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ABSTRACT 

An Exposition on Bayesian Inference 

by 

John Laffoon, Master of Science 

Utah State University, 1967 

Major Professor: Dr. David White 
Department: Applied Statistics 

The Bayesian approach to probability and statistics is 

described, a brief history of Bayesianism is related, differences 

between Bayesian and Frequenti st schools of statistics are defined, 

protential applications are investigated, and a literature survey is 

presented in the form of a machine- sort card file. 

Bayesian thought is increasing in favor among statisticians 

because of its ability to attack problems that are unassailable from 

the Frequentist approach. It should become more popular among 

practitioners because of the flexibility it allows experimenters and 

the ease with which prior knowledge can be combined with experimental 

data. 

( 82 pages) 



INTRODUCTION 

To the majority of the 21,000 professional statisticians in the 

U. S. statistics is a sci en ce, which, like any other science, succeeds 

only to the extent that it accurately describes the past and predicts the 

future. Through the years, there has been much debate as to how to 

describe and predict properly. Today, discussions between "Frequentists'' 

and "Baye sians" over viewpoint and methodology, are reminiscent of 

the disputes in the 1930 1 s between the followers of Sir Ronald A. Fi sh e r 

and the adherents of Egon Pearson and J erzy Neyman. 

Inev itab ly the statistician working on a practical problem has 

to rely to a certain extent on human judgment, ei ther his own or that 

of an outside expert. In sequential analy sis, for example, someone 

has to estimate the loss entailed in making an erroneous d ecision . 

Once such a judgment has b een made, classical frequentist statis­

ticians try to apply their techniques with utter impartiality. 

Bayesian statisticians scorn such impartiality and treat hunches 

and educated guesses as if they were part of the ex perim ental information. 

Personal conviction is an integral part of probability to the Bayesians. 

A simple example of the Bayesian approach can b e shown in 

t es ting a coin. A Bayesian would first look at the coin and make an 



es ti mate of the probability that it would land heads up and then modify 

this prior judgment with statistical evidence gained by tossing the coin 

a number of times. Thus the Bayesian has a prior idea of the results. 

It is in the use of a mathematical process of combining prior judgment 

with experimental data developed by Thomas Bayes, an 18th century 

cleric, that Bayesians get their name. 

For a more practical example, assume that a factory has two 

machines that produce screws. Experience has shown the proportion 

of defective screws that each machine is likely to turn out, p
1 

and p 2 . 

If a batch of screws from the factory happens to include, say five 

percent defectives, what is the probability that it came from the first 

machine? This is the sort of question to which Bayes' s formula 1s 

applicable, and no one quarrels seriously with its use in such situations. 

This example provides an opportunity to differentiate between 

the normal statement of frequentist and Bayesian statistical problems. 

Frequentist Problem: A machine is known, from long ex-
perience to produce a fraction P of imperfect products. What 
is the probability that a fraction p of the 11ext n products 
will be imperfect. ( Berkson, 1930, p 42) 

Bayesian Problem: The performance of a machine is unknown 
or known with uncertainty. n products are examined and 
fraction p found to be imperfect. What is the probability the 
machine generally turns out a fraction P imperfect products. 

(Berkson, 1930, p 42) 

In the Frequentist problem P is treated as a fixed value; in the 

Ba yes ian problem, as a random variable. 

2 
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The Bayesian statistician has a great deal of leeway in design­

ing experiments and gathering data. If prior opinion is strong and the 

first few experimental results seem to support it, a Bayesian may call 

off further experimentation. In contrast, classicists insist that the 

whole experiment must be planned in advance and rigidly adhered to. 

If, for example, a geneticist is trying to estimate the proportion of 

fruit flies that have red eyes, he may observe 130 flies and find that 

twenty are red-eyed. The frequentist wants to know: Did he plan in 

advance to examine 130 flies? Did he intend to examine flies until h e 

had seen twenty with red eyes? Or did he catch flies until he could 

find no more? The answer to these questions would determine the 

conclusion that classical statistics would deliver. But to the Bayesian, 

the original plan of the experimenter is not important and does not 

affect the conclusion. He can stop whenever he is satisfied with the 

strength of his convictions, and even before that he can quote odds on 

the outcome. This flexibility has attracted adherents and created foes 

(Boehm, 1964). 

In addition, Bayesian approaches permit solution of problems 

which are difficult or unsolved from a frequentist approach,provide 

insight into the axiomatic basis of statistics, and clarify some of the 

interpretations that bother students. Because of these reasons, it 

seems propitious to develop a base for investigating Bayesianism. 

This thesis relates the history of Bayesian thought, investigates 
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problems with Bayesian approaches, and gives a comprehensive 

bibliography of Bayesian writings. 



SCHOOLS OF STATISTICAL THOUGHT 

History of Bayesianism 

Thomas Bayes 

Any history of Bayesian statistics seems to begin with Thomas 

Bayes, an 18th century English cleric. In a paper written in 1763, 

but published after his death, Bayes developed an equation for combin-

ing prior knowledge with experi mental data to make probability state-

ments. Bayes, himself, was not a Bayesian, but his Theorem is 

central to the Bayesian approach and his Postulate became a center 

of dispute with the frequentis ts. His theorem is best described by 

reconstructing his exa1nple. 

Using binomial data--success or failure-- Bayes assumes that 

prior to and independent of the experimental observations, the unknown 

probability of success, p, is a random variable of known distribution 

f(p). If the probability of p falling in the range dp is f(p)dp, then the 

probability of the event p combined with the outcome of the obser-

vation of a successes in n trials is: 

a}(n-a..)! 

This expression divided by its integral from O to 1 (all 

possible values of p) we call "posterior" probability of p. Direct 

5 



integration of this posterior probability between any limits, p 1, Pz, 

allows the test of a compound hypothesis. 

stated: 

Bayes' example was an idealized billiard table. As Bayes 

The square table ABCD be so made and levelled that if either 
of two balls O or W be thrown upon it, there shall be the same 
probability that it rests upon any one equal part of the plane as 
another, and that it must necessarily rest somewhere upon it. 

6 

I suppose that the ball W be first thrown and through the point 
where it rests a line shall be drawn parallel to the ends of the 
table and that afterwards the ball O shall be thrown N times, 
and that its resting beyond th e lin e should c onstitute a succ e ss , 

(Fisher, 1959, p 27) 

The first ball, W, was thrown to select an observation from 

the prior distribution. If p is the proportion of the table beyond the 

line drawn it is inferred that 

for all values of p
1

, and therefore that the probability that p should 

lie within the range dp is equal to dp, so the f(p) in the previous 

analysis may be equated to unity (Fisher, 1959). 

Bayes' Theorem led to an apparently harmless probability 

equation used by Bayesians. If we let X be a variate from a 

population with a parameter 0, then 

P(0 IX) = P(X j 0) P(0) / P(X) 

will predict the value of 8 once the sample X is taken. This is the 

product of a predetermined (prior) probability of 8, P ( 8), and an 

estimate of X given 0, P(X j 8). P(X) is the normalizing term. 
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The mechanics of this equation are accepted by all statisticians, 

however, the way of obtaining the prior probability is a point of 

contention. Bayes stated a postulate known as "Bayes postulate", or 

the "indifference principle", that in the absence of better knowledge, 

any allowable value is equally probable, and thus a locally uniform 

distribution can be us ed. 

In many cases, e.g. estimating the mean of a normal dis­

tribution where - ()<> ~ x ~ oa , a uniform prior is not defined by 

standard methods. In the early days of statistics, this did not seem 

to bother the practitioners. Fisher ( 1936) referred to the fact that 

Laplace was thoroughly Bayesian and used Bayes postulate in his 

Principle of Succession. Poisson used both Bayesian and frequentist 

methods. Even Karl Pearson did not fully dis credit Bayes' inverse 

probability approach. 

The Demise of Bayesian Thought 

It is unfortunate that Bayes' postulate created disagreement in 

the statistical world since Bayes believed that prior distributions should 

be obtained from the real world - - auxiliary experiments or previous 

experience. He used the uniform distribution only when prior know-

ledge was absent or vague. Laplace (Fisher, 1959) believed prior 

probabilities were axiornatic and led later followers of Bayes to 

misuse his postulate by insisting on using uniform prior distributions. 

Uniform priors were so entrenched that when Carl Gauss attempted to 



8 

use them and went awry, he discarded the entire use of priors rather 

than define a more reasonable prior density (Fisher, 1936). Other 

statisticians and mathematicians of the period including Venn, Chrystal, 

and Boole, following Gauss' lead,destroyed confidence in the Bayesian 

approach as well as the source of prior distributions. For years, the 

frequentist school reigned supreme. 

Fiducial Inferenc e 

In the early 1930's however, discrimination--assigning an 

individual or object to a category--became a major problem for 

s ta tis ticians. A classical discrimination method was developed by 

Fisher that was, in essence, Bayesian. 

Fiducial Inference says basically that, given a population with 

an unknown parameter, 8, it is possible to make an inference about 

the parameter by a sufficient statistic drawn from the population. 

The inference describes the range of values of the parameter which 

could produce the sample statistic with a given probability. That is, 

given a sample xi with mean;; and variance s 2 there is some range for 

the population mean,_µ.. , which could produce the x with a probability 

« = p [<x-,,u) /s] 
The fiducial argument sounds much like Bayesian inference. 

This similarity has led men such as Jeffreys ( 1957) to solve fiducial 

problems from a Bayesian point of view. There are, however, 

differences between the two methods and theoretically, situations 1n 

which one, but not the other method is possible. 



Two instances were given by Fisher ( 1935, p 392-393) 

1. In fiducial inference, the distribution of the parameter 
9 does not necessarily exist nor does it have a prior 
distribution. In Bayesian thinking, the form of the 
distribution must be assumed. 

2. Sufficient estimatorsl or sets of estimators which 
together retain all of the information are required to 
apply the fiducial method. The fiducial method, 
according to Fisher, is always based on a sufficient 
statistic and more immediately on a pivotal quantity 1 

to avoid different inferences based on the same data. 
Bayesian arguments can be applied without sufficient 
or ancillary statistics. 

Despite his enumeration of differences between Fiducial and 

Bayesian approaches, Fisher hims elf stated that Fiducial probability 

"is entirely identical with the classical probability of the early 

writers, such as Bayes." (Fisher, 1956, p 186) This has been 

supported by Lindley (1958), Sprott (1~60), and others. In addition, 

most statisticians refer to both methods as "Inverse Probability" 

without making distinction between them. 

If a Bayesian probability a priori is available we shall use the 
method of Bayes. If no prior probability of the form needed for 
Bayes' theorem is available we shall apply a fiducial argument 
(Fisher, 1959, p 25-26). 

Bayesian Revival 

An outstanding Bayesian of the late 1930's was Harold 

Jeffreys. Others, though not admitting it, let Bayesian thinking 

color their work. 

1
see Appendix for Fisher's definition of these terms. 



Wald, who decries the Bayesian school, nevertheless used a 

Bayesian approach in his sequential sampling and optimum stopping 

rules by his willingness to let the data change his experimental 

procedure, his refusal to be bound by completely preplanned ex-

periments, and his considering the unknown parameter as a random 

variable. He avoided uniform priors by using the results of one 

sample as the prior density for the next sample in sequence. Wald, 

thus removed the stigma of Bayes I Postulate and prepared the road 

for a Bayesian revival. 

10 

The full revival of Bayesian thought occurred with a publication 

by Leonard J. Savage ( 1954) which developed an axiomatic basis for 

statistics. As usual, however, Savage was not original in his 

development, but, according to Lindley ( J 965), derived his work 

from that of Ramsey (1931), deFinetti (1937) and the appendix to 

von Neumann ( 1947). Many axiomatic bases have since been developed. 

One passed on by Lindley ( 19 65) is 

Axiom 1 '1 ~ p(AIB) ~ I and p(A{A.) ~ I 

Axiom 2 If the events in An are exclusive given 

B then p(f A.,,/B) = ¼ p(A,i{B) 

Axiom 3 f> ( c I A. , 13) p (A ( B) = f (A, C I 1') 

These three axioms combined with a definition of independence are 

used to prove a basic set of theorems by Lindley ( 1965) including the 

equation commonly referred to as Bayes Theorem: "If p(B) does not 
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vanish then p(A I B) = p(B (A) p(A) / p(B)" or more generally, "If 

An is a sequence of events and Bis any other event with p(B)#O then 

Practical applications waited until 1963. Two outstanding 

examples, Mosteller and Wallace's investigation of authorship of 

the disputed Federalist papers and Feldman's solution to the "Two 

Armed Bandit Problem" will be mentioned later. Workers such as 

Lindley, Box, Tiao, Zellner, and even such classicists as Wolfowitz 

and Fraser are using Bayesian reasoning to approach previously 

unsolved or computationally difficult problems. 

Also, to the history of Bayesian thought belongs every 

statistician who has used a weighting factor which is a function of 

the parameter in question or has let the data influence the procedure 

of his experiment. 



Philosophical Views of Probability 

Prevailing Views 

Probability has several interpretations --probability as relative 

frequency, probability as logical necessity, and probability as degree 

of belief. These are referred to as the Frequentist, Necessary, and 

Personal views of probability. 

Frequentist view holds that some repetitive events, such as 

tosses of a coin, prove to be in reasonable agreement with the mathe -

matical concept of independently repeated random events, all with th e 

same probability. The magnitude of the probability can be obtained by 

observing repetitions of the events, and from no other source whatso -

ever. Thus, probabilities are independent of your knowledge. 

The difficulty in the frequentist position is that probabilities can 

apply only to repetitive events. It is meaningless to talk about the 

probability that a given proposition is true (this probability can only be 

1 or O according as the proposition is in fact true or false). One can­

not then consider expected outcome or pursue a statistical analysis 

to maximize the expected outcome (Savage, 1954) . 

12 

In the same vein a frequentist claims that you can make probability 

statements about events which have not occurred, but not about events 

which have occurred but about which you know nothing. For example, 

assuming a fair coin, for which the probability of heads is 1 / 2, any 

statistician will claim the probability of flipping a head is 1 / 2. Once 



the coin is flipped, but the result is unknown, some persons balk at 

saying the probability of it being a head is 1 / 2. The coin either 

landed heads or tails so no probability statement can be made (or is 

trivial when applied to coin flipping, but the same reasoning causes 

stumbling when it c:rrn=s to making probability statements about 

propositions. 

Carl Gauss made probability statements about features of the 

real world which can be ascertained only with some uncertainty (e, g,, 

the distance from earth to sun). Pr(x <x
0

) =P could be computed for 

all values O ~ P ~ 1. At any instant there is only one distance to the 

sun, so P is zero if x ~x 0 and, is one if x < x
0

, so probability 

statements about the real world are meaningless. 

Necessary view holds that probability measures the extent to 

which one set of propositions, out of logical necessity and apart from 

1 3 

human opinion, confirms the truth of another. That is, probability is 

a quantitative expression and extension of logical relationships. 

The necessary view has a deficiency described by Wolfowitz m 

that it requires the determination of "logic'' separate from human 

opinion. Human opinion is, however, inevitably involved in the 

logical correlation of propositions. Thus, this interpretation is 

really Personal probability and will not be considered separately. 

Personal view holds that probability measures the degree of 

belief that an individual has in the truth of a particular proposition, 

Three weaknesses exist in the Personal view--all related to 



the ability to specify a unique, quantitative prior probability in the 

absence of symmetry or long-run relative frequencies on which to 

base opinion. Lindley claims you can set a numerical value by 

demanding that any action based on the opinion be rational and con-

sis tent. This raises the second problem in which two reasonable 

individuals, faced with the same evidence, may have different degrees 

of confidence in the truth of the same proposition, i.e., different 

prior probabilities. 

Wolfowitz believes that the personal view has a weakness in 

that the experimenter must have an opinion about every event. In 

effect, he must order all alternatives. Wolfowitz likens this to the 

situation where a young man getting married must not only select the 

gi rl, but also order all other female acquaintances in order of pre -

ference. This is a needless and meaningless restriction to put on 

the experimenter. 

Position of Bayesians 

Bayesians are followers of the Personal view. Most applied 

statisticians have a foot in both Personal and Frequentist camps. 

Wald, Mises, Wolfowitz and others are very comfortable accepting 

elements of both views and avoiding the conflicts of the opposing 

camps. 

Modern Bayesians have answered some of the objections to 

their view of statistics and resolve some of the difference between 

14 



themselves and frequentists. 

Lindley (1965) gives an example of why, though differen t rn 

nature, relative frequency and degree of belief can be express ed by 

the same terms. 

Given two rods, A & B, their lengths (L), placed end to end 

are: 

L(A + B) L(A) + L(B) 

Their masses (M) are: 

M(A +B) = M(A) +M(B) 

Hence length and mass have the same mathematical properties. This 

coincidenc;:e of mathematical properties happens with frequency li mits 

and degrees of belief and they are both called probabilities. Th e 

elements A and B, usually represent events when dealing with 

frequencies and propositions or hypotheses when dealing with d egrees 

of belief. When both interpretations of probability are possibl e th e 

two values agree. For a fair coin our degree of belief that it will 

fall heads in a single toss is 1/2, as is the frequency probabilit y. 

To illustrate the Bayesian answer to the objection of tw o men 

setting different prior probabilities to the same event, carry th e coin 

tossing example one step further and consider the coin flipped. On e 

observer looks at the coin, a second observer does not. Is the prob­

ability of heads now different for each of the two observers? This 

points up a common oversight, not a deficiency of statistics. All 

probability statements are conditional - -conditional on the knowled ge of 

15 
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the observer. The true probabilities are not different, but th e ex-

perimenter s I evidence is. 

Prior probabilities rely on past experience, and it is impossible 

for two persons to have identical backgrounds. For this reason it 

must be realized that every probability is conditional and it is dangerous 

to omit the conditioning event when specifying the probability. The 

Bayesian approach highlights (and solves) this problem by including 

the conditioning statement at all times. 

The frequentist has difficulty in discrimination problems. He 

has two approaches. He generally estimates the parameter with a 

statistic which is not a function of 8. This requires a pivotal statistic. 

For example, in the well-known case where p(x I 8) -N(_)"-,<f"} he uses 

(x, s), the sample mean and standard deviation, and so gets away 

In cases where no minimal sufficient statistic exists, it is 

difficult to see on what principle, other than that of expediency, the 

frequentist could choose his pivotal statistic. He is then reduced to 

introducing a weighting factor p(8) associated with each 8 and choosing 

a region such that p(8) P(x [ 8) is valid, thus producing a 11Bayes 

solution. 11 By agreeing to place more emphasis on some values of 0 

than others he is moving towards a Bayesian outlook. 

A Bayesian can also reduce the argument of the frequentist 

against making a probability statement about a proposition or past 

event by phrasing his proposition 11What is the probability that I will 
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guess the outcome correctly. " Thus a Bayesian can take a frequentist 

approach in terms of right guesses. 

Most Bayesians consider modern statistics to be perfectly 

sound in practice but done for the wrong reason. Lindley contends 

that intuition has saved the statistician from error, and the Bayesian 

view justifies what the statistician has been doing and develops new 

methods that the orthodox approach lacks. 
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On Prior Distributions 

Importance of Priors 

Information about 8 comes from two sources, the data and 

the prior knowledge. It should be obvious that the choice of the prior 

knowledge affects the inference drawn, especially when data is scarce 

and the prior distribution carries great importance in the posterior 

probability. The more precise the data, the greater is the weight 

attached to it; the more precise the prior knowledge the greater is the 

weight attached to it. 

Lindley ( 1965) shows quantitatively the influence of priors ar e 

reduced as the data incr e ases 

THM 1: Let x be N(Bl<f), where cr\s known, and the prior 

... 
d e nsity of 8 be Ny

0
,~). Then the posterior density of e is 

~ 

NV4,., r.) where 
x/cr ... + __µo ICJo _,._ 
'/<r-i. + '/o-:~ 

I!) 

Posterior precision equals the data precision plus the prior precision. 

The posterior mean equals the mean of the data and prior mean, 

weighted with their precision. 

The changes in knowledge take place according to Baye' s 1heorEm, 

which says that the posterior probability is proportional to the product 

of the likelihood (the probability density of the random variables form­

ing the sample) and the prior probability. 



Example of Prior Effect 

An example of the effect of prior distributions can be seen in 

the following example by V. Mises ( 1942). Bacilli counts in a water 

supply were made. From this count an estimate was made of the 

probability of a user getting no bacillus in a standard sized sample. 

Three prior distributions were us ed. 

(1) Equal Frequency 

( 2 ) 

(3) 

P(x=0) = P(x=l) = P(x-2) = ... = P(x=5) = 1/6 
For this prior, the posterior probability 
P(x(ljprior) = 0.73 

Constant Density 

P(x) = x gives posterior P(x < 1 I prior) = 0. 9975 

Previous count 
X = 0 1n 3086 cases X = 3 1n 15 cases 
X = 1 1n 279 cases X = 4 in 5 cases 
X = 2 in 32 cases X = 5 1n 3 cases 

The posterior probability in this case is 0. 99915. (If the prior 

probability is 0, then, no matter what value x is observed, the 

posterior probability is also 0. This is an example of the general 

principle that if some event is regarded as virtually impossible, 

then no evidence whatsoever can lend it credibility.) 

Robust Priors 

A Bayesian approach seems necessary if one is to recognize 

19 

the uncertainty in the assumptions which are built into many statistical 

procedures. Since the prior distribution is known only vaguely, 

Bayesians attempt to select a robust prior in preference to most 
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other considerations. Frequentist oppose this because it may lead to 

wrong conclusions. They have been doing the same thing, however, 

in assuming specific parent distributions, then treating such assumptions 

as if they were axiomatic when, in fact, they are conjectures--subjective 

probability distributions. 

Once having assumed the form of the parent distribution, frequent­

ists derive appropriate criterion, and proceed with an "objective" 

analysis, by pretending to knowledge they do not have and ignoring what 

the sample has to tell about the distribution. For example, assuming 

normality for the comparison of two means they would derive the t­

statistic then justify its use by showing that the distribution is robust 

under non-normality. However, this argument ignores the fact that if 

the parent distribution really differed from the normal, the appropriate 

criterion would no longer be the t- statistic. 

We illustrate this using Darwin's paired data on the heights of 

self-and cross-fertilized plants quoted by Fisher (1935b). An appro­

priately scaled t-distribution centered about the sample mean gives a 

significance level for the hypothesis that 0 = 0 against the alternate 

0 ~ 0 of 2. 485 percent. 

Now instead of assuming normality for the parent distribution we 

assume it to be uniform over some finite range the significance level 

is 2. 388 percent rather than 2. 485 percent. The test of the hypothesis 

that the true difference is zero using the t-criterion is thus very little 

affected by this major departure from normality. 
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If the parent distribution were assumed uniform when it were 

normal, we should not consider the "t" at all. We should use the function, 

(m-0)/h where m = (Ymax /. ymin)/ 2 , h = (Ymax -Ymin)/ 2 and Ymax and 

Ymin are respectively the largest and the smallest of the observations-­

jointly sufficient statistics for (0,o-) on the uniform assumption. The 

significance is now 23. 215 percent instead of 2. 485 percent. 

Thus, the conclusions we can draw assuming a uniform parent 

distribution are very different from those assuming normality, even 

though the t-criterion itself is very little affected. 

Uncertainty in inferences we can make concerning the para­

meter can be resolved by explicity including the knowledge that we have 

about the parent distribution into our formulation. This knowledge 

(from the sample itself and from prior knowledge of the physical set up 

appropriate to the problem) is taken into account in Bayesian formulation. 

Source & Nature of Priors 

Bayes believed that sources for prior distributions were auxiliary 

experiments. In Bayes' billiard table problem, the auxiliary experiment 

is the throw of the first ball. The alternative outcomes for the first 

ball with their probabilities serve as the prior distribution for p. This 

particular experiment resulted in a uniform prior. Bayes stated a 

postulate known as the "indifference principle" that in the absence of 

prior knowledge a locally uniform prior distribution can be used. The 

uniform distribution sets all probabilities equal and is a precise way of 
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saying we have no ground for choosing between the alternatives. Where 

something is known of the distribution, we should incorporate that 

knowledge. For example, in genetics l/2n and with dice 1/ 3, 1/ 6, 

1/36, a re common functions. 

Karl Pearson apparently made the first serious effort to modify the 

prior distribution. He espoused the use of frequency arguments to provide 

the prior distribution. This approach was derided until recently when 

thinking began to swing toward "listening to what the data tells you" - -

even to the extent of using the sample data to modify the prior distribution. 

Uniform Priors 

The uniform distribution of the prior probability was first applied 

to the standard error by Gauss, who found it unsatisfactory. This section 

shows the problem of finding a v alid prior distribution for the standard 

error. According to Jeffrey's uniform estimates of prior distributions 

are not invariant over a semi-infinite range. 2 The invariance argument 

led Jeffreys to propose (loge,-) for a prior over a semi-infinite range. This 

function, however, is not a density function over the entire range. Tradi -

tiona.lly this problem was avoided by redefining the conventions of 

probability or defining the distribution over an extremely large finite 

range. This latter approach satisfies practical situations in which the 

likelihood function is significant only in a finite range. 

2see Appendix for explanatory example of invariance 
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Invariant Estimate. We can use the precision, h, in place of 

the standard deviation, ~ , in our problem. Using ths uniform prior 

distribution for h, however, does not provide the same answer as using 

the uniform prior of CT. (i.e., d er ~ dh). This lack of invariance is 

troublesome because of its effect on the user. 

However, since hO-=(constant) then dt +-~~=O. The prior of er, 

O<IJ"(Oo is taken proportional to ,fr/a- i.e., P(O-/ H) = dc:r 
er 

then o < h <. coand 

i ts prior is proportional to dh/h. These expressions are consistent. 

The same invariance argument holds for the power of 0- If 

I "j n-i / / _.,/ n-1 / _ 
P(CJ"'/ H )oC o-.cr then P(a- H) oCda-" c:{_cr, Dl(f but c,.0-/ <r, ~ However, 

d.cr/ <1"" cC d. <Y 1/ 0-,.., . We now have a distribution which ranges 

over t he positive real line. 

Density Estimate. One diffi c ulty with this distribution is that if 

we take P( o- 1 H) oC. cl o-/ r:r- as a statement that Cf" may have any 

value between O and oo and compare probabilities for finite ranges 

of 0-- , we must us e o.o instead of 1 to denote certainty. However, 

with certainty being 00, the probability thatCJis less than any finite 

number, P(O-~ K), is zero . This is inGonsistent with our assumption of 

no knowledge of (5"" • 

The use of o0 as certainty will give us more trouble in integrating 

the posterior distribution, so a second, more satisfying, but esthetically 

messier solution is used, 

b 
The prior distribution of fr is defined as the limit of fa-p(<;( H) as 

The function does not exist at the limit, but 
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approaches the limit as close as desired. That is, we can select any 

r,+A~ fb 
positive e and find values of a and b such that {_.of o-/o- - a... d.o;fr < € 

for any .6.~ ti!. a. and finite A.b. 

The method creates little problem since an intermediate range 

contributes most of the values and the limits make a negligible con-

tribution. Also, we are ultimately concerned with the posterior 

distribution which is the product of the prior distribution and the 

likelihood function. If the nature of the prior distribution is such that 

the standard dev i at i on is zero, we have defined the location and there 

is no sense of performing the experiement. If the standard deviation 

is infinite, we are in a range where the likelihood is insignificant. 

Actual experimental situations often permit us to assume that 

the prior distribution of the location parameter, e, is locally uniform 

if we can say that the prior is fairly constant in the region in which the 

likelihood is appreciable and at no other point is it of sufficient 

magnitude to become appreciable when multipled by the likelihood. Most 

actual experiments will be conducted only when it is expected that the 

likelihood will exert a much stronger influence in the final result than 

will the prior distribution; otherwise, there is little point in doing the 

experiment. 

General Priors 

A more satisfying approach is to assume our distribution is a 

well-behaved distribution, defined in a manner to approach uniformity. 

For example, a normal distribution, itself with a very large standard 
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deviation, approximates a uniform distribution over a reasonable range. 

A more general approach is to assume the prior to be a member of a 

class of symmetric power distributions which include the normal, 

together with other more leptokurtic and more platykurtic distributions . 

-p (1 I e, o-~ ~) = w exp{-~/ y;el ?../(,+(?)} 

~-I ;::; r [! + -:i_ ( 1-j- ~)] ;;2_[1-f-f(I+ (3)] 0-

-oo < y < °'-::1 O<.O-< oo -ao<{)<Oo -J~~<I 
In particular, we see that when ~::: 0, we have the normal dis -

tribution, when ~= 1, the double exponential, and asrtends to -1, 

our distribution tends to the uniform distribution. 

Box and Tiao (1962) develop this form of priors for normal, 

uniform and double exponential distributions and show how information 

concerning p coming from the sample is included in the formulation 

and eliminates the influence of unlikely parent distributions. 



APPLICATIONS 

Coin Flipping 

The application that revived Bayes' Theorem was dis-

crimination--as signing an object or individual to a category. To 

illustrate the nature of the problem and the Bayesian approach we 

will re sort to a noncontroversial coin tossing example using well 

defined priors. 

You have two coins x
1

, x
2 

= fair coin 

= two headed coin 

You draw a coin, flip it once and get a head H. 

Which coin was drawn? 

Using standard notation: 

p(xl) = 1/2 p(x2) = 1/2 

p(Hlx 1) = 1/2 p(H \ x 2) = 1 

Bayes' Theorem says 

Thus the odds are two to one in favor of having drawn x 2 , rather 

than x 1 

cp (x2 I H) = 
P(x 2 j H) 

P(x 1 j H} 

The coin is thus assigned to the category x
2

. 

= 2 > 1 
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Authorship Assignment 

Assignment problems apply to such varied disciplines as 

archeology, medicine, authorship, education , etc. 

27 

A Bayesian approach was used to determine the authorship of 

twelve of the eighty-five Federalist papers -which of them were written 

by James Madison and which by Alexander Hamilton? (Mosteller, 1964) 

The frequency of key words in the disputeci papers was com pared with 

the frequency of the same words in papers known to have been written 

by each of the two authors. The analysis was first made by a Bayesian 

method witl-i. the prior assumption that Madison and Hamilton were 

e qually likely to have authored each of the disputed papers. Later 

the work was redone with classical techniques that ruled out any prior 

assumpti o n . The Bayesian conclusion was that all twelve papers 

almost surely came from Madison with the most questionable paper 

at odds of eight to one on Madison's authorship. The next weakest had 

odds of 800 to one. Classical techniques indicated strongly that ten 

of the papers were written by Madison, but favored Hamilton slightly 

on one and Madison slightly on the other. 

The basic approach was to work with odds so that 

final odds = ( initial odds) x (likelihood ratio) 
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Define: 

Pi == probability before observations that Hypothesis i is true, 

p(x I Hi) == probability of observing x given Hi is true. 

Since, by Bayes I Theorem 

we have 

Odds (H 1x) == p (H1 Ix) 

p (Hd x) 

= p 1 p(x J H 1) 

P2 p(x I H2) 

For a Poisson Distribution, the likelihood ratio 

= 

The log likelihood ratio is thus 

). (x) = xlo g ti±!.. - I'.,., -,.,14.._) 
--".a. \,("" 

The two parameters used to run the tests were 

K == ,,,4,,+_/-'~ 

Where K/ 2 measures the average frequency of the word and T 

measures the ability to discriminate. 

The difficulty, like that of all Bayesian studies was setting 

initial odds They assumed an equal chance for each 

author, but could have argued that Hamilton wrote 43 of the undisputed 

papers to Madisons 14, so the prior odds could have been 43/ 14 ~3. 



To illustrate the effect of priors, the log odds increased 

on the order of 50 - 150 percent when a negative binomial prior 

rep la ce d the Poisson distribution. 

The over-all similarity of the results confirmed the belief of 

many statsticians that when sufficient data is available, either 

technique will lead to a reasonable conclusion (Mosteller, 1964), 

29 
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Selection 

Another problem was conquered by Bayesian methods by 

Dorian Feldman at the University of California at Berkely. A gambler 

is faced with an imaginary slot machine e quipped with two handles. 

He knows that one of the handles pays off 80 percent of the time and 

the other pays off 60 percent of the time, but he does not know which 

is the 80 percent handle. What strategy should he adopt to make 

the most money? 

He could perform a "classical" ex p eriment by pulling each of 

the hand l es a given number of times to determine which paid off more 

more frequently. But Feldman proved that the gambler cou ld do 

better with a Bayesian procedure. His solution; start by pulling one 

of the handles, selected at random, and if it pays off, pull it again. 

When it stops paying off, switch to the other handle. As the game 

progresses for any given play he pulls the handle with the greatest 

chance of paying off (Boehm, 1964). 

David Blackwell, who suggested the problem to Feldman 

thinks a similar strategy might be adopted to such problems as 

physicians who have a choice of two new drugs to administer to 

patients with a given disease. 



Behrens Via Bayes 

The Behrens -Fisher problem is to test the difference in the 

means of two normal populations. 

Suppose we sample from two normal populations with 

'It. 'l. unknown and possibly unequal means, /in.,/'. and variances, Uj , crJ. 

Let (x
1

, s
1

) be th e sufficient statistic for (.,'(,,6j) based on a 

samp le size n 1 and (x
2

, s
2

) for (,J"( .. , Q.i,_) based on a sample size n
2

. 

Now we can define a statistic developed by Fisher ( 1934) on earlier 

work by Behrens ( 1929) 

(; ~ [ex, -A) - (i2 -fa2-) J /Js,'Jn, 1' S.11/n:z. 

~i.~,) - ex~ -µ.l)J is distributed normally about zero with a 

varia n ce ( er,¾, + c,/ ln.2.) . By defining by the express ion 
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we have C' as (X,-.,,4,) c.,oS f - ex,. -}J-... ) S'IY! 'f/ 
S,/..fn, ~ .. //n: 

But X;;(':-
S 'fn 

1s distributed as a t. Therefore 

{:; ::: t, COS fl/ - t 4 S j VI <f 

where the joint distribution of t , t , is given by: 
l 2 "V2 

l(t,) t~) a_ [ dt,/(li- ~~:,)
11
'
17-J [ dt,./(11-~~,) 

2 

:1.3 
Bayesian Derivation 

To derive this same joint distribution from a Bayesian approach 

co nsider a likelihood function of drawing samples 

p (XL• J )tic,-) = ~ e,c p [- r (xr:flf-/2£1"2
} ( Kendall, 1959). 

Jeffreys introduces a modification of Bayes' postulate when a 

parameter, 8 , can extend to infinity in only one direction, J.F ~ d.£tle 
Bayes provided us information about the form of the prior distribution 
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when the parameter is symmetrica l about zero and can exte nd to 

infinity in both directions, JF' ce: d0 · Applying these to our problem, 

Note: His what Jeffreys ( 1957) calls ge n e ral datum that is included 

in all experience, e.g. , H might be rul es of pure math emat i cs. 

Statisticians normally omit H but Lindl ey ( 1965) warns against this 

omiss i o n. 

Now by Bayes Theorem, the joint posterior distribution 

) 
exp [ _l:(X,,--:,,,U}'-_ .<e(Xi. -:?-)

4
} 

-P(d..,.u,id,l'-:1..;drr.1 dcr1 /x,)x::Z.)H = ..::z.cr;2. :z.o--;.2 dJ.t Ju do-dcr 
{f-"n 7+1 0-:: 11,.+J ;-1 / 2. / -:,.. 

l :i. 

Integrating out tr;) 0-,_ we can get a joint distribution fort , t . 
1 2 

Consider either term of the form 

; n.- 1 ex 1' [ - L (><; -__µ yi-/2 o-,.} ~ da-

Now: [.(X, -__ft-):l.= r_(x,-X+K -;)<Y-= lXx~-x)~ 22-(f~-F)(x-_,µ.) -t-~ (x-__µY, 

= (n-1) 5 i. + 11 (x-.,,U.):z. 

Int eg rating over 0--

exr[ -~.,...-,_ [" (x-_µ.)'-+ (" - ') s J} do-
CKJ 

d/- f cr-~i"l 

" 
Since t 1

:. (x-_,,..u-)?.. n / s -;i.. we have 

d_µ-i~n-t-1 exp[- ~o--·&:l.-t~+(n-1)s~]f do-

Let ll= n;_r s.,_(1-t- t~,} a.nd. x= 1/rri. ,,/.,_ 
J_LLfo .f-, -u.x l,LI. re¾> s r1('¼) dt i X 

~ X - I ~ ---,,.,- - - ]"I t ) n;:z. so - ::2., 00 e (}.,x = ::z.. ;2. i/h .. - ?-.0 [(,1-1)S- ,_( 1-+---;-:::; 

When integration is c arri ed out for both, a, a.'(',J.. 0-7,. we get 

/ ) clt, d.t.,_ 
p(d.t, > d.t1-><,>x.,_, H oe. (t+-b)n./;i_ (J+-~~-,)"'"/2. 

Thus Jeffr ey s uses a Bayesian derivation to show that the joint 

fiducia l distribution of the means of two population=:; is distributed 



as a joint distribution of two t's. This is identical to the distribution 

used in Behrens integral and is the basis for tables of Behrens' -

Fisher distribution computed by Sukhatme ( 1938) 

Fiducial t 

It is not always obvious why, in a Fiducial test (x -_)-<-- )/s' 
has a t-distribution, since x and s' are fixed samples and j-<- is an 

unknown parameter. 

The definition of a t-variate, however, does not discern 

between a conventional frequency test for x or a fiducial test on / 

Two properties of t, according to Anders on and Bancroft ( 1952) are: 

1. t is the ratio between a normal deviate and the 

square root of an ubiased es timat e of its variance. 

t == (x-_,µ-) )/4-
2 

2. t is the ratio between the square of a variate 

)
\ ~ 5-.Z../,..--:Z. 

(x -_.,,A,lf !YI which is N (0, 1) and a variate /v 

;t 

which is distributed as ::,JI with V degrees of 

freedom. 

The second property is taken as the definition of t. 

A random sample x ., i = 1, .•. , n, is taken from a population 
1 

with mean0", and variance, r:r"J... x and s
2 

are jointly sufficient 

statistics obtained from the sample for /-'- and (;..,.__ . Define 

5 1=-5 ~~ . -'-.,._- (x-_)-(.)-.z.. _ /£ _ (x--;_µ.)?.. -(X-/-l)-:2.. 
1/)" Now. I.. - o-,_/Yl I er;}.. - (S/fy,y-- - s/ 

So the distribution satisfies the definition of t. 
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Bayesian Regression 

A regression problem was approached from a Bayesian view 

based on work by Tiao and Zellner (1964). The first part of this 

section is a short development of equations; the second part shows 

the numerical results for an industrial problem. 

Development 
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The usual regression model with coefficient vector b=(b1, bz, ... , ~) 

can be written Y=Xbie where Y is a Txl vector of observations, Xis 

a Txp matrix of fixed elements with rank p, and e is a Txl vector of 

random errors. We assume that the elements of e are normally and 

independently distributed, each with mean zero and unknown variance 

a-2 . Under these assumptions the likelihood function is 

Using Bayes' Theorem, the likelihood function is combined with a prior 

distribution p(b,<r} to obtain a joint posterior distribution p(b,crl y) for 

the parameters b and er. 

In situations where little is known about band er, Jeffreys (1961) and 

Savage (1962) suggested that the prior distributions of band logcr 

should be taken as locally independent and uniform. That is 

p(b)oCK1 p(loga-)cc.K 2 or p(cr)oc.1/<r 

Th us p( b. 0- I y) " c_,. ..-5'\--(rn) ex r {-.~ ,rr-r-p) s , ... !i, -6< ,:r( X 'Y)] (x,;,) [ b-(xs.-r' ( x'Y) ]]} 

The marginal posterior distribution of b is obtained by integrating the 
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joint posterior density function over rr, Tl 
- 17... 

p<b,1) ~ {, + [b-CK1xf 1cx'y)]
1

(x'x)[b- (x'xTcx 'y)] ;{r-,,) s:2.J 
This is a multivariate t-distribution first derived by Savage (1961). 

If information is available about the parameters, it should affect 

the priors. For example, if the prior information is obtained from 

previous (or concurrent) experiments one can use this prior information 

to obtain the posterior distribution p(b,~\ y 1) which in turn serves as 

the prior to obtain the posterior p(b,(J"I y 2 ). 

As shown by Tiao and Zellner (1964) the final marginal distribution 

of b depends on the relationship between O, and Oz. We are interested 

in the situation where O, and Oz are independent and unknown, but will 

lead up to that problem by considering two more restrictive situations. 

Equal Variances. Raiffa and Schlaifer ( 1961) considered the case 

where O, ==t-< (JZ with K known. Without loss of generality, let us assume 

for this example that K =-1 so that ~="z=-0:- (This condition is often 

encountered in controlled biological experiments.) For this case 

f(b, ~1 y,) Y~) c{_ i(r;VTi. i-l) expf 1~;t [Cr,-f)s,2 +(~-p)s;+-[b"ik1~(x'yJ~x)[b-(x~f(XIYj]] 
, I / 

where XX =-X1 X, + X1 x~ and 

and the marginal distribution of b is 

h-(;c'.1()-1(><1 '(21' (x'x) [b -(x 1xr1
(x'y)] 

which is the same form as that given previously. 

One Variance Known. Next assume a-;-known but band 0-..,_ 

unknown. Again assuming locally uniform priors, the posterior 

distribution of b is given by 
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f (b IYi > y'1) oe exp [ :;,. [ b- (x,'x,)~(x/r,)]Cxc~X,) [b - O(,'x,f'(x/'r,;)]} 

f I+ [b- kx~t'(x;'Y~) /(x:i.:'x.,_)[b- (x:x~T'(x.; Y,...)] 1-Ts./~ 
l ~-p) S::t. . 

Since o-1 , is known and no longer a random variable, it can be used 

directly in the formulation and not approximated by the statistic 5
1

• 

The marginal distribution of b is then obtained by directly evaluating 

the posterior with the fixed value, ~ , but integrating over all values 

of the still random variable 0-:t . 

Theil (1963} considered this case within classical sampling 

theory rather than a Bayesian approach and obtained an estimator for 

b which incorporates information from both samples. 

B is the limiting mean of the Bayesian distribution as (T2 - p} ~ 0o 

Independent Unknown Variances. Now assume that 0-1 and 02 

are independent and unknown parameters. This condition is valid 

when data are collected under different conditions and there is no 

basis for assuming any prior relationship between the unknown 

parameters 0-1 and CT2. Again assuming locally uniform priors for 

b, log 01, and log o-2 , the posterior distribution of b based on two 

samples is 



The expected value of this form can be approximated by an 

asymptotic solution from Tiao & Zellner (1964) of the same form 

derived by Theil. 
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E = [~~ (X ''x,) + ;;; (x,'. Xi) f [-f;,: (X,' Y.) -1- k-()<,'. Y,)] 

where, of course) °I and °z are both represented by the statistics 

Numerical Results 

The example used to illustrate this technique is taken from an 

actual industrial problem. The exact nature of the data is propriet-

ary but it represents an attempt to properly define a log-linear 

relationship between weight and cost of a solid rocket motor component. 

Data. We have two sets of data, but do not have complete 

confidence in the validity of either set. The first set resulted from 

a theoretical study. Costs were generated by three companies, 

knowing that no business would result. Such cost studies are 

consistent within themselves but are generally poor estimates. 

Though each company priced the same six designs, costs varied 

ridiculously between companies. It was not possible to eliminate 

the company effect or to select one "best" cost for each design, 

since a company may be giving intentionally low costs to particular 

designs to influence cost-effectiveness studies. When actual com-

ponents are built, the higher costs may result. Therefore all data 
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from this set are equally-weighted. The slope of the curve developed 

on the basis of this set is probably close to "correct, 11 but the magnitude 

of the costs may be wrong. 

The second set of data is taken from actual and proposed costs. 

The magnitude of the curve developed from these data may be good, 

but the data rep re sent dis similar situations- - some are R&D com-

ponents, s01ne demonstration equipment, and others are production 

systems. Some points represent total component costs, others are 

only partial costs in which the vendor took a loss to get the business 

and be in a better technical position to get future business. Therefore, 

this set of data is not consistent. 

The two sets of data are given in Table 1. 

Data Reduction. There are several ways to reduce the data to 

obtain an estimating relationship. 

1. Use set 1. 

2. Use set 2. 

3. Combine both sets of data into one. 

4. Use set 1 to get fi and plug it into set 2 to get o< . 

5. Adopt the Bayesian approach assuming locally uniform 

priors for both sets. 

6. Use a Bayesian sequential approach with the posterior 

of the original data serving as the prior value for the 

actual data. 
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Table 1. Regression Data 

Set 1 Set 2 
Wt. (lb.) Co st ($) Wt. {lb.) Cost ($) 

xl Y1 x2 Y2 

17.4 9,000 1,707 57,500 
85.6 26,000 1,707 47,000 

102. 7 32,000 301 21,000 
189.0 29,000 360 22,600 
312. 2 27,000 784 21,550 

l, 441. 4 69,000 784 32,800 
17.4 1,250 9,596 250,000 
85.6 3,200 1,640 46,000 

102.7 6,400 1,640 63,200 
189.0 7,500 204 15,400 
312. 2 31,000 204 16,400 

1,441.4 82,500 5, 134 112, 850 
17.4 9,364 295 17,200 
85.6 11,612 9, 129 246,068 

102. 7 12,460 8,581 184,416 
189.0 15,517 177 14,200 
312. 2 17,923 

1, 441. 4 38, 195 

The drawback of the fir st two methods is that neither set, by 

itself, inspires confidence in the users. Method 3 is the one presently 

used by industry in developing cost estimating functions. The two sets, 

however, do not form a consistent set and the resulting confidence 

interval is too large. 
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The fourth method is satisfactory in practice, but there is 

no theoretical basis for this procedure. The resulting equation 

does not yield itself to further statistical analysis. Methods 5 and 

6 are developed in the following portion of this section. The 

coefficients of all six methods are given in Table 3. 

The regression equation of interest is of the form 

+ €: 

or, in matrix notation 

Y== hX +e 

with the following computational forms: 

The data reduce to the computational factors, 

Table2. Con1putational factors 

T1 18 Tz 16 
p 2 p 2 
D1 39.3428 ~x. 48.6412 
LX°t 92.1067 rx: 153. 6016 
LY, 75.4562 ~ 74.3184 
~y/ 168.4677 ~y; 229.8732 
A 

2.92585 ~JI. 2.55418 <X, 

" A. 

0.68772 r, 0.57929 ~ 
s,'- 0.09162 s ..... a. 0.0079517 

For method 5 use the Tiao and Zellner (1964) formulation. 



Set 1 

(X,'x,) 

(x/x,y' = (o. 13(.'i! 

-o.357..S-

Set 2 

-o. ';JS-75"") 
o. If. 35' 

-o,S.3D (,) 

o. I 7 LfS 

~/Y,) = (7.5, Lf-5(, :2.) 
I(,,~. 'fl 77 

(T7..-p)s;::: O. 1113 ~Lf-

( / ~. / o o ( c(-;i. - I D O , b ;;t. o ~ cc + S;;t.. 8 q 'f 3 .,t... ~ 
-Cf 

- ;2_,.;2...lf. ~03b f + ~ l.'11 b:3 ~::l, + ::i.1/ •.. 7/;z.3) 

(1:1. 8"1.:37o(-:i..._ t,2..8, l:,(:.7~o< + '84-4-7S'1 o<B r -8 

~ 3 9 7, <J ;i._ OS- ~ + I '3 3. 3 9 ) y. (
1
'· + 30 I - f 'i? 6 7) 
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The most probable values for the Bayesian estimates of o<. 

and r were obtained by maximizing the joint posterior distribution 

p( Ii(, ~ I y 1, y 2) with respect to o<. and ~ jointly by use of an IBM 

360 program. Brinton and Garner (1966). 

The expected value of method 5 is approximated by 

[ 
I ('9 

::,: ~:2_. 3<t.34-:l.&' 

Method 6 involves assuming s1 = a-1, which uses the posterior 

value of the original data as the prior s for the actual data. Instead 

of computing that value directly, the limit was computed as defined 

by Theil (1963) and is identical to the expected value approximation 

of method 5 since we assume IJ"'l = S1. 

Table 3 summarizes the coefficients from the six methods. 
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Table 3. Regression coefficients 

Method o( 

1 2.92585 0.579292 
2 2.55418 0 .6 87720 
3 2.86058 0.596870 
4 2.88380 0.579292 
5 2.83358 0.597302 Most probable value 

2.85203 0.60192 Expected value approx. 
6 2.85203 0.60192 



BIBLIOGRAPHY 

Literature Survey 

Literature Reviewed 

A comprehensive literature survey was made of Bayesian 

articles. The following journals, symposia and book authors proved 

most fruitful for articles pertaining to the theory or application of 

Bayesian statistics: 

Journals: 

Biometrika 
Annals of Mathematical Statistics 
Journal of American Statistical Association 
Journal of the Royal Statistical Society 
Techno1netrics 
Operations Res ear ch 
International Abstracts 1n Operations R e search 

Symposia: 
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Berkely Symposia on Mathematical Statistics & Probability 
Op e rations R ese arch Society of America National Meetings 
Regional Meetings of the Institute of Mathematical 

Statistics 

Books by: 

Fisher 
Jeffreys 
Savage 
Lindley 

Other sources were reviewed when referenced but no systematic 

coverage was made of them. Some sources were not covered because 
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of lack of availability. The most glaring deficiency is Econometrica, 

followed by the Management Science Journal and works in Industrial 

Engineering. Most of the important work has been covered in the 

documents reviewed. Very little work was done previous to the last 

eight years that has not been improved upon or at least reviewed in 

later publications. 

Some listed sources were not actually read. This is especially 

true of gove rnm e nt reports, papers given to the Institute of Mathematical 

Statistics, and foreign language articles. In these cases, the published 

abstracts were used to classify the subject matter. 

Reference Fil e 

To facilitate use of the reference material, both machine- sort 

and key-sort card files of this material are provided. Classifications 

are set up as to subject matt er, application, and statistical distribution 

involved. A second classification is provided as to source, availability, 

and author . These classifications are shown in Table 4. 

The following listing of the articles in the card file is alpha­

betize d by author. No attempt is made in this list to indicate the 

subject matter or cross-reference the material. 

AD reports can be purchased from the Clearinghouse, Spring­

field, Virginia. 
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CONCLUSIONS 

Future Trends 

John Tukey, mathematics professor at Princeton and a member 

of the staff of Bell Telephone Laboratores, foresees the development of 

new methods of statistical analysis that will make more use of human 

judgement and intuition and turn data analysis into more of a creative 

art, in which the statisticia n can "listen to what the data is trying to tell 

him''. He urges his fellow statisticians to keep an open mind and let 

preliminary results feed back into the analysis; to approach data with 

some definite questions in mind but expand and revise the questions if 

the study suggests such action (Boehm, 1964). 
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APPENDIX 



Sufficient statistic is a statistic whose conditional distribution is 

independent of the parameters. In general, 

p(xl8) = p(t(x)l8) p(x\t(x), 0). 

If also, 

p(xl8) = p(t(x)\8) p(xjt(x)) 

then for any prior distribution the posterior distributions given t(x) 

and given x are the same. Neyman' s factorization theorem: An NSC 

for t(x) to be sufficient .for p(xl8) is that 

p(x]0) = f(t(x), 0) g(x). 

No information is lost if you replace a sample by a sufficient 

statistic. (Lindley, 1965). 

Pivotal statistic is a random variable such that 

L its dependence on the outcome is by means of a 

sufficient statistic (~, sl. 

2. it depends on the param eter for which a confidence 

interval is wanted and no other parameter. 

3. it has a fixed distribution regardless of the values 

of the parameters. 

75 

Invariance requires that any two estimates for a given parameter 

should be equal. Given a sample [xn1 from a normal distribution 

with unknown mean/ and known variance CJ
2

• Let f{xn} be an 

estimate of _r. Now given the same sample coded by a constant, c, 

{ xn +c ], an estimate of ~+c is f{xn+cJ. When uncoded it yields a 



76 

second estimate for the quantity _),(-, f[xn +c J - c. 
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