Thus, (Ea/b] ® [1a)® [re] = [an] @ (era] @ [ere])-

Definition 2.13. By the product of two rational numbers [a/b} and

[c/d:[ , to be denoted by [a/b:] ® [:c/d] is meant the following:

6] © [ere] = [(ac)/(bd)].




Theorem 2.14, (Z) is a binary operation on the set of rational numbers.

Proof. It is obvious that the product is a rational number. To show
that the product gives an unique rational number it must be shown that the
particular given fraction used to name the rational number is arbitrary;

that is, if i}/b] = Lc/dJ and [é/f} = [g/h] then we must show that

Eée)/(bf)] = ]icg)/(dh):’ . Since Ei/b] [c/d:f and[e/f] = [g/th, ad = cb

and eh = gh by 2.7. Thus, (ad)(eh) (cb)(gf). Now (ad)(eh) = (ae)(dh)

and (cb)(gh) = (cg)(bf). Hence, (ae)(dh) = (cg)(bf). Therefore,[(ae)/(bf‘,] =
@égﬂdhﬂ by 2.7 and the theorem is shown.

Theorem 2.15. (Commutative Law of (-) ). la/b O, Lc/d<i =

[erd] © [am] .
Proof. {?/bJ O {b/d]

N §

@g/bd)| by 2.13
feal/(dn)]
[c/d]® [a/b] by 2.13.
Theorem 2.16. (Associative Law of @).([a/b] O [e/a]) @ [e/£] =
[a/b] © (Lc/d:l ©) [e/f]).
Proof.([a/b] © [dd])@ [e/£]

laca/bd] @ [e/f] by 2.13
[aere) /(parg)| by 2.13

e (ce)) /(b(df))}

a/b] © [ceMdf)] by 2.13

L[}

Thus,(|}a/b] O [c/d])@ [e/f] = fa/b:l ©) ([c/d:] O Le/f]) and the
theorem is vroved.
Theores 2.17. a/b| = [(xa)/(xb)] ¢

Proof. a(xb) = (ax)b by 1.10

= (xa)b by 1.8

a/b] @ ([c/d} () [e/f]) by 2,13,

17
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fxalfsch)] by 2.7.
Theorem 2.18. (Distributive Law) . [a/b] @([c/d] @ [e/f]) .
[e/v] © [/d] @ [av] © [ere].
Proof. [a/b'J @([c/d] @ [e/f])

Therefore, a(xb) = (xa)b and so [a/b]

[a/b] O [(ef + ed)/df]| by 2.9

aet + eay) /(b(df)ﬂ by 2.13

(ct) + a(ed) /(b(dg))]

[(b(a(cf) + a(ed)))/(b( b(df)))be 2,11
[((ac)(bf) + (ae) (bd)) / ((bd)(bf))]
a/bd] @ [(aeytbfﬂ by 2.9
[a/b] © [e/a]® [a/6] @ [e/£]by 2.17.
Therefore, [a/b @([c/d:' ®@ [e/£]) = [ard] @ [e/a] ® Jar] @ [e/e].

Definition 2.19. [é/b])[?/d] if and only if ad > ¢cb. To show this

definition is valid it must be shown that it in no way depends upon the
particular given fractions used to name the rational numbers. Thus, the
following theorem is needed.

Theorem 2.20. If [a/b|>[c/d] ,[a/b] = [e/£] , and [c/d] = [g/h],
then [e/f}> [:g/h].

Proof. From the hypothesis ad > cb, af = eb, and ch = gd, Hence,
(i) (be)(ch) = (af)(gd). Since ad > cb _J/u such that (ii) ad = ¢cb + u.

Now, (eh)(cb) = (be)(ch)

(af)(gd) by (i)
(gf) (ad)

(gf)(cb + u) by (ii)

"

(gf) (cb) + (gf)u
Hence, (eh)(cb)> (gf)(cb) by 1.11 and thus eh > gf by 1.19.

Therefore, [é/f]) [g/h] by 2.19.

Definition 2.21. @/b}<i§/d] if and only if [ﬁ/d]>[a/b] .
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Theorem 2.22. Given any two rational numbers [a/b| and [e/d],
one and only one of the following must occur: [a/b] = [e/d] or [a/b]>
c/d] or [a/b]c[erd] .

Proof. ad = cb or ad>cb or ad< cb by 1.13.

Therefore, if ad=cb then [a/b] = [c/b| by 2.7; if ad>cb then
la/b] > [c/d] by 2.19; if ad<cb then cb>ad by 1.12 and so [é/d}>[é/b]
vhich implies [a/b|<[c/d] by 2.21.

Theorem 2.23. [a/b] = [c/d] or [a/b]> [e/d] or [a/b] < [e/d]
if and only if [a/b] @ [x/y] = lg/d] ® [xly] or [a/b] ® [x/y] s
[a/b] @ [xly] or [a/b] &) [x/y] < [e/d] @ [xly]| , respectively.

1
d

Proof. Suppose [a/b = [c/d:l , then ad = cb. Now,

[a/6] ® [x/y] = [(ay + xb)/by]

facay + xb)) / (d(by))| by 2.17.

@ad)y + b(xd))/(b(dy?]

Ecb)y iz b(xd))/(b(dyj] since ad = cb.
ey + xa)) / (viay))]

ch i xd)/dy] by 2.17

[c/d] @ [x/yj :

And so, [a/b]| (® [xty] = [e/d] ® [x/y] .

Suppose [a/b] > [b/d] then ad > cb. Then (ad)(yy) > (cb)(yy) by 1.19

]

i

n

and (ad)(yy) + (xb)(dy) > (cb)(yy) + (xb)(dy) by 1.18. Now (ad)(yy) =
(ay)(dy); (cb)(yy) = (cy)(by); and (xb)(dy) = (xd)(by). Also, (ay)(dy)

+ (xb)(dy) = (ay + xb)(dy) and (cy)(by) + (xd)(by) = (cy + xd) (by).

Hence, (ay + xb)(dy) > (cy + xd)(by) which implies [(ay + xb)/by:] >
[(cy + xd)/dy] by 2.19. Therefore, Ea/bJ D) [x/y—J> [c/d:l ) [X/YJ s
if [a/b]( E:/d] then [c/d] > [a/b] and by preceding part J;c/b:] @

[x/y]) [a/b} ) [x/yEJ and so by 2,21 [a/b] @ [x/y]( [c/b] @) IT_X/Y} 3
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The converse follows immediately from the preceding proof and the fact

that the three cases are mutually exclusive and exhaust all possibilities.

Theorem 2.24. [a/b] = [c/d] or [a/b]> [e/d] or [a/b]< [c/d] if
and only if [a/b] O [x/y] = [e/d] O [x/y] or [a/b] © [x/y] >
c/d] © [x/y] or [a/b] O [ly]<[e/d] O [x/y] , respectively.

Proof. Suppose [a/b] = [e/d] , then ad = cb. Hence (ad)(xy) =

(eb)(xy) by 1.19. Now (ad)(xy) = (ax)(dy) and (cb)(xy) = (cx)(by). Thus,
(ax)(dy) = (cx)(by) and so [éx/by] = [;x/dyJ . Therefore, [@/b](j £x/y]
= [(:/d} ® [x/y] .

Suppose [a/b] > [c¢/d| then ad>cb. Hence, (ad)(xy).> (cb)(xy) by 1.19.
Again (ax)(dy) = (ad)(xy) and (cx)(by) = (cb)(xy). Thus (ax)(dy)> (cx)(by)
which implies [;x/by],>1}x/dy] 3 Therefore,[é/b] e [x/y]) [c/d] ©) [x/y].

If a/b]<1[c/d] then [?/dj >{}/?] and so by preceding part [c/d]
® [x/y]) [a/bJ © [x/y} . Therefore, [a/b] ® [x/y]<E:/d] ©) [x/y]

The converse follows immediately from the preceding proof and the fact
that the three cases are mutually exclusive and exhaust all possibilities.

Theorem 2.25, Given any rational number [a/bj there exists a
rational number [x/y] such that [?/y]‘>[?/b] ‘

Proéf. (a + a)b = ab + ab. Also, ab + ab>ab by 1.17. Therefore
(a2 + a)b>ab and so [Ka + a)/b])[}/b]. Let x = a+ a and y = b, Then
[x/y] = [(a + a)/b:l and hence [x/y]> [a/b].

Theorem 2 .26. Given any rational number [a/b] there exists a
rational number [x/y] such that [}/y] (I}/b] ;

Proof. ab + aa = aa + ab. Thus, ab¢ aa + ab by 1.12 and 1.11,

Also, aa + ab = a(a + b). Therefore, ab< a(a + b). Hence [a/(a + b)J<i

{é/b] . Let x=aand y =a+ b. Then [x/y} = [?/(a + b)} and thus
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)< [ars] -

Theorem 2.27. Given any rational numbers [a/b] and [c./d] such
that [a/b] < [c/d] , there exists a rational number [x/y} such that
Ea/b]( [x/y] and [x/y]<¢ [c/d] .

Proof. First an [x/y] will be found such that [a/bJ Z [x/y] :
From the hypothesis ad« ¢b. Therefore, J/u such that ad + u = cb.
Thus, ab + (ad + u) = ab + cb, Since ab + (ad + u) = (ab + ad) + u,
(ab + ad) + u = ab + cb. Therefore, ab + ad <ab + cb. But ab + ay =
a(b + y) and ab + cb = (a + ¢) b. Hence a(b + d)< (a + ¢)b and so
[a/b] < [(a+c)/(b+d)1 3

Now, it will be shown that [(a+c)/(b+d)] < [c/d} Since ad + u = cb,
(ad + a) + ¢d = cb + cd. But (ad + u) +cd = (ad + cd) + u. Therefore,
(ad + ¢d) + u = cb + ¢d and thus ad + cd<cb + c¢d. Now, ad + cd = (a+c)d
and c¢cb + c¢d = c(b+d). Hence (a+c)d <. c(b+d) which implies [(a+c)/(b+d)]<

[c/d]. Let x = a+c and y = b+d. Then, Ix/y] = [(a+c)/(b+d)1 . Hence,

[a/b]([x/y} and [x/y] < [c/d} and the theorem is proved.

Theorem 2,28, Given any rational numbers [a/b] and {c/d] 7/ [x/y]
such that [?/b] @ [x/y] = [é/d] :

Proof. The uniqueness of {x/y] , 1f it exists, will be shown first.
Assume there exists another rational number [z/w] such that [a/b] ® [z/w]

= [c/d] . Then, [a/b] ® [x/y] = [a/b] © [z/w] by 2.8 (iii).

Hence [x/y] = [z/w] by 2.24.

To show that such a rational number exists let x = bc and y = ad.
[a/b] @ [bcMad]]
l& (be))/ (b (ad))]
[kab)c) / (ab)d)

lc/d] by 2.17 .

Then [x/y] = Kbd/(ad)}. Hence, [a/b} () Lx/y]




x/y] will be called the quotient of [c/d] by [a/b| and will be denoted as
follows: [x/y] = [(c/d) / (a/b)].

Theorem 2.29. 1If [a/b]< [c/d] 3/ [x/y}_ such that _[_a/b] @ [x/y]
= [erd].

Proof. As for the uniqueness assume |z/w| also satisfies |a/b] (B
krw] = [c/d] . Then [a/b] (B [x/y]| = |a/b] B [2/v] which implies
[x/y] = [z/w] by 2.23.

Now, it will be shown such an [x/y| exists. Since [a/v] < [era] ,

ad<cb and so ad + u = cb for some suitable u. Let x=u and y=bd. Then

[%/y} = [pkbdﬂ . Now, [ﬁ/b]+ [k/yl

L}

[a / b-] + [u /b d)]

fla(bd) + ub)/(b(bd))|
bcad + w)) /(b (ba))]

[cad + w)fbd)] by 2.17

il

[?@ﬂb ﬂ since ad + u = cb

]

[e/d] by 2.17

Thus, [x/yJ exists and is unique, [x/y} will be called the difference
between [g/d] and {g/b] and will be denoted as follows: [x/yj = Ec/d]
- [a/b]

Definition 2.30. A rational number is called an integer if and only
if it contains an element of the form x/l. This x is uniquely determined
for if the rational number contains two such elements say x/1 and y/1,
then x/l~y/l1. Therefore, x * 1 =y + 1 and thus x = y.

Theorem 2,31. There exists a one-to-one correspondence between the
set of integers and the set of natural numbers.

Proof. Set up a correspondence as follows: x and [x/l] correspond

for every x€ N. To show there corresponds one and only one natural number

to each integer, let x and y correspond to Ex/l] and[&/l] respectively

22
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with [x/l} = {y/l] . Then x ¢ 1

y * 1 and so x=y.

For the converse, let x and y correspond to {%/l} and [y/lJ

respectively, with x=y, Then x ¢« 1 =y * 1 which implies [*/l} = [y/l].

And so the theorem is proved.

Theorem 2,32, The integers obey the axioms of natural numbers if

[?'/1] is assigned the role of the successor of [k/l] and [1/11 plays

the role of 1; i.e.,

Axiom 1.II. 1If [x/l] = [y/l} then {x'/l} = [y’/lw .

|

=

Axiom 2.II. There exists an integer [1/1] such that [x'/LJ # £1/1].
Axiom 3.II. If [x'/l} = [y'/l] , then [x/lj = [y/l] ‘
Axiom 4.1I. If a set I of integers contains El/l] and it contain
b'/l} whenever it contains %/1, then I contains all the integers.
Proof. Since [x/lJ = [y/l] , X * 1 =y * 1, Thus x=y and by
Axiom 1.I, x'=y', Hence, x' * 1 =y' « 1 which implies [x'/lj = [&'/1} .
The existence of [}/1] is obvious. To show [ﬁ'/l] # [i/l} the
proof is by contradiction, Suppose [x'/l} = [1/1] . Then %' * 1= 19 1

which implies x'=l. But by Axiom 2.I, x'# 1. Hence, [x'/lj # [l/l] ;
]

From the hypothesis x' ° 1 =y' ¢ 1, Therefore, x' = y' and x =y

by Axiom 3. Hence, x * 1 =y * 1 and so [k/l} = [y/lj
Let M be the set of all natural numbers x such that [x/l} €T
From the hypothesis [1/1J €1, thus 1€ M., Also, x'€ M whenever xe M

-

since if %x/l] €1, [x'/l] € 1. Hence, M is the same set as Nand so
contains all the natural numbers. Thus, I contains all the integers.
With @/1] playing the role of 1 and [x"/l} being the unique

successor of [x/lw it can be shown that the set of integers is ismorphic

to the set of natural numbers.
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CUTS

Cuts will be defined in terms of sets of rational numbers. Their
basic properties will be established and again it will be pointed out that
a subset of the set of cuts, under appropriate definitions, is isomorphic
to the integers and thus to the natural numbers.

Definition 3.1. A set of rational numbers is called a cut if and only if:

1) it contains a rational number, but not all rational numbers;

2) every rational number of the set is less than every rational
number not in the set;

3) it does not contain a greatest rational number,

Cuts will be denoted by upper case letters such as W,X,Y,Z.

Definition 3.2. Two cuts X and Y are equal; i.e., X=Y, if and
only if XCY and YCX. Otherwise, X#Y.

Theorem 3.3. The relation = is:

i) Reflexive: X=X.
ii) Symmetric: X=Y, then Y=X
iii) Transitive: X=Y and Y=Z, then X=Z

Proof. Trivial.

And so = is an equivalence relation on the set of cuts.

Theorem 3.4, 1If La/bj; é X and if [c/d] > [a/bj, then [c/d]$. X,
Proof. The proof is by contradiction. Assume {F/d]é X. Then
@/d}<§ P/b} by 3.1(2), and this is 8 contradiction of the hypothesis.

Thus, [c/d]é X.

Theorem 3.5, If [a/b] € X and Ec/d]( [a/b], then [c/d]é X.

Proof. Assume I?/d}é;x. Then, [é/b]<\ @/d} by 3.1(2) and this
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contradicts the hypothesis. Thus, [?/d]é-x.

Theorem 3.6, "Theorem 3,5 and definition 3.1(2) are equivalent.

Proof. That definition 3.1(2) implies Theorem 3.5 was shown in the
proof of Theorem 3.35. To show that Theorem 3.5 implies Definition 3.1(2)
let [é/bl be any element of X and [}/d] be any element not in X.
Obviously, [%/bj # &/d], Assume [?/d] <l}/b] . Bv 3.6 since [é/blé X
[é/dJe X and this contradicts the hypothesis. Hence, [a/b}é.ﬂc/d] s

Theorem 3.5 may now be used in place of definition 3.1(2) in showing
that a set of rational numbers is a cut.

Definition 3.7. X>Y if and only if there exists [é/b] such that
a/b]€x and :ax/b:,f ¢ v.

Definition 3.,8. X< Y if and only if Y> X,

Theorem 3.9. Given X and Y, one and only one of the following can
occur; X=Y or X>Y or X<Y.

Proof. To show that only one of the three cases can occur let X=Y
and X<Y. Then, Y<Y and this contradicts Theorem 3.3(i). Similarly,
X=Y and X> Y cannot occur simultaneously. If X>Y and X< Y, then there
exists [?/b} such that @/@ng and [é/b] & Y, and there exists [ﬁ/d]
such that [c/d]& X and ]:c/d]$ Y. Thus [a/b] > [:c/d] and [a/b:|4 Lc/d:l
by 3.1(2) and this contradicts Theorem 2.22. So, only one of the cases
can occur,

To show that one of the cases must occur we note that either X=Y
or X#Y. If X#Y there exists i}/b} such that [a/b] € X and [?/glé-Y
which implies X>Y by 3.7; or, there exists {?/d] such that [c/d]$=x

and k/d] € Y which implies Y>X by 3.7 and so by 3.8, X£ Y. Hence, one

of the three cases must occur,




Theorem 3.10, If XL ¥ and Y<Z, then X< Z.
Proof. Trivial,
Definition 3.11. By the sum of X and Y, denoted by X+Y, is meant

the set of all rational numbers which are expressible in the form [?/b] +

E:/d_} where [a/b:{ €X and [c/d] €Y.

We note that although the above symbol is the same as the addition
symbol for natural numbers. the corresponding operations are not the same.
This symbol will from now on be used to represent the binary operation
addition on any set to avoid cumbersome notation and it will be clear from
the context which is meant. Similarly, from now on ° will represent the
binary operation multiplication on any set and usually will be omitted,

Theorem 3.12. + is a binary operation on the set of cuts.

Proof. To establish this theorem, the following lemma is needed.
Lemma 3.13, No element of X + Y can be written as P/b] + [ﬁ/d}
where [?/bJ is any element not in X and &/d] is any

element not in Y.

Proof. Let {k/y] be any element of X and [}/wj be any element of
Y. Then [ﬁ/y]< [?/b] and [?/w]< [?/d] by 3.1(2) and this
implies that[}/y] + [}/w1<_ @/b] + [ﬁ/d]. Since all elements
were arbitrary the lemma is proved.

Now to show that X + Y is a cut

1) Let X and Y be any two cuts with [?/b]é X and [;/d]é:Y. Then,

Ea/b] + [c/dj €X + Y by 3.11. Thus, X+ Y has an element., If [x/y] é X
and fz/wj 4¢Y, then [x/y] + [z/w] &X + Y by 3.13. Hence, there is

an element not in X + Y.

2) Given any [x/y] €X + Y then [x/y] = [a/b] + [c/d} where
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[a/b] € X and [c/d] € Y by 3.11. Let [z/w| be any element less than
[x/y] . We note that if we can show that z/w] is expressible as the
sum of two rational numbers contained respectively in X and Y, then
Theorem 3.5 is satisfied and thus this implies Definition 3.1(2) by
Theorem 3.6.

Now, [e/w] = ([a/b] + [e/d]) ([z/w]/([a/b]+ [«;:/d])) by 2.28.
Also, [a/b] + [e/d] = ([a/b] + [e/a]) [1/1] . since [z/v]<[a/b] +
[e/4] ,([a/b] + [c/d]) ([z/w‘;/([a/b] + [c/d]))<([a/b]_ + [c/d]) [i/1].
Thus; [z/v] /([a/bj + [c/d])<[1/1] by 2.24. Now, [a/b] ({;/w]/ [@/b}[cdj))
¢ [arv] [1/1] = [a/b] and so is an element of X. Also, [c/d]s
(Lz/w (B/b] + £c/d])>< [e/d] [1/1] =
of Y. Hence, [z/w| = ([a/b] + [erd] ( I/ La/b + [c/dJ)>= [arb ]
(&/w]/(é/b] + E:/d:[))+ [e/d] (z/wJ /(ka/b + dd]))by 2.18. Therefore,

[z/w] can be expressed as the sum of elements of X and Y respectively and

[c/dj and so is an element

thus [z/w]é X + Y. Thus, part(2) in Definition 3.1 is satisfied.

3) Given any [:x/yJ € X + Y then [x/y] = @/b] + Jc/d] where
La/b] € X and [c/d] €Y. There exists [z/w]éx such that [z/w]) [a/b__lT
since X is a cut, Hence, [a/b] + E:/d]< [z/w:;' + [c/d] by 2.25. Since
[z/w] + [c/d:[ is obviously an element of X + Y and Lx/y] was any element
of X + Y, X + Y has no greatest element and part(3) in Definition 3.1 is
satisfied. Hence, X + Y is a cut.

X + Y is unique since each of its elements is an unique sum of
rational numbers,

Theorem 3.13., X + Y>X.

Proof. Let [c/d] be any element of Y. Now there exist [a/b_‘ €X

and '[x/y] &X such that [a/b_] - [x/y] = E:/d:‘. Thus, [a/b] =

([a/b] - [x/y]) + [x/y] = [e/a] + [x/y] . Thus [c/d] + [x/y]|dx
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and is an element of X + Y. Hence X + Y>X by 3.7.

Theorem 3,14, X =Y or X>Y or X£Y if and only if X +Z =Y + Z or
X+2>Y+2Zor X+2Z<Y+ Z respectively,

Proof. If X = Y then obviously X + 2 = Y + Z2: X>Y implies there
exists [a/b] such that [a/b] € X and [a/b] ¢ Y . Choose[x/y] such that
E(/y“j< [z/w] where [z/w] € X by 2.26. Now there exists [_u/vlé Z and
/s | ez such that [u/v] - J:r/sj = [z2v] - [xly] .
([u/v] - [r/s]) - ([r/s] + Lx/y])

([z/w] - [x/y]) + (*Lr/s] e IX/YI)
[rw] + [e/d]

Hence, [i/w] + [r/s]éX + Z and [u/v__l + [_x/y]*Y + Z. Thus,

(]

Thus, [p/v] + [}/y]

X+ Z>Y + Z,

If X<Y then Y >X by 3.8 which implies that Y + Z>X + Z by above
and so X + Z<Y + Z by 3.8.

The converse follows immediately from the preceding proof and the
fact that the cases are mutually exclusive and exhaust all possibilities,

Theorem 3,15, X+ Y=Y + X

Proof. Trivial.

Theorem 3.16. (X+Y) +Z =X + (Y+Z).

Proof. Trivial.

Theorem 3.17. If X>Y, J/Z such that X = Y + Z.

Proof. Z is unique for if T is also a solution then Y+ T =Y + Z
which implies T = Z by 3.14,

To show such an Z exists, look at the set of all rational numbers

expressible in the form [?/bl - [@/dl where [é/hléﬁx, I@/d]géY, and

%/§L>[é/d] . This set is a cut since:




1) XY implies there exists [a/b] such that [a/b] & X and [a/b]¢Y.
Let [c/d] be any element of X such that [¢/d]> [a/b] by 3.1(3). Thus,
[c/a] - [a/b] exists and is an element of the set. Let [x/y| be any
element not in X, and let [z/w| be any element in the set. Then [z/w] =
[s/v] - [r/s] where [u/v]EX, [r/s] &Y, and [u/v]> [x/s] .

Now, [u/v] - [r/s] <([u/v] - [r/s])+ [x1s]

= [u/v:[ by 2.29

< [x/y] by 1.3(2).
Hence, [x/yJ exists since X is a cut and is not an element of the set,
and so property (1) in 3.1 is satisfied.

2) Let [z/w| be any element of the set. Then [z/wl = [a/b] -
[c/d] where [a/b] €X, [c/d] &Y and [a/b]> [c/d]. Let [x/y] be any
element such that [x/y|< [z/w]. Now, [x/y] + [e/d] <([a/b] - [c/d])
+ |esd] by 2.23. Thus, x/y + z/we= c/d . :

Thus [x/y] + [c/d] €X by 3.5. Now, [x/y] + [e/d] = [x/y] + [c/d]
implies [x/y] = ([x/y] + [e/d]) - [e/d] where [x/y] + [c/d] ex,
j}/d]% Y and [x/y] + [c/d] >[c/d] . Hence [x/y]| belongs to the set
and by 3.6 part (2) of Definition 3.1 is shown.

3) Given any [x/y| in the set. Then [x/y] = [a/b] - [c/d]
where [a/b] €X, [c/d] ¢ Y and [a/b] > [c/d] . Let [z/w] & X such that
2/v]> /6] . Then, ([erw] - [e/a]) + Frd)> (E/b] . [c/d1>+
[c/d] which implies [z/w] - [c/d|p[a/b] =~ [c/d] by 3.14. Hence, no
greatest element exists and part (3) in Definition 3.1 is shown. Thus our
set is a cut and it will be denoted by Z.

It remains to show that Z is the cut which satisfies the relation

X=Y+ 2.

29
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Show Y + 2CX. Let [x/i]éy + Z, then [x/y] = [a/b) +
([c/d] : [e/f]) where [a/b] £Y, [c/d] €%, [e/£] 4Y, and [c/d])>
[2/£) . Now, [a/b] L [e/f] by 3.1(2) which implies f_'a/b] + ([c/d:) -
[e/fJ) < lerg] + ([c/d] P [e/f]) by 2.23.
- [c/d] by 2.29.
Hence [x/y:] &£ X by 3.5 and so Y + Z£ X.
Show XCY + 2. Let [x/yJéx and [x/y] &Y. Since X is a cut [a/v]

& X [a/b]> X/y] . For the cut Y_-?E“/"’]‘%*Y and [z/wj &Y such that [u/vj—
[z/w] = [a/b] - [x/yj « -Thus, [u/vj} + [x/y_J1i = [a/b] + [z/wj .
Now, ([u/v] E ([x/yj - [z/vgj)) + [z/wj =[u/\:7 + (([x/yj - [z/w]) + [z/w])

W

= [a/b) + [z/w] .

Hence, [u/v] + ([x/y) - [z/wj) = (:x/y] by 2.23 which implies
[a/b] - (’ju/v] = [x/yj - [z/wj . Since [x/y] - [z/wj exists,
[a/b] - [u/v_] exists. Let [a/b] - [u/v] = gr/s Then [u/v] =

[a/b] - [r/s]. Now, [a/bj([a/bj + [r/s:} X Hence,<[a/bj - [r/s])

+ [r/s]([a/b} + [r/sa which implies [.a/b] - Er/sj([a/bj by 2.23.
Thus, [u/vJ<[a/b] and so [x/y] =(Ec/y] - [z/w]) + 'z/QJ

= ([a/b] - [u/v])+ Ez/wj

= [z/w] + ([a/b] - I_u/vJ)
is an element of Y + Z. Hence, XCY + Z, Therefore, X =Y + Z by 3.2,

The cut Z is denoted by X - Y and is called the difference X minus Y.

Definition 3.18. By the product of X and Y, denoted by XY, is meant

the set of all rational numbers which are expressible in the form
lod] a/b] &
[a/bj Lc/dJ where La/bj &X and Ec/d] € Y.

Theorem 3.19. ° is a binary operation on the set of cuts.




Proof. To prove this theorem the following lemma is needed.

Lemma 3.20. No element of XY can be written as [a/@] [c/dJ where
la/b] ¢ x and [c/d] E;EY.

Proof. Let [x/x] be any element of X and [z/y] be any element of

Y. Then [x/x}<i[a/b] and [z/w) <[h/QJ . Hence, [x/y] [z/wj L a/é} [c/é)

Since all elements were arbitrary, the lemma is proved.

Now, to show that XY is cut.

1) Since X and Y are cuts, there exists |a/b] £X and [e/d]) € ¥.
Therefore, [a/b] [c/d] exists and is an element of the set. Let [x/y]
be any element not in X and |z/w| be any element not in Y. Then,

[x/y] [2/w] exists and is not an element of the set by 3.20.

2) Let [z/w] (XY then [2/w] = [a/b] [c/d] where [a/b] €x
and [c/d] € Y. Let [x/y] be any element less than [z/w] . Then
3/ [ulv] such that [x/y] [u/v] = [a/b] [e/a] by 2.28. Thus,

[x/y] = ([arv] Ic/d])/[u/vj . Now, ([a/v) [e/d)) [[u/v] [u/vj)

[a/b] [e/d]

[arb] (( e/a]s [urv]) [u/v])

([a/b] ([er4] /[u/v])) [u/v] by 2.16.

Hence, ([a/b] e/a)) 1[urv) = [arv] ([era]s [u/vj) by 2.26.

atso, [xy) = [ar] ([era] 1 [wry]) <[arv] [era] . mence [c/a)/ ury]

[E/q] and so [b/d]/[p/vjéY. Since (a/ble X, (x/y| ¢ XY and so part (2)

in definition 3.1 is satisfied.
3) Let [a/bl¢ X and [c/d]¢ Y. Then there exists [x/y]| €X such that

(x/y] > (a/b] . Hence, [x/y] le/d) € XY and (x/y] (e/d] >{?/yj La/b]

by 2.26.

Hence, the set XY is a cut.

3l

.
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XY is unique since each of its elements is a unique product of
rational numbers,

Theorem 3.21, XY = ¥X.

Proof. Trivial.

Theorem 3,22, (XY)Z = X(YZ)

Proof. Trivial

Theorem 3.23. X(Y+Z) = XY + XZ.

Proof. To show X(Y+Z)CXY + XZ let [x/y] be any element of X(Y+Z).
Then [x/y] = [a/b] ([cjd] + Le/ﬁj) where [a/b] ¢ X, (c/d] ¢ Y and
(e/€]€ z. Now (a/b] ((c/d] + Le/f__]) = (a/b) [e/d] + [a/b] [c/£)
by 2.18. Thus, (x/y]| ¢ XY + XZ.

To show XY + XZ C X(Y+2) let [x/y] & XY + XZ. Then [x/y] = [a/ﬁ}
k/d]l + [(e/f] [g/h] where (a/b] € x, (e/d]c ¥, (e/f]e x, (g/hle z.
Choose the greater rational number of (a/b| and Lg/f] . Suppose [a/b]
is the greater. Then (e/f] < Ea/&] implies {e/f ] (g/h] <« (a/b] Lg/hj p
Hence, (a/b] [e/d] + (e/f] [ g/h]< {g/b] (c/d] + (a/b] [g/h]

= [a/b]) ([e/d] + [g/n]) by 2.18.

Thus, (x/y]¢ X(Y+Z) and hence, XY + XYCX(Y+Z). Therefore, by 3.2 the
theorem is proved.

Theorem 3.24. Given (r/s] , the set of all rational numbers less
than [r/s] constitutes a cut,

Proof.l) By 2.28 there exists [z/w] such that (z/w] <[r/sj . So the
set has an element. The number [r/s] exists and doesn't belong to the
set.

2) Let [a/b] belong to the set. Let (x/y] be any rational

number less than [a/b] . Since [a/b] ¢(r/s| and (x/y]<[a/b] ,
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[x/y] < [;/s] . Hence, (x/y] belongs to the set.

3) Let (a/b] belong to the set then [a/bl<[r/s] . By 2.27
there exists [ x/y] such that (a/b]l <(x/y]<(r/s] . Thus, the set con-
tains no greatest number. Hence, the set is a cut.

Definition 3.25. The cut in Theorem 3.24 will be called a rational
cut and will be denoted by (r/x7] *. In general rational cuts will be
denoted by rational numbers with asterisks with the exception that in the
following development ([1/17]* will be denoted by 1.

Theorem 3.26. X=Y or X>Y or X<Y if and only if XZ = YZ or XZ >
YZ or XZ < YZ respectively.

Proof. The following lemma is used in the proof of this theorem.

Lemma 3.27. If X = Y+Z, then X >Y.

Proof. Either X=Y or X>Y or X< Y by 3.9. If X=Y then Y=Y+Z and

this contradicts 3.13. If X< Y then 3/T such that X+T = Y by 3.17 and 3.8.

]

Hence X (X+T)+2

X + (T+Z) by 3.16

which again contradicts 3.13. Thus X >Y.

Now, suppose X=Y then obviously XZ = YZ.

If X>Y 3 /T such that X = Y+T. Thus XZ = (Y+T)Z = YZ + TZ by 3.23.
Hence, XZ >YZ by 3.27.

If X<Y then Y >X which implies YZ >XZ which implies XZ < YZ.

The converse follows immediately from the preceding proof and the fact
that the three cases are mutually exclusive and exhaust all possibilities.

Theorem 3,28, X°'1 = X.

Proof. To show that X-1< X let (z/w] ¢ X-1. Then (z/w] = [x/y] [a/b]

where (x/y] ¢ X and [a/b] € 1. Since [a/b] ¢ 1, (a/b] 4{1/1} . Thus,
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[x/y] [a/b]zﬁc/y] [1/’1] = fx/y] ! ﬁence, Cz/w_] & X and X-1CX.

To show XCX-1 let (x/y] € X. Since X is a cut there éxists
(z/w] ¢ X such that (x/y]< [z/w] . Now, (1/U/ (z/¥] (x/y] = x/¥]/ [z/w] .
Thus, [x/y] /(z/w] = (Q/1/@m) iy <2/ 1 @nd) i) = (1],
Hence, [x/y]/(z/w]€1. Therefore, (x/y] = (z/w] ((x/y]/[z/w])¢X-1.
Hence, XCX-1. Thus, X-1 = X.

Theorem 3.29. Given X, 3/Y such that XY = 1.

Proof. The uniqueness of Y is easily established since if Z is also
a solution then XY = XZ which implies Y=Z by 3.26.

Consider the set of all rational numbers of the form (1/1]/ [x/y]
where Ex/y]*X, excepting the least rational number which is not an
element of X, if one exists.

1) Let [x/y]¢X. The rational number ((x+x)/y]>[x/y] since (x+x)y =
Xy + xy >xy. Thus, [(x+x)/y]¢ X by 3.4 and is not the least such element.
so [1/1] /{(x+x)/y]belongs to the set. Let (a/b]€X then[1/1]/ [a/b) is not
an element of the set for if it were then (1/1] /[a/b]=[1/1]/[c/d] where
[c/d]¢ X. Hence, ((c/a] (a/v]) (/1] / @/8]) = (fe/d] (a/b])([1/1]/ (e/d]) which
implies [a/b] = [c/d]. Hence [a/b';H';X which contradicts hypothesis that
(a/b] € X.

2) Let [1/1] /[}(/y] belong to the set where [&/y]¢ X and is not the

least such element, if one exists. Let (z/w]<[1/1 /[x/y] . Now,
(2/w] [wlz] = [(zwiled)]

((wz)-1/(wz-1)]

[1/1]

Thus, (z/w] = (1/1]/(w/z] and so (1/1] /(w/z]<(1/1] /(x/y]. Hence,
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(wr2] Gery)) (/)7 @iz]) < (/2] (x/sd) (/1) / (/) which implies
(x/y] <[w/z] . Therefore, [w/z] & X and is not the least such element.
Hence [z/w| is an element of the set.

3) Let [x/y] ¢ X where [(x/y] is not the least such element, if one
exists. Now there exists (a/b] such that ([a/b]< (x/y] . By 2.27
there exists [c/d] such that [a/b] < (c/d] and [c/d]< (x/y] . Thus,
(c/d] ¢ X and is not the least such element. Since [c/d]<(x/y] ,
(((1/1]/[x/y]> ({1/1]/(9/d])> e/d] <({1/1J/[x/y}) (@/1}/'@@])) (x/y]
implies ([1/1)/[x/y] < (1/1)/(c/d] . Hence no greatest element of the set
exists. The set is a cut and will be denoted by Y.

It remains to show that XY = 1. To show XYC 1 let (x/y] be any
element of XY then (x/y] = [a/b] ({1/1)/[c/d])where [a/b] € X and
(1/1)/[c/a) €Y. Thus, [c/d] ¢ X and so [a/b] < [c/d]. Hence, (a/b]
(/)7 lerd)) = (arb)/(c/d)< [1/1] and so (x/y] € 1. Thus, XYCL.

To show 1CXY let [a/b] be any element of 1. Thus, [a/b]< (1/1].
Now, there exists [x/y] ¢ X and [z/w] € X such that [x/y] - [z/w] =
([1/1] - [a/b))[c/d] where (c/d] € X. since ([x/y] > [e/d]
iyl - (] < (1] - (arb]) Gervd
/1] [xry] - (asw] Oxty]

x/y] - (a/b] (x/y].

Thus, ((x/y] - [e/w]) + ((z/w] + [a/m) [x/y]) = (x/y] + [a/o]):

iyl < ((ey] - ] (il ) + (lerw] + [ar] v)) = [w/y] +

[2/u] which implies ([a/b] [x/y] < [2/w] . Thus, ((a/b] [x/y]) (1/1Mfary) =
(x/y] < [z/w) (/1] /[a/b]) = (2/w]/[a/b] . Hence, [2/u]/[a/b] ¢ X and

is not the least such element. Therefore, (a/b] = [z/u] ([1/1]/([z/w]/[a/bj))

]

where (z/w]€X and [z/v] / [a/b] ¢ X . Hence, [a/b]¢€ XY and 1C XY.
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And so XY = 1,

Theorem 3,30. Given X and Y, 3/Z such that XZ = Y.

Proof. The uniqueness is obvious. By 3.29 3/W such that XWw = 1.
Then Z = WY is the solution since XZ = X(WY) = (XW) Y = 1'Y = Y.

Z is called the quotient of Y by X and is denoted by Y/X.

Definition 3.31. A cut of the form [x/1]* is called an integral cut,

Theorem 3.32, (:a/b] = [c/d] or [a/b) > [c/d] or (a/b] < [c/d]

if and only if [a/b]* = ([c/d]* or [a/bl* > (c/d]* or (a/b]* < (c/d] *
respectively.
Proof. If (a/b] = (c/d] , then obviously [a/b]* = [c/b]*

1f (a/b]>[c/d] then (c/d]€ [a/b] * . By 3.24 and 3.25 [c/d] €
[c/dl*. Hence, [a/bl* > [c/d]* .

If (a/b] < [c/d] then (c/d] > [a/bl . Thus, by above proof (c/d]*

(a/b]* and so [a/b]* < [c/d]* .

The converse follows immediately from the preceding proof since the
three cases are mutually exclusive and exhaust all possibilities.

Theorem 3.33. The integral cuts satisfy the axioms of the natural
numbers if the role of 1 is assigned to 1 and if(Eg/{]*)' = [k'/i]* ; i.e.,

Axiom L.IITI. If [x/1J* = [y/1]* then [x'/L* = ([y'/1]*,

Axiom 2.III. There exists an integral cut 1 such that [x'/1]* # 1.

Axiom 3.IIT. If [x'/1]x = (y'/L]*, then x/1* = y/1 % ,

Axiom 4.III., Let M* denote a set of integral cuts possessing the
following properties:

a) leM* |, and

b) if (x/1]*eM*, then ([x/1]%)'é€ M*

Then M* contains all integral cuts,

Proof. Since [x/1]* = [y/1] %, (x/1] = [y/1] by 3.32. Thus,
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[__x'/lj = [y'/l:l by 2.32 Axiom 1.II. And so [x'/l]* = [y‘/g* by 3.32,
The existence of 1 is obvious. To show [x'/1]* # 1 suppose [x'/L]*

= 1. Then [x'/l] = [1/1] and this contradicts 2.32, Axiom 2,II.

Hence, (_x'/l]* # 1.

y'/1=* , Ex'/l] = Ly'/l:] . Thus by 2,32

Df/l] and so [x/1* = [y/I)* .

Since [x'/l]*

Axiom 3.II., [x/1]

Let M be the set of all [x/1] for which Lx/l] *emr,  [1/1]em
since 1€ M*. Also, (x'/1]¢M whenever [x/l]€M since ([x/l]*) 'e M*
whenever [x/l_] *¢M*, Hence, M contains all integers and M* contains all
integral cuts.

With 1 playing the role of 1 and [x'/l]* being the unique successor
of [x/l]* it can be shown that the set of integral cuts is isomorphic to
the set of integers.

Theorem 3.34. A cut is rational if and only if there exists a least
element [a/b] which is not an element of the cut, La/b_]* is then the cut,

Proof. Suppose the cut is rational. Denote the cut by la/b]*. Now
[a/ij [—_a/b_]* and is the least such element, for if there exists another
such element [c/d] such that [c/d]<([a/b] then [c/d]¢ [a/b]*.

Suppose there exists a least element [a/b] which is not an element
of the cut. Then every [x/y]é [a/bj is not an element of the cut and
every [z/w] < [a/b] belongs to the cut., Hence by definition [a/b]*
is the cut,

Theorem 3.35. Let X be a cut. Then [a/b] € X if and only if
(a/b]*< X, and heﬁce is not an element of X if and only if [a/b]*2X.

Proof. If (a/b] € X then [a/b] &.(:a/b:] *, Hence, La/b]*<x.

If [a/b) § X and is the least such element then [a/b]* = X by 3.34.
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1f [g/b] ¢ X and is not the least such element choose [x/y] & X
such that [x/y] < (a/b] . Thus (x/y]¢ [a/b)*. Hence, [a/b]* >X.

The converse follows immediately from the preceding proof and the fact
that the three cases are mutually exclusive and exhaust all possibilities.

Theorem 3.36. If X<Y there exists [a/b]* such that X <(a/b]*<Y.

Proof. X<Y implies there exists [x/y] such that [x/y] § X and
[x/y:] € Y. By Theorem 3.35, X £ (x/y]*< Y. Choose [a/b] ¢ Y such that
Lx/y] < ['_a/b] . Then [x/y|*< [a/b]* and thus X< [x/y]* ¢ [a/b]* <Y which
implies X< [a/b]*<Y.

Theorem 3.37. For each X, YY = X has an unique solution,

Proof. To show the uniqueness assume T and Z are solutions with
T<Z. Then TT<ZT and ZT<ZZ. And so, TT<ZZ. Hence the solution is
unique, if it exists.

To show the solution exists consider the set of all [a/b] such that
[g/bl [a/ﬁ} € X. This set is a cut for :

1) 1If {a/b]€l and [a/b] € X then [a/b] [a/b] € 1'X = X. Hence
X contains an element of the form [glb] [p/ﬁ] and our set has an element.

1f (a/b]¢1 and [a/b]¢ X then [a/b] [a/b] € 1°X = X by 3.20.
Thus the set does not contain all rational numbers.

2) Let [a/b] be any element less than [x/y] where Ex/y] [x/i]ex.
Then [(a/b] [a/b] < (x/y] (x/y] and so [a/b] rL‘a/b] € X. Hence (a/b]

belongs to the set.

3) Let [2/w] be any element of X then [z/w] = [x/y] (x/y] .
Choose [a/b] such that [a/b] ¢1 and [a/b) ([x/y] + ([xty] + [1/1_'[))
+ [x/y] [x/y) € x. Now (x/y] + [a/b] > (x/y] . Hemce, ([x/y] +
@/ﬂ)([x/y] + (arv]) = (Ge/y) + (arm])Tesy)  + (Txty] + (arb)):
[a/b]<(Ec/y] k/y] + (a/v] E‘/Y]> + (vl + QA]) @] = e/
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o] + (lare] ) + (Gv] + () [arv]) = (xts] [xty] +
(xty] + ((x/y] + (EX/y] + (:1/1_])) (a/b] € x.

Hence, ([x/y] + [a/b])([:x/y] + [a/b])é_ X and the set contains no
greatest number. Denote this set by y.

It remains to show that YY = X.

Suppose YY >X. Then there exists [x/y] such that [x/y] € YY and
(x/y]¢ x. Now [x/y] = (a/b] (c/d] where(a/b] ¢ Y and [c/d] € Y.
Choose the larger of [a/b] and [c/d)] . Suppose it is [a/b] . Then
x/yl< (a/b] (a/b] € X. Thus, [x/y]€X and this contradicts that [x/y] ¢ X.
Hence YY is not greater than X.

Suppose YY<X. By 3.36 choose [x/y]* such that YY < (x/y]* < X,

Now [x/y]* = (a/b]* [c/d]* where [a/bl*2Y and [(c/d]* > Y. Let
(a/b]* denote the lesser of [a/bj* and [c/d]* . Then [a/bl* 2 ¥
which implies [a/b]* (a/b]*2X. Hence [x/y] € X and [x/y] ¢ X which
is impossible. Thus, YY cannot be <& X. Hence, YY = X.

Theorem 3.38. [a/bl* [c/d]* = ((ag/bd)}*

Proof. To show (a/b]* [c/d]*c [(achpd]]¥ let (z/w]e [a/b]* ([c/d]* .
Then [2/w] = [u/v] [r/s) where [u/v]e [a/b]l* and (r/s] ¢ [c/d]* . Now,
(u/vle[a/b] and (r/s] < [c/d] which implies [u/v] [t/s] < (a/b] (c/d] =
facibd)] . Hence, [z/w]é€ ((ackbd]]* and [a/b]* [c/d]*c [(ackbd]*.

To show [(ac/bd)* c [a/b]* [c/d]* 1let [z/w]¢[(ad/bd)* . Then

lz/w]< [(ac/bd)]. Now there exists [x/y] such that [z/w]< [(x/y]< [lac/bd)] =
(a/b] [c/d]. Thus [x/y)/[c/d]< (a/b]. Also given (z/w] and (x/y)/(c/d]
there exists [u/v] such that [z/w] = [u/v] ([x/y)/ (c/d]) < [c/d]
(Cx/y)/ e/d)) = (e/d]. Thus, [u/v]< [c/d] . Hence, (z/w] = [u/v]
(Lx/y]/ (e/ad)<[e/d] (x/¥1/(c/d]) < [/d] [a/b] = [a/b) [c/d] where
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Cu/v] ¢ [a/b_]* and [x/y]/(c/d)e [c/d]* . Thus (z/w] e (a/b] * Ec/d]*
and so ((ac)/(bd)J* < [a/bl* [c/d]* . Hence [a/b]* [c/d]* =
f(ac) / (ba)]* .
Definition 3.39. Any cut which is not rational is called irrational.
Theorem 3.40. There exists an irrational number.
Proof. That the solution of XX = 1' is irrational will be shown in
what follows. We note that the existence of the solution is guaranteed
by 3.37. Assume that X is rational; i.e., X = [a/b]* . By Theorem
1.22 choose the representative of [afb] such that b is as small as
possible. Since 1' = [a/b]* [a/b]* = [(aa)/(bb‘)_]* = XX, bb<1l' (bb) = aa
= (1'b)b < (1'b)(1'b). Thus, bca<l'b. Set a-b = u. Then b+u = a<1'b

= b+b which implies u¢«b. Set b-u = t. Then aa + tt = (b+u)(b+u) + tt

((b+u)b + (b+u)u) + tt

((bb + (ub + bu)) - uu) + tt

((bb + 1'(ub)) + uu) Tt

((bb + (1'u)(t+u)) + uu) + tt

(bb + 1'(uu)) +((uu + 1'(ut))+ tt)

(bb + 1' (uu)) + (utt) (utt)

(bb + 1'(uu)) + bb

1'(bb) + 1'(uu)

aa + 1'(uu) .

Hence tt = 1'(uu) which implies (tt)-l1 = 1'(uu) and so [(tt)/(uu)]* =1"',

Thus Lt/u]* [t/u]* = 1'. Hence u>y since y was the smallest such

natural number. But this contradicts u<¢y. Thus, 1' is irrational.
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REAL NUMBERS

A new number, called a real number, defined in terms of ordered pairs
of cuts is introduced in this section. It will be shown that the real
numbers possess the commutative, associative, and distributive properties,
Again it will be pointed out that a subset of the real numbers obey the
axioms of the natural numbers under the appropriate definitions. The set
of all real numbers will be denoted by R.

Definition 4.1. The ordered pair (X,Y) is equivalent to the ordered
pair (Z,W) if and only if X+W = Y+Z. The relation will be denoted by ~~
and the ordered pair by X-Y.

Theorem 4.2, The relation is:

i) Reflexive: X-Y ~ X-Y

ii) Symmetric: if X-Y ~ Z-W , then 2Z-W ~ X-Y

iii) Transitive: if X-Y ~ Z-W and Z-W ~ T-U , then X-Y ~ T-U

Proof. Trivial.

Hence, ™~ is an equivalence relation on the set of ordered pairs of cuts.

Definition 4.3. By a real number we mean the set of all ordered pairs
equivalent to a given ordered pair. If (X,Y) is the given ordered pair,
then the real number is denoted by LX-X] .

Definition 4.4, Two real numbers, [X—Y] and [?—W] are said to be

equal if and only if EX-Y]CZ {?-ﬁ] and {Z—WJCI [X—X] . This will be

denoted by EX-Y] = [z-w] . otherwise, [X-Y] # ﬁZ-W] :
Theorem 4.5. [X-Y] = [2-W] if and only if 'X-Y ~ Z-W
Proof. Assume [X-Y] = (Z-W]. Since X-Y ¢ [X-Y] , X-Y ¢[z-W]

by the hypothesis. Hence, X-Y~~Z-W by 4.3, To show the converse, assume




X-Y ~ z-W. Let T-U &€ (X-Y|. Then T-U ~X-Y. Thus, by 4.2 (iii),
T-U ~ 2-W and so T-U¢ (2-W]. Hence, (X-Y]c (z-W]. similarly, (z-W]c

[z-w] by 4.4.

[X-Y], Therefore, (X-X]

Theorem 4.6. (X-Y| (z-W] if and only if X+W = Y+Z.
Proof. Trivial.

Theorem 4.7. The relation = is:

i) Reflexive: EX-Y] = [X-X].'
ii) Symmetric: if (X-Y] = (z-W] , then [z-w] = (x-y] .
i11) Transitive: if [X-Y] = [z-W] and [z-4] = [T-U], then[X-U] = [T-U

Proof. Trivial,

Hence, = is an equivalence relation on R.

Definition 4.8. By the sum of two real numbers, to be denoted by +,
is meant the following: [X-Y] + [z-W] = [(x+2) - (v+w)] .

Theorem 4.9. + is a binary operation on R.

Proof. It is obvious that the sum gives a real number. It must now
be shown that the sum is well defined; that is, it doesn't depend on the
particular ordered pairs of cuts used to name the real numbers. Symboli -
cally, if [X-Y| = [z~w] and (T-U] = (P-v] , then we wish to show
that [X-¥] + [T-U] = (2-W] + [P-V]. Now, X+W = Y+Z and T+V = U+P

by 4.6. So, (X+W) + (T+V) (Y+Z) + (U+P). Thus, (X+T) + (W+V) = (Y+U) +

]

(Z+P) which implies (X+T) (Y+U) = (Z+P) - (W+V) by 4.6 and so

[X-Y] + [I—U] = [wa] + [P-V] by 4.8. Hence, the theorem is shown.
(zw] = [zw] + [x-¥].

((x+2) - (t+W)] by 4.8

=

Theorem 4.10. [X=Y]

Proof. EX-Y] + EZ-W]

[(z+x) - @+1)]
(z-w] + [x-¥] bys.s.

42
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Theorem 4.11. ([x-v] + (z]) + [r-u] = (x-v] + ([zaw] + [‘T-U]}.
[tv] = [xz - W] + [1-U]
B(X+Z) +T) - (Cvsw) + U)]

((x+ @) - (v+ @)

Lx-v] + (@) - @w+0)]

(x-v] + (2] + x-u])

Definition 4.12. By the product of two real numbers, to be denoted

Proof. ([x_ﬂ + [z-w])

+

by + , is meant the following: (X-Y] (z-W] = [z + W) - (vz + XW)]

Theorem 4.13. * is a binary operation on R.

Proof. 1t is obvious that the product is a real number. To show
that the product gives an unique real number it must be shown that the
particular given pair of cuts used to name the real number is arbitrary;
that is, if EX-Y] = [Z-WJ and ET-UJ = [P-V], then we must show that
x-v] (r-v] = (zw] [-v] .

Proot. It is easy to show that (XT + YU) + (WP + 2V) = (YT + XU) +

(ZP + WV). Then (XT + YU) - (YT + XU) = (ZP + WV) = (WP + ZV)
Hence, (x-v] [T-u] = (z-w] (p-v].
Theorem 4,14, [X-Y] [?-W] = [?-WJ [k—YJ s

Proof. (X-v] (2-W]

[xz + W) - (Y2 + xw)]

[(zx + wY) - (2Y + wx)] by 3.21

(z-w] [x-¥].

Hence, [x-Y] [z-W] = [(z-w] [x-¥] .
Theorem 4.15. ([(x-v] (z-w]) (p-v] = [x-t] ([z-w] [p-v])
Proof. (Lx-Y] zw]) B-v] = [z +w) - vz +xwy) [p-v]

=[xz + vyp + vz + xwyv) -

((YZ + XW)P + (XZ + YW)V)J
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C(X(ZP + WV) + Y(WP + ZV)) -

(Y(ZP + WV) + X(WP + zv))j

(x-v ] [(ZP + WV) - (WP + ZV)]

(x-¥] (z-w] p-v

Hence, ( (X-Y] 2] ) -v] = (x-v] ( Lz (p-v])
Theorem 4.16, [xeyj([z—w] + [P-VD= (x-¥] (z-w] + (x-v] [p-v].
Proof. [xc_Y]([z-w] + LP-VJ) = [x-y] ((@+p) - (V)]

[(x@+2) + Y+v)) - (Y(Z+P) + X(W+V))]

[((xz + W) + (XP + YV)) - ((YZ + XW) + (YP + XV))]

(%2 + W) - (Y2 + XW)) + ((XP + YV) - (YP + XV))|
(x-¥] zw] + (x-v] [p-v].

And so the theorem is proved.

[l

Theorem 4.17. 1If EX-YJ ar LP-V] = [?-W] + [P—V], then
(x-¥] = [z-w].
Proof. (X-Y] + [P-v] = [(%+P) - (¥+V)] and [z-W] + [p-v] =

((z+P) - W+V)] . Thus, (X+P) + (W+V) = (Y+V) + (Z+P). Hence, by 3.14
X+#W = Y+Z which implies (X-Y| = [z-W] by 4.6.

Theorem 4.18. 3/ [P-V] such that for every [X-Y] , (X-Y| +
p-v] = [x-v].

Proof. The uniqueness follows immediately from 4.17. Now (P-V]
(x-v] + [z-z]
[(x+2) - (v+2)]

[Z-i] is the solution since [X-Y] = [P~V]

[X-Y] since (X+2) + Y

(Y+Z2) + X.

[Z-Z] is called the additive identity on R.

Corollary. [Z-Z] + £X=Y] = [X-X}.
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Theorem 4.19. For each (X-Y] 3/ [P-v] such that [x-¥] +
(p] - (2]
Proof. The uniqueness is obvious from 4,17. Now, [P-V] = [v-x]
is the solution since [X-Y] + [P-v] = [x-v] + [¥vx]
= C(X+Y) - (14%))]
= [2z-z) since (X4Y) +Z = (¥4X) + Z
[YX] is called the additive inverse of [X-Y] and will be
denoted by - [X-Y] .
Corollary. - [x-v]+ [x-v] = [z-z].
Theorem 4.20. For every [X-¥], (x-¥) [(@+1) 2] = [x-v] .
Proof. (X-Y | [(z+1) 2] = ((x(z+1) + ¥z) - (xz+1) + xz)}
[(X-Y] since (X(z+1) + YZ) +Y =(Y(2+1) +X2)+ X
Corollary. [@z+1) - z][x-v] = [x-¥].
(x-¥] for every (X-Y]|, then

Theorem 4.21. If [X-Y| [P-v]

vl = (e -2 .

Proof. Now [P-v] [@+1) - Z]
atso, -v] (@) - 2] = ((z+1) - 2] [(p-v] by 4.14

= [(Z+1) - Z] by hypothesis.

(p-v] by 4.20.

Hence, (P-v] = [(z+1) - 2] by 4.7 (iii). [‘-(z+1) - 2] will be called
the multiplicative identity on R.

Theorem 4.22. For each (X-Y| there exists [P-V] such that
x-v] (p-v] = (@) - 2] if (x-¥] # [z-Z].

Proof. [P-v]= [X/A(XX + YY) - 1'(RY)) - Y/(XX + YY) - 1'(XY))]

- [(xx + YY)/ (XX + YY) - 1'(XY)) - (¥X + XY) / ((XX + YY) - 1'(XV))]

= [(z+1) -Z] since ((XX + YY)/((XX + YY) - 1'XD)) + Z =

(1'(XY) /(XX + YY) - 1'(XY))) + (Z+1)
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We note that it can be shown that (XX + YY) - 1°(XY) is a cut,
Thus, the theorem is shown.

Corollary, EP-VJ I:X-Y] = BZ+1) - Z] :

Hereafter, real numbers will be denoted by upper case letters such
as A,B,C.... [2-Z] will be denoted by O and [}z+1)- z| will be denoted
by 1.

Theorem 4,23, A0 = 0 for every A.

Proof. A:0 = A°(0+0)

"

A0+ A0,
Thus - K*0 =0 by &l

Corollary, O0°A =0

Theorem 4,24, A-B = 0 if and only if A=0 or B=0,

Proof. If A=0, then A‘B = 0'B = 0 by 4.23 corollary. If B=0,
then A-0O = 0 by 4.23,

Assume A°'B = 0 and A#0. Then there exists C such that CA = 1 by

(CA)B by 4.15,

4.22 corollary. Hence, C(AB)

= 1°B

1]

B by 4.20 corollary,

c-0

Also, C(AB)

0 by 4.23.

Hence, B=0. Similarly if B#0, A=0,
Theorem 4,25, (-A) B = -(AB)

(A S (-A)) B

= 0-B

Proof. AB + (-A) B

= 0.

Hence, (-A) B = -(AB)

Corollary A(-B) = -(AB).
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Theorem 4,26. (-A)(-B) = AB

Proof. (-A)(-B)

(-A)(-B) + O

(-A)(-B) + (-AB + AB)

(-A)(-B) + ((-A)B + AB) by 4.25.

((-a)(-B) + (-A) B) + AB

(-A)(-B+B) + AB by 4.16

il

(-A)-0 + AB

-(A-0) + AB

0 + AB

= AB
Hence, (-A)(-B) = AB,.

Theorem 4.27. 1If AB = AC and A#0 then B=C. Now, AB + -(AB) = 0. Also,

Proof. AB + -(AB)

AB + A(-B)

AC + A(-B)

A(c + (-B))
Hence A (C + (-B)) = 0. A#0, so C + (-B) = O by 4.24.

Now, B = B+O

B+ (C+ (-BD

(B + (-B))+ C

= 0+ C
=C .
And so B =C if A # 0.
Theorem 4.28. The EP-Y] in 4.22 is unique.
Proof. The proof follows directly from 4.27

GMV] is called the multiplicative inverse of [X-{] and will be

denoted by 1/[X-Y1




Theorem 4.29, -(-A) = A

i

Proof. -(-A) -(-A) + 0

-(-A) + ((-A) +A)

1]

(-(-8) + (-0) +a
= 04 A
= A
Theorem 4.30, -(A+B) = -A + (-B)
Proof. (A+B) + (-(A+B)) = 0
(B+(a+ (-0))) + (-B)

(B+0) + (-B)

I

Also, (A+B) + ((-A) + (-B))

B + (-B)
= 0
Hence, -(A+B) = -A + (-B).
Theorem 4.31. Given any A and B 3J/C such that A = B+C,.

Proof. The uniqueness is obvious., C = -B+A is the solution

since B+C B + (-B+A)

]

(B + (-B) + A

0O+ A

= A,
C is called the difference of A and B and is denoted by A-B.
Corollary, A-B = A + (-B)
Theorem 4 .32, Given A,B Z/C such that A = B:C if B#O0.
Proof. The uniqueness follows directly from 4.27.
To show a solution exists let C = 1/B * A. We note that 1/B

B-(1/B - A)

exists since B#0. Then B:C

(B 1/B) * A

48
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LI}

1-A
= A.
Hence, BC = A. C is called the quotient of A over B and is denoted by A/B.
Corollary. A/B = A-1/B = 1/B * A.
Theorem 4.33. -(A-B) = B-A.
-(& + (-B)
-A +(- (-B)

Proof. -(A-B)

]

-A + B

B + (-A)
= B-A

Theorem 4.34. A(B-C) = AB - AC

Proof. A (B-C) = A (B + (-C))

A B + A (-C)

=aB+ (- C))
=AB-AC
Definition 4.35. X-Y 1is called a positive number if X Y and

a negative number if Y X.

Definition 4.36. A>B if and only if A-B is a positive number.

Definition 4.37. A<B if and only if B>A.

Theorem 4.38. One and only one of the following can occur: A=B or
A>B or A< B.

Proof. Let A-B = [X-Y|. Either X=Y or X >Y or X< Y. If X=Y, then
A-B = (_X-X] = 0. Hence, A=B. If X>Y then A-B = EX-Y] where X>Y.
And so by 4.36, A>B. If X£Y, then Y>X. Now -(A-B) = -[X—Y] and so,
B-A = [Y-X:] where Y >X. Hence by 4.36 B>A which implies A<B by 4.37.

Thus, the theorem is proved.
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Theorem 4.39. A=B or A>B or A< B if and only if A+C = B+C or
A+C > B+C or A+C< B+C respectively,

Proof. If A=B, then obviously A+C = B+C. If A >B, then A-B is a

[}

positive number by 4.36. Also A-B = A + (-B)

(A+0) + (-B)

(A + (C +(-C))) + (-B)

(A+C) + ((-B) + (-0))

(A+C) + (-(B+C))

n

(A+C) - (B+C)
Hence, (A+C) - (B+C) is a positive number. Therefore, A+C >B+C by 4.36.
If A< B; then B>A by 4.37. And by preceding part B+C>A+C which implies
A+C < B+C by 4.37.

The converse follows immediately from the above proof and the fact
that the three cases are mutually exclusive and exhaust all possibilities.

Theorem 4.40, A is a positive numbe: or A is a negative number if
and only if A>0 or A< 0O respectively.

Proof. If A is a positive real number, let A = A+0. Then A-0 = A,
Hence, A >0,

If A is a negative number, let A = EX-YJ. Then Y>X by 4.35.
Now -A = - [X-Y| = [Y-X| where Y>X. Hence, -A = 0+ (-A) = 0 - A =
[Y-X] where Y>X. And so 0>A by 4.36 which implies A< 0 by 4.37.

[X-Y] where X>Y.

As for the converse, if A>0 then A = A-0

Hence, by 4.35, A is a positive number.

If A< 0, then 0>A. Hence -A = 0 + (-A) 0-A = [X-Y] where X> Y.

Thus -A = [X-Y] and -(-A) = A = [:Y-X] where X>Y. And so by 4.35 A is

a negative number,
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Theorem 4.41, If ASO0 or A=0 or A<O, then -A4 O or -A=0 or'
-A 50 respectively.

Proof. If A>O0 then A = EX-Y] where X> Y. Hence, -A = [:Y-X]. And
so by 4.40, -A<0. If A=0 then obviously -A=0. If A< 0 then A = [X-Y]
where Y>X. Hence -A = [Y—X] and so by 4.40, -A> 0.

The converse follows from the above proof and the fact that the three
cases are mutually exclusive and exhaust all possibilities.

Theorem 4,42, A>B or A = B or A<B if and only if A-B> 0 or
A-B = 0 or A-B< 0 respectively.

Proof. Trivial.

Theorem 4.43, If A>B and B >C, then A >C.

Proof. B>C implies B-C=D where D> O.

Hence, B=C+D. Thus, A> B
= C+D.
Now, A?C + D and so A-C>D which implies A-C >0 and so, A>C,

Theorem 4.44, If A>0 and C>0 or A<0 and C>»0 then AC >0 or
AC< O respectively.

Proof. If A>0 and C >0 then A = ‘:X-Y:lwhere X >Y and C= [z-W]
where Z >W. Hence, Z-W exists and X(Z-W) > Y(Z-W) which implies XZ - XW
>YZ - YW and so XZ + YW >XW + YZ. Hence [(XZ + YW) - (XW + ¥2)] > o.
And so AC >0.

If A0 and C<0 then -C >0 and A(-C) = -(AC) >0. Hence, AC< O,

Theorem 4.45. A >B if and only if AC »BC or AC = BC or AC<BC for
C>0 or C=0 or C«< 0 respectively.

Proof. Since A>B then A-B >0,

If C>0, (A-B)C >0 by 4.44, Hence AC-BC >0 which implies AC >BC.
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If C=0 then (A-B)C = 0 . Thus AC - BC = 0 which implies AC = BC.
If C <0 then (A-B)C<O0 by 4.44,
Hence AC-BC< O implies AC <BC.
The converse following from the above proof since the cases are
mutually exclusive and exhaust all possibilities.
Theorem 4.46. If A >0 and B »0, then A+B >0,

Proof. Let A

EX-Y:( where X>Y and B = [Z-w_]where Z>W. Thus,

X4Z >Y4H. Now A+B = ((%+4Z) - (Y+W)J . Since X+Z> Y+W, A+B > 0.
Definition 4.47. A if A>0
A= JOif A =0
-A if A<O

Theorem 4.48. (Al 2 0 .

Proof. If A>0 then |A| = A and so |A|>0. If A=0O then |A| = 0.
If A<O, then |A| = -A. By 4.41, -A>0. Hence, |A|20. 1In any case
Al 2o,

Theorem 4.49. |A| 2A.

Proof. If A2 O, then |A| =A. If ACO then |A| = -A

and -A >0 by 4.41. Hence, by 4.43, A< -A and so |A[>A. In any case,
| Al 2 A.

Theorem 4,50, The set of all real numbers of the form [X-YJ where
X >Y and X-Y is an integral cut which hereafter will be called integral
real numbers satisfy the axioms of the natyral numbers if the role of 1
is assigned to 1 and if [X—Y-_l' = [X'-Y:]; i.e.,

Axiom 1.1V. If [X-Y] = (2-W], then ([X'-Y] = [z'-W]

Axiom 2.1V, There exists an element of R, denoted by 1 such that

(x'-y] #1.
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Axiom 3.1V. If ([x'-y] = {z'wW] , then [x-v] = [z-W].

Axiom 4,1V, Let M be the set of integral real numbers such that
1€ M and [X'-Y] & M whenever EX-Y] & M. Then M contains all integral
real numbers.

Proof, 1If [X-Y] = [;-w] , then X+W = Y+Z. Hence, (X4W)' =
(Y42)' by Axiom 1.III. Thus, X'+W = Y+Z' and so[g'-Y]=‘?'-Q]and the
axiom is proved.

The existence of 1 is obvious, CX'-Y:} # 1 for if it did then

X'+2Z =Y+ (Z+1). Thus, X' = Y+1 = Y' and X = Y. If X=Y, then
[X-X] is not an integral real number and so EX'-YJ is undefined.
Hence, [X'-YJ A

If [x'-y] = [Z'-W] , then X' + W =Y + 2'., Hence (X+W)' =
(Y+Z)' and X+W = Y+Z by Axiom 3.III. Hence, [X-Y| = (z-w] .

Let M* be the set of all integral cuts for which [X-Y]é M and
Z = X-Y. Now, lé€M* since 1€M. Also, Z'€ M* whenever Z€ M* since
[X'-Y]é M whenever [X-I]é M. Hence, M* contains all integral cuts
and M contains all integral real numbers.

It can be shown that the set of integral real numbers is isomorphic
to the set of integral cuts.

Theorem 4.5. Let 431 and ;é be two nonempty classes of real numbers
such that if C is any element of@1 and D is any element of CZ’ then
C<D., Then there exists one and only one real number A such that every
B<A belongs to tl and every B> A belongs to ¢2'

Proof. A is unique for if B<C and B and C satisfy the requirements then

(B+C)/(1+1) would belong to both fl and 4:’2 since (1+1)B = B+B< B+C <

C+C = (1+1)C. Hence, B <« (B+C)/1+1<« C.
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To prove that A exists, consider four cases as follows:

I. Suppose 61 contains a positive number. Consider the set Q =
([_a/b] - [a/b]é éd except the greatest positive rational number if one
exists, It will be shown that ( is a cut.

(1) Since (,fl contains an element Q/Ea/b_]* by 3.35 less than
this element such that [a/b]* is not the greatest such element. Hence,
[a/b]*€ ¢y andG/ble O -

Also, since gf o contains an element -:][:c/d]* by 3.35 greater than
this element. Hence, [c/d]* 562 and [c/d_]*%’,a !

(2) If (: 1 contains no greatest element, then every Ea/b] *
is less than every (:c/d]*Gsz. Hence, Ea/b]< [c/dj where [a/b_]é Q_
and (c/d] {a

1f ;1 contains a greatest element say [x/y]*, then every[a/b] *

# (_x/)_r]* such that ([a/bl#* 661 is less than [x/y]*. Hence, Ea/b]<
f_x/y_] where [a/b]éq and [x/yj&a . Since Ec/yj*é 61, Ex/y_-{* <
(z/u]l* where Lz/w:l*é 52. Thus  (x/y] < [z/w] and (a/b]< [;x/y] implies
every element of the set is less than every element not in the set.

(3) If 8: | has a greatest member say (x/y]*, then if [a/b]*
is any other element of cl then [a/b]* < Ex/}j *, By 3.36,> there exists
[z/wl* such that [a/b]* < Ez/w]* < [x/y]*. Thus [z/w]* £ <:1' Hence
[a/b]c[z/w] and ({_ has no greatest element.

If 6 1 has no greatest element, then if [.a/bj*é 61 there exists
[z/w]*fc 1 such that [a/bl* < [z/w]* which implies [a/b] < (__z/w_‘_] .
Tﬁus, Q has no greatest element,

Hence, Q is a cut. Since a‘is a real number denote it by A.

Now to show that A satisfies Theorem 4,51, Let H be any real number such that

H< A, If H >0, there exists [a/b]* such that H<[a/bj* < A
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by 3.36. Since [a/bl¢ &, [a/bl*¢ (flu Hence, Hé(fl.

If H<O, then H < Afl+1)< A, By 3.36 there exists [a/b|* such
that H <A/l+1)<[a/b]* < A. Thus [a/b] ¢ A and (a/b]* ¢(Cy. Hence, HEZ.
Let H be any real number such that H>A. Then J[a/k]* such that
H > [a/b]*>A. Thus, (a/bJ& A by 3.35 and [a/b]*¢(5,. Hence, HEE ,.

And so the theorem is proved for Case 1I.
II. Suppose every positive number lies in 62 and 0 éfl. Then
every negative number lies in éi and O satisfies the requirements,
III. Suppose O lies in l,fz, and every negative number lies in 61.
Then every positive number lies in 62 and 0 satisfies the requirements,
IV. Suppose there exists a negative number in the second class,
Consider the following new division. If HI1, éfl, put -H1l, in new 62,
If Hy ¢ ﬁz, put -H, in new (fl. The new division satisfies the conditions
of the theorem for:
(1) Each class contains a member,
(2) Since H14H2, -Hzé-Hl,
This new division comes under Case I for since there exists a negative
number C in & 2> -C is positive and is an element of the new ¢15 Thus,
there exists D such that every B< D lies in the new ff?l and every B>D
lies in the newfz, Set D = -A. Then B<D or B>D implies -B?A or

-B<A respectively. If B is an element of the new (fl or the new sz;

then -B € 62 or -B € f'l respectively. Hence, the theorem is satisfied,




COMPLEX NUMBERS

The complex number will be defined in terms of the real numbers. The
binary operations of addition and multiplication (again denoted by + and °)
will be defined on the set of complex numbers. The associative, commuta-
tive and distributive properties will be established for the complex
numbers. The definitions of complex conjugate and absolute value will be
given with the basic theorems of absolute value and complex conjugates
proved. Finally, it will be pointed out that there exists a subset of the
complex numbers which is isomorphic to the real numbers,

Definition 5.1. A complex number is an ordered pair of real numbers
A,B, denoted by [A,B] .

Definition 5.2. Two complex numbers [},B:], [@,D] are equal; i.e.,
fA,B] = [C,D7] if and only if A = C and B = D. Otherwise, [A,B] # [C,D].

Lower case Greek letters will stand for complex numbers.

Theorem 5.3, The relation = is:

i) Reflexive: = =,
ii) Symmetric: Ifx=p8, thenf=«.
iii) Transitive: If« =g and A=Y , thena=Y .

Proof. Trivial,

Hence, = is an equivalence relation on the complex numbers.

Definition 5.4. 7 = [@,Q].

[1,0].
0,1 .

Definition 5.7. 1If == [A,B] and g= [C,D] , then ~+g = [A+C, B+D].

Definition 5.5. e

Definition 5.6, i

Theorem 5.8, o« +48 =A+<A
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Proof. Let == [A,}f] and S= [C,D:], then

[A+C, B+D] by 5.7

I

o<+/5

[C+A, D+B)

I

[c,p] + [A,B] by 5.7

B+

Hence, «+g = Btk
Theorem 5.9. u(+’z = for everyo(.
Proof. Let <= [A,B], then

[a+0, B+0]

< +7

{A,B] by 4.18

= o
Hence, « +7 =o. ] is called the additive identity for complex numbers.
Corollary. ’Z+-< =,
Theorem 5.10. If «<x+g8 =< for all«, then #=7.
Proof. Let @= [E,F] and <= [A,B]. Then,
< +p= [A+E, B+F] by 5.7.
= [A,BJ since X +4 =« ,
Hence, A+E = A and B+F = B by 5.2. Thus E=0 and F=0 and so @ =7.
Theorem 5.11. (x+8) +Y =x+ (g+Y).
Proof. Let «< =[A,B], g=[C,D] andY=(E,F].
Then (x+4 ) +Y = {[A,B] + LC,D])+ (E,F]
= [a+c, B+D] + (E,F]
= [(a+C) + E, (B+D) + F]

= [a + (C+E), B + (D+F)] by 4.11

= [A,B] + [C+E, D+F]
= [(A,B] + ([C,D] + [E,F])
=l + (A+Y).
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Hence, («+/6’) +Y =+ (f+Y).

Theorem 5.12. Given - and & J/Y such that «=4+Y

Proof. Let o= [A,B], #= [C,D] and Y= [E,F].

Y is unique for if = LG,H] is also a solution then ‘,€+Y = /6’+J
which implies C+E = C+G and D+F = D+H by 5.2 and so E=G and F=H by 4.39

corollary. Hence =Y .

[c+ @a-c), D+ (B-D)]

= [A,B] by 4.31

Y = [A-C, Bij is the solution since f+Y

= o
Y is called the difference of « andﬁand is denoted by »flm/[i.
Theorem 5.13. For every3/f such that x+g =7,
Proof. The uniqueness was shown in the first part of 5.12.
If«= [A,B] then #= [-A, -B] 1is the solution
(A,B] + [-A, -B]

(A + (-A), B + (-B)]

since o<+_ﬁ

il

(0, 0] by 4.19

7’1 by 5.4.

/3 is called the additive inverse of<and is denoted by -« . Thus,
if <= [A,B], -«= [-A, -B].

Corollary. -o+«=7.

Theorem 5.14, =(-«) =<.

Proof. Ife= [A,B], then -of= [-A,-B]. Hence -(-«) = [-(~A),-(-B)]
= [A,B] by 4. 29. Thus, -(-x) =,

Theorem 5.15, =« - =+ (-8).

Proof. <-4 (<=-F) +7 by 5.9

(X-g)Y+ (@d+ (-p) by 5.13
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it

{(<x-g) +8) + (-8) by 5.11

o+ (@) by 5.12.
Hence, o -g =+ (- f#).

Theorem 5.16. -(x+A) = -X + (-2)

Proof. -+ (-f) = (-«+ (_,g)) £4
-+ (-8) + ((x+p) + (-(«+(5))>
((-cx+ (-8)+ (o<+,6)> + (et 8))
(= + oY) (v

N

]

]

i

by 5.11 and 5.8.

(C-=+7) +o<>+ (-(«+ﬂ)) by 5.13 corollary
(-s+et) + (~(<+8)) by 5.9.

7+ (-4 )

“(L+A).

Hence, -+ (-4) = -(x+4).
Theorem 5.17. -(x-4) = (£ - .
Proof. -(e«-@8) = -{+ (-g)) by 5.15
= -=+ (-(-#))by 5.16
= -«+( by 5.14
=B+ (-«) by 5.8
= B -«by 5.15.
Hence, =-(=¢ —/3) = @8-,
Definition 5.18. Ifo= [A,B] and g= [C,D], then <4 = [AC - BD, AD = BC].
Theorem 5.19. %= Bt ,

Proof. Let <= [A,BJ and f?= [c,D], then =<0

(ac - BD, AD + BC] by 5.18

(ca - DB, DA + CB] by 414
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[c,p} [A,B] by 5.18

= B.
Hence, a«/G= (60<,

Theorem 5.20, < = 7] for every o .

Proof. Let«= [A,B] then «7= [A,B] [0,0]

=[A0 - BO, AO + BO]

(o, 0]
7.

Hence <7 = [ .

Corollary. Tel=7 for every .

Theorem 5.21. 48 =’Z if and only if <=7 or B=7 .

Proof. If o« =7 then L@ =7 by 5.20 corollary. Similarly, if
@ =7 then £B8=7% .

Let ~/f=7 and= [A,BJ and 4= [¢.D].
Then «#= [A,B] [c,0] = [ac - BD, AD + B¢] = [0,0].

0 by 5.2,

Hence, AC - BD = 0 and AD + BC

Then AC = BD and AD = -(BC) by 4.42

And so, (AC)(AD) (BD) (-BC)

- ((BD)(BC)) by 4.25.

Hence, (AA)(CD) + (BB)(CD) = O and so, (AA + BB)(CD) = 0. Assume<#7 ;
i.e., A#0 or B#0. Now AA + BB>0 if A#0 or B#0 since AA>O0 by 4.24 if
A#0., Thus, CD = 0 by 5.21 which implies C=0 or D=0, also by 5.21. 1If
C=0, then BD = 0 and AD = 0. «#7 implies D=0, Similarly, if D=0, then
C=0. Thus if x#7 , then f=7. Similarly ifﬂ#’z, then <=7 and the

theorem is proved.

Theorem 5.22. (o(,d)Y'= oz(ﬂY).
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Proof. Let «= [A,B], #= [C,D] and Y= [E,F].

([4.5] [e.8)) [2.5]

(ac - BD, D + Bc] [E,F]

Then (oéﬂ YY

= [(AC - BD) E -(AD + BC) F, (AC - BD) F + (AD + BC) E]
= [A (CE - DF) - B(CF + DE), A(CF + DE) + B(CE - DF)

= [a,B] [cE - DF, CF + DE]

[A,B] ([c,n] LEF_])

«<(BY)-

Hence, (=t @)Y ==(BY).

Theorem 5.23. o« (B+Y) = LB+ Y.
Proof. Let~= [A,B], #=[C,D] and Y=[EF] .
Then ~«(4+Y) =[A,B] (EC,DJ + [E,F])
= [a,B) (c+E, D+F]

[A(CHE) - B(D+F), A(DHF) + B(C+E)]

I

]

[(ac - BD) + (AE - BF), (AD + BC) +(AF + BE)

[Ac - BD, AD + BC| + [AE - BF, AF + BE]
(a.B] [c,p] + [a,B] [E,F]

o4/6+o<Y.

Hence, o(((G+Y) = .,z/j+o()/‘.

Corollary. (B+Y)e(= p’d+Yo< E

Theorem 5.24. -(xf@) = (-X) 3 .

Proof. (-=)f = (=)@ +7]

(-8 + (4@ + (-(d,@)})

((-=)8 +,4/5)+ (- (<p)

(-=+=)8 + (-(@))by 5.23 corollary.

Te+ (-(xg)
T+ (~(=2))

]

,(a«(/a) .




Hence, -(<@) = (-«)3 .
Corollary. -(ex,a)é < (-8).
Theorem 5.25. (-=~)(-4) =4 .
Proof. (-«)(-@) = (-=)(-8) +7
(-=*)(-&) +(-(°</6’) +xﬂ)
(- %) (-4) +<(-o<)ﬁ +,<‘/c?)? by 5.24
((-=)(-8) + (-)B) + =@ by 5.22
(-x)(-B+@) +=F by 5.23
-o(’z + ([
(AR
o/ﬂ :

it

]

il

Hence, (-=)(-@) = 3.
Theorem 5.26. If‘ «@3 =Y and # 7 , then (5’=Y :
Proof. 48 +(-«p) =<Y+ (-(=xY))= 1
LB + (-(,q/ )) ol B+ (- Y) by 5.24 corollary

o (B+ (-y)‘) by 5.23

Hence, o(,{:{8+ (- Y)) = ’z . Since o<#7z ’43+ (-Y) =’Z by 5.21.

Thus, ﬂ =(€+’f

=t G 4N
(B+ -V) +v
Ty

= Y.
Hence, 8 = Y .

Theorem 5.27. << e =&,

Proof, Let = [A,B], then < e = [_A,BJ [1,0_]

=[a1 - B0 , A0 + Bi]

62
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e is called the multiplicative identity for complex numbers.
Corollary. ewt=e< ,
Theorem 5.28. If «<f = for all then B=e.

Proof. f

e.ﬂ by 5.27 corollary

It

e since ,4/5’=o<
Hence/5’= e
Theorem 5.29. Given #’Z y o //6 such that <4 = e.
Proof. The uniqueness is obvious. Let « = \:A,BJ and since «( # 7 2
either A#0 or B#0. Assume A#0. Then if A>0, AA>AO0 = 0 by 4.44. If
A<O0, then AADAO = 0 by 4.45. Thus, AA> 0 if A#0. Hence AA = BB> 0.
Then ,5 = [A/(AA + BB) , -B/(AA + BB):I is the solution since
« (@ = [A,B][a/(aA + BB) , -B/(AA + BB)]
[a(a/an + B8) -B ( -B/(aA + BB)) , A (-B/(AA + BB)+ B (A/(aA + BB)

(AA) (1/(AA + BB)) - B(-B)(1/(AA + BB)), (A (-B)) 1/(AA + BB) + (BA)

1/ (AA + BB)_]
[‘ (AA + BB) 1/(AA + BB) , ( -(AB) + AB) 1/(AA + BB)]

(1, o]

= e

(8 is called the multiplicative inverse of ¢ and is written as e/< .
Corollary. (e/<£)X = e.
Theorem 5.30. Given « and £, 3/Y such that <>(={6’Y‘ if ,@#’Z :
Proof. The uniqueness is obvious. Y ==o<(e/ﬁ’) is thé solution
B (ot tels))
Aler )
(B (e/3)) %
e X

since ﬂY'

-
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Y'is called the quotient of ¢ andlé’ and is denoted by o(/(é v
llary. o< = = L 3
Corollary //£ o((é/,ﬁ ) (e/(@)o(

Definitiom 5,31, If<« = [A, BJ , then = = [:A, -B] is called the

complex conjugate of « .

N

Theorem 5,32. = .

Proof. Let « = ['A,B], then < = [A, f-B] by 5.31. Hence o

[, -c»)

[a, B] by 4.29.

= ol .

And 50 < = o4 .

Theorem 5.33. = = 7Z if and only if < = ’Z .

H]

(A, B] , A=0 and B=0. But B=0 implies

[0, 8 =7

If < = ’Z then A=0 and -B=0 which implies A=0 and B=0. Hence, = 7Z s

Proof. If < = ’Z then ife<

-B=0 by 4.41. Then o = [:A, =-l_3]

Theorem 5.34. X+ 4 = <L+@ .
Proof. LeteX = [A,B] , @= ([C,D] , thenx+4 =[A+C, B+D] .
Thus, o< +3 =[A+C, »(B+D)] by 5.31
=[a+c, -B + (-D)] by 4.30.
[a,-8] + [c, -D]

<+ 4 by 5.31.

Hence, « +/5 = 02+,Z
Theorem 5,35, "<_g= 25 .

Proof. Let = = [A,B] and @ = [C,D], then <@ = [AC - BD, AD + BC] .

[Ac - BD, -(AD + BC)]
[ac -(-B(-D)) , A(-D) + (-B) D]

- (5] [c, 0]

Also ;—E
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Hence,oz/g= a?ﬁ

Definition 5.36. If A>0 the symbol.JA means the positive real
number B of the equation BB = A (see 3.37).

Definition 5.37. .joé = 0.

Definition 5.38. |[A,B]| = {AA + BB.

Theorem 5.39. Ix|>0 for £ #7 and || =0 for« =7

Proof. Let «= [A,B], then if < #7, |ot|= JAA ¥ BB where AA + BB >0.
Hence le¢| >0 by 5.36. If ~ =7 then || = 00 + 00 = J0 = 0 by 5.37.

Theorem 5.40. [[A,B][2lal and |[a,B]|2 |B|

Proof. Suppose the hypothesis is false: i.e., ][_A,BJ[<IAI . Then
{AA + BB < |A| . If A=0 then |(A| =0 and Jm < 0 which contra-

dicts 5.36 if B#0 since BB >0 or 5.37 if B=0.

If A#0 then (A| #0 and AA + BB>0. By 3.37 JAA + BB JAA + BB <
(Al |A|. 1If A<O, [A[ = -A and so [A| |A|= (-A)(-A) = AA. If A>O0,
|Al = A and[A| |A| = AA. Hence, [A| |A|= AA. Thus, AA + BB<AA = AA + 0.
And so, BB< O by 4.39 corollary. But BB 20 and thus we have a contradiction.
Hence, [[A,B]| > |A|. Similarly |[A,B]| 2 |B|

Theorem 5.41. If A20 and B20 and if [A,0][a,0] =[B,0] [B,0} then

Proof. (A,0] (A,0 =[aA - 00 , A0 + 0a]
=[44,0]
= [B8,0] since [4,0] [4,0] = [B,0] [B,0].
Hence AA = BB. Now, A=B or A<B or A>B. Suppose A<B then B#0. And so,
AA £ AB< BB by 4.45and 4.24, Hence, AA< BB, If A>B, then A#0 and so

AA> AB2BD by 4.45. Hence AA >BB. Therefore, A=B.

Theorem 5.42. [Id\ ,0] [|°<l ,OJ=-(~7.
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Proof. Let o = [A,B] then [jl,0] [l/,0] = (il I%[,0 = [aa + 38,0]
= [AA -(-(BB)), -(4B) + AB] =[AA - B(-B) , A(-B) + BA] = (A,B)[A,-B) ==,
Hence, (| ,0] [i«!,0]

Theorem 5.43. @l

Proof. [l«4l,0] ﬁocgl,o] = (£8) 8 by 5.42
(B)(ZE) by 5.34
() (B B)

(C1<t .0] [i= 0]) (gl 0] gl o])
(ot | !(,45,0] L:,@Hﬂl,(ﬁ

Ll 1) 181 181),0]

1) 1@1,0)[1«] 1 81 0]

od ol
ETAF o

]

it

Hence, |<4| = Il13] by 5.309.
Theorem 5.44.|«¢/8| = letl /18] 1f B # i
Proof. If A # 7 , then |8 # 0 by 5.39. Now _A’(d/p) =
by 5.30. Hence by 5.43,
6 «wl = 18l |<i8) = la] . since 18] #o0,l4/p| =I=I/1Al.
Theorem 5.45. If x+@ =e, then | + ;(elzi ;
Proof. Let < =[A,B] and @=[C,D] then Ix/2[o] and @] 2 Ic|
by 5.39. Since |A| =>A and |C|] =2C by 4.4§, o] + | @] = A+C. By
the hypothesis, A+C = 1. Hence, (x| + |(g| =1 .

Theorem 5.46. |< + 3| < || + g

Proof. 1f « + @ =7 then |« +B] =0. Thus | +A[< [+ |al.
If X +48 # > then le<+ 4| > 0. Hence KN<t+4) +A3/ (oc+ A)
=(e/A+f) + B (e/lx+B))

= &/ B)(ellx+ )

= el

Hence, by 5.45. |X/e+4)| +|g/«+p)| = 1.
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it

ﬂwmﬁm@,ldi+lﬂi < + 4 | H#[lhi+ﬁl* ‘d+/9|ilﬁlud+ﬂl
la«+,é’$(\o</(o< +4l +1 81 (A+ ﬂ)))s.za
bt e L

e ’@[

v

Hence, | +-f§] = |,<\4—|/§i .

Theorem 5.47 . The complex numbers of the form {A,0] where A is an
integral real number satisfy the‘axioms of the natural numbers if the role
of 1 is assigned to [1,0] and if [4,0]' = [A',0] ; i.e.,

Axiom 1.Vv. I1f [A,0} = [B,0] then(2',0] = (B',0]

Axiom 2.V. There exists a complex number [ 1,0] such that [A',0] # @,(ﬂ

Axiom 3.V. If [A',0] = [B',0] , then[A,0] = (B,0]

Axiom 4.V. Let [M] = {[A,d] :X is an integral real numbei}which
has the following properties:

a) [1,0] e ]

and b) if [a,0] €M , then [a,0] ' e[M] .

Then [M] contains all complex numbers of the form (A,O] where A is an
integral real number.

Proof. Since [A,0] = [B,0] , A=B and so A'=B' by Axiom 1.IV.

Thus, (A',0] = [B',0] by 5.2.
That 1 exists is obvious. Suppose [A',0] =[1,0] then A' = 1 by 5.2.
But this contradicts Axiom 2.IV. Hence, [A',OJ # [},Q] X

Since [A',O] = [B:OJ , A'=B' and so by Axiom 3.1V, A=B. Hence,
[a.0 = B,0] .

Let M be the set of all A for which [A,0] € [M]. Then 1€M since
[_1,0—_16: (Ml Also A'€ M wherever A€M since if [a,0] € [M] so is {A,0 1.

Thus M contains all integral real numbers and hence [M] contains all

complex numbers of the form EA,Q] where A in an integral real number.
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Moreover, if by definition [A,Q].>[B,O] if and only if A>B and
[A,0]<i[p,Q] if and only if [B,OJ >[A,d] , it can be shown that the
subset of complex numbers, {[A,O_]: AéR} is ismorphic to R relative to
the corresponding operations of addition and multiplication.

In the following, A will stand for [A,O] and will be called a real
number .

Theorem 5.,47. ii = -1,

[0,1] [o,1]
foo - 11, o1 + 10]
["170_]

= -1,

Proof. ii

Hence, ii = -1
Theorem 5.49. The complex number [A,B| may be written uniquely in
the form A + Bi where A and B are real numbers.
Proof. [A,B]= [A,0] + [0,B]
(a,0] + [Bo - o1, BL + 00]
[a,0] + [Bo][o1]

A + Bi.

i

Hence, [A,B] = A+ Bi
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