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NOTATION AND DEFINITIONS OF TERMS

USED IN CHAPTERS I-III

(0,1) Definitions, If X and Y are sets then
XxY={(x,7) | x €X, y €Y}. A relation is any set of
ordered pairs. A relation f is single-valued iff if
(x,¥7),(x,2) Ef then y=z. A single-valued relation is
a function. The set f—lzf(x,y) | (y,x) € £] where f is a
relation is The dnverse of ', If f Hnd f_l are both
functions then f is one-to-one (1-1). The set domf=jx |
(x,y) €Ef for some yz is the domain of f, and rngf:{y[
(x,y) €f for some x| is the range of f. If domf=X,
rngfC Y, and f is a function then f is said to be a
function on X into Y and we write f:X—=Y. f is a
function en X 1ff £C XxY, £ i1s & funetion, and domf=X.
f is a function on X onto Y iff fCXxY is a function on
X and rngf=Y. The image of A under f is the set f(A)=
{y | (x,7) €f for some x € A},

(0.2) Notation. Let wrt be an abbreviation of
with respect to, and iff of if and only if. AEB means
A is a proper subset of B. N will denote the natural
numbers and I the integers., A-Bffx€A| x€Bf. If (R,+,°)
and (R,+,e) are rings then + and + will both be written
as + and « and « as . or no symbol. When no confusion
will arise R will be written for (Rs+,°). If (R,+,.) is

a set with two binary operations on it then na=a+...+a

n-times and anza-..,-a n-times.




(0.3) Definitions. If M is a set then # is a binary
operation on M iff (a) #C(MxM)xM and (b) # is a function

on MxM into M. If M is a set with binary operations #i’

i=1,2,6e040, on ity N is a set with binary operations

0.

K i=zl,240004n, on it, and aC MxN is a function on M into

N then o is a homomorphism of M into N iff (a&ib)a=
(aa)oi(ba) for i=1l,2,¢.syn; and o is &n isomorphism Siff
o is a homomorphism that is one-to-one. If M=N, #izoi

for i=l,24.+..4n then o is an endomorphism of M iff o is
a homomorphism of M into N; and o is an automorphism

iff o is an endomorphism that is one-to-one and onto.

If o is a homomorphism of a group or a ring into a group
or ring respectively then the kernal of o is the set

Ka= X Xo=0, where o is the additive identity .
(O.4) Notation. Let E(R,%l,..,,#n) be the set of
endomorphisms of (R,#y,...,% ), and when no ambiguity

will arise let E(R) denote the set. Also, let

A(R,#l,...,%n) be the set of automorphisms.

(0.5) Definitions. If M is a set and (G,#) is a
group then M-(G,#) is an M-Group wrt n iff n (GxM)xG is
a function on GxM such that for x,y€G and me€ M (x#y,m)n
=(x,m)n#(y,m)n. If (Ry+,+) and (R,+,*) are rings then
R is embedded in R iff R is isomorphic to a subring of R.

If (R,+) is a group and SCR then x+S={x+s| s €S} and

R/S={x+8 | x € R}.
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The main objective of the thesis was to extend the
definition of an M-Group to what is called an M-Ring.
From this extension a system called an expanded ring
follows naturally. To facilitate the development of the
expanded ring, chapter I is devoted to developing pro-
verties on systems that are not quite rings where
many interesting examples are constructed. In chapter II
the definition of an M-Ring is given and some of its
properties are derived. In chapter III some of the
properties of expanded rings are proved, and examples
of expanded rings are given to show their existence.
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INTRODUCTION

The main objective of this thesis is to extend the
definition of an M-Group to what is called here an
M-Ring. From this extension a system called an ex-
panded ring follows naturally. To facilitate the
development of the expanded ring, chapter I is devoted
to developing properties on systems that are not gquite
rings where many interesting examples are constructed.
In chapter II the definition of an M-Ring is given

2T
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and some of its properties are derived. In chapt
some of the properties of expanded rings are proved,

and examples of expanded rings are given to show

their existence.
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CHAPTER I
SEMI-RINGS AND M-GROUPS

The definitions of bare rings and semi-rings are given,
along with a theorem concerning their equivalence with a
class of M-Groups. The examples are listed in the last
section of the chapter, and structural properties are dis-

cussed by referring to the proper examples.

Section 1. Right semi-rings

(1.1) Definitions. (R,+,*) is a bare ring (shortly
BR) iff (R,+) is an abelian group and . is a binary opera-
tion on R. If (R,+,+) is a BR then (R,+,*) is a right
semi-ring (RSR) iff for any x,y,z2 € R (X+y)*2=X*2+ye2,
(Ry+,°) is a commutative RSR iff (R,+,°) is a RSR that is
commutative wrt .

(1.2) Remark. From the definition, an M-Group is
dependent upon the map n. Hence, many M-Groups may be
formed from a set M and a group G. Also, from Jacobson
(1951) an M-Group can be equivalently defined as the fol-
lowing., If M is a set and (G,+) is a group then M-(G,+)
is an M-Group wrt m iff there exists a function o on M
into E(G) such that x(ma)=(x,m)n for x€G and m€ M. So
as to make the dependency of an M-Group, M-(G,+), upon its
mappings be more explicit let M%m(G,+) denote the M-Group.

When no confusion can arise we sometimes will denote it
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by M-(G,+) or M-G.

(1.3) Theorem. If (R,+,-) is a RSR and n=° then
R%-(R,+) is an M-Group.

Proof. mn is a function on RxR since « isg a binary
operation on R and for x,y,z€ R (x+y,z)n=(x+y)e2z=
Xez24ye2=(x,2)n+(y,2)1M.

(1.4) Theorem. If R%—(R,+) is an M-Group and .=n
then (R,+,¢) is a RS

Proof. Since nC€ (RxR)xR is a function on RxR °* is
a8 binary operation on R. Furthermore, for X,y,Z€ R
(x+y) e z2=(x+y,2)n=(x,2)n+(¥,2)N=X* 24y *2.,

In view of the theorems (1l.3) and (1.4) we can con-
sider a RSR as a special M-Group and any M-Group, M-G,
with M=G as a RSR.

(1.5) Notation. For an M-Group, M-G, denote Ma as
MCE(G) and ma for m€ M as m.

(1.6) Theorem. If Mﬁ-(R,+) is an M-Group then

(a) (o,m)n=o(ma)=o0 for me€ M,

(b)  (kx,m)n=(kx)(mo)=k[x(mo)]=k(x,m)n for x€R, m€M
and k€ I,

(c) (-x,m)n=(-x)(ma)=-[x(ma)]l=-(x,m)N for x€ R and
mé€ M,

Proof. Since ma=m is an endomorphism the results are
obvious.

(1.7) Definitions. If (R,+,+) is a BR then r is a
right (left) identity of R wrt - iff for any x € R x.r=x

(rex=x). R has a two sided identity r wrt ¢ iff r is both
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a left and a right identity of R wrt -o.

(1.8) Theorem. If R is a RSR with a left identity
r and R#{of then r#o.

Proof. Assume r=o. Since R#§{o} there exists an x€ R
such that x£o. From theorem (1.6) X=TeX=0e¢X=0.

(1.9) Remark. If R is a RSR with a right identity
then r need not be different from zero. Such is the case
in example (6.2).

(1.10) Theorem. If R is a BR,r is a right identity,
and e is a left identity then r=e.

Proof. e=zeer=r,

(1.11) Theorem. If R is a BR and e is a two sided
ldentity then e is unique and any right (left) identity
of R is equal to e.

Proof. Assume there exists e'!€ R such that e'#e and
e! is a two sided identity. Then e=e.el'=e'., Let r be a
right identity of R. Then e=e.r=r,

(1.12) Remarks. From the above theorems a BR that
has more than one right (left) identity cannot have a left
(right) identity.

Since a RSR is equivalent to a special M-Group,
namely R%—(R,+), the notion of identities is equivalent to
the following. r is a right identity of R iff re€ Hazgxé R|
1(xa)=I€ E(R) where xI=x for all x€R}, and e is a left
identity of R iff for every x€ RaC E(R) exX=x. If H =0
then R has no right identity (look at examples (6.1) and
(6.3)). From above it appears that the condition on the

left identity may be so strong that a left identity may
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not exist for any RSR, but example (6.3) shows that this
assertation is false. Furthermore, one might ask whether
there exists a RSR that has a left identity but no right.
Such is the case in example (6.3), /

(1.13) Theorem. If R is a RSR with Rﬁ_R as its
M-Group equivalent and R has a left identity e then (a)

@ is one-to-one and (b) if R has no right identity then
I ¢ Ra=R where for x € R xI=x.

Proof. (a) Let x,y€ R such that X=y. Then x=ex=
ex=ey=ey=y. Hence, xo=ya implies x=y. (b) Assume I€ E.
Then there exists x€ R such that xa=I=X. Which implies
yx=yx=yI=y for all y€ R. Thus, x is a right identity,
but R contains no right identities.

(1.14) Definitions. If R is a BR then (a) x€R is
a right divisor of zero (zero divisor) iff there exists
Y€ R such that y#o and yx=o, and (b) X€R is a left divisor
or zero iff there exists y€ R such that y#o and XY =0

(1.15) Remarks. In a RSR zero is always a left
divisor of zero by theorem (1.6), but as shown in example
(6.1) zero is not always a right divisor of zero.

Again in terms of an M-Group we have that x€R is a
right divisor of zero iff K§=Ey€‘Rl yx=0) P{of{ and x€R is
a left divisor of zero iff there exists a Y€ RCE(R) such
that xy=o (i.e. XETK§) and y#o.

If x€R is a left divisor of zero then x need not be
a right divisor of zero as shown by example (6.2) and if
X€R is a right divisor of zero then x need not be a left

divisor of zero as shown by example (6.3),
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(1.16) Theorem. If R is a RSR, R%{o}, and R has a
right identity r then r is not a right divisor of zero,

Proof. Let x€ R such that x#o. Then xer=x#o.

(1.17) Remark. If R is a RSR, R#{o}, and R has a
right identity r then as shown by example (6.2) it may be
a left divisor of zero.

(1.18) Definitions. If R is a BR then x€R obeys
the right cancellation law iff when Ys2 € R such that yx=
zx then y=z; Xx€R obeys the left cancellation law iff when
Y22 € R such that xy=xz then y=z,.

(1.19) Remark. In example (6,2) for x=-1 we see
that if x obeys the left cancellation law it need not obey
the right cancellation law, and also in example (6.2) for
X=0 we see that if x obeys the right cancellation law it
need not obey the left cancellation law.

Zero does not obey the left cancellation law unless
R={o}. However, as shown in example (6.2) o may obey the
right cancellation law even when R#{o}.

(1.20) Theorem. If R is a RSR then x€ R obeys the
right cancellation law iff x is not a right divisor of
ZET0.,

Proof. If yx=o0 for some y€ R then yx=0x and hence
y=0 when the cancellation law holds. Also, if yx=2x for
some y,z€ R then (y-z)x=o and hence y=z when x is not a
right divisor of zero.

(1.21) Remarks. From theorem (1.20) if we know
what the set, Dr’ of right diviors of zero is, then the

set of elements, Cr’ that obeys the right cancellation




law is R-D ., and vice versa.

A natural guestion is whether a similar theorem to
(1.20) exists when right is replaced by left. In example
(&2) every element x#o obeys the left cancellation law,
but also is a left divisor of zero. In example (6.3) x=
(m,-m) m#o is not a left divisor of zero, and furthermore
x does not obey the left cancellation law. Hence, suech a
theorem does not exist. Furthermore, as shown no theorem
with the same hypothesis as theorem (1.20) exists when
either right is replaced by left. If x obeys the right
cancellation law then x may be a left divisor of zero or
not as shown by example (6.2) for x#-1 and by example
(6.1) for x=(a,b) where a,bfo. If x is not a right divi-
sor of zero then it need not obey the left cancellation
law as shown by example (6.%) for x=(m,-m) m#o. However,
if x is not a right divisor of zero then x can obey the
left cancellation law as shown by example (6.2) for Xf=1 .04

(1.22) Definitioms, If R iz a RSE and R has &
right (left) identity r wrt . then y is a right inverse
of x wrt ¢ relative to r iff xy=r, and y is a left inverse
of x wrt « relative to r iff yx=r.

(1.23) Remark. Considering R as an M-Group then y
is a right inverse of x iff y maps x onto r, and y is a

left inverse of x iff x maps y onto r.

Section 2. Semi-rings and n-multiple M-Groups

(2.1) Definitions. If (R,+,*) is a BR then (Ry+4°)

1is a left semi-ring (LSR) iff for any x,y,z €R z(x+y)=2x+zy.
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(Ry+,*) is a semi-ring (SR) iff R is a RSR and a LSR.
(2.2) Remark. A LSR is really the same as a RSR ex-
cept for notational changes., Hence, all of the properties
of a RSR carries over for a LSR.
(2.3) Definition. If (G,+) is a group then

-

Mal""’an—(G +) is a n-multiple M-Group wrt n s w M., Bmd
MysecesNy 3 n

Oy yose,& 1ff Ma;—(G,+) is an M=-Group for i=l,...,n. If
g
Gnl’%E (G,+) is a 2-multiple M-Group and V C(G6xG)x(GxG)
0

is a function on GxG such that (x,y)V=(y,x) for x,y€ G

then C P ? (G,+) is a symmetric 2-multiple M-Group iff
1,

ﬂl=Vn2-
(2.4) Theorem. If (R,+,+) is a SR and My=° then

R¥1:%p -(R,+) where ng—vn is a symmetric 2-multiple
ﬂl’np 1

M-Group.

Proof. Clearly, nland n, are both functions on RxR
into R. For x,y,z€R (X+y,z)nl=(x+y)z:Az+yz (“,z)ﬂl+
(7,2)n) and (x47,2)Mp=(2, 34300 =2 (7 ) =2x425= (2,300, +
(z,3)n=(x,2)n+(7,2)1n,.

(2.5) Theorem. If R l’a2 (Ry+) is a symmetric
l’

2-multiple M-Group and *=n; then (R,+,*) is a SR.

Proof. Clearly ¢ is a binary operation on R. For
Xe¥s2ER (X+y)z=(x+y,z)nl=(x,z)nl+(y,z)nlzxz+yz and
Z(X+y)=(z,X+y)nl=(X+y,ZDn2=(X,Z)n2+(y92>n2=<z,X)nl+(z,y)nl
=ZX+ZY .

From theorems (2.4) and (2.5) we can consider a SR

as a symmetric 2-multiple M-Group and vice versa.,
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(2.6) Theorem, IFf IC:(E(R,+)XE(R,+))XF, FC RxR,
and (R,+) is an abelian group such that for x,B € E(R) and
x€R x((o,B)+)=xa+xp then (E(R,+),¥) is an abelian group.

Proof. Let (a,B),(a',B') € E(R)XE(R) such that (0 yB)=
(x'yB'). Then a=o' and B=B', and hence for arbitrary x€ R
x((o,B)+)=xo+xP=xat+xp'=x((a' ,8')T) which implies that
(o,B)+=(ax',B!')¥. Therefore ¥ is a function. For X,y €ER
(X+Y)((a,B):)=<X+Y)a+(X+Y)53(X@+Y@)+<X5+yﬁ>:(X&+X£>+(Y@+YL)
=[x(oyB)+]+[y(a,B)¥]. Therefore (ayB)+ € E(R) and hence
FCE(R).

Clearly since (R,+) is commutative angd associative
(E(R),+) is too. The function 6CRxR on R such that for
x €R x0=0 is also in E(R), and for x€ R and o€ E(R)
x(0+a)=x0+xa=x0t. Therefore o is the identity for E(R).
Clearly for o€ E(R) (-a)C RxR such that for x€R x(=a)=
-(xa) is in E(R). Thus for x€ R and a€ BE(R) x[a+(-a)]=
xo+x(=0)=0=x0 which implies oF(-a)=0. Hence, (E(R),+)
is an abelian group.

(2.7) Theorem. If (R,+,¢) is a SR with Ral’QEa(R +)
9 ;)
et

as its symmetric 2-multiple M~Group then 0y (ag) is a
homomorphism of (R,+) into (E(R),+).

Proof. We know @ 1s a function of (R,+) into E(R).
For x,ysZ2E R z((x+y)al)=(z,x+y)nl=(x+y,z)ngz(x,z)n2+
(y,2)n2=(z,X)n1+(z,y)nl:Z(Xal)+Z(yal)=zE(:&l)I(yal)]o

Since z was arbitrary (X+y)a?x/xal):(yql)o Hence, o, is
i - A

a homomorphism and hence Ra1=§CiL(R) is a subgroup of E(R).

(2.8) Remarks., From theorem (2.7) every abelian
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group (R,+) that has a homomorphism o of itself onto a sub-
group of (E(R),+) can be considered a SR if s is defined

as x*y=x(ya)=xy for all x,y€ R.

Section 3. Right rings (RR)

(5s1) Definitieona. If (R,+,+) 1g & BER then B 15 &
right ring (RR) iff the operation « is associative. If R
is a SR then R is a ring iff the operation - is associative,

(3.2) Remark. Most of the theorems about RSRs hold
for RRs and similarly for SRs and rings. The additional
property of associativity will permit the proof of more
theorems on inverses and divisors of zero, but only one
will be given.

(3.3) Theorem. If R is a RR with a right identity
ry, and x has a right inverse then x is not a right divisor
ol Zero.

Proof. Let y be the right inverse of x. Assume x
is a right divisor of zero. Then there exists a ZER
such that z#o and zx=o. Hence, Xy=r implies z=zr=z(xy)=

(zx)y=oy=0.

Section 4. Ideals and homomorphisms

(4.1) Notation. When BR is used in the same sen-
tence several times it refers to the same type of BR
under discussion.

(4.2) Definitions. If (Ry+,°) is a BR and @#SCR
then (S,+,¢) is a subBR iff (8,+,+) is a BR. S#@ is a
right (left) ideal of the BR R iff (8,+) is a subgroup of

(Ry+) and xs €8 (sx€8) for all x€R and for all s € S.
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S is an ideal of the BR R iff S is both a right ideal of
R and a left ideal of R.
(4#.3) Theorem. If (R,+,+) ig a BR and Z#S CR then

is a subBR iff for x,y€ S %x=vE€ S and xv € g
9 J

(0]

Proof. Obvious.

(4.4) Theorem. If (Ry+,°) is a SR, @#SCR is an
ideal of R and e,e C (R/SxR/S)XR/S such that for x=a+S,
y=b+S € R/S (x,y)e=(a+b)+S and (x,y)e=ab+S then (R/S,8,0)
is a SR and e is associative (commutative) iff . is
associative (commutative),

Proof. First we need to prove that e and e are
binary operations. If a=(a+S,b+S),B=(a'+S,b'+S)€ R/SxR/S
such that a=B then a+S=a'+S and b+S=b'+S. Hence there
exists s,t € S such that a=a'+s and b=b'+t. Because R is
a SR and S is an ideal of R a+b=(a'+b')+(s+t) and ab=
(a'+s)(b'+t)=a'b'+(a't+sb'+st) which implies that (a+b)+S
=(a'+b!)+S and ab+S=a'b'+S., fence, ae=(a+b)+S=(a'+b!)+S=
Be and ae=ab+S=a'b'!'+S=pfe.

Clearly (R/S,e) is an abelian group since (Re+) is
an abelian group. For x=a+S,y=b+S,z=c+S€ R/S
(a) (xey)®z=[(a+b)+S]@z:(a+b)c+S:(aC+bc)+S:(ac+S)@(bc+S)

=(x0z)e(yeoz)
() z@(xey)=Z@[(a+b)+S]:o(a+b)+S:(ca+cb)+S=(ca+S)@(cb+S)
=(zex)e(zeoy).
Hence, (R/S,e,®) is a SR, Also from
(c) (xey)ez=(ab+S)ez=(ab)c+S
xo(yeoz)=xe(bc+S)=a(bc)+S

(d) xey=ab+S and yox=bc+S
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we see that e is associative (commutative) iff ¢ is asso-
ciative (commutative).

(4.5) Remark. If R had been a RSR in theorem (4.5)
instead of a SR then (R/S,e,e) need not be a RSR since e
is not necessarly a binary operation on R/S.

(R/S,e,®) is called the factor SR of the SR (R,+,°)
wrt the ideal S.

(4.6) Theorem. If n is a homomorphism of the BR
(R,+,+) into the BR (R,+,*) then RnC R is a subBR.

Proof. Since n is a homomorphism we know that (Rn,+)
is an abelian subgroup of (R,+). For x=an,y=bn € Rn Xey=
(an)+(bn)=(ab)n € Rn. Hence, by theorem (4.4) (Rn,+,°) is
a BR.

(4.7) Theorem. If m is a homomorphism of the RSR
(LSR) (R,+,°) into the RSR (LSR) (R,+,+) then the kernal,
Kn, of n is a left (right) ideal of the RSR .(LSR) R,

Proof. We know that <Kﬂ’+> is a subgroup of (R,+).
Let x€R and aEEKn. Then (ax)n=(an)*(xn)=0.(xn)=0.
Therefore, axEan and hence Kn 18 a leflt ideal of R,

(4.8) Theorem. If m is a homomorphism of the SR
(R,+,+) into the SR (R,+,+) then K, is an ideal of R,

Proof. Follows from theorem (4.7).

(4.9) Theorem. If (R,+,+),(R,¥,7) and (R,+,7) are
BRs, and mCRxR and TCRxR are homomorphisms on R and on
R respectively then =mn (the resultant) is a homomorphism
on R into ﬁ.

Proof. If x,y€R then (x+y)(nn)=((x+y)n)n=(xXN+yN) T

=(xn)m+(yn)n=x(nn)+y(nn) and (xy)(nn)=((xy)n)n=[(xn)(yn)In




=[(xmt)T][(yo)n]=[x(nn)I[y(nn)]. Therefore - it is a
NOIMOomMoryp \/L 1S

4,10) Theorem. If (R,e,e) is the factor SR of the

~~

SR (R,+,°) wrt the ideal S and TCRxR such that for x€R
XT=X+S then 1t is a homomorphism.
Proof. If Xy y€ R such that x=y then xr=x+8=y+8=y71.

Therefore, ¢ is & function en R. Ageln if x,yE€ R then

(@))

(x+y) 1= (x+y)+S=(x+8)a(y+S)=(x1)e(yr) and (xy)r=xy+

(x+8)o(y+S)=(xt)®(ytr). Hence, 1 is a homomorphism.

£
o
—
(28
s
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_J
D
=
j4V]
=
s
N
°
-
Q©
n
o
)
H
[
B
)
(of
-
B
f
Iy
@
O
=
d
~
o
—
)
N
(]
n

called the natural homomorphism on R into R=R/S.
(4.12) Theorem. If R and R' are SRs, @ CRxR! is a
womomorphism on Ry R is the factor 8R of R wrt the ideal

{

SCfﬂoa and ¢C RxR' such that (x+S8)¢=x¢ for all x€R then

(a) ¢ is a homomorphism on R=R/S into R' and ¢=71¢ where
t is the natural homomorphism on R into R, and (b) ¢ is

a isomorphism iff K@rSo
Proof, If x+S,y+S€ R such that x+S=y+S then x=y+s

for some s€ 8, and (x+S)e=x0=(y+S)=yp+s0=yo=(y+S) P,

Hence, ¢ is a function on R. Also, if x+S,y+S€ R then
[(x+8) e (7+S)Jo=[(x+y) +S]1p=(x+7) 0=x¢+y0= (x+S )0+ (7+S)

and [(x+8)e(y+S)]o=(xy+S)o=(xy)e=(x¢)(yo)=(x+3)o(y+3) 0.
Therefore, ¢ is a homomorphism on R. The natural homo-
1orphism on R into R is such that xt=x+S for x€ R.

7o CRxXR' is a homomorphism on R by theorem (4.9. Let

x € R then x(19)=(x1t)0e=(x+S)p=x¢. Since x was arbitrary
- ‘\prg/f‘ 3
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XE’KQO Then o=x¢=(x+S)@=0¢=(0+S)p., Which implies xX+S=0+S

or i.e. x€8. Therefore, KfC S. By hypothesis SCK .
[0) ()

Hence, S=K . Let K =S. For X=x+8,y=y+S€ R such that o=
yo then xe=y¢ which implies (x=y)p=0 or i.e. meEfK@:So
Thus, X=x+S=y+S=y. Therefore, ¢ is one-to-one and hence

an isomorphism,
(4.1%) Remark. In theorem (4.12) if R'=R¢ and S=K

then ¢ is an isomorphism of R onto R'.,

Section 5. An embedding theorem

The purpose of this section is to derive an embedding

theorem that will help us in finding examples of rings

(5.1) Theorem. If (R,+,°) is a BR, A=IxR, and +,e
are subsets of (AxA)xA such that for (m,a),(n,b)€ A

(a) ((m,a),(n,b))+=(m+n,a+b)
and (b) ((m,a),(n,b))e=(mn,na+mb+ab),
where na=a+...+a n-times, then + and  are binary opera-
tions on A and (A,+) is an abelian group.

Proof, Let x=((m,a),(n,b)),y=((m',a'),(n',b")) € AxA

- !
L

such that x=y. Now x=y implies =m,n'=n,a'=a, and b'=b,
Thus x+=(m+n,a+b)=(m'+n',a'+b!)=y+ and xeo=(nn,na+mb+ab)=
(m'n',n'a'+m'b'+a'b!)=ye, Therefore, + and . are binary
operations on A,
The proof that (A,+) is and abelian group is obvious.
.5.2) Theorem. If (A,+) is the abelian group in

theorem (5.1) and ¢ is the binary operation defined on A

in theorem (5.1) then




(a) A is commutative wrt o iff R is commutatuve wrt ° 4

(b) every element of A obeys the right (left) dis-

tributive law 1ff every element of R obeys the right (left)

(e¢) (l,0) is a right (left) identity iff xo=o (ox=0)

for all X € R:

[6))]

and (d) A is associative only if R obeys the distributive

laws and is associative,
Proof. Let (m,a),(n,b),(k,c) be arbitrary elements

(a) Since (m,a)(n,b)=(mn,na+mb+ab) and (n,b)(m,a)=
(nm ,mb+na+ba)=(mn,na+mb+ba) it is clear that A is com-
mutative iff R is commutative,

(b) Since [(m,a)+(n,b)I(k,c)=[(m+n)k,k(a+b)+(m+n)c+
(a+b)c]=[mk+nk ,ka+kb+mc+nc+(a+b)c] and (m,a)(k,c)+(n,b)(k,c)
=(mk ,ka+mc+ac ) +(nk,kb+nc+bc)=(mk+nk ,ka+kb+mc+nc+ac+be) it
18 clear that A obeys the right distributive law iff R
obeys the right distributive law.

(c) Now because (m,a)(l,0)=(m,a+a0) and (1l,0)(m,a)=

(m,a+0a) we see that (1l,0) is a right (left) identity

(d) From the following (m,a)[(n,b)(k,c)]=
(m,a)(nk,kb+nc+be)=[mnk,nka+mkb+mnc+mbc+a(kb+nc+be)] and
[(m,a)(n,b)](k,c)=[mnk,kna+kmb+mnc+kab +(na+mb +ac)e] it
is clear that A is associative only if R obeys the 4i
tributive laws and is associative,

(5.3) Theorem. If R and A are as in theorem (5.1)

and Bw{(o$x)[x€fR} then R and B are isomorphic.




Proof. Obvious.

(5.4) Remark. IfR is a RSR then by theorems (5.17,
(5.2) and (5.3) R can be embedded in a RSR with a left
identity. If R is a SR then R can be embedded in a S

ith an identity.

If R is a RSR in which the associative law does not
hold and is not a SR then R cannot be embedded in a RR
or a LSR since 1f there did exist an isomorphism of R in-
to a subright ring or a subleft semi-ring it would imply
that R is associative or is a SR

Section 6.

The following examples are given without proof so as
to save space. Furthermore (R,+) in the examples will
always be an abelian group. The following abreviations
will be used. C-commutative wrt o, A-associative wrt °*5
RD-all the elements of the set obey the right distributive

law, LD-all the

elements of the

Set

tributive law. If N is placed before any of the above
letters is stands for not (e.g. NC means not commutative).,
Also, the following sets will be used. I={x€R|x is a
right identity} (I e rm{rE.Rly is a right divisor of
zerof (D;), C.={x € R|x obeys the right cancellation law/
(01)9 and V?~b€€Rlx has a right inverse wrt the right
5 iy

(left) identity e} ;Viﬁo

(6.1) Right semi-ring with no identities. Let
(Ay+,¢) be any field and R=AxA. For (x,y),(z, ,W) €ER de
fine (x,y)+(z,w)=(x+z,y+W) and (x,y)¢(z,w)=(-xw

v )e (2 ¢ Z+X) o
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(Ry+,°) is a RSR such that . is NC, NA, and NLD.

L i

Furthermore, I _=I.=8, D_Z_AD1 =R~C_

T

, and 0 =C.={(x,7)lx,7ER

(6.2) Right semi-ring with a right identity. Let
(Ry+,°) be a field, For x,y€R define xxy=x+xy. Then

(R,+,%) is a RSR such that*is NC, NA, and NLD. However,

1 r‘: Sz_()f 9 I— = Qj ) D_y, = {"’ lg ?D 7'R<: C]};:;I{hLDw 5 C_} ;RQ{O} 3 T\/S‘ Dj N
voop_,

o 2\ il

(6.5) Right semi-ring with left identity. Let

=N
-
AJ
v
e
~
X
¥
()
H
F
0
=J
n
53,
=
D
¢
V]
=
d
£
D
(6}
no
Nt
“
48]
e}

AT P | o A = N
rom tGheox L Fs il S @I Jaddi) o
[ e e N NT A avwA MNMTTYe o Y T
that » 1s NC, NA, and NLD:; and I

x#0, mfo, and x#-m{, C.=R-D., C,-=
(1,0)

{(-1,b)| b#o?.

(6.4) Semi-ring with right identity. Let (A,+,0)

v

1
| & = o’
{(;’;; ;&) |m=%t1 and af-m} and V-

be a field and RedxA. For (x,y)

* )
1 S L <110 + + = HE 1ate| s T fizr \ ¢ T
LS & ot SUCH nac o 185 NG and NA§ anc = 5" )il K

and R=AxA, For (X,¥),(z,w)E R define

JZ=XW XZ+JW) o

a SR such that . is NC and NA; and I_=g@




(6.6) Semi-ring with identity. Let (R,+.,s) be the
X / \ S 9 /

o / EX D L s : o TAa R o
SR in example (6.5) and (R,+,°) be obtained from theorems

(Sel) and (5:2). Then (Bs+,«) is8 8 SR such that « is KC

and NA, Furthermore, Itfingflgo)}o
(6.7) Right ring with & »i
be a commutative group such that R Bfo}. If X,y € R define

¥ny=%x. Then (R.+,%) ig a BR such that » is NC and NID.

However, I =R, I,=@, D =0, Dy={0}, C.=R, and C,=g.

H
"

(6.8) Right ring with an identity. Let Fa[flf maps
s and f is a function} and for
f,g €F and for an arbitrary x € reals define f+g and fxg
such that (f+g)(x)=f(x)+g(x) and (fxg)(x)=f(g(x)). Then
(Fy+,%) is a RR such that % is NC and NLD. Also, I _=I.=
{Ijwhere I is defined such that for x € reals I(x)=x, D
EFIf is not onto { € Flthere exists an x€ reals
such that f£(x)=o0?, (}rfFuDN C,=F-D;, and Vi=vi={f € F|z
is onto and one-=to-onej.
(6.9) Ring with no identity. Let R be the set of

2x2 matrices over E(even integers). Then under matrix

addition,+, and multiplication,., (E,+,+) is a ring such

T™

L i

that o is NC. Furthermore, I :I]:Qo

(6.10) Ring with right identity. ILet RC 2x2 ma-

Prnai® s I e R S e L " 3% 3

trices over I such that if « € R then u:(yg) for x,y € I.
(Ry+5°) is a ring where + and . are matrix addition

and multiplication respec

10 [ } T m 00
= x , I.=@, D_=
I, i X0 €If, I,=0, D {(XO)

x#£0 and ngélgﬁ and C-w@ The set of right inverses




=
O

i =
. . ‘ | O S <0

o and wrt the ldentilty 5“<l\> 1S 125{<;J)
SO i SR :\7 0

where as the set of left inverses wrt the identity s i

3
i
V)
=
B
0O,
<
n

| Sy

9]

KA
e
A
I+
i
v
o

.\
O
o
}_ =
HJ
»

Q
Y
D
H

+
o
©)

i
=
ct

(3]

=
o
=
D
ct
o)
(&
[0
QO
n
-
O
()]
O]

+

of the set of 2x2 matrices over the integers such that if
@& R then a={ -/ for X,y& 1. Then (R,+,¢) is a ring when

and . are the usual matrix addition and multiplication.

by 13- {(ay”v E__T? » Dp=R, Dii(y) 'ff L),

#£0 4 X$§’€]3 9ﬁIi~{(Ky)]X::l}5 and I>=

}

)

0|

s} where

O
o
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M-RINGS

Rir

Vi Q s ey
o M=oUulDIT1I1NgS
SH=l

As in Chapter I the

last section will 1n ae
= b Moo | I,
Section l. M-Rings M-Rings
£ S AR T £ oot = S ﬂ 1)
(e Definitions {EE € ana |\ ;?c,+ 58 J LS BR

. X n T \ C v = n T nD 5 % Ll 2 o D e N T P o . A
then M-(R,+,°) is a M-BR wrt m iff n C(RxM)xR is a func-

ion on RxM such that (a) (

(xey,m)n=(x,m)n°(y,m)n

The two conditions (a) and (b) in definition (1.1)

are similar to those for a homomorphism.

1ty gives rise to an alternate definition for an M-Ring.
(1.2) Definition. If M is a non-empty set and

(Ry+,°) is a BR then M-R(R,+,°) is a M-BR wrt o iff

S N
on Wi,

aCMxE(R,+,°) is a functic
(1.3) Theorem. Definition (l.l) and definition
(1.2) are equivalent.

Proof., Let M-(R,+,-) be an M-BR wrt definition

(l.1), Por a

that xm=(x,m)n. 1 is a functic on R sinee 1 135 @ functbion
on RxM, If x,y€R then (x+y)m=(x+y,m)n=(z 1)n=
xm+ym and (xey)m=(xey.m)n=(x,m)ne(y,m)n=xm°; €

meEER,+5°)., Now define o C MxE(R) by mo=m for any mé€ M,

/




ol
I m=m'! then for any x€ R Xﬁr(xtm)n:(x?m7yn:x570 There-
fore, a is a function on M. Hence, M-(R,+,°) is an M-BR
wrt definition (L.2)s
Let M-(R,+,°) be an M-BR wrt definition (1.2). De-
note mo=m for mé€ M., Define nC (RxM)xR such that for any
x€R and any m€M (x,m)n=x(moa)=xm. If (x,m),(x',m')€ RxM

such that (x,m)=(x',m') then x=x'! and m=m', and hence
(xym)n=x(ma)=x'(m'a)=(x"',m')n, Therefore n is a function
on RxM. For x,y€R and m€M (x+y,m)n=(x+y)m=xm+ym=(x,m)n+

(ysm)n and (x°y,m)n=(x°y)n=xmeym=(x,m)n°(y,m)n. Hence,

M~(R,+,°) is an M-Ring wrt definition LT ),
(1.4) Remark. From definitions (1.1) and (1.2) an

M-BR is dependent upon both n and o, To stress this de-
pendency let Mﬁw(Rﬁ+9°) denote an M-BR. When no confusion
will arise let M-(R;+,°) or M-R denote an M-BR.

Given a non-empty set and a BR more than one M-RR may
be formed.

(1.5) Theorem, If M is a non-empty set and (R,+,°)

cast two different M-BRs

[
{

1s a BR, then there are at
fecrmed from M and R,
Proof. Let aCMxF (F is a non-empty set) be the
function on M such that for x€R and m€ M x(mx)=o0. For
X,y €R and mell (x+y)(ma)=o0=0+0=x(ma)+y(ma) and (x-y)(ma)
0=0°0=[x(ma)]°[y(ma)]. Therefore, FCE(R) and hence,
RC;‘@R is an M-BR where (x,m)n=x(mo) for x€R and m€ M.
Define ao!C MxF (F is a set) such that for x €R and

meEM x(ma')=x., Clearly o' is a function on M and for

X, yER and m€ M  (x+y)(ma')=x+y=x(mo')+y(mo') and




(xoy) (mact)
y !
RNAWR s
T‘]v
16D

in an M=BR,

2

A

Xoy=x(ma')oy(ma')., Hence, FCE(R). Therefore,
1 M=BR where (x,m)n'=x(ma!) for x €R and m € M.
Remark. To shorten the notation for mappings

M;“Rs we let xm=(x,m)n. Also denote Mx by

MCE(R) and ma for m €M as m,
Because more than one M-BR can be otained from a set
M and a BR R it is interesting to consider a system con-
sisting of more than one M-BR.
(1.7) Definitions. If M is a non-empty set and
7 N\ o '1-. oo o co(,
(R,+,+) is a BR then M'1°® ’ n—-(R,+,0) is an n-multiple
¢ . n—. 900 0 91’]'[1 3
- 5. 0 ) 7 el 5 2 b . ol
M=BR iff Manng+go‘ 10T 1=l4006 ¢nn are M-=BRs. If
»)(- O(r,—\ 8 | J . ; X ) e
R;l9vdw(Rs+9o) is a 2-multiple M-BR and V C (RxR)x(RxR)
R4 )
L &
is a function on RxR such that (x V/V x) for x,yER
K \e ‘i 9w
e Oy 50s_ ¢ AR S AT e e g e gy i
then R_'1l (Ry+5°) 1s a symmetric 2-multiple M-BR iff
9

]

VI
‘]’]1:.'

VT~o

(1.8

1:8)

X€R, m€ M,

(a)

(b)

d

5 ~ (@ § :
Theorem., If MijR9+eo) is an M-BR then for
5 ;e

k€l and JEN

0,M)N=0
(KXngUUKCXsm?ﬂ
(=x,m)n==(x,m)n
(xjam)n [(x m)n]v
if (Ry+,°) is a division ring then
(1) (,m)n=[(x,m)nI"
(&) ,m)n=C(x,m)n]~"
(3) (1,m)n=1 when 1 is the identity of R wrt e
#0
if (Ry+,°) is a SR with a right (left) identity r
as no left (right) divisors of zero, and R¢[o}]




Proof. Let mo=m for m€ M, Then for x€R (x,m)n=xm.
Part (a). Since m is a ring endomorphism om=0.

Part (b). Again since m is an endomorphism (kx)m=
Part (c). Now o=om=[x+(-x)Im=xm+(-x)m which implies

Part (d). If j=1 then xlﬁx(xﬁ)li Assume true for
j. Then (x9*D)@=(xIxH)@=(x9m) (x}7)=(xm)J (=) = (oam)I+L.

Part (e). Since (R-{of,.) is a group part (a), (b)
and (c) can be applied with notational changes for x#o.
It is clear that (1) and (2) hold for x=o.

Part (f). Now (x,m)nr=(x,m)n=(xr,m)n=(x,m)n(r,n)n.
By analogous theorems to theorems (1.20) and (1.8) in
chapter I all x€ R obey the left cancellation law and
r#c, Hence, T=(r,mM.

(1.9) Remarks At first part (d) in theorem (1.8)
appears not to need the added condition that R has no
zero divisors, but the example presented in section 4
gives an example of a ring with identity 1 that has an
endomorphism B on it such that 1B#l. This implies that
the identity of a ring is not always mapped onto the

identity by an endomorphism.

(@)

Section 2. M=Subrings, M-Factor rings,

and M-homomorphisms

(2.1) Definition. If Mf=R is a M=BR and S is a
}

subBR of R, then Mﬁms is a M-SubBR of MﬁmR iff for all
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Let {S{ denote a collection of M-SubBRs of the M-BR
M“R S denote the intersection of all the S € {5}9 and
i

R US] to denote a set generated by the finite sums of
k

finite products (2. &, ss,sa%8 .. WHEDE a; €8 for some
£ g | < 4d t) 2
1= L 1 pibilk

éi’\)}/ﬂ
(2.2) Theorem., If MiuR is a M-BR and {S? is a col-

lection of M=-SubBRs of R then (a) M -MNS is a M-SubBR of

KQ

1

s a M=SubBR of M =R.

jdo

M

b

*.R and (b) Mi~

r—r]
4\
o

Part (a). We need first to show that NS is a subBR

D
H

R. Let a,b€ NS then a,bES for all SE{S}. Since S

a subBR of R a-b&€ S and asb€S for all S€{S}. This

=
[63)

implies that a=b &€ NS and a-b € NS. Therefore NS is a
subBR of R. Furthermore because for all SE{S] S is a
M=SubBR of M -R (a,m)n€ S for any a €8 and for any m €M,

Hetice (_a,m)né NS for any a € NS and for any mé€ M.

D

Therefore Mn NS is a M-SubBR of the M-BR M?MRD

Part (b)., First let us show that R'=[US] is a
k
subBR of R. For any x,y€ R' x=3_ 8] *esoca; and y=

q i= i i
2. Dby co0eb_ o By observation we see that x-y€R!' and
: o Ll

xsy€R's Therefore R' is a subBR of R. Letting (a,m)n=

am then for any x€ R! and for any me€M

k k
XTL—‘(Zaﬁ °oco°an \/‘m:Z(al 9 "o o] Tk )IIl

i=1 “i i q=l T B4
S:lgﬁi_ (\alimc e oanim)
since a, m€ SE€{S] and by definition of R' xm=(x,m)n €R'.
Th?r-efrrg M?;MRE is an M-SubBR of the M-=BR M%CQRO




no
\J1

(2.%3) Definitions. If M?ps is an M-SubBR of M?AR

; o : , : : L ’
then M‘wS is a right (left) M-=Ideal of MﬁuR i Lo A SR I
IR T T S - 1 o] o o . 0 3 Fa)
right ( elft) ideal of R Mﬂwo is an M-Ideal of Mn~R if:

S da an idesl of R.

(2.4) Theorem, If anR is an M-Ring with R bein
a divison ring then the only left (right) M-Ideals of
o O o4
M -R are M -{o} and M -R.
Ul Ul Ul

Proof. The only ideals of R are {o} and R. Hence
the theorem follows from the definition of an M-Ideal.

(2.5) Remark. If MﬁuR is an M~BR then MimR has at
least two M-Ideals since {o} and R are ideals of R and
for any a€ R (a,m)n € R and (o,m)n=0€{0j.

2.6) Theorem., If M%u(R9+9o) is an M-SR, Mﬁms is

an M-Ideal of M%»R9 R=R/S, and nC (RxM)xR such that (x,m)7
-(x+S,m)n=(x,m)n+S for all X€R and mE€M, then Mg-(§9@9@)
is an M-SR called the factor M-SR of MﬁmR wrt mn~~,

Proof. First we need to prove that m is a function
on RxM. If (a,m)=(b,m') then a=b and m=m'. If a=a+S and
b=b+S then a=b+i for some i€ S. Since m is a function
and (a,m)n=(b+i,m)n=(b,m)n+(i,m)n where (i,m)n€ S then
(a,m)n=(a,m)n+S=(b,m)n+(i,m)n+S=(b,m)n+S=(b,m)n. There-

fore m is a function of RxM.

By theorem (4.4) in chapter I (R,e,®) is a SR. For

(aeb,m)n=((a+b)+S,m)n=(a+b,m)n+S=[(a,m)n+(b,m)n]+S
=[(a,m)n+Sle[(b,m)n+S]=(a+S,m)ne(b+S,m)7n

(a,m)ne(b,m)n

(aeb,m)n=(ab+S,m)n=(ab,m)n+S=(a,m)n(b,m)n+S
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=[(a,m)n+Sle[(b,m)n+S]=(a+S,m)ne(b+S,m)n
=(a,m)ne(b,m)n.

Thereifore M%-R is an M-SR.
(2.7) Definition. If M¥-R and M?:mRi are M-BRe
and mCRxR' is a ring-homomorphism then m is an M-BR homo-

. v R N % . | i 0 o ~
morphism (M-=homomorphism) of Msz into M%imR‘ AL E T o gl

x€R and me€M [(x,m)nln=(xn,m)n’'.

no

(2.8) Remarks. OUf course we have the special cases

of homomorphisms: isomorphisms, endomorphisms and auto-

morpnismse.
X

; St s - .
Note that when M -R=M_,-R!' (ie n=n',a=a' and R=R')
n n! e

. pitp o 1 PR SR e o ! : ;
and w is an M=homomorphism of MnuH into Mh,~R' then for

any a€ R and m €M, where (a,m)n=a(ma)=am, a(mn)=(am)n=

P

[(a,m)nln=(an,m)n=(an)m=a(mm). Hence, the M-endomorphisms

. gk ; .
of MnmR are just those endomorphisms of R that commute,
(2.9) Notation. When considering homomorphisms of

" oA
ﬂ%w(Rs+$o) into Mﬁ,u(R'9+‘,o‘) no distinction will be made
between the different operations. Both + and +!' will be
denoted by + and both ¢ and ! will be denoted by « (or

by no symbol).

Section 3. Fundamental theorems of

M-homomorphisms on M-Rings

e ~ !
(Z.1) . Theorem, If Mﬁuﬁ and M:Yme are M-BRs and =
. v 1 1
is an M-homomorphism of M%_R onto M%,»R' then (a) M?,mRn
I
is an M-SubBR of MﬁguR%s and (b) the kernal of w is a

left (right) M) -Ideal of M?~R only if R and R' are RSRs

(LSRs) .
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o))
_/

Froof. Part (a). Rm is a subBR of R' by theorem (&
in chapter I. Now for any anéRn and m€ M (an,m)n'=[(a,m)nln
is in Rr. Therefore Mi:’:uRTc is an M-SubBR of M%/”:mf{'.

Part (b). By theorem (4.7) in chapter I Kn(kernal of
n) is a left ideal of the RSR R. For any aEfKn and mE€ M
[(a,m)n]n=(an,m)n'=0'!. Therefore, (a,m)nE'Kn and hence
n-k is a left M-Ideal of ij»R

(3.2) Theorem. If MY-R, Mf“]':-R' and r‘%" -R'' are M-BRs,
TC RxR!' and nw'C R'xR'!' are M-homomorphisms then nn'(the re-
sultant) is an M-homomorphism.

Proof. mnn'! is a bhomomorphism of R into R'' by theorem
(4.9) in chapter I. For a€ R and me€ M [(a,m)n](nn')=

{l(a,m)ndntn'=[(an,m)n'In'=((an)n' ,m)n' '=(a(nn'),m)n'"'.

Therefore nn'! is an M-homomorphism.

4 o w5 .
32.3) Theorem. il Mﬁ-h 1s the factor M-SR of the

I-SR M%&R wrt M%«»S and 1C RxR such that at=a+S for a€ R

cT
s
o
B
=
FA

is an M-homomorphism on R (ie R is a homomorphic
Proof. 1 is a homomorphism by theorem (4.10) in
chapter I. Now by definition (a+S,m)n=(a,m)n+S for a€R
and m€ M. Hence, [(a,m)n)r=(a,m)n+S=(a+S,m)n=(ar,m)n.
Therefore, v 1s an M-homomorphism.
(3.4) Remark. =t as defined in theorem (3.3) is
called the natural M-homomorphism of R into R=R/S.

(3.5) Theorem, If M -R and IM_,-R' are M-SRs,

ot

(e

@CRxR' is an Mwhomomorphism on R, MF-& is the factor
3

M-SR of M%‘wa wrt M(:{—-S, and ¢C RxR' such that (a+S)p=ao

for all a€R then (a) ¢ is an M-homomorphism of R=R/S
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into R' and ¢=1¢ where 1 is the natural M-homomorphism of
R into R and (b) © is an M-isomorphism iff K,=5-

Proof., Part (a). ¢ is a homomorpbism on R inte R!,
¢ is also a homomorphism on R into R', and ¢=t¢ by theorem
(4.13) in chapter I. For a€R and m€ M [(a+S,m)n]op=
[(a,m)n+S]e=[(a,m)nle=(ap,m)n'=((a+S)@,m)n'. Hence, ¢ is
an M-homomorphism.

Part (b). The result follows directly from part (b)
of theorem (4.12) in chapter I.

(3.6) Theorem., If M%WR and M%:mR’ are M-BRs, ¢C RxR'
is an M-homomorphism on R onto R!, iS}:{SlS is an M-SubBR
of R and K C 5%, {s'|s' is an M-SubBR of R'f, and
an{Sfxgsff such that Sm=St for S€{S} then (a) = is 1-1
and onto (ie {S}?{S'f under ), and (b) S is a right
(left) M-Ideal in M-R iff S'=S¢ is a right (left) M-Ideal
in M-R'.

Proof. Part (a). Clearly =m is a function on {S}.
Let us prove that m maps {S{ onto {S'}. Let sS'€{s'}.

Now define S:@_l(S"o For a,b €8 (a-b)p=ap-bp €S!' and
(ab)p=agbp € S' which implies a-b€ S and ab& S. Therefore
S is a subBR of R. For a€ S and m€ M and by definitions
[(a,m)n]e=(ap,m)n'€ S' which implies (a,m)n €S and hence
S is a M-SubBR of R. Clearly S:@_l(S') contains sz
¢“l(of) and S¢=8', Thus, every M-SubBR of R' can be ob-
tained by applying ¢ to some M-SubBR of R that contains

K « Hence, m is onto. Now let us prove n iz l=1. Let

¢

| .
S€{S} and S;=¢""(8¢). Clearly S;28S. If s; €8, then

s{¢=s¢ for some s €S. Hence s;=s+k for some k€ K@° Now




since K C S slé S. Therefore S:@"l(S@)o Now if 819 82

€ {Sﬁ and Slszgw then Slf@ul(sl@\ ol (Sgw) S»o Therefore

Part (b). Assume S is a right M-Ideal in M-R. Since
¢ is a homomorphism (S',;+) is a subgroup of (R',+). Let
x'=xp€ R' and a'=ap€ S!'., Then x'a'=(xa)p€ S' and hence
S!' is a right ideal of R'. PFurthermore for ap€ S!' and m€ M
(apym)nt=[(a,m)n]o€ S. Hence, S' is a right M-Ideal of
M=R"',

Assuming S' to be a right M-Ideal of M-R' we can
prove that S is an M-Ideal of R analgous to the above
method.

(3.7) Theorem. If MamR is an M-BR, RCf(MﬁmR)X
lM& R) is an M-endomorphism, and R'={a €R| an=a] then
MnmR? is a M-SubBR of MnuRc

Proof. Since om=0 R'#@.  If a,b€R' then (a-b)n=
an+(-b)n=an-bn=a-b € R' and (ab)n=anbn=ab€ R'. Hence,

R' is a subBR of R by theorem (4.3) in chapter I. For
a€R' and m€ M [(aym)nln=(an,m)n=(a,m)n€ R'. Therefore
M?_Rr is an M-SubBR of Mﬁ_RD

(%3.8) Theorem, If Mﬁ»R is an M-Ring and R is a
division ring then E(MﬁnR)~{3}:A<M%mR) where E(M%nR) is
the set of M-endomorphisms of M%wﬂ and A(Mﬁ—R) is the
set of M-automorphisms of Mgan

Proof. From definition E(MauR)miaf:DA(Man)o Let

lvé'T(Mﬁ=R) {of ana K= be the kernel of m. K= is an M-

Ideal of M;HR denoted by MHaK;O Since MnmR ig a division
| 1l

=

M-Ring MﬁwKﬁwF3~{G§

Iin‘ﬂwMﬁwR, Since m#o and MimKE%
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M%“WR MS]LKEL:MS]&{O; . Therefore ﬁ(Mf]‘-R)m%}:A(MS]&R)O

Section 4. A particular example

The purpose of this section is to give an example of
a ring that has an identity 1 along with an endomorphism
B on it such that 1B#1, and hence give a counter example
to the pseudo-theorem if M%mR is an lM-Ring and R has an
identity then for m€M (l,m)n=1.

Let R be the following ring:

+ 0 1 ) 2+l o o) 1 a a+l
o) o) il a a+l 0 o) o) 0 0
1 1 o) a+l a 3t o) i a a+l
a a a+l o} 1 a o) a a o]
a+l | a+l a 1k o) a+l o) a+l| o a+l

Clearly the following subset R'! of R is a subring of R.

+ (@] a ° 0} a
(0] (0] a 0 0 (o)
a a J a 0 a

Define BCRxR' such that oB=o, 1lp=a, aB=a and (a+l)B=o0.




o
Now we need to check to see if B is an endomorphism. If
X,y & R then for
(1) x=0. (xX+y)B=yEL=0+yP=0B+yR=xB+yL and (xy)f=oPf=0=

(2) x=1, y=a. (l+a)B=o=a+a=1R+af and (la)f=af=a=aa=

(3) =x=1, y=a+l. (l+a+l)B=aB=a=a+o0=1Pp+(a+l)f and
[1(a+1l)]B=(a+1l)B=0o=1Ro=1B(a+1l)p
(4)

x=1l, y=1. (1+1)B=0B=0=0+0=1R+1B and (11l)p=1p=a=

(6) =x=a, y=a+l. (a+a+l)B=1B=a=a+o=1F+(a+1)R and
[a(a+l)]B=0B=0=aBo=aB(a+1l)pB.
Hence, B is an endomorphism such that 1B=a#l.

Let M={2} and define a such that 2a=8. Then M%—R

l

is an M-Ring.

Section 5. Examples of l-Rings

(5.1) Example of an M-Ring. Let (R,+,) be any
ring. Define nC[RxE(R)]JxR such that (a,m)n=am for a€R
and m € E(R). The o associated with n is the identity map

of E(R) onto E(R). If (a,m)=(a',m') then a=a' and m=m',

and (a,m)n=am=a'm'=(a',m')n. Hence, n is a function on

[0)]

RxE(R). For a,b€R and m€ E(R) (a+b,n)n=(a+b)n=am+bm=
(a,m)n+(b,n)n and (ab,m)n=(ab)m=ambm=(a,m)n(b,m)n.

; N : :
Therefore E(R)_-R is an M-Ring.
n (]

(5.2) Example of an M-Ring. ILet C denote the set




2
PR N ; a b : . ;
of complex numbers, and R={(> a a,b,c,d €EC| and define
+ and . as the usual matrix addition and multiplication

on Re Then (Ry+,¢) is a non-commutative ring. ILet S=

(GO apiceofer. men ror aa(3 1), o-(3' D)€

Ol o C o el
a b\l/a! bl aa'! ab'+be'!
i C ! > =
&Q“(o c)(g el "\o @ =8

and

N

e el e

g - 9 C=C !

7

Hence, S is a subring of R. Define the map m h that

H
-
(6]
c
0

,_
b
0
®)

>

= a o . = : : i .
oum_ :( o G learly m 1s single-valued. Al
Ty \o o s :

- ‘aa'! o a o (a* g) - =
94 F% o = = (-~ (X.m Qm
(oB) ry ( 0 o) (o o) 0" o rl“ T

-
4
ana

= (ata? o‘w(a o> (a' o}_ - -
(&+B)mr1w( . o)“ e ity o —amrl+pmrl.

Therefore m_, € E(S). Define m bs e 2 Gl such that
ry T rg

- 0 0 — a o - 0 0 - (l o)
= = olm = = )
amrg) (o c) ? amrﬁ (o b) ? T <o o) y O, Ol ?

e 5

o;fn_r f:(l O) , om, = (a b) , and om

/0 0O
_ A . )c It can be shown
T v

r8:<o 1

that all of the above defined maps are in E(S). Consider

now the set Mz{l,°°°98} and the map m such that in=m for

i=lye..48. By the definition of w it is clear that it is
a single-valued map of M into E(S). Hence M and S along
with n form an M-Ring,.

(5.3) Example of an M-Ring. Let R and S be the same

rings as in example (5.2). For a€C let a denote the con-

O




N
N

a. Define the maps 51 yhsaalls  cutch that fop
] it

- (00 s a o) - <o o)
am. = =), oam, = =|, am., =
; 1, (o c)’ 1 (o b/ L~ ko ol

5
oy =(3 9} oy ~(2 ). oy ~(32), By +(35). creamsy

J o Wy -8
— 4 b at bt
n - o) 1 e T~ — = (@
“11 1s single-valued. Forx &-(O c)’ B:= . CJ 6 S
= a'! o 3a! cj a c)( a' o —
oB)m, : = = =0 m
( p)‘lnI ( o) o) ( 6 v o oA T R < le 14
8
and

L — a+a'! o (§+°§T o (g Q)( = ,‘) 4 .
a+p)m, = = s O m.-
k A f ) = ( 0] {\.) @) o) 0.0 0 o 1 o) 1

il g i 1 I
Hence, m, € E(S). Similarly it can be shown that the

T
rest of the maps are in E(S) also. Define 1C MxE(S) (M=
{1,...,8}) such that nt=m, for n=1,...,8. By the defini-
n

tion of tv is is clear that it is a single-valued map on M
into E(S). Hence, M and S along with 1 form an M-Ring.

(5.4) Example of a 2-multiple M-Ring. By consider-
ing examples (5.2) and (5.3) together we have a 2-multiple
M-Ring. Note that if we denote the images of am and

r
n

aﬁl as o#n and n#o respectively then 4¥o=04, SHa=oi#5,
oha=0#6 and 8#o=0#8 are the only ones that commute.
(5.5) Example of an M-Ring. Let (F[x],+,°) be the
extension of the field P over x, Then for a,b,c € Plx]
n, o0
a : s ! c ) i
azz:_aiX19 b= bﬁxls and CEEZ:CIXLo Define muC'F[X]XF[x]

1=0 ° i=0 1=0

n
a :
3 — ey = i
such that amvuz a;u” where u€ Flx]. If a=b then n, =n
1=0 -

w

b

n n
e a J_ b 1 —
and a.=b, for islssnesl " Henee, am s a.u = b. U =bm .
9 9
] a u b i e al u

Therefore m_ is a function on F[x]. Furthermore,




"=am__+bm
u u

n n
) a . a
If u=u'! then am = a.u :} ui(u'\L;amU,o Therefore «
1=C jsg :

is a function on F[x]. Defining a(ua)=(a,u)n for a,u €

(5.6) Example of an M=Ring. If in the example above
; o o :
we had required u&€ F then M=F and FnuF[X] would be an M-

Lh;o

(5.7) Example of an M-Subring. Consider the M-Ring
N 5« F is a subring of F[x] and for a€ F and

ence, fo]qu is a M-Subring of

an M-Subring. Consider the M-Ring

(5.¢) Ixample of an M-homomorphism. On the M-Rings

‘~F define nC F[x]xF such that for a




N
N

n,
= ) 1 ! ;
in P[x] an=a _ where aaz: 8.X . 1f a=b then anwaosbo:bn
1=0 ' :

and hence n is a function on F[x]. For a,b€ F[x] (a+b)n

waﬁ+bq:an+bn and (ab)n:acbozanbﬁ: lence 1 is a homo-

S rol Fsrl 2mdem -~ o e T N ) ==
morphism of Flx] into F. For a€ Fix \igh)y:@rnam:(an)uuo
B = - u J

Hence m is an M-homomorphism of F[x] into F.

Al

(5.10) Example of an M-Ring. Let R={(8;,000,8 )
adel 1l \

a. € reals for all i% and define + and * such that for a=

(ajaaooﬁan)g b;(%la,,aﬁ%i)él{afb:(al+blgooagan+br) and

4
. b { T P T+ N7 ar] ~r D) o o 3 A oS
ae D= Kidwz°~'1Laooeg~’-‘in°~.fh)o UJ-Dle_j <£‘L3+9°> 5 ak I‘i[’lz’:‘o Define
the map m. such that sm.=(a, ,.esa8. ) Where (i,,svsyi. )
5 i1 n

1 i L 1 i
is a permutation of (l,...,n). Clearly m. is a function

on R. For a,bER <a+b>m1:<a1+b}"“‘*&n+bn>p?:<nwl'

cesgB. 4D, J=(8, sees48: JH By yees b J=am.+bm, and
. 1 3§ 8 it 1 35 1
n n it n 1} n

J(by yeee,by )=

(abim.=l8; by jenwehs Be Il sewy iy
i EE i
e Il

op ey | n ‘n =i n

(amj)(bmi)u Hence miGEEKR), Now define o C MxE(R) such
that iaxﬁi where Mn{lgauo,nl}, By the definition iof o

. . - . 3 i . :
it is a function on M. Therefore Mﬁ»R for (a.d )n=alia )=

am. is an M-Ring.
A
(5.11) Example of an M-Ring where M is the R.

Let R be any division ring

=y ©

Define @bC RxR such that for

] ! L g :
a€R a@bmbao ~ where DER. If a=a'! then ba=ba'! and bab =

il

ba'db ~. Hence ¢pis function on R for any o#b€ R. For

angIi(a+c)@hab(a+c)bpimbab_l+bob—l:a@b+b¢b and (ac)g, =

L+

b(ag)bmlrbia(b b)ec

: =1 g
)(beb _)~"—'<a@-b><3<»9b>°

Cd
(@
i
&N
o
oV
(@)

Therefore<%>€ﬁKR) for each b€ R, Define aC RxE(R) such
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l“:-b i a(b 1 )‘il

gy - 1 1 1 / 1 4 s P
If b=b' then D "=(b') and awb:bab

all a€R., Therefore o g a function on R. Hence

g

W

for nC(RxR)xR such that (a,b)n=a(ba) for a,b€R R%uR is

an M-Ring.

Note that if R is a comutative division ring then ag,.

b
=a=aQ, for all b,c €R snd hence Q=P si0r all i b,CeR,
Furthermore the mapping Py, 18 Just the identity map for
gll'beR,

(5.12) Example of an M-Su n Let @— be the
1
M-Ring in example (5.11). Let R'={a€ R|ab=ba for all bE RJ.
R'#0 since 1,0€R'. If a,bER! then for any c €R ac=ca

and be=cb. Thus (ab)c=a(bc)=a(cb)=(ac)b=(ca)b=c(ab) and
). Therefore ab,a-b€ R' and
hence R' 1s & subring of R« PFor a€ R!' and QbE'E<R) aPy,=

- ey
bab J::a(bb ~)=a€R'., Hence R?QR' is an M-Subring of

(5.13) Example of an M-Ring. Let F={f|f is a
function that maps the reals into the realsfo By defining

+ and + such that for any f,g €F and x € reals (f+g)(x)=

F(x)+g(x) and (feg)(x)=f(x)*g(x) (F,+,¢) is a ring. De-

In=f#g where for x€R

}.;J
B
D
=
7,
eS|
b
|
>
=
n
C
O
b
s
-
O
(e
N
H

flg'(x))=f"(g'(x))=[f'#g']1(x). Therefore n is a function
on FxF. Futhermore for f,g,h&€F and x€ R [(f+g)kh](x)=
(f+g) (h(x))=£(h(x))+g(h(x))=[f#h](x)+[ghh](x)=[(f#h)+
(e#h)1(x) and [(fg)#hl(x)=(fg)(h(x))=f(h(x))g(h(x))=

[f#h](x) [ghh] (x)=[(f#h)(g#h)](x). Therefore F?QF is an

M-Ring where (f,g)n=f(ga) for f,g€ F.




7

»14) Example of an M-Ring. Let R be a commutative

(

ring of characteristic p where p is a prime. Define m C

U

RxR such that for a€ R am=a®?€ R, Then if a=a! a¥a(g1 ¥,
Therefore m is a function on R. lso for a,bER (a+b)m=
(a+b)P=aPbP-am+bm and (ab)m=(ab)P-aPbP-ambm. Hence

m€ E(R). Define o,C RxE(R) such that for all a€R aalsﬁ

2= = ¥ e — . 1 ™ 2
and (a,b)n=a(ba,)=am., Hence, R’1-R is an M-Ring.
A “L
We can obtain another M-Ring from the above example

by defining QEC:{c?laifxE(H) such that oa,=0 € E(R), lowy=

1€E(R) [1 is the identity endomorphism] and 20~,=m. Then
(A sy, 0 k 5 2

A 1 ¢ )3 ¥ o
g:_ y ol { - | ’lLJ_ﬁg«

‘n
|
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CHAPTER III

EXPANDED RINGS

The right expanded ring will be defined and its
equivalence with an M-Ring proved. The question as to
whether an expanded ring exists will be resolved. Again

the last sections will be reserved for examples.

(1.1) Definitions. (R,+,°,#) is a bare expanded BR
(BEBR) iff (R,+,°) is a BR and # is a binary operation on
R. If (R,+,°,%#) is a BEBR then R is a right semi-expanded
BR (RSEBR) iff for any x,¥,2 €R (a) (x+y)#z=(x#z)+(y#z)
and (b) (xey)#z=(x#z)-(y#z).

(l.2) Notation. We adopt the convention that when
x#y.z#w or x#y+z#w are written we mean (x#y)e(z#w) and
(x#y)+(z#w) respectively.

(1.3) Theorem. If (R,+,+,#) is a RSEBR and #=n
then R%m(R,+?°) is an M-BR.

Proof. % is a fupction on RxR since % is a binary
operation on R. For x,¥,2 €R (x+7,z2)n=(x+y)#z=x#z+y#z=
(x,2)n+(y,2)n and (Xey,z)n=(x.y)#z=x#z y#z=(x,2)n°(y,2)n.

1.4) Theorem. If R%H(R,+,°) is an M-BR and #=n

then (R,+,°,#) is a RSEBR.
A

Proof. Same as in theorem (1.3).
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1.5) Remark. From theorems (1.3) and (l.4) a RSEBR
is simply an M-BR where M is equal to the set R.
(1.6) Theorem., If (R,+,*,%) is a RBEBR then for
X, ye€ER, keI, and je N
(a) o#x=0
(b)  (kx)#y=k(x#y)
() (=x)#y=-(xy)
(@)  x4y=(xhy)?
(e) if (R,+,*) is a SR with a right (left) identity
r wrt ., R has no left (right) divisors of zero, and R#Jo}
then r#x=r.
(£f) if (Ry+,°) is a division ring then
(1) Fpy=(xby)E
(2) xMy=(xby)
(3) 1#x=1 where 1 is the identity of R wrt .
and X 1s not equal to the zero-endomorphism
of R.
Proof. Follows from theorem (1.8) in chapter II.
(1.7) Remark. If (R,+,°*,%) is a BEBR we can consider
(Ry+,#) as a BR, and if (R,+,°,#) is a RSEBR (R,+,#) can
be considered as a RSR. Hence, all of the theorems in
chapter I section I can be applied to (R,+,#) with no-
tational changes. However, many of the theorems and def-
initions will be restated to give more continuity to this
section.
(1.8) Definitions. If (R,+,°,#) is a BEBR then Ty

is a right (left) identity of R wrt # iff for any x €R

X#r#=x (r##}cr:x)° R has a two sided identity (or identity)
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ry wrt # iff ry is both a left and a right identity of R
wrt #.

(1.,9) Theorem. If R is a RSEBR with a left identity

r, wrt # and Rf{o} then ry#o.

Proof, Same as in theorem (1.8) in chapter I.
(1.,10) Theorem. If (R,+,¢4,%#) is a RSESR with a left

identity r; wrt #, (R,+,.) has a right (left) identity r

i

wrt o and (R,+,¢) has no left (right) divisors of zero,

then ru¢ fo,ri.
E J

Proof. Theorem (1.9) shows rl;t;!o° Assume ry=r. Then

#o=r#o=r. But this contradicts theorem (1.8) in

0]

chapter I.

(1.11) Remark., If R is a RSEBR which has a right
identity ry wrt # then Ty may be zero as shown by example
(5.1). Furthermore, if R is a RSEBR which has a right
(left) identity r wrt . and has a right identity r, wrt
# then r, may be equal to r as shown in example (5.3).

(1.12) Theorem. If R is a RSEBR with Rf]‘-R as its
M-Ring equivalence and R has a left identity e wrt #
but R has no right identities wrt # then (a) o is one
to one and (b) I¢,Ra=§ where for x€ R xI=X.

Proof. Same as in theorem (1.13) in chapter I.

(1.13) Definitions. If R is a BEBR then x€R is
a right (left) divisor of z€R wrt # iff there exists
a YER such that y#z and y#x=z (x#y=2). X€ER is a

general right (left) divisor of z wrt # iff there exists

8 yE€R such that yi#x=2z (xHhy=2). x€R is a divisor of =z
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(general divisor of 2z) wrt # iff x is both a right and
a left divisor of z (x is both a general right and a
general left divisor of z).

(1.14) Remark. Our attention will be focused on
divisors of zeroc and divisors of identities wrt ¢. 1In
example (6.3) b+l is a general divisor of o, 1, a, and a+l
as well as a divisor of o, 1, a, and a+l wrt #. Also, in
example (6.3%) we see that b+l is a divisor of a+b+l wrt -,
but b+l is not a divisor of a+b+l wrt #. Furthermore,

o

n
H

in example (6.3) b+l is a divi of a+l wrt #, but b+l
is not a divisor of a+l wrt .. Hence there seems to be
no connection between divisors wrt # and divisors wrt -
for arbitrary divisors.

(1.15) Definitions. If R is a BEBR then X E€R obeys
right cancellation law wrt # iff when y,z € R such that
yH#x=z#x then y=z3 x€ R obeys the left concellation law
wrt # iff when y,2€ R such that x#y=x#z then y=:z.

(1.16) Theorem. If R is a RSEdivision ring with
1l as the identity wrt . and x€ R obeys the right cancell-
ation law wrt # then x is not a right divisor of zero or
1l wrt #, and x is a general right divisor of 1 only if
X#0 .

Proof. If there exists y€ R such that y#x=o0 then
by theorem (1l.6) y#x=o#x=0. Since x obeys the right
cancellation lew y=o0. Hence, x is not a right divisor of
zero, I1f there exists a y€ R such that y#x=1 then by

theorem (1.6) y#x=1l#x=1. Which implies y=1 because x

obeys the right cancellation law. Hence, x is not a right
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divisor of 1., If x=o0 then by theorem (1.6) l#x=1.

(1.17) Theorem. If R is a RSE division ring with
1l s ite identity wrt «y x€ R ig not a right divigsor of
zero wrt #, and x is not a right divisor of 1 wrt # then
X obeys the right cancellation law.

Proocf. Let y,z€ R such that y#x=z#x. If y=oc then
z=0 since x is not a right divisor of zero wrt #. Also,
if z=o0 then y=0. Bo x obeys the right cancellation law
in these cases. Suppose y,z#o. Then y#x,z#x#0. Because
(Ry+,+) 1s a division ring z#x has an inverse wrt -, and

_lﬁxo Hence, l:(y%x)(z%x)—l=

by theorem (1.6) (zd#x) 1=z
(y%X)(Z“l#X):(yzwljﬁxo Since x is not a right divisor of
1 wrt # yzbl:l which implies y=z.

(1.18) Remark. From theorems (l.16) and (1.17) if

qu:ﬂXEE{[X'is a right divisor of q wrt #{ and Cr={X€5R[

x obeys the right cancellation law wrt ﬁ} then Crz(R—Dro)
f\(RmDrl)=Rm(DrOL)Drl)a

(1.19) Definition. If R is a BEBR and R has a right
(left) identity r wrt # then y is a right inverse of x
wrt # relative to r iff x#y=r, and y is a left inverse of

x wrt # relative to r iff yH#x=r.

Section 2. Semi-expanded rings

In this section we are going to define the left
semi-BR and the semi-BR. Then the rest of the section

is devoted to deriving an equivalence theorem that will

be helpful in finding an example of a semi-ring.




{2:1) Definitions. TIf (R,+,¢,¥#) is & BEBR then R
is a left semi-expanded BR (LSEBR) iff for any x,y,z€R
(a) z#(x+y)=zé#x+z#y and (b) z#(xy)=(z#x)(z#y); and R is
a semi-expanded BR (SEBR) iff R is a RSEBR and a LSEBR.

(2.2) Remark. A LSEBR is really the same as a
RSEBR except for the notation. Hence, all of the proper-
ties of RSEBRs apply to LSEBRsS.

(2.3) Notation. If (R,+,*,#) is & EEBR let #l:+,
%2:09 and ﬁaa&.

(2.4) Theorem. If (R,+,°,%) is a SEBR, n, =%, and
no=Pny where ¢ C(RxR)x(RxR) is a function on RxR such
that (x,y)e=(y,x) for x,y ER then Rz}:?§~<R,+,o) is a
symmetric 2-multiple M=BR. i

Proof. A symmetric 2-multiple M-BR was defined in
definition (1.7) of chapter II.

Clearly N4 and n, are both functions on RxR into R,

For X,¥y,%2 €R and i=1,2

(X#iy9Z)nl=(X#iy>#Zc(X%Z)#i(y%Z)=(X,Z)nl#i(y,2)nl
and  (x#;¥,2)no=(x#;7,2)0n =(z,x#,y)n, =2#(xt.y)=
(z#x)¥; (2#y)=(2,3)n #; (2,7 )ny=(x,2)on #. (7,2)0ny=
(xy2)n%; (7,2)n5.

(2.5) Theorem. If R?l’%E-(R,+,°) is a symmetric
Ve

2-multiple M=BR and #xnl then (R,+,°,#) is a SEBR.
Proof. Since ny is a function on RxR # is a binary

operation on R. Por x,y,z€R and i=1,2

(X#iY)#Z:(X#iys2)n1:(XsZ)n1#i(?a7)ﬂ1$<X@Z)*i(Y#Z)
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and  z#(xd;y)=(2,xk,7)n,=(2, x#,F)on,=(x#,7,2)n,=
(x,2)n8; (7,2)no=(x,2)on #. (¥52)eny=(2,x)n #, (2,7)n; =
(Z#X)#l(z%y)o

(2.6) Remarks. From theorems (2.4) and (2.5) a SEBR
can be considered as a symmetric 2-multiple M-BR and a
special type of a symmetric 2-multiple M-BR can be con-
gsidered as a SEBR. The theorems for RSEBRs and LSEBRs
hold for SEBRS.

= A : i S ; d o
(2.7) Theorem. If R.1° 2-(R,+,+) is the symmetric
Mo

2-multiple M-BR that is equivalent with the SEBR (R,+,°,%#)
then for x,y,z €R (z9X#iy)nl:(z,x)nl#j(z9y)nl for d=1,2.
Proof. ILet x,y,z2€ R. Then (Z,X#iy)an(Z,X#iy>@n2$
(x#.5,2Ino=(x,2)nH. (¥,2)n=(x,2)on  #, (¥,2)¢on, =
(z,x)nq#; (2,507
(2.8) Definition. If (R,+,°) is a BR and E(R) is.
the set of all endomorphisms on R then we define + and -
subsets of [E(R)xE(R)]xF where FC RxR such that if z€R
and B,5 €E(R) then z(B,5)+=zB+26 and z(B,6)*=zR-2zb.,
(2.9) Theorem., If (R,+,+) is a BR, and + and
are defined as in definition (2.8) then (a) F={f |f is
a function on R into R} and (b) + and - are functions.,
Proof. Let t=(Byb), T'=(B',6!) €E BE(R)XE(R).

Part (a). Let z=w€R. Then for =+, Fo=v, # =+,

4 =0 ‘. = ] D
#,=0, and i=1,2

Z<T?ﬁ:l>‘j( (B0 >¥£] ;)":‘ZB#:"_ZE):‘WB#:;W@‘:W( (B,yb )T*:;L :)”WCTEJ?V Do




Hence, rgl for i=lye is @ functict on H. Fhsrefore, F=
{f| f is a function on R into R},

Part (b). Tet z €R and v=7' which implies P=B' and
6=61V.  'Phen for I=1.,2

z(f@i)rz((ﬁyé)%i)a28¢126=z£?#5zé’:z((ﬁ'96‘)Ei)=

P

Since z was arbitrary t#.=1'#, for i=1,2. Hence, #,=+

it
are functions.

(2.10) Remark. As shown in theorem (2.9) B + & and
B - & are both functions on R into R for B,5 € E(R), but
for an arbitrary BR, R, neither B + & nor B ° & need be
an endomorphism on R.

(2,11) Theorem, If (R,+,°,#) is a SEBR with

Rﬁ}’igu(R?+ao) as its symmetric 2-multiple M-BR equivalent,
L‘i

and 'E:R(X:LC E(R) then (R,+,+) is a BR where + and *° are
defined as in definition (2.8), and x is a homo-
morphism of R onto R.

Proof. From theorem (2.9) + and - are functions.
If a,b€R then there exists a,b€R such that aocl-:a and
bocl-—-go Let x € R. Then by the definition of xa; and

theorem (2.7

X(a#lbjrxi(a#ib)ocl]:-'(Xsa#i'b)nl:(Xaa)nl#i(x,b)nl:

X(aal)#;x(baw)=x(§ #. b) for i=1.2.

Since x was arbitrary (a#.b)=a #. b for i=1,2. Thus for
=i 3 ke
a,peR a #. b=(a¥.b)ER. So, + and * restricted to




RxR are binary operations on R. PFurthermore, since

(a#%b)gﬁzfgﬁibjfg #. Bulan, ) ¥, (boy) for i=1,2 o, is

a homomorphism of R onto R. Thus, R is a BR under +
and o,
(2.12) . Theorem. —If (R,+4°) is &8 BR, (8,+.%) is
a BR of endomorphisms of R wrt + and - as defined in
definition (2.8), and o is a homomorphism of R into S
then (Ry,+,°,#) is a SEBR where x#y=x(ya) for x,y €R.
Proof. By definition # C(RxR)xR. Let (a,b)=(a!,b!)

which implies a=a' and b=b'!. Then

Therefore, # is a function on RxR and hence a binary
operaticn oh R L&t x,y:% €R. Then for i=l.,2

(x# ¥ )Hz=(x#,y) (za)=[x(z20) I#,; [y(z0) I=(xHz)#; (Fhz).
Since o is a homomorphism

24 (k) =20 (x#, y)ad=2[(xo)F,; (you) I=[z(xa) 4, [2(ya) ]

:(z%x)%i(z&y) for i=1,2.

a SEBR.

0}

Therefore, (R,+,°,%) 1

(2.13) Remark. As shown in section 6 there does
exist rings that satisfies the hypothesis of theorem
(2.12), and hence there exists SEBRs.

(2,1 ) ‘Theorem. If (R,+,+,#) is a SESR with
Rﬁl*%2m(Rg+go) as its symmetric 2-multiple M-BR equi-
1:M2

valent, ﬁsRals and X&yxx(y&l):x§ for x,y €R then for

x,y,a,bER (a) axby+aybx=o (b) axby+bxay=o (c)

aybx=bxay (d) (ab+ab)x=o0 (e) (ab+ba)x=0 (f) (ad+a2)§:o
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Frool. ket m,7,8;DER and E:aa, y=ya€R. Then

since x+y=x + y and x°y=X . y are endomorphisms

(a) (ab)(x+y)=a(x+y)b(x+y)=a(x + y)b(x + y)=
(ax+ay ) (bx+by )=axbx+axby+aybx+ayby and (ab)(X+y)=
(ab)x+(ab)y=axbx+ayby. Therefore, axby+aybx=0.,

(b) (a+b)(xy)=(a+b)(xX - ¥)=(a+b)x(a+b)y=

(ax+bx) (ay+by)=axay+axby+bxay+bxby and (a+b)(xy)=

a(x * y)+b(x ° y)=axay+bxby. There efore, axby+bxay=o0.
(¢c) From (a) and (b) aybx=bxay.

d) Let y=x in (a).

e) Let y=x in (b).

) lLet y=x and a=b in (a).

(g) If a=b in (c¢) then a(y - x)=a(x ~ ¥). Since

a was arbitrary y ° X=X ¢ Y.
(h) Let x=y in (c).
(1) Let a€R. Then aoc=a(x-x)=al[x + (-X)1=

ax+a(-x). By the analogous theorem of theorem (1.6) for

LSEBRs and since R is a RSring x#(-y)=-(x#y). Thus,

n

a(-x)=a#(~x)=-(a#x)=-[a(xa)]==(aX). Hence, a0=0.

, : SRR e e
(J) Since (ax)=ax (ax+bx)“=a“x+b“xX+axbxX+bxax=

o - i ek
akx+b2X:(aX)d+(bx)de
(k) Similer to (1)

(1) By (i) and (a) if a=b and arbitrary a(x = y +

X ° y)=o=ao. Since a was arbitrary the theorem follows.




4.8

N

(m) Similar to (1).

(2.15) Theorem. If R satisfies the same conditions

Since o.a=o0 for a SR 0=0.a=0  a. In theorem (2.14)

part (m) let y=r and a=x. Then from part (a) above

r=0 implies a+a=0.,

-~

(2,16) Theorem. If R satisfies the same conditions

as in theorem (2.14) and R is not commutative wrt « then
the identity map of R onto R is not in R.

Proof. If I€R, where ICRxR such that xI=x for
all x€R, then by part (¢) in theorem (2.14) ab=alIbl=
bIaI=ba for all a,b €R.

(2.17) Theorem., If R is the same as in theorem
(2.14) and every non-zero element of R has order diff-

Proof. Assume there exists a,b&€ R such that

a - bfo. Then there exists c€ R such that c(a<b)#o.

By part (1) of theorem (2.14) c[(a.b) + (aeb)]l=co=0,
Hence, o#c(a°b) €R has order two.

(2,18) Theorem., If R is the same as in theorem
(2.17) and R has a right (left) identity then a#b=o
for all a,bE&R.

Proof. Follows from theorems (2.15) and (2.17).

(2.19) Theorem. If R is an integral domain with




o%)
(0]
B
(@]
ot

characteristic different than two then there

t a binary operation # on R such that (R,+,*,%#) is

dJ

exie
not a trivial SEring (a trivial SEring is one where

a#b=0 for all a,bER).

1
i

C

Prootf. Follows directly from theorem (Z2.18).
/

(2.20) Theorem., If (R,+,°) is a division ring

and {o,1} @R where 1 is the identity of R wrt . then

there doesnot exist a binary operation # such that

(Ry+,°4%) is a not a trivial SEring.

From theorem (2.15) part (a) 1 ° 1=1. Hence, for
any o#x€R x(1 1)=(x1)°(x1)=x1 which implies that
x1=1l, If there doesnot exist an o#x €R such that
x+1l#o then for all o#x €R x+1=0., Thus, x=-1 for all

x#0., Hence, x=-1l=1 which implies Rufoel}o Therefore,

there exists a o#x € R such that x+l#o. Now l=(x+1)I=

i__ll

11=1+1 which implies that l=o. But by theorem

x1
(1.8) in chapter I 1£0.

Section 3. Right expanded rings

(%3.1) Definition. If (Ry+,°,%#) is a RSEBR then
R is a right expanded BR (REBR) iff the operation # is
associative, If R is a SEBR then R is an expanded BR
iff the operation # is associative.

(3.2) Remark. Most of the theorems about RSEBRs

hold for REBRS.

(%3.3) Theorem. If R is a BEBR with a right




identity r wrt # and x has a right inverse wrt # then x

2 1 q .2 o S :
o~ g o - SO , PG IR XX AT £ 7 AT - 4k
1S - IEOX ad il ;’)fﬂ,: AlvVvisor oI Zero wrt .

(3.4) Theorem, If (Ry+,°,%#) is a REdivision ring
with a right identity r wrt # and x has a right inverse

ST = Th AY < S o ~ A2 > 7 AT e T =5 | -»r
vrt # then x is not a right divisor of 1 wrt # where 1

Proof. Let y be the right inverse of x wrt #

o [ e E S IS A e e e S T TR e s £ 4~

relavive teo . Assume X 18 a rieht diviger of l..  Then
A ~ p PR ool 2 NIR=r S S 1 Ja = e oL e s | i .0 G o il

there exists a 2 €ER such that Z,;'-/ 1l and z#x=l, Usi ng

(4.1) Notation. When BEBR is used in the same
sentence several times it refers to the same type of
BEBR under discussion.

(4.2) Definitions. If (Ry+4¢,%#) is a BEBR and
@S CR then (Sy+4°.%#) is a subBEBR iff (S,+,°,#) is a

BEBR. @#SCR is a (left) ideal of the BEBR R

iff (Sy+,¢) is a subBR and x#s €S (s#x€8) for all x€R
and s€S. @#SCR is a right-right (right-left) ideal
i

S is a right (left) ideal of the

Similarly, left=left and left-right ideals of a BEBR
R are defined. @#SCR is a ideal of the BEBR R iff S

is a left ideal of the BEBR R and S is a right ideal of

the BEBR R. @#SCR is a dual ideal of the BEBR iff S

\J?

S

~
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is an ideal of the BEBR (R,+,° 4#)

eorem. If R is a BEBR and @#SCR then S

1s a subBEBRR

4

ff for x,y€ER x-yE€R, xey€R and x#y €R.

Proof, Obvious,

J

(4.4) Theorem. If (R,+,*,#) is a SESR, @#SCR is
a dual ideal of R and ©,0,6C (R/SxR/S)xR/S such that for

x=a+S,y=b+S ER/S (x,y)@=(a+b)+S, (x,y)@0=a.b+S, and

(x,y)®=a#b+S then (R/S,9,0,#) is a SESR with ©® and &
beil 2iative iff o and # are associati -
1V ¢ s

Proof. From the definitions of dual ideals and

@‘.

9

®
v

SEBRs, and from theorem (4.4) in chapter I (R/S
associative

and (R/S,0,$) are SRs with ® and ¢ being

1 ssoclative resgpectively. For x=a+S3,

(c+8)]10L(b+3)H(c+3)]=(x8z)0(ybz)

+
n
ii

r
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and z@(xQy)=z8(ab+S)=c#(ab)+S=(c#a)(c#b)+S =

S)19L(c+8)®(b+3)]=(28x)0(z8y).
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(4.5) Theorem., If m is a homomorphism of the
BEBR (R,+,°,%#) into the BEBR (R,+,°,¥) then RnCR is
a subBEBR.

"roof. By theorm (4.6) in chapter I (Rm,+,°) is a

5

subBR of (R,+,°). For x=an,y=bn € Rn xFy=(an)E(bn)=

7

(affb)n € Rn. Hence, by theorem (4.3) (Rn,+,°,%#) is a




ight wonder if there are two

between them as defined in the

lefinition (0.3). es (7.3) and (7.4) shows that
t o exist,

(4.7) Theorem., If n is a homomorphism of the
RSEBR (R,+,°,%#) into the RSEBR (R,+,¢,%) and (R,+,°)

and (R,+4°) are RSRs (LSRs) then K_ (kernal of n) is a

p—

(/ B P = A Tol a B HAAMANR - 3 AT =
(4.Y) Theorem. If n is a homomorphism of the

o r o 1) L T WG T e e | o Lon .
SESR (Ry+,°,#) into the SESR (R,+,+,%#) then Kﬂ is a

[O)

Pl (PIEy LRSS (e 1 < Y
dual ideal of R.

Proof.

theorem (4.7) above and remark (4.8) above.

(4.10) Theorem. If (R,+,°,#), (Ry+,°,%) and

— o
I

(R,+,°,%#) are BEBRs, and ¢ CRxR and ¢ CRxR are homo-

morphisms then ¢¢ (the resultant) is a homomorphism of
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for x €R xB=x+S then B is a homomorphism.,

+S)B(y+S)=

Proof. If x,yE€R then (x¥y)B=(xHy)+S=(x

xBhypB. Hence, by theorem (4.10) in chapter I B is a

homomorphism of R into R,

(4.12) is
called the

(4.13)
is a homomorphism, R is the factor SESR of R wrt the dual
ideal @#SCK , @ such that (x+S8)e=x¢ for all

0
x € R then © is a hism of R=R/S into R' and
p=Pf¢ where B is the natural homomorphism of R into R and
(b) ¢ is an isomorphism iff K, =5,
b

Yok (y+8)e

we have part (a). Part (b) follows from part (b) of

between an M-homomorphism and a homomorphism. As shown

in example (7.%) they may be the same, but need not be
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Section 5. FHExamples of RSEBRs

given without proof so

(Ry+) in the examples

-

‘]lnfj abrevia-

will always be an abelian group. The foll
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law, LD= obeys the left
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a right inverse i relative to & T (left)
:4 L LGy € } ( v\v'r ) ¢
( ) RRARR ) h 1 e o 4 2 +
P e ) nhpbn -5 S g 0 ties but n left
\Citiess Let R b a BR with at least two ements.,

Define xwy=x for all x,y€R. Then (Ry+,¢,#) is a REBR
su that # is NC and NLD. However, L =Ry I.=@, D__ =
T 1+ ro

If (Ry+,*) is a division

r
+
@

D, =D .={a€F[x]|ac€ f} , and Cq= ga € Flx] ’ a ¢ F} « The




e : £ ; . W (3 e o
II. TFor # defined as x#y=xQy=yxy (Ry+,°,%#) is a RSE

ivision ring where # is NC, NA, and NILD. I_={1}, I.=8,

D..={o}, Dwﬁ~{3}5 D_,=@, D..={1{, C_=R, C, is not easily

)
L 24

o is the same as the

(5.4) RER with an identity. Let R be the M-Ring

: o s ( TN
11 example (D.l3) in € ter Il+ Then (R,+,*,#) 18 &
™ NT /Y T S S ~ e
RER re # is NC and NILD. I_=I.={I} where I(x)=x for

T e RO R (LR a i e R =% % e 1 g |
there exists an x € reals such that £ (X )= '~>§ ° L such That

Cw:ifé R|f is 3newtou0n639 and VEmV%m{fE‘R | £ is one=-

ence theorems and conditions on
a SEBR examples of SErings will be given,
(6.1) Trivial SBR (semi-BR). Let (R,+,°*) be a BR

such that oe¢o=o. Define # C(RxR)xR such that for x,yER

o Clearly, # is a binary operation. Furthermore,
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(6.2) Example of an expanded ring that is com-

mutative wrt the third operation and an example of a

SEring that is not commutative wrt to the third opera-

.
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TLet R be the following ring.
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(a) oCRxR, such that xo=o0 for all x€R

(b) ¢ C RxR, such tha yv=0=a¢, and lg

(c) ¢z CRXR, such that og :c:(a+l)@% and

lp,=a=ap.,
5 &)
- = 4

(d) ¢, CRxR, such that O, =0=89, and

lou:a+l:(a+l)@Ao

Tearliv o and S 2
Clearly o, ST wgq and ¢, are functions. If x,y€R

then (x+y)o=0=0+0=x0+yo and (xy)o=0=00=(%0)(y0).
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Hence i(R). Let us show that ¢5s ¢z, and ¢, are
i A

n

N

)

a4

also in E(R). If x,y€ R then for i=2,

.

(3430, =00, =0=X0, +x0; , (x) P =(x9_ ) (x9, )=x0,
& 5 i A 0 NE ol
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A ki 5 o

0P, =0=0yP.=(x¢p. )(Fo. ).
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x=1o v=a
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(1+a)@, L=l@h+a8QPH, (L1+8)Q,=0=1l0@ +2¢Q5,
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(L+a)e,=a+l=1¢, +aq, , Kka)vgmagg-c_(L¢2)(aV2/q

xla)$a—aw7 a:(lwé)(a@?)L (la)ru~o:fl@h)(a¢4)c
¥=1 V=841

(l+a+1)@3-1@2:o~*¢2+(a+1)@2w (l+a+l>@3:&¢?:
arlw%+(u+LjQ¥‘ (1+&+1)@u:a@qro:1¢ﬂ+(a+1)@49

[1(a+l)]Jo,=(a+l

= (a+l)g,=0=(1o
B 4

-~ a+1=(1¢,)[(a+

X=8&, y:8+l

(a+a+l)@p =1p,=1

a=a@,+(a+l)o,,
=) 2

[a(a+l)]¢2:o®2=o:(aw2)[(a+l)@2]e [a(a+l)

(a05) [(a+
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us show now that
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(a) x(0+0)=X0+X0=0+0=X0O
%(0°0)=X0°X0=0°0=X0

~ ) ~{ A " N . R N ’ — Va4 el
(b) X( 0+ ) =XO0+XQ 2 =0+X(P=XP 5
7 = 2 4

X<®1+O):X@5+XO:X@Z+O:Xm5

X(0°@5)=X0eXP=00X(P5=XO
2 45 22

Xtogoo)Aya7oxo~X@2nO:xo
e =7
ce) X(Qz+¢z) X3 +X(p3=0=X0
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18 @ ring with identity.
Clearly, IZC:R2X§$ TBC:RZXE and 1,CR,xR defined

ag o%.=0 for i=2,%.4, L15=¢5, aT3=¢3, and (a+1l)71,=0¢,
e
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T 2 i3 s pd
we define #°,#- and #' such that x# yzx(yai) for

feey

3,4 then (R,+,.,#") for i=2,3,4 are SErings with

the following tables for the operations # . (The

L=y

tables were filled in by considering specific values
for x.n and 4 4n x@lyrx(yai):x((y@:)mi))o
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SErings. From the tables we see that

and (R,+,¢,#

three elements

combination of

shown to be associative while (R,+,°,%#,)

a commutative Ering (ER).




o

(6.3) Let R be the following ring
+ o) 1. a b a+l | b+l | a+b |a+b+]
o) o) i | a b a+l | b+l | a+b |a+b+]
1 L o |a+l |b+1l a b |a+b+])] a+b
a a |a+l o] a+b 1 pB+b+l] Db b+l
b b |b+l |a+b 0 a+b+3 1 a a+1l
a+l {a+l | & 1 pR+b+])] o a+b-l b+l Db
b+l | b+l | b B+b+1] 1 a+b o) a+l | a
a+b | a+b jJa+b+] b a b+l | a+l o) 1t
a+b+llasb+l a+b | b+l la+l b a 1 0




o o) i a b a+l | b+l | a+b Ja+b+1
0 o 0 0 o} O o o 0

il o) 1 a b a+l |b+l | a+b ja+b+1
a o) a a o) o} a a 0

b o) b o) b b o] b 0
a+l o) a+l o b a+l [a+b+1l b pR+b+l

b+l o) b+l a o) B+0b+1 b+1 a Bib+l
a+b 0 a+b a b b a a+b o)

o]

a+b+l] o RB+b+1l]l o B+b+1lla+b+ll o pB+b+1l

Define @l=5Cfo§o} such that for x €R xo0=0. As
shown before o CE(R). Define QECZino,lga,a+1} such
that o¢,=0, lg,=1, ag,=a, (a+l)@2:a+lﬁb@?:o,(b+1)@2=19
(a+b)@2=a, and (a+b+l)@2=a+lo ¢, is an endomorphism
since if x,yE€R then (X+X)@2=ow2=o:xwg+xw2,
(X‘X)$2:X®2:X®2X®25 (let ¢ denote @2)

(a) x=0: (X+Y)9=y9=00+y¢, (X¥)p=00=09y¢

(b) =x=l,y=a: (1l+a)e=l+a=lo+ap, (la)e=a¢p=lgay

x=1,y=a+1l: (l+a+l)p=ap=a=lo+(a+l)e, [1(a+l)]le

=(a+l)p=(a+l)=1lep(a+l)oy
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x=1,y=b: (1l+b)e=1=1lp+by, (1b)ep=be=0=1¢by
x=1,y=b+1l: (l+b+1)@=be=0=1¢+(b+1l)e, [1(b+1l)]o
=(b+1)e=1=1¢(b+1l)¢

x=1l,y=a+b: (l+a+b)e=a+l=1p+(a+b)e, [1(a+b)]lo=
(a+b)e=a=1¢p(a+b)e

x=1,y=a+b+l: (l+a+b+l)e=(a+b)ep=a=1o+(a+b+l)e,
[1(a+b+1)]e=(a+b+1)e=a+1l=1¢(a+b+1l)e

x=a,x=a+l: (a+a+l)e=le=l=a¢p(a+l)e, [a(a+l)]e=
op=o0=ap(a+l)o

x=8,y=b: (a+b)e=a=ap+bp, (ab)y=0¢=0=apby
x=8,y=b+l: (a+b+l)p=a+l=ap+(b+l)e, [a(b+l)]¢=
a=a@(b+1l)e

x=a,y=a+b: (a+a+b)g=bp=o0=ap+(a+b)e, [a(a+b)le
=ap=a=ap(a+b)e

x=a,y=a+b+l: (a+a+b+l)e=(b+1l)e=l=ap+(a+b+l)ep,
[a(a+b+1l)]p=0=ap(a+b+l)e

x=b,x=a+l: (b+a+l)ep=a+l=be+(a+l)e, [b(a+l)]le=
b=be(a+l)e

x=D,y=b+1l: (b+b+1)@=1e=1=be+(b+1)p, [b(b+l)]le
=0@p=0=b@(b+1)e

x=b,y=a+b: (b+a+b)p=ap=a=be+(a+b)e, [b(a+b)]e
=bp=0=be(a+b)¢e

x=b,y=a+b+l: (b+a+b+l)p=(a+l)p=a+l=bop+(a+b+l)e,
[p(a+b+1)]e=0p=0=be(a+b+1)¢

x=a+l,y=b+l: (a+l+b+l)p=(a+b)e=a=(a+l)e+(b+1l)e,
[(a+1)(b+1)Je=(a+b+l)e=a+l=(a+1)e(b+1)¢

x=a+l,y=a+b: (a+l+a+b)e=(1l+b)e=1=(a+1l)e+(b+1l)e,

[(a+1)(a+b)Je=be=0=(a+1)p(a+b)e




x=a+l,y=a+b+l: (a+l+a+b+l)e=bep=0=(a+l)p+
(a+b+1)e, [(a+l)(a+b+1l)]Jo=(a+b+l)p=a+l=
(a+l)p(a+b+l)o

(f) =x=b+l,y=a+b: (b+l+a+b)e=(1l+a)p=a+l=(b+1)p+
(a+b)e, [(b+l)(a+b)le=ap=a=(b+l)p(a+b)e
x=b+l,y=a+b+l: (b+l+a+b+l)e=ap=a=(b+l)e+
(a+b+1l)e, [(b+1l)(a+b+1l)]e=(a+b+l)p=a+l=
(b+1)e(a+b+l)e

(g) x=a+b,y=a+b+l: (a+b+a+b+l)e=1le=1=(a+b)e+
(a+b+1l)¢, [(a+b)(a+b+l)Jop=0¢=0=(a+b)e(a+b+1l)y.

Define QBC:RX§O98} such that 0P5=0, 1. = (a+l)w§;

{)5:‘3,

0, (b+lj@5:33 (a+b)p,=a and (a+b+l)@5:oo is an en-

3 ®3

domorphism since if x,y €R then ('><z+§><{)q>.§=0(95:()::}<:g05+}<:<p,/ig
; o

(XX)@B:X@5:X®5X®3$ (let ¢ denote @3)

" (a) x=0: (X+Y)e=yo=x0+y¢, (Xy)P=00=X0yQ

(b) x=1,y=a: (l+a)gp=o=le+ap, (la)e=ap=a=lea
x=1,y=b: (1l+b)e=a=1le+be, (1b)e=be=o0=lebe
x=1,y=a+l: (l+a+l)e=ag=a=lo+(a+l)e, [1(a+l)]o
=(a+l)p=o0=1¢(a+l)e
x=1,y=b+l: (1l+b+1)e=be=0=1¢+(b+1)p, [1(b+1)J¢
=(b+1l)¢p=a=1e(b+1)op
x=1,y=a+b: (l+a+b)o=o=1lo+(a+b)e, [1(a+b)]¢=
(a+b)p=a=1@(a+b)e
x=1,y=a+b+l: (l+a+b+l)e=(a+b)p=a=1le+(a+b+1l)y,

[1(a+b+1)]Jo=(a+b+1l)p=0=1¢p+(a+b+1l)o

(c) x=a,y=b: (a+b)e=a=ap+be, (ab)e=op=0=a@byp




(d)

0]

(e)

x=a,y=a+l: (a+a+l)e=le=a=ap+(a+l)p, [a(a+l)]e
=op=0=a@p(a+l)¢

x=a,y=b+l: (a+b+l)p=0=a¢p(b+l)e, [a(b+l)]e=a=
ap(b+1l)ep

X=a,y=a+b: (a+a+b)e=be=o=ap+(a+b)y, [al(a+b)]o
=ap=a=ap(a+b)e

x=a,y=a+b+l: (a+a+b+l)e=(b+1l)p=a=ap+(a+b+l)o,
[a(a+b+1)Jg=0¢=0=ap(a+b+1)e

x=b,y=a+l: (b+a+l)=0p=0=bo+(a+l)e, [b(a+l)le
=be=0=bp(a+l)e

x=b,y=b+l: (b+b+1l)e=lep=a=be+(b+1)e, [b(b+1l)]I¢
=0@=0=be(b+1)@

x=b,y=a+b: (b+a+b)p=ap=a=be+(a+b)e, [b(a+b)]e
=bg=0=bp(a+b)¢

x=b,y=a+b+l: (b+a+b+l)p=(a+l)e=0=be+(a+b+l)e,
[b(a+b+1)Ip=0=bo(a+b+1)e

x=a+1,y=b+1: (a+l+b+l)®=(a+b)@=a:<a+l>¢+<b+l)w’
[(a+1)(b+1l)Je=(a+b+1l)9=0=(a+1l)e(b+l)¢
x=a+l,y=a+b: (a+l+a+b)e=(b+1l)p=a=(a+l)e+(a+b)e,
[(a+1)(a+D)1g=by=0=(a+1)¢(a+b)e

x=a+l,y=a+b+l: (a+l+a+b+1l)@=be=0=(a+l)e+
(a+b+1)o, [(a+1l)(a+b+1l)]Jo=(a+b+1l)p=0=
(a+1l)op(a+b+1)o

x=b+l,y=a+b: (b+l+a+b)e=(a+l)p=0=(b+1l)e+(a+b)e,
[(b+1)(a+b)Je=ap=a=(b+1)e(a+b)e

x=b+l,y=a+b+l: (b+l+a+b+l)e=a¢p=a=(b+1)ep+

(a+b+1)¢@, [(b+1l)(a+b+1)]o=(a+b+l)p=0=

(b+1)o(a+b+l)o
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(g) x=a+b,y=a+b+l: (a+b+a+b+l)e=1lp=a=(a+b)e+
(a+b+1)¢, [(a+b)(a+b+l)]Je=00=0=(a+b)e(a+b+l)y

Define @4CjRX{09a+l§ such that 0P, =0, 1@4:a+1, ap, =0,

by, =0, (a+l)o,=a+l, (b+l)<p_,+:.:a+l$ (a+b)cp4:o9 and (a+b+l)w4;

a+l. ¢, is an endomorphism since if x,y€R then (x+x)g,=
O=X(P, +XP,, (XX>@4TXQ4:X@4X®4, (let ¢ denote 9y )

=01 (X+Y)P=y9=00+y¢, (Xy)P=09=00y¢

>

(a)
(b) x=l,y=a: (l+a)gp=a+l=lo+ap, (la)e=ap=0=1l¢ap
x=1l,y=b: (1+b)yp=a+l=1p+by, (1b)e=bep=0=1pbe

=1,y=a+l: (l+a+l)y=agp=o0=1lo+(a+l)ey,

N

[1(a+l)]e=(a+1l)p=a+l=1¢(a+l)e
x=l yebel ! 1+b+1)p=bp=0=1¢+(b+1)e,
[1(b+1)]Jp=(b+1)p=a+1=1¢(b+1l)¢
x=1,y=a+b: (l+a+b)e=a+lale+(a+b)e, [1(a+b)]e=
(a+b)g=0=1¢p(a+b)e
x=1,y=a+b+1l: (l+a+b+l)9=(a+b)e=0=1p+(a+b+1l)yp,
[1(a+b+1l)]Jo=(a+b+l)p=a+1l=1p(a+b+l)@

(¢c) x=a,y=b: (a+b)e=0=a¢+be, (ab)e=op=0apbyp
x=a,y=a+l: (a+a+l)e=lep=a+l=a0+(a+l)y,
[a(a+l) Jp=0¢=0=a¢(a+l)o
x=a,y=b+l: (a+b+l)e=a+l=a¢+(b+l)ep,
[a(b+l)]p=ap=0=a@(b+l)e
x=a,y=a+b: (a+a+b)o=be=0=a¢+(a+b)e,
[a(a+b)]o=agp=0=ap(a+b) ¢

x=a,y=a+b+l: (a+a+b+1l)e=(b+l)p=a+l=ap+(a+b+l)ey,

[a(a+b+1l)Jp=0p=0=ap(a+b+1 )¢




o
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(d) =x=b,y=a+l: (b+a+l)e=a+l=bo+(a+l)yp,
[b(a+1l)]ep=bp=0=bep(a+l)e
x=b,y=b+l: (b+b+1l)e¢=le=a+l=bo+(b+l)e,
[b(b+1l)]ep=0¢p=0=be(b+1l)¢e
x=b,y=a+b: (b+a+b)y=ap=0=bo+(a+b)ey,
[b(a+b)Je=bo=0=be(a+b)e
x=b,y=a+b+l: (b+a+b+l)e=(a+l)e=a+l=be+(a+b+1l)q,

[b(a+b+l)]Jo=0¢p=0=bp(a+b+1)¢

TN

®
s

x=b+1l,y=b+1l: (a+l+b+1l)e=(a+b)o=0=(a+1l)e+(b+l)e,

[(a+1l)(b+1l)]=(a+b+1l)p=a+le(b+1l)¢

x=a+l,y=a+b: (a+l+a+b)e=(b+l)p=a+l=

(a+1)e+(a+b)e, [(a+l)(a+b)Je=be=0=(a+l)p(a+b)e

x=a+l,y=a+b+l: (a+l+a+b+l)e=ba=o=(a+l)p+

(a+b+1)¢, [(a+l)(a+b+1)Je=(a+b+l)p=a+l=

(a+l)op(a+b+l)o

(f) =x=b+l,y=a+b: (b+l+a+b)o=(a+l)p=a+l=(b+1l)e+
(a+b)e, [(b+1)(a+b)Ie=ap=0=(b+1)p(a+b)y
x=b+1l,y=a+b+l: (b+l+a+b+1l)e=ap=0=(b+1)p+
(a+b+1)e, [(b+1l)(a+b+1l)]ep=(a+b+l)=a+l=
(b+1)o(a+b+l)e

(g) =x=a+b,y=a+b+l: (a+b+a+b+l)p=1lep=a+l=(a+b)e+

(a+b+l)p, [(a+b)(a+b+1l)]p=0¢=0=(a+b)p(a+b+1l)y.,

Let us now prove that E:{@lza,wg,@5,¢4 is a ring

with the operations + and . as defined in theorem (2.8).
Let x be an arbitrary element in R. Then

(a) X(@l+®i)xxwi+xwico:xg for i=1,2,3,4

(b) X(@i@i):X®iX@i:x¢i for i=1,2,35 .4




68

(6 X(@i@J):xolijvijxwlnx(iji) for i,9=1,2,% .4

(d) X((PI-H‘DJ)X@:L

+0 =X +x0, =x(@+9;) for 1,§=1,2,3,4

(e) X(®i+3)rxwi+xgvxwi for i=1,2,3,4

(£) X(@iE)SXQLXBrX®iO=O=X3 for i=1,2,3,4

(g) Q(@2+Qﬁ>*050@49 l(@2+$5>*l+a=l$4, a(@2+@5):a+a
=0=80, , b(@2+@5):o+o:b@49 (a+l)(@2+@5):a+l+o=(a+l)@4,
(b+l)(@2+@z)ml+a:(b+l)@4, (a+b)(w2+@5):a+a:o:(a+b)@4,
<a+b+1>(@2+®5>:a+1+05<a+b+13@4

(h) o(@2+@4):o+o:0$53 1(@2+@4)zi+a+l:l@39 a(es+9,)
=a+0=a¢y, b(@2+®q)ao+o:b@59 (a+1)(@2+@4):a+l+a+1:o:

(a+l)@5$ (b+l)(®2+@4):1+a+lfa:(b+l)@3, (a+b)(@2+@4):
a+o:(a+b)@3 , (a+b+l)(Q2+<p4)ma+l+a+1=o:(a+b+l)@5

(i) o(@5+@4):o+o:ow2, l(@5+@4):a+a+1:l:l@23
a(@%+@4):a+0ra@2: b(@5+@4):0+0xb@5, (a+l)(@5+@4):o+a+l:
(a+1)@2, (b+1)(@5+@4):a+a+l=l:(b+l)@2, (a+b)(@5+¢4)ma+o:
(a+b+1)(@%+@4):o+a+l:(a+b+l)@9

(3) 0(905)=00=005, 1(9,03)=1a=1¢,, a(p 93 )=aa=a=
803 b(@2@5):00=bw5, (a+l)(@2@5)x(a+1)0=0=(a+1)w53
(b+1)(@2@5):lafcb+1>¢5$ (a+b)<®2@5>:aa:a:<a+b>@53

(a+b+l)(wq@z):(a+l)o:o:(a+b+l)@5
(il

<k> O<@2®4>”OO:O@49 l(®2¢4>:l<a+l):<a+l>@4e a<@2@4j

=80=0=3¢, , (@ 0, )=00=b¢, , (a+1)(9,9,)=(a+l)(a+l)=a+ls=




(a+b)9,, (b+1)(959,)=1(a+1)=(b+1)¢,, (a+b)(¢,¢,)=a0=0=
(a+b)®4$ (:a+b+l)(np21p4);(a+l)(a+l):=a+l::(a+b+l)q>4

(1) 0(93@4)aoo:069 l(¢5@4)=a(a+l):o:16, a(@5@4)=ao
=0=20, b{®5¢u):00:b6? (a+l)(@3@4)=o(a+l):o=(a+l)59
(b+l)(®3®u)=a(a+l):o:(a+1)6, (a+b)(w5w4):ao=0r(a+b)39
(a+b+l)(@5@4):o(a+1)=o:(a+b+l)5.

Hence, R is a ring with identity and has the fol-

lowing tables for + and -,

+ o | o Oz | @y . o | 9 Oz | @
5 | 5 e | oy | o R e e
oo | @] 0 | @y | 9z oo | O | 0 | 93 | 9y
o3| 03] 9y |0 | 9 Oz | O [0z [ @5 | O
Oy | @4 @5 | 0 | © Py | © | @y [0 | 0y

Now R?={o91?asa+l} with its addition and multi-
plication tables on page 70 is a subring of R with

identity. In fact 95 is an endomorphism of R onto R'!,
Define 1C R'xR such that 01=0, lt=¢,, aT=¢z, and Caxl )t
=¢,. Clearly, T is an isomorphism of R' onto R. Hence,

by theorem (2.12) if we define # such that for x,y€ER

xﬁymx(ya}nx((y@2jr) then (R,+,+,%#) is a SEring with the

following table for # since X=Q ST is a homomorphism of R




70

onto R.
+ o) 1k a a+l . o) 1 a a+l
o) 0 1 a a+l o) o) o) 0 o]
1 1 o) a+l a 1 o) 1t a a+l
a a a+l| o L a o) a a o)
a+l| a+l| a 1 o) a+lj| o a+l| o a+l
Addition and multiplication tables for R!.
# 0 1 a b a+l | b+l| a+bla+b+]
L
0 o) 0 o) o) o) o) o) o)
1 o) 1 a o) a+l 1 a (a+l
a 0 a a o) o) a a o)
b o) o] o) 0 0 0 0 o)
a+l| o a+l o) o) a+l | a+l o |a+l
b+l| o i3 a o) a+l gl a |la+l
a+b| o a a 0 o) a a o)
u+b+% o) a+l o] o) a+l| a+l o |la+l

# table for (R,+,¢,%)




i

Section 7., FExamples of subBEBRsS

and of homomorphisms

(7.1) SubRER of a RER. Let R be the RER in example
(5,2). Let S=FCR. If x,y€S then x-y€ S, x.y&€S, and
x#y € S. Hence, by theorem (4.3) S is a subRER.

(7.2) SubSER of a SER. In example (6.3) let 8=

{0,1,b,b+1§CR. Then the following tables show that S is

a subSER of R.




(7.3) Homomorphism of a RER into a2 RER. In example

.1) define ¢ CRxS such that for

ap=a_. As shown in example (5.9) in chapter IT @ is &

ring homomorphism. If a,DE€R then (a#b)e=(ap)#(be).
Hence, ¢ is a homomorphism of R into 8. Note that ]

also an M-homomorphism as shown in example (5.9) in

(7.4) Homomorphism of a SER into a SER. Let S be
the subSER of the SER R im example (7.2). Then by tedious
work 1t can be shown that BCRxS such that oB=o, 1p=1l
bB=b, (b+l)p=b+l, aB=o, (a+l)P=1, (a+b)B=b, and (a+b+1)B
=b+1l is a homomorphism (im fact B is an endomorphism).

Note that in this case § is not an M-homomorphism since

b+1)#(a+1)]1p=(a+l)B=1 where as (b+1l)p#(a+l)=(b+1)#(a+1)

+1¢s.

,\J
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