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INTRODUCTION

Recently, Kimber [2] has discovered a general class
of topological spaces, the members of which are termed

barypact spaces, that includes the compact topological

spaces. This class is distinct from the set of all
compact topological spaces, but its members possess many
of the useful properties associated with compactness. As
a consequence, several standard compactness theorems
become special cases of corresponding theorems in a more
general setting and the techniques of proof applied to
these extensions provide new, and sometimes remarkably
simple, proofs of the very theorems they generalize,

The purpose of this paper is to extend to this class
three compactness theorems of topology: the Stone-
Weierstrauss theorem, the Ascoli theorem, and the Dini
theoren,

It is assumed throughout this paper that the reader
is familiar with the standard set theoretic notation and
with such concepts as topological space, compact topologi-
cal space, metric gpace, convinuity, cohvergence, uniform
convergence, and so on. Sometimes theorems that are used
in support of this paper, but are nol directly part of it,

will be stated without proof) however, sources for such

material are included in the bibliography.




WEIGHTS AND BARYSUBSETS

DEFINITION. A weighting of a subset S of a topological
space X is a classification of the subsets of S into two

types, light and heavy, subject to the conditions that the

empty set is light and the union of two subsets of S is
light iff both subsets are light.

Obviously a subset of a light subset of S is light;

or equivalently, a subset of S containing a heavy subset

of & is heavy.
DEFINITION. Let S be a weighted subset of a topological
space X. A point x of X is said to be a barypoint
of 8§ iff every neighborhood of x has a heavy intersection
with S.

Since every neighborhood U of a barypoint of S has
a heavy intersection with S, UMS cannot be the empty set.
Thus a barypoint of S is a point of closure of S.
DEFINITION. A subset S of a topological space X is said
to be a barysubset of X iff whenever S is weighted and
heavy, S has a barypoint.

As will be shown later in this paper, a subset of a
compact subset of a space X is a barysubset of X. Since
the closure of a bounded subset of R" is compact, it foll-

" 2 PR
ows that every bounded subset of R™ is a barysubset.

Some consequences of the above remarks that, in




addition, illustrate methods of proof will now be given.
THEOREM 1. Let S be a finite subset of a topological
space X. Then S is a barysubset of X.
Proof. Let S be weighted and heavy with no barypoint.
then for each x in S there exists a neighborhood U ol X
having a light intersection with S. But S (\) (U f\S)
XES

which is light. This contradiction establishes the

THEOREM 2. Let U be a barysubset of the space X with
VCU. Then V is a barysubset of X,
Proof. Suppose V is weighted and heavy. Extend this

eighting to U by taking a subset N of U heavy iff NNV is
heavy. This weights U and U is heavy. Let b be a bary-
point of U. If W is any neighborhood of b, then WNU is
heavy., But WNU is weighted as (WNU)NV = WNV. Thus
WAV is heavy and it follows that b is a barypoint of V.
THEOREM 3. The union of two barysubsets of a space X is
a barysubset of X.

Proof. Let Bl,Bq be barysubsets of X with B = B1L132

weighted and heavy. Assume without loss of generality

that B, is heavy. Since each subset of Bl is contained
AL
in B, B.1 is automatically weighted. Let b be a barypoint

of Bl and let W be any neighborhood of b. Then WNB =

(WKWB )LJ(#(:B\, which is heavy. Hence b is a barypoint
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THECREM 4. The continuous image of a barysubset is a bary-

Proof. Let f map the space X continuously into the
space Y, and let B be a barysubset of X with f(B) weighted
and heavy. Weight each subset N of B as f(N)., This

weights B and B is heavy. Let b be a barypoint of B,

Then for each neighborhood U of b, UMB is heavy. Let V
(] 9 W

be a neighborhood of f(b). Due to the continuity of g
;""l s T, = f 7 3 .'l : 1
(V) is a neighborhood of b, Thus £ (V)N B is heavy.

But £(£ - (V)NB)CVN f(B) so that VNf(B) is heavy. Thus
f(b) is a barypoint of f£(B).
THEOREM 5. The product leBQ of a barysubset Bl of a

space XJ and a barysubset B, of a space X, is a bary-

&
subset of the product space XlxXg.
Proof. Let leBg be weighted and heavy. Weight

sach subset U of Bl as UXB,. This weights Bl’ and Bl is

heavy., Let b, be a barypoint of B,. Now define a weight
R J Lk 1

on B, by taking a subset V of B, heavy iff (UxV)(\(leB?)

is heavy for each neighborhood U of bl’ This weights B2,
and B, is heavy. Let b2 be a barypoint of BP‘ Then

(b b?) is a barypoint of BixB,, for let W be any neighbor-

(i

hood of (by,b,). Then W contains a set of the form UxV

where U 1s a neighborhood of bl in Xl and V ig a neighbor-




>
WOV (B ¥ B,)D (UxV)N(BXB,) = (Ux(VMB,)N(BxB,) which is
heavy. Thus W(\(81XB2) is heavy and the theorem is
established.
Kimber [ibid.] has proved the following extension of
the Tychonoff theorem.

THEOREM 6. If B is a barysubset of the space X@ for each

o in an indexing set A, thon‘y [%m is a barysubset of

| ]x.

kA

C

The above theorems were obtained from basic compact-

: ] o ) \ "
ness theorems by replacing the words compact subset by

W\ 7

the word barysubset.

The following theorems establish the relation between
barysubsets and compactness.
THiOREM 7. A subset Y of a compact space X is a bary-
aubset of X,

Proof. Let Y e weighted with no barypoint. Then

for each x in X there exists an open neighborhood NX of x

having a light intersection with Y., Since X is compact,

a

a finite number of the N_ cover X, say N_. ,N_ , « N 4
X X7 Xy X,

and consecuently Y = (YNN_ YU (NN_ »U(YNN_ ) which
Al X2 Xn

is light.
COROLLARY. A subset Y of a topological space X that is

contained in a compact subset Z of X is a barysubset of

X'
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Proof. 7Y is a barysubset of Z by Theorem 7. If b is
a barypoint of Y, the intersection of a neighborhood U of
b in X with Y is heavy. This is true because UMNZ is a
neighborhood of b in the relative topology for Z and
UNY = (UNZ)NY which is heavy.
THEOREM 8. 1If a topological space X is a barysubset of
iteelf, then X is compact.

Proof. Let <N > be an open cover of X. Weight X by

iff a finite number of the

N( cover B, Since every point x of X is in a light

<7

neighborhood Nu’ £ has no barypoint. Hence X is light.
Combining Theorems 7 and 8 we obtain
THEOREM 9. A topological space X is compact iff X is a
barysubset of X.
The following example demonstrates that the converse
of the corollary to Theorem 7 is false.

Let X be the closed unit disk in R and Y its

interior. Retopologize X by taking a neighborhood of a

point of Y to be any subset of X containing an open disk

in Y containing this point, and a neighborhood of a point x
of X-Y to be any subset of X containing the union of {XZ
with the intersection of Y with a neighborhood of x in Rg.
Recall that a compact subset of a Hausdorff space X is a
closed subset of X (see [2]). Now the set Y is contained

[ ———

in no compact subset of X, for suppose YCZCX with Z

compact. Then Z # X because the open cover E{prY:xeX—Yg

"~ X © ~

of X has no finite subcover. But X is Hausdorff and

o3

= X




o3

S0 that is not closed in X, a contradiction, However,

as will be shown next, Y is a barysubset of X, For Y

~ '3

p) >
being bounded as a subspace of R- is a barysubset of R,
; e 3 : : o :

If a point b of R® ig a barypoint of ¥ in R®, b is alse
e barypoint of ¥ in X since every neighborhood of b in X
contains the intersection of Y with a neighborhood of b
' 2
i Ko,

This example suggests the existence of a general
class ¢i topological spaces X that contain barysubsets

that are contained in no compact subsets of X¢ In the

example given, Y is dense in X in the topology considered,
This suggests the following definition.
DEFINITION. A topological space X is said to be barypact
iff X contains a dense barysubset,

,

An immediate consequence of this definition is that

every compact topological space is

arvypact. The converse
JP )

b
as the example also points out, is false.
The following theorem will be important in the
sections to come.
THEOREM 10. Let f be a continuous real valued function
defined on the barypact space K. Then f is bounded,
Proof. Let S be a dense barysubset of K and take
a subset A of S to light iff f(A) is bounded., This
weights S, Suppose S is heavy and let b be a barypoint
of S, It follows that f is unbounded on every neighbor-

hood of b, a contradiction. Thus 8 is light and £(8) is

bounded. Due to the continuity of £, F(8)c f(S), and

gince S = K, £ is bounded,




THE STONE-WEIERSTRAUSS THEOREM

DEFINITION., A family A of real valued functions defined

—

on a set E is said to be an algebra iff f+g€A, fg€A, and
cféA for all feA, g€A, and all real constants c,
THEOREM 11. Let C(K) denote the algebra of all continuous
real valued functions defined on the barypact space K, Then
C(K) becomes a complete metric space when distance is defined
by the rule: d4(f,g) = sup([f(x)mg(x)l) for f£,g€C(K).
Xe K

The proof of the above theorem under the hypothesis
that K is compact is readily available (see for example [4]),
The role compactness plays in the proof is only to insure the
boundedness of the members of C(K). Consequently, due to
Theorem 10, the proof under the hypothesis that K is barypact
I8 no dafferente

A consequence of Theorem 11 is that a sequence of
functions <f > of C(K) converges to £ in C(K) iff £ >
converges uniformly to f on K. It follows that <fn> is a
Cauchy sequence in C(X) iff <fﬁ> converges oniformly on K.
Also, observe that a member f of C(K) belongs to the closure

of a subset A of C(K) iff there is a sequence of members of

A converging uniformly to £ on K,

DEFINITION, TILet A be a family of real valued functions
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defined on a set . Then A is said to separate points on

E iff to each pair X 9%, of distinct points of E and
. o
each pair 87485 of real numbers there corresponds feA

such that f(xl) = a, and f(x,) = 85

An example of an algebra which separates points is
, : : f : . 1 ;
the set of all polynomials in one varisble on R™, for if

JE . , R ok .
X1 4%, are distinct points of R™ and aq,8, are any real

numbers, the polynomial P(x) = aq(X”Al)<X -Xq )—l

) ol qri 4 =
a. (x=x,)(x,-x,) = has the property that P(Xl) = a, and
P(x,) = ar. An example of an algebra which does not

separate points is the set of all even polynomials on
[-1,1], since f(-x) = f(x) for every even function f,

The goal of this section is the following extension
of the Stone-Weierstrauss theorem.,

THeORER 12, Let C(K) be as in Theorem 1ll., Then a
subalgebra A of C(X) which separates points on K is
dense in C(K).

This theorem states that every member of C(K) is
the uniform limit of a sequence of functions of A or
equivalently that every member of C(K) can be uniformly
approximated arbitrarily closely by a member of A,
Before proceeding with the proof, the following lemma
(see [1]) will be needed.

LEMMA 1. ZLet e>0 and a<¢<p be any real interval. Then

there exists a polynomial P(¢) in the real variable ¢

alige (0) = 0 and such that [[¢| - P(¢)|< e for a<P<Po,
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Proof, If the point =0 does not belong to the

interval [a,B] it will suffice to take P(¢) ¢ ac-

cording as o>0,B>0, or a<0,B<0. Thus there is no loss

C

of generality in considering only intervals of the form

oo}

[-t,t], since [a,B] can be included in an interval of

this form. Furthermore, it is sufficient to confine our
attention to the interval [-1,1] since if Q(n), Q(0)=0,

is a polynomial such that |In] - Q(n>l< e/t for -1<n<l and
>0, then P(¢)=1Q(¢/T) is a polynomial such that P(0)=0 and
‘lw‘—I’(@)

define a sequence of constants recursively as follows:

Tomt e el A5 =1 /2 o T o 2( . » o
Let ay=1/2, ay,=1/ iJammn l/,xmlmk_l+a2ak_2+ +ak~la1>'
m+n=Xk

)

< e for -1<p<t. Having made this observation,

Then uy>0 for all k because a,>0 and assuming an>O for

all n<i, szzijuiajz l/dQ%“&ﬂwl+"+aM—lal> > 0, Set

i+j=M

=
it JQ? o, + Then nr<1 for all n because nl<l and nn<l
1 ¢ 1

=SIE 1

L\::l - >

- n+1l n+l n+l
implies m 4 = E O, = 0 + EJ a, = 1/2 + 1/2 g E 00

r=1 reg r=2 i+Jj=r
n.
< 1/2 + 1/2)> o.o. = 1/2 + l/2(nﬂ2) = 1/2(Y + % 2) <1/2(2)
- = il s n n
-L 9 J = 1 o]

1
9_._‘
-

Thus the positive term serieSE o, Converges to a

n=1

sum & satisfying the inequality 6<1, and it followe that the
o0

il
: ? n e . :
series g ¢~ converges uniformly for -1<e<l to a

continuous function &6(¢). Consider the following idenity:




L

42N+
I<i)en

r—l'w--\- ¢ 9
< 1 g i
5N sd—|e) o 3 %%@

=l k=2 143?:h+t
EYRYYy

2

|43 2 he|
1<i,ysn

rm 18 estimated as follows:




1e

1<ii<h 1€1,<N 1si,)¢h
) \ . [}
» J Py '+J < ’ O(‘ 2
R @ < citats | @] < ok
| _’____T.___\ R
442 N4 14+32 N+ I+ )2 N4l

|
8
&

i
\/ g
L 1
\/
S8 i

B

%

A

|43 > h+|

o0

YT”'”W

o 2;g> Ay
il

As n—»>, this last term approaches zero and passage to
the limit in the above idenity yields 6(¢)(2-8(¢p))=0¢.
For each ¢ such that -1<¢<l we have 6(¢) = 1 % Vi-9p, Now

6(1)=1 independently of the choice of sign and hence
o0

§ o = (1) = 1. BSince o is positive, it follows that
k=1

o(p) < 6([@]) < 8Ll) =1 fop [®[§ 1 and hence the lower

sign is the proper choice. Thus the power series for

Vi-p is given by Vi-p = 1 - &(¢) = 1 —? ak®k= ? ak(lw@k)
=1, k=1

the series being uniformly convergent for -1l<¢<l. If

-1<¢<1, then Ogl—@QSl and hence ¢ = V¢2 = VI—Zl—wg) =
% ak(l—(lmwﬁ)K). As noted above, the series is uniformly
k=1

general term is a polynomial which

convergent and its
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vanishes for ¢=0. Hence a suitable one of its partial
sums will serve as the required polynomial P(¢).

The proof of Theorem 12 will now proceed with the
following lemmas.
LEMMA 2., If feA, then le'K.

Proof. =Since K is barypact, f is bounded. Assuming
that agf(x)gp for each x in K, by the preceeding lemma
there exists for each n a polynomial Pn(@) such that

l'wl" P, (o)

< 1/n for a<e<p and Pq(O) = @y It is elear
that Pp(r)EA and tbat‘lf(xﬂ - Pn(f(x)) < 1/n for each x

in K, Thus lf] is the uniform limit of a sequence of
functions of A and hence belongs to A.
LENIA 3, If geA, then |gl€A.

Proof. For each n, select g €4 such that d(g,,g) <

l/n (here 4 is the metric constructed for C(X) in
Theorem 11). The lemma now follows from the observation
that da( lgnl ,[g]) < a(g,.8), the fact that A =X, and
Lemma 2,

LEMUA 4. If f,g€A, then max(f,g)fA and min(f,g)EA.

Proof. This lemma follows from the relations

]

1/2(f+g + |f-g|)

min(f,g) = 1/2(f+g - |f-g|).

max(f,g)

LEMMA 5. If f,g€A, then max(f,g)¢A and min(f,g)ER.
Proof. This follows from Lemmas % and 4 and the

easily verified observation that A is itself an algebra.

~

LEMMA 6, Given a function f continuous on K, a point x¢K,
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and e>0, there exists a function gYG A suech that gX(X) =

[©)

f(x) and g _(t) > £f(t) - e for each t€K.

Proof. Let S be a dense barysubset of K and call
a subset B of S heavy iff there exists no function gé& A
such that g(x)=f(x) and g(t)>f(t)-e for all t€B, This
weights S because the empty set is light and B,C both

light subsets of S implies there exist functions 818

belonging to A such that gp(x)=f(x), gC(x)zf(X), gB<t)Z
f(t)-e for each t€B, and gC(t)Zf(t)—e for each t€C. De-
fine gBuC:maK<5B?gC)‘ Then gBUCGK by Lemma 5, and gBUC(X)
=f(x), gBUC(t)zf(t)me for each t€BUC. Thus BUC is light,

The remaining portion of the demonstration that S is
weighted is trivial. Proceeding with the proof, suppose
that S is heavy and let b be a barypoint of S, Since Ach
and A separates points, A separates points. Hence there
exists a function héA such that h(x)=f(x) and h(b)=f(b),
Since h is continuous (because the uniform limit of a
sequence of functions of A is continuous), there exists

a neighborhood U of b such that h(t)>f(t)-e for all t€U.
This contradicts the fact that UMS is heavy. Hence the

existence of a function gXQK such that gX(X)zf(X) and

g (t)>f(t)-e for each t€S is established. Since

n

Cfgt: gx(t)zf(t)~§} and the latter is closed in K, K=

§C:%: gx(x)gf(t)*gzand the theorem is established.

T TAPARAA
LRRBUIR LW

~ .
-

R e 5 ¥ Ty SRR s Y U Wal A ) 2 . o] ~ \
Given a function £ continuous on K and e,>C,

m
7
{
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there exists a function h€A such that |h(x)-f(x) £ e
for each xEK.
Proof. Let S be a dense barysubset of K. There

exist closed neighborhoods VX of x such that gv(t)<
2, gy

f(t)+e for each t€V_, where g _ is constructed for each

A

x€K as in Lemma 6., Weight S by taking BCS light iff

1

a finite number of the VY cover B. Suppose S is heavy

and let b be a barypoint of S. Then fo\S is heavy

which is impossible since qu SC:Vp. Thus S is light

so that S = K = injvx%h‘tJVXn' Let h:mln(gxl,....,$xn).

Then h€A and h(t)ff(t)+c for each t€K. But from Lemma 6,
h(t)>f(t)-e for each téK. Thus |h(t)-f(t)|< e for each
teK, as required.

The theorem now follows. For let f6C(K). Then for
each n there exists a function EEEKVsuCh that 'fn(x)—f(xﬂ

< 1/n for all x€K. Thus the sequence <fn> of functions of

A converges uniformly to f on K, whence f€A = A, From

A

this it follows that A = C(K) and the proof is completey
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THE ASCOLI THEOREM

DEFINITION, Let <fn> be a sequence of real valued funce

tions defined on a set E. Then <fr> is said to be point-

wise bounded on E iff there exists a finite real wvalued

function ¢ defined on E such that 'fn(x)'g ¢(x) for each

x€E and all n.

An example of a pointwise bounded sequence is the
sequence <(—l)n(nx)“l> defined on the half open interval
10,1]. Here ¢ is defined by w(x)z(x)'l for each x¢]O,1],
DEFINITION, Let F be a family of functions from a top~-
ological space X to a metric space [Y,d]. Then F is said

to be equicontinuous at the point x€X iff for each e>0

there exists a neighborhood U of x such that d(f(x),f(y))
< e whenever y€U and f€F. The family F is said to be

equicontinuous on X iff F is equicontinuous at each point

of X.

It is clear that each member of an equicontinuous
family is a continuous function.
DEFINITICON, Let e>0. A sequence <an> of real numbers is

salid to be an e-sequence iff |a —am|< e Tor all m.n, &

n

sequence <g > of real valued functions defined on a set
d.

Y is called an e-sequence of functions iff <gn(x)> is an
9L St B

e-sequence for all x€Y.
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The purpose of this section is the following ex-
tension of the Ascoli theorem,
THEOREM 13, Given an equicontinuous pointwise bounded
sequence <fn> of real valued functions defined on the
barypact space X, there exists a uniformly convergent
subsequence.

Proof. Let S be a dense barysubset of X and e>0,
Take ACS to be light iff every subsequence of <fn'K>
contains an e-subsequence., This weights S, for suppose
A,B are light subsets of S. Let <hn> be a subsequence
of <f_ AUB>., Since A is light, there exists a sube-
sequence <g > of <h > such that <g, A> is an e-sub-
sequence. Since B is light, there exists a subsequence
<k > of <h > such that <k, B> is an e-subsequenoce,
Then <k, AUB> is an e-subsequence of <h >, and AUB is
light. Proceeding with the proof, suppose that S is heavy
with b a barypoint of S. Let W be a closed neighborhood
of b such that for all n and all x in W,lfn(x)—fn(b)ls e/%,
Since WN S is heavy, some subsequence <gn> of <fn|W?T§> =
<fn W> contains no e-subsequence. Since <gn(b)> is bound-
ed, there exists a subsequence <hn> of <gn> such that
<hn(b)> is an e/% sequence (extract a convergent sub-
sequence <kn(b)> of <gn(b)>. Then <kn(b)> is a Cauchy
sequence so there exists an index N such that m,n>N imply
k, (0)-k (b)| <e/3. Define h (b) = Xy, (b)), 1if x€W we

have lhn(x>—hm(x>|§lhn(x)-hn(b)l+|hm(b)-hn(bﬂ +lhm(b)-hm(x)\

< 3(e/3) = e, so that <h > is an e-subsequence of <g, >+
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fhis is a contradiction. Hence S is light. Thus we have
that every subsequence of <f_ > contains an e-subsequence

& Ll

for all e>0. The theorem now follows, for let <fl e be
?

a l-subsequence of <f >, let f, o> be a 1/2-subsequence

9

of <f; >, let <f, > be a 1/3-subsequence of <f, n”» and

j')ﬁ by

50 on. The subsequence Bp~ = &, 7 of <L > is a Cauchy
4 1 Il

sequence in C(X), for let e>0 and select k>1/e. Then

N r 1 N = 1 P ~
)< max(l/m,1/n)< e. Thus <g,>

onverges uniformly on X.
o oJ
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THE DINI THEOREM

THEOREM 14 (Dini). Let <fn> be a monotonically increasing
sequence of continuous real valued functions defined on
the barypact space X which converges pointwise to a cont-

inuous function f. Then <fp> converges uniformly to f

Proof. Let S be a dense barysubset of Ly let €20,
and define G = gx: fn(x)mf(x) < ?}. Call a subset A of S
light iff there exists an index N such that Ac.G.. This
defines a weight on 8, for suppose A,B are both light
subsets of S, Then there exists an index M and an index
N such that ACGy and ﬁc:GN. Let K=max(M,N). Since the
sequence <fm~f> is monotonically decreasing, GMC:GK and
Gy<Gg. Thus KTTEc:GK and AUB is light.,
Now suppose that S is heavy and let b be a barypoint of S.
Then each closed neighborhood of b cannot be contained in
any Gn' Since <fn> converges pointwise to f, there exists

an index N=N(b) such that fN(b)nf(b)'< e/3. Due to the

continuity of fN and f, there exists a neighbprhood U of
b such that for all xeU, lfN<X>—f(X)'< e/3 and
[£Ge-£(0) < e/3. Bub |£y(x)-2(0)| < | () =2 ()| +
IfN(b)~f(b)|+

consequently UCG,. Since GN 18 cloged, ﬁc:GN and this

f(X)—f(b)l< 3(e/3) = e for all x€U, and

is a contradiction. Hence S is light. Let §=X=GK. Then
]fK<X)~f(X)'§ e for all x€X. If L> K, then O< |f(x)-f(x)

L4

fK(X)mf(x)lﬁ e for all x€X. Thus £, £ uniformly on X.




L]

L]

Réed
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