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ABSTRACT 

DESIGN OPTIMIZATION USING 

MODEL ESTIMATION PROGRAMMING 

by 

Richard Kay Brimhall, Master of Science 

Utah State University, 1967 

Major Professor: Dr. Bartell Jensen 
Department: Applied Statistics 

Model estimation programming provides a method for obtaining extreme 

solutions subject to constraints. Functions which are continuous with continuous 

first and second derivatives in the neighborhood of the solution are approximated 

using quadratic polynomials (termed estimating functions) derived from computed 

or experimental data points. Using the estimating functions, an approximation 

problem is solved by a numerical adaptation of the method of Lagrange. The 

method is not limited by the concavity of the objective function. 

Beginning with an initial array of data observations, an initial approximate 

solution is obtained. Using this approximate solution as a new datum point , the 

coefficients for the estimating function are recalculated with a constrained least 

squares fit which forces intersection of the functions and their estimating functions 

at the last three observations. The constraining of the least squares estimate pro-

vides a sequence of approximate solutions which converge to the desired extremal. 

V 
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A digital computer program employing the technique is used extensively by 

Thiokol Chemical Corporation's Wasatch Division, especially for vehicle design 

optimization where flight performance and hardware constraints must be satisfied 

simultaneously. (46 pages) 



INTRODUCTION 

Model estimation programming was developed to obtain extreme solutions 

to functions subject to constraints, where the function being optimized and the 

constraint functions are defined by discrete data points. The data points may be 

developed by computer simulation or experimentation. 

The programming method was developed originally as a multivariable 

flight path optimization technique for trajectory simulation problems. Its success 

ful use in this application and its general nature suggested use in other applications. 

Subsequently, the method has been successfully incorporated into a solid propellant 

automated design and performance program developed and used at Thiokol Chemical 

Corporation's Wasatch Division. 

A typical motor design problem on which the program has be en used is that 

of a small, single stage, air-to-air missile where values for motor chamber pres

sure, nozzle expansion ratio, nozzle half-angle, and average thrust are to be 

selected so that missile ideal velocity will be maximized subject to the constraints 

that: nozzle exit diameter D; nozzle length _:: L; and maximum motor thrust-to-

weight ratio ~ ax. The numerical solution to this problem is presented later in 

this paper. 

This example involves only four independent variables and three conditions 

of constraint; however, analytically , there is no reason to restrict the problem 

size. In fact, problems in the design of multistage vehicles have been successfully 

solved using 20 independent variables and 15 constraints. 



Even with the small example problem, the optimization process becomes 

complicated, and it is apparent that some systematic procedure must be us ed. 

Befor e this procedure is discussed, however , let us consider the scop e of th e 

general programming problem. 

2 
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REVIEW OF PROGRAMMING METHODS 

Usage of the term "programming" implies an optimal allocation of limited 

resources. Although programming nomenclature was derived from problem s in 

econo mics, the methods themselves are precise algorithms embracing a ll the 

rigor of app lied mathematics. Each programming method developed to date solves 

a class of problems which are a subset of the general programming problem. 

The genera l programming problem is to maximize or minimize an objective 

function with n independent variab les subject to m conditions of constraint. The 

basic mathematics required for solving the general programming probl em are 

classic; however , the classical method is cumbersome, awkwa rd , and somet imes 

impossible to use. For this reason optimi za tion remains an art rather than a 

science . 

We will first consid er the classical method. 

The Classical Method 

First consider the simple optimization problem of maximizing 

y = f(x , X , ... , X ) 
1 2 n 

The nec essa ry con dition for y to hav e a maximum valu e at the solution vector X, 

is that the first partial derivatives of y with respect to each xj vanish. If s uch 

so lution points exis t , they will describe local maximums , local minimums , or 

sad dle points. The classical method would require the deter mination of a ll s uch 
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points, testing to determine which sets were local maximums, and then comparing 

all of the local maximums for the greatest solution which we expect to be the global 

maximum. Even when the global maximum is apparently found, the function can 

still be unbounded at some point not detectable by a stationary point. For a simple 

maximization, there may be infinitely many candidate solutions from which to choose. 

For the constrained optimization where m inequality constraints exist, 

m < n, the above process must be expanded to 2m cases for each of the possible 

combinations of active constraints. If m is greater than n, the number of possible 

solutions is increased to 

Although the classical method is extremely useful for many problems, it is 

impractical to apply the general case because of the large number of possible 

solutions which must be examined. These difficulties have resulted in the develop-

ment of programming algorithms for obtaining optimal solutions for restricted 

problem types. A partial list of programming methods is discussed below to 

provide background and basis for comparing current methods with Model Estima-

tion programming. 

Methods Which Yie ld Exact Solutions 

Of the current methods which yield exact algebraic solutions for the global 

extremal, we will examine linear programming, quadratic programming, and 

dynamic programming. 
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Linear Programming. Linear programming may be used to so lve that s ub-

set of the general programming problem in which the objective function and each 

of the constraint functions are represented by linear equations. The solution of 

the linear programming problem will lie upon the simplex described by the con

straint functions. The linear programming problem is solved by use of the simplex 

a lgorithm s developed in 1947 by Danzig where the solution moves from point to 

point a long the convex hull. Linear programming has the desirable property that 

any local maximum is a global maximum and a local maximum may be obtained in 

a finite number of iterations. 

Many problems may be described exactly, or closely approximated, by a 

set of linear functions. Lin ear programming solutions will optimally select as 

many non-zero activities as there are constraints. 

Quadratic Programming. Quadratic programming is a convenient method 

for maximizing a quadratic objective function subject to linear constraints. If the 

objective function is strictly concave, the solution is unique in that the local maxi

mum always exists and it is also the global maximum. In cases where the objective 

functions are concave (but not strictly concave), a global maximum may be det er

mined only if a bounded solution exists. In those cases where the fw1ction is 

neither concave nor convex , the solution will be a local maximum, but not neces-

sarily a global maximum. The quadratic programming problem may be solved 

by starting with a basic solution and then moving from point to point on the simplex. 
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Dynamic Programming. Dynamic programming is an optimization method 

which may be applied to any integer problem. When dynamic programming is applied 

with increment intervals to a continuous function, it becomes a problem in approxi

mation and the solution depends upon the size of the unit interval chosen . 

For the integer problem, dynamic programming guarantees that an extremal 

solution will be the global extrema l ; this desirable property makes dynamic pro

gramming an extremely powerful tool for integer problems. 

Methods Which Use Optimal Seeking Approximations 

Those problems for which the exact methods do not apply must be s olved by 

some approximate method. In general, optimal seeking methods will determin e a n 

approximate solution for a local extremal. In most applied problems, th e investi

gator is satisfied with a local extremal solution ; if this is not satisfactor y , a broad 

area of the feasible domain must be investigated for other solutions. 

Polygonal Approximations. Many nonlinear programming problems may be 

solved with the use of polygonal approximations. If the problem can be tr ansform ed 

into one in which all of the functions are separable, a solution for the approximation 

problem may be found by using linear programming techniques. The separable 

functions are eva luated at a finite number of equally spaced points for eac h of the 

independent variab les . Each point sampled becomes an independent variable in the 

linear programming problem. 



It is beyond the scope of this review to provide complete details of the 

method. However , because of the large number of times that the functions must 

be eva luated, the many independent var iables and the numerous linear constraint 

equa tions which must be solved, the method appears to be practical only when 

ap plied to small problems. 

Steepest Path of Ascent. The solution of a general programming problem 

using the steepest path of ascent is effective for finding a local extremal for many 

problem classes . Generally the problem is started either in the interior of the 

feasible domain, or with some var iation of the problem where a starting routine 

is s ed to find a feasible constraint boundary. 

The solution is then moved in finite increments along the boundary of the 

co straint condition in a direction providing maximum gain to the objective 

fun c tion. The so lution will move along this constraint boundary until a new 

constra int is violated. When the second constraint is encountered, the steepest 

pat will ei th er follow along the intersection of the two constraint conditions, or 

the path will follow th e secon d constraint and depart from the first. This general 

procedure is followed until a solution near the local extremal has been obtained. 

For thos e problems where the partial derivatives must be estimated by 

varying th e functions, the method has two disadvanta ges: first, the partial deriva

tives are often inaccurate ; and second, the required number of variations may 

result in excessive computation time. 

7 



There are many unique forms of the steepest path of ascent solution and, 

while no attempt is made to catalogue them, it appears that each method has prob

lem class limitations when applied to the general programming problem. 

Need for General Non-Linear Programming Methods 

Although the algorithms developed for linear programming, quadratic pro

gramming, and dynamic programming are well established, there is a need for a 

general computational method which may be applied to non-linear programming 

problems. As reported by Saaty [8), many methods have been proposed, and 

within the framework of limiting assumption, each will solve some subset of the 

general non-linear programming problem. 

This thesis presents a method which partially fills the requirements as a 

genera l non-linear programming algorithm. The only limiting assumptions im

posed are that the functions and their first and second partial derivatives are 

continuous. 

8 
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MODEL ESTIMATION PROGRAMMING 

Scope 

The general programming problem is to maximize (or minimize) an objective 

function with n independent variables, 

y = f (x, X, •••, X ), 
o o 1 2 n (1) 

subject tom conditions of constraint, where the constraints are expressed in the 

form 

yl 

y2 

= f (x , 
l l 

= f (x , 
2 l 

= f (x, 
m l 

X 
2 ' 

X 
2' 

X ' 2 

... , X )• 
n ' 

... , X )• 
n ' 

• • • , X ) ; n 

YL ;:; y ;:; Yu l 
l l 

YL ~ y2 
~ Yu 

2 2 

(2) 
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In addition to the constraints on the dependent variables, upper and lower bounds 

constraints may be imposed on the independent variables , i.e., 

XL ~ X 
~ l 

l l 

XL :S X ~ 
~ 2 

2 2 

(3) 

~ X 
n 

The expression of an applied problem (such as that presented in the intro-

duction) in the framework of Eqs (1) , (2), and (3) is not difficult, if data can be 

supplied in the form of discrete data points obtained from computation (or experi-

mentation). Supplying data in discrete point form, however, necessitates s om e 

form of an estimating function to convert those data points into the continuous 

functions required in Eqs (1) and (2). 

Estimating Functions. An estimating function is defined as an approximation 

to an unknown function. Most optimization methods [1] use some form of esti

mating function, the more common of which are the linear equations obtained by 

evaluating the first order terms of a Taylor expansion. (Non-linear effects can 

also be included if the estimating function includes the second order terms.) 
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For this program , two quadratic forms of estimating functions ha ve been 

s tudied. On the surface, an equation of the form 

Yo = a + a X + a X 2 
0 1 0 l 11 l 

2 + +a + a a X X X X (4) 20 2 21 2 l 22 2 

+ + + + 2 a X a X X a X X a X 
30 3 31 3 l 32 3 2 33 l 

+ e t Co, 

appears lo have the desired estimating properties and , in fact, proves adequate 

for most problems. However , exper ienc e has demonstrated that a less compli

cated form , without th e interaction terms, 

y = b + b X + b 
0 1 0 l 11 

+ b 
20 

+ b 
no 

X + b 
2 22 

X + b n nn 

X 
l 

X 
2 

2 

2 

2 
X 

n 

(5) 

ha s better numerical convergence properties than Eq (4) , because the independ en t 

variab le s are separable , and less data are required for evaluation of the coefficents. 

Consistent with usage by Hadley (2J, a function is defined as separable if it may be 

expressed as a sum of functions of one variable . Precisely , 

f(x, X, 
l 2 . " . ' x ) = f(x) + f(x) 

n 1 2 

+ .•. , + f(x) 
n 

(6) 



This µroperty of ;::;eparability will be used in the algorithms which follow. 

Subsequent discussion on estimating functions will be limited to equations 

in the form of Eq (5). 

To obtain the data for eva lu ating the estimating function coefficients, an 

initial estimate of the value of each of independent variables must be made ; these 

estimates are defined as the est imation so lution vector, X. Evaluation of the 

coefficients for Eq (5) is based upon an array of 4n + 1 observations. The first 

4n observations are obtained by varying the independent variables, x., one at a 
] 

time by + 6.x. and + 2 b x.. The last observation corresponds to the estimated 
- ] - ] 

so lution vector, X. The value se l ected for fu. should be small enough to ade
J 

quately approximate the function; on the other hand, it should be lar ge enough to 

provide a good estim.ate of the functions curvature. If t:.x_ is too small, the 
] 

estimat ing function will appear linear and the convergence of the solution may be 

retarded. The coefficients are then eva luated with a constrained least squares 

fit, details of which are discussed in a later section. The usable information of 

12 

an estimating function is restricted to some finite neighborhood of the estimated 

solution vector, X; good results are obtained if the use of information is restricted 

to the interval X + 6. X. 

With the coefficients evaluated, the estimating functions may be used in 

an approximation problem. 
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The Approximation Problem. The approximation problem, like the applied 

problem, is a special case of the genera l programming problem defined as Eqs (1), 

(2), and (3). Specifically, the approximation problem is defined by Eqs (1), (2), 

and (3) where Eqs (1) and (2) are estimating functions. Even though the applied 

problem is described by data points, the functions of the approximation problem 

have the desirable properties of being separable and continuous, and having con

tinuous first and second derivatives. 

When the approximation problem is evaluated at the estimated solution 

vector X, we say that X is a feasible solution to the general programming problem 

if the inequalities of Eqs (2) and (3) are true. An optimal feasible so lu tion of the 

approximation problem is an approximate solution for the applied problem. The 

so lution of the applied problem is obtained by repeatedly so lvi ng the approximation 

problem with new estimating functions. 

Concavity. A function may be convex, concave, or neither. If for any two 

arbitrary points, a or b, in n space, 

Af(a) + (1 - A)f(b) ~ f(Aa + (1 - A)b); 

O < A < 1 

the function is concave; if Eq (7) is true without equality, the function is strictly 

(7) 

concave . When the inequality is reversed, the function is convex; if Eq (7) is true 

without equality and the inequality is reversed, the function is strictly convex. If 

Eq (7) is not true with either sense of the inequality for all a rbitrary points, a and 

b, the function is neither concave nor convex. 
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Because the form of Eq (5) is separable, testing the estimation function con

cavity is simple , as only the sign of the squared term coefficients need be examined. 

If all b .. .....: 0 , the function is strictly concave ; if all b . . > 0 , the function is strictly 
JJ JJ 

convex. 

As the estimation functions are separable, we may also determine the con

cavity of their separated components. If f (x.) is strictly concave, we define the 
J 

independent variable x. to be a concave variable. If f(x.) is strictly convex, we 
J J 

define the independent variable x. to be a convex variable. 
J 

The approximation problem is solved by the method of Lagrange. 

The Lagrange Function 

For a large class of problems, the method of Lagrange is a simple and 

straightforward approach to finding an extreme solution to a function that is subject 

to constraints. This paper first considers the Lagrange function, G, and later 

deve lop s a numerical method of its solution. 

where: 

Let 

G = f (x , x , ••• , x ) 
o 1 2 n 

i=m 

+j 
i=l 

A.[f.( x , 
1 1 1 

X , 
2 

... ,x)-L.] 
n 1. 

G is the function actually maximized or minimized; 

f is the objective function for which a maximum or 
0 

minimum solution is desired; 

( 8) 



f. is Lhc ith constraint function ; 
1 

L. is Lhc limit at an active constraint boundary (either Y . 
1 L1 

or Y Ui) defined in Eq (2) for the ith constraint; and 

A. is the Lagrange multiplier for the ith constraint. 
1 

When Eq (8) is differentiated with respect to each x . and each)._ . an d the 
J 1 

partial derivatives are set equal to zero, a system of n ., m eq uations in n , m 

unknowns is obtained. Wl1en solved simultaneously, these equations will re s ult 

in valu es for the independ ent vari a bles which will yi eld eith e r a maxim um , a 

minimum , or a saddl e point of G. 

Next we will examine some properties of Eq (8). We will adopt th e con

vention that X* , A* specifies the coordinates and Lagrange multiplier s for a l oca l 

extremal of the Lagran ge function G. 

Equation (8) may be ex pres s ed functionally as G = F(X , >..). If a m axima l 

solution G = F(X* , A*) do es exi s t , we may defin e H(X) = F(X , A*) a s a function of 

X which is concave and has a g lobal ma..'<:imum at X*. 

The coefficients of H may be evaluated by combining the objectiv e func ti on 

* 

l G 

with the constraint functions. Defining .>,. = 1. O, the coeff ici ents are determin ed by: 
0 

i=m i=m 
\' ··- ) ·'-

H(X) =) /\'.'b + X (\" . b 
1. o . l /~ 1. lOi (9) :l.=o 1. 

i=O 

i=m 

+ x2) /\~\ 
1 / 1. lli 

i=O 

i=m i=m 

x~) ·'- -) .,. 
+ ... + /\ '.'b A'.'1. 

1. nn. 1. 1. 

i=O 1. 
i=l. 
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Because the solution to Eq (8) may have more than one root, and because 

either the maximum or the minimum solution is the only one of interest, the numeri-

cal solution of Eq (8) must have the capability of selecting the proper local extremal. 

The logic needed to guarantee this capability is derived below for the maximization 

case. 

The multiroot solution of Eq (8) may be avoided if the constraint functions 

are linearized by redefining the Lagrange function as 

G = f (x, x, ... , x) 
o 1 2 n 

i=m 

+) 
i=l 

X ' 
2 

(10) 

•o.,x)-L.] 
n 1. 

where g. is a hyperplane tangent to f. at the estimated solution vector X. Differ-
1 1 

entiating Eq (10) and setting the partial derivatives equal to zero results in a system 

of n + m linear equations inn + m unknowns which are easily solved. To guarantee 

that the solution obtained for Eq (10) is a maximum, we must consider the concavity 

off . The algorithm for solving Eq (8) will differ according to three conditions of 
0 

concavity for object function, f . 
0 

Objective Function, f0 , Is Strictly Concave. In the case where f is strictly 
0 

concave, a local maximum solution of Eq (8) may be obtained by iteration of Eq (10) . 
• 

This is accomplished moving X incrementally in the direction of the solution and 

then solving for new hyperplanes. The rules for modifying the estimated solution 



vector X for each iteration of Eq (10) will be described in the next section . As f 
0 

is concave, then the solution to Eq (10) will always describe a global maximum, 

and the converged solution of Eq (10) will be a local maximum of Eq (8). This 

iterative solut ion converges at least linearly, and in the final steps , it converges 

quadratically. 

17 

Objective Function, f0 , Is Not Strictly Concave. If f0 is not strictly concave, 

another approac h must be taken. As H is concave and yields a global maximum at 

X*, H will a lso yield a local maximum to the solution of Eq (8). To us e the above 

principle , we will develop a method to numerically evaluate the coefficient s of H. 

As f is a separable function, we may separate the so lution of Eq (10) into 
0 

two parts; that portion which is strict ly concave and that portion which is convex. 

The strictly concave portion of Eq (10) may be solved if we hold the convex variables 

constant. 

This partial solution provides estimates for the Lagrange multipli ers, 1_, 

and provides a method to estimate the combined fw1ction H. 

function H(X) is estimated as: 

i=m i=m 
"' l "' x_) "' 
H(X) = A.b + A.b 

l. o. l. lOi l. .L -

i=O i=O 

i=m 

x2) "' + A.b 
1 , l. lli 

i=O 

i=m i=m 

x~) "' -r "' + •• 0 + A.b A.L. 
l. nn. l. l. 

i=O l. 
i=l 

Letting 1 = 1, the 
0 

(11) 
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/\ A 

As I-I is only an estim:itc of H, the solution vector which maximizes H will not neces-

sarily satisfy the constraints. /\ 
We avoid this inconvenience by maximizing H subject 

to the hyperplane constraints g.. To do this, we redefine the Lagrang e function as: 
1 

G = H(x 'X' •o•, X ) 
1 2 n 

i=m 

+) 
i='il 

A. [g. (x , 
1. 1. 1 X ' 

2 
••• ,x)-L.]. 

n 1. 

(12) 

/\ /\ 

As H is an estimate of H, we should expect H to be concave; however , if it is not, 

/\ 
we will hold all convex variables in H constant when s olving Eq (12). 

We note that 1 was functionally included into I{; therefore, we may conclude 

/\ 
that Ais a measure of the error between)... and A. We could iterate Eqs (11) and 

" (12) for a precise value of>-.. with the hyperplan es g_ (X) , and then move X uphill in 
1 

/\ 

H ; however , experience has shown that convergence wi ll be obtained if we combine 

the so lution of Eqs (10) and (1 2) to move X uphill. 

/\ 

Let the solution vector from so lving Eq (10) be X , >...; and let the so lution 
p 

vector from solving Eq (12) be X , A; and then classify the independent variables 
q 

three ways: 

Group 1: x. strictly concave in ft. 
J 

/\ 
Group 2: x. strictly concave inf , but convex in H. 

J 0 

/\ 
Group 3: x . convex in both f and H. 

J 0 

Using these classifications, we must make a new estimate for X. First, 

we will form a vector XR, which we will make up according to the above classi

fications by using: the solution of Eq (12) for those elements in Group l ; the 

/\ 
solution of Eq (10) for Group 2; and force Xj uphill in H for Group 3. 
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During the early iterations, the direction of the solution is more meaningful 

than the values contained in XR. Convergence will result if we move in the general 

gradient direction of H(X) and limit the total change of OX to some predetermined 

step s ize 6. Using the new value of X, we may repeat the above process until con-

vergence is obtained. 

Objective Function, f0 , Is Convex. Before examin ing this problem, we will 

briefly examine the two preceding concepts. In the first case, where f is strictly 
0 

concave the sol ution of Eq (10) always yields unique values of X , 'X.. When we allow 
p 

X to approach X at a controlled rate, the problem will converge to a local extremal. 
p 

In the case where f is neither concave nor convex, we took advantage of th e 
0 

separability property of Eq (5), and separated the problem into two subproblems. 

We first solved the portion of Eq (10) which is 1::>trictly concave in f while holding 
0 

the remaining independ ent variab l es fixed. The Lagrange multiplier s, 'X., obtained 

from so lvin g the concave portion of the problem were used to form ll. 

Maximizing A subject to the linearized constraints, Eq (12), yielded esti

mates for the concave independent variables. If the approximation problem was 

unbounded, the independent variables were convex in both f and A. In this case, 
0 

the so lution can only be improved for forcing variables convex in both functions 

uphill in A. 

These latter principles must be used in solving Eq (8) when f is convex. 
0 

Let us now examine the problem where f is convex in a ll variables. The 
0 

numerical so lution of this problem is more difficult, and its development is still 

in process. The following method appears valid; however, it has yet to be proven 

as a computational procedure. 
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If X is a feasible solution of :f'l, we can simply force f uphill on its steepest 
0 

path until one or more constraints become active. Appro ac hing the so lution as in 

the preceding s ubsection , we ass ume that if an optimal so lution X*, >.. * does exist, 

an eq ui va l ent es timatin g function H(X) may be derived. The major difficulty with 

this ass umption is that there is no direct method for obtaining an estimate for 'X 

with which we can form ll. A less direct method must be use d to est im ate 'X. In 

the case of inequality constraints, we know that A. 0 for upper bound constraints 
1 = 

and A.> 0 for lower bound constraints. (3) The sign of A. for equality constraints 
l = 1 

may be determined by determining an equivalent problem where the constraint is 

an ineq uality wit h either an upper, or a low er bound. Borrowing from the graphical 

method of 0' Brien, [4] an estimate may be made for the Lagrange multipliers >.. as: 

df 
j=n 0 

1 ) ~ /\. = K y-J_ s n 
j=l 

J_ 

~ 
J 

where 

-1 for an upper bound constraint ; 

K = + 1 for a lower bound constraint; 
s 

(+l) sgn [Li - gi (X)] for an equality constraint. 

Work to date indicates that if we eliminate the extreme terms from the 

summation of Eq (13), the prediction for 'X will be improved. These extremes 

of0clf may be eliminated by selectin g the ratio, .,, 0 ~ , whose absolute value is 
oX. uX . 

] J 

(13) 
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greatest, and then testing to determine if it is within a reasonable limit (say four 

standard deviations) of the mean and standard deviations of the remaining ratios. 

If th e largest ratio is eliminated, the next largest is tested , and so on. Although 

this es timat e for A. appears to be crude, it provides a starting point. 
l 

/\ 
Beca use of the repeated solutions, good estimates of >i. may be available 

from pr ev ious solutions an d the use of Eq (13) for es timation of'X. may be omitted. 

A A /\ 
With A. known, we now form H from Eq (11). If H is strictly convex, we 

1 

force the apparent so lution vector X uphill in A until a new constraint is violated. 

/\ 
If, however, H is not convex, we will so lve Eq (12) while holding constant those 

I\ 
ind epen den t variables which are convex in H. This so lution will provide an esti-

mate for the independ ent va riables that are concave in A, and a vecto r of Lagrange 

multipliers /\. 

As 'X was used to est im ate ~. then A is a measure of the error in the esti

mation of 'X. Using this relationship, we will so lv e for'X by iteratin g Eqs (10) and 

(11), where 

~ (r+l) ::; 
i 

A (r) + ~ (r) 
qi i i , (14) 

where r is an iteration counter and O < ~ : 1. O. If this fails to converge with the 

cho se n value of qi, then convergence can be obtained if ~ is reduced by one-half 

each time that 

(r) 
A. < 0 

:L 
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Common to all three solutions is the assumption that u. solution X*, A*, exists 

for Eq (8). This assumption is valid providing that the Kuhn-Tucker [5] conditions 

for qualifying constraints arc met. 

/\ 
If there is a nonqualifying constraint, the function H will u.lways be convex 

for some x.. During the initial iterations, this x. will move in one direction. Durin g 
J J 

later iterations it reaches :.1 ridge for which :G docs not exist. This will cause an 
L. 

l 

oscillation between\ and xj in the solution of Eqs (11) and (12). A numerical solu-

tion may still be obtained if 6. is reduced by one-half each time the ratio 
J 

5 (r) 
X. 

J 

0 (r-1) 
X . 

J 

""' -1 (15) 

Having established an algorithm for solving the approximation problem, we 

will next consider the convergence of the app lied problem. 

The Applied Problem 

As previously stated, the solution to the approximation problem is used as 

a predicted solution of the applied problem. A block diagram showing the overall 

process is presented in Figure 1. The applied problem is evaluated initially at 

4n + 1 points to provide data for evaluating the coefficients of the first set of 

estimating functions. These estimating functions define the approximation problem 

which is solved to provide a predicted solution of the applied problem. The applied 

prob l em is then evaluated at this solution vector. 



( ;E I,,: ll.\'1'1-: In , I D.\ T. \ PO INTi-
FllOJ\ 1 TIii:: .\PPJ.11-:D PROBLEM . 

I 
EV ,\L l l.\Tf:: ESTIMA TI ON FUNCTION 
COF: F F ICIENTS. -

I 

~OLVE .\PPl10XIMAT ION Pl10BLEM . 

I 
E\ ', \I.l '.-\TE THE .-\P P LIED PROBLEM 
.\T TIii:: ~OLl'TION FOR Tl!E 
.\PP/lOXJM .\TED PROBLEM. 

I 

IS T IIE SOLUT ION. \ CONVERGED 
SOLUT ION TO THE APP LI ED 
PROBLEM? 

I YES 

ANA L YZE T II E V,\RI ANC E OF T l! E 
CONVE RGED SOLU TION. 

Fi gure 1. Solution of th e Applied Probl e m 
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This evaluation provides one additional observation which, when added to the 

4n 1 1 data points previously calculated, provides data to re-evaluate the estimating 

function coefficients. 

Predictions and eva luation s are repeated until a feasible solution is obtained 

in which the last approximation problem solution agrees with the applied prob] cm 

within the prescribed tolerance. Finally, an error analysis is evaluated to establish 

a probable bound on the remaining gain that has not been detected by the Lagrange 

function G. 

We will next consider the constrained least squares fit used to evaluate the 

coefficients for the estimating functions. 

Constrained Least Squares Estimate. The derivation for the least sq uare s 

estima te is well documented in literature ; however, it is included to introduce the 

constrained least squares so lution. 

In the case of least squares estimates, more observations have been made 

than there are coefficients. The objective is to minimize the square of th e differences 

between values of the es timatin g function and the observations obtained from samp lin g 

the applied problem. 

The sum of the squares for these differences may be expressed as: 

2 
(b + b X • + b X . 

oo ~o ii 11 11 
i=l (16) 

2 2 + ... + b X. -y. ) 
nn ni i 



2 r: ,) 

where there are h observations. Differentiating Eq (16) with respect to each coef

ficient and setting the derivatives equal to zero yields a set of simultaneous equations 

from which the least squares coefficients can be determined. 

d {E 2 ) 
L b 1 0X1 + I: 

2 = I: b + b llXl 
db 

00 

00 

~= 2 3 
I: b X + L b1 0X1 + I: b 11X1 

db1 0 
00 

+ ... 

+ ... 

2 + I: b X 
nn n 

I: y 0 

2 + I: b X X - L X 1Y = 0 
nn 1 n 

4 2 
I: b x - I: xny = 0 

nn n 

(16a) 

Bringing the coefficients of Eq (16a) outside the summation sign and factor

ing the coefficients into a vector, this system of equations may be written in the 

matrix form: 

(1 7) 

where X is the coordinate matrix, Y is the observation matrix, and f3 is the coef 

ficient matrix. 

The above derivation was for one dependent variable ; however, as all 

dependent variables have the same form for the same observations, the set of 

solutions may be collected by adding a column to the coefficient matrix and a column 

to the Y matrix for each additional dependent variable. 
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The constrained solution to the least squares estimate is made to force the 

error between the estimating functions and the applied problem to zero at a selected 

set of observations. Identifying the coordinate of these observations as vectors P , 
1 

P 2 , ... , P q' the least sq uares problem may be written sub ject to q constraints as: 

E2 = e2 (b b ••. , b ) 
oo 1 0 nn 

(18) 
2':$ 

+ ~ 
2=1 

r -I 

k 2 lp (b , b , ... , b ) - y 2 j oo 10 nn 

Diff erent iatin g E2 , Eq (18), with respect to each coefficient and each 

Lagrange multiplier, and setting the resulting system equal to zero, a linear sys 

tem of equations is obtained which is similar to the normal equations for the least 

squares fit. 

Let p be a matrix with one column for each coeff icient and one row for eac h 

constrained point. The coefficients for the constrained least squares fit are obtained 

from solving the following matrix equation for /3. 

(19) 
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In applying the constrained lea8t 8quarc8 fit, we will produce a set of c8ti-

mating functions which duplicates the applied µroblcm as closely as possible in a 

µarticular region of interest. For the first set of estimating functiom;, the expec t ed 

solution is at the center of the array; therefore, when the cocfficicnt8 of the e8timating 

functions are eva luated , we constrain the solution to pass through the initial estimated 

sol ution vector, X O. 

For the second set of estimating functions we will constrain the 8olulion to 

µass through both X and the first predicted solut ion X . When the8e two points are 
0 1 

constrained, the estimating functions, even though separable, will be warped to 

include the effects of the general interactions which are measured between x 0 and 

X. 
1 

For the third and 8uccecding sets of estimating solutions, the solution for 

the coefficients is constrained to force the estimating function to pass through the 

last three observatio ns . This constrained so lution warps the model in n-spacc so 

that the effec ts of th e n-space interactions projected into a plane defined by these 

three constrained points are satisfied. 

An examp le of estimating the fourth order polynomial 

y = - 1.35430 + 8 . 59419x - 2.77672x 2 

(20) 

+ 0.33966x 3 - 0.01398x 4 

with the quadratic model equation 

(21) 



will demonstrate the estimating properties of a constrained least sq uares fit. 

Sampling the fourth order polynomial at x = 0, 1, 2, ... , 12, least squares fit 

made for the est imatin g function coefficients yields 

A 2 

28 

y = 4.12046 + l.1 8704x - 0.114361x (21a) 

Assuming that the area of interest is at x = 6, a better estimate in the region 

of x ::: G would have been obtained had we required y to equal y at x = G. Thus, 

imposing the requirement that y = 5. 3340 when x -= G, a second estimating function 

is eval uated. 

y 2 5.47364 + 0.24984x - 0.03998x (21b) 

For com para ti ve purposes, we shall consider the two additional estimating 

functions wherein the values of y at x = 5 and at x = G are both satisfied, Eq (21c). 

In Eq (21d ) , the function is satisfied at x = 5, x = 6, and x = 7. Thus, 

A 2 
y = 7.41350 - 0.19797x - 0.01923x (21c) 

; = 17.1 3290 - 3.7nl63x + 0.30473x 2 (21d) 

Using the quadratic model eq uation , four different est im ation functions have 

been derived. The relative merits of these four functions may be observed by com

paring the function and its derivatives at x = G as tabulated in the following · page. 

Note the close agreement between the fourth order function and its derivatives, and 

the es tim ating function (D) and its derivatives. The effects of constraining the 

function are shown graphica lly in Figure 2 . 
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Figure 2. Constrained Leas t Squar es Fit 
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The example below demonstrates that for the functions considered, the con-

strained least squares fit improves the estimating quality in the neighborhood of the 

observation constraints. Although graphical representation of similar effects for 

functions of several variables would be difficult, numerical sampling verifies that 

similar results are obtained. 

EFFICIENCY OF ESTIMATING FUNCTIONS EVALUATED AT x = 6 

Fourth 
Order Estimating Functions, Eq (21} 

Function ® @ i9. D?l 

Function 5.53340 7.12574 5.53340 5.53340 5.53340 

1st Derivative -0.10989 -0.1852 8 -0.22922 -0.42873 -0.10487 

2nd Derivative 0.63696 -0. 22872 -0.07996 -0.03846 0.60946 

Applied Example. Next , let us examine the convergence process of the 

typical design problem introduced at the beginning of the paper ; results are tabu-

lated in Table I. Note that the problem converges randomly. Also note that the 

poor prediction of iteration No. 7 is followed by a well-behaved prediction for 8 . 

This type of convergence pattern is typical of the method. 

Analysis of Variance of the Constrained Extremal 

The applied problem is defined to have converged when the solution is 

feasible and f is within the tolerance 6 Z of the predicted va lu e. 
0 

We may eva luate the variance of the last approximation problem to deter-

mine if the model adequately described a va lid so lution for the applied problem. 



TABLE I 

TYPJCA L DESIGN PROBLEMS 

lnde enden t Variables De ende nt Variables 

Constraint 
Nozz le Exit 

Nozz le Sea Length Dia meter Acceleration Chamber Half- Lev e l Ideal ~ (in.) (g' s) Iteration Pressure Expansion Angle Thrust Velocity 
< 7. 45 < No. ([!Sia) Ratio ~ --.D.2.!L. (ft / sec) > 10 - 5 

Base 1,500 15000 15.00 7,000 5,182.93 12.0537 7.5327 4 . 4229 
1 1,355 13.000 16.29 7,096 5,187.36 10.8663 7.46374 4.5095 
2 1,243 11. 000 16.78 7, 148 5,182.34 10.0070 7 . 2202 4.5632 
3 1,066 9.000 18.39 7, 203 5,165.88 S. 8199 7.1393 4.6312 
4 939 7.674 16.64 7,703 5, 190 . 30 9.4505 7.2853 4.9770 
5 910 7.768 16.07 7,730 5,207. 74 9.9693 7. 4653 5 . 0001 
6 930 7.933 16.06 7,737 5,208.61 10. 0114 7.4565 5 .0002 
7 933 7.573 16.36 8,237 5,200.00 9.8025 7. 5060 5.3223 
8 917 7.798 16.01 7,737 5,207.97 9.9960 7.-1507 5 . 0029 
9 956 8.147 16. 18 7, 7H 5,207.90 9.9971 7. 4-! 3 4.9999 

10 932 7.936 16. 07 7,737 5,208. l 0 10.0007 7.4500 5.0000 
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First we must develop an analysis oJ variance for a constrained least squares 

fit, then apply the variance of the coefficients to the Lagrange function G. 

First we will simplify Eq (19) to the form 

An = C: 

I 
I -----,-----
' 

p 0 

B [-J 

Then we will consider the following analysis of variance table 

Degrees of 
Source Freedom 

Total 11 
0 

Regression - Constraint nR - nc 

Error + Constraint 11 + 11 - 11 
0 C R 

Sums of 
Squares 

2 I;y_ 
1 

CTB 

2 T 
I;y_ - C B 

1 

Mean Square 

n + n - nR 
0 C 

(22) 

Expected 
Mean 

Square 

2 
a 

I, 



where: n is the number of observations, 
0 

nR is the number of coefficients in the model equation, 

n is the number of observations constrained, 
C 
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a2 is the mean variance of the constrained least squares solution. 
L 

Next we will examine Figure 3, from which the sums of squares for the con

strained least squares fit can be visualized. The calculations are as follows. 

(1) The total sums of squares is the summation of the squares of all 

observations. This is calculated as 

~ 
SS = Z:v. (23) y - 1 

(2) The sum of s quares due to regression is the summation of the sq uare 

of the ordinates to the regression line. This is calculated as 

(3) The sum of squares due to the error in regression is the summation 

of the square of the distance from the observation to the regression 

line. This is calculated as 

(25) 

(4) The sum of squares due to the constraint is the summation of the 

square of the distance between the regression line and th e constrained 

line at each observation. This is calculated as 

(26 ) 
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(5) The sum of squares due to error plus constraint is the summation 

of the square of the distance from the observations to the constrained 

line. This may be calculated as 

,. 2 CTB L,y i -

X ---0----
/-- -- x------

X 
X 

/ X X ......___ '- X 

/ 'o, 
/ X X ' 

/ X 

7 
p 

1t1-: r; l(l-' SSION f.!Nr : I 
I - - -- CON ST lt,\JNf:D llEGJH :~SlON UN E 

0 0 CON STf!AI N J::D 011!,E IIV.-\T!ON S 

X X r1n :1-: OIJ ~E l{\I A r!ON~ 

Figure 3. Typical Constrained Least Squares Fit 

The mean square for the error plus constraint is 

The mean square for the error relative to the regression line i s 

The mean square due to the constraint is 

2 
ae == SS /n 

C C 

(27) 

(28) 

(29) 

(30) 

Inverting Matrix A by partitioning, we s ee that the upper left hand comer 

of the resultant inverse yields the variance-covariance distribution for re g r ession 

less con s traints. 
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-----------------------------------------,------------------------ (31) 

T 

[ [XTX]-1 PT[PXTXPT]-1 ] 

-1 
Note that the upper left hand corner of A is the difference of two positive definite 

matrices, and as [xTx] -l 

regression, then [xTx]- 1 

is the variance-covariance distribution matrix due to 

is the variance-

covariance distribution matrix due to constraint ; their weighted sum (Matrix D) is 

the variance-covariance matrix due to regression plus constraint. 

(32) 

The above derivation for the analysis of variance for one dependent variable 

will next be applied to calculation of the variance of G at X*. 

We will define S to be a vector containing the a • s for each dependent 
C C 

variable and SR to be a vector containing the aR's. Then, differentiating Eq (8) 

with respect to L. , we note that 
1 

dG ex;',) 

dL. 
- - A. 

:L 

:L 

but at X*, L. = f. (X*) ; and we generalize that 
1 1 

dG ex,··) = 

df . 
:L 

/\. 
:L 

(33) 

(34) 
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Using this relationship, we may compute the mean variance of the derived coef

ficients of A. We define 'x. = 1. 0 and defining E to be the correlation matrix of YT Y, 
0 

the mean variances of the coefficient of H due to constraint and regression are 

I\ and the variance -cov ariance matrix for the coefficients of the function H is 

we now expand G in a Taylor's series about the means of x. 's 
J 

j=n 

.t:(; - I clG = G - G = 
~ (x. - X .) 

J J 
j =l J 

j=n k=n 

+ 1 )' l iG 
(x . x .) (xk x ) - dx. - -2! xk J J k _, 

J j=l k=l 

(35) 

(36) 

(37) 

(38) 

As a ll the first derivatives of G go to zero at X*, the first summation is identically 

zero at the solution point. 

I\ 

Thus, when s ubst ituting the partial derivatives of H (X*) into Eq (38) , ~ G 

becomes 
j=n 

.t:(; = ) 
L 

C,. 
JJ 

' - 2 (x~: - X.) 
J J 

(39) 

j =l 



Expanding Eq (39) as a Taylor series with respect to the remaining coef

ficients, and squaring, we obtain the variance equation: 

j=n 

2 l 2 -~ - 4 
ac;'<' = a (x ': - X.) + 

C .. J J 
j=l JJ 
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(40) 
j=n-1 k=n 

l l (x;~ 2 _,_ - 2 2 P . . kk a a - X.) (x~~ - xk) 
J J' C .• ckk J J 

j=l k=j+l JJ 

where the variance of the coefficients may be found in th e matrix DG. 

Using an assumption of normality with a~*' confidence limit s on G may 

be established using th e t distribution having n + n - nR degr ees of freedom. 
O C 

The confidence limits estab lished on the probable error of the extreme 

so lution may be used to determine if the problem sho uld be re-eva lu ated using the 

final so lution point as the center of a new array. 

The sample applied problem had a probable error of 0. 02 ft/sec with 

95 percent confidence, based upon a set of est imatin g functions which converged 

to within a A Z of 1 ft/sec. This establishes an error upper bound of 1. 02 ft/sec 

on ideal velocity for it eration No. 10 of the samp le problem. 



CONCLUSIONS 

Model estimation µrogramming has been successfully used to determine 

optimum design criteria for rocket propulsion systems. The method is original 

and it may be applied as a solution to the general programming problem. 

38 

The method has been programmed for a digital computer and used for the 

µast 18 months. Because of its initial s ucc ess and ease of application, ii is being 

incorporated into an ever-broadening spectrum of computer programs at the Wasatch 

Divi sion of Thiokol Chemical Corporation. 
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