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INTRODUCTION 

M. H. A. 3tone showed in 1937 and ubsequently that many 

interesting and important results of general topology involve latices 

and Boolean rings. This type of result forms the substance of this 

thesis. 

Theorem 4, page 11, states that for any r 1' 0 in a Boolean 

ring, there exists a homomorphism h into 1
2

, (the field of integers 

modulo 2). such that h(r) = 1 . 

Theor m 3, page 6, states that any subring of a charac..teristic 

ring of a Boolean space X is the whole rinq if it has the two points 

property (that is, given x, y in X and a, b in 12, there exista 

a g such that g(x) = a and g(y) == b) 

From these two theorems follows the Stone Representation 

theorem which states that any Boolean ring is isomorphic to the 

characteristtc ring of its Stone pace. 

Theorem 1, page 11, is independent of other theorems . It 

states that any compact Hausdorff space is the continuous image of 

some closed ubset in a Cantor space. 

Theorem s. page 23, states that a topological space can be 

embedded tn a Cantor space as a subspace if and only if it is Boolean . 



This theorem uses the Dual Representation theorem as lts sufficient 

part. It tates that any Boolean space is homomorphic to the Stone 

space of its chara.ct rt tic ring. 

Theorem , page 2 5, is a problem suggested by Dr. Ju-kwei 

V.'ang. I am not sur whether it is original c,r not . 



BOOlEA RINGS 

caximal Ideal, in I attic.es 

Definlti. n: , I ai:ti e i a non v ·et X with a oarti, l 

rderi:ig ;:;. t . r every c.1 · r cf x · y in X, there 6Xi :;ts ;:-, {un '.que) 

,mal!est element x v y w 1ich i grnater than :x: and y, and 

(unique) large,·t element x A y wU h is ·maller than ea( h . fhe 

la :..1<e ·.;;distribuU e if 

, A (y " z) = (x /\ y) v (x A 2) and x v (y A z) = (x v y) A (x v z) 

cfinitkn: ! subset A 0f a di :;tribut.lve !attic c X ~"' an idec..1 

( uc1l ide .... l) if "'hen...,.ver y ~ x and y E A imoly x A and tf y and 

z b-?.l ng t, i, , '•o doe; y v z (resoectiv,:,ly, whenever x;::: '/ and 

I then x e A; and if y E A, z E · , then y "z ,; , ). 

Lemma l: 1.:,it I\ be an ideal and 5 be a disjcint dual ideal in 

1 hributive lattico X; then the f:imHy c,f ~ 11 ide. ls wh! h contain • 

nd ar'-" disjoint from 13 containJ a m~xi.rnal tdeal 1-1 . 

Similarly, there is dual ideal B whi h contains B, is 

disj:.Jint from A , and i9 maximal with re,;pec t to th prooertv . 

Proof: 'Ne vrder t!1e elements d this family S by 

M 2 N if W 1 N , for M , 1 c .3, then 2: ts partial 

c-rder in this family . 



Fer each < hai.n in S, ( 0n:,ider the union of the memben of 1t; 

th e n we get an ideal which i3 an up9er b · und tn this chain, so aooJying 

Zorn' 3 lemma t, \.,.j we < an get a maximal ideal A with the property 

t at it c. nta!ns 1 and i:; disJ,__,int from B . 

Lemma 2: The smallest ideal ·111hi h · :· nta.ins A and member 

c cf Xis E={x:x~c er X'$Cvy for some y ·n A'. If c./' 

and c.. I B, then c v x c B kr some x 1: A' . 

Proof: 

1. Any 'deal which contains A and c 1.. J ,.tains 

{x: x:::; c} and {x: x ~ ( v y T r scme y c A'} 

1 herefcre, it contains E . 

2. If z s x for some x E E 

Sine e x :S c c.r x :S c v y fc-r ~ome f <: A' 

Therefore, z :S c or z :s c v y, z .:: E 

If z and x E E 

Supp- se z :S c, X ~ y V c, then C $ y V C • 

z ::: y v c . Therefore, z v c :S y v c, z v c t E . 

Suppose z, x :S c er z, x :S y v c . 

Then Z v X 5 c or Z v X $ y V C' • 

Thus E 1 '3 an ide i . 
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3. If c I A' and c I B, then E = X, since A' is a maximal 

ideal which u ntains A. hus, for any y E B. y s c v x 

for some x E A'. Otherwise, y s c will imply c r: B. 

Therefore, c v x r: B for s ome x " A'. 

Theorem 1 : A' LJ B' = X • 

Proof: By lemme 2, if c e A' and c <c. B', then c E B • 

Therefore, there is x e A' s . t . c v x e B, c v x e B' 

There i " y t B' s . t. y c E A, c /\ y e A' , (c v x) /\ y = 

(c A 1) v (x /\ y) 

1 . C /\ '/ E A', X A Y ~ X E A' 

Therefore, x 11. y e A', (c v x) A y E A' . 

2. c v x e B' , y c B' 

( c v x) 11. y c B' 

But A' n B' = 'D for each C E X; th1~n ( ( A' or C E B' • 

rherefore, A' U B' = X . 

Definition: 

for each r , R. 

Boolean ring is ring (R, +, • ) , such that r · r = r 

Theorem 2: A Boolean ring 1s commutative ar,,d r + r = O for 

each re: R. 

Propf: (r + r) · (r + r) = r + r . Therefore , r + r = 0 

(r + s) {r . s) = r i-

r • s + , r=O 
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Ther fore, r • s + (s · r + s · r) = 0 + s • r 

Use the notation A ). B = (" () Be) U (Ac() B) for subsets 

, , B of a set X and Jll:, he family of all subsets of a "et X. 

( Ou • ;n ) is a Boolean ring with the unit . Here , only check 

the assoc:1 tive law .,.nd the unit with the operation 

Demoting h = 0, A , 0 = 0 \ A = A 

(A ..... B) ~ C 

= f [ (.\ (\Be) U ( en B) () Cc] U fr (An rf) U (Bn A c)J c() C] 

= (A()Bcn Cc) CJ (B Ac " Cc) U f (Ac U B) (Ben A) n CJ 

= (An Ben Cc) u (Bn A en Cc) u r o{n B) (BM) u (A()C) J 

= {J-\n Bcn cc) U (BnAcn cc) U (Ac-n Bc/1 C) U (An Bn C) 

Since ()l,, is commutative with ~, therefore, 

(A • B) ..,, C = C .~ (A .i. B) = A (B \ C) 

Use the notatio:r, r2, being the field of integers 

X 
modulo 2, and 12 , the family of all functions on 

X to I
2

, and we define 

(f + g) (x) = f (x) + g (x} , (f g) (x) = f (x) g (x) 

X for f, g e 1
2 

, x E X • 

Theorem 3: !..et 1; be the family of all functions on a non - empty 

set X; then (I;, + , · ) is a Boolean ring and it is isomorphic 

to Cm.,, _ , ()) where OL is the family of all subsets of x. 



Proof: It i ~bvious that f + g = g + f e 1; , 

and f • f = f , f + f = 0 

f (g + h) = f g + f h ' f (g h) = (f g) h 

I f - f I = f ( I (x) = 1 , for x c X ) 

Therefore, (I; , ·! • • ) is a Boolean ring with unit . 

rhere is a ono-to - one correspondence between 

X rh -1 1
2 

and vv in such c way f - .. A iff f f 1] = A 

-1 -1 -1 
Since (f + g) f 1] = f f 1 J ~g [l J 

-1 -1 
Therefor· , f +· 9 ..,_ f fl ] , g fl ] 

(f g)-1 flJ = f-1 fl] .'.l g-1 [l] 

-1 -1 
Therefore, f g ,._,. f fl ] n g fl. 

ft (g 1- h)J- 1 r11 = t-
1 r11 n fg-

1 riJ h-
1 flJ 1 

= cc 1 
[ 1 1 n g - i r 1 1 > Cf-1 fl J n h - i fl J > 

Therefore, f(g 1- h) = f g + f h ...... (f-l fl] (l g-lfl]) 

.<t-1f1J n h-
1

r1J> 

X (}L (I2 ' + • . ) "':! ( • 

Boolean -~ings 

7 

Theorem 1: Let (R, +, · ) be a Boolear r·ng in which we define 

r ~ s if r · s = s for r, s r: R • Then R is a lattice with 

the relation 2:: • 



Proof: 

1. ?. is a partial order relation in R . 

r ?. r if f r • r = r 

r:?s, s'2r r • s=s, s · r=r 

(r • s) r = r (r • r) s = r r= 

r?. s, s?. Z r • s=s, s · Z=Z 

Therefore, (r · s) Z = ,-, , rZ = Z r?. Z 

2. Define ( r v s) = r + s + rs 

(r v s) r = r 

{r v s) s = s • • • r v s ?.:: r and r v s .:: s 

If m ?. r and m ~ s , then, 

m (r v s) = m r + m s + m rs = r + s rs = (r v s) 

Therefore, m ?. (r v s) 

Define r A s = r s , and then we can prove that r A s is 

the greatest clement which precede r and s . 

r A (s v t} = r s + rt + rs t 

(r A .,) v (r At) = r s + rt + r st 

Therefore, r A (s v t) = (r A s) v (r "t) 

It is also true that r v (s At) = (r v s) A (r v t) 

8 



Dc'!flnlt1on: Let (R, + , • ) be a Boolean ring . A subset T 

of K is called a dual ideal iff r A s E T whenever r, s e T , and 

t -: T whenever t follows a member of T • 

Thecrem 2: There is a one - to - one correspondence between 

maxim 1 ideals in {R, + , · ) and homomorphisms in 12 

which are not identic lly zero . 
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Prcof: Iet h b0 a non - zero homomorphism between (R, +, · ) 

- 1 
· nd t

2
, and let K = h ((') 

1. a, b . K, h (a- b) = h (a) - h (b) = O 

Thus, a - b E K 

r e R, h (r al = h (r} h (a) = h (r) = 0 

1'hus, r a e K 

3inc.e 
-1 

h is not zero, therefore, h (0) = K -:/ R 

Therefon:,, K is a prcper ideal of R • 

2 . Let K
1 

be an ideal in R and K
1 

,;i K , 

Choose an element a E K
1 

- K for any r I K . 

h (x - a) = h (x) - h (a) = 1 - 1 = 0 

Thu • x - a = r E K , x = a + r E K 

K
1 

= R ; K is a maximal ideal. 

Conversely , if K is a maximal ideal in R, define a 

. opptng g on R into 1
2 

by 

g (x) = 0 for x E K , g (x) = 1 for x I K 



Then g (x + y) = g (x) + g (y) and g (xy) = g (x) g (y) 

are true for x, y in the following cases: 

a. If x E K , y E K , then x + y E K 

b , If x I K , y , K , then x + y l K . Otherwise 

(x + y) + y ::: x E K • 
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c , L Jt x I K • y / K • and let M be the ideal generated 

by x and Y. 

,::,ince K is a maximal ideal, M = R • 

let y = 1 x + K for some 1 x + K ~ M • Then, 

L x / K ; otherwise y < K • 

If x y , K , then x y + x K = 1 x + x K + x K = 1 x E K 

Thus, xy / K 

d. tet x / K • y I K ; then x + y c K ; otherwise x + y / K 

and by case c , x y / K • y x (x + y) I K 

But y x (x + y) = x y + x y = 0 E K • 

Theorem 3: If S is an ideal in a Boolean ring {R, +, · ). ·r is 

a disjoint dual ideal in R , and S U T = R . Then the 

function which is zero on 

mcrphLm of R into I
2

. 

Proof: 

and 1 on T is a homo-

1. x E T , y e T , then x y " T and x + y I T 

Otherwise, x + y E T , x y (x + y) = x y + x y = 0 E T , but 

(I r, s . 



2. x E .::; , y E S , then x + y c S , x y E S 

3. x E '3 , y e S , then x y S and x + y , T . 

Otherwise, x + y c S , x + (x + y) = y S but 

-1 n T = rh . By the proof of Theorem 2, there exists 

" homomorphi 1m of R into 1
2 

, and S is a maximal 

ideal in R. 

Theorem 4: If r is a non - zero element of a Boolean ring R , 

tnen there is a homomorphi ... m h of the ring into 1
2 

such 

that h (r) = 1. 

Proof: I.et S = {O}, zero ideal in R . 

T = {x: x ~ r}, 

3 () T == ,~ 

dual ideal in R . 
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By Theorem 1, Secti n I. and Theorem 3 this theorem 

holds . 

Cantor Space 

A 
Definition: A product ..,pace 2 (that is, all functions on a set 

A to tho discrete space whose only members are 0 and , with the 

produc.c topology) is called a Cantor space . 

Theorem 1: Each compact Hausdorff sp c.e is the <..ontinuous 

image of a closed subset of "' me Cantor space . 

Proof: Let F be the family of 11 functions on 2 such that 

f (0) and f (1) are closed subsets of the ompact Hausdorff 



space X and f(O)U f(l)=X . 

Let a E X. and w 
r 

choose x e 2 . 

s. t . xf = i: ( E = 0, or 1) and a e f (e) for every f E F • 

Then a E { n f (xf} : f C F J 

If a¥ b . ince X is Hausdcrff, hus, there is twc open 

neighborhoods Na' Nb s. t . a E Na b" Nb and 

C C 
Na Nb = (b , a e Nb b e Na and 

J.Jc u NC= (. n N )c = h C = X 
a b a b 

Define g (0) = .{ g (1) = Ne 
D a 

Then g e F , x = 0 g 

and b I { f) f (xf) : f e F } 

Therefore, a= { n f (xf) : f e F } 

12 

\Ve define ! :) = { n f (xf) : f ( f } when { n f (xf) : f E F } 

is non void . 

Let y be a limit poin of the points in the domain of 4> • 

Since X is compact. and f (y f) are closed subsets in 

X, therefore, them is finite £
1 
(y 

1
), £

2 
(y 

2
) • , . f (y ) 

n n 

· · t . fl (y 1) • f2 (y 2) f n (y n) = 6 

Let yf = <:. 
. 1 

i = 1, 2, . .. ' n 
1 

1hen B = { x : }~f. = (: i 

i r 
is a bas. -- ·,lemen~ in 2 . 

i = I. 2, •.. , n x , 2F} 



n 
For any x E B, () f 1 (xf ) = ct, 

i=l i 

Therefore, <}> (x) = { n f (xf) : f E F } = 

' his is a com r adiction to the fact that y is a limit 

- 1 
point of r (x) • 
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-1 
Let y be a limit point of e:- (x) where E is a closed 

subset of X . 

If <- (y) I E (that is, y I · -l (E} ), then 

{ f1 I (y f) E : f e F } = <l> 

'hereforc , (f (y f) n E) = "' for f E F 

Since X is compact and each f (y f) E is closed in X, 
m 

there exist finite n (f1 (y fi) n E) = :o 
i=l 

Let y .. = e i = l, 2, . .. , m 
I. i 

l 

Then D = { x : xf = E 
1 

i = 1, 2, ... , m x e 2F } 

i F 
is a base -\lement of 2 for each x <: D . 

rhis is · con;:radic ~ion to the foct that y is a limit point 

of <.,,, -l (E) . 
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BOOLEAN SPACE 

Bo· lean Sp,:ice und Characteristic Ring 

Let ( R, + , • ) be a Boolean ring, let s' be the 3et of all ring 

h.::.momorphi ·ms ·f R into I
2

, nd let S = '31 
- {O} where O is he 

homomorphism which is identically zero . Then ' is the c;ubset of 

fae produ<.t I~ • 

Definition: fhe Stone space of the r1ng R is S with the 

rel 1tive product topology, where 1
2 

is assigned the disc.rete t0ooloqy . 

Definition: A Boolean space is a Hau 3dorff spac;e such th,:it the 

family of all sets which are both open and ce:rnpa t is the Base for the 

ton · logy . 

Thec,rem 1: Thc1 et of all cc ntinu u ·; functions f on a 

-1 
Boolean spa< e into r

2 
such thc'lt f r 1 J is compact 

is a ring . 

Proof: let X be Boolean space, a1'd iet F be t e set d all 

continuous functions n X into 1
2

• 

1 is open - do ed in 1
2 

; therefore, 

in X 

Le· f, g E F 

-1 
s . t . f f 1] is compact. 

-1 f fl J L,, open - closed 

- 1 
is close ·-c,en, since f r 1] c.o 1::,act, 
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f-l rI] n g-l fl] compact. 

(fg)-lfll = f- 1rIJ n g-lfll . Therefore, f • g£ f 

f-l f 1 J - f-l fl] () g -I r 1) is open-clo sed nd contained 

-1 
lr. t'f1,, c ornpact sub·3et f l] . 

rhus, it 13 compact. 

c m a t. 

(f+g)- 1 f!J=(g- 1 rl]-f- 1ri ('l g- 1 fl]) u 

(f-l f 1J - f-l fl] () g -l r l] ) is compact • 

J.'nerefore, f + g f 

It i • clear f (g ~ h) !:1 f g ~-f h {f g) h • f (g h) 

f+f:zO f • f=f 

. erefcrc F is a &:>olean ring . 

Corollary: F '1 ( ~ . , n) where F is the c haracteri 3tic ring 

of a Boolear, :Jpace X , and OL, i3 th9 farr.Uy of 11 compact 

subsets of the paCFJ : • 

Definition: Th~ ring of 1'11 continuou functtons on a Boolean 

-1 space into 1
2 

such that f r 1] is compact is call d the characteristic 

ring cf the Roolea crnace. 

Theorem 2: The Stone spac.o cf ;,_ Boolean ring (R, + , • ) is a 

Boolean sp:.'\c.c. and is compact whenever R has a unit. 
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?roof: 

1. Si ce 1
2 

is Hau3dorff c1r1 compact, then r; ts Hausdorff 

with th~ r lative product topology . 

2. I et x be any element of H • Then each of the ets 

R 
{ f : t (x) • 0 , f E I 

2 
} , { f : f (x) 1 f IR t 

, E 2 J 

is open-closed. 

Chi follow from the fact that each is the inverse image 

R 
of an ooen-closed set in 1

2 
under the projection of 1

2 

onto 1
2 

. 

fhe subbase consists of ooen-compac:t sets; so, too, 

f 
d,..,es th(:" bane of I • 

I. 

Therefore, S ts a Boolean soace with the relative 

topology. 

..;,. If 1 t 1 ~quals he inters _1.;:tion of the following hree 

DllbSGLS d I~ . 

() {f: f(x + y) a f(x) + f(y) (1) 
x, y~ R 

nR {f: f(x y) = f(x} f(y) 
x, YE 

(2) 

{f:f(l)=l 1 (3) 

frc m (2), we k 10'\i that (3) ls dosed, given any two 

ek.ment.3 , y ! 



{ f:f{x) = 0, f(y) • 0, 

{ f : f (x) = 1 , f (y) = 0, 

{ f: f (x) = , f(y) - l. 

and 

{ f: f(:,c) = 1 , f (y) = 1, 

f(x + y} • 0 } , 

(, + y) = 1 } , 

f (x ~-y) = 1 } , 

f(x + y) = O } • 
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.. (. • of these ets, being itself the inter ection of three 

dos .d s ts, is closed, so 

f:I(x -,· y) = f(x) J- f(y) J is dosed . 

n { f : f (x + y) :: f A) + f (y) I is tne intersection of dosed 
x,yiP 

sets. 

herefore, (1) is closed. By the same :ug:.unent, (2) 

is also closed. 

Thus, ::, i 
R 

closed in 1
2 

. 

l 
1s a compact subspace of I . 

::;ince IR is compac. t, 
2 

s 

Definition: Jet F bi.:! the characteristic ring of c Boolean snace 

X , and let G be a subring of F hich bus the two points nroperty; 

th t 1s, for distinc x and y of X and for a and b in 1
2 

, there 1s 

a g in G "'Uch that g(x) = a and g{y) = b . 

rheorem 3: (.:>tone-V 'eierstrass modulo 2) 

Let F be the characteristic ring of a Boolean space X, and 

let G be a subri of w ich has the o points property . 

Then F = G . 
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Proof: 

I et Y be a comoact ubset of X, given an element 

XE .{-Y. 

To each y "' Y , there ,,,dsts a g ., G such that 

g(>:) = 0 , r,d g(y} = 1 • g is continuous. 

Let be a ne ghborhood of y s. t. g(z) = 1 for 
y 

each z _ N . 
y 

Therefore . u 
YEY 

N --... y y t 
l'inco Y is compact, we 

c.an get a f nite num.ber f 9
1

, g
2

, .•• gn in G with the 

c.orr spending N , N , N 
yl y2 yn 

s. t . 

n 
U N 

i=l y 1 

G is a subring cf F , so 

n 
n l n 

g - ::l gj .I,. gigjgk- ··· ... <-1> n 9 1 = g 
1=1 X 

i=l i<j i<j<k 

is in G , ,1nd g (x) = 0; g (z) = l for each z <: Y 
y X 

I'or each x E X - Y, we can get a function g in G • 
X 

Let h = () g : then 
X xcX-Y 

h c G and h(x ) = 0 , h(z) = 1 for each 2 E Y 
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ThereLre, G = F . 

Theorem 4: Each Boolean ring is isomorphic to the characteristic 

ring of its 3tone space . 

Proof: 

Let X be a Boolean ring and let S be its Stone space. 

For each x * X. we define the evaluation map e by 

e (x) f a f (x) = 1 or O • f , S 

e (x) - l [ 1 J = { f : f (x) • 1 for f • S } 

If X • 0 , e(x(l [ l] • 4, 

If x 1', 0 • by Theorem of Section II. there exists a 

h E S s. t. 
-1 

h(x) • l. Thus e(x) f 1] is non-empty. 

-1 R a(x f 1 J 19 compact in ,, , since 12 ts compact. 

R R 
and {f: f (x) :::: l for f E 1

2 
} is closed in 1

2 
• hus, it is 

compact. 

-1 n R e (x) [ l J • S { f : f (x) • 1 , f E I2 } 

{ f: f(x + y) = 1 f , S } 

= { f: f(x) = 1 , f c; S} 1 { f: f(y) = l , f , S 

-1 -1 - 1 
l'herefo re, e (x + y) f 1] • e(x) [ 1] + e(y) fl] 

{f:f(xy) = f(x) f(y) • 1 f,::; } 

• { f: f (x) • 1, f t S} n {f: f(y) • 1 f « S} 

Therefore, e(xy( 1[1] • e(x)- 1[1) n e(y)-l[l] 



By the Corollary of Th orom / 

R 1s osomorphic to a subrino of the characteristic ring 

of the Stone space S • 

Gf.vr-m f ,' g in S • There is x E X s. t. f(x) 1' g(x) 

Let g (x) = 0 , f (x) -= 1 , g1nce g '# 0 

Therefo re, y E X s . t . 

g(y) • 1 , f (y) = 1 or f(y) • 0 

If f (y) • 1 , then f (x + y) • f (x) + f (y) = 0 

Therefore, there are two points x, y (or x + y) in 

X s. t. 

f(x) = 1, g(x) • 0 

20 

f (y) • O , g(y) • 1 (or f (y) • 1, g(y) c 1, then, f (x + y) = 

0 , g(x y) == l ) 

The refore, e(x)f 1 , e(x) g = 0 

e(y)f = 0 , e(y)
9 

• 1 (or e(x + y)f • O , 

e(x + y) = 1 ) 
g 

By Theorem J • Rr _ the characteristic ring of S. 

Lemma 1: Let F be the characteristic ring of a Boolean 

space X . T is a maximal proper ideal in F iff for some x, X, 

T • { f: f (x) = 0, f , F} 

Proof: Let 1' be a maximal proper ideal in F • Suppose there 

does not exist a x in X • t . r - {f:f (x) = c, f E F } , then 



to each x ti X there is a f t T and f(x) a 1 

-1 
Let g be an element in F , g [1] • B 

For each x « B , there is a f • T s. t. f (x) • 1 , 

there is n open neighborhood Nx of x, f(y) • 1 for 

y ( N 
X 

Since B is compact, therefore, there is a finite 

number of functions t
1
, f

2
, ••• fn 1n T with their 

corresponding Nx covering 3 • 

Let 

n 

h - .. fi - > fl f j + ••• + (-11 n+l n f1 • then 

~{ i<J i•l 

h E T , and h(z) 1 for z E B 

h • g = g • h • g ~ T • Therefor e , g E T • 

rhe refore, T = F • l'his is a contradiction to T 

being proper;maximal in F • 

Let T = { f:f(x) • 0 f E F } for some x E X . Then 

T is a orop er ideal in F . uopo e it 1s not a maximal 

idea . Le" E be an ideal. E J T and E ,' F , then 

" there is a h E E - r , h(x) = 1 for any s « F - T , 

(s + h) (x) = s(x) + h(x) = 0 

Therefore, s + h • r E T , s + (h + h) = r + h « E 

s•r+h« E, E•F 

21 
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This contradicts E 7' T • 

Definition: Let F be a family of functions such that each f 

F is on a topolooy sapce x to a space Yf • The evaluation map is 

a map e on X into II Yf s. t. e(x)f = f(x) 
ftF 

Definition: A family F of functions on X distinguishes 

points iff for each pair of di tinct points x and y, there i f in F 

s. t. f (x) ,;J f(y) • The family distinguishes points and closed set iff 

for each closed subset A of X and each x I X - A , there is f E F 

s. t. f (x) / f [ A] • 

Lemma 2: Let be a family of functions, each member f of F 

being on a topological space X to a topological pace Y
1
• Then 

(a) rhe evaluation map e is continuous on X to the product 

space X {Yf:f1 F } 

(b) The function e is an open map of X onto efX] if F 

distinguishes points and closed sets. 

(c) The function e 1s one to one iff F distinguishes points . 

Proof: (Kelley) 

th 
The map e followed by projection Pf into the f 

coordinate space is continuous because 

Pf • e(x) • f(x) 

Choose a member f of F such that f (x) does not belong 
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to the closure of f(X - U) • The set of all y in the product 

such that yf I f(X - U) ls open, and evidently its inter­

section with ef x] 1s a subset of e[U] • Hence, e is 

an open map of X into ef x] . 

t tem ... nt (c) is clear. 

Theorem§: A topological space can be embedded in a 

cantor space if tt is Boolean. 

Proof: 

Lot X be a Boolean space, F its characteristic ring, 

and S the tone space of F • 

We consider the evaluation map e on X to 2F . 

e(x)f = f(x) for x • 

Given x X 

F 
, f E 2 

-1 F e(x) [OJ == {f:f(x) • 0 f, 2 } by Lemma 1 

F ts a proper maximal ideal in 2 • 

Conversely, given an element in S , then we can 

F determine a prop r maximal ideal in 2 by Lemma 1. This 

proper maximal ideal is T • { f:f(y) • O, f • F) for some 

YfX 

Therefore, - 1 T = e(y) [OJ 

(1) e is contlnuou since f , F is continuous . 



(2) Given a closed sub et A in X • and a point x of X , 

X /A. 

Let Nx be a compact-open neighborhood of x in 

X - A : then define a function of f • 

f(y) - l 

f(y) • 0 

Thus. f « F 

f(X - N ) = O • 
X 

Thus, f(A) a O , 

for 

for 

y~N 
X 

X- N ')A 
X 

f(A) • 0 

f(x) / f(A) 

Therefore, e ts an open mapping. 

(3) Given x -,! y in X , a. b t 1
2 

here is f ( F s . t . f (x) ai a , f(y) b 

Thus e is 1 - 1 

Therefore. R 1s homomorphic to S • 

let X be a topology space which can be embedded in a 

Cantor space C • Then 

a. X is Hausdorff since C is Hausdorff. 

b. C is compact and tho subbase of C consists of 

open-closed sets . 'fherefore, the set of all open­

compact sets in C is a base. 

'fhus the set of all op n- compact s ts in X is a base . 

Therefore , X is Boolean . 

24 
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Complete Lattice 

Definition: A 1 ttice ls comelete if every ubset of 1t has at 

least upper bound . 

Definition: A Q ring of a Boolean space is the rinq of all 

-1 continuous functions f into 12 such that f [ 1] is closed - open . 

(If a Boolean space 1s compace. the Cring is a characteristic ring . ) 

Theorem A Boolean ~mace has the property that the closure 

of every open set is open if and only if its C rtno ts 

complete. 

Proof: Let X he a Boolean ring, 

Then C 1 a lattice under the operations. 

(f v o)(x) = maximum ff(x), g(x)] 

(f AQ)(x) = minimum ff(x), g(x)] 

And we write f ~ g if f (x) ~ g(x) , x e X 

1. Suppose C is a complete lattice and E ts an open set in 

X • Then E = U E where E is open and closed . (In the er a 
a. 

bad case, we can choose E being the base elements of 
a 

topology X • ) 

K._ (x) • sup . f (x) , where f,.. is the continuous funct ion . --E rt. a ..... 
-1 

s. t. f a fl] • Ea 

let £
0 

22 V fa be the east upper bound of the family {fa} 



Then ~(x) s f
0 

(x) for x X 

For each x
0 

/ E , we can have an open-closed 

neighborhood 

Then there is a function gin C s. t. 

g(z) • 1 for Z E Ne 
X 

0 

g(z) = 0 for z' N 
X 

0 

-Thus ~(x ) • 0 and 
0 

g(E) • l 

g ts e bound for the family {f J 

Thus ~(x) ::s f
0

(x) s q(x) for XfX 

-Therefore f (E) = 1 , f (E~ • 0 
0 0 

As f is continuous, E is open and closed. 
0 

2. Suppose the closure of an open set in X is open. 

Let {f } be a family of functions in C. a 
-1 Then U f fl] ls an open set in X. 

ex a -
-1 

There U fa [ 1 J is closed and open and any open-
a -

26 

- 1 -1 = 
closed et N }l fa f l ] contains U f f 1 ] , since N • N 

Therefore, the function h defined on X s . t . 

h(x) = 0 

h(x) = 1 

h III V fa. a 

for x / ut; 1 Pl 
a 

for X E U f;; [ 1 ] 
(X 
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