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INTRODUCTION AND REVIEW OF LITERATURE 

Many articles, books, papers, and abstracts have been pub­

lished, which describe the analysis and design of experiments. R. A. 

Fisher's (1951) book, The Design of Experiments, is referred to by 

D. J. Finney (1960) as the classic for experimental designs. Some 

of the more outstanding books and publications in this area are those 

by Cochran and Cox (1957), Cox (1958), Davis et al., (1954), Federer 

(1955). Quenouille (1953). and Kempthorne (1952). 

In most of these publications, the underlying model for the 

analysis, the assumptions necessary for the correct inferences, and 

detailed descriptions of the appropriate Analysis of Variance (A. N. 0. V.) 

are clearly and explicitly presented. It is of interest to note, however, 

that the above information is based upon the assumption (although not 

explicitly mentioned) that the size of the samples in an experiment is 

a predetermined fixed quantity. That is, the experimenter, after he 

chooses an appropriate design, will determine the size of the samples 

before the experiment is actually performed. In so doing, he is also 

making the assumption that even though the experiment is repeated, 

the sample sizes will remain the same and will not vary. 

The actual process of the experiment might result in lost or 

destroyed observations, however, making the sample sizes fluctuate 
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or vary considerably from experiment to experiment. This variation is 

an indication of the randomness of the sample sizes. If there could be 

assigned to each possible value of the sample sizes a probability of 

its occurrence, then the sample sizes could be interpreted as random 

variables. This concept leads one to investigate the effects it might 

have on the A. N. 0. V. for experimental designs, or on the numerous 

tests of hypotheses that one commonly performs, or even on the anal­

ysis of missing observations. 

Although much information can be found pertaining to the anal­

ysis and design of experiments when the sam_p;>le size is fixed, as 

indicated earlier, little has been done on this subject when sample 

sizes are considered to be random variables. The Statistical Theory 

and Method Abstracts, which give a review for all of the major statis­

tical journals from 19 59 to 19 65, have been reviewed as most of the 

statistical literature available in the Utah State University Library, 

and relatively little information was found which pertained to this 

problem as is outlined. 

Because of the apparent lack of material on this aspect of the 

analysis of the designs of experiments, this work will be primarily a 

preliminary investigation or inquiry into the effects that the assumption 

of random sample size might have on the tests of hypotheses in experi­

mental designs. Also, since this is a preliminary examination, this 

investigation will be restricted to the simplest of designs: one-way 

classification. 
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The main objective of this work will be to examine the hypoth­

esis that all the treatment means are the same and equal to some un-

known quantity, when we know that the variance is the same for each 

sample, and to determine if the conventional method for making this 

test (the F-test) is applicable when the sample sizes are assumed to 

be random variables. This hypothesis can be tested by using a 

likelihood-ratio test. To do this, a density function or distribution 

has to be found for this ratio, thus permitting us to make probability 

statements about the occurrence of this ratio under the null hypothesis. 

Throughout this development, reference will be made to many 

concepts of which understanding will be essential to the comprehension 

of the methods that have been used. Thus, a frief introduction and 

review will be attempted in the next few pages to prepare the reader 

for the material to follow. It will be assumed that the reader will have 

a knowledge of basic statistical terms, such as: sample, random 

samples, population, experimental unit, treatment, statistic, and 

other common, general expressions. 

One-way Classification 

The one-way classification, or Completely Randomized Design, 

is the most elementary of the experimental designs. It is represented 

symbolically in Tables 1 and 2. In these tables, there are t-treatments 

allotted at random to N' experimental units, yielding N and n. 
1 
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b • h • th • l Y t th o servat1ons tot e 1 treatment, respective y. . . represen s e 
lJ 

.th th 
J observation in the i treatment for each table. 

Table 1. Symbolic representation of data in a one-way classification, 
N observations in i th treatment 

Treatments 
1 2 3 i t 

yll Yzl Y31 yil ytl 

yl2 Yzz Y3z yi2 yt2 

Observations 

y 1 j y 2j y 3j yij y tj 

I 
YIN YzN y3N yiN ytN 

Designs are usually represented by models. A model can be de-

fined or thought of as a mathematical equation involving random variables, 

mathematical variables, and parameters. The distribution of the random 

variables, if it is known, is considered part of the model. A model for 

the one-way classification is given by 

Y,' = u + T' + E '' 
lJ 1 lJ 

where µ is the overall mean of the experiment, 1". is the deviation of 
1 

th 
the i threatment mean (Y. ) from the overall mean {µ), and e.. is 

1. lJ 
th .th 

the deviation of the j observation in the 1 treatment (Y .. ) 
lJ 

from 
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the i th treatment mean (Y. ) and e.. is normally distributed with 
1. lJ 

mean zero and variance, 
2 

(f ' E ~ N(O, 
2 

(f ) . 

E E 

Table 2. Symbolic representation of data in a one-way classification, 
n. observations in /h treatment 

1 

Treatments 
1 2 3 i t 

yll Yzl Y31 
I 

yil ytl I. 
yl2 Yzz Y3z yi2 yt2 I. 

Y13 Yz3 Y33 yi3 Yt3 

Observations 
y lj y 2j y 3j y ... 

lJ ytj 

. 

yln Yzn Y3n yin. ytn 
1 2 3 J 

The specification of this model is not complete because 

nothing has been said about the T. . There are two possibilities: 
1 

(a) the researcher can be concerned only with the t treatments in the 

t 

experiment, in which case one interprets the T. as being a fixed effect 
1 

t 

and that \ T. = 0 , or (b) he can be concerned with a population 
/, 1 

i= 1 

of treatments of which the t th treatment is a random sample. The latter 
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case implies that -r. is a random effect and that -r. ~ NID(O, CT2) . 
1 1 T 

These two possibilities are often expressed by designating the models 

as Model I if -r. is a fixed effect and as Model II if -r. is a 
1 1 

random effect. 

One is interested when working with more than one treatment in 

examining various hypotheses concerning the effects of the treatments 

or about the populations of the treatments. Before actually making the 

necessary tests, certain assumptions must be made about the models. 

These assumptions are outlined very well in Eisenhart' s (1947) papers. 

For the one-way classification they are: (a) the observations Y.. are 
lJ 

normally and independently distributed with mean µ. and equal variances 
1 

2 2 2 
CT (Y .. ~ NID(µ., CT ) ; (b) homoscedasticity; (c) E .":' NID(O, CJ' ) ; and 

lJ 1 lJ E 

(d) whether the model is fixed or random. The description of the tests 

that are made can be given in many ways. One method used is that of 

the likelihood-ratio test. 

Test of Hypotheses 

Testing hypotheses in general involves the setting up of a hypo-

thesis denoted H concerning a phenomenon in nature, and then 
0 

through experimentation and sample evidence accepting or rejecting 

the hypothesis. It is important to note that a general hypothesis can 

never be proved, but can be disproved. When the experimenter takes 

observations and uses them as a basis for rejecting or accepting an 



hypothesis , he is liable to two kinds of error - the Type I error and 

the Type II error. The Type I error is the rejection of a hypothesis 

when it is true. The Type II error is the acceptance of a hypothesis 

when it is false. Ideally, we would like to minimize the possibility 

of making either of these types of errors. One usually decides on the 

7 

Type I error that is permissible and then minimizes the Type II error or 

maximizes the power of the test. The power of the test 8(8) is defined 

as 8(8) = 1-P(II), where P(II) is the probability of the Type II error. 

The power of the test 8(8) is the probability of rejecting the hypo­

thesis when it is false. It is general practice to choose P(I), the 

probability of making the Type I error, in advance, and then to max­

imize 8(8) . A test which gives certain optimum properties is the 

likelihood-ratio test. 

Likelihood-ratio Test 

Define the parameter space S"2 to be the set of all values that 

the parameters e1, e2 , . . . , en can have and let w denote a sub­

space of r.i . If we have a frequency function f (x, e1 , e2 , ... , en) , 

n 
then for a sample of size n, the likelihood function is L = IT 

i= l 

f(xi, e1 , e2 , ... , en). If we want to test the hypothesis H 0 ~(81, e2 , 

... , en ) e w] ] against the alternative hypothesis HA [r (81, 82, ... , 
7 

8n)e r.l - w ] J , we form the ratio 

}.._ 
- L(~) 

I\ 
L (r.l) 
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I\ 
In the ratio above, L(w) is the maximum of the likelihood function in 

the region w with respect to the parameters that are in w , and 

I\ 
L(D) is the maximum of the likelihood function in the region n with 

respect to the parameters e1, e2 , ... , en that are in D . 

11. is such that O :s 11. :s l . We will reject the hypothesis if 

I\ I\ I\ 
L(w) is distant from L(r.l), and accept the hypothesis if L(w) is 

I\ 

close to L(r.l) . We need to fix the Type I error (a) and find a constant 

A so that the rejection region is between O and A. Thus, when the 

hypothesis H is true, the Type I error, P(I), will be 
0 

A 

P(I) = s g(11./H0 ) d11. = a, 

0 

where g(11./H ) is the distribution for the likelihood-ratio. Thus, if 
0 

11. falls in the region O to A, then the hypothesis H is rejected. If 
0 

11. falls in the region A to l , then the hypothesis is accepted. 

The rest of this work will be devoted to: (a) the creation of 

a joint density for the observations when the sample sizes are con­

sidered to be random variables, (b) the development of a likelihood 

function for the joint density, and the maximum likelihood estimators 

for the parameters in w and rt , and (c) making the test 

. = µ. = µ. . ) when the sample variances n 

are assumed to be the same unknown quantity to determine the dis-

tribution of 11. . The important points will be summarized in the 

conclusion. 
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PROCEDURE AND RESULTS 

Joint Density for the Observations 

Consider the simplest of the experimental designs, a one-way 

classification, with t treatments and N experimental units per treat-

ment, as is represented symbolically in Table l. If we assume that there 

is one observation in each experimental unit, the performance of the 

actual experiment might res ult in some of the observations being lost 

or destroyed in some way, thus resulting in fewer experimental units 

per treatment and/or fewer treatments if all experimental units are lost 

in any one treatment. Now, it seems feasible that there could be as-

sociated with each observation a probability of its being present or 

absent after the experiment is performed. In other words, each experi­

mental unit has the possibility of being lost or destroyed. This would 

result in the sample size associated with each treatment to vary. That 

is, it would become a random variable whose range of values would be 

from O to N . 

Y .. 
lJ 

Let us represent this idea symbolically. Note that in Table 1, 

th ,th 
represents the j experimental unit or observation in the 1 

treatment, and that before the experiment is performed there are N 

observations in each treatment. Associate with each Y.. a random 
lJ 

variable X .. , which takes on the possible values O and 1, such 
lJ 

that, if X .. = 0, then Y., is absent or lost, and if X .. = 1, then 
lJ lJ lJ 



Y.. is present in the experiment. Denote the probability that X .. 
lJ lJ 

is one, P(X .. = 1), 
lJ 

by P. and the probability that X.. is zero, 
1 lJ 

P(X .. = 0), by q_ where q1. = l - P. and P. + q, = l 
lJ 1 1 1 1 

Let the 

X .. ' s be independent of one another. By independent is meant the 
lJ 

occurrence of any one of the X .. ' s in no way affects the probability 
lJ 

of the occurrence of the other X .. ' s . It is clear that each X.. has 
lJ lJ 

two possible outcomes, zero and one. Therefore, in any trial, X .. 
lJ 

will be zero or one, and the probability density function for X.. is 
lJ 

f(X .. ) 
l] 

1-X 

qi 
ij 

10 

If we have N trials, then the probability that there will be n. ones 
1 

is 

P(n.) 
1 

n. 
1 

p, 
1 

Now examine an experiment with a total of N' observations, 

N observations per treatment with t groups or treatments. If observa­

tion Y.. is present, then X.. will be one. If observation Y.. is 
lJ lJ lJ 

absent (destroyed), then X.. will be zero. Therefore, the probability 
lJ 

that Y.. is present in the experiment is 
lJ 

P(Y.. is present) = P(X .. = 1) , 
lJ lJ 



and the probability that Y.. is absent (destroyed) is 
lJ 

P(Y.. is destroyed) = P(X .. = 0) . 
lJ lJ 

11 

Note also that the number of observations in the i th treatment, after 

the experiment has been performed, is equal to the number of X .. ' s , 
lJ 

j = 1, 2, 3, ... , N that are equal to one, 
N 

i.e. ' n. = the number of 
1 

th 
observations in k treatment = ~ X.. . Thus, the probability that 

, 1 lJ 
J= 

the number of observations in the ith treatment is n. is given by 
1 

P(n. observations in i th treatment) - ( N) ni 
1 - n. p, 

where O :5 n. :5 N . 
1 

1 1 

N-n 
i 

As was mentioned in the introduction, one of the assumptions 

associated with the one-way classification is that the observations 

Y.. are independent normally distributed random variables with mean 
lJ 

d . 2 ( 2) µ 1. an variances er , Y,. ~ NID µ. , er . 

Y .. is 
lJ 

f (Y .. ) 
lJ 

= 

lJ 1 

l 0 

The density function for 

oo < Y .. < oo • 
lJ 

otherwise 

(1) 
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With the same assumption holding for each Y .. , and the added 
lJ 

association of X.. with Y , the proposed distribution for the observa-
lJ ij 

tions will now be conditional on X .. 
lJ 

and will be given by 

f (Y .. /X .. ) = 
lJ lJ 

l 

C 1 2 )1 exp [---X-=i.,,._j _(_Y=--i ic.....-_µ..::.)_\ 
2rr~ 2~ 2 

for -oo < Y < oo given 
ij 

0 

l 

0 

that X .. = l 
lJ 

for - oo<Y < oogiventhat X .. = 0 
ij lJ 

for Y - destroyed given that X .. = 0 
lJ 

for Y - destroyed given that X .. = l 
lJ 

(2) 

In order to investigate (2) to see if it is a density function, it 

will be necessary to examine the sample description space associated 

with (2) . A sample description space S is defined as the set of all 

possible outcomes of an experiment. Therefore, the sample description 

space for (2) is 

S = {Yij I Yij is any real number or Yij does not exist} 

That is, S is composed of the set of all positive or negative numbers, 

and those points where Y.. does not exist. S can be divided into two 
lJ 

events. The event that Y .. exists and the event that Y .. does not exist. 
lJ lJ 

In symbolic notation, 



s = {E1 UE2 } , where 

El = {Y., I Y .. is any real number} 
lJ lJ 

E2 = {Y .. Y .. does not exist} . 
lJ lJ 

A density must satisfy these two rules: 

i) f(Q)~ 0 

ii) sf (Q) dQ = l . 

s 

and 

It is obvious that rule i) is satisfied by our density, for 

f(Y . .IX .. ) is always equal to or greater than zero when Y .. is or is 
lJ lJ lJ 

not present, because f(Y . ./X .. ) is the normal distribution if Y.. is 
lJ lJ lJ 

present given that X .. = l and f(Y . ./X .. ) is equal to one when Y .. 
lJ lJ lJ lJ 

is absent given that X .. = 0 , both of which are greater than zero. 
lJ 

Also, f(Y . ./X .. ) = 0 , when Y .. is present given that X .. = 0, and 
lJ lJ lJ lJ 

when Y .. is absent given that X .. = 1. (2) also satisfies rule ii), 
1) lJ 

since 

since 

C' f (Y .. /X .. )dY .. = 
. ) lJ lJ lJ 

s 
r f (Y . ./X .. )dY .. + 

.) lJ lJ lJ 

El 

{' f (Y . ./X .. )dY .. 
.) lJ lJ lJ 

E2 

When X .. = 0 or X .. = l , (3) equals one. This is obvious 
lJ lJ 

13 

(3) 



) , f(Y .. /X .. = 0) dY .. + \ f (Y . ./X .. = 0) dY .. = 1 
' , lJ lJ 1) , lJ 1) lJ 

El E2 

and 

\ f(Y . ./X .. = 1) dY .. + \' f (Y .. /X .. = l)dY = 1 ' 
. lJ lJ lJ , lJ lJ lJ 

El E2 

for 

l f(Y .. /X .. = 0) dY .. = l f(Y .. /X .. = 1) dY .. = 0 
. ) lJ lJ lJ . ) lJ lJ lJ 

and 

(' f (Y .. /X .. = 1) dY .. = (' f (Y .. /X .. = 0) dY .. = 1 . . l lJ lJ lJ . ) lJ lJ lJ 

El E2 

therefore, (3) is always one which implies that (2) is a density 

function. The joint density of Y.. and X.. is 
lJ lJ 

g(Y.. X .. ) = f(Y .. /X .. ) P(X .. ) 
lJ lJ lJ lJ lJ 

That is, 

14 



g(Y .. , X .. ) = 
lJ lJ 

0 

X .. 
__!] 

(~ 2 exp 
2 ,r<J" 

0 
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for - oo < Y .. < oo, X .. = 0 and 0 < p, < l 
lJ lJ 1 

and 0 < q, < l 
1 

for Y destroyed, 

for Y destroyed, 

for -oo< Y .. <oo, X .. = 1, 
lJ lJ 

X .. = 1, 0 < P. < 1 
lJ 1 

X .. = 0, 0 < p, < 1 
lJ 1 

(4) 

The Sample Description Space S for this joint distribution is: 

S = { (Y .. , X .. ) I - 00 <Y .. < 00 , Y .. is destroyed, X .. = 0, l} . 
lJ lJ lJ lJ lJ 

S can be partitioned into four subsets or events: 

s = ( E1 UE2 UE3 UE 4) where 

El = ( (Yij' X .. ) (Y .. is any real number and x .. = 0)) ' lJ lJ lJ 

E2 = ( (Yij' X .. ) (Y .. is any real number and X .. = 1))' lJ lJ lJ 

E3 = ( (Y . . , X .. ) (Y .. does not exist and X .. = 0)) and 
lJ lJ lJ lJ 

E4 = ( (Y .. , \}I (Y .. does not exist and X .. = 1) )· lJ lJ lJ 
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It is obvious from (4) that f (Y .. , X .. ) 2::: 0 and therefore, rule 
lJ lJ 

i) is satisfied. Rule ii) will also be satisfied, since, 

l l 

s l✓ q(Y .. , X .. )dY .. = s ), f(Y .. /X .. ) P(X .. )dY .. 
lJ lJ lJ L.J lJ lJ lJ lJ 

s X .. =0 s X .. =0 
lJ lJ 

= s (f(Y .. /X .. = 0) • q, + f(Y .. /X .. = 1) • P.) dY .. 
lJ lJ 1 lJ lJ 1 lJ 

s 

= q . ( ( • f (Y .. IX .. 
1 j lJ lJ 

= 0)dY .. + s f (Y .. /X .. = 
lJ lJ lJ 

0)dY .. ) 
lJ 

El 

+ p, ( r f (Y .. /X .. = 
1 .) lJ lJ 

El 

= q, + P. = l . 
1 1 

E2 

l)dY .. + (, f (Y .. /X .. = l)dY .. ) 
lJ j lJ lJ lJ 

E2 

Therefore, (4) is a density function. 

It can be shown, Parzen (19 60), and Feller (19 5 7), that if A 

and B are independent random variables, then their joint density can 

be obtained by the product of their respective density functions. That 

is, 

f (A, B) = f (A)f (B) 

(5) 
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Since the Y .. ' s, j = 1, 2, ... , N, are independent normally distrib-
1J 

uted random variables, their joint density given the corresponding 

X 's , j = 1, 2, ... , N, is 
i j 

N 
2: N 1/2 X .. 

= IT f(Y .. /X .. ) 
(-2~~2) 

j= l lJ 
= 

j= l lJ lJ 

N 

exp (-I ) 
j= l 

= 0 

The joint density for the Y.. and X .. 
lJ lJ 

or, 

2 
X .. (Y .. - µ.) ) 

lJ lJ 1 
~~- . 

2~2 

for - oo<Y .. < oo given X .. = l , 
lJ lJ 

Y.. destroyed given X .. = 0; 
lJ lJ 

otherwise . 

= l, ... , N , is 

N 
1/2 ~ 

= (- l 2) j= l 
2;r~ 

N-n 
q, 

1 

i 

X .. 
lJ 
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for oo < Y .. < oo, and X,. = l, Y.. destroyed and 
lJ lJ lJ 

X .. = 0 , 0 < p, , q. < l, 0 < n. < N, and O otherwise. 
lJ - 1 1 - - 1 -

(6) 

This is a density function because each density f (Y .. , X .. ) is greater 
lJ lJ 

than or equal to zero for all values of Y.. and X .. , thus, the product 
lJ lJ 

of positive quantities will be positive, and 

SI f(Y .. , X .. )dY .. = 1 . 

S X .. =O 
lJ 

Therefore, 

y .)· 
Sl s2 

N 
= II 

j=l 
y 
S. 

J 

lJ lJ lJ 

l 

y I 
SN Xil= 0 

l 

l f(Y .. , 
lJ 

X .. = 0 
lJ 

and rule ii) is satisfied. 

l l 
N 

I l j~l 
f(Y .. , X .. )dY .. 

lJ lJ lJ 

xiz= o XiN=O 

X .. )dY .. = l ' lJ lJ 

The joint distribution of the Y .. ' s and X .. ' s for all of the t 
lJ lJ 

treatments is given by 

f(Yll, yl2' ••• ' ylN' y21' ••• ' y2N' ••• ' ytN, Xll, ••• ' 

t 
II f(Y. 1, ... , Y.N/X. 1, ... , X.N) 

i-1 1 1 1 1 
= 
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p (Xil, ... ' XiN) 

N 
2 n, -~ 1 

t 
(--¾) 2 

·= l 
Xij (Yij - µ) 

( N) P~i 
N-n. 

1 = n exp qi 
i= l 2o-

2 n. 1 2TT<T 1 

(7) 

for - oo < Y < oo and X .. = l, Y.. destroyed and X .. = 0, 0 < n. < N, 
ij lJ lJ lJ - 1 -

l > p,, q, > 0 , p, + q, = 1, and O otherwise. By the same reason-
- 1 1- 1 1 

ing as that used previously, it can be shown that (7) is also a density 

function. 

Now that we have the joint density function, we are in a position 

tioned in the introduction, we can make the test by the likelihood-ratio 

criterion; however, to do this we need the maximum likelihood estimators 

for the unknown parameters. This, then, will be the next topic 

discussed. 

Maximum Likelihood Estimators 

As was indicated in the introduction, to find the maximum 

likelihood estimators of the unknown parameters, we maximize the 

likelihood functions with respect to the unknown parameters over the 

regions in which these parameters are defined. We, in essence, have 

two regions, w and r2 . 



The Likelihood Function for the Region w 

The subspace w is defined as follows: 

w = {µ' 

Therefore, the likelihood function defined on the region w is 

or 

L(µ, 

t 
I; 

2 = (-2 l 2) i= l L(µ, cr ' p.) 
1 

TT<Y 

t 
TI 

i= l 

N-n 
i 

The natural log of this function gives 

* 2 
L (µ 'cr ' p,) 

0 1 

exp ( l 
j= l 

exp 

t N 2 
- I; ~ X .. (Y .. - µ 0 ) 
' l ' l lJ lJ 1= ]= 

2 
2cr 
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t 

+ ,l [1n (~)+nil n(pi) + (N -ni) 1 n(qi) ] . 

i= 1 

Now, we want to find the estimates of the parameters which will 

• • L(µ 2 ) max1m1ze O , CT , pi . To do this, we need to take the partial 

2 

21 

2 derivatives of L(u.0 , CT , Pi) with respect to the parameters µo, CT ' 

and p. , and by setting these first order derivatives to zero solve 
l 

2 
for µ 0 , CT , 

8 L 

and p, , if the values exist. 
l 

t N 

* 2 ~ .6 
(J" 

X .. (Y .. - µo) 
2 

(µo, ' pi) i= 1 j= l 
1) 1) 

= - 2 (-1) 
8µ0 

Setting this quantity to zero implies that 

t N 
~ .6 X .. Y .. 

I\ i= 1 j= l 
1) 1) 

µo = = y 
t 
.6 n. 

i= l 
1 

t 

* 2 t .6 
8L (µ O' (J" 

' 
p) -I- l i= l 

= n. + 
8CJ" 

2 l 2 
i= l 

(J" 

Setting this quantity to zero implies that 

t N 
t ~ ~ X .. (Y .. 

I 
2 

i= 1 j= 1 
1) 1) 

(J" 

n. + 
1/2 4 

2CJ" 
4 

i= l 
(J" 

2CJ" 
2 

N 
~ 

j= 1 

- 2 
X .. (Y .. -Y ) 

1) 1) " • 

- Y .. )2 

= 0 



This implies that 

t 

i= l = 

2 

N 

j= l 
X .. (Y .. - Y / 

lJ lJ ' ' 

t 
~ 

i= l 
n. 

1 

8 L*(µ , er , p,) 
0 1 

n. N-n. 

8 P. 
1 

= 
1 - + 

pi 

Setting this quantity to zero implies that 

1 

qi 

(-1) 

(N-n.) 
1 

n. - n.P. - p,N + n.P. 
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(l-p,) 
1 1 1 1 1 1 

pi (l - P) 
= 0 . 

1 

This implies that 

n. 
1 

N 

The parameter space (Sl) is defined as the set of all values of 

2 
er , and p., i= 1, 111, t, such that µ. 

1 1 

2 
-=/ µ , u > 0, 

0 
µl, µ2, ... ' ut, 

and l > p. > 0 . 
- 1-

Symbolically, r2 = {µ., P., i= 1, ... , t, 
1 1 

2 
CJ"/µ.-=/µ ' 

2 
er > 0, 0 < p ~ l} 

i 

space Sl is 

1 0 

The likelihood function defined on the parameter 

t 
= TI 

i= l 



exp [ 
l 

or 

exp 

N 
-I: 

·= l 

t 
-I: 

i= l 

X .. (Y .. - µ .) 
lJ lJ 1 

2o-

N 
I; 

j=l 

2 

2 

X .. (Y .. 
lJ lJ 

20-2 

2 l 

}-(~) 
n. 

pi 
1 

t 
I; 

pi) = ( 2~2f=l 

(N-ni) l 
q, 

1 I 
J 

The natural log of this function gives 
t 

-~ 
i= l 

2 

n 
i 

2 
ln( 2rro- ) 

The maximum likelihood estimators are obtained as follows: 

N 
2 

oL* (µl' 
2 

p,) 
~ X .. (Y .. - µ. ) (-1) ... ' flt' CT 

' ·= l lJ lJ 1 
1 

-2 = aµ. 
2o-

2 
1 
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Setting this quantity to zero implies that 

N 

~ X .. Y .. 
lJ lJ 

j= l 
N 
~ 

= Y. 
1 . 

i = 1, 2, ... , t , 

and 

8L*(µ 1, 

j= l 
X .. 

lJ 

... ' µt, 

80-
2 

t N 

t 
2 

P) 
~ n. 0-

' i= l 
1 

= 
2 

/ 2: ~ X .. (Y .. - Y .. - Y. 
lJ lJ lJ 

+ 
i= l j= l 1 . 

2o-
4 

Setting this quantity to zero implies that 

t 
2 

t N 
)2 -

~ n.o- ~ ~ X .. (Y .. - Y. 
i= l 

1 
i= l j= l lJ lJ 1 . 

+ 
2o-

4 
2o-

4 

t N 
)2 -

~ ~ X .. (Y .. -Y. 
i= l j= l 

lJ lJ 1 . A 

0-S1 = 
t 
~ n. 

i= l 
1 

and 

l 
2 

0-

= 0 
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n. 
l 

N 
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Likelihood-ratio 

It was indicated in the introduction that to test the hypothesis 

H0 ( 8E w) against the hypothesis HA (8E S"2 - w) we need to calculate 

the following ratio 

I\ 1\2 
11. = L (9-) = _L_(µ_o_' _a-_w_) ___ _ 

L(S"2) L(~, . _ . ' A ;2) 
·1 I\• S"2 

For our problem, the likelihood-ratio is 

t 
I: n. t N 

i= 1 1/2 ~ ~ X .. (Y .. -Y )2 

( 2:~2) 
exp ( 

i= 1 j= 1 lJ lJ 

) P(nl' n2' ... , nt) 
2~ 2 

w w A = 
t 
~ n. t N 

/ i= 1 1/2 ~ ~ X .. (Y .. - Y. 

(-½:) i= 1 j= 1 
lJ lJ l . 

) P(nl' ... , nt) exp( -
2/\2 2 ,rO"" S"2 a-St 

but in w 

1\2 
a- = 

w t 
~ n 

' 1 i 1= 



and in S1 

t N 
.E ~ X .. (Y .. - Y. / 

A2 = i=l j=l 11 11 1 • 
er S1 t 

~ n. 
1 

i= l 

Substituting equals for equals and cancelling like terms, the 

likelihood-ratio becomes 
t 

7 ~ n. t N 
)2 i= l 

1 

.E ~ X .. (Y .. - Y. 
i= l j = l 

1) l) 1 . 2 

"- = 
t N 

)2 .E ~ X .. (Y .. - y 
i= l j= l 

1) 1) 

It can be shown quite easily that 

t N 

? 
t N 

)2 .E ~ X .. (Y .. - y = ~ ~ X .. (Y .. - Y. 
i= l j= l 

1) 1) 
i= l j= l 

1) 1) 1 . 

t N 
)2 + z:: ~ X .. (Y. -Y 

i= l j= l 
1) 1 . 

hence, by substituting this relationship into the expression above, 

(8) becomes 

26 

(8) 
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t 

\. = 

t N _ 2 
~ ~ X .. (Y .. - Y, ) 

i= 1 , = 1 l] l] 1 • 

t N _ 2 t N 2 
. ~l . ~l X .. (Y .. - y. ) +. ~l . ~l X .. (Y. - y ) 
1= J= l] l] 1. l= ]= l] 1. . . 

.~l n. 
1= 1/2 

(9) 

1 = t N 
~ ~ X .. (Y. - Y / 

i=l j=l l] l. 
1+--=---"-~-__,;;;_------

t N _ 2 
~ ~ X .. (Y .. - Y. ) 

i=l j=l l] l] 1. 

. (1 0) 

Note l 

t N 
)2 V = ~ ~ X .. (Y. -Y 

i= l j= l 
l] 1 . 

2 
0-

is distributed as a Chi-square variate with P. - 1 degrees of freedom, 

where 
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The relationship for P. is obtained by noting that if all the observations 

in any one treatment are missing, then likewise so is the treatment. 

This is represented symbolically in this manner: 

f o if 
.. th 

observation is missing l] 
X = 

Li if 
.. th 

observation is present l] 

0 if at least one observation in .th 
treatment 1 

N is present 
II (1 - X .. ) = 

1) 
j=l l if all observations in .th 

treatment are missing 1 

(11) 

N /o if all observations in .th 
treatment are missing 1 

l - II (1-X .. ) 
lJ 

j= 1 
= 

ll 
if at least one observation is present in .th 

1 

treatment 

n 
N 

II (1 - X .. ) can be represented by 
lJ 

j= 1 
~i (-l)k (:i) , by noting that 

k= 0 

Let 

n 

(X - Yt = I (-l)k (~) xk Yn-k 

k= O 

0 
X = Y = 1, and define 0 = 1 ' then 

N n. n. ,o 
(1 - X .. ) (1 - 1) 

1 
0 

1 

il 
II = = = 

lJ j= l 

This implies that if X = Y = l , then 

if n. > 0 
1 

if n. = 0 
1 

(12) 



hence, 

n. 
1 

n. \ 
(X - Y) 1 = L 

t 

Io 
i= l 

N 
II 

j= l 

k= 0 

(1 - X .. ) 
lJ 

The range for .R. is O to t . 

Note 2 

t N 

u = I I 
i= l j = l 

2 
X .. (Y .. - Y. ) 

lJ lJ 1 . 

= 

t 

is distributed as a Chi-square variate with l (ni - 1) degrees of 

freedom. i= l 

Note 3 

V t 
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m 
U' 
n 

where m = .R. - l and n = I (ni - 1) are the degrees of 

i= l 

freedom associated with the Chi-square variates V and U, respectively,is 

distributed as an F variate with m and n degrees of freedom. This 

relationship is conditional on holding the n's 
i 

constant. 
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Note 4 

The distribution for F , Mood and Graybill (19 63), is given by 

h(F) 

for F > 0 . 

m-2 

F 2 

m+n 

(1 + m F) 2 
n 

Using the information in the above notes, we see that 

t N 
I: I: X .. (Y. -Y 

i= l j= l 
lJ 1 . 

2 
er (P. - 1) 

t N _ 2 
I: I: X .. (Y. . - Y. ) 

lJ lJ 1 . 
i=l i=l 

)2 

(P. - 1) 

t 
I: (n. - 1) 

1 
i= l 

2 t ) 
er ( I: (n. - 1) 

. l 1 1= 

t 
is distributed as an F variate with m = P. - l and n = I: (n. - 1) 

1 
i= l 

degrees of freedom, and therefore (1 O) becomes 

t 
I: n. 

. l 1 1= 

\. = 
l 2 

l + F 

. (13) 
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By a simple transformation, Parzen (19 60), and Mood and Graybill 

(19 63), of variables and letting m = P. - 1, 

t 

Z = ~ n. , and n = 
1 

~ (n. - 1) , we can find the distribution of >-. as follows: 
. 1 1 1= 

Solving for F , gives 

>-. 2/Z = ( 1 ) 
1+12!.F 

n 

>-.2/z (l+mF) = 1 
n 

F = ( >-. - 2/z - 1 ) (n/m) 



h(}...) 

(mn) (22) _l _ 
}... ( (2/2) + 1) 

= C. 

m-2 

[
1-}... 2/2] 2 

C • 2/2 = 
}... 2/2 

m-2 

= C· 
(l-}... 2/2J 2 

2/2 m-2 

(}... 2/2) 
2 

m-2 

1-}... 2/2 

(}... 2/2 ) 

m-2 
2 

(~) 
m-2 

2 

1-}... 2/2 

}...2/2 

m+n 

] 2 

m+n 

[ \ 2/Z] z 
• (}... (2)2+1)) 

m+n 

[}... 2/2] 
2 

-(2/2+1) . }... 

m+n m-2 

32 

1 
}...(2/2+1) 

2/2 [1 - }... 212 ] 
2 

[ \ 2/Z] z 
2 

}... -(2/2 + 1) = C· 

m-2 m+n- m+2 
-22 2 2 

[ \ 2/Zrl = c· 2 /2 [ 1 - }... 2 / 2 ] [}... 2/2] }... 22 



m-2 n+2-2 
2 

[A 2/Z] 
2 

. [). 2/ZrZ/2 = C· 2/Z[l-A 2/Z] 

m-2 n-Z 
2 

[). 2/Z] 2 = C· 2/Z [1 - A 212 ] 

t [ N J where m = P. - 1, n = I: I: X .. - 1 , Z 
i=l j=l lJ 

t n 
= I: 2: X .. 

i= l j= 1 lJ 
and 

C = 
( m~n-2) ! 

(~-2) ! (n2-2) ! 
Making the substitutions mentioned above 

h(A) becomes 

and in terms of n = i 

h(A) 

where O $ A $ 1 . 

N 
..EX .. 

' 1 1) ]= 

P. -3 
2 

33 

(14) 

(1 S) 
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A preliminary investigation of the distribution for >- that has 

just been obtained, reveals that this distribution depends upon the 

values of n., i = 1, 2, ... , t, and is therefore conditional on n., 
1 1 

i=l, 2, ... , t. 

This can be represented as 

0 < >-< l . 

(16) 

The joint dnesity for >- and nl' n2 , ... , nt is 

h(>--., n1, n2 , ... , nt) = h(>--./nl' n2 , ... , nt) • P(n 1, n2 , ... , nt) 

(1 7) 

where 

N-n 
i 



The distribution for >-.. is found by summing (1 7) over all possible 

values for the n.' s, i= 1, 2, ... , t . That is 
1 

N N 
h(>-..) = 2:: ...... 2:: 

n.= 0 n = 0 
1 t 
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(18) 

To simplify the form of this distribution, make the substitution 

W = >-.. 

This implies that 

2/2: n. 
1 

2::n ./2 
w 1 

and >-.. = 

t 
2:: 

Id>-.. 
I= 

i= l 
/ctw 2 

n. 
1 (2::n./2 - 1) 

w 1 

Making the appropriate substitutions, 

i -3 

(1 - W) 2 

Ln - 3 -
[ i j I L 

2 • [ 2 ] [ ni -

[
Ln. - i - 2 - 2::n, • -2-J 

(L:.l), 1 j' 1 2 • 2 • 

_112 (2::n./2 - 1) 
W ·W 1 

i -3 

(1-W) 2 

(19) 



The joint distribution for W and n1, i= 1, ... , t is 

Ln - 3 

( i 2 ) ! 
1-3 

(1 - W) 2 

36 

(20) 

Summing over all possible values of n1, ... , nt will give the 

density for W , i. e. , 

g(W) = 
N 
L 

n = 0 
l 

N 
L 

n =0 
2 

N 
L h(W, n1, ... , nt) 

n = 0 
t 

(2 1) 

This, then gives us a density function for W. To complete the 

test of hypothesis, one needs to find the critical region, 0 - A , such 

that P(0 < W < A) = a, where a is the Type I error probability and is 

usually chosen beforehand. 

It should be pointed out that 



A A N 

P(O < W < A) = s g(W)dW 

0 
= S I 

and 

A 

P(O < 11. < A) = s h(11.)d11. = 
0 

A N 

SI 
0 n = 0 

i 

0 n =O 
i 

N 

I h(11., 

n =O 
t 
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N 

I h(W, n1, ... , nt)dW 

n = 0 
t 

n., 
l 

are not immediately obtainable, and that a test for 11. or W will not be 

obtained from these relationships until a closed expression can be found 

for g(W) and h(11.) or until an approximation can be obtained for them 

which will permit the calculation of the probabilities of (18) and (21). 

Even if we were able to obtain (18) and (21) a test still might be difficult 

to obtain because both (18) and (21) involve the unknown parameters 

p, and q,. The Type I error would vary for the different values of the 
l l 

parameters for a fixed critical region O to A . 

Mood and Graybill. (19 63) indicate a method, however, which 

will permit us to construct a test. They point out that if a test criterion 

11. has a distribution f (11.; 01' 02 , ... , 0n) which involves a set of un-

known parameters 01, 02 , ... , e , 
n 

ff • . ' . /\0 60 su 1c1ent stat1st1cs 1, ... , n , 

I\ I\ I\ 

and these parameters have a set of 

then the joint density for 11. and 

01, 02 , ... , en may be expressed as 
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I\ 
. . . ' 8 • 

I n 
8 ) 
n 

... ' 8 ) 
n 

(2 2) 

A sufficient statistic implies that the estimator contains all the infor­

mation about the true parameter that the sample can give. From (22) one 

notes that the conditional density of "- , given the sufficient statistics, 

will not involve the parameters. Using this conditional distribution, a 

number A(~, ... , Sn) may be found which for every ~, &2 , ... , &n 

is true. 

A 8/\ ) 
82' • • ·' n 

... ' 
I\ 
8 ) d"- = a 
n 

I\ Hence, one may test a hypothesis by using 01, ... , ~ and 
n 

"' The test is actually a conditional test. We can observe &1, ... ' 
I\ 

8n and test "- by the critical region O < "- < A(81, 8n) , using the 

conditional distribution of "- given @1, ... ' @ . 
n 

The important point to be gleaned from the above discussion is 

that if a set of sufficient statistics exist, then 

A(~, 

s 
... ' 

... ' = a 

0 

will give a test for the likelihood criterion "- for arbitrary values of 
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There is a theorem in Mood and Graybill (19 63) that gives a 

criterion for examining a set of statistics for sufficiency. This theorem 

states that if a joint dnesity of a random sample can be factored as 

I\ /':,. 
g(Xl' ••. , Xn; e 1, ... , en) = h(el' ... , en; e1, ... , en) • 

g(X1, ••. , Xn) where g(X1, ... , Xn) does not involve the e1 , then 

~l' ••• , ( is a set of n sufficient statistics. 

Now, the joint densities for A. or W, which were just obtained 

in (17) and (20), respectively, involve the unknown parameters p1, P2 , 

••• , pt . Note that (17) and (20), represented symbolically below, 

are the product of two densities where the first density does not involve 

the parameters p1, ... , pt , 

pi' i= 1, ... , t . 

and the second density involves n. and 
l 

Using the criterion for sufficiency outlined previously, one sees 

that the n. 's, i= 1, ... , t are sufficient statistics for the parameters 
l 

p., i= 1, ... , t Therefore, a test can be performed on A. or W by l 

using 



or 

... ' n ) 
t 
g(X./n 1, ... , nt) dX. = a 

A(n1, ... , nt) 

S g(W/nl' ... , nt) dW = a 

0 
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(2 3) 

(24) 

It is possible to demonstrate this by noting that to test the 

hypothesis H0 (µ1 = µ 2 = ... = µt = µ 0) we need to find a critical 

region for X. or W , such that if any value of X. or W obtained by 

the likelihood-ratio falls in this region, then H will be rejected. If 
0 

the value for X. or W is not in this region then H is accepted. This 
0 

is expressed symbolically as 

A(n.) 

p,)ds* 
1 

= \ S 1 
g(s*/n.)f(n,; p,)ds* L; 1 1 1 

n. 0 
1 



where s* 

= l f (ni; pi) • a = a • 

n. 
1 

represents A or W and 

\ f (n.; p,) = a 
/_,/ 1 1 

n. 
1 

\ f(n.; p,) = 1 . L 1 1 
Hence, to 

n. 
1 

make a test one needs only to find an A(n1, ... , nt) , such that 

... , nt) 

g(s*/nl' ... , nt) ds* = a 

But, g(s*/n 1, ... , nt) is just a beta distribution in terms of W or 

a function of an F variate in terms of A . This, then, implies that 

41 

to test the hypothesis H0 (µ1 = µ 2 = ... = µt = µ 0) when the sample 

variances are the same and when the sample sizes are assumed to be 

random variables, one uses the conventional F - test method. In 

other words the likelihood-ratio will have an F distribution. 

To fully examine this test, however, one should examine the 

power function g(8) . But, in order to be able to do this, it is nec­

essary to actually be able to evaluate (18) . At the moment, this is 

not possible, since the expression is too complex, or seems to be. 

Until an approximate expression can be found or this expression 

simplified to a point that (18) can be evaluated, the power function 

will not be able to be evaluated. This could develop into a thesis in 

and of itself. 
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CONCLUSIONS 

In summary, a density has been found which describes the 

experiment when the sample sizes are assumed to be random variables. 

The likelihood-ratio was used to test the hypothesis H
0 

(µ 1 = µ 2 = ... 

= µt = µo) · 

A mathematical relationship was obtained for the density of the 

likelihood-ratio criterion, A. , which was too complex to obtain the 

necessary probabilities for testing A. . It was shown, however, that 

the conventional F test could be used to make a test for },._ , even 

though it is assumed that the sample sizes are random variables. 

The power function, {3 , was not compared with the known 

power functions for fixed sample sizes due to the complexity of the 

aforementioned density function. 
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