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INTRODUCTION

This thesis describes a computer simulation model for determining
effective spares stock levels for recoverable items at Air Force bases
and depots. The simulation model is based on the following fundamental
inventory theory; whenever a demand arises, it is satisfied from stock
on hand, and the quantity equal to that demand is recorded immediately;
when a demand exceeds stock on hand, the excess demand is backordered
immediately and when item life expires procurement action is initiated
at depot level, The resulting product of the model can be used as a
guide for the optimum distribution of awvailable spares or as a computa-
tion of the necessary spares which will meet a desired percent fill
rate, Outputs from the simulation model will also enable evaluation
of the spares level effects as a result of change in other logistic
parameters,

The purpose of this thesis is two=fold to the extent that it
presents :

(a) A computer simulation model of an Air Force logistic system;
and

(b) A discussion of compound Monte=Carlo demand generation
involving various analytic failure distributions,

The specific nature of the problem to which the simulation model is

applied is described and the model construction and output are discus-

sed in detail,




BACKGROUND AND GENERAL NATURE OF THE PROBLEM

A brief background concerning the techniques used in this paper is
appropriate., Many authors using statistical techniques have considered
logistic operations, including failure, repair, replacement, etc, on
systems consisting largely of identical, independent operating units.
Historically, C. Palm (6), following the methods of A. K. Erlang, (2),
was one of the first to use properties of the exponential distribution
in solving various inventory type problems, Feller (g), popularized and
extended the analysis technique. Several other researchers investiga-
ting failure and fatigue analysis have since provided empirical
mathematical formulation which has proven to be of much practical
analysis worth, Probability density functions identified to these
type failure analyses are the "normal" gaussian, the gamma, weibull,
and the exponential among others., More recently, renewal theory
techniques have been used by many authors in solving related inventory
theory problems.

Since the advent of the large scale high capacity computers, simula-
tion techniques have become a desirable tool for simultaneous consider=-
ation of many time dependent variables. Indeed, simulation represents
an excellent experimental medium to examine the time patterns of
operational events and the consequences of various policies or deci=
sions., Large scale monte-carlo models, and man-machine simulations,
are being developed and utilized by many research organizations
including the military,

In this paper, the general interest is in simulating an Air Force

multi-echelon logistic system wherein effective spares levels are the




major concern, while the interacting effect of the other logistiec
parameters are secondary, To aceomplish this, an appropriate
probability or statistical model representing failure or life data
must be an integral part of the overall simulation model. To succeed,
the simulation model must be able to cope with the following:

a. Components of large logistic systems rarely operate indepen-
dently,

be The source of spares supply in a depot - base complex is
variable,

¢o Item failure characteristics change with respect to life cycle
period,

do Statistical distributions overlay in a given simulation
requiring compound monte-=carlo generation,

The simulation model must be sufficiently complex to account for
these first two problems and the probability models must be precise in
order to handle the remaining two problems., In particular, the
simulation model must be so designed as to allow detailed study of the
effects of varying the input parameters over a wide range with a combi-
nation of spares failure and life probability distributions., As in all

simulations the degree of success is measured by the degree to which

results provided by the model are actually true,




PROBLEM DESCRIPTION

The Air Force depot=base supply process for a recoverable item
operates in the following manner. When an item fails in its course
at an operational base it is removed from its application amd a
serviceable item replaced. The source of the replacement item is
either from the local base supply shelf or requisitioned directly
from an appropriate depot somewhere in the continental United States,
The failed item is examined to determine whether repair is possible
at base level, If so, the item is scheduled into the base repair shop
and following a variable repair cycle timey, it is returned to a
serviceable condition. If base repair is not indicated the item is
either condemned or forwarded to the depot for repair. In the case
of a direct replacement from the depot a variable resupply time is
experienced, Refer to Figure 1, page 5o

Present Air Force policy (1 authorizes a base tg establish a 30=day
stockage objective for most recoverable items, The distribution system
operates on the basis of stock control levels which includes the base
stockage objective plus the number of days of stock required for normal
resupply action,

The objective of this model is to simulate the depot=base activity
on a given quantity of a single type recoverable item thereby observing
the interacting effects of the many variable factors such as increasing,
decreasing, or constant failure rates, mortality rates, repair and resupply

times, repair capacities; and alternative levels of available spares.

Refer to Figure 2, the Model Concept, page 6.
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Figure 1. Model flow
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Figure 2. Model concept




SIMULATION MODEL

Description

The simulation model is constructed to utilize the IBM 7090/9h
Computer with the IBSYS/FORTRAN (L), system language. The operation
to be simulated is described in terms of coded block diagrams. A
complete set of rules govern the use of each block in the simulation
model program. This methodology in addition to driving the computer
provides for study of the logical structure of the operation being
simulated.,

The computer output is so arranged as to furnish information of the
following:

ae The total volume of transactions flowing through all elements
of the operation,

be The distribution of flow times for transactions flowing
through each base repair and depot repair element. The resupply of
serviceable item flow times are also available,

ce. The repair facility utilization.

de The maximum, minimum, and average queue lengths at desired
points in the operation.

Statistical sampling techniques describing failure characteristics
are introduced into the simulation model., Levels of priority are
assigned to each transaction to provide for various dependent events
such as sources of supply points in the logistic simulation. The
interdependence of certain variables in the operation, such as repair
decisions in view of queue lengths and facility availability or

utilization is taken into account and is simulated in the model. A

copy of the computer program is included in the Appendix, page L9.




Qgeration

The program operates by moving transactions from block to block,of
the simulation model in a manner analogous to the flow of spares through
the real operational logistic system. Every movement is an event that
is simulating a real event at a particular point in time, The program
maintains a record of the times at which the events are due to occur,
and it operates by executing the events in their correct time sequence.

Input time parameters are all converted to a single standard time
unit and must be consistent throughout a simulation. Typical input
parameters are shown in Table I, page 25, All input parameters are
entered in the program by a set of machine control cards, The duration
of the simulation is controlled either by total number of transactions
at a pre-designated point in the simulation model or by a pre-designated
number of clock units within the simulation model,

The output product of the simulation run contains the summary
statistics which includes number of transactions for most blocks,
average utilization of facilities, average time per transaction,
average contents, maximum contents, queue lengths, means, variances,
and frequency distributions., A typical output product is included in
the Appendix and a summary of typical simulation results are reflected
in Table II, page 26,

A logistics manager can, with this output, assess the interacting
effects of changes in parameters enabling him finally to make effective

time oriented decisions relative to procurement and positioning of

spares.,




METHODS AND PROCEDURES

Failure Phenomenon

Many items that have been analyzed for simulation demonstrate what
has come to be regarded in the literature as a classical failure
patterns initially decreasing mortality, followed by a period of
essentially constant failure; and ending in a sharp rise in the

incidence of failure, Refer to Figure 3

Chance and Wearout
Early Chance or Random Failures
Failures Failures

WP » o »

Burn=in Useful Life Period Wearout
Reriod i Period

Failure Rate

0 i M M

(Mean Life)
Operating Life
T(age)

Ny

i Life Extended by
Figure 3, Component Failure Rate In=Service Modifica-

tion and Maintenance
This well known "bath tub curve" modified to consider life extension by
an in-service maintenance or modification describes the general compon-
ent time failure phenomenon. Relatively little direct attention has

been given to the high initial failure rate in this model because of

observed low incidence of clear infant mortality.




10

During the chance or random failure period of an item's life, a
poisson process is assumed and has been verified on many items., The
items are assumed to fail, be repaired;, and made available for
another application. The intervals between occurrences in this
poisson process are generated with an exponential distribution function.
During the rapidly increasing failure or wearout period of an item's
life the normak, weibully, gamma, or other probability distribution
function is utilized as a statistical model to describe life length.
During this period items are assumed to wearout and be replaced by
procurement of a new item., The two distinct periods are simulated in
the model by compound generation of failure., Random selections from
the exponential distribution are made sequentially throughout an
item's total 1life to assign the precise failure time. Random selections
from the 1life distributions determine the time at which items will

expire, Refer to Figure 5, page Ll,

Fundamental Analytic Distributions

Since the development and derivation of the fundamental mathematical
expressions are well documented in the texts and the literature, only
definitions and their applications to this simulation problem will be
discussed. However, the development of the less familiar or unique
applications such as the generation of random numbers are presented in
more detail, The formulation depicts the probability or statistical

models used to represent and analyze item failure or life characteristics

within the simulation model.




Poisson
The Poisson probability density function is given by,

x = A

f{X) = s ° ° ° ° ° ° ° ° ° ° ° ° (l)
x!

for x =0, 1, 2 o6 ¢ ¢ o0

where the range of x is infinite; with N the expected

number of failures and x is the random variable, the number of failures,

Exponential
The exponential density function is given by,
e
6
f(t') e e - o L] © L4 ® © ° o @ L ] ® o ° (2)
(,::)
t20

1,00

0637

Operating time = t My

Figure L. Exponential inter-arrival times




12
The exponential probability density function is the function of
failure versus time (t) with (©) equal to the mean-=time-between-

failures, The probability of failure in the interval (o, t) is given

by

- % -3
feedt=lee oooooooo(B)

Normal

Rntmeh o -

The normal probability density function is given by,

-(t-8)°
f(t) gs—mlnmmux! e g /20“2 ° ° ° o (h)

Wheres
t = random time for mortality
€ = mean life

ol
&

L}

standard deviation

Notice that the regular restriction on the random variable (t)
would be = 0¢ < t < # 9o, but in this application less than zero time to
life expiration is not appropriate,

The corresponding cumulatiwve distribution function for the normal is;

= aler
F(t) = — 1 J(e el dt o o o (5)
o”\; 2T r

t
Weibull
The weibull probability density function is given by,
£, 0
8, t8-1 ~=(x)
f(t) - (“ﬁ‘) (‘i‘f) e © © o o e o o o (6)

for t, N, @ >0
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= 0 otherwise

wheres

¢

N

the shape parameter

a scale parameter (also known as the characteristic life)
t = random time for mortality
Some authors reflect (t-=7) in place of t above, where > is a location
parameter corresponding to an assumed time, prior to which no failures
will occur. All application in this model assumes 77 = O, resulting in
no restriction for first mortality. Further, other authors show a

1/@

b
scale parameter « related to N by, N = & % o This form is slight=

ly more cumbersome to work with thus the choice of N as the scale
parameter with no loss of precision.

The moments of the weibull distribution being,

mean =Y 4 N]‘C% +1)

Nj=

2 13
standard deviation = N (k'éé +1) - [ (E + 1)]

The corresponding cumulative distribution function for the weibull is,
35

F(t)=1=eNoooooooooooo.o 0(7)
for t, N, B >0

= 0 otherwise

Gamma

The Gamma probability density function is given by,

o R
f(t) - - t e N ® o ® © & o e @ (8)

[g-vn®




(3 = shape parameter
N = scale parameter

t = random time for mortality

The moments being;
mean = N((3)
2 2
variance 0O = N (@)
The corresponding cumulative distribution function is given by,

t
Gl e
F(t) = f = @ t e N at o o o o (9)
(o}

[@-1) N

t>0

= 0 otherwise

Log Normal
The Log Normal probability density function isj
2 2
1 -(In@ t) /20
f(t) = e e o o ° ® °
oem ¢

. ]

(10)

t>» 0
= 0 otherwise
Wheres
t = random time for mortality
® = mean of the logarithm of (t)
& = standard deviation of the logarithm of (t)
The corresponding cumulative distribution function is given by,
s 2 2
“‘t" e ° o (ll)

o \jﬁ“
t
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Generation of Random Variables

Approach
Within the existing capability of the General Purpose Systems

Simulator II (L), are procedures to generate uniform, exponential and
normal random variables, This paper extends this capability to the
generation of weibull, gamma, and log normal random variables. This
additional coverage enables more precision and a greater range of
application to hardware items,

In general, there are in existence many possible methods of generating
functional variables. The methodology as provided in this thesis is
designed to operate specifically within the General Purpose System
Simulator II capability.

The computer program contains a uniform random number generator used
as the independent variable of any defined function. The value of the
generated uniform random number is a fraction greater than O but less than
l. For practical purposes, these quantities are equally probable, The
methodology for producing functional variables consists of generally
defining a specific probability density function f(t) versus t where
f(t) is the probability of condition t. In order to generate a specific

t
random variable, the cumulative distribution function F(t) = 'f" £(t)dt

0
is evaluated for t in a suitable range, Given the uniform random number,
the corresponding value of the function F(t) is selected and the correspond-
ing value of t provided as the desired random variable., OSpecific examples

of this generation are reflected in the discussion on weibull and gamma

variables. The appearance of an uniform random number between defined

value of t will result in interpolation within the program.
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Weibull

A weibull random variable (W) may be generated perhaps in several
ways depending on the available computer equipment and the desired
precision., One particular advantage to the methodology employed below
is the generality of the function. At any point in the simulation
model a weibull variable from a parent population with a different mean
value may be generated. The generation of weibull variables in this
model is accomplished as follows:

Beginning with the weibull cumulative distribution function equation

(7);
e
F(t) = 1 -e

an appropriate shape parameter (€) is selected,

In this model values of @ = 2 and 3 = 3 were selected as most
representative of actual item failure experience. Notice that a value
of @ = 1 reduces the expression to the exponential,

If N, the characteristic 1life, is set equal to unity, and an all
inclusive range of F(t) defined, t can then be evaluated, An inclusive
range refers to the desired precision which is increased by providing
additional values of F(t) in intervals where the rate of change in the
value of the function is greatest,

An example of the unitized function is shown below with N = 1, and

e =2 5

=t
F(t) =1-¢e

Let F(t), which now has corresponding values of the uniform random

numbers between O and 1, assume a value equal to 0,393L6; now t2 = 0,50,

and t is evaluated equal to 0.7071l. This result is a particular random

value of the weibull unitized function.
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At tke point of application in the simulation model the random value
of t (0,7071) is multiplied by the desired mean life, divided by the
quanti-,yr(}-é + 1), Refer to equation (6) and (7), pages 12 and 13,
Given that mean life isj

& =)+ [ («%4}- 1)N then,

o

— s = N (the characteristic life)
oy (cé'* 1)

Assune that random values are desired from a population with a mean
life equal to 130 hours, Recall that N was unitized in the generation
function and now at point of use must be operated upon. Using the
example uniform random number 0,39346 as above a weibull random variable
is generated as follows:

The corresponding F(t) value to 0,39316 yields a value

of t = 0,7071;

e 130

3 T ) = ) ) e o o B lo o
therefore, W (t) ——r 0,7071 58683 369
[ (“@ + 1)

This quantity 103,9 is a random weibull variable from a population
with a mean value equal to 130 and shape parameter § = 2,

Fifty-nine values of the weibull generating function are given in Table 7
in the Appendix, page L2, This data is presented in the same format as
provided as input to the simulation program. The first value given is
function X followed by its corresponding value function ¥ , Consequently,
the first column is function X values followed by function ¥ repeating
in this manner throughout the display.

Also in the Appendix, pages L3 and Lli, Tables 8 and 9, are two example

outputs of the weibull generating function. A distribution table of 10,

135 (W) variables with a theoretical population mean of 13096 = 2, and
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standard deviation equal to 68, and a second table of 10,002 values with
a mean equal to 130, and @ = 3 with a standard deviation equal to L8,

Poisson Process

If during the operational period of an item's life the probability of
failure is poisson and the failure rate is essentially constant, it is
known as a poisson process., The inter-arrival times of failures during
this period are distributed as an exponential distritution; see Figure L,
page 1l, In most cases of a poisson process simulation can be accomplished
by selecting random values from the exponential distribution to decide
when an item will fail., On some small recoverable items it is operationally
desirable to wat until two or more failures have occured before initiating
maintenance action. In this case the exponential distribution fails to
adequately describe the times between two or more failures., The gamma
distribution is used in this simulation model in those cases where two
or more items are held until maintenance action is taken,

It can be shown that the distribution of inter=arrival times between
two or more items in a poisson process results in a gamma distribution,
Beginning with a summation of the poisson, Wadsworth QZ)D has shown that

the resulting distribution function of time is a gamma distribution.

Iet T be the time that is observed until exactly c¢ failures have
occurred, where ¢ is a fixed positive interger. Now T is a random variable

with a distribution functions:

G(to) = Pr(T < to) = 1 - Pr(T > to)

c=1 X =\t
(htg) e 0
Pr(T>t,) = o =
X=0

which is a summation of the poisson.




It can be shown by mathematical induotion that,

c=1 X =)\t -
0
( )\to) e c=l =2
: b Z 6 dﬂ»
Xl (c=1)3
X=0 tq
Now for a t
02 ° c==1 -Z L S
. /A El
G(t = — A
(to) '“ZmT“cal =g
0

substituting 2 = )ﬁyg for the variable of integration in the integral,

now

t

0 }\© cel =AY
G = y g
(to) ( =5 dy to > O
0

and the probability distribution function of T is,

c-1 = At
(t) b )% b e
g\v — =
0 dy [~ (c)

0Lty £ =0

= 0 otherwise,

It is seen that this is a gamma distribution with shape parameter,
8 = ¢, and N, the characteristic life, equal to 1/)\ ¢
Letting the shape parameter@ = 1 which is equivalent to c=1, the

function reduces to the exponential in the case of an interarrival

time for one item in a poisson processe
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Gamma Variables

Using a similar approach to the gamma distribution as was used with
the weibull, a unitized gamma function can be derived.

Starting with the cumulative distribution function, equation (9),

t >0
This function can only be evaulated by numerical methods unless 8 is
a positive whole numberg in the application in this model @ is limited
to the integral values 2 and 3,

By successive integration by parts the function can be shown to beQ(S)

~ _ 6.1
7 o 3 - - t; ;‘L; 4 Jt 1 t 3 i
F@L) o do = il‘* 5 2 ENB) + ?—g'g {‘ﬁ) 4+ oo0o0 + W(ﬁ) ’7
Setting N equal to 1 and letting the shape parameter 3 = 2 we obtainj

Rt) = 1o [108] o
(t) = = Ll*%j e

and for|d = 3,

1, .2
F(t) = 1~ {1«» t ¢ §U(t>]

Now defining a suitable range of F(t) between O and 1, and evaluating
for t as was done with the weibull distribution, a unitized function
which will provide gamma random variables of any desired mean is provided.

As an example, let,

F(t) assume the uniform random rnumber 0,30097,
F(t) = 1 = i;#tﬁ o - 0,309,

Evaluating for t,

t = 1.1
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Similar to the weibull case, at the point of use in the model, t is
multiplied by the desired mean and divided by @ o Refer to equation
(8) and (9), pages 13 and 1l
Given that the desired mean life is equal to 130, a gamma random

variable is generated as follows:

The mean,
£ = N@; therefore, N = g

Using the example value of F(t) above,
assume a uniform random wvariable was selected equal to

0030097, equated to the unitized (G) F(t) yields, t = 1.1, Therefore,

& S, 130,
@) = T3 = 1.,1(%5) s 71e5,

The value 71,5 is a random gamma variable from a population with a
mean equal to 130 and a shape parameter equal to 2, Seventy-seven values
of the unitized gamma function were computed for shape parameters 2 as
shown in the Appendix, Table 7, page L2, Also shown in the Appendix,
page ll; is an example distribution with 10,000(G) variables with a mean

of 130 and a shape @ = 2,

Compound Generation

A frequently encountered condition on Air Force recoverable items is
a situation where a portion of a set of items is distinctly in the
operational life period where chance failures alone occur, while the
remaining items are approaching mortality and are subject not only to
chance failures but also to wearout. In any given simulation of an
item of this type the model must provide for exponential inter-arrival
times for chance failure which is independent of item age and wearout

failures using one of the mortality distribution functions, i.e., the

normal, gamma, or weibull,




22

The combined effects of random and mortality failures are simulated in
the model by dual Monte-Carlo generation of failure., Random selection
of exponential times till chance failure occurs is assigned to all items
continually for failure after failure throughout any simulation period,
For that subset of items that will enter the wearout periocd random
selection from one of the mortality distribution is assigned and as the
mortality occurs in the simulation the item is removed from the system
and a new item takes its place.

A flow diszgram using the coded blocks of the simulation language is
contained in the Appendix, page L5. This diagram portrays the flow of trans-
action through the simulation model., The diagram reflects only that element
of the program where compound generation is accomplished. It ecan be seen
that in general as transactions approach this element of the program
they are all assigned a time to fail; then are tested to determine to
which subset they belong. If they belong to the wearout subset they
are assigned a time to wearout, The transactions are then held simula-
ting application or use and remain in this state until their respective
times till failure or wearout occurs in the model, They then depart
from their held position which simulétes the occurrence of failure and
are replaced by a transaction obtained from storage which is simulating

a stock level,
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RESULTS

Specific inventory problems have been defined and examined to
demonstrate the use of the simulation model as a technique for decision
making. It is not the intent of this section to provide complete and
conclusive answers to specific inventory problems, but to establish the
fact that simulation runs can be uwsed by operation logistics personnel
to evaluate stock levels and other inventory decision rules. For this
reason, only a small number of items are selected representing perhaps
a narrow range of the total system stock.

Three particular hardware items have been selected as typical examples
of operation of the simulation model. The detailed input parameters
are described and the resulting outputs from the simulation model are
discussed., The items will be referred to as items A; By, and C to
prevent violation of security regulations.

Item A is a relatively high cost, recoverable item, with a high demand
rate. The guestion to be investigated by the model is: Given a set
quantity of spare items; what is the best distribution of these spares
among four operational bases and a support depot? Refer to Table 1,
page 25,

Item B is an extremely high cost, low demand, recoverable item. This
item is typical when compared to the life cycle pattern. It is subject
to random failures, which are capable of being repaired, for a relatively
long period of its life but finally criteria such as metal fatigue,
wear, and other life expectation elements take over to cause mortality.
The objective of the simulation run is to define a set of spare stock
levels at base which will meet a desired percent fill rate, Refer to

Table 3, page 28,

Item C is a medium cost item, with infrequent demands for repair but
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is subject to wearout after about two thousand hours of application,
The objective of the simulation run is to evaluate the effect on spares

levels if the repair is accomplished at the depot or at the bases.,

Refer to Table 5, page 31l.




TABLE 1 25

MODEL PARAMETERS FOR RUN NUMBER 1 f

Spare Item A
Unit Cost $17,326,00
Total Items 17h ‘
Operating (1kk) !
Spares (30) ﬁ
Subject to Wearout (10) ﬂ
Duration of Simulation Period 2000 Days
Number of Bases L |
Transportation Time (Depot to Base)
#1 21,0 Hours _
#2 192 Hours ;
#3 192 Hours f
#L 192 Hours ‘
Repair Facility Flow Time
Depot, 210 2 20
Base #1 120 ¥ 20
#2 120 2 20
#3 120 2 20 i
#l 120 £ 20 i
Stock Levels (Initial Run) i
Depot L [
Base #1 6 @
#2 L
#3 b
#h I
Percent Repair (Base-Depot) 90=10
Repair Capacity
Depot ly Units
Base #1 2 Units
#2 2 Units
#3 2 Units
#l 2 Units
Failure Rates (MTBF) Exponential E
Base #1 75 Hours .
ﬁ? 75 Hours ]
3 100 Hours
#h 125 Hours

Wearout Rates (MT'TW) "Normal™ Mean = 5670 Hours = Std Deviation = 480 Hrs
Procurement Lead Time = Normal = Mean = 1,20 Hours Std Deviation = 240 Hrs
Quantity (Condemnation Before Procurement) 6




TABLE 2 26

SIMULATION RESULTS
2,000 Days Simulation

ITEM A
RUN #1
1st Result
% Time
Stock Spares Nr of MTBF
Level Available Failures Hours
DEPOT L 100,0 0
BASE #1 6 98,5 653 70.5
#2 L 95,0 572 TT0l
73 L 9Lio0 Lk 98.8
#lu L 90,5 3147 12250
Spares Available Avg Max
Total Repair Awaiting
Min Avg Max Repairs Time Hr Repair
DEPOT 2 317 8 188 21065 )
BASE #1 0 D5.92 .12 589 119.7 10
#Z 0 3.5 7 51, 118.8
#3 0 3.19 6 L03 L9 3

#L 0 2,30 5 31k 119.6
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TABLE 2 (continued)

SIMULATION RESULTS
2,000 Days Simulation

ITEM A
RUN #1
2nd Result
% Time
Stock Spares Nr of MIBF
Level Available Failures Hours
DEPOT L 100,0 0
BASE #1 5 96,1 62 7362
#2 L 9501 580 7601
#3 L L5 L38 1012
#l 5 o9 3k2 12L409
Spares Available Avg Max
Total Repair Awaiting
Min Avg Max Repairs Time Hr Repair
DEPOT 1 299 @& 193 23,1 2
BASE #1 0 L.31 8 590 118,66 8
#2 0 3.53 6 505 120,2 N
#3 0 3.6 6 L21 122,1 L
#l 0 3,30 7 331 119,9 5
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MODEL PARAMETERS FOR RUN NUMBER 2

Spare Item B
Unit Cost $143,260,00
Total Items 310 and 388
Operating 288
Spares Variable (22 and 100)
Subject to Wearout
Duration of Simulation Period 5 Years
Number of Bases L
Transportation Time (Depot to Base)
#1 288 Hours
#2 26l Hours
#3 26l; Hours
#l 26l; Hours
Repair Facility Flow Time
Depot 480 £ 1,8
Base #1 600 £ 120
#2 600 % 120
#3 600 £ 120
#l 600 % 120
Stock Levels & 2 3
Depot |l
Base #1 3 5
#2 3.5
#3 3 5
#h i L
Percent Repair (Base=Depot) 80-20
Repair Capacity
Depot 6 Units
Base #1 2 Units
#2 2 Units
#3 2 Units
#l 2 Units
Failure Rates (MTBF) Exponential
Base #1 225
#2 225
#3 225
#li 225
Wearout Rates (MTTW) "Gamma" Mean = 2525 Hours, Shape Parameter @ = 2
Procurement Lead Time 2160 = 250

Quantity (Condemnation Before Procurement) 1




TABLE 29

SIMULATION RESULTS
2,000 Days Simulation

ITEM B
RUN #2
1st Result
% Time
Stock Spares Nr of MTBF
Level Available Failures Hours
DEPOT N 100,0 0
BASE #1 3 6607 21486 221
#2 3 6ol 290 218
#3 5! 2.1 113 227
#L 3 2ol 117 229
Spares Available Avg Max
Total Repair Awaiting
Min Avg Max Repairs Time Hr Repair
DEPOT 0 1,10 L L5 183 2L
BASE #1 0 0 3 50 592 3L
#2 0 0 ! 38 591 29
#3 0 @ 3 36 60L 28
#h 0 0 3 32 589 27
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TABIE ; (continued)

SIMULATION RESULTS
2,000 Days Simulation

ITEM B
RUN #2
2nd Result
% Time
Stock Spares Nr of MTBF
Level Available Failures Hours
DEPOT 1 8502 0
BASE #1 5 91,2 2675 226
#2 5 9003 2542 228
#3 5 88,3 2371 221
#ly 5 90,5 2531 218
Spares Available Avg Max
Total Repair Awaiting
DEPOT 0 O.,7 2 38 L86,1 23
BASE #1 g . 23 6 58 59309 25
#2 0 2el B 59 602.4 2L -
#3 g 267 62 598,3 22
#l 0 2,0 5 63 600,1 2l




TABLE 5 31

MODEL PARAMETERS FOR RUN NUMBER 3

Spare Item C
Unit Cost $L,500.00
Total Items 775 675
Operating 550
Spares 225
Subject to Wearout 675
Duration of Simulation Period 2 Years
Number of Bases Ly
Transportation Time (Depot to Base)
#1 21,0 Hours
#2 192 Hours
#3 192 Hours
#L 192 Hours
Repair Facility Flow Time
Depot 480 £ 100 180 ¥ 100
Base #1 520 % 80 0
#2 520 £ 80 0
#3 520 ¥ 80 0
#l 520 £ 80 0
Stock Levels
Depot 10
Base #1 2
#2 2
#3 2
#L 2
Percent Repair (Base=Depot)
Repair Capacity 89 - 20 0 - 100
Depot 5 Units 10 Units
Base #1 2 Units 0 Units
#2 2 Units 0 Units
#3 2 Units 0 Units
#b 2 Units 0 Units
Failure Rates (MTBF) Exponential
Base #1 596
#2 596
#3 596
#l 596
Wearout Rates (MTTW) "Weibull® Mean = 2000 = & = 3
Procurement Lead Time 1000t 150

Quantity (Condemnation Before Procurement) 5




TABIE 6 32

SIMULATION RESULTS
280 Days Simulation

ITEM C
RUN #3
1st Result
% Time
Stock Spares Nr of MTBF
Level Available Failures Hours
DEPOT 10 L0
BASE #1 2 88,0 1008 L20
#2 2 5500 621 5%
#3 2 6,0 232 582
#l 2 5.0 210 578
Spares Available Avg Max
Total Repair Awaiting
Min Avg Max Repairs Time Hr Repair
DEPOT 0 1.2 © 229 L03 29
BASE #1 0 0,5 2 226 507 22
#2 0 0,1 2 227 L92 15
#3 R S 228 L75 5

# 0 0.3 2 227 L93 5




TABLE 6 (continued) 33

SIMULATION RESULTS
280 Days Simulation

ITEM C

RUN #3

2nd Result

% Time
Stock Spares Nr of MIBF
Level Available Failures Hours
DEPOT 10 93 e e
BASE #1 6 95 1121 415
#2 6 Sy 1085 26
#3 6 92 1112 h12
#l 6 96 1093 L26
Spares Available Avg Max
Total Repair Awaiting
Min Avg Max Repairs Time Hr _Repair
DEPOT 0 10 32440 1182 231
BASE #1 0} 8
#2 0 ‘i
#3 0

o O

#h 0
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The results of two separate operations of the model are reflected for
each of the items A, B, and C. Refer to Tables 2, 3, and L for a
summary of the simulation results.

It can be seen that for item A, spare stock should be distributed as
finally shown in the second result to achieve approximately a 95%
availability of spares over all bases. Outstanding in the first result
is the fact that only 90% availability of spares occurred at Base #l.
Further, it is noteworthy at Base #l that spares reached a zero level,
and also fluctuated to a maximum of 12 units at one point in time in
the simulation. This fact demonstrates the occurrence of a wide
variability of available spares. However, the system still requires a
spares stock position of six units to maintain a high level of fill rate

over a long period of time,

The results for item B shows in the second operation of the model that
an additional 78 spare items are required and that a spares level
increases from three to five units provides for an approximate overall
1111 rate of 90%. Notice the first results which included 22 total
spares and stock level of three spares for each base, indicated
extremely low fill rates, 66% for Base #1, 6.1% for Base #2, 2.1% for
Base #3, and 2.1% for Base #l. The large quantity of units awaiting
repair suggest that improvement irm 7+ -ir times could result iu less
total sparé requirements. The decision to increase capability of repair
woulg r?quire further analysis comparing the cost of increased spares
with the cost of increased repair facilities,

The reéuits for item C indicate that with a base repair capability and

a total of 125 spares in the system a low unsatisfactory percent of spares

availability occurs. The second result reflects that by increasing to a
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large quantity of 225 spares and further utilizing only depot repair
capability near 95% availability of years is possible, However, the
large queue of 231 units awaiting repair suggest that the total spares
requirement could be reduced significantly if improvement in depot
repair time could be achieved, Subsequent runs of the model would

further evaluate this condition and establish the proper ratio for a

balanced condition.
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DISCUSSION

The ever increasing complexity of military operations due to rapidly
changing technology under the constraints of limited resources has
forced managers to look for new methods by which more alternatives can
be considered in making logistics decisions.‘ Some of the recent
techniques of logistics evaluation has been the construction of mathe-
matical models to represent some elements of a real operating situation.
A computer manipulation of these models is known as simulation. It
enables the user to compress time and examine the effects of changes in
variables incorporated in the model over simulated time. In this thesis
one type of simulation was examined in an attempt to establish this
method of evaluation as a useful tool for operating managers.

Items selected as samples to test the simulation model are high cost,
high activity items, wherein considerable dollar investments are
necessarily involved in any policy decision, Precision in simulating
the true environmental effects of these items becomes absolutely
necessary and the precise statistical models utilized to simulate fail-
ure and wearout are obviously an integral part of the model, As a
result of analyzing the output from this simulation model it is conclud-
ed that an inventory manager could see the impact in terms of percent
of time spares are available, percent of time stockout occurs, the
minimum and maximum quantities available, the effects of repair times
and capacities, when he applies the various decision rules.

The expanded use of this modelling technique has the potential to
give managers a clearer understanding of the alternative courses of

action or policies in complex problem situations involving risk and

uncertainity where analytical methods cannot be used.
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SUMMARY

This paper has presented a simulation model with capability to
consider both random and mortality failures for application to the
decision making process by managers of logistics functions., The results
suggest that computer simulation is a tool for managers that is avail-
able for perhaps a wide range of logistics problems where analytical
solutions cannot be formed in a reasonable timey, and where it is
desirable to test decision rules prior to deployment., Since this paper
only covered an inventory use of computer simulation in logistics
management an examination of other forms of simulation and other
problems may establish a basis where these techniques would prove
profitable to many types logistics management problems.

An obstacle that is limiting the use of simulation is now perhaps
being overcome, This obstacle is the substantial time, eost, and
effort needed to develop the statistical models and prepare the compu-
ter programs. This paper presented a model programmed in General
Purpose Systems Simulation II (GPSS II) language. There are now new
programming languages being developed to aid this process, i.e.,
SIMSCRIPT, SIMPACT, and DYNAMO,

Development of simulation should proceed within an organized frame-
work of construction or within a master plan to permit later integra-
tion of subsystems into a higher order system simulation. The system
must be simulated with as many interrelationships as exists in the
real operational world., If these techniques can reduce the quantity of
an item stocked or eliminate stocking of an item; then the dollar

savings realized would more than offset the increased cost of applying

more intensive and improved inventory decision techniques,.
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It is recommended that before a decision is made to adjust the

stock levels certain costs must also be considered. For example,
consideration must be given to the possibilities of deferring procure-
ment action, calculation of the risk of a stockout versus holding costs,
expected procurement lead time, expected life durationy, and equipment
cost versus cost of repair. As a result of these additional cost
considerations a more economic inventory level of high cost items will

result,
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TABLE 7

GENERATING FUNCTIONS

12 FUNCTION RN1 C59 WEIBULL B 3
0 0 ,00099,10000,00199.12599,003991587).00598,18171,00797.20000
.00896,20800,00991;,215l)1,01877 . 36840, 09516, 1161415.13929,.53132,18126. 58480
022119,62996.25918,66914329531, 7047232967« 76380436237 « 766304 393146, 79370
«11230L,81932,15118,81343.47795.86623.50341,88790.52763.90856,55067,92831
«57258,91726,59342,9651,8.61325,9830) 632121 ,0000,650061 ,0163,667121,0322
«683361,0,476,698811.0626.7131491,0772.727461.,0913,740751,1052,7531,01.1186
0765421,1318,776861,1L47.798101.1696,817311,193L.834701,216L.850,31.2385
+861166142599,8775111.2805.889191,3005,89971143200,91791143572.9327916392L
«9UL971,1260,950211 ., 14422 ,969801,5182,981681,587)1.988891,6509.993261, 7099
«997521,8171,999081,9129,999662 ,0000,999872,0800,999952 . 15411

13 FUNCTION RN1 C59 WEIBULL B2
0) 0 400099,03162,00199,04472.00399,0632l,00598,077L5.00797.089];
» 00896, 091,87 , 00991, , 10000, 044877 .22360,09516, 31622 ,13929.38729.,18126. 14721
¢22119,50000,25918,54772429531.59160. 32967 .63215.36237 .67082.39346.,70710
1230L, 76161115118, 77459, 47795 .80622,503)41 8366652763 486602 55067 . 89142
«57258492195,593112,91:868,61325,97L67 4632121 ,0000,650061, 02117667121, 0488
.683361,072L.698811,095L67131491.1130,727461 1102, 7075141619, 753L401,1832
«7651421,2042,776861,2217.798101,26L9,.817311,3038,83L701,.3416.8501,31,378L
« 861661141142 ,877541. 14491 .889191,1:1832,899711651666917911.5811,932791,6L32
«9LN971.7029,.950211,7321.969801,8708,981682,0000,988892,1213,993262.2361
0997522 ,41195,999082,61157 . 999662 ¢8281;,999873,0000, 999953 ,1623

JOB GAMMA ANALYSIS

22  FUNCTION RN1, C77 GAMMA B 2 X 100
0 0 .00005 1,0 ,00121 5,0 ,0046810,0 .0175220.0 .0369430,0
«06155),0,0 ,0902150,0 .1057355,0 ,1219060,0 ,1386265,0 .1557970,0
¢1733575,0 ,1912180,0 ,2092985,0 ,2275290.,0 ,2642,,100,0 ,30097110,0
«33738120,0 ,37318130,0 .1,0816140,0 .L4217150,0 L7506160,0 50676170,0
«53716180,0 ,56625190,0 459398200,0 ,62037210,0 .64544220.,0 .6691,230,0
«691552,0,0 ,71272250,0 ,73263260,0 ,75132270.,0 ,76892280,0 ,785442290,0
.80084300,0 .81529310.0 ,82881320,0 .8,4142330,0 ,85317340.0 .86410350,0
.87433360,0 ,88382370,0 ,89262380,0 ,90082390,0 .908,0400,0 ,91549)10,0
.92200)20.0 ,92808430,0 .93374LL0.0 .93889450,0 .94372460,0 .94813L70.,0
« 95227118040 +95605490,0 ¢95956500,0 962795100 ,96578520,0 .96856530,0
«97107540.0 .973412550.0 .97558560,0 ,97756570,0 ,97939580,0 ,98109590,0
.982611600,0 ,98601625,0 ,98875650.0 .99093675,0 .99272700.0 ,99532750,0
«996911800,0 ,99810850,0 .99880900,0 ,99926950,0 0999451000,0

L2
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TABLE 8

OUTPUT

WEIBULL GENERATING FUNCTION

ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION

10135 129,958 68.938
UPPER OBSERVED PER CENT CUMULATIVE
LIMIT FREQUENCY OF TOTAL PERCENTAGE
O 0 [ ] m L ] O
10 65 6L o6
20 183 1.81 2el1
30 226 2423 bo7
4O 333 3029 8,0
50 369 3,60 11,6
60 N 4058 16,2
70 496 L4089 21.1
80 509 5002 26.1
90 597 5089 32,0
100 589 5.81 37.8
110 588 5.80 L3.6
120 569 5,61 L9e2
130 563 5056 S8
140 528 5621 60,0
150 520 4063 65.1
160 L69 L.63 69,7
’ 170 th )4 o 05 73 ° 8
180 407 L4+ 02 778
190 358 3053 81.3
200 300 2,96 8Li63
210 254 2651 86,8
220 235 2632 89,1
230 209 2,06 91,2
2Lo 187 1.85 93.0
250 15L 1.52 9.5
260 101 1,00 95,5
270 96 095 96,5
280 4 016 9702
290 6L 63 9709
300 51 050 98,4

OVERFLOW 164 1,62 100,0




TABLE 9

OUTPUT

WEIBULL GENERATING FUNCTION

ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION

10002 : 131,680 48,148
UPPER OBSERVED PER CENT CUMULATIVE
LIMIT FREQUENCY OF TOTAL PERCENTAGE
0 0 .00 o0
10 11 5 i ol
20 2L 2L o3
30 62 062 1.0
L0 163 1.63 246
50 165 1,65 Lo2
60. 269 2,69 6.9
70 366 3,66 10,6
80 L62 e 62 1542
90 s6L 5.6l 20,9
100 6L9 6.L49 273
110 437 Lo37 31,7
120 1019 10,19 41,9
130 733 T+33 49,2
140 800 8,00 5702
150 780 7.80 65,0
160 765 7.65 T2:%
170 650 6,50 7962
180 507 5,07 8402
190 460 Le60 88,8
200 327 3027 92,1
210 256 2456 o7
220 178 1,78 9645
230 119 1,19 976

2l0 96 096 98,

250 5L o5h 99.1
260 27 27 99eli
270 31 031 99,7
280 1k o1l 99,9
290 10 «10 100,0
300 L 0Ol 100,0

REMAINING FREQUENCIES ARE ALL ZERO




TABLE 10

COMPOUND GENERATION
SIMULATION FLOW DIAGRAM

222 J@O\

ASSIGI! RANDO
WEAROUT TIME

LS

ENTER OPERATING
FACILITY CAPACITY X

ASSIGN RANDOM FAILURE
TIME TO ALL TRANSACTIONS

INCREMENT CLOCK TIME

IDENTIFY 6L3
FAILURES P8 LE PT7

S i)
@ A“v’AI{\r
WEAROUT

AWAIT 647 IDENTIF
FAILURE P7 LE V20 WEARQUT
TIME
IDENTIFY
FATLURE
TIME
TABLE 331 TARLE
FAILURE : WEARCUT
TIMES 2 b 15 TIMES
I |
[~ 633 | TABLE ALL
E?: FAILURES AND
WEAROUTS

IEAVE OPERATING FACILITY
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TABLE 11

CARD CHANGES OF MODEL PARAMETERS

Run Number 2 Item B

JOB NR 2 GAMMA WEAROUT
22 FUNCTION BRN1 C77 GAMMA B2 x 100

«00005 1,0 ,00121 5,0 ,O00L6810,0 ,0175220.0 ,0369430.0
00615510.0 40902150,0 +1057355¢0 ,1219060,0 ,1386265.0 +1557970.0
¢173357560 ¢1912180.0 ,2092985,0 42275290,0 +26L42L4160,0 .30097110,0
¢33738120,0 .37318130.0 ,L40816140,0 ,14217150,0 L47506160,0 450676170,0
¢53716180,0 +56625190,0 ,59398200,0 ,62037210,0 (6454L220,0 .66914230,0
¢691552140,0 ¢71272250,0 »73263260.0 o75132270,0 ,76892280.0 .78542290,0
»800814300,0 .81529310,0 ,82881320,0 .814142330.0 .85317340.,0 ,86410350,0
«87L33360.0 .88382370,0 .89262380,0 ,90082390,0 9081404000 9154941040
092200420,0 .92808430.0 +9337LLL0O.O .93889h50.6 «94372460.0 .94813470,0
095227480.0 +95605190,0 .95956500,0 +96279510,0 ,96578520,0 968565300
09710754060 +973L255060 +9755856040 +9775657040 +97939580.0 o98109590,0
«9826L4600,0 +98601625.0 +9887565040 +99093675.0 99272700,0 995327
«99691800,0 +99810850.,0 +99880900,0 £99926950,0 999L451000,0
9 VARIABLE  FN5#K225%1000
22  VARIABIE  FN22%1263&K100
1 CAPACITY

2 CAPACITY 3
3 CAPACITY 3
L CAPACITY 3
5 CAPACITY 3




TABLE 11 (continued) o

16  CAPACITY 6

20  CAPACITY T2
30 CAPACITY 72
O  CAPACITY 72
50  CAPACITY 72

2 QUEUE 99 3

5 GENERATE 155 1 é

6 ASSIGN 7 V22 15

10 GENERATE 155 1 15

11  ASSIGN 1 K288 i

12  ASSIGN 2 K26l 13

13  ASSIGN 3 K26l 1,

1  ASSIGN N K26) 20

170 ENTER 16 180 u8o L8
L6  SPLIT 711 790

790  ADVANCE 791 2160 250
791 PRIRITY 1 610 :
63L  ASSIGN L KO 15

250  ADVANCE «200 260 160

270  ENTER 9 280 600 120
350  ADVANCE <200 360 160

370 ENTER 10 380 600 120

439  ASSIGH 8 Vo 130




JOB

23

N

20
30
1O
50

17

46

63k
790
791
270
370
470
570

VARIABLE
VARIABLE
CAPACITY
CAPACITY
CAPACITY
CAPACITY
CAPACITY
CAPACITY
CAPACITY
CAPACITY
CAPACITY
QUEUE
GENERATE
ASSIGN
ENTER
SPLIT
ASSIGN
ADVANCE
PRIRITY
ENTER
ENTER
ENTER

ENTER

TABLE 12
CARD CHANGES OF MODEL PARAMETERS

Run Number 3 Item C

NR 3 WEIBULL WEAROUT
FN53K596&1000
FN12%2257
10
2
2
2
2
137
137
138
138
99 3
875 1 6
7 V23 15
16 180 14,80

711 790
L KO 15
791 1000

1 610
9 280 520
10 380 520
11 1,80 520
12 580 520

100

150

80
80
80
80

L8




L9
COMPUTER PROGRAM

LOC NAME X 8 z SEL NBA NBB MEAN MOD REMARKS
JOB BILL HANSEN RUN NR 1 OPT ST

1 FUNCTION RN1 C25 NORMAL

0 =50000, 00003 =L 0000, 001 35=-30000,00621-25000, 0227 5=20000, 06681-15000

«11507-12000,15866-10000,21186-8000 ,27125-6000 34L58-4000 ,4207L4~2000
«500000 0579262000 ,65542L000 ,725756000 ,788148000 8413410000
«8819312000 69331915000 9772520000 9937925000 09986530000 ,9999T7L40000
1,0000 50000

2 FUNCTION V8 c2

0 o} 99999 99999

5 FUNCTION RN1 C24 EXPONENTIAL X 1000

0 0 e I R 222 o3 355 oL 509 .5 690
.6 915 L7 1200 .75 1380 .8 1600 .84 1830 .88 2120
o9 2300 .92 2520 94 2810 .95 2990 .96 3200 .97 3500
098 3900 .99 L6600 995 5300 L,998 6200 ,999 T000 9997 8000

CAPACITY L
2 CAPACITY 6
3 CAPACITY L
L CAPACITY L
5 CAPACITY L
9 CAPACITY 2
10 CAPACITY 2
11  CAPACITY 2
12  CAPACITY 2
16  CAPACITY N

20 CAPACITY 36
30 CAPACITY 36
LO CAPACITY 36
50 CAPACITY 36
1VARIABLE  P1/K240
2VARIABLE  P2/K192
3VARIABLE  P3/K192
LVARIABLE  PL/K192
6VARIABLE  FN1#KL8000
TVARIABLE  K10000%K100
8VARIABLE  V6/V7+K05760
QVARIAELE  FNS%K75/K1000
10VARIABLE  FNG5#K100/K1000
11VARIABLE  FN53K125/K1000

20 VARIAELE Cl
1 GENERATE 3 B

2  QUEUE 99 3

3 ADVANCE .4 1
[ GENERATE 10 1 6

6 ASSIGN 7 FN2 15

10 GENERATE 18 1 15

15 QUEUE 1 AL, 21 2%

21 GATE SNF1 190

190 PRIRITY 0 iy

11 ASSIGN 1 K210 12

12  ASSIGN 2 K192 13

13  ASSIGN 3 K192 1L




50

LOC NAME 2 Y Z SEL. NBA NBB MEAN MOD REMARKS

1}  ASSIGN N K192 20

20 STRE 1 ALL 222 225

160 QUEUE 10 170

170 ENTER 16 180 240 20

180 LEAVE 16 185

185 SPLIT 191 192

191 PRICRITY 1 15

192 TERMINATE R

291 PRIORITY 2 200

200 QUEUE 2 22

22  STORE 2 222

L 1COMPARE P L P8 L6
L6SPLIT ) 7o 111

710SAVEX 10+ K1 BOTH701 703
711TERMINATE R
701COMPARE Xio B K6 702
TO2SAVEX. 10 KO 610
TO3TERMINATE
610ASSIGN 7 KO 61l
61LASSIGN 8 KO 620
620ASSIGN i KO 62l
62 ASSIGN 2 KO 629
629ASSIGN 3 KO 63l
63LASSIGN N KO 715
715SPLIT 720 725
720SPLIT 750  7L5
725SPLIT 750 755
TLOSPLIT 790 790
7L5SPLIT 790 790
750SPLIT 790 790
755TERMINATE
T79O0ADVANCE 791 1420 240
791PRICRITY 1 15

222 ENTER 20 239 #*1

239 ASSIGN 8 V9 630

630 ASSIGN 8+ V20 6L1

641 QUEUE 51 642 6L

62 COMPARE P7 E KO 646

6;3 COMPARE P8 LE P7 616

6L, QUEUE 53 6L7

646 QUEUE 52 6L,5

64,5 COMPARE P8 IE V20 632

6,7 COMPARE P7 1IE V20 631
631TABULATE T 633
632TABULATE 2 231
633TABULATE 10 24,0

231 SAVEX 1+ n 233
233ASSIGN 1 KO 23l
23 ASSIGN 2 KO 235
235ASSIGN 3 KO 236
236ASSIGN N KO 633

2,0 LEAVE 20 BOTH L1 661
661ASSIGN 8 KO 250




LOC
250
260
270
280
290
292
391
300
23

223
339
730
gk
742
743
7LL
L7
746
7L8
232
T
732
733
333
33k
335
336
340
662
350
360
370
380
390
392
L1
1,00

22,
L39
130
770
771
772
775
770
773
776
50

131
132
133
L33

NAME
ADVANCE
QUEUE
ENTER
LEAVE
SPLIT
TERMINATE
PRIORITY
QUEUE
STCRE
ENTER
ASSIGN
ASSIGN
QUEUE
COMPARE
COMPARE
QUEUE
QUEUE
COMPARE
COMPARE
SAVEX
TABULATE
TABULATE
TABULATE
ASSIGN
ASSIGN
ASSIGN
ASSIGN
LEAVE
ASSIGN
ADVANCE
QUEUE
ENTER
LEAVE
SPLIT
TERMINATE
PRIORITY
QUEUE
STORE
ENTER
ASSIGN
ASSIGN
QUEUE
COMPARE

COMPARE

QUEUE
COMPARE
QUEUE
COMPARE
SAVEX
TABULATE
TABULATE
TABULATE
ASSIGN

s

0 N

oW Www o I 0

r:'i:"

OW W N =
o

V9
V20

E'I?j

S B E

KO
KO
KO
KO

LP

Z SEL
«100
ALL

KO

P7

V20

V20
BOTH
.100
ALL

KO

i

V20

V20

NBA
260
270
280
290
2L

300

223
339
730
ggnn
42
L7
[y
748
L6
732
131
333
133
232
340
33L
335
336
133
L1

350
360
370
380
390
391

1,00

22,
L39
130
770
771
775
775
774
132
776
ks
L33
133

LLO
L3k

NBB
160

292

7hh

662

160

392

1

MEAN

120

*2

120

33

MOD

20

20

51
REMARKS




52

10C NAME X Y 4 SEL NBA NBB MEAN MOD REMARKS
43LASSIGN 2 KO 435
i35ASSIGN 3 KO 436
36 ASSIGN N KO 133
LOLEAVE L0 BOTH L1 663
663ASSIGN 8 KO 450

450  ADVANCE 2100 L60 160

460  QUEUE L0 470

470  ENTER 11 180 120 20

480 LEAVE 11 ko

490  SPLIT L91  L92

492  TERMINATE R

591  PRIORITY 2 500

500 QUEUE 5 25

25 STORE 5 225

225  ENTER 50 539 #

539  ASSIGN 8 V11 530

530  ASSICN 8¢ V20 780

780 QUEUE 61 AL 781 1783

781 COMPARE P7 E KO 785

782  COMPARE P8 1E P7 785

785  QUEUE 62 781

78,  COMPARE P8 IE V20 152

783  QUEUE 63 786

Sk SAVEX L+ Vi 533

786  COMPARE P7 1E V20 151
151TABUIATE 7 153
152TABULATE 8 sk
153TABULATE 13 5L0
533ASSIGN 1 KO 53)
53LASSIGN Z KO 535
535ASSIGN 3 KO 536
536ASSIGN N KO 153
SLOASSIGN 50 BOTH b1 66l
66LASSICGN 8 KO 550

550 ADVANCE 100 560 160

560 QUEUE 50 570

570  ENTER 12 580 120 20

580 LEAVE 12 590

590 SPLIT 591 592

592 TERMINATE R

1 TABLE 1A 0 50 100

2 TABLIE IA 0 10 100

3 TABLE 1A 0 50 100

L TABLE IA 0 10 100

5 TABLE IA 0 50 100

6 TABLE IA 0 10 100

7 TABLE IA 0 50 100

8 TABLE IA 0 10 100

10 TABLE TA 0 50 100

11 TABLE IA 0 50 100

12 TABLE IA 0 50 100

13 TABLE IA 0 50 100

START 20
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