Utah State University

DigitalCommons@USU

All Graduate Theses and Dissertations

Graduate Studies

5-1967

Fortran Programs for the Calculation of Most of the Commonly **Used Experimental Design Models**

H. Wain Greenhalgh Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Statistics and Probability Commons

Recommended Citation

Greenhalgh, H. Wain, "Fortran Programs for the Calculation of Most of the Commonly Used Experimental Design Models" (1967). All Graduate Theses and Dissertations. 6810. https://digitalcommons.usu.edu/etd/6810

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

FORTRAN PROGRAMS FOR THE CALCULATION OF MOST OF THE COMMONLY USED EXPERIMENTAL DESIGN MODELS

by

H. Wain Greenhalgh

A thesis submitted in partial fulfillment of the requirements for the degree

of

MASTER OF SCIENCE

in

Applied Statistics

Approved:

UTAH STATE UNIVERSITY Logan, Utah

1967

378.2 G-83.84 C. 2 ABSTRACT

FORTRAN Programs for the Calculation of Most of the Commonly Used Experimental Design Models

by

H. Wain Greenhalgh

Master of Science

Utah State University, 1967

Major Professor: Dr. Rex L. Hurst

Department: Applied Statistics and Computer Science

Two computer programs were developed using a CDC 3100. They were written in FORTRAN IV.

One program uses four tape drives, one card reader, and one printer. It will calculate factorial analysis of variance with or without covariance and/or multivariate analysis for one to eight factors and up to twenty-five variables.

The other program is used for completely randomized designs, randomized block designs, and latin square designs. It will handle twenty-five treatments, rows (blocks), and columns. The program can handle fifteen variables using any number of these variables for covariates.

(128 pages)

TABLE OF CONTENTS

												Page
INTRODU	CTION											1
REVIEW	OF LITE	ERATU	JRE									3
FACTORI.	AL DESI	GNS										5
Me In	scripti thodolo put . tput			•				•	:	:		5 6 8 18
BASIC D	ESIGNS											21
Me In	scripti thodolo put . tput			•		:		:		:	:	21 21 22 26
LITERAT	URE CIT	ED										28
APPENDI	XES .											29
Ар	pendix	Α.	Facto	orial	L Des	sign	s Pro	ogra	m			30
Ар	pendix	В.	Facto	orial	L Pro	ogran	n Sar	nple	Prol	blem	S	51
Ар	pendix	C.	Basi	c Des	signs	s Pro	ogran	n				88
Ар	pendix	D.	Basio	c Pro	ogran	n Sar	mple	Pro	blem	S		100
Ap	pendix	Ε.	Modi	fied	Fact	toria	al Pi	rogr	am			116
VITA												125

INTRODUCTION

During the past few years there has been an increasing interest in using computers to calculate analysis of variance, analysis of covariance and multivariate analysis.

Many different methods and programs have been written to perform the necessary calculations. Most of these programs fall into three main categories: (i) those that will handle only small sets of data, (ii) those that require large amounts of core storage, and (iii) those that are written in a machine dependent language.

This thesis contains program writeups and listings for two computer programs, one for basic designs (completely randomized, randomized block, and latin square designs) and another for factorial designs. The program for basic designs is fairly restrictive on the size of problems it will handle, but is presented here because of its use as a teaching tool. The factorial program will handle up to eight factors with the only restriction on the number of levels per factor being that the number of subtotals needed for any uncorrected sum of squares must be less than 2500. Both programs will calculate analysis of variance and covariance and the factorial program will also calculate multivariate analysis. Appendix E contains the listing of a modified factorial program which will run faster but handle only analysis of variance. These programs will all run on

a 16k word Control Data Corporation 3100 with 3100 FORTRAN (a restricted FORTRAN IV), four tape drives, a card reader and a printer.

REVIEW OF LITERATURE

A few of the existing programs are those by Bone (1), Hurst (6), Dixon (4) and The Statistical Service Unit, University of Illinois (9). All of these programs will handle between seven and nine factors.

The programs by the Statistical Service Unit University of Illinois (9) are commonly known by the mnemonic name of SSUPAC. The SSUPAC series is written for an IBM 7094 with five tape drives, one 1301 disk storage file, a card reader and a printer. The analysis of variance program will handle one to seven factors plus replications.

Dixon (4) is the editor of a series of programs written at the University of California at Los Angeles, widely known as the BMD series. This series is also written for an IBM 7094, part of it in FORTRAN and part of it in FAP. The factorial analysis of variance will handle eight factors plus replications for only one variable. If covariance is desired another program is used which will handle six factors plus replications.

Bone (1) from Brigham Young University, at Provo Utah has written a program for an IBM 7040/44 in MAP. This program will handle up to ten factors. This program will also handle covariance.

Most of the ideas for the programs in this thesis were taken from the program series by Hurst (6). The first

program in this series is all that is required for analysis of variance. This program is written in SPS for an IBM 1620 with card input and output. If covariance or multivariate analysis is desired the output from the first program is then run on three other programs, one in SPS and two in FORTRAN. The covariance and multivariate routines used in this thesis are direct modifications of those by Hurst.

FACTORIAL DESIGNS

Description

This program is used to calculate the analysis of variance with or without covariance and/or multivariate analysis for equal subclass factorial designs with up to eight factors, replications counted as a factor. The program can also be used on some types of fractional replication designs and some designs using totals or averages.

The program is divided into four main parts. The first part is the mainline program, FACOV; this is the primary input section. The second part is the SUBROUTINE GAOV; this subroutine calculates the necessary totals and sums of squares for the AOV for each variable. The totals are written on tape to be used by later subroutines. SUB-ROUTINE FACT is the third part. It sorts the totals and calculates error and treatment plus error sums of squares and sums of products matrices which are also written on tape. The fourth part consists of three subprograms, SUB-ROUTINE MULVA, FUNCTION DET, and SUBROUTINE INVERT. This part calculates the covariance and/or multivariate analysis.

This program is written in FORTRAN IV. It requires one input unit (logical unit 5), one output unit (logical unit 6), and three intermediate work tapes (logical units 1, 2, 3). The program can also use one secondary input unit (logical unit 4).

Methodology

This program uses standard analysis of variance and covariance techniques as described in Snedecor (8) or any other good book on elementary statistical methods. The multivariate techniques are those described by Rao (7).

Program FACOV is the primary input section. This section reads the control cards and observations. The observations are then rewritten on logical unit 2, followed by the raw sum of squares trail cards, and the corrected sum of squares trail cards.

The first thing SUBROUTINE GAOV does is to read logical unit 2 and calculate the total sums of squares and sums of products matrix and write on logical unit 3. Logical unit 2 is then rewound. Next it reads the observations from logical unit 2 and writes only one variable on logical unit 1. It also calculates the total and total sums of squares. Next logical unit 1 is rewound. It then reads a raw sum of squares trail card from logical unit 2 and while reading the data from logical unit 1 calculates and writes on logical unit 3 the subtotals and, if requested, writes the averages on logical unit 6. The sum of squares is then calculated and stored internally. Logical unit 1 is then rewound and the next raw sum of squares trail card is used. It repeats this until all raw sum of squares trail cards are used. Then, the program reads the corrected sum of squares trail cards to calculate the analysis of variance, which is

written on logical unit 6. At this point logical units 1 and 2 are rewound, and the procedure is completed for the next variable. When all variables are completed, the program branches to SUBROUTINE FACT.

At this point logical unit 3 contains the total sums of squares and sums of products matrix, followed by the total for that variable and by the totals for each raw sum of squares trail card, sorted total within variable. SUBROUTINE FACT sorts the totals, using logical units 1, 2, 3, so that they are sorted variable within total. The sorted totals are then read and an uncorrected sums of squares and products matrix is calculated for each raw sum of squares trail card plus a total sums of squares and products matrix and a correction term matrix. The matrices are written on logical unit 6 and on either logical unit 1 or 2, (the sorted totals are on the other). The program then reads the linear combinations for the error and treatment plus error matrices, from logical unit 5, and performs the combinations, and writes the matrices on logical units 3 and 6.

The final part of the program is the SUBROUTINE MULVA, used with SUBROUTINE INVERT and FUNCTION DET. The first card read determines the number of models desired, and for each model, a control card is read to determine whether covariance or multivariate analysis or both is desired. Then a variable selection card is read to determine which

variables are to be used in the analysis. Logical unit 3 is rewound and a matrix is read. The first matrix must be an error matrix. The treatment plus error matrices, using this error matrix, should follow immediately. This may be followed by more error and treatment plus error matrices. The method distinguishing between error and treatment plus error matrices will be explained in the input section. This part of the program uses two main matrix areas. Matrix A is the general input matrix and is also used for matrix inversion and covariance analysis. Matrix B is used to store intermediate results and for the calculation of the determinates needed for multivariate analysis.

Input

An input deck consists of the following: control card, format card, a card of approximate means, the data cards, raw sum of squares trail cards (these cards are required; all others are optional), corrected sum of squares trail cards, corrected sums of squares and sums of products matrices trail cards, a card specifying the number of models on which covariance and/or multivariate analysis is wanted, and for each model a control card and a variable selection card is needed.

Control card

(1013, I5, 314, F5.0, 312)

Column	Description
1-3	Number of variables \leq 50
4-6	<pre>0 = Covariance or multivariate</pre>
	analysis is not desired
	<pre>1 = Covariance or multivariate</pre>
	analysis is desired
7-9	Number of levels of factor A \geq 1
10-12	Number of levels of factor B \geq 1
27-30	Number of levels of factor H \geq 1
31-35	Total number of observations
36-39	Number of raw SS trail cards
40-43	Number of corrected SS trail cards
44-47	Number of corrected matrices wanted
48-52	Special divisor to be used with
	correction term (See example on
	fractional replication sample)
53-54	<pre>0 = don't use special divisor</pre>
	l = use special divisor
55-56	0 = full replication
	<pre>1 = fractional replication</pre>
57-58	0 = data on logical unit 5
	1 = data on logical unit 4

The sum of columns (36-39) and (40-43) must be less than or equal to 126.

Format card

(20A4)

Column

Description

1

2-80

A combination of X, F, and E format specifications with one F or E specification for each variable specified in columns 1 - 3 of the control card; also one F specification for a control field to be used if this is a fractional replication.

Approximate means card

(5E15.7)

There should be one mean for each variable. These means are used to help improve accuracy. These are not actual means and should not contain any more digits than the original variables. If this option is not desired, use means of 0.0.

Data cards

The data cards must be compatible with a FØRTRAN READ statement. The observations of each experimental unit should be recorded on a separate card. Different variables

measured on the same experimental unit may be recorded on separate fields of the same card. Negative signs are recorded as an eleven punch preceding the first significant digit of a field.

The data must be sorted by levels of H within levels of G... within levels of B within levels of A. The program does not interrogate treatment levels. Therefore, it is the user's responsibility to see that the data cards are in sequence and that there are no missing observations. However, if the design is a fractional replication, by definition there are missing observations. These missing observations must be inserted into the data deck with the data fields blank and an additional control field of 9999.0.

Raw sum of squares trail cards

(9X, 8I1, I3, I2, F5.0, I2)

Column	Description
1-9	Not used
10-17	Binary definition of sum of squares
	wanted. A "0" is used for each
	subscript which is dotted. A "1"
	is used for each subscript which is
	to be summed on.
18-20	Line number \geq 3. Used to identify
	sum of squares. Numbers assigned
	consecutively.

Column	Description
21-22	0, don't punch means
	1, punch means
23-27	Special divisor to be used with
	this line number; see fractional
	replication sample
28-29	0, don't use special divisor
	1, use special divisor

Line number 01 is reserved for the total sum of squares ($\sum_{ijk} Y_{ijk}^2$) which is automatically produced. Line number ijk' esserved for the correction term ($Y_{...}^2$ /abcd), which is also automatically produced.

The preceding cards are required, all other cards are needed only if requested in the control card.

Corrected sum of squares trail cards

(3A4, 17I4/(20X, 15I4))

Column	Description
1-12	Descriptive information
13-16	Line number. Begins where the raw
	sums of squares line numbers leave
	off. Line numbers are assigned
	consecutively and must be less than
	128.
17-20	Number of terms in the linear combi-
	nation for this line.

Column	Description
21-24	Line number of raw or previously
	calculated corrected sum of squares
	to be used to calculate this cor-
	rected line. If it is to be sub-
	tracted it is written as a negative
	number.
25-28	Next term of this linear combina-
	tion
	•
77-80	15th term in this linear combina-
	tion. If this is the last term it
	must be followed by a blank card.
	If more terms are needed begin anoth-
	er card in columns 21-24.

Corrected matrices trail cards

(3A4, 2I4, 10(F3.0,I3)/(20X, 10(F3.0, I3)))

Column	Description
1-12	Descriptive information
13-16	Line Number. A negative line number
	identifies an error sums of squares
	and products matrix. Positive line
	numbers are for treatment plus error
	matrices.

Column	Description
17-20	Number of terms in this linear
	combination.
21-23	Each term in the linear combination
24-26	consists of two fields. The first
	is a weighting factor. The second
	is a line number which corresponds
	to one of the raw sum of squares
	trail cards. The weighting factor
	is multiplied times each element
	of the matrix.
27-29	The next term in the linear
30-32	combination.
75-77	The 10th term in this linear combina-
78-80	tion. If this is the last term this
	card must be followed by a blank
	card. If more terms are needed,
	begin another card in columns 21-23,
	24-26.
Number of models card	
(13)	

For each model the next two cards are required.

Description

Number of covariance and/or multi-

variate analysis models wanted.

Column

1-3

Covariance and/or multivariate analysis control card (213, 312)

Column	Description
1-3	Number of independent variables; X's
4-6	Number of dependent variables; Y's
7-8	0, don't write inverse of error matrix
	1, write inverse of error matrix
9-10	0, don't write error regression coef-
	ficients.
	1, write error regression coefficients
11-12	0, No multivariate analysis
	1, Multivariate analysis

The sum of columns (1-3) and (4-6) must be less than or equal to 25.

Variable selection card

(2014)

Column	Description
1-4	The position, in the original read
	list, of variable 1.
5-8	The position, in the original read
	list, of variable 2.
:	
77-80	The position, in the original read
	list, of variable 20.

If more than 20 variables are needed, begin in columns (1-4) of a second card with variable 21. The X variables come first, followed by the Y variables.

The following example is used to illustrate the preparation of the input.

$$Y_{ijk} = \mu + \alpha_{i} + \beta_{j} + \gamma_{k} + (\beta\gamma)_{ik} + \epsilon_{ijk} \qquad i = 1, \dots, a \\ j = 1, \dots, b \\ k = 1, \dots, c$$

$$TOT \qquad abc - 1 \qquad \sum \sum \sum Y^{2}_{ijk} - Y^{2}_{...} / abc$$

$$A \qquad a - 1 \qquad \sum Y^{2}_{i...} / bc - Y^{2}_{...} / abc$$

$$B \qquad b - 1 \qquad \sum Y^{2}_{...} / ac - Y^{2}_{...} / abc$$

$$C \qquad c - 1 \qquad \sum Y^{2}_{...} / abc - Y^{2}_{...} / abc$$

$$B \times C \qquad (b-1)(c-1) \qquad \sum \sum Y^{2}_{...} / abc - \sum Y^{2}_{...} / ac - \sum Y^{2}_{...} / abc + Y^{2}_{...} / abc$$

$$Error \qquad abc-bc-a+1 \qquad \sum \sum Y^{2}_{ijk} - \sum \sum Y^{2}_{...} / ac - \sum Y^{2}_{...} / bc + Y^{2}_{...} / abc$$

For this example we will use only one variable, a=16, b=3, and c=2. From the analysis of variance we see that we need 6 raw sums of squares, as follows.

- (1) $\sum \sum \sum Y^{2}_{ijk}$
- (2) Y^2 /abc
- (3) $\sum_{i} \sum_{i} /bc$

(4)
$$\Sigma Y^2$$
 /ac

(5)
$$\Sigma Y^2 \cdot k$$
/ab

(6)
$$\sum \sum y^2 jk/a$$

(1) and (2) are automatic; therefore, four raw sum of squares trail cards and six corrected sum of squares trail cards are needed.

If we assume the data to have the following format: factor A coded in column 1-2, factor B coded in column 3, factor C coded in column 4, Y recorded in columns 8-10 with 2 positions to the right of the decimal, and an approximate mean of 4.0. The data and control cards will be as follows:

Control card

Column: ϕ

÷43

bblbb0bl6bb3bb2bblbblbblbblbbbb96bbb4bbb6

Format card

Column:

(7X,F3.2)

Approximate mean

Column:

.

Data cards

The data cards are sorted first on column 4, then 3, and then 2 and 1.

Raw SS trail cards

Column

0 100000000b3b1 01000000bb4b1 00100000bb5b1 011000000bb6b1

Corrected SS trail cards

Column

Column

A 8bbb2bbb3bb-2
B 9bbb2bbb4bb-2
C 10bbb2bb5bb-2
BC 11bbb4bb6bb-4bb-5bbb2
ERRØR 12bbb4bb1bb-6bb-3bbb2

Output

Most of the output is self-explanatory; however, the following information will be helpful. The first three lines are the control cards written so that they may be checked. Following the control cards are the raw sum of squares lines, with their corresponding treatment identifications and means, the corrected sum of squares trail cards, and the analysis of variance for each variable. If corrected matrices are requested, following the last variable

are the uncorrected sums of squares and products matrices, and the corrected matrices. Each corrected matrix is preceded by its corresponding trail card. Both uncorrected and corrected matrices are written in the following manner.

ROW

n a_{n,n}

Next comes the output for covariance and/or multivariate analysis. This output may be best explained by defining the following abbreviations.

REG CØEF = Regression coefficients

DUE TØ REG = Due to regression

DF = Degrees of freedom

SS AND SP = Sum of squares and sum of products

MS AND MP = Mean square and mean products

DEV FR REG = Deviation from regression

TRT ADJ = Treatment adjusted

ERR MATRIX = Error matrix

TRT MATRIX = Treatment matrix

ERR \emptyset R DET = Determinate of error matrix

TRT + ERR DET = Determinate of treatment plus error matrix

MUL F = Multivariate F value

The numbers under the headings $R\emptyset W$, $C\emptyset L$, X, and Y are variable numbers corresponding to the variables in the original input list.

BASIC DESIGNS

Description

This program is used to calculate analysis of variance and covariance for completely randomized designs with unequal sample size, or randomized block designs, or latin square designs without replications or subsampling. With covariance on a completely randomized design it will, on control, give you a linear regression analysis within each treatment.

Automatically, the program will give you an analysis of variance and treatment means for each variable, and if you wish, covariance, the error correlation matrix, inverse matrix, solution matrix, adjusted analysis of variance, and adjusted means.

The program is written in FORTRAN IV. It requires one input unit (logical unit 5) and one output unit (logical unit 6). The DIMENSION statement is set up for 25 treatments, 25 blocks, 25 columns, and 15 variables.

Methodology

A control card is read to determine the model, number of treatments, number of blocks, number of independent variables (X's), number of dependent variables (Y's), and whether you want regression analysis on a completely

randomized design with covariance. If the model is a completely randomized design, a card containing number of observations per treatment is read next. Then, for all models in order, a format specification card, a rearrangement vector card, and a card containing approximate means are read. These are then followed by the data cards.

As the data cards are read the total sums of squares and products matrix, treatment totals, row (block) totals, column totals, and variable totals are produced. Also, if you wish regression analysis within treatments, the analysis is given at the end of each treatment. After the data has been read, the analysis of variance for each variable and treatment means are calculated and outputted. If you wish covariance (number of X's is greater than zero) the error and treatment plus error matrices are calculated and the program branches to SUBROUTINE COVAR.

SUBROUTINE COVAR outputs the error correlation matrix and with the help of SUBROUTINE INVERT calculates and outputs the inverse of the error matrix and the solution matrix. It then gives you the adjusted analysis and adjusted treatment means.

Input

The first card of the input is a number of jobs card.

The input for each problem consists of: a control card, a number of observations card (if model is a completely

randomized design), a format specification card, a rearrangement vector card, a card with approximate means, and
the data cards. All fields on the control cards, except
description, format, and approximate means, must be right
justified. The approximate means must have a decimal point
punched.

Number of jobs card

(I4)

Column

Description

1 - 4

Number of separate jobs (models) to be run.

The following cards are repeated for as many times as specified in the previous card.

Control card

(514, 212, 16X, 10A4)

Column	Description
1-4	Model identification
	<pre>1 = Completely randomized design</pre>
	2 = Randomized block design
	3 = Latin square design
5-8	Number of treatments
9-12	<u><</u> 25
9-12	Number of blocks
	< 25
13-16	Number of X's
17-20	Sum must be less than 15 Number of Y's

Column	Description
21-22	<pre>l = output regression within treatment</pre>
	for completely randomized design
	0 = do not output regression
23-24	0 = data on logical unit 5
	1 = data on logical unit 4
41-80	Descriptive information

Number of observations per treatment card (used for completely randomized designs only)

(2014)

Column	Description		
1-4	Number of observations for treatment 1.		
5-8	Number of observations for treatment 2.		
:			
77-80	Number of observations for treatment 20.		

If you have more than 20 treatments follow with card beginning with treatment 21 in columns 1-4.

Format specification card

(20A4)

It must begin with a left parenthesis in column 1, followed by a combination of F, E,/, and X format specifications followed by a right parenthesis. You must have one F or E format specification for each variable. If your model is a latin square design you must also have a Fw.o specification to read column identification.

Rearrangement vector

(2014)

Column		Description					
1-4	The position	on in	read	list	of	variable	1.
5-8	The position	n in	read	list	of	variable	2.
•			:				
57-60	The position	n in	read	list	of	variable	
	15.						

The X variables come first, followed by the Y variables. If your model is a latin square design, follow your last variable with the position, in read list, of column identification.

Approximate means card

(5E15.8)

Column	Description		
1-15	The approximate mean of variable 1.		
16-30	The approximate mean of variable 2.		
:			
61-75	The approximate mean of variable 5.		

If you have more than 5 variables follow with additional cards. These constants are subtracted from the variables to improve the accuracy of the sums and sums of squares and products of the variables. The approximate means should contain no more digits than the original data.

An exact eight digit mean when used with a three digit field will produce more error than an approximate mean of only three digits. A zero is a legitimate constant and may be used to ignore this feature.

Data cards

The data cards must be compatible with a FORTRAN READ statement. An extra column must be provided for sign control in fields that may go negative. A negative punch (an eleven punch) is recorded to the left of the most significant digit. Recorded decimals will override format specifications. Normally it is a waste of card columns to record decimals. The data cards must be sorted; observation within treatment for a completely randomized design, block within treatment for a randomized block design, and row within treatment for a latin square design. For a latin square design the column identification must be integers running sequentially from 1 to the number of treatments.

Output

Most of the output is self-explanatory. However, the following information will be helpful. The first four or five cards are the control cards, printed out so that you can check them. All matrices are printed in the following manner:

1 a_{1,1} a_{1,2} · · · · · · · · a_{1,n}

2 a_{2,2} a_{2,3} · · · · · · · a_{2,n}

.

n a_{n,n}

The regression coefficients are printed

i j b_{i,j}

where $b_{i,j}$ is the partial regression coefficient of variable i on variable j.

The following abbreviations are used:

DF = degrees of freedom

SS = sum of squares

MS = mean square

SE = standard error of a mean

EXP MEAN = overall mean of that variable

C.V. = coefficient of variation

CØEF ØF DET = coefficient of determination (R^2)

LITERATURE CITED

- 1. Bone, G. Brian. ANOVAR, Analysis of Variance/Covariance Processor. Unpublished Program Writeup. Brigham Young University Computer Research Center, Provo Utah. 40 p.
- Cochran, William and Gertrude M. Cox. Experimental Designs. John Wiley and Sons, Inc., New York. 1957. 597 p.
- 3. Cooley, William W. and Paul R. Lohnes. Multivariate Procedures for the Behavioral Sciences. John Wiley and Sons, Inc., New York. 1962. 207 p.
- 4. Dixon, W. J. (ed.). BMD Biomedical Computer Programs. Health Services Computing Facility Department of Preventive Medicine and Public Health, School of Medicine University of California, Los Angeles California. 1964. 585 p.
- 5. Hurst, Rex L. Effects of Certain Soil and Climatic Factors on the Yield and Composition of Corn Variability Study. Unpublished Ph. D. Dissertation. Cornell University Library. Ithaca, New York. 1952. 83 p.
- 6. Hurst, Rex L. Factorial Analysis of Variance and Covariance. Unpublished Program Writeup. Utah State University, Logan, Utah. 1966. 143 p.
- 7. Rao, C. Radhakrishna. Linear Statistical Inference and Its Applications. John Wiley and Sons, Inc., New York. 1965. 510 p.
- 8. Snedecor, George W. 1956. Statistical Methods. Iowa State University Press, Ames, Iowa. 1956. 523 p.
- 9. Statistical Service Unit University of Illinois. SSUPAC Manual of Computer Programs for Statistical Analysis. Unpublished Program Manual. University of Illinois, Urbana, Illinois. 141 p.

APPENDIXES

Appendix A

Factorial Designs Program

Table 1 shows the dependencies that must be maintained if the DIMENSION statements are to be changed. Capital letters are used for variable names within the programs and lower case letters for all other variables. Subroutine GAOV is the program which contains most of the limitations. Following Table 1 is a listing of the factorial program as it ran on a CDC 3100.

Table 1. Dependencies in EQUIVALENCE and DIMENSION statements

Program	Dimension	Equivalence
FACOV		
	CONST (NV) FMT (20) X (NV+1) NIN (8) DES (3) IX (b) A (n,n)	(A(20),X(1)) (IX(1),NIN(1))
GAOV	A (n,n) TOT (m) NDF (f) SS (f) NL (8) NX (8) NOUT (8) NIN (8) IX (b) DES (3) DIVMN (f) NLEV (f)	(A(1),TOT(1)) (IX(1),NIN(1)) (IX(9),NOUT(1))

Table 1. Continued

Program	Dimension	Equivalence
FACT		
	DIV (f) NL (f) ST (NV) A (n,n) CONST (NV) AX (b) IX (b) DES (3)	(A(m/2+1),AX(1)) (A(m/2+b+1),ST(1))
MULVA		
	A (n,n) B (n,n/2) ID (b) X (n/2)	(A(m/2+1),B(1)) (A(n/2+1),X(1))
DET		
	A(n,n) B (n,n/2) F (n/2)	(A(m/2+1),B(1)) (A(n/2+1),F(1))
INVERT	A (n,n)	

NV = Number of variables

LC = Number of corrected SS trail cards

LI = Number of raw SS trail cards

LZZ = Number of terms in any linear combination

f > LI+LC+2 b > LZZ b > NV

n/2 > NV $m = n^2 > Largest number of subtotals needed in any sum of$

```
C
      PROGRAM FACOV
                                                                               FA000010
      THIS IS THE PRIMARY INPUT SECTION
0
                                                                               FA000020
      DIMENSION CONST(25) , FMT(20) , X(26) , NIN(8) , DES(3) , IX(75) , A(50,50)
                                                                              FA000030
      COMMONA .NV .MC .IX .NA .NB .NC .ND .NE .NF .NG .NH .NOBS .LI .LC .ISPD .SPD .CONSTFA000040
     1 .DES.KON
                                                                               FA000050
      EQUIVALENCE (A(20) .X(1)) . (IX(1) .NIN(1))
                                                                               FA000060
      REWIND 02
                                                                               FA000070
      READ (5,100) NV, KON, NA, NB, NC, ND, NE, NF, NG, NH, NOBS, LI, LC, MC, SPD, ISPDFA000080
     1. IFR. IO
                                                                               FA000090
      WRITE (6,300) NV, KON, NA, NB, NC, ND, NE, NF, NG, NH, NOBS, LI, LC, MC, SPD, ISPDFA000100
     1.IFR.IO
                                                                               FA000110
  300 FORMAT (1H11013, 15, 314, F5, 0, 312)
                                                                               FA000120
  100 FORMAT ( 1013.15.314.F5.0.312)
                                                                               FA000130
      IN=5-10
                                                                               FA000140
      READ (5,101) (FMT(K),K=1,20)
                                                                               FA000150
  101 FORMAT (20A4)
                                                                               FA000160
      WRITE (6,111) (FMT(K),K=1,20)
                                                                               FA000170
  111 FORMAT (1H , 20A4)
                                                                               FA000180
      X(NV+1)=0.0
                                                                               FA000190
      INC=NV+IFR
                                                                               FA000200
      READ (5,102) (CONST(I), I=1,NV)
                                                                               FA000210
  302 FORMAT (1H 5E15.7)
                                                                               FA000220
  102 FORMAT ( 5E15.7)
                                                                               FA000230
      WRITE (6,302) (CONST(I), I=1, NV)
                                                                               FA000240
      KK = NV + 1
                                                                               FA000250
      IF (IO) 52,52,51
                                                                               FA000260
   51 REWIND 4
                                                                               FA000270
   52 DO 10 J=1 NOBS
                                                                               FA000280
      READ (IN, FMT) (X(I), I=1, INC)
                                                                               FA000290
      IF (X(KK)-9999.0)5,10,5
                                                                               FA000300
    5 DO 6 I=1.NV
                                                                               FA000310
    6 \times (I) = \times (I) - CONST(I)
                                                                               FA000320
   10 WRITE (2) (X(IL), IL=1, NV)
                                                                               FA000330
       IF (IO)2,2,1
                                                                               FA000340
    1 REWIND 4
                                                                               FA000350
```

	PAUSE	FA000360
2	DO 15 LN=1,LI	FA000370
	READ (5,1001) (NIN(I), I=1,8), ILINE, IP, PD, IPD	FA000380
15	WRITE (O2) (NIN(I) , I=1,8), ILINE, IP, PD, IPD	FA000390
1001	FORMAT(9X,8I1,I3,I2,F5.0,I2)	FA000400
	IF (LC) 18,18,13	FA000410
13	DO 14 LN=1.LC	FA000420
	READ (5,1003) (DES(IYY), IYY=1,3), LCN, LZZ, (IX(K), K=1, LZZ)	FA000430
14	WRITE (02) (DES(IYY) , IYY=1,3), LCN, LZZ, (IX(K),K=1,LZZ)	FA000440
1003	FORMAT(3A4,1714,/(20X,1514))	FA000450
18	REWIND 02	FA000460
	CALL GAOV	FA000470
	STOP	FA000480
	END	FA000490

```
SUBROUTINE GAOV
                                                                         FA000500
     THIS IS THE FACTORIAL ANALYSIS OF VARIANCE PORTION
(
                                                                        FA000510
      DIMENSIONA (50,50) *TOT (2500) *NOF (128) *SS(128) *NL(8) *NX(8) *NOUT (8) FA000520
     1 •NIN(8) •IX(75) •DES(3) •DIVM(128) •NLEV(128) •CONST(25)
                                                                       FA000530
     COMMONA, NV, MC, IX, NA, NB, NC, ND, NE, NF, NG, NH, NOBS, LI, LC, ISPD, SPD, CONSTFA000540
     1 .DES.KON.DIVM.NLEV
                                                                         FA000550
     EQUIVALENCE (A(1), TOT(1)), (IX(1), NIN(1)), (IX(9), NOUT(1))
                                                                         FA000560
      REWIND 3
                                                                         FA000570
      IF (MC) 650,650,600
                                                                         FA000580
  600 DO 300 K=1.NV
                                                                         FA000590
      DO 300 J=K,NV
                                                                         FA000600
  300 A(K.J)=0.0
                                                                         FA000610
      CALCULATE TOTAL SS AND SP MATRIX
C
                                                                         FA000620
      DO 500 M=1.NOBS
                                                                         FA000630
      READ (2) (SS(J) ,J=1,NV)
                                                                         FA000640
      DO 500 K=1.NV
                                                                         FA000650
      DO 500 J=K.NV
                                                                         FA000660
  500 A(K * J) = A(K * J) + SS(J) * SS(K)
                                                                         FA000670
      REWIND 2
                                                                         FA000680
      NONE=1
                                                                         FA000690
      WRITE (3) NONE
                                                                         FA000700
      DO 400 K=1.NV
                                                                         FA000710
      DO 400 J=K,NV
                                                                         FA000720
  400 WRITE (3) A(K.J)
                                                                         FA000730
  650 DO 17 IXX=1.NV
                                                                         FA000740
      REWIND 1
                                                                         FA000750
      WRITE (6.413) TXX
                                                                         FA000760
  413 FORMAT (9HIVARIABLE ,13)
                                                                         FA000770
      WRITE (6.333)
                                                                         FA000780
  333 FORMAT(//2x6HBINARY,3x4HLINE,9x11HTREAT IDENT,
                                                                         FA000790
     1 7X6HNO OBS:3X7HAVERAGE/)
                                                                         FA000800
      SS(1)=0.0
                                                                         FA000810
      SUM = 0.0
                                                                         FA000820
      OBS=NOBS
                                                                         FA000830
      NL(1)=NA
                                                                         FA000840
```

```
FA000850
     NL(2) = NB
                                                                      FA000860
     NL (3) = NC
                                                                      FA000870
     NL(4) = ND
     NL (5) = NE
                                                                      FA000880
     NL (6) = NF
                                                                      FA000890
                                                                      FA000900
     NL(7) = NG
                                                                      FA000910
     NL(8) = NH
                                                                      FA000920
C
     READ DATA
     COMPUTE GRAND TOTAL AND TOTAL SUM OF SQUARES
(
                                                                      FA000930
     DO 40 L=1.NOBS
                                                                      FA000940
     READ (2) (TOT(J), J=1, NV)
                                                                      FA000950
                                                                      FA000960
     Y = TOT(IXX)
     SS(1) = SS(1) + Y*Y
                                                                      FA000970
                                                                      FA000980
     SUM=SUM+Y
   40 WRITE (01) Y
                                                                      FA000990
     REWIND 1
                                                                      FA001000
   41 IF(ISPD)20,21,20
                                                                      FA001010
                                                                      FA001020
   20 NDF(1)=SPD
     GO TO 22
                                                                      FA001030
   21 NDF(1)=NOBS
                                                                      FA001040
     COMPUTE AND WRITE THE CORRECTION TERM
C
                                                                      FA001050
                                                                      FA001060
      IW = 0
   22 IF(ISPD)23,24,23
                                                                      FA001070
   23 SS(2)=SUM*SUM/SPD
                                                                      FA001080
     DIV=SPD
                                                                      FA001090
                                                                      FA001100
      GO TO 25
   24 SS(2)=SUM*SUM/OBS
                                                                      FA001110
                                                                      FA001120
      DIV=OBS
   25 \text{ NDF}(2) = 1
                                                                      FA001130
     LEN=2
                                                                      FA001140
      AV=SUM/DIV+CONST(IXX)
                                                                      FA001150
      1DIV.AV
                                                                      FA001170
     REPEAT DOWN TO 5 FOR EACH RAW SS WANTED
                                                                      FA001180
C
      DIVM(1)=1.0
                                                                      FA001190
```

	NLEV(1)=DIV	FA001200
	DIVM(2)=NDF(1)	FA001210
	NLEV(2)=1	FA001220
	WRITE (3) SUM	FA001230
	DO 5 LN=1.LI	FA001240
C	COMPUTE OPERATIONAL CONSTANTS	FA001250
	READ (2) (NIN(I), I=1,8), ILINE, IP, RPD, IRPD	FA001260
	LEN=1	FA001270
	DO 50 I=1,8	FA001280
	IF(NIN(I)) 52,51,52	FA001290
	51 NX(I)=0	FA001300
	NOUT (I) = 1	FA001310
	GO TO 50	FA001320
	52 K=I+1	FA001330
	NOUT(I)=NL(I)	FA001340
	NZ=1	FA001350
	55 TF (K=8)56,56,58	FA001360
	56 IF (NIN(K)) 54,57,54	FA001370
	54 NZ=NZ*NL(K)	FA001370
	57 K=K+1	FA001390
		FA001400
	GO TO 55 58 NX(I)=NZ	FA001410
		FA001420
	LEN=LEN*NL(I)	FA001420
C	50 CONTINUE ZERO THE TOTALS REQUIRED FOR THIS SET	FA001440
-	DO 6 I=1.LEN	FA001450
	6 TOT(I)=0.0	FA001460
-	ACCUMLATE A SET OF TOTALS	FA001470
C	OPERATE ON ALL OBSERVATIONS	FA001480
(DO 7 I=1.NA	FA001490
	DO 7 J=1.NB	FA001490
		FA001510
	DO 7 K=1,NC	FA001510
	DO 7 L=1.ND	FA001530
	DO 7 M=1 • NE	FA001530
	DO 7 N=1,NF	FAUU1540

C		DO 7 IZA=1.NG DO 7 IZB=1.NH READ (1) Y FIND IDENTIFICATION OF TOTAL IA=(I-1)*NX(1)+(J-1)*NX(2)+(K-1)*NX(3)+(L-1)*NX(4)+(M-1)*NX(5)+1 IA=IA+(N-1)*NX(6)+(IZA-1)*NX(7)+(IZB-1)*NX(8)	FA001550 FA001560 FA001570 FA001580 FA001590 FA001600
C		INCREMENT THE SPECIFIED TOTAL	FA001610
	7	ToT(IA) = ToT(IA) + Y	FA001620
		REWIND 1	FA001630
		SS(ILINE)=0.0	FA001640
		NDF(ILINE)=LEN	FA001650
		IF(IRpD)26,27,26	FA001660
	26	DIV=RPD	FA001670
		GO TO 28	FA001680
C	27	DIV=NOBS/LEN	FA001690
(20	EACH OF THE FOLLOWING SHOULD BE EITHER ONE OR THE NUMBER OF LEVEL	
	28	NAA=NOUT(1)	FA001710
		NBB=NOUT(2)	FA001720
		NCC=NOUT(3)	FA001730
		NDD=NOUT(4) NEE=NOUT(5)	FA001740
		NFF=NOUT(6)	FA001750
		NGG=NOUT(7)	FA001760
		NHH=NOUT(8)	FA001770 FA001780
		LL=1	FA001780
		DO 8 I=1 NAA	FA001800
		II = I * NIN(1)	FA001810
		DO 8 J=1, NBB	FA001820
		IJ=J*NIN(2)	FA001830
		DO 8 K=1,NCC	FA001840
		IK=K*NIN(3)	FA001850
		DO 8 L=1.NDD	FA001860
		IL=L*NIN(4)	FA001870
		DO 8 M=1.NEE	FA001880
		IM=M*NIN(5)	FA001890

ŧ

```
DO 8 N=1.NFF
                                                                          FA001900
      IN=N*NIN(6)
                                                                          FA001910
      DO 8 IZA=1 NGG
                                                                          FA001920
      IIZA=IZA*NIN(7)
                                                                          FA001930
      DO 8 IZB=1.NHH
                                                                          FA001940
      IIZB=IZB*NIN(8)
                                                                          FA001950
      IF(IP) 9.18.9
                                                                          FA001960
C
     WRITE MEANS IF REQUESTED
                                                                          FA001970
    9 AVE=TOT(LL)/DIV+CONST(IXX)
                                                                          FA001980
      WRITE (6,102) (NIN(IIM), IIM=1,8), ILINE, II, IJ, IK, IL, IM, IN, IIZA, IIZBFA001990
     1.DIV.AVE
                                                                          FA002000
 102 FORMAT(1H 811,215,713,F6,0,2X,E14,7)
                                                                          FA002010
  18 SS(ILINF)=SS(ILINF)+TOT(LL)*TOT(LL)
                                                                          FA002020
      WRITE (03) TOT(LL)
                                                                          FA002030
    8 LL=LL+1
                                                                          FA002040
      DIVM(IN+2)=DIV
                                                                          FA002050
      NLEV(LN+2)=LEN
                                                                          FA002060
    5 SS(ILINE)=SS(ILINE)/DIV
                                                                          FA002070
      IF (LC) 10,17,10
                                                                          FA002080
      FORM CORRECTED SUMS OF SQUARES
(
                                                                          FA002090
   10 WRITE (6.1103)
                                                                          FA002100
1103 FORMAT(/ 13x21HLINEAR FUNCTION CARDS/)
                                                                          FA002110
      DO 15 T=1 % C
                                                                          FA002120
      NDOF=0
                                                                          FA002130
      SQS=0.0
                                                                          FA002140
      READ (02) (DFS(IYY), IYY=1,3) (IX(K), K=1, LZZ)
                                                                          FA002150
      WRITE (6,1004) (DES(IYY), IYY=1,3), LCN, LZZ, (IX(K), K=1, LZZ)
                                                                          FA002160
 1004 FORMAT(1H ,3A4,17I4,/(21x,15I4))
                                                                          FA002170
      DO 14 K=1 el ZZ
                                                                          FA002180
      IF(IX(K)) 11,12,13
                                                                          FA002190
   11 IZ = -I \times (K)
                                                                          FA002200
      SQS=SQS-SS(IZ)
                                                                          FA002210
      NDOF=NDOF-NDF(IZ)
                                                                          FA002220
      GO TO 14
                                                                          FA002230
   13 IZ=IX(K)
                                                                          FA002240
```

SQS=SQS+SS(IZ)	FA002250
NDOF=NDOF+NDF(IZ)	FA002260
14 CONTINUE	FA002270
12 DOF=NDOF	FA002280
AMS=SQS/DOF	FA002290
SS(LCN)=SQS	FA002300
NDF (LCN) = NDOF	FA002310
15 WRITE (1) (DES(IYY) .IYY=1.3) .LCN.NDOF.SQS.AMS	FA002320
REWIND 2	FA002330
REWIND 1	FA002340
WRITE (6,84) IXX	FA002350
84 FORMAT (36H1 ANALYSIS OF VARIANCE, VARIABLE, 13//	FA002360
17H SOURCE, 9X2HDF,8X2HSS,14X2HMS)	FA002370
DO 30 I=1aLC	FA002380
READ (1) (DES(IYY), IYY=1,3), LCN, NDOF, SQS, AMS	FA002390
30 WRITE (6,103) (DES(IYY), IYY=1,3), NDOF, SQS, AMS	FA002400
103 FORMAT (1H 3A4.15.2X.E14.7.2X.E14.7)	FA002410
17 CONTINUE	FA002420
IF (MC) 202,202,201	FA002430
201 CALL FACT	FA002440
202 STOP	FA002450
END	FA002460

```
SUBROUTINE FACT
                                                                         FA002470
      SUBROUTINE TO CALCULATE SS AND SP MATRICES
C
                                                                         FA002480
     DIMENSION DIV(128) .NL(128) .ST(25) .A(50,50) .CONST(25) .AX(75) .IX(75) FA002490
     1 .DES(3)
                                                                         FA002500
     COMMONA, NV, MC, IX, NA, NB, NC, ND, NE, NF, NG, NH, NOBS, LI, LC, ISPD, SPD, CONSTFA002510
     1 .DES.KON.DIV.NL
                                                                         FA002520
     EQUIVALENCE (A(1251) , AX(1)) , (A(1326) , ST(1))
                                                                         FA002530
      REWIND 1
                                                                         FA002540
      REWIND 2
                                                                         FA002550
      REWIND 3
                                                                         FA002560
     READ (3) K
                                                                         FA002570
     DO 3 I=1.NV
                                                                         FA002580
     DO 3 J=I,NV
                                                                         FA002590
     READ (03) Z
                                                                         FA002600
    3 A(I.J)=0.0
                                                                         FA002610
     LK=LI+1
                                                                         FA002620
     NTOT=0
DETERMINE NUMBER OF RECORDS ON TAPE
DO 5 I=1*LK
NTOT=NTOT+NL(I+1)
                                                                         FA002630
(
                                                                         FA002640
                                                                         FA002650
    5 NTOT=NTOT+NL(I+1)
                                                                         FA002660
      NOL=LK+1
                                                                         FA002670
      K1 = 1
                                                                         FA002680
      K2=2
                                                                         FA002690
C
      SORT TAPE
                                                                         FA002700
      DO 20 K=1.NV
                                                                         FA002710
      K3=K1
                                                                         FA002720
      K1=K2
                                                                         FA002730
     K2=K3
                                                                         FA002740
     DO 15 I=1.NTOT
                                                                         FA002750
     IF (K-1) 10,12,10
                                                                         FA002760
  10 NPV= K-1
                                                                         FA002770
     DO 11 J=1.NPV
                                                                         FA002780
     READ (K1) TOT
                                                                         FA002790
   11 WRITE (K2) TOT
                                                                         FA002800
  12 READ (3) TOT
                                                                         FA002810
```

С		WRITE (K2) TOT REWIND K1 REWIND K2 CONTINUE THE SORTED TAPE IS K2 REWIND 03 READ (3) ID WRITE (K1) ID	FA002820 FA002830 FA002840 FA002850 FA002860 FA002870 FA002880 FA002890
C		READ TOTAL SS AND SP MATRIX OFF OF TAPE 3 AND WRITE IT ON TAPE K1	
		DO 7 I=1.NV	FA002910
		DO 7 J=I • NV	FA002920
		READ (03)Z	FA002930 FA002940
C	7	WRITE (K1) Z COMPUTE A SS AND SP MATRIX FOR THE CORRECTION TERM	FA002950
C		AND EACH RAW SS TRAIL CARD	FA002960
-		DO 40 I=2.NOL	FA002970
		WRITE (K1) I	FA002980
		NK=NL(I)	FA002990
		DO 30 M=1.NK	FA003000
		DO 35 J=1,NV	FA003010
	35	READ (K2) ST(J)	FA003020 FA003030
		DO 30 K=1,NV	FA003040
	20	DO 30 $J=K*NV$ A(K,J)=A(K,J)+ST(J)*ST(K)	FA003050
	30	DO 40 K=1.NV	FA003060
		DO 40 J=K • NV	FA003070
		$Z=A(K_{\bullet}J)/DIV(I)$	FA003080
		WRITE (K1) Z	FA003090
	40	$A(K_{\bullet}J)=0.0$	FA003100
		WRITE (6,303)	FA003110
	303	FORMAT (21H1UNCORRECTED MATRICES)	FA003120
		REWIND K1	FA003130
		DO 50 I=1.NOL	FA003140
		READ (K1) KK	FA003150
		WRITE (6,304)	FA003160

		FORMAT AND HOLDER NO ODE - DOM:	F 1 0 0 0 3 7 7 0
	304	FORMAT (18HOLINE NO OBS ROW)	FA003170
		DO 50 K=1,NV	FA003180
		DO 55 J=K , NV	FA003190
	55	READ (K1) ST(J)	FA003200
	50	WRITE (6,250) KK, NL(I), K, (ST(J), J=K, NV)	FA003210
	250	FORMAT (1H I4.16.15.4(2X.E14.7)/(16X.4(2X.E14.7)))	FA003220
		WRITE (6,300)	FA003230
	300	FORMAT (19H1CORRECTED MATRICES)	FA003240
		REWIND 03	FA003250
C		COMPUTE CORRECTED MATRICES	FA003260
		DO 13 IXX=1.MC	FA003270
		READ (5,101) (DES(J), J=1,3), LCN, LZZ, (AX(I), IX(I), I=1, LZZ)	FA003280
		WRITE (6,301) (DES(J),J=1,3),LCN,LZZ,(AX(I),IX(I),I=1,LZZ)	FA003290
	301	FORMAT (1H0,3A4,2I4,10(F3.0,I3)/(21X,10(F3.0,I3)))	FA003300
	101	FORMAT (3A4,2I4,10(F3.0,I3)/(20X,10(F3.0,I3)))	FA003310
		REWIND K1	FA003320
		DF=0.0	FA003330
		DO 16 I=1.LZZ	FA003340
	14	READ (K1)ID	FA003350
		DO 60 K=1,NV	FA003360
		DO 60 J=K • NV	FA003370
		READ (K1) Z	FA003380
		IF (ID-IX(I))60,61,62	FA003390
	61	A(K,J) = A(K,J) + AX(I) *Z	FA003400
	60	CONTINUE	FA003410
		IF (ID-IX(I))14,17,62	FA003420
	62	REWIND K1	FA003430
		GO TO 14	FA003440
	17	DI=NL(ID)	FA003450
		DF=DF+AX(I)*DI	FA003460
		IF (ID-LI) 16,18,18	FA003470
	18	REWIND K1	FA003480
	16	CONTINUE	FA003490
		WRITE (6,302)	FA003500
	302	FORMAT (17HO LINE DF ROW)	FA003510

.

	WRITE (3) LCN.DF	FA003520
	DO 13 K=1,NV	FA003530
	IDF=DF	FA003540
C	WRITE CORRECTED MATRICES	FA003550
	WRITE (6.250) LCN. IDF. K. (A(K.J). J=K.NV)	FA003560
	DO 13 J=K•NV	FA003570
	WRITE (3) A(K,J)	FA003580
13	3 A(K,J)=0.0	FA003590
	IF (KON) 202,202,201	FA003600
201	I CALL MULVA	FA003610
202	2 STOP	FA003620
	FND	FA003630

C		SUBROUTINE MULVA SUBROUTINE FOR COVARIANCE AND MULTIVARIATE ANALYSIS	FA003640 FA003650
C		MODIFICATION OF A PROGRAM WRITTEN BY DR. REX L. HURST	FA003660
C		UTAH STATE UNIVERSITY LOGAN, UTAH	FA003670
-		DIMENSION A(50,50), B(50,25), ID(75), X(25)	FA003680
		COMMON A, NOV, NOC, ID	FA003690
		EQUIVALENCE (A(1251) , B(1)), (A(26), X(1))	FA003700
		READ (5,100) NJB	FA003710
		DO 5 IXZY=1,NJB	FA003720
		REWIND 03	FA003730
		READ (5,100) NX,NY,IX,IY,IZ	FA003740
		WRITE (6,300) NX,NY,IX,IY,IZ	FA003750
	300	FORMAT (1H12I3,3I2)	FA003760
	100	FORMAT (213,312)	FA003770
		NV=NX+NY	FA003780
C		READ AND WRITE THE SELECTION VECTOR	FA003790
		READ (5.102) (ID(I).I=1.NV)	FA003800
		WRITE (6,302) (ID(I), I=1,NV)	FA003810
		FORMAT (1H 2014)	FA003820
	102	FORMAT (2014)	FA003830
		NXPO=NX+1	FA003840
		NYPO=NY+1	FA003850
		ANX=NX	FA003860
	110	WRITE (6,110) FORMAT (1H0,11X,4HLINE/11X,6HNUMBER)	FA003870 FA003880
	110	ANY=NY	FA003880
		DO 5 MM=1.NOC	FA003990
C		READ AND SELECT A MATRIX	FA003910
		READ (3) LINE, DF	FA003920
		DO 50 I=1,NOV	FA003930
		DO 500 J=1,NOV	FA003940
	500	READ (3) X(J)	FA003950
		DO 51 K=1,NV	FA003960
		IF(I-ID(K)) 51,52,51	FA003970
	51	CONTINUE	FA003980

```
GO TO 50
                                                                          FA003990
  52 DO 53 J=1.NV
                                                                          FA004000
     L = ID(J)
                                                                          FA004010
     IF (L-I) 53 • 54 • 54
                                                                          FA004020
   54 A(K,J)=X(L)
                                                                          FA004030
      A(J_{\circ}K) = X(L)
                                                                          FA004040
  53 CONTINUE
                                                                          FA004050
   50 CONTINUE
                                                                          FA004060
     IF(NX) 21,21,205
                                                                          FA004070
  21 DO 22 I=1.NY
                                                                          FA004080
     DO 22 J=I .NY
                                                                          FA004090
  22 B(I,J)=A(I,J)
                                                                          FA004100
     IF(LINE) 23,24,24
                                                                          FA004110
  23 WRITE (6,114)
                                                                          FA004120
 114 FORMAT (11HOERR MATRIX9X25H DF ROW COL SS AND SP6X9HMS AND MP) FA004130
      FDF=DF
                                                                          FA004140
     DO 28 I=1.NY
                                                                          FA004150
     DO 28 J=I NY
                                                                          FA004160
      ELEM=B(I,J)/EDF
                                                                          FA004170
  28 WRITE (6,111) LINE, EDF, ID(I), ID(J), B(I,J), ELEM
                                                                          FA004180
      GO TO 29
                                                                          FA004190
   24 WRITE (6:115)
                                                                          FA004200
 115 FORMAT (11HOTRT MATRIX)
                                                                          FA004210
     TDF=DF-FDF
                                                                          FA004220
      DO 30 I=1.NY
                                                                          FA004230
      DO 30 J=I.NY
                                                                          FA004240
     ELEM=B(I,J)-B(J+1,I)
                                                                          FA004250
      AMS=ELEM/TDF
                                                                          FA004260
   30 WRITE (6,111) LINE, TDF, ID(I), ID(J), ELEM, AMS
                                                                          FA004270
      GO TO 31
                                                                          FA004280
 205 N1=1
                                                                          FA004290
      CALL INVERT (A.NI.NX.NXPO.NV)
                                                                          FA004300
     TEST FOR TYPE OF MATRIX ERROR IF NEGATIVE, TRT+ERR IF POSITIVE
                                                                         FA004310
      IF (LINE) 6,7,7
                                                                          FA004320
C
      CALCULATIONS ON ERROR MATRIX
                                                                          FA004330
```

(

```
COMPUTE SS AND SP DUE TO REGRESSION. STORE IN B
C
                                                                        FA004340
    6 DO 8 T=1.NY
                                                                        FA004350
     L=I+NX
                                                                        FA004360
      DO 8 J=1.I
                                                                        FA004370
   DO 8 J=1+I

M=J+NX

B(I+1+J)=0+O

DO 8 K=1+NX

8 B(I+1+J)=B(I+1+J)+A(L+K)*A(K+M)
                                                                        FA004380
                                                                        FA004390
                                                                        FA004400
                                                                        FA004410
      FDF=DF-ANX
                                                                        FA004420
     IF(IX) 11.12.11
                                                                        FA004430
      WRITE OUT INVERSE
                                                                        FA004440
  11 WRITE (6.105)
                                                                        FA004450
  105 FORMAT( 37HOINVERSE ROW COL ELEMENT)
                                                                        FA004460
  DO 13 I=1,NX
DO 13 J=1,NX
ELEM=-A(I,J)
13 WRITE (6,104) LINE,ID(I),ID(J),ELEM
                                                                        FA004470
                                                                        FA004480
                                                                        FA004490
                                                                        FA004500
  104 FORMAT(11X,14,15,14,E16.7)
                                                                        FA004510
     FORMAT(11X,14,15,14,E16,7)

IF(IY) 14,15,14

WRITE OUT SOLUTINE MATRIX

WRITE (6,106)
  12 IF(IY) 14.15.14
                                                                        FA004520
0
                                                                        FA004530
   14 WRITE (6:106)
                                                                        FA004540
  106 FORMAT ( 39HOREG COEF X Y COEFFICIENT)
                                                                       FA004550
      DO 16 J=NXPO,NV
                                                            FA004560
FA004570
FA004580
                                                                        FA004560
      DO 16 T=1.NX
DO 16 I=1,NX

16 WRITE (6,104) LINE,ID(I),ID(J),A(I,J)

WRITE OUT SS AND SP DUE TO REGRESSION
   15 WRITE (6.107)
                                                                         FA004600
  107 FORMAT (12HODUE TO REG 8X25H DF ROW COL SS AND SP6X9HMS AND MP) FA004610
      DO 17 I=1.NY
                                                                         FA004620
      K=I+1
                                                                         FA004630
      M = I + NX
                                                                         FA004640
      DO 17 J=K NYPO
                                                                        FA004650
      L=J-1+NX
                                                                        FA004660
      AMS=B(J.I)/ANX
                                                                       FA004670
   17 WRITE (6,111) LINE, ANX, ID(M), ID(L), B(J, I), AMS
                                                                       FA004680
```

	111	FORMAT(11X,14,F8,0,14,14,E15,7,E15,7)	FA004690
C		WRITE OUT SS AND SP DEVIATIONS FROM REGRESSION	FA004700
		WRITE (6,108)	FA004710
	108	FORMAT(11HODEV FR REG)	FA004720
		DO 18 I=1.NY	FA004730
		L=I+NX	FA004740
		DO 18 J=I,NY	FA004750
		M=J+NX	FA004760
		B(J+1,I) = A(L,M) - B(J+1,I)	FA004770
		$B(I \circ J) = B(J + 1 \circ I)$	FA004780
		AMS=B(J+1,I)/EDF	FA004790
	18	WRITE (6,111) LINE, EDF, ID(L), ID(M), B(J+1, I), AMS	FA004800
		IF(IZ) 5,5,25	FA004810
		DO 26 I=1.NY	FA004820
	-	DO 26 J=I,NY	FA004830
	26	B(J+1,I) = B(I,J)	FA004840
		EDET=DET(NY)	FA004850
		WRITE (6,101) EDET	FA004860
	101	FORMAT (35X,11HERROR DET =,E15.7)	FA004870
		GO TO 5	FA004880
C		CALCULATIONS ON TRT+ERROR MATRIX	FA004890
	7	TDF=DF-ANX-EDF	FA004900
C		WRITE OUT ADJUSTED TREATMENT SS AND SP	FA004910
		WRITE (6,109)	FA004920
	109	FORMAT (8HOTRT ADJ)	FA004930
		DO 10 I=1,NY	FA004940
		L=I+NX	FA004950
		DO 10 J=I,NY	FA004960
		X/+V=M=J+NX	FA004970
		B(I,J)=0.0	FA004980
		DO 20 K=1,NX	FA004990
	20	B(I,J)=B(I,J)+A(L,K)*A(K,M)	FA005000
		$B(I \cdot J) = A(L \cdot M) - B(I \cdot J)$	FA005010
		ELEM=B(I,J)-B(J+1,I)	FA005020
		AMS=ELFM/TDF	FA005030
			1 11000000

		WRITE (6,111) LINE, TDF, ID(L), ID(M), ELEM, AMS IF(IZ) 5,5,27	FA005040 FA005050
		TEDET=DET(NY)	FA005060
	C 1	DEL=EDET/TEDET	FA005070
		WRITE (6,116) TEDET	FA005080
1	16	FORMAT (33X,13HTRT+ERR DET =,E15.7)	FA005090
(1. 0	COMPUTE MULTIVARIATE F AND DF	FA005100
		P=ANY	FA005110
		T=TDF+EDF	FA005120
		Q=TDF	FA005130
		IF (P-2.0) 40,42,41	FA005140
	40	DF1=Q	FA005150
	, 0	DF2=T-Q	FA005160
		GO TO 48	FA005170
	41	IF (Q-2.0) 43,44,47	FA005180
		DF1=2.*Q	FA005190
		DF2=2.*(T-Q-1.)	FA005200
		DEL=SQRT(DEL)	FA005210
		GO TO 48	FA005220
	44	Q=P	FA005230
		GO TO 42	FA005240
	43	Q=P	FA005250
		GO TO 40	FA005260
	47	DF1=P*0	FA005270
		AM=T-(P+Q+1.)/2.	FA005280
		S=SQRT((P*P*Q*Q-4.)/(P*P+Q*Q-5.))	FA005290
		DEL=DEL**(1./S)	FA005300
		DF2=AM*S-(P*Q-2*)/2*	FA005310
	48	FH2=(1DEL)*DF2/(DEL*DF1)	FA005320
		WRITE (6,113) FH2,DF1,DF2	FA005330
1		FORMAT (1H0,38x,7HMUL F =,E15.7/42x,4HDF =,F5.0,5H AND F5.0)	FA005340
	5	CONTINUE	FA005350
		STOP	FA005360
		END	FA005370

		FUNCTION DET(NY)	FA005380
(SUBPROGRAM TO COMPUTE THE DETERMINATE OF THE UPPER TRIANGULAR	FA005390
C		PORTION OF MATRIX B USING CHIO'S METHOD.	FA005400
		DIMENSION A (50,50), B (50,25), F (25)	FA005410
		EQUIVALENCE (A(1251) .B(1)) .(A(26) .F(1))	FA005420
		COMMON A	FA005430
		NMI = NY - 1	FA005440
		DET=1.0	FA005450
		IF(NY-1) 703,703,702	FA005460
	702	DO 701 M=1,NMI	FA005470
		DET=DET*B(M,M)	FA005480
		REC=1.0/B(M.M)	FA005490
		MPL=M+1	FA005500
		DO 701 I=MPL,NY	FA005510
		F(I)=B(M*I)*REC	FA005520
		DO 701 J=I • NY	FA005530
	701	B(I,J)=B(I,J)-F(I)*B(M,J)	FA005540
	703	DET=DET*B(NY,NY)	FA005550
		RETURN	FA005560
		END	FA005570

CCC		SUBROUTINE INVERT(A*N1*N2*NPX*NK) MATRIX INVERSION ROUTINE INVERTS UPPER TRIANGULAR PORTION OF MATRIX BETWEEN ROW N1 AND ROW N2. WITH SOLUTION FROM ROW NPX TO ROW NK. THE INVERSE IS THE NEGATIVE OF THE INVERSE DIMENSION A(50*,50) DO 501 L=N1*N2 RECIP=1*0/A(L*) DO 502 I=N1*N2 IF(I-L) 503*,504*,505	FA005580 FA005590 FA005600 FA005610 FA005620 FA005630 FA005640 FA005660
	503	R=A(I.L)*RECIP	FA005670
	505	GO TO 506	FA005680
	504	R=0.0	FA005690
	204	GO TO 506	FA005700
	505	R=A(L,1)*RECIP	FA005700
		DO 507 J=1.0N2	FA005720
	200	IF(J-L) 508,507,509	FA005730
	508	$A(I_9J) = A(I_9J) - R * A(J_9L)$	FA005740
		GO TO 507	FA005750
	509	$A(I_{9}J) = A(I_{9}J) - R * A(L_{9}J)$	FA005760
		CONTINUE	FA005770
		DO 510 J=NPX , NK	FA005780
	510	$A(I_9J) = A(I_9J) - R * A(L_9J)$	FA005790
		IF(I-L) 511,512,513	FA005800
	511	$A(I \cdot L) = R$	FA005810
		GO TO 502	FA005820
	512	A(L.L)=-RECIP	FA005830
		GO TO 502	FA005840
	513	A(L * I) = R	FA005850
	502	CONTINUE	FA005860
		DO 501 N=NPX+NK	FA005870
	501	A(L,N)=A(L,N)*RECIP	FA005880
		RETURN	FA005890
		END	FA005900

Appendix B

Factorial Program Sample Problems

Three examples will be used to demonstrate the capabilities of this program—a split—plot design with covariance, a randomized block with multivariate analysis, and a fractional replication with covariance.

Split-plot

Due to the problem of finding a good split-plot design with covariance, the data for this example was generated on a computer. The format for this data is as follows:

Column	Description
1	Replication
2	Whole plot
3	Sub-plot
4-10	Independent Variable XXXX.XX
11-17	Dependent Variable XXXX.XX

Model

$$Y_{ijk} = \mu + \rho_i + \alpha_j + \delta_{ij} + \beta_k + (\alpha\beta)_{jk} + \eta_{ij} + \epsilon_{ijk}$$

$$+ B(X_{ijk} - \overline{X}...)$$

$$i = 1 ... r r = 6$$

$$j = 1 ... a a = 5$$

$$k = 1 ... b b = 5$$

$\rho_{\mathbf{i}} \qquad \text{Reps} \qquad \mathbf{r-1} \qquad \qquad \frac{\mathbf{y}_{\mathbf{i}}^{2}}{\mathbf{i}} - \frac{\mathbf{y}_{\mathbf{i}}^{2}}{\mathbf{rab}} - \frac{\mathbf{y}_{\mathbf{i}}^{2}}{\mathbf{rab}}$ $\alpha_{\mathbf{j}} \qquad \text{Whole plot} \qquad \mathbf{a-1} \qquad \qquad \frac{\mathbf{y}_{\mathbf{i}}^{2}}{\mathbf{j}} - \frac{\mathbf{y}_{\mathbf{i}}^{2}}{\mathbf{rab}} - \frac{\mathbf{y}_{\mathbf{i}}^{2}}{\mathbf{rab}}$ $\delta_{\mathbf{i}\mathbf{j}} \qquad \mathbf{Err}(\mathbf{a}) \qquad \mathbf{ar-a-r+1} \qquad \frac{\mathbf{y}_{\mathbf{i}}^{2}}{\mathbf{j}} - \frac{\mathbf{y}_{\mathbf{i}}^{2}}{\mathbf{j}} - \frac{\mathbf{y}_{\mathbf{i}}^{2}}{\mathbf{jab}} - \frac{\mathbf{y}_{\mathbf{i}}^{2}}{jab$	5	Source		d.f.	SS
$\delta_{ij} \text{Err}(a) \qquad \text{ar-a-r+1} \qquad \sum_{ij} \frac{Y_{ij}^2}{b} - \sum_{i} \frac{Y_{ii}^2}{ab} - \sum_{i} \frac{Y_{ii}^2}$	٩)i	Reps	r-1	$\sum_{i} \frac{Y_{i}^{2}}{ab} - \frac{Y_{i}^{2}}{rab}$
$-\sum_{j} \frac{Y^{2}_{.j}}{rb} + \frac{Y^{2}_{k}}{rab}$ $-\sum_{j} \frac{Y^{2}_{.k}}{rb} + \frac{Y^{2}_{k}}{rab}$ $\begin{bmatrix} \alpha\beta \end{bmatrix}_{jk} \text{W x S} \text{ab-a-b+1} \sum_{k} \frac{Y^{2}_{.jk}}{r} - \sum_{j} \frac{Y^{2}_{.jk}}{rb}$ $-\sum_{k} \frac{Y^{2}_{.jk}}{ra} + \frac{Y^{2}_{k}}{rab}$ $-\sum_{ij} \frac{Y^{2}_{.jk}}{r} - \sum_{j} \frac{Y^{2}_{.jk}}{r}$ $-\sum_{ij} \frac{Y^{2}_{ij}}{b} + \sum_{j} \frac{Y^{2}_{.jk}}{rb}$	٥	^x j	Whole plot	a-1	$\sum_{j} \frac{Y^{2}}{rb} - \frac{Y^{2}}{rab}$
$\beta_{k} \qquad \text{Sub-plot} \qquad b-1 \qquad \qquad \frac{y^{2}}{k} \cdot \frac{k}{ra} - \frac{y^{2}}{rab}$ $(\alpha\beta)_{jk} \qquad W \times S \qquad ab-a-b+1 \qquad \frac{y^{2}}{jk} \cdot \frac{y^{2}}{r} - \frac{y^{2}}{j} \cdot \frac{y^{2}}{rb}$ $- \frac{y^{2}}{k} \cdot \frac{k}{ra} + \frac{y^{2}}{rab}$ $- \frac{y^{2}}{k} \cdot \frac{k}{ra} + \frac{y^{2}}{rab}$ $n_{ik} + \varepsilon_{ijk} \qquad abr-ab-ar+a \qquad \sum_{ijk} y^{2}_{ijk} - \sum_{jk} \frac{y^{2}_{ijk}}{r}$ $- \sum_{ij} \frac{y^{2}_{ij}}{b} + \sum_{j} \frac{y^{2}_{ij}}{rb}$	δ	j	Err(a)	ar-a-r+l	$\sum_{ij} \frac{Y_{ij}^2}{b} - \sum_{i} \frac{Y_{i}^2}{ab}$
$(\alpha\beta)_{jk} \text{W x S} \qquad \text{ab-a-b+l} \qquad \sum_{jk} \frac{Y_{.jk}^2}{r} - \sum_{j} \frac{Y_{.jk}^2}{rb}$ $- \sum_{k} \frac{Y_{k}^2}{ra} + \frac{Y_{}^2}{rab}$ $\eta_{ik} + \varepsilon_{ijk} \text{Err(b)} \qquad \text{abr-ab-ar+a} \qquad \sum_{ijk} Y_{ijk}^2 - \sum_{jk} \frac{Y_{.jk}^2}{r}$ $- \sum_{ij} \frac{Y_{ij}^2}{b} + \sum_{j} \frac{Y_{.jk}^2}{rb}$					$-\sum_{j} \frac{Y^{2}}{rb} + \frac{Y^{2}}{rab}$
$-\sum_{k} \frac{Y^{2}}{ra} + \frac{Y^{2}}{rab}$ $-\sum_{k} \frac{Y^{2}}{ra} + \frac{Y^{2}}{rab}$ $-\sum_{ijk} \frac{Y^{2}}{ijk} - \sum_{jk} \frac{Y^{2}}{r}$ $-\sum_{ij} \frac{Y^{2}}{b} + \sum_{j} \frac{Y^{2}}{rb}$	β	k	Sub-plot	b-1	$\sum_{k} \frac{Y^{2}}{ra} - \frac{Y^{2}}{rab}$
$ \eta_{ik} + \epsilon_{ijk} \text{Err(b)} \qquad \text{abr-ab-ar+a} \qquad \sum_{ijk} Y_{ijk}^2 - \sum_{jk} \frac{Y_{.jk}^2}{r} \\ - \sum_{ij} \frac{Y_{ij.}^2}{b} + \sum_{j} \frac{Y_{.j.}^2}{rb} $	(αβ)	jk	W x S	ab-a-b+l	$\sum_{jk} \frac{Y^{2}_{\cdot jk}}{r} - \sum_{j} \frac{Y^{2}_{\cdot j}}{rb}$
$-\sum_{ij} \frac{Y_{ij}^2}{b} + \sum_{j} \frac{Y_{ij}^2}{rb}$					$-\sum_{k} \frac{Y^{2} \cdot k}{ra} + \frac{Y^{2}}{rab}$
$-\sum_{ij} \frac{Y_{ij}^2}{b} + \sum_{j} \frac{Y_{ij}^2}{rb}$	η _{ik} +	[€] ijk	Err(b)	abr-ab-ar+a	$\sum_{ijk} Y_{ijk}^2 - \sum_{jk} \frac{Y_{ijk}^2}{r}$
TOTAL abr-1 $ \sum_{ijk} Y_{ijk}^2 - \frac{Y^2}{rab} $					$-\sum_{ij} \frac{Y_{ij.}^2}{b} + \sum_{j} \frac{Y_{.j.}^2}{rb}$
	TO	OTAL		abr-l	$\sum_{ijk} Y_{ijk}^2 - \frac{Y^2}{rab}$

```
SAMPLE INPUT
  2 1 6 5 5 1 1 1 1 1 150 5 7 5 000
(3X,2F7,2)
 12.0
          110.0
111 8.47 113.37
112 14.18 168.46
    11.54 126.84
113
    14.73 172.07
114
115
    13.90 154.73
    12.85 142.02
121
122
    7.68 98.15
123
    21.05 225.42
124
    13.12 141.68
     7.05 85.31
125
131
    17.05 198.31
    10.84 127.12
132
133
    11.05 129.60
134
    7.85 92.51
135
     9.38 106.13
141
    18.18 195.16
142
    14.77 167.16
143
    14.67 182.56
144
     8.03 103.25
1.45
    15.01 172.57
151
    13.37 150.96
152
    10.61 118.57
153
    14.03 166.52
154
    7.79 78.60
155
    15.05 168.55
211
    12.33 156.02
212
    17.51 201.15
213
    13.15 143.76
214 13.41 160.44
215 14.45 157.74
221 16.21 185.59
```

```
6.91 87.96
222
     11.95 129.67
223
224
     12.49 141.57
225
     7.70 91.04
231
     15.10 176.80
232
     13.16 152.05
233
     13.45 157.16
234
      9.12 106.92
235
     17.32 190.58
241
     12.13 129.57
242
     9.40 102.21
243
     20.76 248.45
244
     9.40 115.17
245
     16.45 182.74
251
     16.42 184.29
252
     10.73 119.74
253
     10.02 122.73
254
     16.45 177.04
255
     14.19 156.44
311
     12.36 154.04
     17.00 196.21
312
313
     7.91 85.06
314
     11.25 130.17
     14.16 160.12
315
321
     9.73 109.52
322
     11.30 138.14
323
     14.01 148.29
324
    11.03 121.83
325
    13.51 159.14
331
    12.32 144.66
    14.65 166.35
332
333
     12.01 138.10
334
    12.55 139.69
335
     9.43 107.39
     17.24 186.35
341
```

```
9.18 103.63
342
343
    11.02 140.71
    12.92 152.47
344
    14.05 164.28
345
351
     9.62 107.99
352
     13.01 146.28
353
      8.17 99.31
354
     18.27 190.86
355
    15.48 176.70
411
     11.54 144.02
412
    12.66 143.23
413
    10.84 111.32
414
    11,25 133.87
    16.03 178.45
415
421
    14.40 160.42
422
     8.85 106.28
423
    15.23 157.86
424
    11.72 128.05
425
    12.47 149.20
431
    11.69 135.48
432
    15.30 171.61
    12.72 143.00
433
    12.14 137.43
434
435
     9.69 111.17
441
     9.51 98.09
442
     11.12 118.00
443
     9.43 119.93
     6.61 83.73
444
445
     16.80 191.78
451
     13,99 155,65
452
     11.44 125.78
     11.48 134.85
453
454
     13.26 136.64
455
     3.94 48.92
511
      6.88 93.18
```

```
7.47 92.42
512
     12.93 138.76
513
514
     7.40 91.75
515
     14.06 155.97
521
      9.24 102.50
522
     14.56 170.60
523
      6.62 68.62
524
      8.58 94.45
525
    10.60 125.44
531
     13.22 153.48
532
     12.10 138.04
533
     6.60 80.08
534
    13.89 160.35
535
    12.11 135.13
541
    12.94 136.01
542
     9.22 100.56
543
    13.01 162.33
544
     8.45 106.17
545
    12.72 142.46
551
    14.52 159.49
    15.04 167.45
552
553
    10.95 130.57
    13,40 140,60
554
555
    15.55 173.32
611
    10.38 128.27
612
     13,45 153,56
613
    14.17 151.14
614
    14.72 170.57
615
    14,25 157,43
621
    12.24 129.52
622
    13.43 156.86
623
     9.16 91.32
624
    13.59 149.78
625
    13.88 163.61
631
    10.92 122.42
```

```
17.07 191.42
632
633
    11.64 135.10
634
     14.80 172.21
635
     13.69 152.03
641
     9.53 92.87
642
     9.49 104.06
643
    12.74 157.67
644
     9.46 117.55
645
     13.80 159.08
651
     14.20 152.27
652
    11.80 128.07
653
    12.58 145.23
654
    12.70 131.50
655 11.32 128.66
         10000000
                   3 1
         01000000
         00100000
         11000000
         01100000
REP
WHOLE PLOT
               9
                          -2
ERROR (A)
              10
                          -3
                   4
SUB PLOT
              11
                          -2
                   2
              12
SUB X WHOLE
                          -4
                   4
ERROR (B)
              13
                   4
                          -6
                                   4
TOTAL
              14
ERROR (A)
              -1
                   4
                                3 -1 4
W + ERR (A)
ERROR (B)
              -2
S+ERR(B)
              2
                                           5 -1 6 -1 7
                                      4 1
S X W +ERR (B
               2
  1
  1 1 1 1 0
  1
       2
```

SAMPLE OUTPUT

2 1 6 5 5 1 1 1 1 1 150 5 7 5 0.000

(3X,2F7,2)

.1200000E+02 .1100000E+03

VARIABLE 1

BINARY	LINE			TR	EAT	ΙD	ENT			NO OBS	AVERAGE
00000000	2		0	0	0	0	0		0	150.	•1230547E+02
10000000	3	1	0	0	0	0	0	0	0	25.	.1249000E+02
10000000	3	2	0	0	0	0	0	0		25.	.1320840E+02
10000000	3	3	0	0	0	0	0	0	0	25.	.1248720E+02
10000000	3	4	0	0		0	0	0	0	25.	.1176440E+02
10000000	3	5	0	0	0	0	0	0	0	25.	.1128240E+02
10000000	3	6	0	0	0	0	0	0	0	25.	.1260040E+02
01000000	4	0	1		0	0	0		0	30.	.1247933E+02
01000000	4	0	2		0	0	0	0	0	30.	.1170533E+02
01000000	4		3	0		0	0	0	0	30.	.1242867E+02
01000000	4	0	4		0	0	0	0		30.	.1226800E+02
01000000	4	0	5	0			0		0	30.	*1264600E+02
00100000	5	0	0	1	0	0	0	0	0	30.	.1261933E+02
00100000	5	0	0	2	0		0	0	0	30.	.1213100E+02
00100000	5	0	0	3	0	0	0		0	30.	.1216300E+02
00100000	5	0		4	0	0	0	0	0	30.	.1167933E+02
00100000	5	0	0	5	0	0	0		0	30.	.1293467E+02
11000000	6	1	1	0	0	0	0	0	0	5.	.1256400E+02
11000000	6	1	2	0	0	0	0	0	0	5.	.1235000E+02
11000000	6	1	3	0	0	0	0		0	5.	.1123400E+02
11000000	6	1	4		0	0	0		0	5.	.1413200E+02
11000000	6	1	5	0	0	0	0	0	0	5.	.1217000E+02
11000000	6	2	1	0	0	0	0		0	5.	.1417000E+02
11000000	6	2	2	0	0	0	0	0	0	5.	.1105200E+02

1

11000000	6	2	3		0		0	0	0	5.	-1363000E+02
11000000	6	2	4	0	0	0	0	0	0	5.	.1362800E+02
11000000	6	2	5			0	0	0	-0-	5.	.1356200E+02
11000000	6	3	1				0	0	0	5.	.1253600E+02
11000000	6	3	2	0	0	0	0	0	0	5.	.1191600E+02
11000000	6	3	3				0	0	0	5.	.1219200E+02
11000000	6	3	4	0		0	0	0	0	5.	.1288200E+02
11000000	6	3	5	0	0		0		0	5.	*1291000E+02
11000000	6	4	1	0	0		0	0	0	5.	.1246400E+02
11000000	6	4	2			0	0		0	5.	.1253400E+02
11000000	6	4	3		0	0	0	0	0	5.	.1230800E+02
11000000	6	4	4		0	0	0	0	0	5.	*1069400E+02
11000000	6	4	5	0		0	0	0	0	5.	.1082200E+02
11000000	6	5	1		0		0	0	0	5.	.9748000E+01
11000000	6	5	2		0	0	0	0	0	5.	.9920000E+01
11000000	6	5	3	0		0	0	0	0	5.	.1158400E+02
11000000	6	5	4	0	0	0	0	0	0	5.	.1126800E+02
11000000	6	5	5	0		0	0	0	0	5.	.1389200E+02
11000000	6	6	1	0	0	0	0	0	0	5.	.1339400E+02
11000000	6	6	2	0	0	0	0	0	0	5.	.1246000E+02
11000000	6	- 6	3	0	0	0	0	0	0	5.	.1362400E+02
11000000	- 6	6	4	0	0	0	0	0	0	5.	.1100400E+02
11000000	6	6	5	0	0	0	0	0	0	5.	.1252000E+02
01100000	7	0	1	1	0		0	0	0	6.	.1032667E+02
01100000	7	0	1	2		0	0	0	0	6.	.1371167E+02
01100000	7	0	1	3	0	0	0	0	0	6.	.1175667E+02
01100000	7	0	1	4	0	0	0	0	0	6.	.1212667E+02
01100000	7	0	1	5	0	0	0		0	6.	.1447500E+02
01100000	7	0	2	1	0	0	0	0	0	6.	.1244500E+02
01100000	7	0	2	2	0	0	0	0	0	6.	.1045500E+02
01100000	7		2	3	0	0	0		0	6.	.1300333E+02
01100000	7	0	2	4	0	0	0	0	0	6.	.1175500E+02
01100000	7	0	2	5	0	0	0	0	0	6.	.1086833E+02
01100000	7		3	1	0	0	0	0	0	6.	*1338333E+02
01100000	7	0	3	2	0	0	0	0	0	6.	.1385333E+02

01100000	7		3	3			0			6.	*1124500E+02
01100000	7		3	4		0	0			6.	*1172500E+02
01100000	7	0	3	5		0	0	0	0	6.	*1193667E+02
01100000	7	0	4	1	0		0	0		6.	.1325500E+02
01100000	7		4	2		0	0		0	6.	.1053000E+02
01100000	7	0	4	3		0	0			6.	.1360500E+02
01100000	7		4	4		0	0		0	6.	*9145000E+01
01100000	7	0	4	5	0		0			6.	*1480500E+02
01100000	7	0	5	1	0	0	0	0	0	6.	.1368667E+02
01100000	7	0	5	2	0	0	0	0	0	6.	.1210500E+02
01100000	7	0	5	3	0	0	0		0	6.	•1120500E+02
01100000	7		5	4	0	0	0	0	0	6.	•1364500E+02
01100000	7	0	5	5		. 0	0		0	6.	.1258833E+02

LINEAR FUNCTION CARDS

REP	8	2	3	-2		
WHOLE PLOT	9	2	4	-2		
ERROR (A)	10	4	6	-3	m 4	2
SUB PLOT	11	2	5	-2		
SUB X WHOLE	12	4	7	-4	-5	2
ERROR (B)	13	4	1	-6	-7	4
TOTAL	14	2	1	-2		

ANALYSIS OF VARIANCE, VARIABLE 1

SOURCE	DF	55	MS
REP	5	*5771931E+02	*1154386E+02
WHOLE PLOT	4	.1568804E+02	.3922010E+01
ERROR (A)	20	.1342130E+03	*6710649E+01
SUB PLOT	4	*2811550E+02	*7028875E+01
SUB X WHOLE	16	.2525939E+03	.1578712E+02
ERROR (B)	100	.8390800E+03	.8390800E+01
TOTAL	149	*1327410E+04	.8908791E+01

BINARY	LINE			TR	EAT	ΙD	ENT			NO OBS	AVERAGE
00000000	2	0		0	0		0	0	0	150.	*1401095E+03
10000000	3	1	0	0	0	0	0	0	0	25.	.1434248E+03
10000000	3	2			0		0		0	25.	.1510732E+03
10000000	3	3			0	0	0	0	0	25.	.1426916E+03
10000000	3	4	0	0 -	0	0	0		0	25.	*1329904E+03
10000000	3	5			0	0	0	0	0	25.	.1287892E+03
10000000	3	6	0	0		0	0			25.	.1416880E+03
01000000	4		1			0	0		0	30.	.1441373E+03
01000000	4		2	0	0	0	0	0	0	30.	.1319947E+03
01000000	64	0	3	0		0	0		0	30.	*1424107E+03
01000000	4		4		0	0	0			30.	.1412190E+03
01000000	4		5		0	0	0		0	30.	•1407860E+03
00100000	5	0		1	0	0	0	0	0	30.	.1432773E+03
00100000	5	0	0	2	0		0		0	30.	.1387040E+03
00100000	5	0	0	3		0	0		0	30.	.1390653E+03
00100000	5	0	0	4			0		0	30.	.1326307E+03
00100000	5	0	0	5	0		0	0	0	30.	.1468703E+03
11000000	6	1	1		0	0	0	0	0	5.	.1470940E+03
11000000	6	1	2	0	0	0	0		0	5.	.1385160E+03
11000000	6	1	3		0		0	0		5.	*1307340E+03
11000000	6	1	4	0	0	0	0	0	0	5.	.1641400E+03
11000000	6	1	5	0		0	0		0	5.	.1366400E+03
11000000	6	2	1	0	0	0	0		0	5.	.1638220E+03
11000000	6	2	2	0			0		0	5.	.1271660E+03
11000000	6	2	3		0	0	0	0	0	5.	.1567020E+03
11000000	6	2	4		0	0	0	0	0	5.	.1556280E+03
11000000	6	2	5		0	0	0	0	0	5.	.1520480E+03
11000000	6	3	1	0			0		0	5.	.1451200E+03
11000000	6	3	2	0	0	0	0	0	0	5.	.1353840E+03
11000000	6	3	3	0	0		0	0		5.	•1392380E+03

11000000 11000000 11000000 11000000 11000000	666666666666667777777777777777777777777	334444455555666660000000000	4512345123451111122222	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000	555555555555555556666666666666666666666	.1494880E+03 .1442280E+03 .1421780E+03 .1403620E+03 .1397380E+03 .1223060E+03 .1203680E+03 .1244160E+03 .1123220E+03 .1334160E+03 .1542860E+03 .1542860E+03 .1546360E+03 .1546360E+03 .1371460E+03 .1371460E+03 .1314833E+03 .1371460E+03 .1314833E+03 .1591717E+03 .1431450E+03 .1431450E+03 .1431450E+03 .1382617E+03 .1382617E+03 .1263317E+03 .1263317E+03 .1295600E+03 .1295600E+03 .1295600E+03 .1289567E+03
	*										.1368633E+03
01100000 01100000 01100000 01100000 01100000 01100000	7 7 7 7 7 7	0 0 0 0 0 0	2 3 3 3 3 3 4 4	51234512	0000000	0000000	0000000	0000000	0 0 0 0 0 0	6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 ·	.1289567E+03 .1551917E+03 .1577650E+03 .1305067E+03 .1348517E+03 .1337383E+03 .1396750E+03 .1159367E+03
01100000	7	0	4	3	C	0	0		0	6.	.1686083E+03

01100000	7	0	4	4			0			6.	•1130567E+03
01100000	7		4	5			0		0	6.	.1688183E+03
01100000	7		5	1	0	0	0			6.	*1517750E+03
01100000	7	0	5	2	0		0	0		6.	*1343150E+03
01100000	7		5	3	0		0			6.	.1332017E+03
01100000	7	0	5	4	0		0	0	0	6.	.1425400E+03
01100000	7		5	5		0	0		0	6.	.1420983E+03

LINEAR FUNCTION CARDS

REP		2	3	-2		
WHOLE PLOT	9	2	4	2		
ERROR (A)	10	4	6	-3	-4	2
SUB PLOT	11	2	5	· 2		
SUB X WHOLE	12	4	7	-4	5	2
ERROR (B)	13	4	1	-6	7	4
TOTAL	14	2	1	-2		

ANALYSIS OF VARIANCE, VARIABLE 2

SOURCE	DF	55	MS
REP	5	.7979580E+04	.1595916E+04
WHOLE PLOT	4	.2671740E+04	.6679350E+03
ERROR (A)	20	.1601672E+05	.8008360E+03
SUB PLOT	4	.3442280E+04	.8605700E+03
SUB X WHOLE	16	.2620592E+05	.1637870E+04
ERROR (B)	100	.1029859E+06	.1029859E+04
TOTAL	149	*1593021E+06	.1069142E+04

UNCORRECTED MATRICES

LINE NO OBS ROW 1 150 1 .1341406E+04 .1557697E+05

	.1379619E+04	*2051604E+04	.1560897E+04	*1689366E+04	.3695489E+04	.4170962E+04
.2952897E+06	*1399648E+02	*7171579E+02	.2968452E+02 .1386593E+06	.4211198E+02 .1394299E+06	.2216168E+03	.3103939E+03
2	A - 2	X H X	8 H S	2 1 % 0 %	2 H 20 8	2 H 20 3
150	NO 08S	NO 08S 6 6	NO 0BS	NO 08S	NO 088	NO 085 25 25
	LINE	LINE	LINE 4	LI N N N	LINE	LINE 7

		40
	10	т т
		46260
	4	provide
	(1)	m in
	0 1	0 0 + +
	2	42130
		134
in.	4	8 0
ATRICE		3 - N
2	(A)	20 0 P
CORRECT	FRROR	LINE

				6-1. 7				
	.1643885E+04	. 6-1e 7	.9271416E+04	. 4 le 5-le	.9581164E+04	i. 5-1. 6	.1157173E+05	
2-1. 3 1. 6	.1499010E+03	4 1. 1 1. 4-1	.8390806E+03	6 1. 1-1. 2 1	.8671955E+03	4.10 1.10 2-1	.1091674E+04	
-	S - N	-2	80 H S	8	R 2 → 2 8	2	2 L S	
RR (A)	0F 24 24	(B)	400	(8)	104 104	*ERR (B	11001	7 7 7
* ERR	LIZ	ERROR	LINE -2	S+ERR(B	LINE 22	S X W	LINE 2	

-1 1 1 °7450845E-02

INVERSE

LINE

REG COEF	-1	X Y 1 2			TICIENT 7766E+02	
DUE TO REG					SS AND SP .1593900E+05	
DEV FR REG	-1	19.	2	2	*7771600E+02	.4090316E+01
TRT ADJ	1	4.	2	2	.5831200E+03	.1457800E+03
INVERSE	-2				MENT .781E-02	
REG COEF	2				FICIENT +950E+02	
DUE TO REG	-2				SS AND SP .1024445E+06	
DEV FR REG	2	99.	2	2	.5413700E+03	•5468384E+01
TRT ADJ	2	4 6	2	2	.2982000E+02	.7455000E+01
TRT ADJ						

Randomized block

This data is a two way factorial arranged in a randomized block design, taken from Hurst (5, pp. 74-76). The format is as follows:

Columns	Description	
1-2	Block number	
3	Planting	
4	Nitrogen level	
5-7	Y ₁ Total dry matter	2
8-10	Y ₂ Total dry ears	

Model

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\beta \gamma)_{jk} + (\alpha \beta)_{ij} + (\alpha \gamma)_{ij} + (\alpha \beta \gamma)_{ijk} + B(X_{ijk} - \overline{X}_{...})$$

$$i = 1 ... a$$
 $a = 16$
 $j = 1 ... b$ $b = 3$

$$k = 1 ... c$$
 $c = 2$

Sourc	е	d.f.	SS
TOTAL		abc-1	$\sum_{ijk} Y_{ijk}^2 - \frac{Y^2}{abc}$
Blocks	lpha i	a-l	$\sum_{i} \frac{Y_{i}^{2}}{bc} - \frac{Y_{i}^{2}}{abc}$
Date	βj	b-1	$\sum_{j} \frac{Y^{2}}{ac} - \frac{Y^{2}}{abc}$

Source	d.f.	SS
Fertilizer γ_k	c-1	$\sum_{k} \frac{Y^{2} \cdot k}{ab} - \frac{Y^{2}}{abc}$
D x F (βγ) _{jk}	bc-b-c+l	$\sum_{jk} \frac{Y^2_{\cdot jk}}{a} - \sum_{j} \frac{Y^2_{\cdot j}}{ac}$
		$-\sum_{k} \frac{Y^{2} \cdot k}{ab} + \frac{Y^{2}}{abc}$
Err (αβ) _{ij} +		
$(\alpha\gamma)_{ik} +$		
(αβγ) ijk	abc-bc-a+l	$ \begin{array}{ccc} \Sigma & Y^2 & - \Sigma & \frac{Y^2 \cdot jk}{a} \\ ijk & jk & \end{array} $
		$-\sum_{i} \frac{Y_{i}^{2}}{bc} + \frac{Y_{i}^{2}}{abc}$

SAMPLE INPUT

2 1 16 3 2 1 1 1 1 1 96 4 6 4 (4X,2F3,2) 4.0

```
121040225441745
121144529843048
122042024739840
122146128541750
123039121643845
123145226240950
131032020631832
131146429130230
132032816930645
132142724231838
133039219931335
133141522931542
141027415928850
141138426028848
142027412729750
142143823528245
143039218128942
143144623028542
151026616024465
151132420925458
152025813226052
152140723826055
153031416327355
153137319326065
161037220825948
161141227025248
162033517326255
162135721226455
163036019325242
163139420224852
         10000000 03 1
         01000000 04 1
         00100000 05 1
         01100000 06 1
TOT
               7 02 01 -2
```

SAMPLE OUTPUT

2 1 16 3 2 1 1 1 1 1 96 4 6 4 0.000 (4X,2F3.2) .4000000E+01 .2500000E+01

VARIABLE 1

BINARY	LINE			TR	EAT	10	ENT			NO OBS	AVERAGE
00000000	2		0		0		0	0		96.	•4072708E+01
10000000	3	1	0	0	0	0	0	0		6.	.4421667E+01
10000000	3	2	0	0			0	0	0	6.	.4518333E+01
10000000	3	3	0		0		0			6.	.4510000E+01
10000000	3	4	0	0	0		0	0	G	6.	.4631667E+01
10000000	3	5	0	0	0	0	0	0		6.	.4315000E+01
10000000	3	6	0	0	G		0		0	6.	.4078333E+01
10000000	3	7	0	0	0		0	0	0	6.	.3988333E+01
10000000	3	8	0		0	0	0	0	0	6.	.3970000E+01
10000000	3	9	0				0	0		6.	.4235000E+01
10000000	3	10	0	0	0	0	0	.0	0	6.	.3566667E+01
10000000	3	11	0	0	0	0	0	0	0	6.	*4100000E+01
10000000	3	12	0	0	0	0	0		0	6.	.4285000E+01
10000000	3	13	0	0			0			6.	.3910000E+01
10000000	3	14	0	C		0	0	0		6.	*3680000E+01
10000000	3	15	0	0		0	0	0	0	6.	.3236667E+01
10000000	3	16	0	0		0	0		0	6.	*3716667E+01
01000000	4	0	1	0	0	0	0	0		32.	.3987188E+01
01000000	4	0	2	0		0	0	0	0	32.	.4091875E+01
01000000	4	0	3	0	0		0	0	0	32.	.4139063E+01
00100000	5	0	0	1	0	0	0	0		48.	.3781875E+01
00100000	5	0	0	2		0	0	0	0	48.	.4363542E+01
01100000	6	0	1	1	0		0	0	0	16.	.3683125E+01
01100000	6	0	1	2	0	0	0		0	16.	.4291250E+01

```
121040225441745
121144529843048
122042024739840
122146128541750
123039121643845
123145226240950
131032020631832
131146429130230
132032816930645
132142724231838
133039219931335
133141522931542
141027415928850
141138426028848
142027412729750
142143823528245
143039218128942
143144623028542
151026616024465
151132420925458
152025813226052
152140723826055
153031416327355
153137319326065
161037220825948
161141227025248
162033517326255
162135721226455
163036019325242
163139420224852
         10000000 03 1
         010000000 04 1
         00100000 05 1
         01100000 06 1
TOT
               7 02 01 -2
```

```
A B 02 03 -2
B C 10 02 04 -2
C ERR
ERR
ERR
ERR
ERR
ERR
ERR+B 2 4 1 1 -1 3 1 4 -1 6
ERR+B 3 4 1 1 -1 3 1 5 -1 6

I 0 2 0 0 1

I 2 0 3 -1 5 -1 6

I 2 0 3 -2

I 3 -1 6

I 3 -1 7

I 4 -1 5

I 4 -1 5

I 4 -1 5

I 5 -1 7

I 7 -1 7
```

SAMPLE OUTPUT

2 1 16 3 2 1 1 1 1 1 96 4 6 4 0.000 (4X.2F3.2) .4000000E+01 .2500000E+01

VARIABLE 1

BINARY	LINE			TR	EAT	ID	ENT			NO OBS	AVERAGE
00000000	2	0	0		0	0	0	0	0	96.	•4072708E+01
10000000	3	1	0	0	0	0	0	0	0	6.	•4421667E+01
10000000	3	2	0	0		0	0	0	0	6.	.4518333E+01
10000000	3	3	0	0	0	0	0	0	0	6.	.4510000E+01
10000000	3	4	0	0	0	0	0	0	0	6.	.4631667E+01
10000000	3	5	0	0	0	0	0	0		6.	.4315000E+01
10000000	3	6	0	0	0		0	0	0	6.	.4078333E+01
10000000	3	7	0	0	0		0	0	0	6.	*3988333E+01
10000000	3	8	0	0	0	0	0	0	0	6.	.3970000E+01
10000000	3	9	0	0		0	0	0	0	6.	.4235000E+01
10000000	3	10	0	0	0	0	0	0	0	6.	.3566667E+01
10000000	3	11	0	0	0	0	0	0	0	6.	.4100000E+01
10000000	3	12	0	0	0	0	0		0	6 .	.4285000E+01
10000000	3	13	0	0	0		0	0	0	6.	.3910000E+01
10000000	3	14	0	0	0	0	0	0		6.	.3680000E+01
10000000	3	15	0		0	0	0	0	0	6.	•3236667E+01
10000000	3	16	0	0		0	0		0	6.	•3716667E+01
01000000	4	0	1	0	0	0	0		0	32.	.3987188E+01
01000000	4	0	2	0		0	0	0	0	32.	.4091875E+01
01000000	4	0	3			0	0	0	0	32.	.4139063E+01
00100000	5		0	1	0	0	0	0	0	48.	•3781875E+01
00100000	5	0	0	2		0	0	0		48.	•4363542E+01
01100000	6	0	1	1	0	0	0	0	0	16.	•3683125E+01
01100000	6	0	1	2	0	0	0	0	0	16.	.4291250E+01
			771	(herri.		-	~		~	700	9 1 C 2 T C 2 O C 4 O T

01100000		0	2	1	0	0	0			16.	.3745000E+01
01100000		0	2	2			0	0	0	16.	.4438750E+01
01100000										16.	*3917500E+01
01100000	6		3	2		0	0			16.	*4360625E+01

LINEAR FUNCTION CARDS

TOT	7	2	1	- 2		
A		2	3	2		
В	9	2	. 4	-2		
C	10	2	5	-2		
ВС	11	4	6	-5		2
ERR	12	4	1	-6	-3	2

ANALYSIS OF VARIANCE, VARIABLE 1

SOURCE	DF	55	MS
TOT	95	.3161910E+02	*3328326E+00
A	15	.1341043E+02	.8940286E+00
В	2	.3866896E+00	.1933448E-00
C	1	.8120067E+01	.8120067E+01
ВС	2	.2596521E+00	.1298261E-00
ERR	75	.9442259E+01	.1258968E-00

VARIABLE 2

BINARY	LINE			TR	EAT	ID	ENT			NO OBS	AVERAGE
00000000	2	0	0	0	0	0	0	0	0	96.	.2356875E+01
*10000000	3										.2665000E+01
10000000	3	2	0	0	0	0	0	0	0	6.	.2676667E+01
10000000	3	3	0	0	0		0	0	0	6.	*2590000E+01

10000000	3	4	0	0		0	0	0	0	6.	.2633333E+01
10000000	3	5	0	0	0	0	0	0		6.	.2480000E+01
10000000	3	- 6	0		0	0	0	0		6.	.2315000E+01
10000000	3	7		0	0	0	0	0		6.	.2378333E+01
10000000	3	8	0	0			0			6.	.2263333E+01
10000000	3	9					0	0	0	6.	.2543333E+01
10000000	3	10	0			0	0		0	6.	.2000000E+01
10000000	3	11			0	0	0	- 0		6.	*2426667E+01
10000000	3	12	0				0		0	6.	.2603333E+01
10000000	3	13	0	0	.0	0	0	0		6.	.2226667E+01
10000000	3	14	0		0		0	0		6.	*1986667E+01
10000000	3	15	0			- 0	0			6.	*1825000E+01
10000000	3	16	0	0	0		0		0	6.	.2096667E+01
01000000	4	0	1		0		0	0		32.	.2530938E+01
01000000	4		2	. 0			0	0		32.	.2331875E+01
01000000	4	0	3	0 -		0	0		0	32.	.2207813E+01
00100000	5	0	0	1	0		0	0		48.	.2124792E+01
00100000	5		0	2		0	0	0	0	48.	.2588958E+01
01100000	6	0	1	1		0	0	- 0	0	16.	+2285000E+01
01100000	6	0	1	2	0		0	0		16.	.2776875E+01
01100000	6	0	2	1	0		0	0	0	16.	.2027500E+01
01100000	6		2	2		0	0	0		16.	.2636250E+01
01100000	- 6	0	3	1			0	0		16.	*2061875E+01
01100000	6	0	3	2		0	0	0		16.	.2353750E+01

TOT	7	2	1	-2		
A		2	3	-2		
В	9	2	4	-2		
C	10	2	- 5	- 2		
ВС	11	4	6	-5	-4	- 2
ERR	12	4	1	-6	-3	2

NS	859880E+	4345819E-0	502781E+	5170817E+0	2054261E-0	5157213E-0
5.5	766886E+0	6518729E+	700556E+0	5170817E+0	4108522E+0	3867910E+0
		15		-	2	75
	TOT	⋖	0	U	BC	ERR

UNCORRECTED MATRICES

.1954670E+02	-,9990125E+00	*8078150E+01	1807206E+01	.5480754E+01	*4999025E+01
*3212660E+02	.5075042E+00	.1391793E+02 .8485267E+01	.8941938E+00	.8627571E+01	*9273913E+01
Z L Z W W	ス 0 3 3	X - N 0 3	N 4 N	NOW N	ROW
NO 085 96 96	NO 085	NO 085 16 16	NO OBS	NO 0BS	NO 0BS 6 6
N N N N N N N N N N N N N N N N N N N	NNU	LIN	LINE 4 4	I N M W W	П 0 0

CORRECTED MATRICES

						Ŋ				MS AND MP •1258968E-00
2=1. 3=1. 6	.5470513E+01	1. 4-1. 6	.4662319E+01	J. 5-1. 6	*1195028E+02	2-1. 3-1. 4-1.	.5796977E+01			SS AND SP .9442259E+01
4 1. 1 1. 2	.9442259E+01	4 1. 1-1. 3	*9828948E+01	4 1. 1-1. 3	.1756233E+02 .9038726E+01	5 1. 1 2. 2	.9701912E+01			DF ROW COL 75. 1 1
i	3 0 H V	2	R 2 L 2	m	8 H 8	4	X 1 2	post	NO N	1
	777		777		70 29 29 29 29 29 29 29 29 29 29 29 29 29		977	0 0 0	Z	×
ERROR	E I I I	ERR+B	LINE 2	ERR+C	LINE	ERR+BC	LINE 44	0 2		ERR MATRIX

		- 1	75. 75.	1 2	2 2	*5470513E+01 *3867909E+01 ERROR DET =	.7294017E-01 .5157212E-01 .6595289E+01
IKI	MATRIX	2 2 2	2 s 2 s 2 s	1 1 2	1 2 2	.3866890E+00 8081940E+00 .1700556E+01 TRT+ERR DET =	•1933445E-00 -•4040970E-00 •8502780E+00 •3299494E+02
						MUL F = DF =	.4575771E+02 4. AND 148.
TRT	MATRIX	3 3 3	1 e 1 e 1 e	1 1 2	1 2 2	*8120066E+01 *6479766E+01 *5170817E+01 TRT+ERR DET =	.8120066E+01 .6479766E+01 .5170817E+01 .1593188E+02
						MUL F = DF =	.4101336E+02 2. AND 148.
TRT	MATRIX	4 4 4	Z * Z * Z *	1 1 2	1 2 2	.2596530E+00 .3264640E+00 .4108530E+00 TRT+ERR DET =	.1298265E-00 .1632320E-00 .2054265E-00 .7907233E+01
						MUL F = DF =	.3513248E+01 4. AND 148.

Fractional replication

The data for this example is a Latin Square design taken from Snedecor (8, p.411). A Latin Square of "t" treatments can be visualized as one "t" replication of a t^3 factorial. The format is as follows:

Columns	Description					
1	Treatment					
2	Row					
3	Column					
4-6	Independent variable					
7-10	Dependent variable					
11-14	Control variable for missing					
	observations.					

Model

$$Y_{ijk} = \mu + \tau_{i} + \rho_{j} + \gamma_{k} + \epsilon_{ijk} + B(X_{ijk} - \overline{X}...)$$

$$i = 1 \dots a \qquad a = 4$$

$$j = 1 \dots b \qquad b = 4$$

$$k = 1 \dots c \qquad c = 4$$

$$Source \qquad d.f. \qquad SS$$

$$Tot \qquad \frac{abc}{4} - 1 \qquad \sum_{ijk} Y_{ijk}^{2} - \frac{Y^{2}}{16}$$

$$Trt \qquad a-1 \qquad \sum_{i} \frac{Y_{ijk}^{2} - Y_{ii}^{2}}{4} - \frac{Y^{2}}{16}$$

Source	d.f.	SS
Row	b-1	$\sum_{j} \frac{Y^{2}}{4} - \frac{Y^{2}}{16}$
Column	c-1	$\sum_{k} \frac{Y^{2}}{4} - \frac{Y^{2}}{16}$
Error $\frac{ab}{4}$	<u>c</u> -a-b-c+2	$\sum_{ijk} Y_{ijk}^2 - \sum_{i} \frac{Y_{i}^2}{4}$
		$-\sum_{j} \frac{Y^{2}}{4} - \sum_{k} \frac{Y^{2}}{4}$
		$+ \frac{Y^2}{16} + \frac{Y^2}{16}$

It should be noticed that the correction term has a divisor of 16 instead of the normal divisor abc(64). The other terms needed for calculation of the sum of squares have divisors of 4 instead of the normal divisor 16. These divisors are supplied on the control card, for the correction term, and on the raw sum of squares trail cards for the other terms.

```
SAMPLE INPUT
 2 1 4 4 4 1 1 1 1 1 1 64 3 5 2 16 1 1
(3X,F3,1,F4,1,F4,0)
15.8 25.6
111 9999
112193 213
113 9999
114
   9999
121292 197
122
       9999
123
       9999
      9999
124
131
       9999
132
      9999
133
    9999
134 10 287
141
   9999
142 9999
143 64 273
144
   9999
211
      9999
     9999
212
213101 283
214
   9999
   9999
221
222347 207
223
    9999
    9999
224
231140 260
232
233
       9999
234
       9999
241
       9999
242
       9999
243
       9999
```

```
244 56 341
311 43 267
312
313
314
321
322
323
324482 147
331
        9999
332
        9999
333 63 290
334
    9999
344
342 67 290
343
        9999
344
        9999
411
        9999
412
        9999
413
        9999
414140 251
421
     9999
422
        9999
423302 201
424
      9999
431
       9999
432 72 249
433
    9999
434
    9999
441 89 298
442
443
       9999
444
       9999
       10000000 3 1
       01000000 4 1
                      4 1
```

SAMPLE OUTPUT

2 1 4 4 4 1 1 1 1 1 64 3 5 2 16.110 (3X,F3.1,F4.1,F4.0) .1580000E+02 .2560000E+02

VARIABLE 1

BINARY	LINE			TR	EAT	ID	ENT			NO OBS	AVERAGE
00000000	2					0	0	0	0	16.	•1538125E+02
10000000	3	1	0				0			4.	.1397500E+02
10000000	3	2	0	0			0		0	40	.1610000E+02
10000000	3	3	0			0	0	0		40	.1637500E+02
10000000	3	4	0			0	0		0	4.	.1507500E+02
01000000	4	0	1	0			0	0	0	4	.1192500E+02
01000000	4	0	2			0	0	0	0	4.	.3557500E+02
01000000	4	0	3		0	0	0	0	0	4 .	.7125000E+01
01000000	4	0	4		0		0		0	4 .	.6900000E+01
00100000	5	0	0	1	0	0	0	0	0	4 .	.1410000E+02
00100000	5	0		2	0		0	0	0	4 .	.1697500E+02
00100000	5	0		3	0		0		0	40	.1325000E+02
00100000	5	0		4	0	0	0			4 .	.1720000E+02

TOT	6	2	1	-2		
TRT	7	2	3	-2		
ROW	8	2	4	-2		
COL	9		5	-2		
ERR	10		6		-8	-9

ANALYSIS OF VARIANCE, VARIABLE 1

SOURCE	DF	SS	MS
TOT	15	.2680624E+04	.1787083E+03
TRT	3	.1430188E+02	.4767292E+01
ROW	3	.2239322E+04	.7464406E+03
COL	3	.4812688E+02	.1604229E+02
ERR	6	*3788738E+03	.6314564E+02

VARIABLE 2

BINARY	LINE			TR	EAT	ID	ENT			NO OBS	AVERAGE
00000000	2	0		0			0	0		16.	•2533750E+02
10000000	3	1	0		0	0	0			4 *	.2425000E+02
10000000	3	2	0	0		0	0	0		4.	.2727500E+02
10000000	3	3		0		0	0		0	4.	.2485000E+02
10000000	3	4					0		0	40	.2497500E+02
01000000	4		1		0		0	0		40	.2535000E+02
01000000	4		2		0		0	0		4.	.1880000E+02
01000000	4	0	3		0	0	0		0	40	.2715000E+02
01000000	4		4	0		0	- 0	Q		40	.3005000E+02
00100000	5		0	1			0		0	40	.2555000E+02
00100000	5	0	0	2	0	0	0	-0	0	4.	.2397500E+02
00100000	5	0	0	3		0	0	0	0	40	*2617500E+02
00100000	5	0		4		0	0	0	0	4 0	*2565000E+02

TOT	6	2	1	- 2		
TRT	7	2.	3	-2		
ROW		2	4	-2		
COL	9		5	-2		
ERR	10	4	6	-7	8	- 9

ANALYSIS OF VARIANCE, VARIABLE 1

SOURCE	DF	SS	MS
TOT	15	.2680624E+04	•1787083E+03
TRT	3	.1430188E+02	*4767292E+01
ROW	3	.2239322E+04	•7464406E+03
COL	3	.4812688E+02	.1604229E+02
ERR	6	•3788738E+03	.6314564E+02

VARIABLE 2

BINARY	LINE			TR	EAT	ID	ENT			NO OBS	AVERAGE
00000000	2	0	0	0		0	0	0		16.	•2533750E+02
10000000	3	1	0	0	0	0	0			4 .	*2425000E+02
10000000	3	2	0	0		0	0	0	0	4.	.2727500E+02
10000000	3	3	0	0		0	0		0	4.	.2485000E+02
10000000	3	4	0				0	0	0	4 .	.2497500E+02
01000000	4	0	1	0	0	0	0	0	0	4.	.2535000E+02
01000000	4		2		0		0	0		4.	.1880000E+02
01000000	4	0	3		0	0	0	0	0	40	.2715000E+02
01000000	4	0	4	0	0	0	0	0		4 .	.3005000E+02
00100000	5	0	0	1		0	0		0	40	.2555000E+02
00100000	5	0	0	2	0	0	0	0	0	4 .	.2397500E+02
00100000	5	0		3		0	0	0	0	40	.2617500E+02
00100000	5	0		4	0	0	0	0	0	4 .	.2565000E+02

TOT	6	2	1	2		
TRT	7	2	3	-2		
ROW		2	4	-2		
COL	9	2	5	-2		
FRR	10	4	6	-7	ma R	9

ANALYSIS OF VARIANCE, VARIABLE 2

SOURCE TOT TRT ROW COL ERR UNCORE		TED M.	DF 15 3 3 6 ATRICE	55 .3601775E+03 .2122250E+02 .2729275E+03 .1080250E+02 .5522500E+02	MS •2401183E+02 •7074167E+01 •9097583E+02 •3600833E+01 •9204167E+01
LINE 1 1		16	ROW 1 2	•2683430E+04 •3612800E+03	8817000E+03
LINE 2 2	NO	0BS 1 1	ROW 1 2	.2805625E+01 .1102500E+01	*1758750E+01
LINE 3 3	NO	0BS 4 4	ROW 1 2	*1710750E+02 *2232500E+02	*1195250E+02
LINE 4 4	NO	0BS 4 4	ROW 1 2	.2242128E+04 .2740300E+03	7462100E+03
LINE 5 5	NO	0BS 4 4	ROW 1 2	.5093250E+02 .1190500E+02	1288250E+02

CORRECTED MATRICES

ERROR -1 5 1. 1-1. 3-1. 4-1. 5 2. 2

LINE DF ROW
-1 6 1 *3788738E+03 -*1310425E+03
-1 6 2 *5522500E+02

TRT+ERR 1 4 1* 1-1* 4-1* 5 1* 2

LINE DF ROW
1 9 1 *3931756E+03 -*1208488E+03
1 9 2 *7644750E+02

LINE

INVERSE ROW COL ELEMENT .2639402E-02

REG COEF X Y COEFFICIENT .1 2 -.3458738E+00

DUE TO REG DF ROW COL SS AND SP MS AND MP .1 2 2 .4532416E+02 .4532416E+02

DEV FR REG -1 5. 2 2 .9900836E+01 .1980167E+01

TRT ADJ 1 3. 2 2 .2940189E+02 .9800630E+01

Appendix C

Basic Designs Program

The following listing is a listing as this program ran on a CDC 3100.

```
C
        PROGRAM BASIC
                                                                                            BA000010
        DIMENSION NOBS (25), IX (16), CON (15), FMT (20), G(15), C(25, 15), R(25, 15), BA000020
      1TRT(25,15),A(16,15),B(16,15),ZN(25),X(16),Z(15)
COMMON Z, X,CON,A,B,TRT,G,NX,NVAR,NT,IZ,NERR
                                                                                            BA000030
                                                                                            BA000040
C NJB= NO. OF JOBS (MODELS)

READ (5,101) NJB

DO 60 IXZ=1,NJB

301 FORMAT (1H1,514,212,16X,10A4)

101 FORMAT ( 514,212,16X,10A4)

C MI= MODEL IDENTIFICATION 1=CRD 2=RBD 3=LSD
                                                                                            BA000050
                                                                                            BA000060
                                                                                            BA000070
                                                                                            BA000080
                                                                                            BA000090
                                                                                            BA000100
C
     NT= NO. OF TREATMENTS
                                                                                            BA000110
     NB= NO. OF BLOCKS
                                                                                            BA000120
C
     NX= NO. OF X 5
                                                                                            BA000130
C
    NY= NO. OF Y'S
                                                                                            BA000140
    IZ= CONTROL FOR REG. WITHIN TREATMENT

READ (5,101) MI,NT,NB,NX,NY,IZ,10,(FMT(I),I=1,10)

WRITE(6,301) MI,NT,NB,NX,NY,IZ,IO,(FMT(I),I=1,10)
                                                                                            BA000150
                                                                                            BA000160
                                                                                            BA000170
        IF (IO) 52,52,51
                                                                                            BA000180
       REWIND 4
IN=5-IO
NVAR=NX+NY
NVP=NVAR+1
ND=NVAR IF MI=1,2
ND=NVAR+1 IF MI=3
IND=NVAR+MI/3
GO TO (201,203,202),MI
    51 REWIND 4
                                                                                            BA000190
    52 IN=5-10
                                                                                            BA000200
                                                                                            BA000210
                                                                                            BA000220
    IND=NVAR IF MI=1,2
IND=NVAR+1 IF MI=3
                                                                                            BA000230
C
                                                                                            BA000240
                                                                                            BA000250
                                                                                            BA000260
     NOBS(I) = NO. OF OBSERVATIONS FOR TREATMENT I
                                                                                          BA000270
   201 READ (5,102) (NOBS(I), I=1,NT)
WRITE (6,302) (NOBS(I), I=1,NT)
                                                                                            BA000280
                                                                                            BA000290
   102 FORMAT (2014)
                                                                                            BA000300
   302 FORMAT (1H 2014)
202 NB=NT
                                                                                            BA000310
                                                                                            BA000320
   203 READ (5,105) (FMT(I), I=1,20)
                                                                                            BA000330
        WRITE (6,305) (FMT(I),I=1,20)
                                                                                            BA000340
   105 FORMAT (20A4)
                                                                                            BA000350
```

	305 FORMAT(1H 20A4)	BA000360
C	IX(I) = ORDER IN INPUT LIST OF VARIABLE I	BA000370
	READ (5:103) (IX(I):1=1:IND)	BA000380
	WRITE (6,303) (IX(I),I=1,IND)	BA000390
	303 FORMAT (1H 2014)	BA000400
	103 FORMAT (2014)	BA000410
	READ (5:104) (CON(I):I=1:NVAR)	BA000420
	WRITE (6,304) (CON(I), I=1, NVAR)	
	104 FORMAT (5E15.7)	BA000430
	304 FORMAT (1H 5E15.7)	BA000440
C		BA000450
-	DO 2 K=1 NVAR	BA000460
	G(K)=0.0	BA000470
		BA000480
	DO 4 I=1 • NT	BA000490
	GO TO (4,4,7),MI 7 C(1,K)=0.0	BA000500
		BA000510
	4 TRT(I,K)=0.0	BA000520
	DO 5 J=1.NB	BA000530
	5 R(J,K)=0.0	BA000540
	DO 2 J=1, NVP	BA000550
	A(J,K)=0.0	BA000560
	2 B(J,K)=0.0	BA000570
	NDF=0.0	BA000580
	DO 71 I=1,NT	BA000590
	GO TO (204,205,205),MI	BA000600
	204 NB=NOBS(I)	BA000610
	205 ZN(I)=NB	BA000620
	NDF=NDF+NB	BA000630
C		BA000640
	DO 10 J=1.NB	BA000650
	READ (IN \bullet FMT) (X(K) \bullet K=1 \bullet IND)	BA000660
	L=IX(IND)	BA000670
	LK=X(L)	BA000680
	DO 10 K=1.NVAR	BA000690
	L=IX(K)	BA000700

2	Z(K)=X(L)=CON(K) GO TO (213,212,211),MI 11 C(LK,K)=C(LK,K)+Z(K) 12 R(J,K)=R(J,K)+Z(K) 13 TRT(I,K)=TRT(I,K)+Z(K)	BA000710 BA000720 BA000730 BA000740 BA000750
,	DO 10 M=1,K 10 A(M,K)=A(M,K)+Z(K)*Z(M) DO 21 K=1,NVAR G(K)=G(K)+TRT(I,K) DO 20 M=K,NVAR	BA000760 BA000770 BA000780 BA000790 BA000800
	B(K,M)=B(K,M)+A(K,M) IF (IZ) 20,20,29	BA000810 BA000820
	$29 A(K_9M) = A(K_9M) - TRT(I_9K) * TRT(I_9M) / ZN(I)$ $A(M_9K) = A(K_9M)$	BA000830 BA000840
	20 B(M+1,K)=B(M+1,K)+TRT(I,M)*TRT(I,K)/ZN(I) 21 Z(K)=SQRT(A(K,K))	BA000850 BA000860
	IF (IZ) 67,67,66	BA000870
(66 GO TO (62,67,67),MI 62 IF (NX)67,67,68	BA000880 BA000890
	COMPUTE REGRESSION ANALYSIS WITHIN TREATMENT 68 WRITE (6,405) I	BA000900
4	05 FORMAT (////30H REGRESSION ANALYSIS TREATMENT 14)	BA000910 BA000920
	OO FORMAT (//33H CORRELATION MATRIX FOR TREATMENT 14) WRITE (6,400) I DO 61 K=1,NVAR DO 65 M=K,NVAR	BA000930 BA000940 BA000950 BA000960
	65 X(M)=A(K,M)/(Z(M)*Z(K)) 61 WRITE (6,401) K,(X(M),M=K,NVAR)	BA000970
	O1 FORMAT (1H I4,5E15.7/(5X,5E15.7)) NXP=NX+1 CALL INVERT (A,1,NX,NXP,NVAR)	BA000980 BA000990 BA001000 BA001010
4(WRITE (6,402) I D2 FORMAT (/29H INVERSE MATRIX FOR TREATMENT I4) D0 501 K=1,NX D0 500 M=K,NX	BA001020 BA001030 BA001040 BA001050

	$X(M) = -A(K_{\bullet}M)$	BA001060
501	WRITE (6,401) K, (X(M), M=K,NX)	BA001070
	WRITE (6,403)	BA001080
403	FORMAT (/13H COEFFICIENTS)	BA001090
	DO 502 K=NXP, NVAR	BA001100
	DO 502 M=1.NX	BA001110
502	WRITE (6,404) M,K,A(M,K)	BA001120
	FORMAT (1H 2I4,E15.7)	BA001130
	DO 550 K=NXP,NVAR	BA001140
	WRITE (6,406) K	BA001150
406	FORMAT (/9H VARIABLE 14)	BA001160
	WRITE (6,308)	BA001170
	ZA=A(K,K)	BA001180
	ZB=0.0	BA001190
	DO 530 M=1,NX	BA001200
530	ZB=ZB+A(K,M)*A(M,K)	BA001210
	ZD=ZA-ZB	BA001210
	IDF=ZN(I)-1.0	BA001230
	WRITE (6,309) IDF,ZA	BA001240
	AX=NX	BA001250
	IDF=IDF-NX	BA001260
	D=IDF	BA001270
	RMS=ZB/AX	
	ERRMS=ZD/D	BA001280
	F=RMS/ERRMS	BA001290
	WRITE (6,407) NX,ZB,RMS,F	BA001300
407	FORMAT (7H REG,17,3(2X,E15.7))	BA001310
	WRITE (6,313) IDF,ZD,ERRMS	BA001320
	DO 69 K=1,NVAR	BA001330
0,	DO 69 M=K.NVAR	BA001340
	A(K,M)=0.0	BA001350
	A(M,K)=0.0	BA001360
60	CONTINUE	BA001370
	CONTINUE	BA001380
11		BA001390
	T1=NDF	BA001400

	ZNT=NT COMPUTE ANALYSIS OF VARIANCE FOR EACH VARIABLE DO 43 K=1,NVAR DO 30 M=K,NVAR A(K,M)=B(M+1,K) B(M+1,K)=0.0 B(K,M)=B(K,M)-G(K)*G(M)/T1 GO TO (30,23,23),MI	BA001410 BA001420 BA001430 BA001440 BA001450 BA001460 BA001470 BA001480
23	DO 25 I=1,NB	BA001490
	GO TO (30,25,24),MI	BA001500
	B(M+1*K)=B(M+1*K)+(C(I*K)*C(I*M))/ZNT	BA001510
	$A(M+I\circ K) = A(M+I\circ K) + (R(I\circ K)*R(I\circ M))/ZNT$	BA001520
30	CONTINUE	BA001530
201	WRITE (6,306) K	BA001540
306	FORMAT (////31H ANALYSIS OF VARIANCE, VARIABLE 13)	BA001550
	CT=G(K)*G(K)/T1	BA001560
200	WRITE (6,308)	BA001570
308	FORMAT(/8H SOURCE3X2HDF10X2HSS15X2HMS16X1HF)	BA001580
	TOTDF=T1-1.0	BA001590
	ROWDF=NB-1	BA001600
	TRTDF=NT-1	BA001610
	ERRDF=NDF-NT-(MI-1)*(NB-1) IDF=TOTDF	BA001620
	WRITE (6,309) IDF,B(K,K)	BA001630
300	FORMAT(7H TOT, 17, 2X, E15.7)	BA001640
500	GO TO (33,31,31),MI	BA001650
31	ZA=A(K+1,K)-CT	BA001660
21	IDF=ROWDF	BA001670
	$B(K_9K)=B(K_9K)-ZA$	BA001680
	GO TO (33,214,215),MI	BA001690
214	WRITE (6,310) IDF,ZA	BA001700
	FORMAT (7H BLK,17,2X,E15.7)	BA001710 BA001720
	GO TO 216	BA001720
215	WRITE (6,317) IDF, ZA	BA001740
	FORMAT (7H ROW +17,2X,E15.7)	BA001740
		DAOOLIJO

32 ZA=8(K+1)*C-T	216	GO TO (33,33,32),MI	BA001760
B(K,K)=B(K,K)-ZA WRITE (6*311) IDF*ZA BA001780 BA001800 33 T=A(K,K)-CT TRTMS=T/TRTDF A(K,K)=B(K,K)-T BA001820 A(K,K)=B(K,K)-T BA001820 BA002080 BA002080 BA002080 BA002080 BA002080 BA002080	32	ZA=B(K+1,K)-CT	
WRITE (6*311) IDF*ZA 31 FORMAT(7H COL*17*,2X*,E15*,7) BA001800 33 T=A(K*,K)-CT BA001810 TRTMS=T/TRTDF BA001820 A(K*,K)=B(K*,K)-T BA001830 ERRNS=A(K*,K)/ERRDF BA001830 F=TRTMS/ERRMS BA001850 IDF=TRTDF WRITE (6*312) IDF*T*TRTMS*F BA001860 WRITE (6*312) IDF*T*TRTMS*F BA001870 312 FORMAT(7H TRT,17*,3(2X*,E15*,7)) BA001880 WRITE (6*313) NERR**A(K*,K)*,ERRMS BA001890 WRITE (6*313) NERR**A(K*,K)*,ERRMS BA001910 IF (K*-NVAR)*70*,53*,53* BA001920 70 L=K*1 BA001930 CT=G(K)*G(J)/TI BA001940 CT=G(K)*G(J)/TI BA001950 41 B(K*,J)=B(K*,J)-A(J*1*,K)+CT BA001970 GO TO (40*,40*,42)*,M1 BA001970 GO TO (40*,40*,42)*,M1 BA001970 A(K*,J)=B(K*,J)-A(K*,J)+CT BA001970 JS3 WRITE(6*,315) JS4 WRITE(6*,315) JS5 WRITE(6*,315) JS6 WRITE(6*,315) JS7 WRITE(6*,315) JS7 WRITE(6*,315) JS7 WRITE(6*,315) JS7 WRIT		$B(K_*K)=B(K_*K)-ZA$	
311 FORMAT (7H COL,17,2X,E15,7) 31 T=A(K,K)-CT TRTMS=T/TRTDF A(K,K)=B(K,K)-T ERRMS=A(K,K)/FERDF ERRMS=A(K,K)/FERDF ERRMS=A(K,K)/FERDF ERRMS=A(K,K)/FERDF BA001840 BA001850 BA001870 BA001870 BA001870 BA001870 BA001870 BA001870 BA001870 BA001870 BA001970 BA001990 BA002000		WRITE (6,311) IDF,ZA	
33 T=A(K,K)-CT TRTMS=T/TRTDF A(K,K)=B(K,K)-T BA001820 A(K,K)=B(K,K)-T BA001830 ERRMS=A(K,K)/ERRDF BA001840 F=TRTMS/ERRMS BA001850 IDF=TRTDF BA001860 WRITE (6,312) IDF,T,TRTMS,F BA001870 BA001870 WRITE (6,312) IDF,T,TRTMS,F BA001880 WRITE (6,313) NERR,A(K,K),ERRMS BA001890 WRITE (6,313) NERR,A(K,K),ERRMS BA001900 313 FORMAT(7H ERR,17,2(2X,EI5,7)) BA001910 IF (K+NVAR)70,53,53 BA001920 IF (K+NVAR)70,53,53 BA001920 CL=K+1 DO 45 J=L,NVAR BA001930 CT=G(K)*G(J)/T1 GO TO (40,41,41),MI BA001950 GO TO (40,40,42),MI BA001960 4L K,J)=B(K,J)-A(J+1,K)+CT BA001970 40 A(K,J)=B(K,J)-A(K,J)+CT BA001990 42 B(K,J)=B(K,J)-A(K,J)+CT BA002000 45 A(J,K)=B(K,J)-A(K,J)+CT BA002000 45 A(J,K)=B(K,J)-A(K,J)+CT BA002000 50 WRITE (6,315) 315 FORMAT (719H TRT TRT MEANS *12X,2HSE) BA002030 DO 15 I=1,NT TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SQRT(ERRMS/ZN(I)) BA002060 SE= SQRT(ERRMS/ZN(I)) BA002070 307 FORMAT(HI I4,2(ZX,EI5,T)) BA002070 307 FORMAT(HI I4,2(ZX,EI5,T)) BA002070 BA002070 BA002090	311	FORMAT(7H COL:17,2X:E15.7)	
TRTMS=T/TRTDF A(K,K)=B(K,K)-T BA001830 BA001830 BA001840 F=TRTMS_ERRMS BA001850 IDF=TRTDF BA001850 IDF=TRTDF BA001850 WRITE (6,312) IDF,T,TRTMS,F BA001870 312 FORMAT(7H TRT,17,3(2X,E15.7)) BA001880 WRITE (6,313) NERR*A(K,K),ERRMS BA001890 WRITE (6,313) NERR*A(K,K),ERRMS BA001900 313 FORMAT(7H ER,17,2(2X,E15.7)) BA001910 IF (K-NVAR)70,53,53 BA001920 70 L=K+1 D0 45 J=L,NVAR CT=G(K)*G(J)/T1 GO TO (40,41,41),MI BA001950 GO TO (40,41,41),MI BA001950 BA001960 41 B(K,J)=B(K,J)-A(J+1,K)+CT BA001970 GO TO (40,40,42),MI BA001970 GO TO (40,40,42),MI BA001990 42 B(K,J)=B(K,J)-B(J+1,K)+CT BA002000 45 A(J,K)=A(K,J) BA002000 JS WRITE (6,315) BA002010 JS WRITE (6,315) BA002000 TRT(1,K)=TRT(1,K)/ZN(1)+CN(K) BA002050 SE= SQRT(ERRMS/ZN(1)) BA002060 G(K)=G(K)/T1+CON(K) BA002070 BA002070 BA002070 BA002070 BA002070	33	T=A(K,K)-CT	
A(K,K)=B(K,K)-T ERRMS=A(K,K)/ERRDF ERRMS=A(K,K)/ERRDF BA001840 BA001850 IDF=TRTDF WRITE (6,312) IDF,T,TRTMS,F BA001870 312 FORMAT(7H TRT,17,3(2X,E15,7)) BA001880 WRITE (6,313) NERR,A(K,K),ERRMS BA001890 WRITE (6,313) NERR,A(K,K),ERRMS BA001910 IF (K-NVAR)70,53,53 BA001910 IF (K-NVAR)70,53,53 BA001920 70 L=K+1 D0 45 J=L,NVAR CT=G(K)*G(J)/T1 BA001940 CT=G(K)*G(J)/T1 BA001950 GO TO (40,41,41),MI BA001950 GO TO (40,40,42),MI BA001970 GO TO (40,40,42),MI BA002030 GI MITE (6,315) BA002010 BA002010 BA002010 BA002030 DO 15 I=1,NT TRT(I,K)=TRT(I,K)/ZN(I)+CN(K) BA002050 SE= SGRIT(ERRMS/ZN(I)) BA002050 G(K)=G(K)/T1+CON(K) BA002070 BA002070 GG(K)=G(K)/T1+CON(K) BA002070 BA002070 BA002070 BA002070 BA002070 BA002070		TRTMS=T/TRTDF	
ERRMS=A(K+K)/ERRDF F=TRTMS/ERRMS IDF=TRTDF WRITE (6+312) IDF+T+TRTMS+F BA001870 312 FORMAT(7H TRT+17+3(2X+E15+7)) BA001880 NERR=ERRDF WRITE (6+313) NERR+A(K+K)+ERRMS BA001890 WRITE (6+313) NERR+A(K+K)+ERRMS BA001990 313 FORMAT(7H ERR+17+2(2X+E15+7)) BA001990 IF (K+NVAR)70+53+53 BA001910 IF (K+NVAR)70+53+53 BA001920 70 L=K+1 D0 45 J=L+NVAR CT=G(K)*G(J)/T1 BA001940 GT=G(K)*G(J)/T1 BA001940 GT (40+41+41)+MI BA001950 GO TO (40+41+41)+MI BA001950 GO TO (40+40+42)+MI BA001970 GO TO (40+40+42)+MI BA001990 42 B(K+J)=B(K+J)-B(J+1+K)+CT BA001990 44 B(K+J)=B(K+J)-B(J+1+K)+CT BA002000 45 A(J+K)=A(K+J) BA002010 BA002010 TRT(I+K)=TRT(I+K)/ZN(I)+CON(K) BA002030 DO 15 I=1+NT TRT(I+K)=TRT(I+K)/ZN(I)+CON(K) BA002040 TRT(I+K)=TRT(I+K)/ZN(I)+CON(K) BA002050 G(K)=G(K)/T1+CON(K) BA002080 G(K)=G(K)/T1+CON(K) BA002080		$A(K_9K) = B(K_9K) - T$	
F=TRTMS/ERRMS IDF=TRTDF BA001850 WRITE (6,312) IDF,T,TRTMS,F 312 FORMAT (7H TRT,17,3(2X,E15.7)) NERR=ERRDF WRITE (6,313) NERR,A(K,K),ERRMS BA001890 WRITE (6,313) NERR,A(K,K),ERRMS BA001990 313 FORMAT (7H ERR,17,2(2X,E15.7)) BA001910 IF (K-NVAR)70,53,53 70 L=K+1 D0 45 J=L,NVAR CT=G(K)*G(J)/T1 BA001930 GO TO (40,41,41),MI BA001950 GO TO (40,41,41),MI BA001970 GO TO (40,40,42),MI BA001970 GO TO (40,40,42),MI BA001970 A(K,J)=B(K,J)-B(J+1,K)+CT BA001990 42 B(K,J)=B(K,J)-A(K,J)+CT BA002000 45 A(J,K)=A(K,J) BA(K,J)+A(K,J)+CT BA002010 53 WRITE (6,315) BA002020 315 FORMAT (/19H TRT TRT MEANS ,12X,2HSE) BA002030 DO 15 I=1,NT TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) BA002050 SE= SORT(ERRMS/ZN(I)) BA002060 G(K)=G(K)/T1+CON(K) BA002080 G(K)=G(K)/T1+CON(K) BA002080		ERRMS=A(K,K)/ERRDF	
IDF=TRTDF WRITE (6,312) IDF*T,TRTMS*F 312 FORMAT(7H TRT*,T7*,3(2X*,E15*,7)) NERR*ERRDF WRITE (6,313) NERR*A(K*K)*,ERRMS 313 FORMAT(7H ERR*,17*,2(2X*,E15*,7)) IF (K*-NVAR)*70*,53*,53 70 L=K+1 D0 45 J=L*,NVAR CT=G(K)**G(J)/T1 G0 T0 (40*,41*,41)*,MI 41 B(K*,J)=B(K*,J)-A(J+1*,K)+CT G0 T0 (40*,40*,42)*,MI BA001970 42 B(K*,J)=B(K*,J)-B(J+1*,K)+CT BA002000 45 A(J*,K)=A(K*,J) 31 FORMAT (719H TRT TRT MEANS *,12X*,2HSE) BA002020 315 FORMAT (719H TRT TRT MEANS *,12X*,2HSE) BA002050 BA002070 307 FORMAT(H 14*,2(2X*,E15*,7)) BA002090 G(K)=G(K)/T1+CON(K) BA002090 G(K)=G(K)/T1+CON(K) BA002090		F=TRTMS/ERRMS	
WRITE (6,312) IDF,T,TRTMS,F 312 FORMAT(TH TRT,17,3(2X,E15,7))		IDF=TRTDF	
312 FORMAT (7H TRT,17,3(2X,E15.7)) NERR=ERRDF WRITE (6,9313) NERR,A(K,K),ERRMS 313 FORMAT (7H ER,17,2(2X,E15.7)) BA001910 1F (K-NVAR) 70,53,53 70 L=K+1 D0 45 J=L,NVAR CT=G(K)*G(J)/T1 G0 TO (40,41,41),MI 41 B(K,J)=B(K,J)+A(J+1,K)+CT BA001970 G0 TO (40,40,42),MI 42 B(K,J)=B(K,J)-B(J+1,K)+CT BA001990 40 A(K,J)=B(K,J)-A(K,J)+CT BA002010 53 WRITE (6,315) 315 FORMAT (/19H TRT TRT MEANS ,12X,2HSE) BA002030 D0 15 I=1,NT TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SQRT(ERRMS/ZN(I)) 15 WRITE (6,307) I,TRT(I,K),SE BA002070 307 FORMAT(1H I4,2(2X,E15.7)) BA002090 BA002090 BA002090 BA002090		WRITE (6,312) IDF,T,TRTMS,F	
NERR=ERRDF WRITE (6,313) NERR,A(K,K),ERRMS 313 FORMAT (7H	312	FORMAT(7H TRT,17,3(2X,E15,7))	
WRITE (6,313) NERR,A(K,K),ERRMS 313 FORMAT (7H ERR,17,2(2X,E15.7))		NERR=ERRDF	
313 FORMAT(7H ERR,17,2(2X,E15.7)) IF (K-NVAR)70,53,53 70 L=K+1 D0 45 J=L,NVAR CT=G(K)*G(J)/T1 G0 T0 (40,41,41),MI 41 B(K,J)=B(K,J)-A(J+1,K)+CT G0 T0 (40,40,42),MI BA001970 BA001980 BA001990 A(K,J)=B(K,J)-B(J+1,K)+CT BA002000 BA002010 BA002010 BA002010 BA002020 BA002030 BA002030 BA002030 BA002040 BA002050 SE= SQRT(ERRMS/ZN(I)) BA002050 BA002050 BA002070 BA002080 G(K)=G(K)/T1+CON(K) BA002090		WRITE (6,313) NERR, A(K,K), ERRMS	
IF (K-NVAR)70,53,53 70 L=K+1	313	FORMAT(7H ERR,17,2(2X,E15,7))	
70 L=K+1 DO 45 J=L,NVAR CT=G(K)*G(J)/T1 BA001950 GO TO (40,41,41),MI BA001960 41 B(K,J)=B(K,J)-A(J+1,K)+CT GO TO (40,40,42),MI BA001970 GO TO (40,40,42),MI BA001980 42 B(K,J)=B(K,J)-B(J+1,K)+CT BA001990 40 A(K,J)=B(K,J)-A(K,J)+CT BA002000 45 A(J,K)=A(K,J) BA002010 53 WRITE(6,315) BA002010 53 WRITE(6,315) BA002020 315 FORMAT (/19H TRT TRT MEANS ,12X,2HSE) DO 15 I=1,NT TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SQRT(ERRMS/ZN(I)) BA002060 SE= SQRT(ERRMS/ZN(I)) BA002070 307 FORMAT(1H I4,2(2X,6E15,7)) BA002090 G(K)=G(K)/TI+CON(K) BA002090		IF (K-NVAR) 70,53,53	
DO 45 J=L,NVAR CT=G(K)*G(J)/T1 BA001950 GO TO (40,41,41),MI BA001960 41 B(K,J)=B(K,J)=A(J+1,K)+CT BA001970 GO TO (40,40,42),MI BA001980 42 B(K,J)=B(K,J)=B(J+1,K)+CT BA001990 40 A(K,J)=B(K,J)-A(K,J)+CT BA002000 45 A(J,K)=A(K,J) BA002010 53 WRITE(6,315) BA002020 315 FORMAT (/19H TRT TRT MEANS ,12X,2HSE) BA002030 DO 15 I=1,NT TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SQRT(ERRMS/ZN(I)) BA002050 SE= SQRT(ERRMS/ZN(I)) BA002060 WRITE (6,307) I,TRT(I,K),SE BA002070 BA002080 G(K)=G(K)/TI+CON(K) BA002090	70	L=K+1	
CT=G(K)*G(J)/T1 GO TO (40*41*41)*MI BA001960 41 B(K**,J)=B(K**,J)-A(J+1**,K)+CT BA001970 GO TO (40*40*42)*MI BA001980 42 B(K**,J)=B(K**,J)-B(J+1**,K)+CT BA001990 40 A(K**,J)=B(K**,J)-A(K**,J)+CT BA002000 45 A(J**,K)=A(K**,J) BA002010 53 WRITE(6**,315) BA002020 315 FORMAT (/19H TRT TRT MEANS *,12X*,2HSE) BA002030 DO 15 I=1**,NT TRT(I**,K)=TRT(I**,K)/ZN(I)+CON(K) SE= SQRT(ERRMS/ZN(I)) BA002050 SE= SQRT(ERRMS/ZN(I)) BA002060 15 WRITE (6**,307) I**,TRT(I**,K) *,SE BA002070 BA002080 G(K)=G(K)/T1+CON(K) BA002090		DO 45 J=L, NVAR	
41 B(K,J)=B(K,J)=A(J+1,K)+CT GO TO (40,40,42),M1 42 B(K,J)=B(K,J)-B(J+1,K)+CT BA001990 40 A(K,J)=B(K,J)-A(K,J)+CT BA002000 45 A(J,K)=A(K,J) BA002010 53 WRITE(6,315) BA002020 315 FORMAT (/19H TRT TRT MEANS ,12X,2HSE) BA002030 DO 15 I=1,NT BA002040 TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SQRT(ERRMS/ZN(I)) 15 WRITE (6,307) I,TRT(I,K),SE BA002070 307 FORMAT(1H I4,2(2X,E15,7)) G(K)=G(K)/TI+CON(K) BA002090		CT=G(K)*G(J)/T1	
GO TO (40,40,42),MI 42 B(K,J)=B(K,J)-B(J+1,K)+CT 40 A(K,J)=B(K,J)-A(K,J)+CT 45 A(J,K)=A(K,J) 53 WRITE(6,315) 315 FORMAT (/19H TRT TRT MEANS ,12X,2H5E) DO 15 I=1,NT TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SORT(ERRMS/ZN(I)) 15 WRITE (6,307) I,TRT(I,K) ,SE 307 FORMAT(1H I4,2(2X,E15.7)) G(K)=G(K)/T1+CON(K) BA002090		GO TO (40,41,41),MI	BA001960
42 B(K,J)=B(K,J)-B(J+1,K)+CT 40 A(K,J)=B(K,J)-A(K,J)+CT 45 A(J,K)=A(K,J) 53 WRITE(6,315) BA002020 315 FORMAT (/19H TRT TRT MEANS ,12X,2HSE) DO 15 I=1,NT TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SQRT(ERRMS/ZN(I)) 15 WRITE (6,307) I,TRT(I,K),SE 307 FORMAT(1H I4,2(2X,E15,7)) G(K)=G(K)/T1+CON(K) BA002090	41	B(K,J) = B(K,J) - A(J+1,K) + CT	BA001970
40 A(K,J)=B(K,J)-A(K,J)+CT 45 A(J,K)=A(K,J) 53 WRITE(6,315) 315 FORMAT (/19H TRT TRT MEANS ,12X,2HSE) DO 15 I=1,NT TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SQRT(ERRNS/ZN(I)) 15 WRITE (6,307) I,TRT(I,K),SE BA002070 BA002070 BA002070 BA002080 G(K)=G(K)/T1+CON(K) BA002090		GO TO (40,40,42),MI	BA001980
45 A(J,K)=A(K,J) 53 WRITE(6,315) 315 FORMAT (/19H TRT TRT MEANS ,12X,2HSE) BA002020 DO 15 I=1,NT TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SQRT(ERRNS/ZN(I)) 15 WRITE (6,307) I,TRT(I,K),SE BA002070 307 FORMAT(1H I4,2(2X,E15,7)) G(K)=G(K)/T1+CON(K) BA002090	42	B(K,J) = B(K,J) - B(J+1,K) + CT	BA001990
53 WRITE(6,315) 315 FORMAT (/19H TRT TRT MEANS ,12X,2H5E) BA002030 DO 15 I=1,NT BA002040 TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SQRT(ERRMS/ZN(I)) BA002050 SE= SQRT(ERRMS/ZN(I)) BA002060 15 WRITE (6,307) I,TRT(I,K) ,SE BA002070 307 FORMAT(1H I4,2(2X,E15,7)) G(K)=G(K)/T1+CON(K) BA002090			BA002000
315 FORMAT (/19H TRT TRT MEANS ,12X,2HSE) DO 15 I=1,NT TRT MEANS ,12X,2HSE) BA002030 BA002040 TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SQRT(ERRMS/ZN(I)) BA002060 BA002060 BA002070 BA002080 G(K)=G(K)/T1+CON(K) BA002090	45	$A(J_{\bullet}K) = A(K_{\bullet}J)$	BA002010
DO 15 I=1,NT TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SGRT(ERRNS/ZN(I)) 15 WRITE (6,307) I,TRT(I,K),SE BA002060 BA002070 BA002070 BA002080 G(K)=G(K)/T1+CON(K) BA002080			BA002020
TRT(I,K)=TRT(I,K)/ZN(I)+CON(K) SE= SQRT(ERRNS/ZN(I)) 15 WRITE (6,307) I,TRT(I,K),SE 307 FORMAT(1H I4,2(2X,E15.7)) G(K)=G(K)/T1+CON(K) BA002080 BA002090	315		BA002030
SE= SQRT(ERRMS/ZN(I)) 15 WRITE (6,307) I,TRT(I,K) ,SE 307 FORMAT(1H I4,2(2X,E15.7)) G(K)=G(K)/TI+CON(K) BA002080 BA002090			BA002040
15 WRITE (6,307) I,TRT(I,K),SE 307 FORMAT(1H I4,2(2X,E15.7))			BA002050
307 FORMAT(1H 14,2(2X,E15.7)) G(K)=G(K)/T1+CON(K) BA002080 BA002090			BA002060
G(K) = G(K)/T1 + CON(K) BA002090			BA002070
G(K) = G(K)/T1 + CON(K) BA002090	307		BA002080
		CV=SQRT(ERRMS)/G(K)	

43 WRITE (6,316) G(K) "CV 316 FORMAT (/12H EXP MEAN E15.8, 9H C.V. E15.8) IF (NX)60,60,50 50 CALL COVAR 60 CONTINUE STOP END

BA002110 BA002120 BA002130 BA002140 BA002150 BA002160

_		SUBROUTINE INVERT(A,N1,NZ,NPX,NK)	BA003020
C		MATRIX INVERSION ROUTINE INVERTS UPPER TRIANGULAR PORTION OF MATRIX BETWEEN ROW N1 AND ROW N2. WITH SOLUTION FROM	BA003030
C		ROW NPX TO ROW NK. THE INVERSE IS THE NEGATIVE OF THE INVERSE	BA003040
		DIMENSION A(16,15)	BA003050
		DO 501 L=N1,N2	BA003060
		RECIP=1.0/A(L,L)	BA003070
		DO 502 I=N1,N2	BA003080
		IF(I-L) 503,504,505	BA003090
	503	R=A(I,L)*RECIP	BA003100
	505	GO TO 506	BA003110
	E07.	R=0.0	BA003120
	204		BA003130
	EOE	GO TO 506 R=A(L*I)*RECIP	BA003140
		DO 507 J=1,N2	BA003150
	200	IF(J-L) 508,507,509	BA003160
	508	$A(I_9J) = A(I_9J) - R \times A(J_9L)$	BA003170
	200	GO TO 507	BA003180
	500	$A(I_9J) = A(I_9J) - R * A(L_9J)$	BA003190
		CONTINUE	BA003200
	201	DO 510 J=NPX , NK	BA003210
	510	$A(I_9J) = A(I_9J) - R*A(L_9J)$	BA003220
	210	IF(I-L) 511,512,513	BA003230
	511	$A(I_9L)=R$	BA003240
	711	GO TO 502	BA003250
	512	A(L,L)=-RECIP	BA003260
	2 4 6	GO TO 502	BA003270
	513	A(L.1)=R	BA003280
		CONTINUE	BA003290
		DO 501 N=NPX+NK	BA003300
	501	$A(L_9N)=A(L_9N)*RECIP$	BA003310
		RETURN	BA003320
		END	BA003330
		be 13.50°	BA003340

Appendix D

Basic Program Sample Problems

Three sample problems have been used to demonstrate the capabilities of this program. The first is a completely randomized design with three treatments with four, eleven and seven observations per treatment (Snedecor 8, p. 403). The format for the data is

Column	Description
1	Treatment identification
2-3	Observation within treatment
4-6	Dependent variable
7-8	Independent variable

The second sample is a subset of the randomized block design used for the factorial program. For this program ten blocks, three treatments and two additional variables were selected. The format for the data is

Column	Description
1-2	Block identification
3	Treatment identification
5-7	First dependent variable
8-10	Second dependent variable
11-13	First independent variable
14-15	Second independent variable

The third sample is the same as the fractional replication used for the factorial program. It is a latin square design with four treatments (Snedecor 8, p. 411). The format for the data is

Column	Description
1	Row identification
2	Column identification
3	Treatment identification
4-6	Independent variable
7-9	Dependent variable

SAMPLE INPUT

3				
1 3 0 1	1 1		TEST DATA	FOR A CRD
4 11 7				
(3X,F3.1,F2.0)				
2 1				
33.0	8.0			
1 1 7724				
1 2 5431				
1 3 5226				
1 4 4030				
2 1 9633				
2 2 7833				
2 3 9632				
2 4 7736				
2 5 8233				
2 6 7338				
2 711330				
2 8 9538				
2 9 8831				
210 8432				
211 6832				
3 1 4831				
3 2 9233				
3 3 8533				
3 4 8833				
3 5 9227				
3 6 7932				
3 7 5936				
2 3 10 2	2	D	BD TEST DA	ΤΔ
(4X,3F3,2,F2,2)	5		WE I WAT WA	10
3 4 1 2				
5.0	4.0	7.0	0.5	
011149531631558	100	100	0.00	
021147230530858				
051141500000				

```
031148932042045
041148731438645
051145027938852
061145329239030
071140826835035
081141426933145
091140926231242
101136223432430
012139224334862
022148529027655
032149028740850
042155731640515
052145727837652
062145626538138
072146128233948
082140322934048
092149931233415
102138323427428
013149831334660
023143022832352
033147525642438
043146124437830
053153828037352
063142520839840
073136621634850
083143723231030
093144425235425
103139619932330
   3 4 4 1 1
(1X,F1.0,1X,2F3.1)
   2 3 1
 15.8
                25.6
121193213
211292197
341010287
```

LSD TEST DATA

SAMPLE OUTPUT

1 3 0 1 110

4 11 7 (3X,F3.1,F2.0)

2 1

.3300000E+02 .8000000E+01

TEST DATA FOR A CRD

REGRESSION ANALYSIS TREATMENT 1

CORRELATION MATRIX FOR TREATMENT 1

1 .1000000E+01 -.7457044E+00

.1000000E+01

INVERSE MATRIX FOR TREATMENT 1

1 .3053435E-01

COEFFICIENTS

1 2 -.3488550E+00

VARIABLE 2

SOURCE DF TOT

*7167500E+01

REG .3985668E+01 ERR 2

.3985668E+01 .3181832E+01 .1590916E+01

MS

F

.2505266E+01

```
CORRELATION MATRIX FOR TREATMENT 2
```

1 .1000000E+01 -.3552275E+00

2 .1000000E+01

INVERSE MATRIX FOR TREATMENT 2

1 .1375000E-01

COEFFICIENTS

1 2 -.1702500E+00

VARIABLE 2

SOURCE DF SS MS F TOT 10 •1670546E+02

REG 1 .2108004E+01 .2108004E+01 .1299682E+01 ERR 9 .1459745E+02 .1621939E+01

REGRESSION ANALYSIS TREATMENT 3

CORRELATION MATRIX FOR TREATMENT 3

1 •1000000E+01 --2974849E-00

2 .1000000E+01

INVERSE MATRIX FOR TREATMENT 3

1 •2229299E-01

COEFFICIENTS

1 2 -.1885350E+00

VARIABLE 2

SOURCE MS DF F .1801714E+02 TOT 6 REG .1594468E+01 .1594468E+01 .4854469E+00 ERR 5 .1642268E+02 .3284535E+01 ANALYSIS OF VARIANCE, VARIABLE 1 SOURCE DF MS TOT 21 .2460000E+03 TRT .9566557E+02 .4783279E+02 .6045341E+01 2 ERR 19 •1503344E+03 .7912338E+01 TRT MEANS TRT .2775000E+02 .1406444E+01 1 2 .3345455E+02 .8481176E-00 3 .3214286E+02 .1063172E+01 EXP MEAN .32000000E+02 C.V. .87902746E-01

ANALYSIS OF VARIANCE, VARIABLE 2

 SOURCE
 DF
 SS
 MS
 F

 TOT
 21
 .6940000E+02
 .1375495E+02
 .6238803E+01

 TRT
 2
 .2750990E+02
 .1375495E+02
 .6238803E+01

 ERR
 19
 .4189010E+02
 .2204742E+01

TRT TRT MEANS SE .7424187E+00

EXP MEAN .78000000E+01 C.V. .19036375E+00

RESIDUAL CORRELATION MATRIX

1 .1000000E+01 -.4065676E+00

2 .1000000E+01

INVERSE MATRIX, ERROR LINE

1 .6651836E-02

COFFFICIENTS

1 2 -.2146146E+00

ADJUSTED ANALYSIS, VAR 2

SOURCE DF MS ADJ F TRT 2 .1649107E+02 .8489422E+01 REG 1 .6924316E+01 .3564562E+01

ERR 18 .1942544E+01

COEF OF DET .1652972E-00 C.V. .1786861E+00

ADJUSTED MEANS

1 .4662888E+01

2 .8948530E+01

3 .7787802E+01

```
2 3 10 2 200
                                      RBD TEST DATA
(4X,3F3,2,F2,2)
  3 4 1 2
                 .4000000E+01 .7000000E+01 .5000000E+00
   .5000000E+01
ANALYSIS OF VARIANCE, VARIABLE 1
 SOURCE
         DF
                                                      F
  TOT
          29
                 .4643187E+01
  BLK
           9
                 .4074118E+01
   TRT
                 .4624700E-01
                                 .2312350E-01
                                                 .7961084E+00
   ERR
          18
                                 .2904567E-01
                 .5228220E+00
        TRT MEANS
 TRT
        .3524000E+01
                         .5389403E-01
  1
         .3481000E+01
                         .5389403E-01
   3
        *3577000E+01
                         .5389403E-01
EXP MEAN .35273334E+01 C.V. .48316354E-01
ANALYSIS OF VARIANCE, VARIABLE 2
 SOURCE
         DF
         29
  TOT
                 .4780000E+00
  BLK
                 .3481200E+00
          9
  TRT
                 .6500000E-02
                                 .3250000E-02
                                                 .4741449E+00
  ERR
          18
                 •1233800E+00
                                 .6854444E-02
```

TRT

TRT MEANS

ANALYSIS OF VARIANCE, VARIABLE 3

SOURCE DF TOT 29 .6682990E+01 BLK .3761180E+01 9 TRT 2 .1148900E+00 .5744500E-01 .3683789E-00 ERR 18 .2806920E+01 .1559400E-00 TRT TRT MEANS .4439000E+01 .1248759E-00 1 2 .4583000E+01 .1248759E-00 3 .1248759E-00 .4470000E+01 EXP MEAN .44973334E+01 C.V. .87805896E-01

ANALYSIS OF VARIANCE, VARIABLE 4

SOURCE DF F TOT 29 .3617140E+01 BLK 9 .1403990E+01 TRT 2 .9858500E+00 .4929250E-00 .7229406E+01 ERR 18 .1227300E+01 .6818333E-01

```
TRT
        TRT MEANS
        .2859000E+01
                        .8257320E-01
  1
  2
        .2736000E+01
                        .8257320E-01
        .2428000E+01
                        .8257320E-01
EXP MEAN .26743333E+01 C.V. .97639056E-01
RESIDUAL CORRELATION MATRIX
      .1000000E+01 -.1475314E-00 -.1448805E-00 -.1355269E+00
      .1000000E+01 -.4339768E+00 -.3813352E+00
      .1000000E+01 .9011704E+00
      .1000000E+01
INVERSE MATRIX, ERROR LINE
                   .5938025E-00
      .1955254E+01
      .8285376E+01
COEFFICIENTS
 1 3 -.4948178E+00
  2 3 -.2220220E+01
 1 4 -.3003806E+00
         -.1293931E+01
ADJUSTED ANALYSIS, VAR 3
```

ADJ F

.1053827E-00

.2429546E+01

SOURCE

TRT

REG

ERR

DF

2

2

16

•1418090E-01

.3269338E-00

.1345658E-00

COEF OF DET .2329484E-00 C.V. .8156657E-01

ADJUSTED MEANS

1 •4483235E+01

2 .4541572E+01

3 .4467193E+01

ADJUSTED ANALYSIS, VAR 4

SOURCE DF MS ADJ F TRT 2 *5007718E+00 *7990904E+01 REG 2 *1123082E-00 *1792122E+01

ERR 16 .6266773E-01

COEF OF DET .1830167E-00 C.V. .9360659E-01

ADJUSTED MEANS

1 .2884740E+01

2 .2711300E+01

3 .2426960E+01

```
3 4 4 1 100
                           LSD TEST DATA
(1X,F1.0,1X,2F3.1)
   2 3 1
   .1580000E+02 .2560000E+02
ANALYSIS OF VARIANCE, VARIABLE 1
 SOURCE
         DF
  TOT
         15
                 .2680624E+04
  ROW
                 .2239322E+04
  COL
                 .4812688E+02
  TRT
                 •1430188E+02
                               *4767292E+01
                                                .7549678E-01
   ERR
                 .3788738E+03
                                .6314563E+02
 TRT
        TRT MEANS
        .1397500E+02
  1
                        .3973211E+01
        .1610000E+02
                        .3973211E+01
        .1637500E+02
                        .3973211E+01
        .1507500E+02
                        .3973211E+01
 EXP MEAN .15381250E+02 C.V. .51663045E-00
ANALYSIS OF VARIANCE + VARIABLE 2
 SOURCE
```

.2122250E+02 .7074167E+01 .7685831E+00

DF

15

3

3

3

.3601775E+03

*2729275E+03

.1080250E+02

TOT

ROW

COL

TRT

6 .5522500E+02 .9204167E+01 ERR TRT TRT MEANS .2425000E+02 .1516918E+01 .2727500E+02 .1516918E+01 3 .2485000E+02 .1516918E+01

EXP MEAN .25337500E+02 C.V. .11973702E-00

.1516918E+01

RESIDUAL CORRELATION MATRIX

.1000000E+01 -.9059351E+00

.2497500E+02

.1000000E+01

INVERSE MATRIX, ERROR LINE

1 .2639402E-02

COEFFICIENTS

4

1 2 -.3458738F+00

ADJUSTED ANALYSIS, VAR 2

SOURCE DF ADJ F TRT 3 .9800630E+01 *4949395E+01 REG .4532416E+02 .2288906E+02

ERR .1980167E+01

COEF OF DET .8207182E+00 C.V. .5553761E-01

Appendix E

Modified Factorial Program

This is a modification of the factorial program. By alternating tape drives in subroutine GAOV the program will run faster. This modification restricts the problem to analysis of variance only. If more than four tape drives are available similar modifications could be made to the original program without eliminating the covariance analysis capabilities.

```
PROGRAM FACOV
C
                                                                                GF000010
      THIS IS THE PRIMARY IMPUT SECTION
(
                                                                                GF000020
      DIMENSION CONST (25) *FMT (20) *X(26) *NIN(8) *DES(3) *IX(75) *A(50,50)
                                                                               GF000030
      COMMONA, NV, MC, IX, NA, NB, NC, ND, NE, NF, NG, NH, NOBS, LI, LC, ISPD, SPD, CONSTGFO00040
     1 .DES.KON
                                                                                GF000050
      EQUIVALENCE (A(20) , X(1)) , (IX(1) , NIN(1))
                                                                                GF000060
      REWIND 1
                                                                                GF000070
      REWIND 02
                                                                                GF000080
      REWIND 3
                                                                                GF000090
      READ (5,100) NV, KON, NA, NB, NC, ND, NE, NF, NG, NH, NOBS, LI, LC, MC, SPD, ISPDGF000100
     1. IFR. IO
                                                                                GF000110
      WRITE (6,300) NV, KON, NA, NB, NC, ND, NE, NF, NG, NH, NOBS, LI, LC, MC, SPD, ISPDGF000120
     1. IFR. IO
                                                                                GF000130
  300 FORMAT (1H11013,15,314,F5,0,312)
                                                                                GF000140
  100 FORMAT ( 1013,15,314,F5,0,312)
                                                                                GF000150
      IN=5-10
                                                                                GF000160
      READ (5,101) (FMT(K),K=1,20)
                                                                                GF000170
  101 FORMAT(20A4)
                                                                                GF000180
      WRITE (6,111) (FMT(K),K=1,20)
                                                                                GF000190
  111 FORMAT(1H , 20A4)
                                                                                GF000200
      X(NV+1)=0.0
                                                                                GF000210
      INC=NV+IFR
                                                                                GF000220
      READ (5,102) (CONST(I), I=1,NV)
                                                                                GF000230
  302 FORMAT (1H 5E15.7)
                                                                                GF000240
  102 FORMAT ( 5E15.7)
                                                                                GF000250
      WRITE (6.302) (CONST(I), I=1,NV)
                                                                                GF000260
      KK = NV + 1
                                                                                GF000270
      IF (IO) 52,52,51
                                                                                GF000280
   51 REWIND 4
                                                                                GF000290
   52 DO 10 J=1,NOBS
                                                                                GF000300
      READ (IN \circ FMT) (X(I) \circ I = 1 \circ INC)
                                                                                GF000310
      IF (X(KK)-9999.0)5,10,5
                                                                                GF000320
    5 DO 6 I=1,NV
                                                                                GF000330
    6 \times (I) = \times (I) - \text{CONST}(I)
                                                                                GF000340
   10 WRITE (2) (X(IL) .IL=1.NV)
                                                                                GF000350
```

1	IF (IO)2+2+1 REWIND 4	GF000360 GF000370
2	PAUSE	GF000380
4	DO 15 LN=1*LI	GF000390
	READ (5,1001) (NIN(I), I=1,8), ILINE, IP, PD, IPD	GF000400
15	WRITE (02) (NIN(I), I=1,8), ILINE, IP, PD, IPD	GF000410
1001	FORMAT(9X,8I1,13,12,F5.0,12)	GF000420
	IF (LC) 18,18,13	GF000430
13	DO 14 LN=1,LC	GF000440
	READ (5,1003) (DES(IYY), IYY=1,3), LCN, LZZ, (IX(K), K=1, LZZ)	GF000450
14	WRITE (OZ) (DES(IYY), IYY=1,3), LCN, LZZ, (IX(K), K=1, LZZ)	GF000460
1003	FORMAT (3A4,17I4,/(20X,15I4))	GF000470
18	REWIND 02	GF000480
	CALL GAOV	GF000490
	STOP	GF000500
	END	
		GF000510

```
SUBROUTINE GAOV
                                                                            GF000520
0
      THIS IS THE FACTORIAL ANALYSIS OF VARIANCE PORTION
                                                                            GF000530
      DIMENSIONA (50,50), TOT (2500), NDF (128), SS(128), NL(8), NX(8), NOUT (8) GF000540
     1 .NIN(8) .IX(75) .DES(3) .CONST(25)
                                                                            GF000550
     COMMONA, NV, MC, IX, NA, NB, NC, ND, NE, NF, NG, NH, NOBS, LI, LC, ISPD, SPD, CONSTGF000560
     1 .DES KON
                                                                            GF000570
      EQUIVALENCE (A(1), TOT(1)), (IX(1), NIN(1)), (IX(9), NOUT(1))
                                                                            GF000580
  650 DO 17 IXX=1,NV
                                                                            GF000590
      WRITE (6.413) IXX
                                                                            GF000600
  413 FORMAT (9HIVARIABLE ,13)
                                                                            GF000610
      WRITE (6,333)
                                                                            GF000620
  333 FORMAT (//2x6HBINARY, 3x4HLINE, 9x11HTREAT IDENT,
                                                                            GF000630
     1 7X6HNO OBS,3X7HAVERAGE/)
                                                                            GF000640
      55(1)=0.0
                                                                            GF000650
      SUM=0.0
                                                                            GF000660
      OBS=NOBS
                                                                            GF000670
      NL(1)=NA
                                                                            GF000680
      NL(2) = NB
                                                                            GF000690
      NL(3) = NC
                                                                            GF000700
      NL (4) = ND
                                                                            GF000710
      NL(5) = NE
                                                                            GF000720
      NL (6) = NF
                                                                            GF000730
      NL(7) = NG
                                                                            GF000740
      NL (8) = NH
                                                                            GF000750
C
      READ DATA
                                                                            GF000760
      COMPUTE GRAND TOTAL AND TOTAL SUM OF SQUARES
                                                                            GF000770
      DO 40 L=1.NOBS
                                                                            GF000780
      READ (2) (TOT(J)*J=1*NV)
                                                                             GF000790
      Y=TOT(IXX)
                                                                            GF000800
      SS(1) = SS(1) + Y * Y
                                                                             GF000810
      SUM=SUM+Y
                                                                            GF000820
      WRITE (3) Y
                                                                             GF000830
   40 WRITE (01) Y
                                                                            GF000840
      REWIND 1
                                                                            GF000850
      REWIND 3
                                                                             GF000860
```

		IF(ISPD)20,21,20 NDF(1)=SPD	GF000870 GF000880
		GO TO 22	GF000890
		NDF(1)=NOBS	GF000900
C		COMPUTE AND WRITE THE CORRECTION TERM	GF000910
		IW=O	GF000920
	22	IF(ISPD)23,24,23	GF000930
	23	SS(2)=SUM*SUM/SPD	GF000940
		DIV=SPD	GF000950
		GO TO 25	GF000960
	24	SS(2)=SUM*SUM/OBS	GF000970
		DIV=OBS	GF000980
		NDF(2)=1	GF000990
		LEN=2	GF001000
		AV=SUM/DIV+CONST(IXX)	GF001010
		WRITE (6,102) IW,	,GF001020
		DIVAV	GF001030
C		REPEAT DOWN TO 5 FOR EACH RAW SS WANTED	GF001040
		K1=1	GF001050
		K2=3	GF001060
_		DO 5 LN=1.LI	GF001070
C		COMPUTE OPERATIONAL CONSTANTS	GF001080
		READ (2) (NIN(I), I=1,8), ILINE, IP, RPD, IRPD	GF001090
		LEN=1	GF001100
		DO 50 I=1.8	GF001110
		IF(NIN(I)) 52,51,52 NX(I)=0	GF001120
		NOUT(I)=0 NOUT(I)=1	GF001130
		GO TO 50	GF001140
		K=I+1	GF001150
		NOUT(I)=NL(I)	GF001160 GF001170
		NZ=1	GF001170
		IF (K-8)56,56,58	GF001190
		1F (NIN(K))54,57,54	GF001200
		NZ=NZ*NL(K)	GF001210

```
57 K=K+1
                                                                                GF001220
      GO TO 55
                                                                                GF001230
   58 NX(I)=NZ
                                                                                GF001240
      LEN=LEN*NL(I)
                                                                                GF001250
   50 CONTINUE
                                                                                GF001260
      ZERO THE TOTALS REQUIRED FOR THIS SET
C
                                                                                GF001270
      DO 6 I=19LEN
                                                                                GF001280
    6 TOT(I)=0.0
                                                                                GF001290
      ACCUMLATE A SET OF TOTALS
C
                                                                                GF001300
(
      OPERATE ON ALL OBSERVATIONS
                                                                                GF001310
      DO 7 I=1 NA
                                                                                GF001320
      DO 7 J=1,NB
                                                                                GF001330
      DO 7 K=1 .NC
                                                                                GF001340
      DO 7 L=1 .ND
                                                                                GF001350
      DO 7 M=1.NE
                                                                                GF001360
      DO 7 N=1.NF
                                                                                GF001370
     DO 7 IZA=1*NG
DO 7 IZB=1*NH
READ (K1) Y
FIND IDENTIFICATION OF TOTAL
      DO 7 IZA=1 +NG
                                                                                GF001380
                                                                                GF001390
                                                                                GF001400
     FIND IDENTIFICATION

IA=(I-1)*NX(1)+(J-1)*NX(2)+(N-1)

IA=IA+(N-1)*NX(6)+(IZA-1)*NX(7)+(IZB-1)*NX(0)

INCREMENT THE SPECIFIED TOTAL

TOT(IA)=TOT(IA)+Y

REWIND K1
0
                                                                                GF001410
      IA=(I-1)*NX(1)+(J-1)*NX(2)+(K-1)*NX(3)+(L-1)*NX(4)+(M-1)*NX(5)+1 GF001420
      IA=IA+(N-1)*NX(6)+(IZA-1)*NX(7)+(IZB-1)*NX(8)
INCREMENT THE SPECIFIED TOTAL
                                                                                GF001430
0
                                                                                GF001440
    7 TOT(IA) = TOT(IA) + Y
                                                                                GF001450
                                                                                GF001460
                                                                                GF001470
                                                                                GF001480
                                                                                GF001490
                                                                                GF001500
      NDF(ILINE)=LEN
                                                                                GF001510
      IF(IRPD)26,27,26
                                                                                GF001520
   26 DIV=RPD
                                                                                GF001530
      GO TO 28
                                                                                GF001540
   27 DIV=NOBS/LEN
                                                                                GF001550
      EACH OF THE FOLLOWING SHOULD BE EITHER ONE OR THE NUMBER OF LEVELSGF001560
```

28	NAA=NOUT(1) NBB=NOUT(2) NCC=NOUT(3) NDD=NOUT(4) NEE=NOUT(5) NFF=NOUT(6) NGG=NOUT(7) NHH=NOUT(8) LL=1 DO 8 I=1,NAA	GF001570 GF001580 GF001590 GF001600 GF001610 GF001620 GF001630 GF001640 GF001660
	II=I*NIN(1) DO 8 J=1,NBB IJ=J*NIN(2) DO 8 K=1,NCC IK=K*NIN(3) DO 8 L=1,NDD IL=L*NIN(4) DO 8 M=1,NEE	GF001670 GF001680 GF001690 GF001710 GF001720 GF001730 GF001740
	IM=M*NIN(5) DO 8 N=1,NFF IN=N*NIN(6) DO 8 IZA=1,NGG IIZA=IZA*NIN(7) DO 8 IZB=1,NHH IIZB=IZB*NIN(8) IF(IP) 9,18,9	GF001750 GF001760 GF001770 GF001780 GF001800 GF001810 GF001820
102 18 8	WRITE MEANS IF REQUESTED AVE=TOT(LL)/DIV+CONST(IXX) WRITE (6,102) (NIN(IIM),IIM=1,8),ILINE,II,IJ,IK,IL,IM,IN,IIZA,IIZ 1,DIV,AVE FORMAT(1H 811,215,713,F6.0,2X,E14.7) SS(ILINE)=SS(ILINE)+TOT(LL)*TOT(LL) LL=LL+1 SS(ILINE)=SS(ILINE)/DIV REWIND K1	GF001830 GF001840

	<pre>IF (LC) 10,17,10 FORM CORRECTED SUMS OF SQUARES WRITE (6,1103) FORMAT(/ 13x21HLINEAR FUNCTION CARDS/) DO 15 I=1,1C NDOF=0 SQS=0.0 READ (02) (DES(IYY),IYY=1,3),LCN,LZZ,(IX(K),K=1,LZZ) WRITE (6,1004) (DES(IYY),IYY=1,3),LCN,LZZ,(IX(K),K=1,LZZ)</pre>	GF001920 GF001930 GF001940 GF001950 GF001960 GF001970 GF001980 GF001990 GF002000
1004	FORMAT(1H ,3A4,1714,/(21X,1514)) DO 14 K=1,LZZ IF(IX(K)) 11,12,13	GF002010 GF002020 GF002030
	IZ=-IX(K) SQS=SQS-SS(IZ) NDOF=NDOF-NDF(IZ) GO TO 14	GF002040 GF002050 GF002060 GF002070
	IZ=IX(K) SQS=SQS+SS(IZ) NDOF=NDOF+NDF(IZ)	GF002080 GF002090 GF002100
	CONTINUE DOF=NDOF AMS=SQS/DOF SS(LCN)=SQS NDF(LCN)=NDOF	GF002110 GF002120 GF002130 GF002140 GF002150
	WRITE (K2) (DES(IYY) »IYY=1,3) »LCN »NDOF »SQ5 »AMS REWIND 2 REWIND K2 WRITE (6,84) IXX FORMAT (36H1 ANALYSIS OF VARIANCE, VARIABLE »I3//	GF002160 GF002170 GF002180 GF002190
30	FORMAT (36H1 ANALYSIS OF VARIANCE, VARIABLE, I3// 17H SOURCE, 9X2HDF, 8X2HSS, 14X2HMS) DO 30 I=1*LC READ (K2) (DES(IYY), IYY=1,3), LCN, NDOF, SQS, AMS WRITE (6,103) (DES(IYY), IYY=1,3), NDOF, SQS, AMS FORMAT(1H 3A4, I5, 2X, E14, 7, 2X, E14, 7) REWIND K2	GF002200 GF002210 GF002220 GF002230 GF002240 GF002250 GF002260

VITA

H. Wain Greenhalgh

Candidate for the Degree of

Master of Science

Thesis: FORTRAN Programs for the Calculation of Most of the Commonly Used Experimental Design Models

Major Field: Applied Statistics

Biographical Information:

Personal Data: Born at Rupert, Idaho, April 1, 1945, son of Herbert H. and Ida Lazelle Greenhalgh; married Janet M. Keroher on March 18, 1966.

Education: Attended elementary school in Heyburn, Idaho; graduated from Minidoka County High School in 1963; received a Bachelor of Science degree from Utah State University, with a major in mathematics and a double minor in applied statistics and computer science, in June 1966; completed requirements for the Master of Science degree at Utah State University in 1967.