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This paper presents a proof that the classical
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as stated by Karol Borsuk [1] follows from the join geometry
of Walter Prenowitz [2] .
The approach teken is to assume the axioms of Prenowitz.

4=

Using these as the foundation, the theory of join geometry
is then developed to include such ideas as "convex set",
"linear set", the important concept of "dimension", and fin-
ally the relation of "betweenness". The development is in
the form of definitions with the important extensions given
in the form of theorems.

With a firm foundation of theorems in the join geometry,
the axioms of classical geometry are examined, and then they
are proved as theoremsg or modified and proved as theorems.

The basic notation to be used is that of set theory.

No distinction is made between the set consisting of a sin-
gle element and the element itself. Thus the notation for
set containment is( , and is used to denote element con-
tainment also. The set containing no elements, or the empty
set, is denoted by ®. The set of points belonging to at
least one of the sets under consideration is called union,
denoted \U. The set of points belonging to each of the sets
under consideraticn 1s called the intersection and denoted

'&yf\ . Any other notation used will be defined at the

'irset usage.
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DEVELOPMENT OF THE PROPERTIES OF GECMETRY
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(J3) (Associative Law). If a, b, ¢ ( @, then (ab)e =

a(be).
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Definition 6. A subset A of G is linear if x, y(C A

’ 7

implies xy (C A and x/y (_ A.

Definition 7. A subset £ G he "linear closure
of a subset A of G if 8 sc ) properties:

(a) 8 is linear;
() A Cs;

(c) If X is linear and A (C X

ct
P
5=

The linear closure of A is denoted by A /.

Definition 8. The linear closure of two subsets A and

B of G, denoted {A,B} , 18 the set 8 wil satisfies the fol«
lowing properties:

(a) 8 is linear;

(b) A, B s;

(c) If X is linear and A, B( X, then 8 (C X.

Definition 9. If a, b C G and a # b,

tnen .
the linear closure of a and b. Line ab = <a9b> :

The last two axioms of the join geometry are concepts
=) J &

involving linear sets.

7

! ) ” ) & e St then ( = ¥ ) \
(J7) I B al)az> , b # 8g, then {a1982> Qfﬂazj .

(J8) {a,b} = a/b\JablJ b/alJalUo.

The linear closure of a set of elements has not been
specifically defined, but it is readily seen that in the

<

case where the set A consists of the elements a,, a&,,...,
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the linear closure of A is {g,da, a_ This particular
]

A ¥ &d




case is considered in the following definitions.

Definition 10. The set of elements a;, a5,..., &, 18
linearly independent if the statement a;,..., a5 C({%X3,...,

Xnél} is false for every cholce of Xj,..., X, 3.

Definition 11. 1If A = {glp...pan>,and 81,.00, 8p are

linearly independent, then &j,..., an is & basis of A.

- ( 3 - ¢
Definition 12. 1If A = {glﬂ.,,pan> then the dimension
of A is n. The dimension of A is denoted d(A). The dimen-

sion of @ is zero.

Definition 13. A plane is a linear set A such that

d(A) = 3,

The Dimension Theorem

This section 18 devoted to the development of the dimen-
sion theorem which will prove of importance in establishing

theorems and counterexamples in later sections.

Theorem 1. If A(B then AC (_ BC and CA (_CB.

Proof. Let x (C AC. By Definition 1, x (( ac where
a(C A, cCcC. But ACB, so a(CB and x ( ac where a C B,
¢ CC. Thus x (C BC and AC C BC.

Let y (CCA. By Definition 1, y ( ca where c(C C, a C A.
But AC B, so a( B, and y (C ca where ¢ C, a ((B. Hence
y C CB and CA (C CB,

Corollary 1. If A'C A, B'(CB then A'B'(C AB.

Proof. Since A'C A then A'B'C AB!' hy Theorem 1. Also,




(9)]

since B'(C B, then AB'(_ AB. Thus A'B'( AB'(_ AB.

Theorem 2. (AB)C = A(BC).

Proof. Let x( (AB)C. Then x (C yc where y (_ AB,
c(C C. B8ince y(C AB, then y (C ab where a(C A, b(_B. By
Definition 1, yc (C (ab)ec. But (ab)ec = a(be) by (J3) so that
ye C albe). Thus x(C ye (C a(be) (C A(BC) and (AB)C (C A(BC).

Similarly A(BC) (C (AB)C and thus (AB)C = A(BC).

Theorem 3, AB = BA,

Proof. Let x (CAB. Then x (C ab where a(_ A, b ( B.
But ab = ba by (J2) so x (C ba( BA. Thus AB ( BA.

Substitution of B for A and A for B in the first part

of the proof gives BA(_ AB. Thus AB = BA.

Theorem 4. If A(C B, then A/C ( B/C and C/A C C/B.

Proof. Let x(C A/C. Then x (C a/c where a(C A, ¢ (C C
by Definition 3. But A( B, so a(C_B and x( a/c where
a(_B, cCc. Thus x( B/C and A/CC B/C.

Let y(C C/A. Then y(C c/a where ¢ C C, a(C A by defi-
nition 3. But A(C B, so a( B and x (C c/a where ¢ C,
a(CB. Thus x( C/B anda C/A C ¢/B.

Corollary 4. If A'CCA, B'(CB, then A'/B'C A/B.
Proof. 8Since A'C A, then A'/B'(C A/B' by Theorem 4, and
since B'(CB, then A/B'(C A/B by Theorem 4. Thus A'/B'(C A/B.

Theorem 5. A[)BC # @ if and only if A/B()C £ @.

Proof. Suppose AN BC # #. This means that there is

a point a such that a(C A and a(_ BC. By Definition 1,




~

a C BC means a (C bc where b( B, ¢ (CC. Thus a( bc and by
Definition 2, ¢ (C a/b. But a/b( A/B, so ¢ ( A/B. Since
¢ (C C, it follows that A/B[ ) C # .

Suppose A/B()C # §. Then there exists a point ¢ such
that ¢ (C A/B and ¢ C. By Definition 3, c (( A/B means that
¢ (C a/b where a (C A, b(B. But ¢ a/b means a( bc by
Definition 2. But be (C BC, so a(_ BC. 8Since a(C A it fol-

lows that Aﬂ BC # 0.

Theorem 6. a/bc = {(a/b)/c.

Proof. Let x( a/be, that is, x,’f\ a/be # @§. By Theo-
rem 5,x(bc)ﬂ a #@. Now x(be) = x(eb) = (xec)b by (J2) and
(J3) so that (xc)bm a # §. Again using Theorem 5, one has
xc(\ a/b # @, and x[ ) (a/b)/c # #. Thus x(C (a/b)/c and
a/bec C (a/b)/c.

Let yC (a/b)/c, that is, y/\(a/b)/c # §. By Theorem
By ycﬂ a/b # @, and further (yc) ﬂ a # @. But by (J2) and
(J3), (yc)b = y(eb) = y(be) so that y(be)ﬂ a # @. Using
Theorem 5 this means that y[) a/bc # . Thus y (_ a/bec and

(a/v)/ec C a/bc. Combining both parts gives a/bc = (a/b)/c.

Corollary 6. A/BC = (A/B)/C.

Proof. Let x(C A/BC. Then x( a/bc where a C A, b ( B,
c (C C. By Theorem 6, x(C (a/b)/ec. Thue x C (A/B)/C and
A/BC C (aA/B)/C}

Let y C (A/B)/C. Then y(C (a/b)/c where a(C A, b(C B,

c(_ C. By Theorem 6, y ( a/bec. Thus y( A/BC. From this it

Ce

follows that (A/B)/C(C A/BC and that A/BC = (A/B)/C.
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Theorem 7(a) =&/(b/c) C ae/b and (b) a(b/c) C abv/c.

Proof. (a) Let x( a/(b/c). Then x[) a/(b/c) # §. By
Theorem 5, x(b/c) m a # @ and b/c ﬂ a/x # @§. By (J5) this
means that bx[ ) ac # #. By Theorem 5, x[) ac/b # #. Thus
x C ac/b and a/(b/c) C ac/b.

(b) Let y Ca(b/c). Then y {A‘| a(b/c) # §. By Theorem
B, y/aﬂ b/c £ §. Then yc M ab # @ by (J5). Thus by Theo-

rem 5, y ab/c # @, that is, y (C ab/c. Thus al(b/c) C ab/e.
Corollary 7(a) (B/C) C_AC/B and (p) A(B/C)C aB/C
Proof. (a) Let C A/(B/C). Then x( a/(b/c) where

a(C A, b(C B, cC C. By Theorem 7(a), x( ac/b. Thus
x C AG/B and A/(B/C)(_ AC/B.

(b) Let y (C A(B/C). Then y( a(b/c) where a(_ A

)

9

~

p(C B, ¢cCC. By Theorem 7(b), y C ab/c. Thus y C AB/C

Theorem 8. A set A is convex if and only if AA ( A.
Proof. Suppose A is convex. Then xy( A for x, y(C A

by Definition 4. Thus AA = U (zxy) C A. Conversely,

xC A, y(CaA
1f AAC A, then xy(CAACA for x, y(C A, Thus A is convex.

Theorem 9. If A, B are convex, then A(\ B, AB, and
A/B are convex,

Proof. If A(\ B = @, then Definition 4 is vacuously
satisfied and A{ﬂ\B is convex.

It A[YB # @, then let x, y(C A\ B. Then xy ( A and

xy (C B since A and B are convex. Thus Xy( Am B and A if\ B
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Consider AB. By Theorem 2, (AB)(AB) = A(E

Theorem 3, A(BA)B = A(AB)B. But by Tt

A(AB)B = (AAY(BB) and (4AY{(BB) = AB by Thec 8. Thus

”

i1s convex by T

o

Y o i 5
Now consgider

7({b). &£/8B) /B again by Cor-
ollary But by Corollary €,
(AA/B)/E : ; , S0
{A//E) p D s

Theorem 10, A set A is linear if and only if A is con-
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Agsume A is conves
xy C A for every x, y(C A. A/AC A means x/y( A where

x, y CA, Thus by Definition 8, A is linear.

Corollary 10. If A is linear and X, YC:A,7 then
XY(C A and X/YC A,
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631
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then XY (CAA. But AAC A by

vwam & \ A
Theorem 8. Thus XY 5 90

Similarly, X/Y C a/A. But A/AC A, Thus X/Y C A,




ear.

ar, then by Definition 6, x/y(_ A. Since B is linear, then

x/y C_B. Thus x/yC Aﬂ B.. By Theorem 9, Aﬂ B is convex,

roof. Let x (C AB. Since AB = U (ab),

aC ANB, b(CB

and since B is linear, then for all IiCAm B, bl B, 1t is

td
fto
w
(4]
o]
)
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90

true that ab ( B.

ol o

R o = . - 2 3 R
Let y (B, thﬂBu Now y/a (C B since B is linear.
This means that there exists an element z (C y/a such that
y( az. But aC AN B, 2B, so yC 4B ana B C AB. Thus

AB = B and since B 18 linear, AB is linear.

Lemma 13. If B is a linear set and A(_B, A # @, then

A/B = B, and A/B is linear.

Proof. Let x (CA/B. Since A/B = \J (a/Dp)

aCaNB, bCB
and B is linear, then for all a, b(_ B, it is true that
a/b C B. Thus x(CB and A/B(CB.
Let y(_ B. Then a/y(_ A/B where a(_A[)B. Since B is

o

o

linear, then for some z (_ B, a(C yz. This means that

o

Now it followe that

y Ca/z. Thus y C A/B and B (C A/B.
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Theorem 17. If A is linear set with a dimension n

)

b
IDC:Aﬂ then there exists a subset, B of A with a dimension
n-1 such that b(f B.

Proof. BSince A has a dimension n, then there exist n

b

n

independent elements, say X3, ..., X such that A = {fly.
Jﬁ1>, Consider the set of all subsets of A having dimen-

sion n-1, and having as a basis elements of the basis of A.

That 1s, consider By = {gaa-,.,‘x 10X1+1ﬁ°0,?xn>  1LZ€1£Ln.
Now r\ B, = @, since Xy, s X, (Z‘B for any 1. 1If b were
% 4

an element of B, for all i1, then the intersection of the
Bj's would not be empty. Thus there exists at least one

Bi, say B, such that tuCZ B and d(B) = n-1.

S : [ k
Theorem 18. If bC(&lM.“ } b aal)

then <al - } (‘c CPYRRN an)
Proof. 8ince b { 1 , 8.

b;85,...,8 o . For the reverse inclusion,
2 n 21 4n

b(Zl{alyo..yan}(::{<élﬂaa> g {?2,.,098%}> = {élﬁag}/(égyoa

ann} by Theorem 16. This means that b(::p/q where

} , then by Definiticn 6

©

: = W] A% e
p C alpa2> and Q(ﬁ;<§zﬂ.u.,an> . Now p # a, since if
p = &y, then it would follow that b {azp”.,,an> . Since
p # 8y, then by (J7), {aqyaﬁ> {p ag> Thus al(::( lﬂa?}
and ( ,ﬂag} (pp 2}(::<> q, 2}<:'<F” ?..syan} . Thus
(aly...»an}(: {byagp...ﬁa5> , and (%1p...gan>:z(ﬁ,agyu..ﬂan>o

Corollary 18, If b(ZL{alp...,aq} , then {aly...ga?} =
?

14

o)tz L A a‘ q> where a'!, ...,a' are n-1 independent
< l» 9 n-1 ? 19 9 n-—l P 4

elements from the set ajg cees 8

n
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By Theorem 19, this me

But this is a contradict

a ’T B e i gh e - 1b

n+l 1 n
Corollary 1! ). &
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be independent and

N 8 5600;8 ;8 are independent.

ot independent. hen
«s.3X Dby Definition
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Proof. The proof is by induction.
( 3 o it
Let M =¢{ 1 a4(1_<&‘gnn,ﬂag ,> and a_,...,&a, are inde-
o 152 S b

pendent> -

l" do
(2}

trivial since a, is inaepenaent.
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C
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k C M, that is, a f+-<gqy.,.»a} 1) ANA By ins B

independent.
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pendent. Therefore k+1 (_ M whenever k (_ M, and M is the set

he contrapositive. OSuppose
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in the lineay Bijecey8, .,8, 2;,...,8 3 8nd The elements
' L] 144 i)
= - e R

85 500.;8 are indepenaent.,

Corollary 19(c). A meximal independent subset of a
linear set A is a basis of A,

Proof. Suppose alp..uﬁan is a maximal independent sub-
set of A, that is, if alpa..yan,a are independent, then

n4l
o . ; \ A
Since A is linear, then {alﬁu..paq €K,
i
Let x (A, If xQZ & ek , then a_,...;8 _,X are
1 n 1 n
independent by Corollary 19(b). This contradicts the

agsumption that a_,...,8, 1s a maximal independent subset

~F SiEGpbeslt = 2 3 = S A7 P
of A, inus K(; (mﬁgq,g&ﬁ , and A(‘ 8.5 viny B , and it
g ] njf’ = 1’ n
; 5
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U =.rf-f)l.l.$‘1*j L24C \ . if A and B are linear g &b 5o, &anda
B has a dimensi then d(A) < a(r) "urther, 4(A) d(B)
D riag a dimension, tnen ad{A) & a(s). Further, d(A, = Al D)
WYy &P
oniy i1 A = D,
¥ & 2 = - >
r =16 )88 5 naximal independent
: Tyt AT v 100 ~3 B
s T B fhen y Corollary 19(c) B =
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ol
where 1 £ 1 £ n, and a' \,0571‘<:'<a e } , and the
§ — U n

elements &’

A
/ {/ N\
Now, diB) = n, since &ﬂ:,.,Q,a } has n G
4 L1y
elements, and d4d{(4a) e sty 8t nas i 1 pend

If d(A) = d(B) = n, then by Theorem 19, since A (

it follows that A B

Theorem 20C. (Dimension Theorem). Let A and B be line-
ar sets which have dimensions, and let 4N B £ @, then
a({a,B}) + alaM B) = a(a) + a(B).

Proof. Let d(A) = m, d(B) = n, and assume m X n.

Since A(\ B # @, then d(A()YB) = ¢, where c£ n by Corollary

and

lary 18
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THE AXIOMS OF INCIDENCE

~lr € v 4+ o E ] ~ o £ o 3 PO -
gking the joln geometry as developed in the previous

e classical axioms

1)

to prove tr

w
5
=
P'x"l
o
o]
42
o
O
| o
(4]

sectionse, it 1
of incidence as theorems. The axioms do not follow direct-

ly as theorems however, and it will be necessary to modify

ogy of Prencwitz, does not essentially alter the classical
geometry, but merely states a condition which is assumed
the classical treatment.

Consider the following theorems, which are the axioms

of incidence as stated by Borsuk {l] .
MY o Mo T inl » Aarny 1 3ne T 3 P 5 3 = deggrn A o 4
Theorem Il1. For any line, L, there exist two distinct

points, a and b, such that a, b (C L.
Proof. By Definition 9, a line is a linear set deter-
mined by two distinct points. Thus there exist two distinc

points, esay a and b, such that a, b CiL. In fact, L = ayh> s

The second axiom of incidence states that "for any two
points a and b, there exists at least one line L, such that
a, b CL". This does not follow in the join geometry. To

see this, consider this counterexample.

The 1linear ﬁ&i{ & }&atisfies the axioms and defi:
e




18
assert the existence of a line. That is, if a and b exi
. < =
end a = b, then {aom) {a} = a, & point, not a line.
\ N
The theorem is true, however, when there exists & lin-
ear set which on of fcur. Consider the following
theorem.
heorem I2. If there exists a linear set, 8, where
d(8) = 4, then for any points a and b, where a, b( 8, there
xfata o leaat one 1% 1 11 ¢ % ; 5 W 1
exXlgsts at least one 1L y by such tnhat a, b (_ L.
Proof. d4(S) = 4 means S = g ST S S 3 , Where X, ,
\_ & I o] 4} &
Xos Xz, X, are independent points of 8.
& o k
Since a, b (8, and since 8 is linear, then by g
tion 6, ab, a/b, b/a, a, b (C 8. Thus the union of t} gets
ALty Lo ey S OIS AR
Ja/blUv/alUalUr ={a,b)Cs8. But
# b, by Defi fon 9, and the theorem
oo v Corolld 2 5 ,’,‘% 2 LNV AW
(S, by Corollary 18, it follows

aen

are t

indepen

Clearly 5,

5 ? 9 A ° J @
2 ) e S 1
[ o | +1 . [1\\ 8 = T % :
a f x then spxﬁj 1gs a 1line, an
1

One might notice that there

choices for the line wh g = b,
faining & and any other point of

R wfiwr e R T Y nAS*ES A
LBLY ¥ iven conaidc¢ciolis.
4 s J
T o . E R ™ -
If a # b, then
T T
&, DO ( &t o

» Where x2, x},

<

hree of the elements x_,
e
-~ T ~ § ince
and a, b ( <apxl} . Since

the theorem is proved.

d

are an infinite number of

the linear (v

nce ge -
S determines a line sat-

there exists at most on

&




Pr(j:).m. Jefinition ':Jg if & }

gsume there

' TaToha Ry

ool . SV Uefinivclo

x5> ;, Wnere X,, X_, X, are indsepe Since x,, X_, X
ok 2 o] - Z )

R T | e B O =4 S Yunr  TYIBPR R Aol oeam - F £ > & i

are independent, then by Definition 10, x. , x_ X, are
: i < J
. ” L . =] g 5 <o a7 - J o P o ~ ety T il =
contained in (gwy;ﬂ> 01 choice of and y Thus
ok

N

X X_,, X, are non-collinear, and since P is a linear set,

The fifth axiom of incidence asserts the existence of

a plane, given any three pcints. The following counter-

example shows that this is not true in the join geometry.
If &, b, € C:<§ﬂb> , & £ b, then one can only assert
the existence of a line. Also, if a = b = ¢, then only the

existence of a point follows.

my £ 2 D8 ~ W \ e T D 1 o =Y A e 2 ~ @ 2 - Yok o
The fifth axiom follows as a theorem if, as in Theorem

=

I2, there exists & linear set of dimension four,
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Theorem I15.

i
o

d(8) = 4, then for three points a, b, ¢, where g, b,

4
o)
=
=3
e

Q
N
w
-
ct
(47
=
(47}
I+
Fad
7—‘6
W
ct
Li2]
jte
—
b=
(47
[4)
oy
4 S’
‘-"
m
4 |
o

g
=3
(»]
Hh
o9
[ 471
I
NS
=
4
()
"W
)
w
]
7N
‘ia
3¢
o
;
3
4
Ph
S~
-1

in S, and the theorem 1is proved.

If a, b, ¢ are distinct, but contained in the same

b, ¢ are the same, then the

=
b
@
©

39
L L

plane constructed in the above discusseion wil

w
{4:]

theorem.

]

If all of the coincide, then by

7
Corollary 18, <xlpx?yﬂ;_,, 1, Xy , X4, x4 ) where x{, X and
g z : H &’ ()

o

x! are elements from
&

linear set

- S o~ %~ 1 nvad & 8 . Ym 7
2gchh case, & plane is displayed sati the
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In the above theorem, there are many cholces for the

plane which satisefy the given conditions.

1} . . TF . . | o " o . ~ " 7 ~ 17 % ;mas 3
Theorem I6. If a, b, and ¢ are three non-cocllinear
& - ~ ¥ hawm s $ md = ~ =4 ~ o - ™ 11 FPhad
points, then there exists at mest one plane, P, such that
e S (R

Proof. By the first part of Theorem I5,

a plane, namely {aﬂbﬂ@> satisfying the conditicons of this

o~ Sy sy DI = f‘-" e 1
piaiie, say r o \'w"-v"{v4>

D ¢ 23 o 4o YA on op 2 ~vwsS ata
theorem. BSuppose there exists s

such that a, b, ¢ CP
g 1 . L 3 e Y ) 3 { ‘i\)
Since a, b, ¢ are independent, then a, b, ¢ ( kﬁpz :
5 '8 f
and one of the elements a, b, ¢ is not in <§yf> o Do

gsimplicity, suppose a(ii{gpf> . Then by Theorem 18, it is

J

so that (dgegfx = {a,éff> = {}pf?a> . OClearliy, b and c are
,J / 4

contained in (eofq&> = Furthermore, b,

Y]

(17]

Theorem I7. For any line, L, and any plane, P, if
there exist two distinct points, a and b, such that a, t>C:LM
and a, b CP, then L C P.

Proof. Since L is a linear set, and since a and b are
independent, then L = {ayb>'by Theorem 19. 8Since P is linear
and a, b CP, then a\J k}a/b\j b/a\jabc:}"° But by (J8),
aly vl a/vlJ v/all ab = {aﬂb> . Thus <a9b>(:? and L CP.

o

The next classical axiom restricts the classical geom-




etry to three

restricted by

o]

terexample ¢t
f]:lh 8

there

X 3 i o e R 2 ;
dimenslions, an

any

o] ol N 7Y
the axlom.
S
m sgiaiLes

2 e
a point,

A e Ra Talki T AT 4 gy &

A sglnce j01ln & eomevy J L8
£ £ o ;S Ay e e To Y -
it is easy to proauce a ¢

1 P IR i Yy els 3 o R, o il N
there exists =& 1t b # a, such that b (C P and b C W .
other words, the Iintersectlion of two planes is a line.

In & Euclidean four space, if two intersecting planes
are not contained in a Euclidean three space, then their
intersection 1is a point This can be shown with the use of
the Dimension Theorem.

Let A and B be the planes and C the four

\ Al / \ 3 f
£ 1 § - 3 . e A ) = % ~ A al - - Fee T4
C is linear, then n‘,,?f _C, thus '\,%g’“{.P&)B[ ) £ d C). =5 Dy
~1 1 <7 of A b O af \ ; o8 A way o Soifs s PR
Corollary 19(d). Also a ‘<A F"] ) \ 4, since otherwise th
1771 A o s e & - (0 sAantFaoaintnoe A ava TV f‘/r =] "\ 4
would be a three space containing A and B. Thus d({A,B;) 1
\ )
5 and by the Dimension Theorem, the dimension of the inter-
section of and B can computed as follows:

d({ApB
5 + a(a() B)
tion of A and
The

contained in

axiom

B) = 4

-
&

A

£ v S 4=
B is a point.

follows

a linear set of

nd a(AMN B) = 1.

a8 a theorem

(A) + da(B), and

Thus

§

e

f the two planes are

dimension four.

£ o~ - w; o 5} 4= 1 pe Al ah == A v g O P ~ 5P W
linear set D, 8udldn that 4(S) = % and if there exists a
™ 4 aiieeh Loy s o A amA - 3 +h - 4+ o T ~
poLiny a, such that a (_ A ana a B, then there exists a
» 2 om & I PR £ & . A CRS Vel o
point, D, Wnere b # &, and o (C A sgndt \ 2.

Proof.

Since S 1




Corollary 19(

less tl

this is a contradiction, so d<\5ﬂb>) N
Ir df {ﬁ%}\ - 3, then A = {/} = B and the theorem is

proved, If d\{AW5>):5 5, that is, d{{APE>} = 4, then by the
Dimension Theorem, 4 + a(AMNB) =3 + 3, or d(A(\ B) A
Thus the theorem follows.

The last axiom of inc states that triere aXlst
four non-coplan&ar polnitsa, In join geomet any linear set
satisfies the axioms of join geometry. Thus one can have &
valid model of join line, a plane,

etc and so it does £t T e exist

four nar p 1t e However, if &s vefo1 e exist-
ence of a linear set, S, such that d(S) = 4 is a part of the
hypothesis, then & 31id theorem resulis,
19. 1f a lin gset 5 such that
a(s) = 4, there exist four non-coplanar polints, say &,
b; ¢; 4.
= Ny 2 - Al a\ A oY), - Lo =, ar 2 arls = v
Proof. Since d(S) = 4, then 8 = ( X,,X 9k?pA,\ where
L 2 ke 4;/
X X X,, X, are independent. Thus by Definition 10,
.Ly 0?2 Ql -p o/ §
L]
X. > I <1 x, Z; Yo ¥ \ for any choice of ¥y v, and
1’ 2 7z ( 1>u 9 ;5/ J :3‘111 L)
But for some cholce of ¥., ¥ r, the linear set
¥ 1 9




THE AXIOM
In studying the notion of
i1s concerned basically with th

related.

peints are

points is alsc the ba

8%y

o

»
[

e e e
5 OF ORDER
yrder in join ceometry one
erael® i1 join geaomeuvry, Ol
2 : 2 ~ pe 3 > T 9 2 T
e question of how collinear

“

dying order in classical

geometry. 8ince the concept of corder is based on the rela-
tionship "betweenness" in both geometries, there 1s little
trouble in proving the classical axioms of order as theo-

rems in geometry.

To do this, the idea of betweenness must be defined in
terms of the operation join.

(abe),

=4

4y

Theorem O1.
and distinct.

Since (abe),

CY

Proof.
ac(C <a96> , 80 &, b, @(i_(afc
By hypothesis, b ( ac and
al)ac # @, so that a/al) ¢

ther

i % e [ IB
f’—’ g) DY \ EJ‘ 9]

and n

fedo

=

&, AL”.D

o
> and a,
a ¢ e,

Then
g by

Suppose a

), and al) c

(J6). This means a = ¢, which is a contradiction. Thus
92 Sz T e g g S o
& F 0, E—,;,‘ huﬁki&‘fs the substitution of ¢ for a, it follows
that ¢ # b. Thus a # b # ¢ and a, b, ¢ are distinct
Theorem 02, If (abe), then (cba).
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then (abc) or (bee) or

, and ¢ are collinear and distinct,

If ¢ C a/b, then a ( be, and (cab).

Thus it follows that (sbe) or (beca) or (cab).

Theorem 05. If points a and b are distinct, then
there exists a point, ¢, such that (abc).

Proof. Since a and b are dist

1en there exists

Ml ansmam OF T o el i e T i s e &
inegorem Vo, I? & and o are distinct, ¢




a point, ¢, such that (ach).

Proof. 8Since a and b are distinct, and ab # ¢ by (J1),

3
oy
o0

then there exists a point, say ¢, such that c¢ ( ab.

(acb).

Theorem 07. If (abc) and (bcd), then (abd).

Proof. Since (abc), then b ( ac, and since (bed),

J
o

then ¢ (Ctd. Thus b abd, and b/b(( ad by Theorem 5

b/b = b by (J6), so b ad and (abd).

T

Theorem 08. If {(abd) and (becd), then (abc).

Proof. Since (abd), then b ( ad, and since {(bcd),
then ¢ (_bi. This means c[\bd # §, and d[ )\ c/b # . Thus
d C e/b. Thus b C alc/v) C ac/b by Theorem 7(b). ince
b C ac/b, then bl \ac/b # §, and bb[ )ac # §. But bb = b,

80 br\ ac £ @, and b (C ac, This means (abc).

The last axiom of order, namely Pasch's Postulate, does
not follow directly from the theorems previously developed,
and a furtier extension of the theory is needed to proceed.

The n:2xt section will be devoted to the development of

the necessary material and to the proof of Pasch's Postulate.




N
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PASCH'S POSTULATE

In order to prove this last axiom of order in classical
geometry, it is necessary to extend some of the results in
previous sections, and to state some new definitions. The
concept of the relationship of points in a set to some lin-
ear subset of the set will be developed to the extent needed

for the proof of Pasch's Postulate.

Definition 14. If M is a non-empty linear set, then a
is congruent to b modulo M means that aM ) bM # @, written

a = b(mod M).

Definition 15. If M is a non-empty linear set; then
A= B(mod M) means that for each x (_ A there is a y( B
such that x = y{mod M), and for each y (C B there is an

x C A such that y= x(mod M).

Definition 16. The set of x which satisfies
Xx = g(mod M) is called the congruence set modulo M deter-
mined by a, and is denoted by (a)M. Briefly, (a)M is call-
ed the coset of M determined by a.

Definition 17. Cosets A and B of M are opposite if

there exist elements a(C A, b (CB such that ab\ M # 8.

Theorem 21(a) a = a(mod M); (b) if a= b(mod M),

then b= a(mod M); (c) if a = b(mod M), and b= c(mod M),

then a = c(mod M).




Proof. (a) and (b) are immediate from Defini
To prove (c), a= b(mod M) means aM N oM Z @, and from

2 VC )y == \il M) 144 i &l {8\ 9 LA OIM
Theorem 5, it follows that © M all/i # ¢. Similarly, since
b = c(mod M), it follows that b \cM/M # §. Thus b C aM/M
and b (C cM/M and so aM/M [ \cM/M # §. By Theorem 5, this

means aMM [ ) cMM # §. Since M is a linear set, then M is

convex and MM = M by Theorem 8 Now it fellows that
N - ’ =
aMl\cM Z §, and a= c(mod M).

Theorem 22. If a = b(mod M), then ca = cb(mod M).

4

F

Proof. Since a= b(mod M), then by Definition 14,
aM\ bM # @, and al) bM/M # . Thus a C bM/M. By Theorem
1, ac (C (bM/M)c, and by Corollary 7(b), (bM/M)c (C beM/M, so
ac (C beM/M and ac [\ beM/M # @. Thus acM N\ beM # @ and

=— e
aCc = DC

n

F a = b(mod M) and ¢ = d(mod M), th
ac = bd(meod M).

Proof. 8Since a = b(mod M), then by Theorem 22,
ac = bce(mod M). Similarly, bc = bd(mod M). By Theorem

21(c) it follows that ac bd(mod M).

ti

Theorem 23, If M is a non-empty linear set and m (C M,
then am = a(mod M),

Proof. Let x(C am. Then xM (C amM = a(mM) = aM. Thus
xM C aM and xM/ ) aM # @ so that x= a(mod M), By Definition

15, am = a({mod N

)
7/

=S

°

(o B | wmyr )R T 3 M ha ~ amrm ety T Rvma o @ ¢ -
Corollary 23. Let M be a non-empty linear set and




DS
Lée)

m(C M. Then x = m{mod M) if and only if x ( M.
Proof. x= m(mod M) means xM N\ mM # . Since mM = M,
then (xM(\mM) C M. Thus xMC M or x C M/M = M,

C"'”"""“‘“' 1w g R S | o ) P S o L
enversely, supposge X (\_A '/ DY lneorenm <4

{ 3 ad 3 Tiaan & Yo mme g o VR ~ T T3 . e e 9% [ ~
and xm = m(mod M). Thus X = m(mod M) by Theorem 21(c).

Theorem 24. ets of a linear set M form a parti-

tion of G, where G is the entire set.

J

C Ol -

do

Proof. Let x( Qa,)Ma Then by Definition

=
-

x = a(mod M). By Definition 14, this means xM N aM # @,
and so x [\ aM/M # #. Thus x C aM/M and (a}m(: aM/M.

A s . 4 >}
y() aM/M £ & and yM[\ aM # @. By

o

Let y (C aM/M.

Definition 14, it follows that y = a(mod M) and y C (a)y.

Thus aM/M C (a)M and i{a)M = aM/M.

)

Theorem 26. Let A and B be opposite co: 3 of M. It

(o]
3]
(¢°]
s
m

> ™ {2 T S I Ep) U . & = i >
Proof. By Definition 17, there exist a(C A, b (B

such that abl) M # @. Then A and (a) mmon and

"M

Consequently,




there exist elements x C (a)y and y (C (b)y such that

Xx = a(mod i) and y = b(mod M). By Corollary 22, one has
xy = ab(mod M). Let m( (abl/\ M). By Definition 15, there
existe m' (C Xy such that m'= m(mod .!). By Corollary 23,

m'C M. Thue xy\ M # 8.

Corollary 26(a). If A and B are opposite cosets of M,
then A(N\B =@, or A = B = M,

Proof. Suppeose A/ B # @. Then A = B by Theorem 24.
Let p (CA. Then p( B and by Theorem 26, pp/) M # #. But

]

pp = p, 80 p (M and A = B = M by Theorem 24,

Corollary 26(b). M is the only coset of M which is
its own opposite.

Proof. M 1s opposite to M by Definition 17, since if
m(C M, then mm = m (C M. Uniqueness follows from Corollary
26(a).

Theorem 27. A coset (a)M of M has a unique opposite
coset of M, namely M/a.

Proof. Choose a' such that a‘al\M # . Then (a')y
is opposite to (a)y by Definition 17.

To prove uniqueness, suppose (b)M is opposite to (a)M.,
Let x C (b)y. By Theorem 26, xal\ 1 # @, so that one has
xNM/a # . Thus x C M/a and (’D)MC M/a.

Conversely, suppocse x (M/a. Then x/)\M/a # # and
xa\ i # . This means al\VM/x # P and so a C M/x. But by
Theorem 26, abl\M # B, so a\il/b # @ and a C M/b. Since
a ClM/x and a (C M/b, then M/x () M/b Z@. From (J5), it
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ey g - y o TAGS Pa s A mMiA s v $ a ANNAGS -
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the only coset of M which is its own opposite by Corollary

impossible, and the thecorem holds.

Lemma 29. Let A and B be linear sets and Al ) B Fa

Then A/B = A/(A/B).

\
Proof. {AWE? = A/B by

4 <

/ \
= (f A 9 AAL /fB !; by
\_ J
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Lemma 30. Let A and B be linear sets and A[\B # g.
Then A/(A/B) = BA/A.

Proof. A/(A/B) (C BA/A by Corollary 7(a).

BA/A C A(A/B)/A by Theorem 16, and A(A/B)/A C (AA/B)/A
by Corollary 7(a). But (AA/B)/A = (A/B)/A since A is line-
ar. Also, (A/B)/A = A/BA by Corollary 6, and A/BA = (A/A)/B.
Since A is linear, (A/A)/B = A/B, and by Lemma 29, it is
true that A/B = A/(A/B). Thus BA/A C A/(A/B) and it follows

that A/(A/B) = BA/A.

Lemma 31. Let A and B be linear sets and A[\B # @.
Then {A B) A'
bCB

Proof. <A9B> = A/B by Theorem 16, By Lemma 29,
A/B = A/(A/B), and A/(A/B) = BA/A by Lemma 30. But

BA/A = \J bA/A, and since bA/A = b}A by Theorem 25, it
b (B
follows that BA/A = K} {b and 80 (A B> Au
b B ‘(‘CB

Lemma 32, If A, B and C are non-empty linear sets,
where B(C C and A(\C # 8, then (a/B)()C = (AN C)/B.

Proof. Let x C (4/B)[) C. Then x C A/B and x C C.
But BC ¢, so x(C A/(BMN C) and x C a/b where a(C A and
p(B. But x = ¢ for some ¢ (CC, so ¢ C a/b and a C be.

Since b, ¢ €, then a (C €. Thius a(C (A ¢) and one has

a/oC (aNc)/v. (aNc)/vC (aNc)/B, so a/b C (AN C)/B.

But x C a/b, 8o xC (A C)/B and (A/B) N CC(A(\ Cc)/B
Now, AN ¢c Ca, BCB, so (AN c)/BCA/B. Also,

ANcC cana BCGC, so (AN Cc)/BC C. Thue it follows that
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qu a/ “‘ /i oy :,’.\J ab, caern i Lila v
J /a l ) ¥
Jp A N\ J &M,
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X0 ap # 9. lnus X1 1\ ab/b # © ai 8 ), rience
d { 3
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