
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-1966 

A Logistic System Simulation Model Encompassing Poisson A Logistic System Simulation Model Encompassing Poisson 

Processes and Normal or Weibull Life Processes and Normal or Weibull Life 

Willard A. Hansen 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Applied Mathematics Commons, and the Mathematics Commons 

Recommended Citation Recommended Citation 
Hansen, Willard A., "A Logistic System Simulation Model Encompassing Poisson Processes and Normal 
or Weibull Life" (1966). All Graduate Theses and Dissertations. 6811. 
https://digitalcommons.usu.edu/etd/6811 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F6811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.usu.edu%2Fetd%2F6811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.usu.edu%2Fetd%2F6811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/6811?utm_source=digitalcommons.usu.edu%2Fetd%2F6811&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/




ACKNOWLEDGEMENTS 

I wish to thank Mro Tad Nonnan of the IBM Corporation for his 

technical assistance on the computer runs of this Simulation Model 

Program and Miss Anita Flippen who typed seemingly endless drafts 

of this the sis o 

I am indebted to the faculty advisors from the Department of 

Applied Statistics 9 Utah State Universityj who gave their advice 

and guidan ce and spent their ti.me reading and commenting on the 

drafts o Dr o David White furnished expert advice and suggestions 

concerning the statistical sampling modelso 

Utah State Universi ty 

May 9 1966 

Willard Ao Hansen 

ii 



iii 

TABLE OF CONTENTS 

INTRODUCTION . . . . . . 1 

BACKGROUND AND GENERAL NATURE OF THE PROBLEM • . . . 2 

PROBLEM DESCRIPTION • • • . • • • • • • • • • • 4 
SIMULATION MODEL • • • • • . • • . . • • • 7 

Description • • • . • • • • • . • • • • 7 

Operation • • • • • ., • • • • • • • • • • 8 

METHODS AND PROCEDURES • • • • • • • • • • • • • 9 

Failure Phenomenon • . • .. • • • • • • • • • 9 

Fundamental Analytic Distributions • • • . • • • • 10 

Poisson • • • • • • • • • • • • • • • 11 
Exponential • • • • • • • • . • • • • ll 
Normal • • • • • • • • • • • . • • • • 12 
Weibull • • • • • . • • • • .. • • • • 12 
Gamma • • • • • • • • • • • • • • • • 13 
Log Normal • • • • • • • • • • • • • • 14 

Generation of Random Variables • • . . • • • • • 15 

Approach • • • • • • • • • • • • • • • 15 
Weibull Variables • • • • • • • • • • • • 16 
Poisson Process • • • .. • • • • • • • • • 18 
Gamma Variables • • • • • • • • " • • • • 20 
Compound Generation • • • • • • • • • • • 21 

RESULTS • • • . . . . . • . • . • • . • • • 23 

DISCUSSION • • • • • • • • • • • • • • • • • 36 

SUMMARY • • • . • • • • • • • • • • • • • • 37 

REFERENCES • • • • . • • • • • • • • • • • • 39 

APPENDIX • • • • • • • • • • • • • • • • • • 40 



iv 

LIST OF TABLES 

Table Page 

1. Model Parameters for Run Number 1 • . • • • • • • 25 
2. Simulation Results Item A. • • • • • • • • . • 26 

3. Model Parameters for Run Number 2 • • • • • • • • 28 

4. Simulation Results Item B • • • • • • • • • • 29 

5. Model Parameters for Run Number 3 • " • . . • • • 31 

6. Simulation Results Item C. • • • • • • • • • • 32 

7. Generatin g Functions • • ~ • • • • • • • • • 42 

8. Output Weibull Generating Function (S.D. =- 48) • • 43 

9. Output Weibull Generating Function (S.D. = 68) • • • 44 

10. Compound Generation Simulation Flow Diagram. • • • • 4~ 
11. Card Changes of Model Parameters Run 2 Item B " • • .. 46 

12. Card Changes of Model Parameters Run 3 Item C • • • • 48 



V 

LIST OF FIGURES 

Figure Page 

1. Model Flow • • • • • • . • • • • • • • • • 5 
2. Model Concept • • • • • • • • • • • • • • • 6 

3. Component Failure Rate as a Function of AGE • • • • • 9 

u. Exponential Inter-Arrival Times • • • • • . • • • 11 

5. Combined Effects of Random Failures and Wearouts • • • 41 



IN'lRODUCTION 

This thesis describes a computer simulation model for determining 

effe ctiv e spares stock levels for recoverable items at Air Force bases 

and depotso The sinmlation model is based on the following fundamental 

j.nvent.ory theory, whenever a demand arisess it is satisfied from stock 

on hand 9 and the quantity equal to that demand is recorded immediately; 

when a demand exceeds stock on handj the excess demand is backordered 

immediately and when item life expires procurement action is initiated 

at depot levelo The resulting product of the model can be used as a 

guide for the optinmm distribution of available spares or as a computa~ 

tion of the ne cessary spares which will meet a desired percent fill 

rateo Outputs from the simulation model will also enable evaluation 

of the Bpal"es level effects ~s a result of ch ange in other logistic 

parameterso 

The purpose of this thesis is two=fold to the extent that it 

pr esents g 

(a) A computer simulation model of an Air Force logistic system; 

and 

(b) A discrussion of compound Monte<=>Carlo demand generation 

involving various analyti c failure distributions., 

The specific nature of the problem to which the simulation model is 

applied is des cribe d and the model construction and output are discus= 

sed in detailo 
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BACKGROUND AND GENERAL NATURE OF THE PROBLEM 

A brief background concerning the techniques used in this paper is 

appropriate. Many authors using statistical techniques have considered 

logistic operations, including failure, repair, replacement, etc, on 

systems consisting largely of identical, independent operating units. 

Historically, C. Palm (§), following the methods of A. Ko Erlang, (_g), 

was one of the first to use properties of the exponential distribution 

in solving various in ventory type problems. Feller (J_), popularized and 

extended the analysis technique. Several other researchers investiga­

ting failure and fatigue analysis have since provided empirical 

mathematical formulation which has proven to be of much practical 

analysis worth. Probability density functions identified to these 

type failure analyses are the ''normal" gaussian, the gamma, weibull, 

and the exponential among others. More recently, renewal theory 

techniques have been used by many authors in solving related inventory 

theory problems. 

Since the advent of the large scale high capacity computers, simula­

tion techniques have become a desirable tool for simultaneous consider­

ation of many time dependent variables. Indeed, simulation represents 

an excellent experimental medium to examine the time patteI'ns of 

operational events and the consequences of various policies or deci­

sions. Large scale monte-carlo models, and man-machine simulations, 

are being developed and utilized by JT1c1ny research organizations 

including the military. 

In this paper, the general interest is in simulating an Air Force 

rrrulti-echelon logistic system wherein effective spares levels are the 



major concem.11 while the interacting effect of the other logistic 

parameters are secondaryo To accomplish this 9 an appropriate 

probability or statistical model representing failure or 11..fe data 

must be an integral part of the overall simulation modelo To succeed» 

the simulation model must be able to cope with the following: 

ao Components of large logistic ~ystems rarely operate indepen­

dentlyo 

bo The source of spares supply in a depot= base complex is 

variableo 

Co Item failure characteristics change with re8pect to life cycle 

periodo 

do Statistical distributions overlay in a given simulation 

requiring compound monte=ca:rlo generationo 

The sinrulation model must be- !lufficiantly complex to account for 

these first wo problems and the probability models must be · precise in 

order to handle the remaining two problemso In particular 9 the 

simulation model must be so clesi~ed as to allow detailed study of the 

effects of varying the inp~'t parameters over a wid'3 range with a combi­

nation of spares failure and -life probability distributionso As in all 

simulations the degree of success :is measured by the degree to which 

results provided by the model are actually trueo 

3 



PROBLEM DESCRIPTION 

The Air Force depot=base supply process for a recoverable item 

operates in the following mannero When an item fails in its course 

at an operational base it is removed from its application arrl a 

serviceable item replacedo The som-ce of the replacement item is 

either from the local base supply shelf or requisitioned directly 

from an appropriate depot somewhere in the continental United Statesa 

The failed item is examined to determine whether repair is possible 

at base levelo If so.1> the item is scheduled into the base repair shop 

and following a variable repair cycle time 9 it is returned to a 

serviceable conditiono If base repair is not indicated the i tern is 

either condemned or forwarded to the depot for repair o In the case 

of a direct replacement from the depot a variable resupply time is 

experiencedo Refer to Figure l» page 5., 

Present Air Force policy (! authorizes a paae .t9.,: e.,s.tabl~sh .a )()...day 

stockage objective for most recoverable itemso The distribution system 

operates on the basis of stock control levels which includes the base 

stockage objective plus the number of days of stock required for normal 

resupply actiono 

The objective of this model is to simulate the depot =base activity 

on a given quantity of a sing 'le type recoverable item thereby observing 

the interacting effects of the many variable factors such as increasing 9 

decr easingy or constant failure rates.I) mortality rates.I> repair and resupply 

times~ repair capacities.I) and alternative levels of available spares., 

Ref er to Figure 2 'J the Model Concept .1> page 6 ., 
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SIMULATION MODEL 

Description 

The simulation model is constructed to utilize the IBM 7090/94 

Computer with the IBSYS/FORTRAN (!!), system language. The operation 

to be simulated is described in terms of coded block diagrams. A 

complete set of rules govern the use of each block in the simulation 

model program. This methodology in addition to driving the computer 

provides for study of the logical structure of the operation being 

simulated. 

The computer output is so arranged as to furnish information of the 

following: 

a. The total volume of transactions flowing through all elements 

of the operation. 

b. The distribution of flow times for transactions flowing 

through each base repair and depot repair element. The resupply of 

serviceable item now times are also available. 

c. The repair facility utilization. 

d. The maximum, minimum, and average queue lengths at desired 

points in the operation. 

Statistical sampling techniques describing failure characteristics 

are introduced into the sinrulation model. Levels of priority are 

assigned to each transaction to provide for various dependent events 

such as sources of supply points in the logistic simulation. The 

interdependence of certain variables in the operation, such as repair 

decisions in view of queue lengths and facility availability or 

utilization is taken into account and is simulated in the model. A 

copy of the computer program is included in the Appendix, page 49. 

7 
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Operatio_E 

The program operates by moving transactions fran block to block .1 of 

the simulation model in a manner .. analogous to the flow of spares through 

the real operational logistic system. Every movement is an event that 

is simulating a real event at a particular point in timeo The program 

maintains a record of the times at which the events are due to occuri 

and it operates by executing the events in their correct time sequence. 

Input 'time parametere1 ar ·e all 1ciomrerted to a single standard time 

uni t and must be consistent throughout a simulation. Typical input 

parameters are shown in Table I .1> page 250 All input parameters are 

ente r ed in the program by a set of machine control cardso The duration 

of the simulation is controlled either by total munber of transactions 

at a pre=designated point in the simulation model or by a pre=designated 

number of clock units within the simulation modelo 

The output product of the simulation run contains the summary 

statisti cs which includes number of transactions for most blocks» 

average utilization of facilities» average time per transaction.I> 

average contents » maximum contents.11 queue lengths 9 means 9 variances» 

and frequency distributions., A typical output product is included in 

the API2 ndix and a summary of typical simulation results are refiected 

in Table II 9 page 260 

A logistics manager cans with this output» assess the interacting 

effects of changes in parameters enabling him finally to make ef'f ecti ve 

time oriented decisions relative to procurement and positioning o£ 

sparese 



ME1'H ODS AND PROCEDURES 

Failure Phenomenon 

Many items that have been analyzed for simulation demonstrate what 

has come to be regarded in the literature as a classical failure 

pattern i initially decreasing mortality 9 followed by a period of 

essentially cons tant failure 9 and ending in a sharp rise in the 

incidence of failure o Ref er to Figure 3o 

Early 
Failu res; 

-------

0 

,J\ ' ·' 

Operating Life 
T(age) 

Chance or Random 
Failures 

Useful Life Period 

Figure 3o Component Failure Rate 

/ 
/ 

T 

Chance and Wearout 
Failures 

Wearout / 
Period / 

/ 

/ 

/ 
/ 

I 

I 

M M' 

(Mean Life) 

---.._,,,,,,----

Life Extended by 
In=Service Modifica= 
tion and Maintenance 

This well known 11bath tub curve" modified to consider life extension by 

an in~service maintenance or modifi cation describes the general compon= 

ent time failure phenomenono Relatively little direct attention has 

been given to the high initial failure rate in this model because of 

observed low incidence of clear infant mortality~ 
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During the chance or random failure period of an item's lifeJI a 

poisson process is assumed and has been verified on many items o The 

items are assumed to failJI be repaired 9 and made available for 

another application. The intervals between occurrences in this 

10 

poisson pro cess are generated with an exponential distribution function. 

During the rapidly increasing failure or wearout period of an item's 

life the normak» weibull 9 gamma9 or other probability distribution 

f~tion is utilized as a statistical model to describe life length. 

During this period items are assuned to wearout and be replaced by 

procurement of a new itemo The two distinct periods are simulated in 

the model by compound generation of failure. Random selections from 

the exponential distribution are made sequentially throughout an 

item 0s total life to assign the precise failure timeo Random selections 

from the lif e distributions determine the time at which items will 

expireo Refer to Figure 5 ~ page 4lo 

Fundamental Analytic Distributions . 

Since the developmen t and derivation of the fundamental mathematical 

expressions are well documented in the texts and the literatureJI only 

definitions and their applications to this simulation problem will be 

discussed., However j the development of the less familiar or unique 

applications such as the generation of random numbers are presented in 

more detailo The fonnulation depicts the probability or statistical 

models used to represent and analyze item failure or life characteristics 

within the simulation mod.el .. 
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Poi3son 

The Poisson probability density function is given by, 

~E -A 
f (x) • e (1) 0 e 0 0 0 0 • • 0 • • 0 

x! 

for x = 0,11 l,11 2 0 0 0 00 

where the range of x is infinite, with ~ the expected 

number of failures and xis the random variablej the number of failures. 

Exponentia l 

The exponential density function is given by , 

t 

0 

- -
f(t) = e e 

e 

t ?. 0 

ee o o• o o •• • • e o 

Operating time= t M1 

Figure 4o Exponential inter=arrival times 

(2) 



'!he exponential probability density function is the function of 

failure versus time (t) with (9) equal to the mean-time-between­

failureso The probability of failure in the interval (o, t) is given 

by .!> 

t 

r =! = 1 
e e dt = 1 - e e 

0 0 0 0 0 

e, 
0 

Normal 

The normal probability density function is given by 9 

f(t) = ___ i ______ _ 
=(t-e)2 2 

e /2d 

Where ; 

t = random time for mortality 

e = nean life 

~= standard deviation 

0 

0 • e (3) 

0 • • (4) 

Notice that the regular restriction on the random variable (t) 

12? 

would be - oo < t <. + o0 1> but in this application less than zero time to 

life expiration is not appropriateo 

The corresponding cumulatt-ve distribution function for the normal is; 

e /2 r1'
2 dt ., f

-=(t=e) 2 

e 0 (5) 

t 

Weibull 

The weibull probability density function is given by.1> 

~ t ~ =l -(-j) ~ 
r( t) = (ff) <i) e o o o o • o • o (6) 

for t 9 N!J @ > 0 



= 0 otherwise 

where; 

~=the shape parameter 

13: 

N = a scale parameter (also lmown as the characteristic life) 

t = random time for mortality 

Some authors reflect ( t~ Y) in place of t above, where Y is a location 

parameter corresponding to an assumed time, prior to which no failures 

will occur. All application in this model assumes -Y "" 0.9 resulting in 

no restriction for first mortality. Further, other authors show a 
1/@ b 

scale parameter o( related to N by, N "" ~ , Clo< • This form is slight-

ly more cumbersome to work with thus the choice of N as the scale 

parameter with no loss of precisiono 

The moments of the weibull dis tri bl tion being J> 

mean ""Y + N r(1 + l) 
@ 

standard deviation= N 

The corresponding cumulative distribution function for the 

t~ 
weibull is, 

F(t) = 1 -N 
= e 0 0 • 0 • • 

for t 9 N9 ~ > 0 

= O otherwise 

Gamma! 

The Gamma probability density function is 

1 '3-1 - j 
f(t) = ----- t e 

I~ -1) N ~ 

t-;, 0 

Wherei 

0 • • • • . ,' . • (1) 

given by, 

• • • • • • • • (8) 



~ = shape parameter 

N = 3cale parameter 

t ... random time for mortality 

The moments being; 

mean= N({3) 
2 

variance er 
2 

= N (~) 

The corresponding cunrulative distribution function is given byJl 
t t 

F( t) • ! 1 ~ =l 
e= N' dt 

r<e =1> N" 
t 

0 

t > 0 

"" 0 otherwi:, e 

Log Noi:!!!& 

The Log Normal probability density function is; 

1 f(t) = 
er~ t 

t > 0 

"" 0 otherwise 

Where, 

-(1n e tl/2 ff
2 

e 

t = random time for mortality 

e =- mean of the logarithm of (t) 

0 

0 

0 

er= standard deviation of the logarithm of (t) 

0 0 0 

0 • 0 

The corresponding cumulative distribution function is given by 1 

1 f°'° 1 =(ln e tl /2 a-
2 

F(t) ,,. 1 = ~--~ - e o o 

cr 0 · t t 

(9) 

(10) 

(11) 
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Generation of Random Variables 

Approach 

Within the existing capability of the General Purpose Systems 

Simulator II (!!,), are procedures to generate uniform , exponential and 

normal random variables. This paper extends this capability to the 

generation of weibull, gamma, and log normal random variables. This 

additional coverage enables more precision and a greater range of 

application to hardware items. 

In general, there are in existence many possible methods of generating 

functional variables. The methodology as provided in this thesis is 

designed to operate specifically within the General Purpose System 

Simulator II capability. 

The computer pro gra m contains a uniform random number generator used 

as the independent variable of any defined function. 'rhe value of the 

generated uniform random number is a fraction greater than O but less than 

1. For practical purposes, these quantities are equally probable. The 

methodology for producing functional variabl es consists of generally 

definin g a specific probability density function f(t) versus t where 

f(t) is the pro babi lity of condition t. In order to genera te a specific 
t 

random variab l e, the cumulative distribution function F(t) = J f(t)dt 
0 

is evaluated fort in a suita ble range. Give n the uniform random number, 

the corresponding value of the function F(t) is selecte d and the correspond­

ing value oft provided as the desired random variable. Specific examples 

of this generation are reflected in the discussion on weibull and gannna 

variables. The appearance of an uniform random number between defined 

value oft will result in interpolation within tqe program . 
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Weibull 

A weibull random variable (W) may be generated perhaps in several 

ways depending on the available computer equipment and the desired 

precisiono One particular advantage to the methodology employed below 

is the generality of the functiono At any point in the simulation 

model a weibull variable from a parent population with a different mean 

value may be generatedo The generation of weibull variables in this 

model is accomplished as followsi 

Beginning with the weibull cumulative distribution function equation 

(7); 

F(t) 

an appropriate shape parameter(~) is selectedo 

In this model values of' ~ = 2 and ~ = 3 were selected as most 

repr esentative of actual item failure experienceo Notice that a value 

of~ = 1 reduces the expression to the exponential. 

If N9 the characteristic life 1 is set equal to unity 9 and an all 

inclusive range of F(t) defined 9 t can then be evaluatedo An inclusive 

range refers to the desired precision which is increased by providing 

additional values of F(t) in intervals where the rate of change in the 

value of the function is greatesto 

An example of the unitized function is shown below with N = 1» and 

=t2 
F(t) = l = e 

Let F(t) .ll which now has corresponding values of the uniform random 

numbers between 0 and 19 assume a value equal to 0039346; now t 2 = 0o509 

and tis evaluated equal to 0070710 This result is a particular random 

value of the weibull unitized f'unctiono 



At the point of application in the simulation model the random value 

of t (o. 7071) is multiplied by the desired mean life, divided by the 

quanti;ynt + l)o Refer to equation (6) and (7), pages l~ and lJ ,o 

Give n that mean life is» 

e ,. Y + r (i + 1 )N then a 

17 

e ~ N (the characteristic life) 

Assune that random values are desired from a population with a mean 

life equal to 130 hourso Recall that N was unitized in the generation 

function and now at point of use must be operated upon. Using the 

example uniform random number 0039346 as above a weibull random variable 

is generated as follows~ 

The correspondin g F(t) value to 0039346 yields a value 

of t = Oo 7071, 

e 130 
f ~ 007071 008862 = 10309 

r c1 .. 1> 
therefore » W = (t) 

This quantity 10309 is a random weibull variable from a population 

with a mean value equal to 130 and shape parameter@ = 2o 

Fifty =nine values of the weibull generating function are given in Table 7 

in the Appendix .11 page 42 o This data is presented in the same format as 

provided as input to the simulation program. The first value given is 

function X followed by its corresponding value function Y o Consequently.9 

the first col umn is function X values .followed by fumtion Y repeating 

in this manner throughout the di.splayo 

Also in the Appendix, pages 43; and 44.1> Tables 8 and 9 » are two example 

outputs of the weibull generating function. A distribution table of l0J> 

13.5 (W) variables with a theoretical population nean of 130.11@ = 2, and 
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standard deviation equal to 68 9 and a second table of 10,002 values with 

a mean equal to 130)1 and~ = 3 with a standard deviation equal to 480 

Poisson Process 

If during the operational period of an item's life the prbbability of 

failure is poisson arrl the failure rate is essentially constant, it is 

known as a poisson processo The inter=arrival times of failures during 

this period are distributed as an exponential distrib.ltion; see Figure 4» 

page ll.., In most cases of a poisson process simulation can be accomplished 

by selecting random values from the exponential distribution to decide 

when an item will failo On sone small recoverable itana it is operationally 

desirable to wait until two or more failures have occured before initiating 

maintenance acti on. In this case the exponential distribution fails to 

adequately describe the times between two or more failureso The gamma 

distribution is used in this simulation model in those cases where two 

or more items are held until maintenance action is takeno 

It can be shown that the distribution of inter.,.,,arri val times between 

two or more items in a poisson process results in a gamma distributiono 

Beginning with a summation of the poisson, Wadsworth (l) D ha• ahown that 

the resulting distribution .function of time is a gamma distributiono 

Let T be the time that is observed until exactly c failures have 

occurred 9 where c is a fixed positive intergero Now Tis a random variable 

with a distribution functioni 

G(t
0

) = Pr(T ~ t
0

) = 1 ... Pr(T > t
0

) 

C=l X. - A.to 

2 
()... to) e 

Pr(T > t 0 ) 
.., 

X! 
X=O 

which is a summation of the poisson. 



It can be shown by mathematical indu~tion that 9 

X=O 

Now for a t O > fo 0o c""l _z 
Z e 

G( t O) "" l ~ (e col )1 dz· = 

t 
0 

Ill f c-1 ..,z 
z e cm 

(c-l)l 

substiblting Z = A y 9 for the variable of integration in the integral, 

G(t) = 
0 

and the probability distribution function of T is 9 

... O otherwise. 

It is seen that this is a gamma distribution with shape parameter 9 

~ ~ c 9 and N9 the characteristic lifej equal to 1/A o 

Letting the shape pararreter~ = 1 which is equivalent to c•l 9 the 

function reduces to the exponential in the case of an interarri val 

time for one item in a poisson process. 



Gamma Variables 

Using a similar approach to the gamma distribution as was used with 

the weibullD a unitized gamma function can be derivedo 

Start ing with the cumulative distribution function» equation (9) 9 

t 

F(t) • r 
0 

t:,O 

This function can only be evaulated by numerical methods unless~ is 

a positive whole number 1 in the application in this model~ is limited 

to the integral values 2 and Jo 

20 , 

By successive integration by parts the function can be shown to be 9 (z)9 

~ t l ,t) 2 l t 3 
F(t) "" 1 = L~" N + 2!'-N + jg( r) 

Setting N equal to land letting the shape parameter (3 = 2 we obtain; 

=t 
F(t) .. 1 = [~+~ e 

and for~"" 39 

F( t) s l = [ l -o- t + ½ g ( t) i ] e 

Now defining a suit able range of F( t) between O and 1 9 and evaluating 

fort as was done with the weibull distributionj a unitized function 

which will provide gamma random variables of any desired mean is providedo 

As an examplt'; 9 le t 9 

F(t) assume the uniform random number 00300970 
=t 

F(t) .. l = [1~t] e ~ 00300970 

Evaluatin g fort~ 



Similar to the weibull case 9 at the point of use in the model~ tis 

nrultiplied by the desired mean and divided by@. Refer to equation 

( 8) and (9) 9 pages 13: and 14, 

Given that the desired mean life is equaJ.. to 130 9 a gamma random 

variable is generated as follows i 

The mean9 

0 • N$9 therefore 9 N .. JP 
~ 

Using the example value of F(t) above 9 

assume a uniform random variable was sele cted equal to 

00300919 equate d to the unitized (G) F(t) yields 9 t = lelo Therefore 9 

(G) ?lo.5• 
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The value 7lo5 is a random gamma variable from a population with a 

mean equal to 130 and a shape parameter equal to 2. Seventy=seven values 

of the unitized gamma fun ctio n were computed for shape parameters 2 as 

shown in the Appendix 9 Table 79 page 42., Also shown in the Appendix 9 

page ~ is an example distribution with 10 9 000( G) variable s with a mean 

of 130 and a shape~ ,,. 2., 

Compound .Q2neration 

A frequently encountered conditi on on Air Force recoverable items is 

a situation where a portion of a set of items is distinctly in the 

operationa l life period where chance failures alone occur 9 while the 

remaining items are approaching mortality and are subject not only to 

chance failures but also to wearouto In any given sirrrulation of an 

item of this type the model must provide for exponential inter-arrival 

times for chance failure which is independent of item age and wearout 

failures usin g one of the mortality distribution f'unctionsD ieeoD the 

normal 9 gamma9 or weibul l o 



22 

The combined effects of random and mortality failures are sinmlated in 

the model by dual Monte-Carlo generation of failureo Random selection 

of exponential times till chance failure occurs is assigned to all i terns 

continually for failure after failure throughout any simulation periodo 

For that subset of items that will enter the wearout period random 

selection from one of the mortality distribution is assigned and as the 

mortality occurs in the simulation the item is removed from the system 

and a new i tern takes its pla ceo 

A f lo w di~Igram using the coded blocks of the simula ti.on language is 

contained in the Appendix.11 page 45. This diagram portrays the !'low of trans­

action through the simulation model., The diagram reflects only that element 

of the program where compound generation is accomplishedo It can be seen 

that in general as transactions appr oach t his element of the program 

they are all assigned a time to faili> then are tested to determine to 

which subset they belongo If they belong to the wearout subset they 

are assigned a time to wearouto The transactions are then held simula= 

ting application or use and remain in this state until their respective 

times till failure or wearout occurs in the modelo They then depart 

from their held position which simulates the occurrence of failure and 

are replaced by a transaction obtained from storage which is simulating 

a stock level .. 
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RESULTS 

Specific inventory problems have been defined and examined to 

demonstrate the use of the simulation model as a technique for decision 

mald.ngo It is not the intent of this section to provide complete and 

conclusive answers to specific inventory problems~ but to establish the 

fact that sinrulation runs can be used tJy operation logistics personnel 

to evaluate stock levels and other inventory decision ruleso For this 

reason/) only a small number of items are selected repres ·enting perhaps 

a narrow range of the total system stocko 

Three particular hardware items have been selected as typical examples 

of operation of the simulation modelo The detailed input parameters 

are described and the resulting outputs from the siJ!Rllation model are 

discussedo The items will be referred to as items Aj B 9 and C to 

prevent violation of security regulationso 

Item A is a relatively high cost 9 recoverable item 9 with a high demand 

rateo The question to be investigated by the model isi Given a set 

quantity of spare items.9 what is the best distribution of these spares 

among four operational bases and a support depot? Refer to Table l.9 

page 2.50 

Item Bis an extremely high cost.9 low demand.9 recoverable item .. This 

item is typical when compared to ttie life cycle patterno It is subject 

to random failures 9 which are capable of being repaired.9 for a relatively 

long period of its life but finally criteria such as metal fatigue 9 

wear» and other life expectation elements take over to cause mortalityo 

The objective of the simulation run is to define a set of spare stock 

levels at base which will meet a desired percent fill rateo Refer to 

Table 39 page 28& 

Item C is a medium cost item 9 with infrequent demands for repair but 
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is subject to wearout after about two thousand hours of application. 

The objective of the simulation run is to evaluate the effect on spares 

levels if the r~pair is accomplished ·~t the depot or at the bases. 

Refer to Table 5~ page 310 



TABLE 1 

MODEL PARAMETERS FOR RUN NUMBER 1 

Spare Item 
Unit Cost 
Total Items 

Operating 
Spares 

Subject to Wearout 
Duration of Simulation Period 
Number of Bases 
Transportation Time (Depot to Base) 

#1 
#2 
#3 
#4 

Repair Facility Flow Time 
Depot 
Base #1 

#2 
#3 
#4 

Stock Levels 
Depot 
Base #1 

#2 
#3 
#4 

Perc ent Repair (Base=Depot) 
Repair Capacity 

A 
$17~326000 
174 
(144) 
(30) 
(10) 
2000 Days 
4 

240 Hours 
192 Hours 
192 Hours 
192 Hours 

240 ! 20 
12 0 :t 20 
120 :! 20 
120 ! 20 
120 ! 20 
(Initial Run) 
4 
6 
4 
4 
4 
90=10 

Depot 4 Units 
Base #1 2 Uni ts 

#2 2 Units 
lf3 2 Units 
#4 2 Units 

Failure Rates (MTBF) Exponential 
Base #1 75 Hours 

#2
3 

75 Hours 
# 100 Hours 
#4 125 Hours 

25 

Wearout Rates (MTTW) "Normal" Mean = 5670 Hours illj Std Deviation "" 480 Hrs 
Procurement Lead Time= Normal= Mean= 1420 Hours Std Deviation= 240 Hrs 
Quantity (Condemnation Before Procurement) 6 
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SIMULATION RESULTS 
29 000 Days Simulation 

ITEM A 

RUN #1 

1st Result 

% Time 
Stock Spares Nr ot MTBF 
Level Available Failures Hours 

DEPOT 4 lOOoO 0 

BASE #1 6 98o5 65J 10s 

#Z' 4 95o0 57Z 77o4 

1/J; 4 94oO 4411 98.8 

II~ 4 90o5 347 12~o0 

SEares Available Avg Mcm 
Total Repair Awaiting 

Min Avg Max Repairs Time Hr Repair ...,,._, 

DEPOT 2? 3o77 8 188 240o5 1 

BASE #1 0 5.92 12 589 119.,7 10 

#2 0 3.45 7 514 ll8.8 5 

#J, .0 3 .. 19 6 403 ll4~9 33 

#4 0 2.30 5 314 119.6 3 
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TABLE 2 (continued) 

SIMULATION RESULTS 
2~000 Days Simulation 

ITEM A 

RUN #1 

2nd Result 

% Ti1ne 
Stock Spares Nr or MTBF 
level Available Failures Hours 

DEPOT 4 100.0 0 

BASE #1 5 96ol 642 73.2 

#2 4 95ol 580 76.1 

#3 4 94o5 438 10102 

#4 5 94o9 342 12409 

SEares Available Avg Max 
Total Repair Awaiting 

Min Avg Max Repairs Time Hr Repair 

DEPOT 1 2o99 8 193 24301 2 

BASE #1 0 4o31 8 590 118.6 8 

#2 0 3.53 6 505 120.2 4 

1f3; 0 30e6l 6 421 122.1 4 

#4 0 3oJO 7 331 11909 $ 



TABLE 3 

MODEL PARAMEI'ERS FOR RUN NUMBER 2 

Spare Item 
Unit Cost 
Total Items 

B -

$439260&00 
310 and 388 
288 Operating 

Spares Variable (22 and 100) 
Subject to Wearout 

Duration of Simulation Period 
Number of Bases 
Transportation Time (Depot to Base) 

#1 
#2 
#3 
#4 

Repair Facility Flow Time 
Depot 
Base #1 

#2 
#3 
#4 

Stock Levels 
Depot 
Base #1 

#2 
113 
#4 

Perc ent Repair (Base~Depot) 
Repair Capacity 

5 Years 
4 

288 Hours 
264 Hours 
264 Hours 
264 Hours 

480 :!: 48 
600 :t 120 
600 ± 120 
600 t 120 
600 :t 120 
1 2 < 
Ii' r di{,, 

3 5 
3 5 
3 >-
3 5 
80- 20 

Depot 6 Units 
Base #1 2 Units 

#2 2 Units 
#3 2 Units 
#4 2 Units 

Failure Rates (MTBF) ~onential 
Base #1 225 

#2 225 
#3 225 
#4 225 

Wearout Rates (MT'lW) ttGamma.11 Mean = 2525 ~ours, 
Procurement Lead Time 2160 - 250 
Quantity (Condemnation Before Procurement) 1 

Shape Parameter~= 2 
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SIMULATION RE.5UL1S 
21 000 Days Simulation 

ITEM B 

RUN#0-

1st Result 

% Time 
Stock Spares Nr of MTBF 
Level Available Failures Hours 

DEPor 4 10000 0 

BASE #1 3 66.,7 2486 221 

#2 3 6.,1 290 218 

#3 3 2 .. 1 lJ.3( 227 

#4 3 2.,1 117 229 

S;eares Available Avg Max 
Total Repair Awaiting 

Min Avg Max Repairs Time Hr Repair 

DEPar 0 lelO 4 45'. 483' 24 

BASE #1 0 0 3 50 592 34 

#2 0 0 3 38 591 29 

#3 0 0 3 36 604 28 

#4 0 0 3 32 589 27 
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TABLE 4 (continued) 

SIMULATION RESULTS 
29 000 Days Simulation 

ITEM B 

RUN #2 

2nd Result 

% Time 
Stock Spares Nr ot MTJ3F 
Level Available Failures Hours 

DEPOT 1 8.5o2 0 

BASE #1 5 9lo2 267, - '22"6 

#2 5 90<>3 2542 228 

#'Y; 5 8803 2371 221. 

#~ 5 90o5 2.531 218 

&ares Available Avg Max 
Total Repair Awaiting 

Min Ayg Max Repairs Time Hr Repair 

DEPOT 0 Oo7 2 38 48601 23 

BASE #1 0 2o3 6 56 59309 25 

#2' 0 2ol 5 59 60204 241 

#3 0 206 7 62 596'o3 22 

#4 0 2o0 5 63 6000]- 24 



TABLE 5 

MODEL PARAMETERS FOR RUN NUMBER 3 

Spare Item 
Unit Cost 
Total Items 

Operating 
Spares 

Subject to Wearout 
Duration of Simulation Period 
Number of Bases 
Transportation Time 

#1 
#'& 
#3 
#4 

(Depot to Base) 

Repair Facility Flow Time 
Depot 
Base #1 

#2 
#3 
#4 

Stock Levels 
Depot 
Base #1 

#2 
#3 
#4 

Percent Repair (Base=Depot) 

C 
$4500.00 
775 , 675 
550 
225 
675 
2 Years 
4 

240 Hours 
192 Hours 
192 Hours 
192 Hours 

480 ± 100 
520 :!: 80 
520 :!: 80 
520 t Bo 
520 :!: 80 

10 
2 
2 
2 
2 

Repair Capacity 89 - 20 
Depot 5 Units 
Base #1 2 Units 

#2 2 Units 
#3 2 Units 
#4 2 Units 

Failure Rates (MTBF) Exponential 
Base #1 596 

#2 596 
#3 596 

480 ~ 100 
0 
0 
0 
0 

O - 100 
10 Units 

0 Units 
0 Units 
0 Units 
0 Units 

#4 596 
Wearout Rates (MT'l'W') 1i'W'eibullit Mean ,. 2000 • ~ .,, 3 
Procurement Lead Time 1ooot 150 
Quantity (Condemnation Before Procurement) l 
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SIMULATION RESULTS 
280 Days Simulation 

ITEM C 

RUN #3 

1st Result 

% 'l'ime 
Stock Spares Nr o:r MTBF 
Level Available Failures Hours 

DEPor 10 4.o 

BASE #1 2 88e0 1008 420 

#2 2 55oO 621 515 

#3 2 600 232 582 

#4 2 5o0 240 578 

SEares Available Avg Max 
Total Repair Awaiting 

Min Avg Max Repairs Time Hr Repair - -
DEPOT 0 lo2 0 229 403 29 

BASE #1 0 os 2 226 507 2~ 

#2 0 0ol 2 227 492 15 

#3 0 0o2 2 228 475 5 

#4 0 0o3 2 227 493 5 



TABLE 6 (continued) 333 

SIMULATION RESULTS 
280 Days Simulation 

ITEM C 

RUN #3 

2nd Result 

% Time 
Stoclc Spares Nr of MTBF 
Level Available Failures Hours 

=--=="' 

DEPar 10 93 =- .,,..,..,. 

BASE #1 6 95 1121 415 

#2 6 94 1085 426 

#3 6 92 1112 412 

#4 6 96 1093 426 

SEares Availab le Avg Max 
Total Repair Awaiting 

Min Avg Kax Repairs Time Hr Repair 

DEPGr 0 10 3240 482 231 

BASE /fl «rJ; 8 

#2 0 7 

#3 0 9 

#4 0 8 



The results of two separate operations of the model are reflected for 

each of the items A, B, and C. Refer to Tables 2, 3, and 4 for a 

summary of the simulation results. 

It can be seen that for item A, spare stock should be distributed as 

finally shown in the second result to achieve approximately a 95% 

availability of spares over all bases. Outstanding in the first result 

is the fact that only 90% availability of spar es occurred at Base #4. 

Further, it is noteworth y at Base #1 that spares reached a zero level, 

and also fluctuated to a maximum of 12 units at one point in time in 

the simulation. This fact demons t rates the occurrence of a wide 

variability of available spares. However, the system still requires a 

spares stock position of six units to maintain a hi gh level of fill rate 

over a long period of time. 

The resul t s for item B shows in the sec ond operation of the model that 

an additional 78 spare items are required and that a spares level 

increases from three to five units provides tor an approximate overall 

.L'ill rate of 90%. Notice the first results which included 22 tota l 

spares and stock level of three spares for eacn base, indicated 

extremely low fill rates, 66% for Base #1, 6.1% for Base #2, 2.1% for 

Base #3, -and 2 .1% for Base #4. The 1arge quantity of uni ts awaiting 

repair suggest that improvement .i.rf f,,, c.:i.r times could result J.si .Less 

total spare requirements. The d~L:1 sion to increase capability of repair 

woul9 require further analysis comparing the cost of increased spares 

with the cost of increased repair facilities • 
.. ,..,.. .. 
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· The results for item C i.~d~cate that with a base repair capability and 

a total of 125 spares in the system a low unsatisfactory percent of spares 

avaiiability occurs. The s econd result reflects that by increasing to a 



large quantity of 225 spares and fnrther utilizing only depot repair 

capability near 95% availability of years is possible. However, the 

large queue of 231 units awaiting repair suggest that the total spares 

requirement could be reduced significantly if improvement in depot 

repair time could be achieved. Subsequent runs of the model would 

further evaluate this condition and establish the proper ratio for a 

balanced condition. 

35 
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DISCUSSION 

The ever increasing complexity of military operations due to rapidly 

changing technology under the constraints of limited resources has 

forced managers to look for new methods by which more alternatives can 

be considered in making logistics decisions. Some of the recent 

techniques of logistics evaluation has been the construction of mathe­

matical models to represent some elements of a real operating situation. 

A computer manipulation of these models is known as simulation. It 

enables the user to compress time and examine the effects of changes in 

variables incorporated in the model over simulated time. In this thesis 

one type of simulation was examined in an attempt to establish this 

method of evaluation as a useful tool for operating managers. 

Items selected as samples to test the simulation model are high cost, 

high activity items, wherein considerable dollar investments are 

necessarily involved in any policy decision. Precision in simulating 

the true environmental effects of these items becomes absolutely 

necessary and the precise statistical models utilized to simulate fail­

ure and wearout are obviously an integral part of the model. As a 

result of analyzing the output from this simulation model it is conclud­

ed that an inventory manager could see the impact in terms of percent 

of time spares are available, percent of time stockout occurs, the 

minimum and maximum quantities available, the effects of repair times 

and capacities, when he applies the various decision rules. 

The expanded use of this modelling technique has the potential to 

give managers a clearer understanding of the alternative courses of 

action or policies in complex problem situations involving risk and 

uncertainity where anal ytical methods cannot be used. 
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SUMMARY 

This paper has presented a simulation model with capability to 

consider both random and mortality failures for application to the 

decision making process by managers of logistics functions. The results 

suggest that computer sinrulation is a tool for managers that is avail= 

able for perhaps a wide range of logistics problems where analytical 

solutions cannot be forrred in a reasonable times and where it is 

desirable to test decision rules prior to deployment. Since this paper 

only covered an inventory use of computer simulation in logistics 

management an examination of other forms of simulation .~d other 

problems may establish a basis where these techniques would prove 

profitab l e to many types logistics managenent problems. 

An obsta cl e that is limiting the use of simulation is now perhaps 

being overc omeo This obstacle is the substantial time s -eost» and 

effort needed to develop the statistical models and prepare the compu= 

ter pr ogr ams. This paper presented a model programmed in General 

Purpose Systems Simulation II (GPSS II) language. There are now new 

programming languages being developed to aid this process 9 i.e. 9 

SIMSCRIPT9 SIMPACT, and DYNAMO. 

Development of simulation should proceed within an organized frame­

work of construction or within a master plan to permit later integra= 

tion of subsystems into a higher order system simulation., The system 

must be simulated with as many interrelationships as exists in the 

real operational world., If these techniques can reduce the quantity of 

an item stocked or eliminate stocking of an item, then the dollar 

savings realized would more than offset the increased cost of applying 

more intensive and improved inventory decision techniques. 
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It is recommended that before a decision is made to adjust the 

stock levels certain costs must also be consi.deredo For example 9 

consideration must be given to the possibilities of deferring p~cure- · 

ment action, calculation of the risk of a stockout versus holding costs, 

expected procurement lead time, expected life duration, and equipment 

cost versus cost of repairo As a result of these additional cost 

considerations a more economic inventory level of high cost items will 

resulto 
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TABLE 7 

GENERATING FUNCTIONS 

12 FUNCTION RNl C59 WEIBUIJ, B 3 
o o .00099.10000.00199.12599.00399.15874.00598.18111.00797.20000 
.00896.20800.00994.21544.04877.36840.09516.46415.13929.53132.18126.S848o 
.22119.62996.25918.6694J.29531.70472.32967.76380.36237.76630.39346.79370 
.42304.81932.45118.84343.47795.86623.50341.88790.52763.90856.55067.92831 
.57258.94726.59342.96548.6132S.98304.632121.oooo.6So061.0163.667121.0322 
.683361.0476.698811.0626.713491.0772.727461.0913.740751.1052.753401.1186 
.765421.1318.776861.1447.798101.1696.817311.1934.834701.2164.850431.2385 
.864661.2599.877541.2805.889191.3005.899741.3200.917911.3572.932791.3924 
.944971.4260.950211.4422.969801.5182.981681.5874.988891.6So9.993261.7099 
.997521.8171.999081.9129.999662.oooo.999872.osoo.999952.1544 
13 FUNCTION RNl C59 WEIBUIJ., B 2 

O o .00099.03162.00199.04472.00399.o6324.00598.07745.00797.08944 
.00896.09487.00994.10000.04877.22360.09516.31622.13929.38729.18126.44721 
.22119.soooo.25918.54772.29531.59160.32967.63245.36237.67082.39346.70710 
.42304.76161.45118.77459.47795.8o622.50341.83666.S2763.86602.55067.89442· 
.51258.92195.59342.94868.61325.97461.632121.oooo.6So061.0247.667121.0488 
.683361.0724.698811.0954.713491.1130.727461.1402.740751.1619.753401.1832 
.765421.2042.776861.2247.798101.2649.817311.3038.834701.3416.850431.3784 
.864661.4142.877541.4491.889191.4832.899741.5166.917911.5811.932791.6432 
.944971.7029.950211.7321.969801.8708.981682.oooo.988892.1213.993262.2361 
.997522.4495.999o82.6457.999662.8284.999873.oooo.999953.1623 
JOB GAMMA ANALYSIS 
22 FUNCTION RNl, C77 GAMMA B 2 X 100 

o o .00005 1.0 .00121 5.o .0046810.0 .011s2zo.o .0369430.0 
.0615540.0 .090215000 .1057355.0 .1219060.0 .1386265.0 .1557970.0 
.1733575.0 .1912180.0 .2092985.o ~2275290.0 .26424100.0 .30097110.0 
.33738120.0 .37318130.0 .40816140.0 .44217150.0 .47506160.0 .50676170.0 
.53716180.0 .56625190.0 .59398200.0 .62037210.0 .64544220.0 .66914230.0 
.69155240.0 .71272250.0 .73263260.0 .75132270.0 .76892280.0 .78542290.0 
.80084300.0 .81529310.0 .82881320.0 .84142330.0 .85317340.0 .86410350.0 
.87433360.0 .88382370.0 .89262380.0 .90082390.0 .90840400.0 .91549410.0 
.92200420.0 .92808430.0 .93374440.0 .93889450.0 .94372460.0 .94813470.0 
.95227480.0 .95605490.0 .95956500.0 .96279510.0 .96578520.0 .96856530.0 
.97107540.0 .97342550.0 .97558560.0 .97756510.0 .97939580.0 .98109590.0 
.98264600.0 .98601625.o .98875650.0 .99093615.o .99272700.0 .99532750.0 
.99694800.0 .99810850.0 .99880900.0 .99926950.0 .999451000.0 
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TABLE 8 

OOTPUT 

WEIBULL GENERATING FUNCTION 

ENTRIES IN T.Am.E MEAN ARGUMENT STANDARD DEVIATION 
10135 1290958 68.938 

UPPER OBSERVED PER CENT CUMULATIVE 
LIMIT FREQUENCY OF TOTAL PERCENTAGE 

0 0 .oo .o 
10 65 .64 06 
20 18J . 1.81 2.4 
30 226 2o23 4o7 
40 333 3.29 8.o 
50 369 3.64 11.6 
60 464 4.58 16o2 
70 496 4 .. 89 21.1 
80 509 5o02 26.1 
90 591 5 .• 89 32o0 

100 589 5.81 3708 
110 588 5.80 4306 
120 569 5 .. 61 49o2 
130 563 5.56 5408 
140 528 5.21 60.0 
150 520 4.63 65.l 
160 469 4.63 69,.7 
170 410 4o05 73.8 
180 407 4.02 11.a 
190 358 3.53 81.3 
200 300 2.96 840) 
210 254 2.51 86.8 
220 235 2.32 89.!l 
230 209 2.06 9lo2 
240 187 1.85 93o0 
2.50 1.54 1..52 94.5 
260 101 1.00 95.5 
270 96 095 96.$ 
280 77 .76 97o2 
290 64 .63 97o9 
JOO 51 .50 98.4 

OVERFLCM 164 1.62 10000 



TABLE 9 

OUTPUT 

WEIBULL GENERATING FUNCTION 

ENTRIES IN TABLE 
10002 

MEAN ARGUMmT 
131.680 

UPPm OBSERVED 
LIMIT FREQUENCY 

0 0 
10 11 
20 24 
JO 62 
40 163 
50 165 
60: 269 
70 366 
80 462 
90 564 

100 649 
110 437 
120 1019 
J.30 733 
.. l40.· 800 
150 7,80 
160 765 
170 650 
180 507 
190 460 
200 327 
210 256 
220 178 
230 119 
240 96 
250 54 
260 27 
270 31 
280 14 
290 10 
JOO 4 

REMAINING FREQUENCIES ARE ALL zmo 

PER CENT 
OF TOTAL 

.oo 

.n 

.24 

.,62 
1.63 
1.65 
2.69 
3.66 
4.62 
5.64 
6 .. 49 
4.37 

10.19 
7.,33 
8.oo 
1.80 
7.65 
6.50 
5.01 
4.60 
3.27 
2.56 
1.78 
1.19 

.96 

.54 

.27 

.31 

.14 

.10 

.04 

STAND.ARD DEVIATION 
48.148 

CUMULA. TI VE 
PI!ltCENTAGE 

.o 

.1 

.3 
1.0 
2.6 
4.2 
6.9 

10.6 
15~2 
20.9 
27.3 
31.1 
41.9 
49.2 
57.2 
65.o 
12.1 
79.2 
84.2 
88.8 
92·.1 
94.7 
96S 
97~6 
98.6 
99.1 
99.4 
99.1 
99-.9 

100.0 
100.0 
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ASSIGN RANDOM 
WEAROl'T TIME 

TABLE 
FAILURE 
TIMES 

TABLE 10 

COMPOUND GENERATION 
SIMULATION FLciW DIAGRAM 

IDE.i~TI.r-Y 
FAILURES. 

2 

222 

239 
8, V9 

1 

ALL 

AWAIT 
FAILURE 

IDENTIF.{ 
FAILURE 

TIME 

633 

20 

45 

ENTER. OPERATING 
FACILITY CAPACITY X 

ASSIGN RANDOM FAILURE 
TIME TO ALL TRANSACTIONS 

INCREMENT CLOCK TIME 

31 

TABLE ALL 
FAILURES AND 
WEAROUTS 

AWAIT 
WEAROt T 

IDENTIFY 
WEAR01Yr 
TIME 

TAB1E 
WEAR.OUT 
TP·lES 

LEAVE OPERA'ITNG FACILITY 



TABLE 11 

CARD CHANGES OF MODEL PARAMETERS 

Run Number 2 Item B 

JOB NR ~ GAMMA WEAROUT 
.. 

22 FUNCTION RNl 077 GAMMA. B2 x 100 

.00005 1.0 .00121 5.o .0046810.0 .0175220.0 .0369430.0 

.0615540.0 .0902150.0 .1057355.0 .1219060.0 .1386265.o .1557970.0 

.1733575._o .191a180.o .2092985.o .2275290.0 .26424100.0 .30097110.0 

.33738120.0 .37318130.0 .40816140.0 .44217150.0 .47506160.0 .50676170.0 

.53716180.0 .56625190.0 .59398200.0 .62031210.0 .64544220.·o .66914230.0 

.69155240.0 .71272250.0 .73263260.0 .7,132270.0 .76892280.0 .7&:5b.2290.0 

.80084300.0 .81529310.0 .82881320.0 .84142330.0 .85317340.0 .86410350.0 

.87433360.0 .88382370.0 .89262380.0 .90082390.0 .90840400.0 .91549410.0 

.92200420.0 .92808430.0 .93374440.0 .93889450.0 .94372460.0 .94813470.0 

.95227480.0 .95605490.0 .95956500.0 .96279510.0 .96578520.0 .968~6530.0 

.97107540.0 .97~42550.0 .97558560.0 .97756570.0 .97939580.0 .98109590.0 

.98264600.0 .9860162,.0 .98875650.0 .99093615.o .99272700.0 .995321 

.99694800.0 .99810850.0 .99880900.0 .99926950.0 .999451.ooo.o 

9 VARIABLE FN5*K225&1000 

22' VARIABLE FN22*126,3&KlOO 

1 CAPACITY 4 

2 CAPACITY 3 

3 CAPACITY 3 

4 CAPACI?t 3 

5 CAPACITY 3 

46 



TABLE 11 (continued) 
47 

16 CAPACITY 6 

20 CAPACITY 72 

JO CAPACITY 72 

40 CAPACITY 72 

50 CAPACITY 72 

2 QUEUE 99 3 

5 GENERATE 155 1 6 

6 ASSIGN 7 va2 15 

10 GENERATE 155 1 l5 
11 ASSIGN 1 K288 l2 

l2 ASSIGN 2 K264 13 

13 ASSIGN 3 K264 14 
14 ASSIGN 4 K264 20 

170 ENT:m 16 180 480 48 

46 SPLIT 711 790 

790 ADVANCE 791 2160 250 

791 PRICRITY l 610 

6J4 ASSIGN 4 KO 15 
250 ADVANCE .aoo 260 160 

270 ENTER 9 280 600 120 

350 ADVANCE .200 360 160 

370 ENTER 10 380 600 120 

439 ASSI«. 8 V9 130 



JOB 

9 VARIABLE 

23:, VARIABLE 

1 CAPACITY 

ai CAPACITY 

33 CAPACITY 

4 CAPACITY 

5 CAPACITY 

20 CAPACITY 

JO CAPACITY 

40 CAPACITY 

50 CAPACITY 

2 QUEUE 

5 GENER.ATE 

6 ASSIGN 

17 ENTER 

46 SPLIT 

6.34 ASSIGN 

790 ADVANCE 

791 PRICRITY 

270 ENTER 

310 ENTm 

470 ENTER 

510 ENTER 

TABLE l2 

CARD CHANGES OF MODEL PARAMETERS 

Run Number 3 Item C 

NR 3 WEIBULL WEAROUT 

FN5*K596&1000 

FN12*2257 

10 

a' 

2 

2 

2 

137 

137 

138 

138 

99 3 

675 1 6 

7 V2.3 15 

16 180 480 

711 790 

4 KO 15 

791 1000 

1 610 

9 280 520 

10 .380 520 

11 480 520 

12 580 520 

48 

100 

150 

80 

80 

80 

80 
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COMPUTER PROGRAM 
LOC NAME X. Y Z SEL NBA NBB MEAN MOD REMARKS 

JOB BILL HANSEN RUN NR 1 OPT ST 
1 FUNCTION RNl 025 NCEMAL 

O -50000o00003-40000.00135-30000.00621-25000~02275-20000.o6681-15000 
.11507-12000015866-l0000.21186-8000 .27425-6000 .).4458-4000 042074-2000 
.500000 .579262000 .655424000 .125156000 .788148000 .8413410000 
.8849312000 .9331915000 .9772520000 .9937925000 .9986530000 .9999740000 
1.0000 50000 

2 FUNCTION va 02 
O O 99999 99999 
5 FUNCTION RN1 C24 

0 0 .1 104 .2 
.6 915 .1 1200 075 
o9 2300 092 2520 094 
.98 3900 .99 4600 .995 
1 CAPACITY 4 
2 CAPACITY 6 
3 CAPACITY 4 
4 CAPACITY 4 
5 CAPACITY 4 
9 CAPACITY ~ 
10 CAPACITY 2 
11 CAPACITY 2 
12 CAPACITY 2 
16 CAPACITY 4 
20 CAPACITY 36· 
30 CAPACITY 36 
40 CAPACITY 36 
50 CAPACITY 36 

lVARIABLE Pl/K240 
2VARIABLE P2/Kl92 
)VARIABLE P3/Kl92 
4VARIABLE P4/Kl92 
6V.ARIABLE Ffil*K48000 
7VARIABLE llOOOD*Kl.00 

EXPONENTIAL X 1000 
222 .J 355 o4 
1380 .8 1600 .84 
2810 .95 2990 .96 
5300 .998 6200 .999 

8VARIABLE V6/V7+K05760 
9V.ARIABLE FN5*K75/Kl000 

lOVARIABLE FN5*KlOO/Kl.OOO 
llVARIABLE FN5*K125/nooo 

20 VARIABLE Cl 
1 GENERATE 
2 QUEUE 
3 ADVANCE 
5 GENERATE 
6 ASSIGN 
10 GENERATE 
15 QUEUE 
21 GATE 
190 PRI<RITY 
11 .ASSIGN 
12 .ASSIGN 
13 ASSIGN 

99 

7 

1 
SNFl 
0 
1 
2 
) 1 

3 

10 
FN2 
164 

K240 
Kl92 
IG.92 

1 

1 
ALL 

2 . 
Jt 
a 
6 
15 
15 
21 
190 
11 

·12 
.l3 
14 

25 

509 .5 690 
1830 .86 2120 
3200 097 3500 
7000 .9991 8000 

lL 
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LOC NAME X y z SEL NBA NBB MEAN MOD REMARKS. 
l4 ASSIGN 4 ll92 20 
20 STCRE 1 ALL 222 ~25 
160 QUEUE 10 170 
170 ENTER 16 180 240 20 
180 LEAVE 16 185 
185 SPLIT 191 19~ 
191 PRIORITY 1 15 
192 TERMINATE R 
291 PRIORITY 2 200 
200 QUEUE 2 w 
22' STORE :r 2zz· 

4lCOMPARE P7 L PB 46 
46SPLIT 710 711 

710SAVEX 10+ Kl BOTH701 70J. 
711TER.MINATE $ 
701COMPARE no E K6 702 
702SAVEX. 10 KO 610 
70Jl'ERMINATE 
610ASSIGN 7 KO 614 
614ASSIGN 8 KO 620 
620ASSIGN 1 KO 624 
624ASSIGN 2 KO 629 
629ASSIGN 3 KO 634 
634ASSIGN 4 KO 715 
715SPLIT 720 725 
720SPLIT 740 745 
725SPLIT 750 755 
740SPLIT 790 790 
745SPLIT 790 790 
750SPLIT 790 790 
755TERMINATE 
790ADVANCE 791 i' 1420:' ·a:40 
791PRIORITY 1 15 

22Z' ENTER. 20 239 *l 
239 ASSIGN 8 V9 630 
630 ASSIGN 8+ V20 641 
641 QUEUE 51 642) 644: 
642 COMPARE P7 E KO 646 
643 COMPARE PB LE P7 646 
644 QUEUE 53 647 
646 QUEUE 52 645 
645 COMPARE PB LE V20 632 
647 COMPARE P7 LE V20 631 

631TABULATE 1 633 
632TABULA.TE 2 231 
633:ll'ABULA.TE 10 240 

231 SAVEX: 1+ Vl 23133 
233ASSIGN 1 KO 234 
234ASSIGN 2 KO 235 
235ASSIGN 3 KO 236 
2J6ASSIGN 4 KO 6333 

240 LEAVE 20 BOI'H 41 661 
661ASSIGN 8 KO 250 
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LOC NAME X y z SEL NBA NBB MEAN MOD REMARKS 
250 ADVANCE .100 260 160 
260 QUEUE 20 270 
270 ENTER 9 280 120 20 
280 LEAVE 9 290 
290 SPLIT 291 292 
292 TERMINATE R 
391 PRIORITY 2 300 
300 QUEUE 3 23 
23 STORE 3 223 
223 ENTER 30 3:a-9 *Z' 
339 ASSIGN 8 V9 73D 
730 ASSIGN 8+ V20 741 
741 QUEUE 54 ALL 742 744 
742 COMPARE P7 E KO 747 
743 COMPARE P8 LE P7 747 
744 QUEUE 56 748 
747 QUEUE 55 746 
746 COMP.ARE P8 LE V20 732 
748 COMPARE P7 LE V20 731 
232 SAVEX 2+ V2 333 
731 TABULATE 3 733 
732 TABULATE 4 232 
73:I TABULATE ll. 340 
33J, ASSIGN 1 KO 334 
334 ASSIGN 2 KO 33:5 
335 ASSIGN 3 KO 336 
336 ASSIGN 4 KO 733' 
340 LEAVE 30 BOTH 41 662 
662 ASSIGN 8 LP 350 
350 ADVANCE .100 360 160 
360 QUEUE 30 370 
370 ENTER 10 380 120 20 
380 LEAVE 10 390 
390 SPLIT 391 392 
392 TERMINATE R 
491 PRIORITY 2 400 
400 QUEUE 4 24 
24 STORE 4 224 
224 ENTER 40 439 *3 
439 ASSIGN 8 VlO 130 
130 ASSIGN 8+ V20 770 
770 QUEUE 57 ALL 771 773 
771 COMPARE P7 E KO 775 
772 .COMPARE P8 LE P7 775 
775 QUEUE 58 774 
774 COMPARE P8 LE V20 132 
773 QUEUE 59 776 
776 COMPARE P7 LE V20 131 
50 SAVEX 3+ VJ 433, 
131 TABULATE 5 133' 
132 TABULATE 6 50 
133 TABULATE 12 440 
43J ASSIGN 1 KO 434 
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LOC NAME X. y z SEL NBA NBB MEAN MOD REMARKS 
434ASSIGN 2 KO 435 
4(35ASSIGN 3 KO 436 
436ASSIGN 4 KO 133 
U0LEAVE 40 BOTH 41 663 
663ASSIGN 8 KO 450 

450 ADVANCE .,.100 460 160 
460 QUEUE 40 470 
470 ENTER ll 480 120 20 
480 LEAVE 11 490 
490 SPLIT 491 492: 
492 TERMINATE R 
591 ffiIORITY 2 500 
500 QUEUE 5 25 
25 STORE 5 225 
225 ENTER 50 539 *4 
539 ASSIGN 8 Vil 530 
530 ASSIGN 8+ V20 780 
780 QUEUE 61 AIL 781 783 
781 COMP.ARE P7 E KO 785 
782 COMPARE PB LE P7 785 
785 QUEUE 62 784 
784 COMPARE P8 LE V20 152 
783 QUEUE 63 786 
54 SAVEX 4+ V4 533-
786 COMPARE P7 LE V20 151 

151TABULATE 7 153 
152TABULATE 8 54 
153TABULATE 13 540 
53},ASSIGN 1 KO 534 
534ASSIGN i KO 535 
535ASSIGN 3l KO 536 
536ASSIGN 4 KO 153 
540ASSIGN 50 BOTH 41 664 
664ASSIGN 8 KO 550 

550 ADVANCE .100 560 160 
560 QUEUE 50 570 
570 ENTER 12 580 120 20 
580 LEAVE 12 590 
590 SPLIT 591 592 
592 TERMINATE R 
1 TABLE IA 0 50 100 
2 TABLE IA 0 10 100 
3 TABLE IA 0 50 100 
4 TABLE IA 0 10 100 
5 TABLE IA 0 50 100 
6 TABLE IA 0 10 100 
7 TABLE IA 0 50 100 
8 TABLE IA 0 10 100 
10 TABLE IA 0 50 100 
11 TABLE IA 0 50 100 
12 TABLE IA 0 50 100 
13 TABLE IA 0 50 100 

START 20 
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