Algebraic Properties of Endomorphisms of Abelian Groups and Rings

Johnnie George Slagle
Utah State University

5-1968

Follow this and additional works at: https://digitalcommons.usu.edu/etd
Part of the Applied Mathematics Commons, and the Mathematics Commons

Recommended Citation
https://digitalcommons.usu.edu/etd/6819
Copyright by

Johnnie George Slagle

1968
ALGEBRAIC PROPERTIES OF ENDMORPHISMS
OF ABELIAN GROUPS AND RINGS

by

Johnnie George Slagle

A thesis submitted in partial fulfillment
of the requirements for the degree
of
MASTER OF SCIENCE
in
Mathematics

Approved:

UTAH STATE UNIVERSITY
Logan, Utah
1968
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER I</td>
<td>2</td>
</tr>
<tr>
<td>Semi-rings and M-Groups</td>
<td></td>
</tr>
<tr>
<td>CHAPTER II</td>
<td>20</td>
</tr>
<tr>
<td>M-Rings</td>
<td></td>
</tr>
<tr>
<td>CHAPTER III</td>
<td>38</td>
</tr>
<tr>
<td>Expanded rings</td>
<td></td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>73</td>
</tr>
<tr>
<td>VITA</td>
<td>74</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I would like to express my thanks and sincere appreciation to Doctor Konrad Suprunowicz for letting me work on the ideas presented in this thesis and for his helpful guidance and suggestions in preparing it. Also I would like to thank my wife for typing the first copies and for her patience and cooperation that made it possible for me to write this paper.

Johnnie G. Slagle
NOTATION AND DEFINITIONS OF TERMS
USED IN CHAPTERS I-III

(0.1) Definitions. If X and Y are sets then $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. A relation is any set of ordered pairs. A relation f is single-valued iff if $(x, y), (x, z) \in f$ then $y = z$. A single-valued relation is a function. The set $f^{-1} = \{(x, y) \mid (y, x) \in f\}$ where f is a relation is the inverse of f. If f and f^{-1} are both functions then f is one-to-one (1-1). The set $\text{dom} f = \{x \mid (x, y) \in f \text{ for some } y\}$ is the domain of f, and $\text{rng} f = \{y \mid (x, y) \in f \text{ for some } x\}$ is the range of f. If $\text{dom} f = X$, $\text{rng} f \subseteq Y$, and f is a function then f is said to be a function on X into Y and we write $f : X \rightarrow Y$. f is a function on X iff $f \subseteq X \times Y$, f is a function, and $\text{dom} f = X$. f is a function on X onto Y iff $f \subseteq X \times Y$ is a function on X and $\text{rng} f = Y$. The image of A under f is the set $\{y \mid (x, y) \in f \text{ for some } x \in A\}$.

(0.2) Notation. Let wrt be an abbreviation of with respect to, and iff of if and only if. $A \subseteq B$ means A is a proper subset of B. \mathbb{N} will denote the natural numbers and \mathbb{I} the integers. $A - B = \{x \in A \mid x \notin B\}$. If $(\mathbb{R}, +, \cdot)$ and $(\mathbb{R}, +, -)$ are rings then $+$ and $-$ will both be written as $+$ and \cdot and $-$ as \cdot or no symbol. When no confusion will arise \mathbb{R} will be written for $(\mathbb{R}, +, \cdot)$. If $(\mathbb{R}, +, \cdot)$ is a set with two binary operations on it then $n a = a + \ldots + a$ n-times and $a^n = a \cdot \ldots \cdot a$ n-times.
(0.3) Definitions. If M is a set then $\#$ is a binary operation on M iff (a) $\# : (M \times M) \times M$ and (b) $\#$ is a function on $M \times M$ into M. If M is a set with binary operations $\#_i$, $i=1, 2, \ldots, n$, on it, N is a set with binary operations \circ_i, $i=1, 2, \ldots, n$, on it, and $\alpha : M \times N$ is a function on M into N then α is a homomorphism of M into N iff $(a \#_i b) \alpha = (a \alpha) \circ_i (b \alpha)$ for $i=1, 2, \ldots, n$; and α is an isomorphism iff α is a homomorphism that is one-to-one. If $M=N$, $\#_i = \circ_i$ for $i=1, 2, \ldots, n$ then α is an endomorphism of M iff α is a homomorphism of M into N; and α is an automorphism iff α is an endomorphism that is one-to-one and onto. If α is a homomorphism of a group or a ring into a group or ring respectively then the kernel of α is the set $K_\alpha = \{ x \mid x \alpha = e \}$, where e is the additive identity.

(0.4) Notation. Let $E(R, \#_1, \ldots, \#_n)$ be the set of endomorphisms of $(R, \#_1, \ldots, \#_n)$, and when no ambiguity will arise let $E(R)$ denote the set. Also, let $A(R, \#_1, \ldots, \#_n)$ be the set of automorphisms.

(0.5) Definitions. If M is a set and $(G, \#)$ is a group then $M-(G, \#)$ is an M-Group wrt η iff $\eta : (G \times M) \times G$ is a function on $G \times M$ such that for $x, y \in G$ and $m \in M$ $(x \#_i y, m) \eta = (x, m) \eta \circ_i (y, m) \eta$. If $(R, +, \cdot)$ and $(\overline{R}, \overline{+}, \overline{\cdot})$ are rings then R is embedded in \overline{R} iff R is isomorphic to a subring of \overline{R}. If $(R, +)$ is a group and $S \subseteq R$ then $x + S = \{ x + s \mid s \in S \}$ and $R/S = \{ x + S \mid x \in R \}$.
ABSTRACT

Algebraic Properties of Endomorphisms
of Abelian Groups and Rings

by

Johnnie George Slagle, Master of Science
Utah State University, 1968

Major Professor: Dr. Konrad Suprunowiz
Department: Mathematics

The main objective of the thesis was to extend the definition of an M-Group to what is called an M-Ring. From this extension a system called an expanded ring follows naturally. To facilitate the development of the expanded ring, chapter I is devoted to developing properties on systems that are not quite rings where many interesting examples are constructed. In chapter II the definition of an M-Ring is given and some of its properties are derived. In chapter III some of the properties of expanded rings are proved, and examples of expanded rings are given to show their existence.

(81 pages)
INTRODUCTION

The main objective of this thesis is to extend the definition of an M-Group to what is called here an M-Ring. From this extension a system called an expanded ring follows naturally. To facilitate the development of the expanded ring, chapter I is devoted to developing properties on systems that are not quite rings where many interesting examples are constructed. In chapter II the definition of an M-Ring is given and some of its properties are derived. In chapter III some of the properties of expanded rings are proved, and examples of expanded rings are given to show their existence.
CHAPTER I
SEMI-RINGS AND M-GROUPS

The definitions of bare rings and semi-rings are given, along with a theorem concerning their equivalence with a class of M-Groups. The examples are listed in the last section of the chapter, and structural properties are discussed by referring to the proper examples.

Section 1. Right semi-rings

(1.1) Definitions. \((R, +, \cdot)\) is a bare ring (shortly BR) iff \((R, +)\) is an abelian group and \(\cdot\) is a binary operation on \(R\). If \((R, +, \cdot)\) is a BR then \((R, +, \cdot)\) is a right semi-ring (RSR) iff for any \(x, y, z \in R\) \((x + y) \cdot z = x \cdot z + y \cdot z\). \((R, +, \cdot)\) is a commutative RSR iff \((R, +, \cdot)\) is a RSR that is commutative wrt \(\cdot\).

(1.2) Remark. From the definition, an M-Group is dependent upon the map \(\eta\). Hence, many M-Groups may be formed from a set \(M\) and a group \(G\). Also, from Jacobson (1951) an M-Group can be equivalently defined as the following. If \(M\) is a set and \((G, +)\) is a group then \(M-(G, +)\) is an M-Group wrt \(\eta\) iff there exists a function \(\alpha\) on \(M\) into \(E(G)\) such that \(x(\alpha m) = (x, m)\eta\) for \(x \in G\) and \(m \in M\). So as to make the dependency of an M-Group, \(M-(G, +)\), upon its mappings be more explicit let \(M^\alpha_\eta-(G, +)\) denote the M-Group. When no confusion can arise we sometimes will denote it.
by $M-(G,+)$ or $M-G$.

(1.3) Theorem. If $(R,+,*)$ is a RSR and $\eta=*$ then $R^\alpha_{\eta-}(R,+)$ is an M-Group.

Proof. η is a function on $R \times R$ since $*$ is a binary operation on R and for $x,y,z \in R$
$(x+y,z)\eta=(x+y)\cdot z=x\cdot z+y\cdot z$.

(1.4) Theorem. If $R^\alpha_{\eta-}(R,+)$ is an M-Group and $\ast=\eta$ then $(R,+,\ast)$ is a RSR.

Proof. Since $\eta \subset (R \times R) \times R$ is a function on $R \times R$, \cdot is a binary operation on R. Furthermore, for $x,y,z \in R$
$(x+y)\cdot z=(x+y,z)\eta=(x,z)\eta+(y,z)\eta=x\cdot z+y\cdot z$.

In view of the theorems (1.3) and (1.4) we can consider a RSR as a special M-Group and any M-Group, $M-G$, with $M=G$ as a RSR.

(1.5) Notation. For an M-Group, $M-G$, denote $M\alpha$ as $M \subset E(G)$ and $m\alpha$ for $m \in M$ as \bar{m}.

(1.6) Theorem. If $M^\alpha_{\eta-}(R,+)$ is an M-Group then

(a) $(0,m)\eta=0(m\alpha)=0$ for $m \in M$,

(b) $(kx,m)\eta=(kx)(m\alpha)=k[x(m\alpha)]=k(x,m)\eta$ for $x \in R$, $m \in M$ and $k \in I$,

(c) $(-x,m)\eta=(-x)(m\alpha)=-[x(m\alpha)]=-(x,m)\eta$ for $x \in R$ and $m \in M$.

Proof. Since $m\alpha=\bar{m}$ is an endomorphism the results are obvious.

(1.7) Definitions. If $(R,+,\ast)$ is a BR then r is a right (left) identity of R wrt \ast iff for any $x \in R$ $x \cdot r=x$ ($r \cdot x=x$). R has a two sided identity r wrt \ast iff r is both
a left and a right identity of R wrt \cdot.

(1.8) Theorem. If R is a RSR with a left identity r and $R \neq \{0\}$ then $r \neq 0$.

Proof. Assume $r = 0$. Since $R \neq \{0\}$ there exists an $x \in R$ such that $x \neq 0$. From theorem (1.6) $x = r \cdot x = 0 \cdot x = 0$.

(1.9) Remark. If R is a RSR with a right identity then r need not be different from zero. Such is the case in example (6.2).

(1.10) Theorem. If R is a BR, r is a right identity, and e is a left identity then $r = e$.

Proof. $e = e \cdot r = r$.

(1.11) Theorem. If R is a BR and e is a two sided identity then e is unique and any right (left) identity of R is equal to e.

Proof. Assume there exists $e' \in R$ such that $e' \neq e$ and e' is a two sided identity. Then $e = e \cdot e' = e'$. Let r be a right identity of R. Then $e = e \cdot r = r$.

(1.12) Remarks. From the above theorems a BR that has more than one right (left) identity cannot have a left (right) identity.

Since a RSR is equivalent to a special M-Group, namely $R^\times \eta - (R, +)$, the notion of identities is equivalent to the following. r is a right identity of R iff $r \in H_\alpha = \{x \in R | l(x\alpha) = I \in E(R) \text{ where } xI = x \text{ for all } x \in R \}$, and e is a left identity of R iff for every $x \in R \alpha \subset E(R)$ $e \bar{x} = x$. If $H_\alpha = \emptyset$ then R has no right identity (look at examples (6.1) and (6.3)). From above it appears that the condition on the left identity may be so strong that a left identity may
not exist for any RSR, but example (6.3) shows that this assertion is false. Furthermore, one might ask whether there exists a RSR that has a left identity but no right. Such is the case in example (6.3).

(1.13) Theorem. If R is a RSR with $R_\alpha \cong R_\eta$ as its M-Group equivalent and R has a left identity e then (a) α is one-to-one and (b) if R has no right identity then $I \notin R \cong \overline{R}$ where for $x \in R$ $xI = x$.

Proof. (a) Let $\overline{x}, \overline{y} \in \overline{R}$ such that $\overline{x} = \overline{y}$. Then $x = ex = e\overline{x} = ey = ey = y$. Hence, $x\alpha = y\alpha$ implies $x = y$. (b) Assume $I \in \overline{R}$. Then there exists $x \in R$ such that $x\alpha = I = \overline{x}$. Which implies $yx = y\overline{x} = yI = y$ for all $y \in R$. Thus, x is a right identity, but R contains no right identities.

(1.14) Definitions. If R is a BR then (a) $x \in R$ is a right divisor of zero (zero divisor) iff there exists $y \in R$ such that $y \neq 0$ and $yx = 0$, and (b) $x \in R$ is a left divisor or zero iff there exists $y \in R$ such that $y \neq 0$ and $xy = 0$.

(1.15) Remarks. In a RSR zero is always a left divisor of zero by theorem (1.6), but as shown in example (6.1) zero is not always a right divisor of zero.

Again in terms of an M-Group we have that $x \in R$ is a right divisor of zero iff $K_x = \{ y \in R \mid y\overline{x} = 0 \}$ and $x \in R$ is a left divisor of zero iff there exists a $\overline{y} \in \overline{R} \cap E(R)$ such that $x\overline{y} = 0$ (i.e. $x \in K_{\overline{y}}$) and $\overline{y} \neq 0$.

If $x \in R$ is a left divisor of zero then x need not be a right divisor of zero as shown by example (6.2) and if $x \in R$ is a right divisor of zero then x need not be a left divisor of zero as shown by example (6.3).
(1.16) Theorem. If \(R \) is a RSR, \(R \neq \{0\} \), and \(R \) has a right identity \(r \) then \(r \) is not a right divisor of zero.

Proof. Let \(x \in R \) such that \(x \neq 0 \). Then \(x \cdot r = x \neq 0 \).

(1.17) Remark. If \(R \) is a RSR, \(R \neq \{0\} \), and \(R \) has a right identity \(r \) then as shown by example (6.2) it may be a left divisor of zero.

(1.18) Definitions. If \(R \) is a BR then \(x \in R \) obeys the right cancellation law iff when \(y, z \in R \) such that \(yx = zx \) then \(y = z \); \(x \in R \) obeys the left cancellation law iff when \(y, z \in R \) such that \(xy = xz \) then \(y = z \).

(1.19) Remark. In example (6.2) for \(x = -1 \) we see that if \(x \) obeys the left cancellation law it need not obey the right cancellation law, and also in example (6.2) for \(x = 0 \) we see that if \(x \) obeys the right cancellation law it need not obey the left cancellation law.

Zero does not obey the left cancellation law unless \(R = \{0\} \). However, as shown in example (6.2) \(0 \) may obey the right cancellation law even when \(R \neq \{0\} \).

(1.20) Theorem. If \(R \) is a RSR then \(x \in R \) obeys the right cancellation law iff \(x \) is not a right divisor of zero.

Proof. If \(yx = 0 \) for some \(y \in R \) then \(yx = ox \) and hence \(y = 0 \) when the cancellation law holds. Also, if \(yx = zx \) for some \(y, z \in R \) then \((y-z)x = 0 \) and hence \(y = z \) when \(x \) is not a right divisor of zero.

(1.21) Remarks. From theorem (1.20) if we know what the set, \(D_r \), of right divisors of zero is, then the set of elements, \(C_r \), that obeys the right cancellation
law is $R-D_r$, and vice versa.

A natural question is whether a similar theorem to (1.20) exists when right is replaced by left. In example (6.2) every element x/o obeys the left cancellation law, but also is a left divisor of zero. In example (6.3) $x=(m,-m) m/o$ is not a left divisor of zero, and furthermore x does not obey the left cancellation law. Hence, such a theorem does not exist. Furthermore, as shown no theorem with the same hypothesis as theorem (1.20) exists when either right is replaced by left. If x obeys the right cancellation law then x may be a left divisor of zero or not as shown by example (6.2) for $x/-1$ and by example (6.1) for $x=(a,b)$ where $a,b/o$. If x is not a right divisor of zero then it need not obey the left cancellation law as shown by example (6.3) for $x=(m,-m) m/o$. However, if x is not a right divisor of zero then x can obey the left cancellation law as shown by example (6.2) for $x/-1, o$.

(1.22) Definitions. If R is a RSR and R has a right (left) identity r wrt \cdot then y is a right inverse of x wrt \cdot relative to r iff $xy=r$, and y is a left inverse of x wrt \cdot relative to r iff $yx=r$.

(1.23) Remark. Considering R as an M-Group then y is a right inverse of x iff \overline{y} maps x onto r, and y is a left inverse of x iff \overline{x} maps y onto r.

Section 2. Semi-rings and n-multiple M-Groups

(2.1) Definitions. If $(R, +, \cdot)$ is a BR then $(R, +, \cdot)$ is a left semi-ring (LSR) iff for any $x, y, z \in R$ $z(x+y)=zx+zy$.
\((R,+,\cdot)\) is a semi-ring (SR) iff \(R\) is a RSR and a LSR.

(2.2) Remark. A LSR is really the same as a RSR except for notational changes. Hence, all of the properties of a RSR carries over for a LSR.

(2.3) Definition. If \((G,+)\) is a group then
\[M_{\alpha_1,\ldots,\alpha_n}^\eta_1,\ldots,\eta_n^{-}(G,+) \]
is a \(n\)-multiple M-Group wrt \(\eta_1,\ldots,\eta_n\) and \(\alpha_1,\ldots,\alpha_n\) iff \(M_{\alpha_i}^\eta_i(G,+)\) is an M-Group for \(i=1,\ldots,n\). If \(G_{\alpha_1,\alpha_2}^\eta_1,\eta_2^{-}(G,+)\) is a 2-multiple M-Group and \(V \subset (G\times G)\times(G\times G)\) is a function on \(G\times G\) such that \((x,y)V=(y,x)\) for \(x,y \in G\) then \(G_{\alpha_1,\alpha_2}^\eta_1,\eta_2^{-}(G,+)\) is a symmetric 2-multiple M-Group iff
\[\eta_1=V\eta_2. \]

(2.4) Theorem. If \((R,+,\cdot)\) is a SR and \(\eta_1,\cdot\) then
\[R_{\alpha_1,\alpha_2}^\eta_1,\eta_2^{-}(R,+) \]
where \(\eta_2=V\eta_1\) is a symmetric 2-multiple M-Group.

Proof. Clearly, \(\eta_1\) and \(\eta_2\) are both functions on \(R\times R\) into \(R\). For \(x,y,z \in R\)
\[(x+y,z)\eta_1=(x+y,z)\eta_1=(x+z)\eta_1+xz+yz=(x,z)\eta_1+ \]
\((y,z)\eta_1\) and \((x+y,z)\eta_2=(z,x+y)\eta_1=z(x+y)=xz+zy=(z,x)\eta_1+ \]
\((z,y)\eta_1=(x,z)\eta_2+\eta_2=(y,z)\eta_2. \]

(2.5) Theorem. If \(R_{\alpha_1,\alpha_2}^\eta_1,\eta_2^{-}(R,+)\) is a symmetric
2-multiple M-Group and \(\cdot=\eta_1\) then \((R,+,\cdot)\) is a SR.

Proof. Clearly \(\cdot\) is a binary operation on \(R\). For
\[x,y,z \in R \]
\[(x+y)z=(x+y,z)\eta_1=(x,z)\eta_1+(y,z)\eta_1=xz+yz \]
and \(z(x+y)=(z,x+y)\eta_1=(x,z)\eta_2+\eta_2=(z,x)\eta_1+(z,y)\eta_1 \]
\[=xz+zy. \]

From theorems (2.4) and (2.5) we can consider a SR
as a symmetric 2-multiple M-Group and vice versa.
(2.6) Theorem. If \(+ \subseteq (E(R,+) \times E(R,+)) \times F, F \subseteq R \times R \), and \((R,+)\) is an abelian group such that for \(\alpha, \beta \in E(R) \) and \(x \in R, x((\alpha, \beta)+) = x\alpha + x\beta \) then \((E(R,+),+)\) is an abelian group.

Proof. Let \((\alpha, \beta), (\alpha', \beta') \in E(R) \times E(R)\) such that \((\alpha, \beta) = (\alpha', \beta') \). Then \(\alpha = \alpha' \) and \(\beta = \beta' \), and hence for arbitrary \(x \in R \)
\[x((\alpha, \beta)+) = x\alpha + x\beta = x\alpha' + x\beta' = x((\alpha', \beta')+) \] which implies that \((\alpha, \beta)+ = (\alpha', \beta')+ \). Therefore \(+ \) is a function. For \(x, y \in R \)
\[(x+y)((\alpha, \beta)+) = (x+y)\alpha + (x+y)\beta = (x\alpha + y\alpha) + (x\beta + y\beta) = (x\alpha + x\beta) + (y\alpha + y\beta) = [x(\alpha, \beta)+] + [y(\alpha, \beta)+] \] Therefore \((\alpha, \beta) + \in E(R) \) and hence \(F \subseteq E(R) \).

Clearly since \((R,+)\) is commutative and associative \((E(R),+)\) is too. The function \(\overline{\circ} \subseteq R \times R \) on \(R \) such that for \(x \in R \) \(x \circ o = o \) is also in \(E(R) \), and for \(x \in R \) and \(\alpha \in E(R) \)
\[x(\overline{\circ} + \alpha) = x\circ x\alpha = x\alpha \] Therefore \(\overline{\circ} \) is the identity for \(E(R) \).
Clearly for \(\alpha \in E(R) \) \((-\alpha) \subseteq R \times R \) such that for \(x \in R \)
\[x(-\alpha) = -(x\alpha) \] is in \(E(R) \). Thus for \(x \in R \) and \(\alpha \in E(R) \)
\[x[\alpha + (-\alpha)] = x\alpha + x(-\alpha) = o = x\circ o \] which implies \(\alpha + (-\alpha) = o \). Hence, \((E(R),+) \) is an abelian group.

(2.7) Theorem. If \((R,+,\cdot)\) is a SR with \(R_{\alpha 1,\alpha 2}^{\eta 1,\eta 2}(R,+) \)
as its symmetric 2-multiple M-Group then \(\alpha_1 (\alpha_2) \) is a homomorphism of \((R,+)\) into \((E(R),+)\).

Proof. We know \(\alpha_1 \) is a function of \((R,+)\) into \(E(R) \).
For \(x, y, z \in R \)
\[z((x+y)\alpha_1) = (z, x+y)\eta_1 = (x+y, z)\eta_2 = (x, z)\eta_2 + (y, z)\eta_2 = (z, x)\eta_1 + (z, y)\eta_1 = z(x\alpha_1) + z(y\alpha_1) = z[(x\alpha_1) + (y\alpha_1)]. \]
Since \(z \) was arbitrary \((x+y)\alpha_1 = (x\alpha_1) + (y\alpha_1) \). Hence, \(\alpha_1 \) is a homomorphism and hence \(R\alpha_1 = R \subseteq E(R) \) is a subgroup of \(E(R) \).

(2.8) Remarks. From theorem (2.7) every abelian
group \((R,+\)) that has a homomorphism \(\alpha\) of itself onto a subgroup of \((E(R),+)\) can be considered a SR if \(\cdot\) is defined as \(x\cdot y = x(y\alpha) = xy\) for all \(x, y \in R\).

Section 3. Right rings (RR)

(3.1) Definitions. If \((R,+,\cdot)\) is a RSR then \(R\) is a right ring (RR) iff the operation \(\cdot\) is associative. If \(R\) is a SR then \(R\) is a ring iff the operation \(\cdot\) is associative.

(3.2) Remark. Most of the theorems about RSRs hold for RRs and similarly for SRs and rings. The additional property of associativity will permit the proof of more theorems on inverses and divisors of zero, but only one will be given.

(3.3) Theorem. If \(R\) is a RR with a right identity \(r\), and \(x\) has a right inverse then \(x\) is not a right divisor of zero.

Proof. Let \(y\) be the right inverse of \(x\). Assume \(x\) is a right divisor of zero. Then there exists a \(z \in R\) such that \(z \neq 0\) and \(zx = 0\). Hence, \(xy = r\) implies \(z = zr = z(xy) = (zx)y = oy = 0\).

Section 4. Ideals and homomorphisms

(4.1) Notation. When \(BR\) is used in the same sentence several times it refers to the same type of \(BR\) under discussion.

(4.2) Definitions. If \((R,+,\cdot)\) is a \(BR\) and \(\emptyset \neq S \subseteq R\) then \((S,+,\cdot)\) is a sub\(BR\) iff \((S,+,\cdot)\) is a \(BR\). \(S \neq \emptyset\) is a right (left) ideal of the \(BR\) \(R\) iff \((S,+)\) is a subgroup of \((R,+)\) and \(xs \in S\) (\(sx \in S\)) for all \(x \in R\) and for all \(s \in S\).
S is an ideal of the BR R iff S is both a right ideal of R and a left ideal of R.

(4.3) Theorem. If $(R,+,*)$ is a BR and $\emptyset \neq S \subseteq R$ then S is a subBR iff for $x,y \in S$ $x-y \in S$ and $xy \in S$.

Proof. Obvious.

(4.4) Theorem. If $(R,+,*)$ is a SR, $\emptyset \neq S \subseteq R$ is an ideal of R and $\otimes,\circ \subseteq (R/SxR/S)xR/S$ such that for $x=a+S$, $y=b+S \in R/S$ $(x,y)\otimes=(a+b)+S$ and $(x,y)\circ=ab+S$ then $(R/S,\otimes,\circ)$ is a SR and \otimes is associative (commutative) iff \circ is associative (commutative).

Proof. First we need to prove that \otimes and \circ are binary operations. If $\alpha=(a+S,b+S),\beta=(a'+S,b'+S) \in R/SxR/S$ such that $\alpha=\beta$ then $a+S=a'+S$ and $b+S=b'+S$. Hence there exists $s,t \in S$ such that $a=a'+s$ and $b=b'+t$. Because R is a SR and S is an ideal of R $a+b=(a'+b')+(s+t)$ and $ab=(a'+s)(b'+t)=a'b'+(a't+sb'+st)$ which implies that $(a+b)+S=(a'+b')+S$ and $ab+S=a'b'+S$. Hence, $\alpha\circ=(a+b)+S=(a'+b')+S=\beta\circ$ and $\alpha\otimes=ab+S=a'b'+S=\beta\circ$.

Clearly $(R/S,\otimes)$ is an abelian group since $(R,+)$ is an abelian group. For $x=a+S,y=b+S,z=c+S \in R/S$

(a) $(x\otimes y)\otimes z= [(a+b)+S]\otimes=(a+b)c+S=(ac+bc)+S=(ac+S)\otimes(bc+S)$

(b) $z\circ(x\otimes y)=z\circ[(a+b)+S]=c(a+b)+S=(ca+cb)+S=(ca+S)\circ(cb+S)$

Hence, $(R/S,\otimes,\circ)$ is a SR. Also from

(c) $(x\otimes y)\otimes z=(ab+S)\otimes=(ab)c+S$

$xe(y\otimes z)=xe(bc+S)=a(bc)+S$

(d) $x\otimes y=ab+S$ and $y\otimes x=bc+S$
we see that • is associative (commutative) iff • is associative (commutative).

(4.5) Remark. If R had been a RSR in theorem (4.5) instead of a SR then \((R/S, \circ, \circ)\) need not be a RSR since \(\circ\) is not necessarily a binary operation on \(R/S\).

\((R/S, \circ, \circ)\) is called the factor SR of the SR \((R, +, \cdot)\) wrt the ideal S.

(4.6) Theorem. If \(\eta\) is a homomorphism of the BR \((R, +, \cdot)\) into the BR \((\bar{R}, +, \cdot)\) then \(R\eta \subset \bar{R}\) is a subBR.

Proof. Since \(\eta\) is a homomorphism we know that \((R\eta, +)\) is an abelian subgroup of \((\bar{R}, +)\). For \(x = a\eta, y = b\eta \in R\eta\) \(x \cdot y = (a\eta) \cdot (b\eta) = (ab)\eta \in R\eta\). Hence, by theorem (4.4) \((R\eta, +, \cdot)\) is a BR.

(4.7) Theorem. If \(\eta\) is a homomorphism of the RSR \((LSR) (R, +, \cdot)\) into the RSR \((LSR) (\bar{R}, +, \cdot)\) then the kernel \(K_\eta\) of \(\eta\) is a left (right) ideal of the RSR \((LSR) R\).

Proof. We know that \((K_\eta, +)\) is a subgroup of \((R, +)\). Let \(x \in R\) and \(a \in K_\eta\). Then \((ax)\eta = (a\eta) \cdot (x\eta) = o\cdot (x\eta) = o\).
Therefore, \(ax \in K_\eta\) and hence \(K_\eta\) is a left ideal of \(R\).

(4.8) Theorem. If \(\eta\) is a homomorphism of the SR \((R, +, \cdot)\) into the SR \((\bar{R}, +, \cdot)\) then \(K_\eta\) is an ideal of \(R\).

Proof. Follows from theorem (4.7).

(4.9) Theorem. If \((R, +, \cdot), (\bar{R}, +, \cdot)\) and \((\bar{R}, +, \cdot)\) are BRs, and \(\pi \subset RxR\) and \(\bar{\pi} \subset \bar{R}x\bar{R}\) are homomorphisms on \(R\) and on \(\bar{R}\) respectively then \(\pi\bar{\pi}\) (the resultant) is a homomorphism on \(R\) into \(\bar{R}\).

Proof. If \(x, y \in R\) then \((x+y)(\pi\bar{\pi}) = ((x+y)\pi)\bar{\pi} = (x\pi + y\pi)\bar{\pi}
= (x\pi)\bar{\pi} + (y\pi)\bar{\pi} = x(\pi\bar{\pi}) + y(\pi\bar{\pi})\) and \((xy)\bar{\pi} = ((xy)\pi)\bar{\pi} = [(x\pi)(y\pi)]\bar{\pi}\)
Therefore, $\pi\pi$ is a homomorphism.

(4.10) Theorem. If $(\mathbb{R}, \cdot, \circ)$ is the factor SR of the SR $(\mathbb{R}, +, \cdot)$ wrt the ideal S and $\tau \subset \mathbb{R} \times \mathbb{R}$ such that for $x \in \mathbb{R}$ $x\tau = x + S$ then τ is a homomorphism.

Proof. If $x, y \in \mathbb{R}$ such that $x = y$ then $x\tau = x + S = y + S = y\tau$. Therefore, τ is a function on \mathbb{R}. Again if $x, y \in \mathbb{R}$ then $(x + y)\tau = (x + y) + S = (x + S)\circ(y + S) = (x\tau)\circ(y\tau)$ and $(xy)\tau = xy + S = (x + S)\circ(y + S) = (x\tau)\circ(y\tau)$. Hence, τ is a homomorphism.

(4.11) Remark. τ as defined in theorem (4.10) is called the natural homomorphism on \mathbb{R} into $\mathbb{R} = \mathbb{R}/S$.

(4.12) Theorem. If \mathbb{R} and \mathbb{R}' are SRs, $\varphi \subset \mathbb{R} \times \mathbb{R}'$ is a homomorphism on \mathbb{R}, $\overline{\mathbb{R}}$ is the factor SR of \mathbb{R} wrt the ideal $S \subset K$ and $\varphi \subset \overline{\mathbb{R}} \times \overline{\mathbb{R}}'$ such that $(x + S)\varphi = x\varphi$ for all $x \in \mathbb{R}$ then

(a) φ is a homomorphism on $\overline{\mathbb{R}} = \mathbb{R}/S$ into $\overline{\mathbb{R}}'$ and $\varphi = \tau\varphi$ where τ is the natural homomorphism on \mathbb{R} into $\overline{\mathbb{R}}$, and (b) φ is an isomorphism iff $K = S$.

Proof. If $x + S, y + S \in \overline{\mathbb{R}}$ such that $x + S = y + S$ then $x = y + s$ for some $s \in S$, and $(x + S)\varphi = x\varphi = (y + S)\varphi = y\varphi + s\varphi = y\varphi = (y + S)\varphi$. Hence, φ is a function on $\overline{\mathbb{R}}$. Also, if $x + S, y + S \in \overline{\mathbb{R}}$ then $[(x + S) \circ (y + S)]\varphi = [(x + y) + S]\varphi = (x + y)\varphi = x\varphi + y\varphi = (x + S)\varphi + (y + S)\varphi$ and $[(x + S) \circ (y + S)]\varphi = (xy + S)\varphi = (xy)\varphi = (x\varphi)(y\varphi) = (x + S)\varphi(y + S)\varphi$. Therefore, φ is a homomorphism on $\overline{\mathbb{R}}$. The natural homomorphism on \mathbb{R} into $\overline{\mathbb{R}}$ is such that $x\tau = x + S$ for $x \in \mathbb{R}$. $\bar{\varphi} \subset \mathbb{R} \times \mathbb{R}'$ is a homomorphism on \mathbb{R} by theorem (4.9). Let $x \in \mathbb{R}$ then $x(\bar{\varphi}) = (x\tau)\varphi = (x + S)\varphi = x\varphi$. Since x was arbitrary $\tau\varphi = \varphi$.

If φ is an isomorphism then it is one-to-one. Let
$x \in K_{\phi}$. Then $o \equiv (x+S) \equiv (o+S) \equiv o \equiv (o+S) \equiv o$. Which implies $x+S = o+S$ or i.e. $x \in S$. Therefore, $K_{\phi} \subseteq S$. By hypothesis $S \subseteq K_{\phi}$.
Hence, $S = K_{\phi}$. Let $K_{\phi} = S$. For $\overline{x} = x+S, \overline{y} = y+S \in \overline{R}$ such that $\overline{x} \equiv \overline{y}$ then $x \equiv y \equiv (x-y) \equiv o$ or i.e. $x-y \in K_{\phi} = S$.
Thus, $\overline{x} = x+S = y+S = \overline{y}$. Therefore, $\overline{\phi}$ is one-to-one and hence an isomorphism.

(4.13) Remark. In theorem (4.12) if $R' = R\phi$ and $S = K_{\phi}$ then $\overline{\phi}$ is an isomorphism of \overline{R} onto R'.

Section 5. An embedding theorem

The purpose of this section is to derive an embedding theorem that will help us in finding examples of rings with identities.

(5.1) Theorem. If $(R,+ \cdot)$ is a BR, $A = I \times R$, and $+ \cdot$ are subsets of $(A \times A) \times A$ such that for $(m,a),(n,b) \in A$

- (a) $((m,a),(n,b)) + = (m+n,a+b)$
- (b) $((m,a),(n,b)) \cdot = (mn,na+mb+ab)$,

where $na = a + \ldots + a$ n-times, then $+$ and \cdot are binary operations on A and $(A, +)$ is an abelian group.

Proof. Let $x = ((m,a),(n,b)), y = ((m',a'),(n',b')) \in A \times A$ such that $x = y$. Now $x = y$ implies $m' = m, n' = n, a' = a$, and $b' = b$.
Thus $x + = (m+n,a+b) = (m'+n',a'+b') = y$ and $x \cdot = (mn,na+mb+ab) = (m'n',n'a'+m'b'+a'b') = y \cdot$. Therefore, $+$ and \cdot are binary operations on A.

The proof that $(A, +)$ is an abelian group is obvious.

(5.2) Theorem. If $(A, +)$ is the abelian group in theorem (5.1) and \cdot is the binary operation defined on A in theorem (5.1) then
(a) A is commutative wrt \cdot iff R is commutative wrt \cdot.

(b) every element of A obeys the right (left) distributive law iff every element of R obeys the right (left) distributive law.

(c) $(1,0)$ is a right (left) identity iff $xo = o$ ($ox = o$) for all $x \in R$.

and (d) A is associative only if R obeys the distributive laws and is associative.

Proof. Let $(m,a),(n,b),(k,c)$ be arbitrary elements in A.

(a) Since $(m,a)(n,b) = (mn, na+mb+ab)$ and $(n,b)(m,a) = (nm, mb+na+ba)=(mn, na+mb+ba)$ it is clear that A is commutative iff R is commutative.

(b) Since $[(m,a)+(n,b)](k,c)=[(m+n)k,k(a+b)+(m+n)c+(a+b)c]$ and $(m,a)(k,c)+(n,b)(k,c) = (mk, ka+mc+ac)+(nk, kb+nc+bc) =(mk+nk, ka+kb+mc+nc+ac+bc)$ it is clear that A obeys the right distributive law iff R obeys the right distributive law.

(c) Now because $(m,a)(1,0)=(m,a+ao)$ and $(1,0)(m,a) = (m,a+oa)$ we see that $(1,0)$ is a right (left) identity iff $xo = o$ ($ox = o$) for all $x \in R$.

(d) From the following $(m,a)[(n,b)(k,c)]=(m,a)(nk,kb+nc+bc)=[mnk, nka+mbc+mnc+mbc+a(kb+nc+bc)]$ and $[(m,a)(n,b)](k,c)=[mnk, kna+kmb+mnc+kab +(na+mb+ac)c]$ it is clear that A is associative only if R obeys the distributive laws and is associative.

(5.3) Theorem. If R and A are as in theorem (5.1) and $B=\{(c,x)|x \in R\}$ then R and B are isomorphic.
Proof. Obvious.

(5.4) Remark. If \(R \) is a RSR then by theorems (5.1), (5.2) and (5.3) \(R \) can be embedded in a RSR with a left identity. If \(R \) is a SR then \(R \) can be embedded in a SR with an identity.

If \(R \) is a RSR in which the associative law does not hold and is not a SR then \(R \) cannot be embedded in a RR or a LSR since if there did exist an isomorphism of \(R \) into a subright ring or a subleft semi-ring it would imply that \(R \) is associative or is a SR.

Section 6. Examples

The following examples are given without proof so as to save space. Furthermore \((R,+)\) in the examples will always be an abelian group. The following abbreviations will be used. C-commutative wrt \(\cdot \), A-associative wrt \(\cdot \), RD-all the elements of the set obey the right distributive law, LD-all the elements of the set obey the left distributive law. If \(N \) is placed before any of the above letters is stands for not (e.g. NC means not commutative). Also, the following sets will be used. \(I_R = \{x \in R | x \text{ is a right identity} \} \) \((I_1)\), \(D_R = \{x \in R | x \text{ is a right divisor of zero} \} \) \((D_1)\), \(C_R = \{x \in R | x \text{ obeys the right cancellation law} \} \) \((C_1)\), and \(V^C_R = \{x \in R | x \text{ has a right inverse wrt the right (left) identity} e \} \) \((V^C_1)\).

(6.1) Right semi-ring with no identities. Let \((A,+,\cdot)\) be any field and \(R = A \times A \). For \((x,y),(z,w) \in R\) define \((x,y)+(z,w)=(x+z,y+w)\) and \((x,y)\cdot(z,w)=(-xw,yz+x)\).
Then \((R, +, \cdot)\) is a RSR such that \(\cdot\) is NC, NA, and NLD. Furthermore, \(I_R = I_1 = \emptyset\), \(D_R = D_1 = \mathbb{R} - C_R\), and \(C_R = C_1 = \{(x, y) | x, y \in \mathbb{R} \text{ and } x, y \neq 0\}\).

(6.2) Right semi-ring with a right identity. Let \((R, +, \cdot)\) be a field. For \(x, y \in R\) define \(x \cdot y = x + xy\). Then \((R, +, \cdot)\) is a RSR such that \(\cdot\) is NC, NA, and NLD. However, \(I_R = \{0\}, I_1 = \emptyset, D_R = \{-1\}, D_1 = \mathbb{R}, C_R = \mathbb{R} - D_R, C_1 = \mathbb{R} - \{0\}, V_R^0 = D_1, \text{ and } V_1^0 = D_R\).

(6.3) Right semi-ring with left identity. Let \((R, +, \cdot)\) be the RSR in example (6.2), and \((R', +, \cdot)\) obtained from theorems (5.1) and (5.2). Then \((R, +, \cdot)\) is a RSR such that \(\cdot\) is NC, NA, and NLD; and \(I_R = \emptyset, I_1 = \{(1, 0)\}, D_R = \{((n, -(n+1)) | n \in \mathbb{I}] \cup \{(0, x) | x \neq 0\}, D_1 = \{(0, x) | x \in \mathbb{R} \} \cup \{(m, x) | x \neq 0, m \neq 0, \text{ and } x \neq -m\}, C_R = \mathbb{R} - D_R, C_1 = \{(m, x) | m \neq 0 \text{ and } x \neq -m\}, V_R^{(1, 0)} = \{(m, a) | m = \pm 1 \text{ and } a = 0\} \text{ and } V_1^{(1, 0)} = \{(1, b) | b \neq -(n+1)\} \cup \{(-1, b) | b \neq 0\}.

(6.4) Semi-ring with right identity. Let \((A, +, \cdot)\) be a field and \(R = A \times A\). For \((x, y), (z, w) \in R\) define \((x, y) + (z, w) = (x+z, y+w)\) and \((x, y) (z, w) = (-xw, yz)\). Then \((R, +, \cdot)\) is a SR such that \(\cdot\) is NC and NA; and \(I_R = \{(1, -1)\}, I_1 = \emptyset, D_R = \{(x, 0) | x \in A\} \cup \{(0, x) | x \in A\}, C_R = C_1 = \mathbb{R} - D_R, \text{ and } V_R^{(1, -1)} = V_1^{(1, -1)} = \{(x, y) | x, y \in A \text{ and } x, y \neq 0\}.

(6.5) Semi-ring with left identity. Let \((A, +, \cdot)\) be a field such that \(x^2 + y^2 = 0\) implies \(x, y = 0\) for \(x, y \in A\), and \(R = A \times A\). For \((x, y), (z, w) \in R\) define \((x, y) + (z, w) = (x+z, y+w)\) and \((x, y) (z, w) = (yz-xw, xz+yw)\). Then \((R, +, \cdot)\) is a SR such that \(\cdot\) is NC and NA; and \(I_R = \emptyset, I_1 = \{(0, 1)\}, D_R = D_1 = \{(0, 0)\}, C_R = C_1 = \mathbb{R} - D_R, \text{ and } V_R^{(0, 1)} = V_1^{(0, 1)} = \mathbb{R} - \{(0, 0)\}.
(6.6) Semi-ring with identity. Let \((R, +, \cdot)\) be the SR in example (6.5) and \((\overline{R}, +, \cdot)\) be obtained from theorems (5.1) and (5.2). Then \((\overline{R}, +, \cdot)\) is a SR such that \(\cdot\) is NC and NA. Furthermore, \(I_r = I_1 = \{(1, 0)\}\).

(6.7) Right ring with a right identity. Let \((R, +)\) be a commutative group such that \(R \cong \mathbb{D}[o]\). If \(x, y \in R\) define \(x \cdot y = x\). Then \((R, +, \cdot)\) is a RR such that \(\cdot\) is NC and NLD. However, \(I_r = R, I_1 = \emptyset, D_r = \emptyset, D_1 = \{0\}, C_r = R,\) and \(C_1 = \emptyset\).

(6.8) Right ring with an identity. Let \(F = \{ f | f \) maps the reals into the reals and \(f\) is a function\} and for \(f, g \in F\) and for an arbitrary \(x \in \) reals define \(f + g\) and \(f \cdot g\) such that \((f + g)(x) = f(x) + g(x)\) and \((f \cdot g)(x) = f(g(x))\). Then \((F, +, \cdot)\) is a RR such that \(\cdot\) is NC and NLD. Also, \(I_r = I_1 = \{1\}\) where \(I\) is defined such that for \(x \in \) reals \(I(x) = x, D_r = \{f \in F | f\) is not onto\}, \(D_1 = \{f \in F | \) there exists an \(x \in \) reals such that \(f(x) = 0\}, C_r = F - D_r, C_1 = F - D_1,\) and \(V_r = V_1 = \{f \in F | f\) is onto and one-to-one\}.

(6.9) Ring with no identity. Let \(R\) be the set of 2x2 matrices over \(\mathbb{E}\) (even integers). Then under matrix addition, +, and multiplication, \(\cdot\), \((E, +, \cdot)\) is a ring such that \(\cdot\) is NC. Furthermore, \(I_r = I_1 = \emptyset\).

(6.10) Ring with right identity. Let \(R \subset 2x2\) matrices over \(I\) such that if \(\alpha \in R\) then \(\alpha = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}\) for \(x, y \in I\). Then \((R, +, \cdot)\) is a ring where + and \(\cdot\) are matrix addition and multiplication respectively. Furthermore, \(\cdot\) is NC, \(I_r = \left\{ \begin{pmatrix} 1 \\ 0 \\ x_0 \end{pmatrix} | x \in I \right\}, I_1 = \emptyset, D_r = \left\{ \begin{pmatrix} 0 \\ 0 \\ x_0 \end{pmatrix} | x \in I \right\}, D_1 = R, C_r = \left\{ \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} | x \neq 0 \) and \(x, y \in I \right\},\) and \(C_1 = \emptyset\). The set of right inverses
wrt • and wrt the identity \(\overline{s} = (1_0) \) is \(\overline{I}_r^S = \{(x_0) | x=\pm 1 \text{ and } y|s\} \)

where as the set of left inverses wrt the identity \(\overline{s} \) is

\[\overline{I}_1^S = \{(x_0) | x=\pm 1\} \]

(6.11) Ring with left identity. Let \(R \) be a subset of the set of 2x2 matrices over the integers such that if \(\alpha \in R \) then \(\alpha = (xy) \) for \(x, y \in I \). Then \((R, +, \cdot) \) is a ring when + and \(\cdot \) are the usual matrix addition and multiplication.

Furthermore, \(I_r = \emptyset, I_1 = \{(1x) | x \in I\} \), \(D_r = R, D_1 = \{(0x) | x \in I\} \), \(C_r = \emptyset, C_1 = \{(xy) | x \neq 0, x, y \in I\} \), \(I_r^S = \{(xy) | x=\pm 1\} \), and \(I_1^S = \{(xy) | x=\pm 1 \text{ and } y|s\} \) where \(\overline{s} = (1_0) \).
CHAPTER II
M-RINGS

Two definitions of M-Rings will be given with a theorem on their equivalence. M-Subrings, M-Factor rings and M-Ring homomorphisms are defined. As in Chapter I the last section will include the examples.

Section 1. M-Rings and n-multiple M-Rings

(1.1) Definition. If M is a set and $(R, +, \cdot)$ is a BR then $M \rightarrow (R, +, \cdot)$ is a M-BR wrt T iff $\eta \in (RxM)xR$ is a function on RxM such that (a) $(x+y,m)\eta = (x,m)\eta + (y,m)\eta$ and (b) $(x \cdot y, m)\eta = (x,m)\eta \cdot (y,m)\eta$ for any $x, y \in R$ and $m \in M$.

The two conditions (a) and (b) in definition (1.1) are similar to those for a homomorphism. This similarity gives rise to an alternate definition for an M-Ring.

(1.2) Definition. If M is a non-empty set and $(R, +, \cdot)$ is a BR then $M \rightarrow R(R, +, \cdot)$ is a M-BR wrt α iff $\alpha \in MxE(R, +, \cdot)$ is a function on M.

(1.3) Theorem. Definition (1.1) and definition (1.2) are equivalent.

Proof. Let $M \rightarrow (R, +, \cdot)$ be an M-BR wrt definition (1.1). For a fixed $m \in M$ and any $x \in R$ define $\bar{m} \in RxR$ such that $x\bar{m} = (x,m)\eta$. \bar{m} is a function on R since η is a function on RxM. If $x, y \in R$ then $(x+y)\bar{m} = (x+y,m)\eta = (x,m)\eta + (y,m)\eta = x\bar{m} + y\bar{m}$ and $(x \cdot y)\bar{m} = (x \cdot y,m)\eta = (x,m)\eta \cdot (y,m)\eta = x\bar{m} \cdot y\bar{m}$. Hence, $\bar{m} \in E(R, +, \cdot)$. Now define $\alpha \in MxE(R)$ by $m\alpha = \bar{m}$ for any $m \in M$.

If \(m = m' \) then for any \(x \in R \) \(x \bar{m} = (x, m) \eta = (x, m') \eta = x \bar{m}' \). Therefore, \(\alpha \) is a function on \(M \). Hence, \(M-(R, +, \cdot) \) is an \(M\)-BR wrt definition (1.2).

Let \(M-(R, +, \cdot) \) be an \(M\)-BR wrt definition (1.2). Denote \(m \alpha = \bar{m} \) for \(m \in M \). Define \(\eta \subseteq (R \times M) \times R \) such that for any \(x \in R \) and any \(m \in M \) \((x, m) \eta = x(m \alpha) = x \bar{m} \). If \((x, m), (x', m') \in R \times M \) such that \((x, m) = (x', m') \) then \(x = x' \) and \(m = m' \), and hence \((x, m) \eta = x(m \alpha) = x'(m' \alpha) = (x', m') \eta \). Therefore \(\eta \) is a function on \(R \times M \). For \(x, y \in R \) and \(m \in M \) \((x + y, m) \eta = (x + y) \bar{m} = x \bar{m} + y \bar{m} = (x, m) \eta + (y, m) \eta \) and \((x \cdot y, m) \eta = (x \cdot y) \bar{m} = x m \cdot y \bar{m} = (x, m) \eta \cdot (y, m) \eta \). Hence, \(M-(R, +, \cdot) \) is an \(M\)-Ring wrt definition (1.1).

(1.4) Remark. From definitions (1.1) and (1.2) an \(M\)-BR is dependent upon both \(\eta \) and \(\alpha \). To stress this dependency let \(M^\alpha_\eta-(R, +, \cdot) \) denote an \(M\)-BR. When no confusion will arise let \(M-(R, +, \cdot) \) or \(M-R \) denote an \(M\)-BR.

Given a non-empty set and a \(BR \), more than one \(M\)-BR may be formed.

(1.5) Theorem. If \(M \) is a non-empty set and \((R, +, \cdot) \) is a \(BR \), then there are at least two different \(M\)-BRs formed from \(M \) and \(R \).

Proof. Let \(\alpha \subseteq M \times F \) (\(F \) is a non-empty set) be the function on \(M \) such that for \(x \in R \) and \(m \in M \) \(x(m \alpha) = 0 \). For \(x, y \in R \) and \(m \in M \) \((x + y)(m \alpha) = 0 = o = o + o = x(m \alpha) + y(m \alpha) \) and \((x \cdot y)(m \alpha) = o = o \cdot o = \alpha(x(m \alpha)) \cdot (y(m \alpha)). \) Therefore, \(F \subseteq E(R) \) and hence, \(M^\alpha_\eta-R \) is an \(M\)-BR where \((x, m) \eta = x(m \alpha) \) for \(x \in R \) and \(m \in M \).

Define \(\alpha' \subseteq M \times F \) (\(F \) is a set) such that for \(x \in R \) and \(m \in M \) \(x(m \alpha') = x \). Clearly \(\alpha' \) is a function on \(M \) and for \(x, y \in R \) and \(m \in M \) \((x + y)(m \alpha') = x + y = x(m \alpha') + y(m \alpha') \) and
\((x \cdot y)(m \alpha') = x \cdot y = x(m \alpha') \cdot y(m \alpha')\). Hence, \(F \subseteq E(R)\). Therefore, \(M^\alpha_{\eta'} - R\) is an \(M^\alpha_{\eta'} - BR\) where \((x, m)\eta' = x(m \alpha')\) for \(x \in R\) and \(m \in M\).

(1.6) Remark. To shorten the notation for mappings in an \(M^\alpha_{\eta'} - BR\), we let \(x \cdot m = (x, m)\eta\). Also, denote \(M\alpha\) by \(\bar{M} \subseteq E(R)\) and \(m\alpha\) for \(m \in M\) as \(\bar{m}\).

Because more than one \(M^\alpha_{\eta'} - BR\) can be obtained from a set \(M\) and a \(BR\) \(R\) it is interesting to consider a system consisting of more than one \(M^\alpha_{\eta'} - BR\).

(1.7) Definitions. If \(M\) is a non-empty set and \((R, +, \cdot)\) is a \(BR\) then \(M^\alpha_{\eta_1, \ldots, \eta_n} - (R, +, \cdot)\) is an \(n\)-multiple \(M^\alpha_{\eta_i} - BR\) iff \(M^\alpha_{\eta_i} - (R, +, \cdot)\) for \(i = 1, \ldots, n\) are \(M^\alpha_{\eta_i} - BRs\). If \(R^\alpha_{\eta_1, \eta_2} - (R, +, \cdot)\) is a 2-multiple \(M^\alpha_{\eta_1, \eta_2} - BR\) and \(V \subseteq (R \times R) \times (R \times R)\) is a function on \(R \times R\) such that \((x, y)V = (y, x)\) for \(x, y \in R\), then \(R^\alpha_{\eta_1, \eta_2} - (R, +, \cdot)\) is a symmetric 2-multiple \(M^\alpha_{\eta_1, \eta_2} - BR\) iff \(\eta_1 = V \eta_2\).

(1.8) Theorem. If \(M^\alpha_{\eta} - (R, +, \cdot)\) is an \(M^\alpha_{\eta} - BR\) then for \(x \in R, m \in M, k \in I\) and \(j \in N\)

(a) \((0, m)\eta = 0\)
(b) \((kx, m)\eta = k(x, m)\eta\)
(c) \((-x, m)\eta = -(x, m)\eta\)
(d) \((x^j, m)\eta = [(x, m)\eta]^j\)
(e) if \((R, +, \cdot)\) is a division ring then

(1) \((x^k, m)\eta = [(x, m)\eta]^k\)
(2) \((x^{-1}, m)\eta = [(x, m)\eta]^{-1}\)
(3) \((1, m)\eta = 1\) when 1 is the identity of \(R\) wrt \(\cdot\)

if \(m\alpha = 0\)

(f) if \((R, +, \cdot)\) is a \(SR\) with a right (left) identity \(r\) wrt \(\cdot\), \(R\) has no left (right) divisors of zero, and \(R \neq \{0\}\)
then \((r,m)\eta=r\).

Proof. Let \(m_0=m\) for \(m\in M\). Then for \(x\in R\ (x,m)\eta=xm_0\).

Part (a). Since \(m_0\) is a ring endomorphism \(o_0=0\).

Part (b). Again since \(m_0\) is an endomorphism \((x\eta)\eta_0=k(xm_0)\).

Part (c). Now \(o=o\eta_0=[x+(-x)]m_0=xm_0+(-x)m_0\) which implies
\((-x)m_0=-(xm_0)\).

Part (d). If \(j=1\) then \(x^{-1}m=(xm)^{-1}\). Assume true for \(j\). Then \((x^{j+1})m=(x^{j}x^{-1})m=(xm)\eta j(xm)^{-1}=(xm)^{j+1}\).

Part (e). Since \((R-\{0\},\cdot)\) is a group part (a), (b)
and (c) can be applied with notational changes for \(x=0\).
It is clear that (1) and (2) hold for \(x=0\).

Part (f). Now \((x,m)\eta r=(x,m)\eta=(xr,m)\eta=(x,m)\eta (r,m)\eta\).

By analogous theorems to theorems (1.20) and (1.8) in
chapter I all \(x\in R\) obey the left cancellation law and \(r\neq 0\). Hence, \(r=(r,m)\eta\).

Remark. At first part (d) in theorem (1.8)
appears not to need the added condition that \(R\) has no
zero divisors, but the example presented in section 4
gives an example of a ring with identity \(1\) that has an
endomorphism \(\beta\) on it such that \(1\beta\neq 1\). This implies that
the identity of a ring is not always mapped onto the
identity by an endomorphism.

Section 2. M-Subrings, M-Factor rings,
and M-homomorphisms

(2.1) Definition. If \(M_{\eta}^{-}\alpha-R\) is a M-BR and \(S\) is a
subBR of \(R\), then \(M_{\eta}^{-}\alpha-S\) is a M-SubBR of \(M_{\eta}^{-}\alpha-R\) iff for all
x ∈ S and m ∈ M (x, m)η ∈ S.

Let \{S\} denote a collection of M-SubBRs of the M-BR \(M^\alpha_\eta\). \(\cap S\) denote the intersection of all the \(S ∈ \{S\}\), and \(R' = \left[\bigcup S \right]\) to denote a set generated by the finite sums of finite products \(\left(\sum_{i=1}^{k} a_{i1} \ldots a_{i_n} \right)\), where \(a_{ij} ∈ S\) for some \(S ∈ \{S\}\).

(2.2) Theorem. If \(M^\alpha_\eta\) is a M-BR and \(\{S\}\) is a collection of M-SubBRs of \(R\) then (a) \(M^\alpha_\eta \cap S\) is a M-SubBR of \(M^\alpha_\eta\) and (b) \(M^\alpha_\eta\) is a M-SubBR of \(M^\alpha_\eta\).

Proof.

Part (a). We need first to show that \(\cap S\) is a subBR of \(R\). Let \(a, b ∈ \cap S\) then \(a, b ∈ S\) for all \(S ∈ \{S\}\). Since \(S\) is a subBR of \(R\) \(a-b ∈ S\) and \(a \cdot b ∈ S\) for all \(S ∈ \{S\}\). This implies that \(a-b ∈ \cap S\) and \(a \cdot b ∈ \cap S\). Therefore \(\cap S\) is a subBR of \(R\). Furthermore because for all \(S ∈ \{S\}\) \(S\) is a M-SubBR of \(M^\alpha_\eta\) \((a, m)η ∈ S\) for any \(a ∈ S\) and for any \(m ∈ M\). Hence, \((a, m)η ∈ \cap S\) for any \(a ∈ \cap S\) and for any \(m ∈ M\). Therefore \(M^\alpha_\eta \cap S\) is a M-SubBR of the M-BR \(M^\alpha_\eta\).

Part (b). First let us show that \(R' = \left[\bigcup S \right]\) is a subBR of \(R\). For any \(x, y ∈ R'\) \(x = \sum_{i=1}^{k} a_{i1} \ldots a_{i_n}\) and \(y = \sum_{i=1}^{q} b_{i1} \ldots b_{i_n}\). By observation we see that \(x - y ∈ R'\) and \(x \cdot y ∈ R'\). Therefore \(R'\) is a subBR of \(R\). Letting \((a, m)η = am\) then for any \(x ∈ R'\) and for any \(m ∈ M\)

\[xm = (\sum_{i=1}^{k} a_{i1} \ldots a_{i_n})m = \sum_{i=1}^{k} (a_{i1} \ldots a_{i_n})m = \sum_{i=1}^{k} (a_{i1} m \ldots a_{i_n})m\]

since \(a_{ij} ∈ S ∈ \{S\}\) and by definition of \(R'\) \((x, m)η ∈ R'\). Therefore \(M^\alpha_\eta\) is an M-SubBR of the M-BR \(M^\alpha_\eta\).
(2.3) Definition. If $M^\alpha_{\eta}-S$ is an M-SubBR of $M^\alpha_{\eta}-R$ then $M^\alpha_{\eta}-S$ is a right (left) M-Ideal of $M^\alpha_{\eta}-R$ iff S is a right (left) ideal of R. $M^\alpha_{\eta}-S$ is an M-Ideal of $M^\alpha_{\eta}-R$ iff S is an ideal of R.

(2.4) Theorem. If $M^\alpha_{\eta}-R$ is an M-Ring with R being a division ring then the only left (right) M-Ideals of $M^\alpha_{\eta}-R$ are $M^\alpha_{\eta}-\{0\}$ and $M^\alpha_{\eta}-R$.

Proof. The only ideals of R are $\{0\}$ and R. Hence the theorem follows from the definition of an M-Ideal.

(2.5) Remark. If $M^\alpha_{\eta}-R$ is an M-BR then $M^\alpha_{\eta}-R$ has at least two M-Ideals since $\{0\}$ and R are ideals of R and for any $a \in R$ $(a,m)\eta \in R$ and $(0,m)\eta = 0 \in \{0\}$.

(2.6) Theorem. If $M^\alpha_{\eta}-(R,+,*$ is an M-SR, $M^\alpha_{\eta}-S$ is an M-Ideal of $M^\alpha_{\eta}-R$, $\overline{R}=R/S$, and $\overline{\eta} \subseteq (\overline{R}\times M)\times \overline{R}$ such that $(\overline{x},m)\overline{\eta} = (x+S,m)\eta + S$ for all $x \in R$ and $m \in M$, then $M^\alpha_{\eta}-(\overline{R},\overline{\theta},\overline{\circ})$ is an M-SR called the factor M-SR of $M^\alpha_{\eta}-R$ wrt $M^\alpha_{\eta}-S$.

Proof. First we need to prove that $\overline{\eta}$ is a function on $\overline{R}\times M$. If $(\overline{a},m)=(\overline{b},m')$ then $\overline{a}=\overline{b}$ and $m=m'$. If $\overline{a}=a+S$ and $\overline{b}=b+S$ then $a=b+i$ for some $i \in S$. Since η is a function and $(a,m)\eta=(b+i,m)\eta=(b,m)\eta+(i,m)\eta$ where $(i,m)\eta \in S$ then $(\overline{a},m)\overline{\eta}=(a,m)\eta+S=(b,m)\eta+(i,m)\eta+S=(b,m)\eta+S=(\overline{a},m)\overline{\eta}$. Therefore $\overline{\eta}$ is a function of $\overline{R}\times M$.

By theorem (4.4) in chapter I $(\overline{R},\overline{\theta},\overline{\circ})$ is a SR. For $\overline{a},\overline{b}\in \overline{R}$ and $m \in M$

$(\overline{a}\overline{\circ}\overline{b},m)\overline{\eta} = ((a+b)+S,m)\eta = (a+b,m)\eta + S = [(a,m)\eta+(b,m)\eta]+S$ $= [(a,m)\eta+S]S[(b,m)\eta+S] = (a+S,m)\overline{\eta}\circ(b+S,m)\overline{\eta}$ $=(\overline{a},m)\overline{\eta}\circ(\overline{b},m)\overline{\eta}$

$(\overline{a}\overline{\circ}\overline{b},m)\overline{\eta} = (ab+S,m)\overline{\eta} = (ab,m)\eta + S = (a,m)\eta(b,m)\eta + S$
\[(a,m)n+ S = (a+S,m)\eta \circ (b+S,m)\eta\]
\[= (a,m)\eta \circ (b,m)\eta.\]

Therefore \(\mathcal{M}_{\eta}^\alpha - R\) is an M-SR.

(2.7) Definition. If \(\mathcal{M}_{\eta}^\alpha - R\) and \(\mathcal{M}_{\eta'}^\alpha - R'\) are M-BRs and \(\pi \subseteq R \times R'\) is a ring-homomorphism then \(\pi\) is an M-BR homomorphism (M-homomorphism) of \(\mathcal{M}_{\eta}^\alpha - R\) into \(\mathcal{M}_{\eta'}^\alpha - R'\) iff for all \(x \in R\) and \(m \in M\) \([(x,m)\eta] = (x\pi,m)\eta'.\)

(2.8) Remarks. Of course we have the special cases of homomorphisms: isomorphisms, endomorphisms and automorphisms.

Note that when \(\mathcal{M}_{\eta}^\alpha - R = \mathcal{M}_{\eta'}^\alpha - R'\) (ie \(\eta = \eta', \alpha = \alpha'\) and \(R = R'\)) and \(\pi\) is an M-homomorphism of \(\mathcal{M}_{\eta}^\alpha - R\) into \(\mathcal{M}_{\eta'}^\alpha - R'\) then for any \(a \in R\) and \(m \in M\), where \((a,m)\eta = a(m\alpha) = a\bar{m}\), \(a(m\pi) = a\bar{m}\pi = [(a,m)\eta]\pi = (a\pi,m)\eta = (a\pi)\overline{m} = a(\pi\bar{m})\). Hence, the M-endomorphisms of \(\mathcal{M}_{\eta}^\alpha - R\) are just those endomorphisms of \(R\) that commute.

(2.9) Notation. When considering homomorphisms of \(\mathcal{M}_{\eta}^\alpha - (R,+,\cdot)\) into \(\mathcal{M}_{\eta'}^\alpha - (R',+,\cdot')\) no distinction will be made between the different operations. Both + and +' will be denoted by + and both \(\cdot\) and \(\cdot'\) will be denoted by \(\cdot\) (or by no symbol).

Section 3. Fundamental theorems of
M-homomorphisms on M-Rings

(3.1) Theorem. If \(\mathcal{M}_{\eta}^\alpha - R\) and \(\mathcal{M}_{\eta'}^\alpha - R'\) are M-BRs and \(\pi\) is an M-homomorphism of \(\mathcal{M}_{\eta}^\alpha - R\) onto \(\mathcal{M}_{\eta'}^\alpha - R'\) then (a) \(\mathcal{M}_{\eta'}^\alpha - R\pi\) is an M-SubBR of \(\mathcal{M}_{\eta'}^\alpha - R'\), and (b) the kernel of \(\pi\) is a left (right) \(\mathcal{M}_{\eta}^\alpha - R\)-Ideal of \(\mathcal{M}_{\eta}^\alpha - R\) only if \(R\) and \(R'\) are RSRs (LSRs).
Proof. Part (a). $R\pi$ is a subBR of R' by theorem (4.6) in chapter I. Now for any $a\pi \in R\pi$ and $m \in M$, $[(a, m)\eta'] = [(a, m)\eta]\pi$ is in $R\pi$. Therefore $M_{\eta'}^\alpha R\pi$ is a M-SubBR of $M_{\eta'}^\alpha R'$.

Part (b). By theorem (4.7) in chapter I K_{π} (kernel of π) is a left ideal of the RSR R. For any $a \in K_{\pi}$ and $m \in M$, $[(a, m)\eta]\pi' = ((a\pi, m)\eta') = a'$. Therefore, $(a, m)\eta \in K_{\pi}$ and hence $M_{\eta'}^\alpha K_{\pi}$ is a left M-Ideal of $M_{\eta'}^\alpha R$.

(3.2) Theorem. If $M_{\eta}^\alpha R$, $M_{\eta'}^\alpha R'$ and $M_{\eta'}^\alpha R''$ are M-BRs, $\pi \subseteq R \times R'$ and $\pi' \subseteq R' \times R''$ are M-homomorphisms then $\pi\pi'$ (the resultant) is an M-homomorphism.

Proof. $\pi\pi'$ is a homomorphism of R into R'' by theorem (4.9) in chapter I. For $a \in R$ and $m \in M$, $[(a, m)\eta]\pi' = [(a, m)\eta']\pi = ((a\pi, m)\eta') = (a(m\pi'), m)\eta''$. Therefore $\pi\pi'$ is an M-homomorphism.

(3.3) Theorem. If $M_{\eta}^\alpha R$ is the factor M-SR of the M-SR $M_{\eta}^\alpha R$ wrt $M_{\eta}^\alpha S$ and $\tau \subseteq R R\pi$ such that $a\tau = a + S$ for $a \in R$ then τ is an M-homomorphism on R (ie $R\pi$ is a homomorphic image of R under τ).

Proof. τ is a homomorphism by theorem (4.10) in chapter I. Now by definition $(a + S, m)\tau = (a, m)\tau + S$ for $a \in R$ and $m \in M$. Hence, $[(a, m)\eta]\tau = (a, m)\eta + S = (a + S, m)\tau = (a\tau, m)\tau$. Therefore, τ is an M-homomorphism.

(3.4) Remark. τ as defined in theorem (3.3) is called the natural M-homomorphism of R into $R = R/S$.

(3.5) Theorem. If $M_{\eta}^\alpha R$ and $M_{\eta'}^\alpha R'$ are M-SRs, $\phi \subseteq R \times R'$ is an M-homomorphism on R, $M_{\eta}^\alpha R$ is the factor M-SR of $M_{\eta}^\alpha R$ wrt $M_{\eta}^\alpha S$, and $\phi \subseteq R \times R'$ such that $(a + S)\phi = a\phi$ for all $a \in R$ then $(a) ~ \phi$ is an M-homomorphism of $R = R/S$.

into R' and \(\phi = \tau \overline{\phi} \) where \(\tau \) is the natural M-homomorphism of R into \(\overline{R} \) and (b) \(\overline{\phi} \) is an M-isomorphism iff \(K_\phi = S \).

Proof. Part (a). \(\phi \) is a homomorphism on R into R', \(\overline{\phi} \) is also a homomorphism on \(\overline{R} \) into R', and \(\phi = \tau \overline{\phi} \) by theorem (4.13) in chapter I. For \(a \in R \) and \(m \in M \), \([(a+S,m)\overline{\eta}]\overline{\phi} = \[(a,m)\eta + S]\overline{\phi} = [(a,m)\eta]\overline{\phi} = (a\phi,m)\eta' = ((a+S)\phi,m)\eta' \). Hence, \(\overline{\phi} \) is an M-homomorphism.

Part (b). The result follows directly from part (b) of theorem (4.12) in chapter I.

(3.6) Theorem. If \(M_\eta^\alpha - R \) and \(M_{\eta'}^\alpha - R' \) are M-BRs, \(\phi \subset R \times R' \) is an M-homomorphism on R onto R', \(\{S\} = \{S\} \) is an M-SubBR of R and \(K_\phi \subset S \), \(\{S'\} \) is an M-SubBR of R', and \(\pi \subset \{S\} \times \{S'\} \) such that \(S\pi = S\tau \) for \(S \in \{S\} \) then (a) \(\pi \) is 1-1 and onto (ie \(\{S\} \sim \{S'\} \) under \(\pi \)), and (b) \(S \) is a right (left) M-Ideal in M-R iff \(S' = S\phi \) is a right (left) M-Ideal in M-R'.

Proof. Part (a). Clearly \(\pi \) is a function on \(\{S\} \). Let us prove that \(\pi \) maps \(\{S\} \) onto \(\{S'\} \). Let \(S' \in \{S'\} \).

Now define \(S = \phi^{-1}(S') \). For \(a,b \in S \), \((a-b)\phi = a\phi - b\phi \in S' \) and \((ab)\phi = a\phi b\phi \in S' \) which implies \(a-b \in S \) and \(ab \in S \). Therefore \(S \) is a subBR of R. For \(a \in S \) and \(m \in M \) and by definitions \([(a,m)\eta]\overline{\phi} = (a\phi,m)\eta' \in S' \) which implies \((a,m)\eta \in S \) and hence \(S \) is a M-SubBR of R. Clearly \(S = \phi^{-1}(S') \) contains \(K_\phi = \phi^{-1}(\phi') \) and \(S\phi = S' \). Thus, every M-SubBR of R' can be obtained by applying \(\phi \) to some M-SubBR of R that contains \(K_\phi \). Hence, \(\pi \) is onto. Now let us prove \(\pi \) is 1-1. Let \(S \in \{S\} \) and \(S_1 = \phi^{-1}(S\phi) \). Clearly \(S_1 \supseteq S \). If \(s_1 \in S_1 \) then \(s_1 \phi = s\phi \) for some \(s \in S \). Hence \(s_1 = s + k \) for some \(k \in K_\phi \). Now
since $K_\varphi \subseteq S, s_1 \in S$. Therefore $S = \varphi^{-1}(S \varphi)$. Now if $S_1, S_2 \in \{S\}$ and $S_1 \varphi = S_2 \varphi$ then $S_1 = \varphi^{-1}(S_1 \varphi) = \varphi^{-1}(S_2 \varphi) = S_2$. Therefore φ is 1-1.

Part (b). Assume S is a right M-Ideal in $M - R$. Since φ is a homomorphism $(S', +)$ is a subgroup of $(R', +)$. Let $x' = x \varphi \in R'$ and $a' = a \varphi \in S'$. Then $x' a' = (x a) \varphi \in S'$ and hence S' is a right ideal of R'. Furthermore for $a \varphi \in S'$ and $m \in M$

$$(a \varphi, m) \eta' = [(a, m) \eta] \varphi \in S'$.

Hence, S' is a right M-Ideal of $M - R'$.

Assuming S' to be a right M-Ideal of $M - R'$ we can prove that S is an M-Ideal of R analogous to the above method.

(3.7) Theorem. If $M^\alpha_{\eta} - R$ is an M-BR, $\pi \subseteq (M^\varphi_{\eta} - R)x (M^\alpha_{\eta} - R)$ is an M-endomorphism, and $R' = \{a \in R | a \pi = a\}$ then $M^\alpha_{\eta} - R'$ is a M-SubBR of $M^\alpha_{\eta} - R$.

Proof. Since $o\pi = o R' \neq \emptyset$. If $a, b \in R'$ then $(a - b)\pi = a\pi + (-b)\pi = a\pi - b\pi = a - b \in R'$ and $(ab)\pi = a\pi b\pi = ab \in R'$. Hence, R' is a subBR of R by theorem (4.3) in chapter I. For $a \in R'$ and $m \in M$ $[(a, m) \eta] \pi = (a\pi, m) \eta = (a, m) \eta \in R'$. Therefore $M^\alpha_{\eta} - R'$ is an M-SubBR of $M^\alpha_{\eta} - R$.

(3.8) Theorem. If $M^\alpha_{\eta} - R$ is an M-Ring and R is a division ring then $E(M^\alpha_{\eta} - R) - \{0\} = A(M^\alpha_{\eta} - R)$ where $E(M^\alpha_{\eta} - R)$ is the set of M-endomorphisms of $M^\alpha_{\eta} - R$ and $A(M^\alpha_{\eta} - R)$ is the set of M-automorphisms of $M^\alpha_{\eta} - R$.

Proof. From definition $E(M^\alpha_{\eta} - R) - \{0\} \supset A(M^\alpha_{\eta} - R)$. Let $\bar{m} \in E(M^\alpha_{\eta} - R) - \{0\}$ and $K_{\bar{m}}$ be the kernel of \bar{m}. $K_{\bar{m}}$ is an M-Ideal of $M^\alpha_{\eta} - R$ denoted by $M^\alpha_{\eta} - K_{\bar{m}}$. Since $M^\alpha_{\eta} - R$ is a division M-Ring $M^\alpha_{\eta} - K_{\bar{m}} = M^\alpha_{\eta} - \{0\}$ or $M^\alpha_{\eta} - K_{\bar{m}} = M^\alpha_{\eta} - R$. Since $\bar{m} \neq \bar{0}$ and $M^\alpha_{\eta} - K_{\bar{m}}$
Section 4. A particular example

The purpose of this section is to give an example of a ring that has an identity 1 along with an endomorphism \(\beta \) on it such that \(1\beta \neq 1 \), and hence give a counter example to the pseudo-theorem if \(M^\alpha_\eta - R \) is an \(M \)-Ring and \(R \) has an identity then for \(\mathfrak{m} \in \mathfrak{M}(1, \mathfrak{m})_\eta = 1 \).

Let \(R \) be the following ring:

\[
\begin{array}{cccccc}
+ & 0 & 1 & a & a+1 \\
0 & 0 & 1 & a & a+1 \\
1 & 1 & 0 & a+1 & a \\
a & a & a+1 & 0 & 1 \\
a+1 & a+1 & a & 1 & 0 \\
\end{array}
\quad
\begin{array}{cccccc}
\cdot & 0 & 1 & a & a+1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & a+1 & a \\
a & a & a & a & 0 \\
a+1 & o & a+1 & o & a+1 \\
\end{array}
\]

Clearly the following subset \(R' \) of \(R \) is a subring of \(R \).

\[
\begin{array}{ccc}
+ & 0 & a \\
0 & 0 & a \\
a & a & 0 \\
\end{array}
\quad
\begin{array}{ccc}
\cdot & 0 & a \\
0 & 0 & 0 \\
a & a & a \\
\end{array}
\]

Define \(\beta \subset R \times R' \) such that \(0\beta = 0, 1\beta = a, a\beta = a \) and \((a+1)\beta = 0 \).
Now we need to check to see if β is an endomorphism. If $x,y \in R$ then for

1. $x=0$. $(x+y)\beta = y\beta = 0 + y\beta = o\beta + y\beta = x\beta + y\beta$ and $(xy)\beta = o\beta = o = y\beta = o\beta y\beta = x\beta y\beta$

2. $x=1$, $y=a$. $(1+a)\beta = o = a + a = l\beta + a\beta$ and $(1a)\beta = a\beta = a = a = l\beta a\beta$

3. $x=1$, $y=a+1$. $(1+a+1)\beta = a\beta = a = o + (a+1)\beta$ and $[1(a+1)]\beta = (a+1)\beta = o = l\beta o = l\beta (a+1)\beta$

4. $x=1$, $y=1$. $(1+1)\beta = o\beta = o + o = l\beta + l\beta$ and $(11)\beta = l\beta = a = a = l\beta l\beta$

5. $x=a$, $y=a$. $(a+a)\beta = o\beta = o = a + a = a\beta + a\beta$ and $(aa)\beta = a\beta = a = a = a\beta a\beta$

6. $x=a$, $y=a+1$. $(a+a+1)\beta = l\beta = a + a + (a+1)\beta$ and $[a(a+1)]\beta = o\beta = o = a\beta o = a\beta (a+1)\beta$.

Hence, β is an endomorphism such that $l\beta = a/1$.

Let $M=\{2\}$ and define α such that $2\alpha = \beta$. Then $M^\alpha_\eta - R$ is an M-Ring.

Section 5. Examples of M-Rings

(5.1) Example of an M-Ring. Let $(R, +, \cdot)$ be any ring. Define $\eta \subset [RxE(R)] \times R$ such that $(a, \bar{m})\eta = a\bar{m}$ for $a \in R$ and $\bar{m} \in E(R)$. The α associated with η is the identity map of $E(R)$ onto $E(R)$. If $(a, \bar{m}) = (a', \bar{m'})$ then $a = a'$ and $\bar{m} = \bar{m'}$, and $(a, \bar{m})\eta = a\bar{m} = a'\bar{m'} = (a', \bar{m'})\eta$. Hence, η is a function on $RxE(R)$. For $a, b \in R$ and $\bar{m} \in E(R)$ $(a+b, \bar{m})\eta = (a+b)\bar{m} = a\bar{m} + b\bar{m} = (a, \bar{m})\eta + (b, \bar{m})\eta$ and $(ab, \bar{m})\eta = (ab)\bar{m} = a\bar{m}b\bar{m} = (a, \bar{m})\eta (b, \bar{m})\eta$. Therefore $E(R)^\alpha_\eta - R$ is an M-Ring.

(5.2) Example of an M-Ring. Let C denote the set
of complex numbers, and \(R = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{C} \right\} \) and define + and \(\cdot \) as the usual matrix addition and multiplication on \(R \). Then \((R, +, \cdot) \) is a non-commutative ring. Let \(S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c \in \mathbb{C} \right\} \subseteq R \). Then for \(\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \beta = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in S \)

\[
\alpha \beta = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' + bc' & ab' + bd' \\ cc' & cc' + dd' \end{pmatrix} \in S
\]

and

\[
\alpha + (-\beta) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} -a' & -b' \\ -c' & -d' \end{pmatrix} = \begin{pmatrix} a-a' & b-b' \\ c-c' & d-d' \end{pmatrix} \in S.
\]

Hence, \(S \) is a subring of \(R \). Define the map \(m_{r_1} \) such that

\[
\alpha m_{r_1} = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}.
\]

Clearly \(m_{r_1} \) is single-valued. Also,

\[
(\alpha \beta) m_{r_1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' + bc' & ab' + bd' \\ cc' & cc' + dd' \end{pmatrix} = \alpha m_{r_1} \beta m_{r_1}
\]

and

\[
(\alpha + \beta) m_{r_1} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \alpha m_{r_1} + \beta m_{r_1}.
\]

Therefore \(m_{r_1} \in E(S) \). Define \(m_{r_2}, \ldots, m_{r_8} \) such that

\[
\alpha m_{r_2} = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}, \quad \alpha m_{r_3} = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}, \quad \alpha m_{r_4} = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}, \quad \alpha m_{r_5} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
\]

\[
\alpha m_{r_6} = \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix}, \quad \alpha m_{r_7} = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, \quad \alpha m_{r_8} = \begin{pmatrix} 0 & c \\ 0 & c \end{pmatrix}.
\]

It can be shown that all of the above defined maps are in \(E(S) \). Consider now the set \(M = \{1, \ldots, 8\} \) and the map \(\pi \) such that \(\pi = m_{r_i} \) for \(i = 1, \ldots, 8 \). By the definition of \(\pi \) it is clear that it is a single-valued map of \(M \) into \(E(S) \). Hence \(M \) and \(S \) along with \(\pi \) form an \(M \)-Ring.

(5.3) Example of an \(M \)-Ring. Let \(R \) and \(S \) be the same rings as in example (5.2). For \(a \in \mathbb{C} \) let \(\bar{a} \) denote the con-
jugate of a. Define the maps $\overline{m_1}, \ldots, \overline{m_8}$ such that for $\alpha \in S$,

$\overline{\alpha m_1} = (\overline{\alpha} o), \overline{\alpha m_2} = (0 0 0), \overline{\alpha m_3} = (0 0 b), \overline{\alpha m_4} = (0 0 c), \overline{\alpha m_5} = (0 1 0), \overline{\alpha m_6} = (0 0 1), \overline{\alpha m_7} = (0 c 0), \overline{\alpha m_8} = (0 0 0)$. Clearly $\overline{m_1}$ is single-valued. For $\alpha = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, $\beta = \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix} \in S$

$(\alpha \beta) \overline{m_1} = (\overline{\alpha} \overline{\beta} o) = (\overline{\alpha} o) (\overline{\beta} o) = \overline{\alpha m_1} \overline{\beta m_1}$

and

$(\alpha + \beta) \overline{m_1} = (\overline{\alpha + \beta} o) = (\overline{\alpha} o) (\overline{\beta} o) = \overline{\alpha m_1} \overline{\beta m_1}$

Hence, $\overline{m_1} \in E(S)$. Similarly it can be shown that the rest of the maps are in $E(S)$ also. Define $\tau \subset M \times E(S)$ ($M = \{1, \ldots, 8\}$) such that $n \tau = \overline{m_1}$ for $n=1, \ldots, 8$. By the definition of τ is is clear that it is a single-valued map on M into $E(S)$. Hence, M and S along with τ form an M-Ring.

(5.4) Example of a 2-multiple M-Ring. By considering examples (5.2) and (5.3) together we have a 2-multiple M-Ring. Note that if we denote the images of $\overline{\alpha m_1}$ and αn as $\alpha \# n$ and $n \# \alpha$ respectively then $4 \# \alpha = \alpha \# 4$, $5 \# \alpha = \alpha \# 5$, $6 \# \alpha = \alpha \# 6$ and $8 \# \alpha = \alpha \# 8$ are the only ones that commute.

(5.5) Example of an M-Ring. Let $(F[x], +, \cdot)$ be the extension of the field F over x. Then for $a, b, c \in F[x]$

$\overline{a} = \sum_{i=0}^{n_a} a_i x^i$, $\overline{b} = \sum_{i=0}^{n_b} b_i x^i$, and $\overline{c} = \sum_{i=0}^{n_c} c_i x^i$. Define $\overline{m_u} \subset F[x \times F[x]$ such that $\overline{am_u} = \sum_{i=0}^{n_a} a_i u^i$ where $u \in F[x]$. If $a = b$ then $n_a = n_b$ and $a_i = b_i$ for $i=1, \ldots, n_a$. Hence $\overline{am_u} = \sum_{i=0}^{n_a} a_i u^i = \sum_{i=0}^{n_b} b_i u^i = \overline{b m_u}$. Therefore $\overline{m_u}$ is a function on $F[x]$.
\[(a + b)\overline{m}_u = \left(\sum_{i=0}^{\max(n_a, n_b)} (a_i + b_i)x^i \right)\overline{m}_u = \sum_{i=0}^{\max(n_a, n_b)} (a_i + b_i)u^i\]

\[= \sum_{i=0}^{\max(n_a, n_b)} a_i u^i + \sum_{i=0}^{\max(n_a, n_b)} b_i u^i = \sum_{i=0}^{n_a} a_i u^i + \sum_{i=0}^{n_b} b_i u^i = a\overline{m}_u + b\overline{m}_u\]

since \(a_i = 0\) for \(i > n_a\) and \(b_i = 0\) for \(i > n_b\), and

\[(ab)\overline{m}_u = \left(\sum_{i=0}^{n_a+n_b} \left(\sum_{j=0}^i a_j b_{i-j} \right)x^i \right)\overline{m}_u = \sum_{i=0}^{n_a+n_b} \left(\sum_{j=0}^i a_j b_{i-j} \right)u^i\]

\[= \left(\sum_{i=0}^{n_a} a_i u^i \right) \left(\sum_{i=0}^{n_b} b_i u^i \right) = (a\overline{m}_u)(b\overline{m}_u).\]

Now define \(\alpha \in F[x]\times E(F[x])\) such that \(u\alpha = \overline{m}_u\) for \(u \in F[x]\).

If \(u = u'\) then \(a\overline{m}_u = \sum_{i=0}^{n_a} a_i u^i = \sum_{i=0}^{n_a} a_i (u')^i = a\overline{m}_{u'}\). Therefore \(\alpha\)

is a function on \(F[x]\). Defining \(a(u\alpha) = (a, u)\eta\) for \(a, u \in F[x]\) \(F[x]^{\alpha,F} \in F[x]\) is an M-Ring.

(5.6) Example of an M-Ring. If in the example above we had required \(u \in F\) then \(M = F\) and \(F^{\alpha,F} \in F[x]\) would be an M-Ring.

(5.7) Example of an M-Subring. Consider the M-Ring in example (5.5). \(F\) is a subring of \(F[x]\) and for \(a \in F\) and \(\overline{m}_u \in E(F[x])\) \(a\overline{m}_u = a \in F\). Hence, \(F[x]^{\alpha,F} \in F[x]\) is a M-Subring of \(F[x]^{\alpha,F} \in F[x]\).

(5.8) Example of an M-Subring. Consider the M-Ring in example (5.6). Clearly \(F^{\alpha,F} \in F[x]\) is an M-Subring of \(F^{\alpha,F} \in F[x]\).

(5.9) Example of an M-Homomorphism. On the M-Rings \(F[x]^{\alpha,F} \in F[x]\) and \(F[x]^{\alpha,F} \in F\) define \(\pi \in F[x] \times F\) such that for \(a\)
in $F[x]$ $an = a_0$ where $a = \sum_{i=0}^{n} a_i x^i$. If $a = b$ then $an = a_0 = b_0 = b \pi$
and hence π is a function on $F[x]$. For $a, b \in F[x]$ $(a + b)\pi = a_0 + b_0 = a \pi + b \pi$ and $(ab)\pi = a_0 b_0 = a \pi b \pi$. Hence π is a homomorphism of $F[x]$ into F. For $a \in F[x]$ $(\tilde{a}_\pi)\pi = a_0 = a \pi = (a \pi)\tilde{a}_\pi$.
Hence π is an M-homomorphism of $F[x]$ into F.

(5.10) Example of an M-Ring. Let $R = \{(a_1, \ldots, a_n) | a_i \in \text{reals for all } i\}$ and define $+$ and \cdot such that for $a = (a_1, \ldots, a_n)$, $b = (b_1, \ldots, b_n) \in R$ $a + b = (a_1 + b_1, \ldots, a_n + b_n)$ and $a \cdot b = (a_1 \cdot b_1, \ldots, a_n \cdot b_n)$. Clearly $(R, +, \cdot)$ is a ring. Define the map \tilde{m}_i such that $\tilde{a}_\pi = (a_{i_1}, \ldots, a_{i_n})$ where (i_1, \ldots, i_n) is a permutation of $(1, \ldots, n)$. Clearly \tilde{m}_i is a function on R. For $a, b \in R$ $(a + b)\tilde{m}_i = (a_1 + b_1, \ldots, a_n + b_n)\tilde{m}_i = (a_{i_1} + b_{i_1}, \ldots, a_{i_n} + b_{i_n}) = \tilde{a}_{i_1} + \tilde{b}_{i_1}$ and $(ab)\tilde{m}_i = (a_{i_1} b_1, \ldots, a_{i_n} b_n) = (a_{i_1}, \ldots, a_{i_n})(b_{i_1}, \ldots, b_{i_n}) = (a_{\tilde{m}_i})(b_{\tilde{m}_i})$. Hence $\tilde{m}_i \in E(R)$. Now define $\alpha \in M \times E(R)$ such that $i \alpha = \tilde{m}_i$ where $M = \{1, \ldots, n\}$. By the definition of α it is a function on M. Therefore M^{α}_η-R for $(a, i)\eta = a(i \alpha) = a\tilde{m}_i$ is an M-Ring.

(5.11) Example of an M-Ring where M is the set R.
Let R be any division ring. Define $\phi_b \subseteq R \times R$ such that for $a \in R$ $a \phi_b = bab^{-1}$ where $b \in R$. If $a = a'$ then $b a = b a'$ and $b a b^{-1} = b a' b^{-1}$. Hence ϕ_b is function on R for any $a, b \in R$. For $a, c \in R$ $(a + c)\phi_b = b(a + c)b^{-1} = bab^{-1} + bc b^{-1} = a \phi_b + b \phi_b$ and $(a c)\phi_b = b(a c)b^{-1} = b[a(b^{-1}b)c]b^{-1} = (bab^{-1})(b c b^{-1}) = (a \phi_b)(c \phi_b)$. Therefore $\phi_b \in E(R)$ for each $b \in R$. Define $\alpha \in R \times E(R)$ such
that \(ba = \varphi_b \). If \(b = b' \) then \(b^{-1} = (b')^{-1} \) and \(a \varphi_b = bab^{-1} = b'a(b')^{-1} = a \varphi_{b'} \) for all \(a \in R \). Therefore \(\alpha \) is a function on \(R \). Hence for \(\eta \subseteq (RxR)\times R \) such that \((a, b)\eta = a(b\alpha) \) for \(a, b \in R \), \(R_\eta^\alpha \) is an M-Ring.

Note that if \(R \) is a commutative division ring then \(a \varphi_b = a = a \varphi_c \) for all \(b, c \in R \) and hence \(\varphi_b = \varphi_c \) for all \(b, c \in R \). Furthermore the mapping \(\varphi_b \) is just the identity map for all \(b \in R \).

(5.12) Example of an M-Subring. Let \(R_\eta^\alpha \) be the M-Ring in example (5.11). Let \(R' = \{ a \in R \mid ab = ba \text{ for all } b \in R \} \).

Note that if \(R \) is a commutative division ring then \(a \varphi_b = a = a \varphi_c \) for all \(b, c \in R \) and hence \(\varphi_b = \varphi_c \) for all \(b, c \in R \). Furthermore the mapping \(\varphi_b \) is just the identity map for all \(b \in R \).

(5.13) Example of an M-Ring. Let \(F = \{ f \mid f \text{ is a function that maps the reals into the reals} \} \). By defining + and \(\cdot \) such that for any \(f, g \in F \) and \(x \in \text{reals} \) \((f+g)(x) = f(x) + g(x) \) and \((f\cdot g)(x) = f(x) \cdot g(x) \) \((F, +, \cdot) \) is a ring. Define \(\eta \subseteq (FxF)\times F \) such that \((f, g)\eta = f\# g \) where for \(x \in R \)

\[[f \# g](x) = f(g(x)) \]. For \((f, g) = (f', g') \) \([f \# g](x) = f(g(x)) = f(g'(x)) = [f' \# g'](x) \). Therefore \(\eta \) is a function on \(FxF \). Furthermore for \(f, g, h \in F \) and \(x \in R \) \([(f+g)\# h](x) = (f+g)(h(x)) + g(h(x)) = [f\# h](x) + [g\# h](x) = [(f\# h) + (g\# h)](x) \) and \([(f\cdot g)\# h](x) = (f\cdot g)(h(x)) = f(h(x)) \cdot g(h(x)) = [f\# h](x) [g\# h](x) = [(f\# h) (g\# h)](x) \). Therefore \(F_\eta^\alpha \) is an M-Ring where \((f, g)\eta = f(g\alpha) \) for \(f, g \in F \).
(5.14) Example of an M-Ring. Let \(R \) be a commutative ring of characteristic \(p \) where \(p \) is a prime. Define \(\overline{m} \subseteq R \times R \) such that for \(a \in R \) \(a\overline{m} = a^p \in R \). Then if \(a = a' \) \(a^p = (a')^p \). Therefore \(\overline{m} \) is a function on \(R \). Also for \(a, b \in R \) \((a+b)\overline{m} = (a+b)^p = a^p + b^p = a\overline{m} + b\overline{m} \) and \((ab)\overline{m} = (ab)^p = a^p b^p = a\overline{m} b\overline{m} \). Hence \(\overline{m} \in E(R) \). Define \(\alpha_1 \subseteq R \times E(R) \) such that for all \(a \in R \) \(a\alpha_1 = \overline{m} \) and \((a,b)\eta = a(b\alpha_1) = a\overline{m} \). Hence, \(R^{\alpha_1}_\eta \) is an M-Ring.

We can obtain another M-Ring from the above example by defining \(\alpha_2 \subseteq \{0, 1, 2\} \times E(R) \) such that \(o\alpha_2 = \overline{\epsilon} \in E(R) \), \(1\alpha_2 = I \in E(R) \) [\(I \) is the identity endomorphism] and \(2\alpha_2 = \overline{m} \). Then \(\{0, 1, 2\}^{\alpha_2}_\eta \) is an M-Ring.
CHAPTER III
EXPANDED RINGS

The right expanded ring will be defined and its equivalence with an M-Ring proved. The question as to whether an expanded ring exists will be resolved. Again the last sections will be reserved for examples.

Section 1. Right semi-expanded rings

(1.1) Definitions. \((\mathbb{R},+,\cdot,#)\) is a bare expanded BR (BEBR) iff \((\mathbb{R},+,\cdot)\) is a BR and \(#\) is a binary operation on \(\mathbb{R}\). If \((\mathbb{R},+,\cdot,#)\) is a BEBR then \(\mathbb{R}\) is a right semi-expanded BR (RSEBR) iff for any \(x,y,z \in \mathbb{R}\) (a) \((x+y)#z=(x#z)+(y#z)\) and (b) \((x\cdot y)#z=(x#z)\cdot(y#z)\).

(1.2) Notation. We adopt the convention that when \(x#y\cdot z#w\) or \(x#y+z#w\) are written we mean \((x#y)\cdot(z#w)\) and \((x#y)+(z#w)\) respectively.

(1.3) Theorem. If \((\mathbb{R},+,\cdot,#)\) is a RSEBR and \(#=\eta\) then \(\mathbb{R}^{\alpha}_{\eta}-(\mathbb{R},+,\cdot)\) is an M-BR.

Proof. \(\eta\) is a function on \(\mathbb{R}\times\mathbb{R}\) since \(#\) is a binary operation on \(\mathbb{R}\). For \(x,y,z \in \mathbb{R}\) \((x+y,z)\eta=(x+y)#z=x#z+y#z=(x,z)\eta+(y,z)\eta\) and \((x\cdot y,z)\eta=(x\cdot y)#z=x#z\cdot y#z=(x,z)\eta\cdot(y,z)\eta\).

(1.4) Theorem. If \(\mathbb{R}^{\alpha}_{\eta}-(\mathbb{R},+,\cdot)\) is an M-BR and \(#=\eta\) then \((\mathbb{R},+,\cdot,#)\) is a RSEBR.

Proof. Same as in theorem (1.3).
(1.5) Remark. From theorems (1.3) and (1.4) a RSEBR is simply an M-BR where M is equal to the set R.

(1.6) Theorem. If \((R,+,\cdot,\#)\) is a RSEBR then for \(x,y \in R\), \(k \in I\), and \(j \in N\)

(a) \(0\#x = 0\)
(b) \((kx)\#y = k(x\#y)\)
(c) \((-x)\#y = -(x\#y)\)
(d) \(x^j\#y = (x\#y)^j\)
(e) if \((R,+,\cdot)\) is a SR with a right (left) identity \(r\) wrt \(\cdot\), \(R\) has no left (right) divisors of zero, and \(R \neq \{0\}\) then \(r\#x = r\).
(f) if \((R,+,\cdot)\) is a division ring then

(1) \(x^k\#y = (x\#y)^k\)
(2) \(x^{-1}\#y = (x\#y)^{-1}\)
(3) \(1\#x = 1\) where 1 is the identity of \(R\) wrt \(\cdot\).

and \(x_0\) is not equal to the zero-endomorphism of \(R\).

Proof. Follows from theorem (1.8) in chapter II.

(1.7) Remark. If \((R,+,\cdot,\#)\) is a BEBR we can consider \((R,+,\#)\) as a BR, and if \((R,+,\cdot,\#)\) is a RSEBR \((R,+,\#)\) can be considered as a RSR. Hence, all of the theorems in chapter I section I can be applied to \((R,+,\#)\) with notational changes. However, many of the theorems and definitions will be restated to give more continuity to this section.

(1.8) Definitions. If \((R,+,\cdot,\#)\) is a BEBR then \(r_\#\) is a right (left) identity of \(R\) wrt \(\#\) iff for any \(x \in R\)

\(x\#r_\# = x\) \((r_\#\#x = x)\). \(R\) has a two sided identity (or identity)
r_# wrt # iff r_# is both a left and a right identity of R wrt #.

(1.9) Theorem. If R is a RSEBR with a left identity r_# wrt # and R≠{0} then r_#∉{0}.

Proof. Same as in theorem (1.8) in chapter I.

(1.10) Theorem. If (R,+,•,#) is a RSESR with a left identity r_# wrt #, (R,+,•) has a right (left) identity r wrt • and (R,+,•) has no left (right) divisors of zero, then r_#∉{0,r}.

Proof. Theorem (1.9) shows r_#∉{0}. Assume r_#=r. Then o=r_#o=r_#o=r. But this contradicts theorem (1.8) in chapter I.

(1.11) Remark. If R is a RSEBR which has a right identity r_# wrt # then r_# may be zero as shown by example (5.1). Furthermore, if R is a RSEBR which has a right (left) identity r wrt • and has a right identity r_# wrt # then r_# may be equal to r as shown in example (5.3).

(1.12) Theorem. If R is a RSEBR with R^α-R as its M-Ring equivalence and R has a left identity e wrt # but R has no right identities wrt # then (a) α is one to one and (b) I≠Rα=R where for x∈R xI=x.

Proof. Same as in theorem (1.13) in chapter I.

(1.13) Definitions. If R is a BEBR then x∈R is a right (left) divisor of z∈R wrt # iff there exists a y∈R such that y≠z and y#x=z (x#y=z). x∈R is a general right (left) divisor of z wrt # iff there exists a y∈R such that y#x=z (x#y=z). x∈R is a divisor of z
(general divisor of z) wrt $#$ iff x is both a right and a left divisor of z (x is both a general right and a general left divisor of z).

(1.14) Remark. Our attention will be focused on divisors of zero and divisors of identities wrt \cdot. In example (6.3) $b+1$ is a general divisor of 0, 1, a, and $a+1$ as well as a divisor of 0, 1, a, and $a+1$ wrt $#$. Also, in example (6.3) we see that $b+1$ is a divisor of $a+b+1$ wrt \cdot, but $b+1$ is not a divisor of $a+b+1$ wrt $#$. Furthermore, in example (6.3) $b+1$ is a divisor of $a+1$ wrt $#$, but $b+1$ is not a divisor of $a+1$ wrt \cdot. Hence there seems to be no connection between divisors wrt $#$ and divisors wrt \cdot for arbitrary divisors.

(1.15) Definitions. If R is a BEBR then $x \in R$ obeys right cancellation law wrt $#$ iff when $y, z \in R$ such that $y \# x = z \# x$ then $y = z$; $x \in R$ obeys the left cancellation law wrt $#$ iff when $y, z \in R$ such that $x \# y = x \# z$ then $y = z$.

(1.16) Theorem. If R is a RSDdivision ring with 1 as the identity wrt \cdot and $x \in R$ obeys the right cancellation law wrt $#$ then x is not a right divisor of zero or 1 wrt $#$, and x is a general right divisor of 1 only if $x \neq 0$.

Proof. If there exists $y \in R$ such that $y \# x = 0$ then by theorem (1.6) $y \# x = 0 \# x = 0$. Since x obeys the right cancellation law $y = 0$. Hence, x is not a right divisor of zero. If there exists a $y \in R$ such that $y \# x = 1$ then by theorem (1.6) $y \# x = 1 \# x = 1$. Which implies $y = 1$ because x obeys the right cancellation law. Hence, x is not a right
divisor of 1. If $x = 0$ then by theorem (1.6) $1 \# x = 1$.

(1.17) Theorem. If R is a RSE division ring with 1 as its identity wrt \cdot, $x \in R$ is not a right divisor of zero wrt $\#$, and x is not a right divisor of 1 wrt $\#$ then x obeys the right cancellation law.

Proof. Let $y, z \in R$ such that $y \# x = z \# x$. If $y = 0$ then $z = 0$ since x is not a right divisor of zero wrt $\#$. Also, if $z = 0$ then $y = 0$. So x obeys the right cancellation law in these cases. Suppose $y, z \neq 0$. Then $y \# x, z \# x \neq 0$. Because $(R, +, \cdot)$ is a division ring $z \# x$ has an inverse wrt \cdot, and by theorem (1.6) $(z \# x)^{-1} = z^{-1} \# x$. Hence, $1 = (y \# x)(z \# x)^{-1} = (y \# x)(z^{-1} \# x) = (yz^{-1}) \# x$. Since x is not a right divisor of 1 wrt $\#$ $yz^{-1} = 1$ which implies $y = z$.

(1.18) Remark. From theorems (1.16) and (1.17) if $D_{rq} = \{x \in R \mid x$ is a right divisor of q wrt $\# \}$ and $C_r = \{x \in R \mid x$ obeys the right cancellation law wrt $\# \}$ then $C_r = (R - D_{ro}) \cap (R - D_{rl}) = R - (D_{ro} \cup D_{rl})$.

(1.19) Definition. If R is a BEBR and R has a right (left) identity r wrt $\#$ then y is a right inverse of x wrt $\#$ relative to r iff $x \# y = r$, and y is a left inverse of x wrt $\#$ relative to r iff $y \# x = r$.

Section 2. Semi-expanded rings

In this section we are going to define the left semi-BR and the semi-BR. Then the rest of the section is devoted to deriving an equivalence theorem that will be helpful in finding an example of a semi-ring.
(2.1) Definitions. If \((R, +, \cdot, \#)\) is a BEBR then \(R\) is a left semi-expanded BR \((LSEBR)\) iff for any \(x, y, z \in R\):

(a) \(z \# (x + y) = z \# x + z \# y\) and (b) \(z \# (xy) = (z \# x)(z \# y)\); and \(R\) is a semi-expanded BR \((SEBR)\) iff \(R\) is a RSEBR and a LSEBR.

(2.2) Remark. A LSEBR is really the same as a RSEBR except for the notation. Hence, all of the properties of RSEBRs apply to LSEBRs.

(2.3) Notation. If \((R, +, \cdot, \#)\) is a BEBR let \#_1 = +, \#_2 = \cdot, and \#_3 = \#.

(2.4) Theorem. If \((R, +, \cdot, \#)\) is a SEBR, \(\eta_1 = \#\), and \(\eta_2 = \eta_1 \phi \eta_1\) where \(\phi \subset (R \times R) \times (R \times R)\) is a function on \(R \times R\) such that \((x, y) \phi = (y, x)\) for \(x, y \in R\) then \(R_{\eta_1, \eta_2}^{\alpha_1, \alpha_2} (R, +, \cdot)\) is a symmetric 2-multiple M-BR.

Proof. A symmetric 2-multiple M-BR was defined in definition (1.7) of chapter II.

Clearly \(\eta_1\) and \(\eta_2\) are both functions on \(R \times R\) into \(R\). For \(x, y, z \in R\) and \(i = 1, 2\):

\[
(x \#_1 y, z) \eta_1 = (x \#_1 y) \# z = (x \# z) \#_1 (y \# z) = (x, z) \eta_1 \#_1 (y, z) \eta_1
\]

and

\[
(x \#_1 y, z) \eta_2 = (x \#_1 y, z) \phi \eta_1 = (z, x \#_1 y) \eta_1 = z \# (x \#_1 y) =
\]

\[
(z \# x) \#_1 (z \# y) = (z, x) \eta_1 \#_1 (z, y) \eta_1 = (x, z) \phi \eta_1 \#_1 (y, z) \phi \eta_1 =
\]

\[
(x, z) \eta_2 \#_1 (y, z) \eta_2.
\]

(2.5) Theorem. If \(R_{\eta_1, \eta_2}^{\alpha_1, \alpha_2} (R, +, \cdot)\) is a symmetric 2-multiple M-BR and \# = \eta_1 then \((R, +, \cdot, \#)\) is a SEBR.

Proof. Since \(\eta_1\) is a function on \(R \times R\) \# is a binary operation on \(R\). For \(x, y, z \in R\) and \(i = 1, 2\):

\[
(x \#_1 y) \# z = (x \#_1 y, z) \eta_1 = (x, z) \eta_1 \#_1 (y, z) \eta_1 = (x \# z) \#_1 (y \# z)
\]
and $z\#(x\#_1y) = (z, x\#_1y)_1 = (z, x\#_1y)\varphi_2 = (x\#_1y, z)_2 = (x, z)_2\#_1(y, z)_2 = (x, z)_2\varphi_1 = (z, x)_1\#_1(z, y)_2 = (z\#x)\#_1(z\#y)$.

(2.6) Remarks. From theorems (2.4) and (2.5) a SEBR can be considered as a symmetric 2-multiple M-BR and a special type of a symmetric 2-multiple M-BR can be considered as a SEBR. The theorems for RSEBRs and LSEBRs hold for SEBRs.

(2.7) Theorem. If $R_{\alpha_1, \alpha_2}=(R, +, \cdot)$ is the symmetric 2-multiple M-BR that is equivalent with the SEBR $(R, +, \cdot, \#)$ then for $x, y, z \in R (z, x\#_1y)_1 = (z, x\#_1y)_2 = (z, x\#_1y)_1\#_1 = (z, x\#_1y)_2\#_1$ for $i=1, 2$.

Proof. Let $x, y, z \in R$. Then $(z, x\#_1y)_1 = (z, x\#_1y)\varphi_2 = (x\#_1y, z)_2 = (x, z)_2\#_1(y, z)_2 = (x, z)_2\varphi_1 = (z, x)_1\#_1(z, y)_2 = (z, x)_1\#_1(z, y)_1$.

(2.8) Definition. If $(R, +, \cdot)$ is a BR and $E(R)$ is the set of all endomorphisms on R then we define $\bar{+}$ and $\bar{-}$ subsets of $[E(R) \times E(R)] \times F$ where $F \subseteq R \times R$ such that if $z \in R$ and $\beta, \delta \in E(R)$ then $z(\beta, \delta)\bar{+}=z\beta+z\delta$ and $z(\beta, \delta)\bar{-}=z\beta\cdot z\delta$.

(2.9) Theorem. If $(R, +, \cdot)$ is a BR, and $\bar{+}$ and $\bar{-}$ are defined as in definition (2.8) then (a) $F=\{f \mid f$ is a function on R into $R\}$ and (b) $\bar{+}$ and $\bar{-}$ are functions.

Proof. Let $\tau=(\beta, \delta), \tau'=(\beta', \delta') \in E(R) \times E(R)$.

Part (a). Let $z=w \in R$. Then for $\bar{\tau}_1=\bar{+}, \bar{\tau}_2=\bar{-}, \bar{\tau}_1=+, \bar{\tau}_2=-, i=1, 2$

$z(\tau\bar{\tau}_1) = z((\beta, \delta)\bar{\tau}_1) = z\beta\#_1z\delta = w\beta\#_1w\delta = w((\beta, \delta)\bar{\tau}_1) = w(\tau\bar{\tau}_1)$.

Hence, τF_i for $i=1,2$ is a function on R. Therefore, $F = \{ f | f$ is a function on R into $R \}$.

Part (b). Let $z \in R$ and $\tau = \tau^i$ which implies $\beta = \beta'$ and $\delta = \delta'$. Then for $i=1,2$

$$z(\tau F_i) = z((\beta, \delta) F_i) = z \beta \#_i z \delta = z \beta' \#_i z \delta' = z((\beta', \delta') F_i) = z(\tau F_i).$$

Since z was arbitrary $\tau F_i = \tau^i F_i$ for $i=1,2$. Hence, $F_1 = \tau$ and $F_2 = \tau$ are functions.

(2.10) Remark. As shown in theorem (2.9) $\beta + \delta$ and $\beta \cdot \delta$ are both functions on R into R for $\beta, \delta \in E(R)$, but for an arbitrary BR, R, neither $\beta + \delta$ nor $\beta \cdot \delta$ need be an endomorphism on R.

(2.11) Theorem. If $(R,+\cdot,\#)$ is a SEBR with $R{\alpha_1}\cdot{\alpha_2}-(R,+\cdot,\#)$ as its symmetric 2-multiple $M-BR$ equivalent, η_1, η_2 and $\bar{R}=\alpha_1 \subseteq E(R)$ then $(\bar{R},+,\tau)$ is a BR where $+$ and τ are defined as in definition (2.8), and α_1 is a homomorphism of R onto \bar{R}.

Proof. From theorem (2.9) $+$ and τ are functions. If $a, b \in \bar{R}$ then there exists $a, b \in R$ such that $a\alpha_1 = \bar{a}$ and $b\alpha_1 = \bar{b}$. Let $x \in R$. Then by the definition of $x\alpha_1$ and theorem (2.7)

$$x(a\#_i b) = x[(a\#_i b)\alpha_1] = (x, a\#_i b) \eta_1 = (x, a) \eta_1 \#_i (x, b) \eta_1 = x(a\alpha_1) \#_i x(b\alpha_1) = x(\bar{a} \#_i \bar{b}) \text{ for } i=1,2.$$
\(\overline{R}\times \overline{R} \) are binary operations on \(\overline{R} \). Furthermore, since
\[(a\#_1 b)\alpha_i = (a\#_1 b)_i = (a\alpha_i) \#_1 (b\alpha_i) \] for \(i=1,2 \), \(\alpha \) is a homomorphism of \(R \) onto \(\overline{R} \). Thus, \(\overline{R} \) is a BR under + and \(\cdot \).

(2.12) Theorem. If \((R,+,\cdot) \) is a BR, \((S,\overline{+},\overline{\cdot}) \) is a BR of endomorphisms of \(R \) wrt \(\overline{+} \) and \(\overline{\cdot} \) as defined in definition (2.8), and \(\alpha \) is a homomorphism of \(R \) into \(S \) then \((R,\overline{+},\overline{\cdot},\#) \) is a SEBR where \(x\#y = x(y\alpha) \) for \(x,y \in R \).

Proof. By definition \(\# \subset (R\times R) \times R \). Let \((a,b) = (a',b') \) which implies \(a = a' \) and \(b = b' \). Then
\[(a,b)\# = a\# b = a'(b\alpha) = a'\# b' = (a',b')\#. \]
Therefore, \(\# \) is a function on \(R\times R \) and hence a binary operation on \(R \). Let \(x,y,z \in R \). Then for \(i=1,2 \)
\[(x\#_1 y)\# z = (x\#_1 y)(z\alpha) = (x(z\alpha))\#_1 (y(z\alpha)) = (x\# z)\#_1 (y\# z). \]
Since \(\alpha \) is a homomorphism
\[z\#(x\#_1 y) = z(x\#_1 y\alpha) = z[(x\alpha)\#_1 (y\alpha)] = z(x\alpha)\#_1 z(y\alpha) \]
\[= (z\# x)\#_1 (z\# y) \] for \(i=1,2 \).
Therefore, \((R,\overline{+},\overline{\cdot},\#) \) is a SEBR.

(2.13) Remark. As shown in section 6 there does exist rings that satisfies the hypothesis of theorem (2.12), and hence there exists SEBRs.

(2.1) Theorem. If \((R,+,\cdot,\#) \) is a SEBR with \(R^{\alpha_1}, R^{\alpha_2} = (R,+,\cdot) \) as its symmetric 2-multiple M-BR equivalent, \(\overline{R} = R^{\alpha_1}, \) and \(x\# y = x(y\alpha_1) = x\overline{y} \) for \(x,y \in R \) then for
\[x,y,a,b \in R \]
\[\begin{align*}
(a) & \quad ax\overline{y} + ay\overline{b}x = 0 \\
(b) & \quad ax\overline{y} + bx\overline{a}y = 0 \\
(c) & \quad ay\overline{b}x = bx\overline{a}y \\
(d) & \quad (ab+ab)x = 0 \\
(e) & \quad (ab+ba)\overline{x} = 0 \\
(f) & \quad (a^2 + a^2)\overline{x} = 0
\end{align*} \]
(g) \(\bar{x} \cdot \bar{y} = \bar{y} \cdot \bar{x} \) (h) \((ab)x = (ba)x\) (i) \(a \bar{0} = 0 \) for all \(a \in R\)

(j) \((ax)^2 + (bx)^2 = (ax+bx)^2\) (k) \((ax-bx)^2 = (ax+bx)^2\)

(l) \(\bar{x} \cdot \bar{y} + \bar{y} \cdot \bar{x} = 0\) and (m) \(\bar{x} \cdot \bar{y} + \bar{x} \cdot \bar{y} = 0\).

Proof. Let \(x, y, a, b \in R \) and \(\bar{x} = a \alpha, \bar{y} = y \alpha \in \bar{R} \). Then since \(\bar{x} + \bar{y} = \bar{x} + \bar{y} \) and \(\bar{x} \cdot \bar{y} = \bar{x} \cdot \bar{y} \) are endomorphisms

(a) \((ab)(x+y) = a(x+y)b(x+y) = a(\bar{x} + \bar{y})b(\bar{x} + \bar{y})\) =

\((ax+ay)(bx+by) = axbx + axby + aybx + ayby\) and \((ab)(x+y) =

(ab)\bar{x} + (ab)\bar{y} = axbx + ayby\). Therefore, \(axby + aybx = 0\).

(b) \((a+b)(x+y) = (a+b)(\bar{x} + \bar{y}) = (a+b)\bar{x}(a+b)\bar{y}\) =

\((ax+bx)(ay+by) = axay + axby + bxay + bxby\) and \((a+b)(x+y) =

a(\bar{x} \cdot \bar{y}) + b(\bar{x} \cdot \bar{y}) = axay + bxby\). Therefore, \(axby + bxay = 0\).

(c) From (a) and (b) \(axby = bxay\).

(d) Let \(y = x \) in (a).

(e) Let \(y = x \) in (b).

(f) Let \(y = x \) and \(a = b \) in (a).

(g) If \(a = b \) in (c) then \(a(\bar{y} \cdot \bar{x}) = a(\bar{x} \cdot \bar{y})\). Since \(a \) was arbitrary \(\bar{x} \cdot \bar{y} = \bar{x} \cdot \bar{y} \).

(h) Let \(x = y \) in (c).

(i) Let \(a \in R \). Then \(a \bar{0} = a(\bar{x}-\bar{x}) = a[\bar{x} + (-\bar{x})] =

\bar{x} + a(-x)\). By the analogous theorem of theorem (1.6) for

LSEBRs and since \(R \) is a RSring \(x#(-y) = -(x#y) \). Thus,

\(a(-x) = a#(-x) = -(a#x) = -(a(\bar{x})) = -(a\bar{x})\). Hence, \(a \bar{0} = 0\).

(j) Since \((ax)^2 = a^2x\) \((ax+bx)^2 = a^2x + b^2x + axbx + bxax =

a^2x + b^2x = (ax)^2 + (bx)^2\). \(a^2x + b^2x = (ax)^2 + (bx)^2\).

(k) Similar to (j).

(l) By (i) and (a) if \(a = b \) and arbitrary \(a(\bar{x} \cdot \bar{y} +

\bar{x} \cdot \bar{y}) = 0 = a \bar{0} \). Since \(a \) was arbitrary the theorem follows.
(m) Similar to (1).

(2.15) Theorem. If R satisfies the same conditions as in theorem (2.14) and R has a right identity r wrt \cdot, then (a) $\overline{a} \cdot \overline{r} = \overline{a}$, (b) $\overline{e} \cdot \overline{a} = \overline{e}$, and (c) $\overline{a} + \overline{a} = \overline{e}$ for all $\overline{a} \in \overline{R}$.

Proof. For $a \in R$ (a) follows since $\overline{a} = \overline{a \cdot r} = \overline{a} \cdot \overline{r}$.

Since $e \cdot a = e$ for all $a \in R$, (b) follows. In theorem (2.14) part (m) let $y = r$ and $a = x$. Then from part (a) above $\overline{a} \cdot \overline{r} + \overline{a} = \overline{e}$ implies $\overline{a} + \overline{a} = \overline{e}$.

(2.16) Theorem. If R satisfies the same conditions as in theorem (2.14) and R is not commutative wrt \cdot, then the identity map of R onto R is not in \overline{R}.

Proof. If $I \in \overline{R}$, where $I \subseteq R \times R$ such that $xI = x$ for all $x \in R$, then by part (c) in theorem (2.14) $ab = aIbI = bIaI = ba$ for all $a, b \in R$.

(2.17) Theorem. If R is the same as in theorem (2.14) and every non-zero element of R has order different than two wrt $(R, +, \cdot)$ then $\overline{a} \cdot \overline{b} = \overline{a \cdot b} = \overline{e}$.

Proof. Assume there exists $a, b \in R$ such that $\overline{a} \cdot \overline{b} \neq \overline{e}$. Then there exists $c \in R$ such that $c(a \cdot b) \neq 0$.

By part (1) of theorem (2.14) $c[(a \cdot b) + (a \cdot b)] = c0 = 0$.

Hence, $c \cdot c(a \cdot b) \in R$ has order two.

(2.18) Theorem. If R is the same as in theorem (2.17) and R has a right (left) identity then $a \# b = 0$ for all $a, b \in R$.

Proof. Follows from theorems (2.15) and (2.17).

(2.19) Theorem. If R is an integral domain with
characteristic different than two then there does not exist a binary operation \(\# \) on \(R \) such that \((R,+,\cdot,\#)\) is not a trivial SEring (a trivial SEring is one where \(a\#b=0 \) for all \(a,b \in R \)).

Proof. Follows directly from theorem (2.18).

(2.20) Theorem. If \((R,+,*\)) is a division ring and \([0,1] \subseteq R \) where \(1 \) is the identity of \(R \) wrt \(*\) then there does not exist a binary operation \(\# \) such that \((R,+,*\#,\#)\) is a not a trivial SEring.

Proof. Assume such a binary operation \(\# \) exists. From theorem (2.15) part (a) \(1 \cdot 1=1 \). Hence, for any \(o \neq x \in R \) \(x(1 * 1)=(x1) \cdot (x1)=xi \) which implies that \(x1=1 \). If there does not exist an \(o \neq x \in R \) such that \(x+1 \neq o \) then for all \(o \neq x \in R \) \(x+1=0 \). Thus, \(x=-1 \) for all \(x \neq o \). Hence, \(x=-1=1 \) which implies \(R=\{0,1\} \). Therefore, there exists a \(o \neq x \in R \) such that \(x+1 \neq o \). Now \(1=(x+1)1=x1+1=1+1 \) which implies that \(1=0 \). But by theorem (1.8) in chapter I \(1 \neq o \).

Section 3. Right expanded rings

(3.1) Definition. If \((R,+,*\#,\#)\) is a RSEBR then \(R \) is a right expanded BR (REBR) iff the operation \(\# \) is associative. If \(R \) is a SEBR then \(R \) is an expanded BR iff the operation \(\# \) is associative.

(3.2) Remark. Most of the theorems about RSEBRs hold for REBRs.

(3.3) Theorem. If \(R \) is a BEBR with a right
identity r wrt # and x has a right inverse wrt # then x is not a right divisor of zero wrt #.

Proof. Apply theorem (3.3) in chapter I.

(3.4) Theorem. If \((R,+,\cdot,\#)\) is a REdivision ring with a right identity r wrt # and x has a right inverse wrt # then x is not a right divisor of 1 wrt # where 1 is the identity wrt #.

Proof. Let y be the right inverse of x wrt # relative to r. Assume x is a right divisor of 1. Then there exists a \(z \in R\) such that \(z\#1\) and \(z\#x=1\). Using theorem (1.6) \(z=z\#r=z\#(x\#y)=(z\#x)\#y=1\#y=1\).

Section 4. Ideals and homomorphisms

(4.1) Notation. When BEBR is used in the same sentence several times it refers to the same type of BEBR under discussion.

(4.2) Definitions. If \((R,+,\cdot,\#)\) is a BEBR and \(\emptyset\not\subset R\) then \((S,+,\cdot,\#)\) is a subBEBR iff \((S,+,\cdot,\#)\) is a BEBR. \(\emptyset\not\subset R\) is a right (left) ideal of the BEBR \(R\) iff \((S,+,\cdot)\) is a subBR and \(x\#s \in S\) \((s\#x \in S)\) for all \(x \in R\) and \(s \in S\). \(\emptyset\not\subset R\) is a right-right (right-left) ideal of the BEBR \(R\) iff \(S\) is a right (left) ideal of the BEBR \(R\) iff \(S\) is a right ideal of the BEBR \((R,+,\cdot,\#)\). Similarly, left-left and left-right ideals of a BEBR \(R\) are defined. \(\emptyset\not\subset R\) is an ideal of the BEBR \(R\) iff \(S\) is a left ideal of the BEBR \(R\) and \(S\) is a right ideal of the BEBR \(R\). \(\emptyset\not\subset R\) is a dual ideal of the BEBR iff \(S\)
is an ideal of the BEBR $(R,+,*,#)$ and S is an ideal of the BR $(R,+,*).$

(4.3) Theorem. If R is a BEBR and $\emptyset \neq S \subseteq R$ then S is a subBEBR iff for $x,y \in R$ $x-y \in R$, $x \cdot y \in R$ and $x \# y \in R$.

Proof. Obvious.

(4.4) Theorem. If $(R,+,*,#)$ is a SESR, $\emptyset \neq S \subseteq R$ is a dual ideal of R and $\emptyset,\emptyset,\emptyset \subseteq (R/S \times R/S) \times R/S$ such that for $x=a+S, y=b+S \in R/S$ $(x,y)\emptyset=(a+b)+S$, $(x,y)\emptyset=a \cdot b+S$, and $(x,y)\emptyset=a \# b+S$ then $(R/S,\emptyset,\emptyset,\emptyset)$ is a SESR with \emptyset and \emptyset being associative iff \cdot and $\#$ are associative respectively.

Proof. From the definitions of dual ideals and SEBRs, and from theorem (4.4) in chapter I $(R/S,\emptyset,\emptyset)$ and $(R/S,\emptyset,\emptyset)$ are SRs with \emptyset and \emptyset being associative iff \cdot and $\#$ are associative respectively. For $x=a+S$, $y=b+S$, $z=c+S \in R/S$

$$(x \emptyset y)\emptyset z=(ab+S)\emptyset z=(ab)\# c+S=(a\# c)(b\# c)+S$$

$(a\# c+S)\emptyset (b\# c+S)=[(a+S)\emptyset (c+S)]\emptyset [(b+S)\emptyset (c+S)]=(x\emptyset z)\emptyset (y\emptyset z)$

and $z\emptyset (x\emptyset y)=z\emptyset (ab+S)=c\# (ab)+S=(c\# a)(c\# b)+S$

$(c\# a+S)\emptyset (c\# b+S)=[(c+S)\emptyset (a+S)]\emptyset [(c+S)\emptyset (b+S)]=(z\emptyset x)\emptyset (z\emptyset y)$.

Hence, $(R/S,\emptyset,\emptyset,\emptyset)$ is a SESR.

(4.5) Theorem. If η is a homomorphism of the BEBR $(R,+,*,#)$ into the BEBR $(\overline{R},\overline{+},\overline{*},\overline{#})$ then $R\eta \subseteq \overline{R}$ is a subBEBR.

Proof. By theorem (4.6) in chapter I $(R\eta,\overline{+},\overline{*})$ is a subBR of $(\overline{R},\overline{+},\overline{*})$. For $x=a\eta, y=b\eta \in R\eta$ $x\overline{#}y=(a\eta)\overline{#}(b\eta)=(a\# b)\eta \in R\eta$. Hence, by theorem (4.3) $(R\eta,\overline{+},\overline{*},\overline{#})$ is a
Remark. One might wonder if there are two BEBRs with a homomorphism between them as defined in the definition (0.3). Examples (7.3) and (7.4) shows that they do exist.

Theorem. If η is a homomorphism of the RSEBR $(\mathbb{R}, +, \cdot, \#)$ into the RSEBR $(\mathbb{R}, +, \cdot, \#)$ and $(\mathbb{R}, +, \cdot)$ and $(\mathbb{R}, +, \cdot)$ are RSRs (LSRs) then K_η (kernal of η) is a left-left (left-right) ideal of the RSERSR (RSELRS) R.

Proof. By theorem (4.7) in chapter I K_η is a left ideal of $(\mathbb{R}, +, \cdot)$. Let $x \in \mathbb{R}$ and $a \in K_\eta$. Then $(a \# x) \eta = (a \eta) \# (x \eta) = 0 \# (x \eta) = 0$. Therefore, $a \# x \in K_\eta$ and hence K_η is a left-left ideal of $(\mathbb{R}, +, \cdot, \#)$.

Remark. A similar theorem to (4.7) holds for LSEBRs.

Theorem. If η is a homomorphism of the SESR $(\mathbb{R}, +, \cdot, \#)$ into the SESR $(\mathbb{R}, +, \cdot, \#)$ then K_η is a dual ideal of R.

Proof. Follows from theorem (4.8) in chapter I, theorem (4.7) above and remark (4.8) above.

Theorem. If $(\mathbb{R}, +, \cdot, \#), (\mathbb{R}, +, \cdot, \#)$ and $(\mathbb{R}, +, \cdot, \#)$ are BEBRs, and $\phi \subseteq R \times R$ and $\bar{\phi} \subseteq \bar{R} \times \bar{R}$ are homomorphisms then $\phi \bar{\phi}$ (the resultant) is a homomorphism of \mathbb{R} into $\bar{\mathbb{R}}$.

Proof. Similar to the proof of theorem (4.9) in chapter I.

Theorem. If $(\mathbb{R}, \emptyset, \emptyset, \emptyset)$ is the factor SESR
of the SESR \((R,+,*,#)\) wrt the dual ideal \(S\) of \(R\) and \(\beta \subseteq R \times R\) such that for \(x \in R\) \(x \beta = x + S\) then \(\beta\) is a homomorphism.

Proof. If \(x,y \in R\) then \((x\#y)\beta = (x\#y) + S = (x + S) \theta (y + S) = x\beta \theta y\beta\). Hence, by theorem (4.10) in chapter I \(\beta\) is a homomorphism of \(R\) into \(\bar{R}\).

(4.12) Remark. \(\beta\) as defined in theorem (4.11) is called the natural homomorphism of \(R\) into \(\bar{R} = R / S\).

(4.13) Theorem. If \(R\) and \(R'\) are SESRs, \(\varphi \subseteq R \times R'\) is a homomorphism, \(\bar{R}\) is the factor SESR of \(R\) wrt the dual ideal \(S \subseteq K\varphi\), and \(\bar{\varphi} \subseteq \bar{R} \times R'\) such that \((x + S)\bar{\varphi} = x\varphi\) for all \(x \in R\) then (a) \(\bar{\varphi}\) is a homomorphism of \(\bar{R} = R / S\) into \(R'\) and \(\varphi = \beta \bar{\varphi}\) where \(\beta\) is the natural homomorphism of \(R\) into \(\bar{R}\) and (b) \(\bar{\varphi}\) is an isomorphism iff \(K\bar{\varphi} = S\).

Proof. Along with the proof of theorem (4.12) in chapter I and with the fact that for \(x + S, y + S \in \bar{R}\)
\[[(x + S) \varphi (y + S)] \bar{\varphi} = (x\#y + S) \bar{\varphi} = (x\#y) \varphi = (x \varphi) \# (y \varphi) = (x + S) \bar{\varphi} \# (y + S) \bar{\varphi}\]
we have part (a). Part (b) follows from part (b) of theorem (4.12) in chapter I.

(4.14) Remark. Note that there is a difference between an \(M\)-homomorphism and a homomorphism. As shown in example (7.3) they may be the same, but need not be as shown in example (7.4).

Section 5. Examples of RSEBRs

The following examples are given without proof so as to save space. Furthermore, \((R,+)\) in the examples will always be an abelian group. The following abrevia-
tions will be used. C-commutative, A-associative, RD-obey the right distributive law, LD-obey the left distributive law. If N is placed before any of the above abbreviations it stands for not (e.g. NC means not commutative). Also, the following sets are used. \(I_r = \{ x \in R \mid x \text{ is a right identity wrt } \# \} \) (I_1), \(D_{r z} = \{ x \in R \mid x \text{ is a right divisor of } z \text{ wrt } \# \} \) (D_1z), \(C_r = \{ x \in R \mid x \text{ obeys the right cancellation law wrt } \# \} \) (C_1), and \(V_r^e = \{ x \in R \mid x \text{ has a right inverse wrt } \# \text{ relative to the right (left) identity } e \} \) (V_1^e).

(5.1) REBR \(R \) with right identities but no left identities. Let \(R \) be a BR with at least two elements. Define \(x \# y = x \) for all \(x, y \in R \). Then \((R, +, \cdot, \#)\) is a REBR such that \(\# \) is NC and NLD. However, \(I_r = R \), \(I_1 = \emptyset \), \(D_{ro} = \emptyset \), \(D_{lo} = \{ 0 \} \), \(C_r = R \) and \(C_1 = \emptyset \). If \((R, +, \cdot)\) is a division ring then \(D_{r1} = \emptyset \) and \(D_{11} = \{ 1 \} \).

(5.2) RER with a unique right identity. Let \(R \) be the M-Ring in example (5.5) in chapter II. Define \(\# \) as \(a \# b = \sum_{i=0}^{n_a} a_i (b)^i \) where \(a = \sum_{i=0}^{n_a} a_i x^i \), \(b = \sum_{i=0}^{n_b} b_i x^i \in F[x] \). Then \((R, +, \cdot, \#)\) is a RER. \(\# \) is NC and NLD. \(I_r = \{ x \} \), \(I_1 = \emptyset \), \(D_{ro} = D_{r1} = \{ a \in F[x] \mid a \in F \} \), and \(C_1 = \{ a \in F[x] \mid a \notin F \} \). The sets \(C_r \), \(D_{lo} \), and \(D_{11} \) are not easily found.

(5.3) RSE division ring with a unique right identity. Let \(R \) be the M-Ring in example (5.11) in chapter
II. For $\#$ defined as $x\#y = x\varphi y = yxy^{-1}$ ($R, +, \cdot, \#$) is a RSE division ring where $\#$ is NC, NA, and NLD. $I_r = \{1\}$, $I_1 = \emptyset$, $D_{r0} = \{0\}$, $D_{10} = \{0\}$, $D_{r1} = \emptyset$, $D_{11} = \{1\}$, $C_r = R$, C_1 is not easily determined, $V_{r1}^1 = R$, and $V_{11}^1 = 1$.

Notice that the identity wrt \cdot is the same as the right identity wrt $\#$.

(5.4) RER with an identity. Let R be the M-Ring in example (5.13) in chapter II. Then $(R, +, \cdot, \#)$ is a RER where $\#$ is NC and NLD. $I_r = I_1 = \{1\}$ where $I(x) = x$ for all $x \in \text{reals}$, $D_{r0} = \{f \in R \mid f \text{ is not onto}\}$ and $D_{10} = \{f \in R \mid f \text{ is not onto}\}$ there exists an $x \in \text{reals}$ such that $f(x) = o$, l such that $l(x) = l$ for all $x \in \text{reals}$ is the identity of $(R, +, \cdot)$ wrt \cdot. $D_{r1} = \{f \in R \mid f \text{ is not onto}\}$, $D_{11} = \{f \in R \mid f \text{ exists an } x \in \text{reals such that } f(x) = 1\}$, $C_r = \{f \in R \mid f \text{ is onto}\}$, $C_1 = \{f \in R \mid f \text{ one-to-one}\}$, and $V_{r1}^1 = V_{11}^1 = \{f \in R \mid f \text{ one-to-one and onto}\}$.

Section 6. Examples of SErings

Using the equivalence theorems and conditions on a SEBR examples of SErings will be given.

(6.1) Trivial SBR (semi-BR). Let $(R, +, \cdot)$ be a BR such that $o \cdot o = o$. Define $\# \subseteq (R \times R) \times R$ such that for $x, y \in R$ $x \# y = o$. Clearly, $\#$ is a binary operation. Furthermore, for $x, y, z \in R$ $(x+y)\# z = o = o + o = x\# z + y\# z$, $(xy)\# z = o = o \cdot o = (x\# z)(y\# z)$, and $x \# y = o = y \# x$. Hence, $(R, +, \cdot, \#)$ is a semi-ring.
Example of an expanded ring that is commutative wrt the third operation and an example of a SEring that is not commutative wrt to the third operation.

Let R be the following ring.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>a</th>
<th>a+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>a</td>
<td>a+1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>a+1</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a+1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a+1</td>
<td>a+1</td>
<td>a</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The following are subrings of R.

R_1:

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

R_2:

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Define

(a) \(\sigma \subseteq \mathbb{R} \times \mathbb{R}_1 \) such that \(x \sigma = 0 \) for all \(x \in \mathbb{R} \)

(b) \(\varphi_2 \subseteq \mathbb{R} \times \mathbb{R}_2 \) such that \(0 \varphi_2 = 0 = a \varphi_2 \) and \(1 \varphi_2 = 1 = (a+1) \varphi_2 \)

(c) \(\varphi_3 \subseteq \mathbb{R} \times \mathbb{R}_3 \) such that \(0 \varphi_3 = 0 = (a+1) \varphi_3 \) and

\[1 \varphi_3 = a = a \varphi_3 \]

(d) \(\varphi_4 \subseteq \mathbb{R} \times \mathbb{R}_4 \) such that \(0 \varphi_4 = 0 = a \varphi_4 \) and

\[1 \varphi_4 = a+1 = (a+1) \varphi_4 . \]

Clearly \(\sigma, \varphi_2, \varphi_3, \) and \(\varphi_4 \) are functions. If \(x, y \in \mathbb{R} \) then \((x+y) \sigma = 0 = 0 + 0 = x \sigma + y \sigma \) and \((xy) \sigma = 0 \sigma = 0 \sigma = (x \sigma)(y \sigma) . \)

Hence \(\sigma \in \mathbb{E}(\mathbb{R}) \). Let us show that \(\varphi_2, \varphi_3, \) and \(\varphi_4 \) are also in \(\mathbb{E}(\mathbb{R}) \). If \(x, y \in \mathbb{R} \) then for \(i = 2, 3, 4 \)

\[(x+x) \varphi_i = 0 \varphi_i = 0 = x \varphi_i + x \varphi_i, \quad (x)(x) \varphi_i = (x \varphi_i)(x \varphi_i) = x \varphi_i \]

and for \(i = 2, 3, 4 \).

\[(x+x) \varphi_i = 0 \varphi_i = 0 = x \varphi_i + x \varphi_i, \quad (x)(x) \varphi_i = (x \varphi_i)(x \varphi_i) = x \varphi_i \]
(a) \(x=0, y \neq 0 \)

\[
(x+y)\phi_i = y\phi_i = 0 + y\phi_i = x\phi_i + y\phi_i
\]

\[(xy)\phi_i = o\phi_i = o(\text{sum of }\phi_i) = (x\phi_i)(y\phi_i)\]

(b) \(x=1, y=a \)

\[
(l+a)\phi_2 = 1 = l\phi_2 + a\phi_2, \quad (l+a)\phi_3 = 1 = l\phi_3 + a\phi_3,
\]

\[
(l+a)\phi_4 = a + 1 = l\phi_4 + a\phi_4, \quad (l\phi_2)(a\phi_2),
\]

\[
(la)\phi_2 = a\phi_2 = a = (l\phi_3)(a\phi_3), \quad (l\phi_4)(a\phi_4).
\]

(c) \(x=1, y=a+1 \)

\[
(l+a+1)\phi_2 = a\phi_2 = 1 = l\phi_2 + (a+1)\phi_2, \quad (l+a+1)\phi_3 = a\phi_3 =
\]

\[
a = l\phi_3 + (a+1)\phi_3, \quad (l+a+1)\phi_4 = a\phi_4 = 1 = l\phi_4 + (a+1)\phi_4,
\]

\[
[l(a+1)]\phi_2 = (a+1)\phi_2 = (l\phi_2)[(a+1)\phi_2], \quad [l(a+1)]\phi_3 =
\]

\[
(a+1)\phi_3 = 0 = (l\phi_3)[(a+1)\phi_3], \quad [l(a+1)]\phi_4 = (a+1)\phi_4 =
\]

\[
a + 1 = (l\phi_4)[(a+1)\phi_4].
\]

(d) \(x=a, y=a+1 \)

\[
(a+a+1)\phi_2 = 1 = a\phi_2 + (a+1)\phi_2, \quad (a+a+1)\phi_3 = a\phi_3 =
\]

\[
a = a\phi_3 + (a+1)\phi_3, \quad (a+a+1)\phi_4 = 1 = a\phi_4 + (a+1)\phi_4,
\]

\[
[a(a+1)]\phi_2 = a\phi_2 = 0 = (a\phi_2)[(a+1)\phi_2], \quad [a(a+1)]\phi_3 =
\]

\[
o\phi_3 = 0 = (a\phi_3)[(a+1)\phi_3], \quad [a(a+1)]\phi_4 = a\phi_4 = 0 =
\]

\[
(a\phi_4)[(a+1)\phi_4].
\]

Hence, \(\phi_2, \phi_3, \) and \(\phi_4 \) are also in \(E(R) \).

Let us show now that \(\{ 0, \phi_3 \} \) forms a ring wrt the operations + and \(\cdot \) as defined in theorem (2.8). For arbitrary \(x \in R \)
(a) \[x(\overline{0} + \overline{0}) = x\overline{0} + x\overline{0} = \overline{0} + \overline{0} = \overline{x} \]
\[x(\overline{0} \cdot \overline{0}) = x\overline{0} \cdot x\overline{0} = \overline{0} \cdot \overline{0} = \overline{x} \]

(b) \[x(\overline{0} + \overline{\phi_3}) = x\overline{0} + x\phi_3 = \overline{0} + x\phi_3 = x\phi_3 \]
\[x(\phi_3 + \overline{0}) = x\phi_3 + x\overline{0} = x\phi_3 + \overline{0} = x\phi_3 \]
\[x(\overline{0} \cdot \phi_3) = x\overline{0} \cdot x\phi_3 = \overline{0} \cdot x\phi_3 = \overline{x} \]
\[x(\phi_3 \cdot \overline{0}) = x\phi_3 \cdot x\overline{0} = x\phi_3 \cdot \overline{0} = x\overline{0} \]

(c) \[x(\phi_3 + \phi_3) = x\phi_3 + x\phi_3 = \overline{0} + \overline{0} = \overline{0} \]
\[x(\phi_3 \cdot \phi_3) = x\phi_3 \cdot x\phi_3 = x\phi_3 \]

Hence,

\[
\begin{array}{ccc}
+ & \overline{0} & \phi_3 \\
\overline{0} & \overline{0} & \phi_3 \\
\phi_3 & \phi_3 & \overline{0}
\end{array}
\quad
\begin{array}{ccc}
\cdot & \overline{0} & \phi_3 \\
\overline{0} & \overline{0} & \overline{0} \\
\phi_3 & \overline{0} & \phi_3
\end{array}
\]

is a ring with identity.

Clearly, \(\tau_2 \subseteq R_2 \times \overline{R} \), \(\tau_3 \subseteq R_3 \times \overline{R} \) and \(\tau_4 \subseteq R_4 \times \overline{R} \) defined

as \(\sigma_1 = \overline{0} \) for \(i=2,3,4 \), \(\tau_2 = \phi_3 \), \(\alpha_3 = \phi_3 \), and \((a+1)\tau_4 = \phi_4 \)

are isomorphisms. Define \(\alpha_2 = \phi_2 \tau_2, \alpha_3 = \phi_3 \tau_3 \) and \(\alpha_4 = \phi_4 \tau_3 \)

where for \(i=2,3,4 \) \(x\alpha_i = (x\phi_i)\tau_i \). Clearly, \(\alpha_2, \alpha_3 \) and \(\alpha_4 \)

are homomorphisms of \(R \) onto \(\overline{R} \). Hence if for \(x,y \in R \)

we define \(^2\# ^3 \) and \(^4\# \) such that \(x^{\# i}y = x(y\alpha_i) \) for

\(i=2,3,4 \) then \((R,+,\cdot,\#) \) for \(i=2,3,4 \) are \(SE \)rings with

the following tables for the operations \(\#^i \). (The

tables were filled in by considering specific values

for \(x,y \) and \(i \) in \(x^{\# i}y = x(y\alpha_i) = x((y\phi_i)\tau_i) \)).
Since the tables for $i=2$ and $i=4$ are the same we have only two distinct SErings. From the tables we see that $(R,+,\cdot,\#_2)$ is a noncommutative and $(R,+,\cdot,\#_3)$ is commutative. By trying every combination of three elements $(R,+,\cdot,\#_3)$ can be shown to be associative while $(R,+,\cdot,\#_2)$ is not since $a\#_2[l\#_2(a+1)]=a\#_2a=0$ and $(a\#_21)\#_2(a+1)=a\#_2(a+1)=a$. Hence, $(R,+,\cdot,\#_2)$ is a noncommutative SEring and $(R,+,\cdot,\#_3)$ is a commutative SEring (ER).
(6.3) Let R be the following ring

<table>
<thead>
<tr>
<th></th>
<th>o</th>
<th>l</th>
<th>a</th>
<th>b</th>
<th>a+1</th>
<th>b+1</th>
<th>a+b</th>
<th>a+b+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>o</td>
<td>l</td>
<td>a</td>
<td>b</td>
<td>a+1</td>
<td>b+1</td>
<td>a+b</td>
<td>a+b+1</td>
</tr>
<tr>
<td>l</td>
<td>l</td>
<td>o</td>
<td>a+1</td>
<td>b+1</td>
<td>a</td>
<td>b</td>
<td>a+b+1</td>
<td>a+b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a+1</td>
<td>o</td>
<td>a+b</td>
<td>1</td>
<td>a+b+1</td>
<td>b</td>
<td>b+1</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b+1</td>
<td>a+b</td>
<td>o</td>
<td>a+b+1</td>
<td>1</td>
<td>a</td>
<td>a+1</td>
</tr>
<tr>
<td>a+1</td>
<td>a+1</td>
<td>a+1</td>
<td>a+b+1</td>
<td>o</td>
<td>a+b</td>
<td>b+1</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>b+1</td>
<td>b+1</td>
<td>b+1</td>
<td>a+b+1</td>
<td>a+b</td>
<td>o</td>
<td>a+l</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>a+b</td>
<td>a+b</td>
<td>a+b+1</td>
<td>b</td>
<td>a</td>
<td>b+1</td>
<td>a+l</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>a+b+1</td>
<td>a+b+1</td>
<td>a+b</td>
<td>b+1</td>
<td>a+1</td>
<td>b</td>
<td>a</td>
<td>o</td>
<td></td>
</tr>
</tbody>
</table>
Define \(\phi_1 = 0 \in R \{ 0 \} \) such that for \(x \in R \), \(x\phi = 0 \). As shown before \(0 \in E(R) \). Define \(\phi_2 \in R \{ 0, 1, a, a+1 \} \) such that \(o\phi_2 = o, 1\phi_2 = 1, a\phi_2 = a, (a+1)\phi_2 = a+1, b\phi_2 = o, (b+1)\phi_2 = 1, (a+b)\phi_2 = a, \) and \((a+b+1)\phi_2 = a+1 \). \(\phi_2 \) is an endomorphism

since if \(x, y \in R \) then \((x+x)\phi_2 = o\phi_2 = o = x\phi_2 + x\phi_2 \),

\((x\cdot x)\phi_2 = x\phi_2 = x\phi_2 \cdot x\phi_2 \), (let \(\phi \) denote \(\phi_2 \))

(a) \(x = 0 \): \((x+y)\phi = y\phi = o\phi + y\phi, (xy)\phi = o\phi = o\phi y\phi \)

(b) \(x = 1, y = a \): \((1+a)\phi = 1 + a = 1\phi + a\phi, (1a)\phi = a\phi = 1\phi a\phi \)

\(x = 1, y = a+1 \): \((1+a+1)\phi = a\phi = a = 1\phi + (a+1)\phi, [l(a+1)]\phi \)

\(= (a+1)\phi = (a+1) = 1\phi (a+1) \phi \)
x = l, y = b: (l + b)φ = lφ + bφ, (lb)φ = bφ = oφ = lφbφ
x = l, y = b + l: (l + b + l)φ = bφ = oφ = lφbφ, [l(b + l)]φ = (b + l)φ = lφ(b + l)φ
x = l, y = a + b: (l + a + b)φ = a + lφ + (a + b)φ, [l(a + b)]φ = (a + b)φ = a + lφ(a + b)φ
x = l, y = a + b + l: (l + a + b + l)φ = (a + b)φ = a + lφ + (a + b + l)φ, [l(a + b + l)]φ = (a + b + l)φ = a + lφ(a + b + l)φ

(c) x = a, x = a + l: (a + a + l)φ = lφ = laφ(a + l)φ, [a(a + l)]φ = oφ = oφ(a + l)φ
x = a, y = b: (a + b)φ = aφ + bφ, (ab)φ = oφ = oφbφ
x = a, y = b + l: (a + b + l)φ = a + lφ + (b + l)φ, [a(b + l)]φ = a + lφ(b + l)φ
x = a, y = a + b: (a + a + b)φ = bφ = oφ = a + aφ + (a + b)φ, [a(a + b)]φ = aφ = aφ(a + b)φ
x = a, y = a + b + l: (a + a + b + l)φ = (b + l)φ = lφ + (a + b + l)φ, [a(a + b + l)]φ = oφ = oφ(a + b + l)φ

(d) x = b, x = a + l: (b + a + l)φ = a + lφ + (a + l)φ, [b(a + l)]φ = b = bφ(a + l)φ
x = b, y = b + l: (b + b + l)φ = lφ = bφ + (b + l)φ, [b(b + l)]φ = oφ = oφ(b + l)φ
x = b, y = a + b: (b + a + b)φ = aφ = aφ = bφ + (a + b)φ, [b(a + b)]φ = bφ = bφ(a + b)φ
x = b, y = a + b + l: (b + a + b + l)φ = (a + l)φ = a + lφ + (a + b + l)φ, [b(a + b + l)]φ = oφ = oφ = bφ(a + b + l)φ

(e) x = a + l, y = b + l: (a + l + b + l)φ = (a + b)φ = a + (a + l)φ + (b + l)φ, [(a + l)(b + l)]φ = (a + b + l)φ = a + lφ + (a + l)φ(b + l)φ
x = a + l, y = a + b: (a + l + a + b)φ = (l + b)φ = lφ = (a + l)φ + (b + l)φ, [(a + l)(a + b)]φ = bφ = oφ = (a + l)φ(a + b)φ
Define $\varphi_3 \subseteq \mathbb{R}x\{o,a\}$ such that $o\varphi_3 = o$, $l\varphi_3 = a$, $(a+l)\varphi_3 = o$, $(b+l)\varphi_3 = a$, and $(a+b+l)\varphi_3 = o$. φ_3 is an endomorphism since if $x,y \in \mathbb{R}$ then $(x+x)\varphi_3 = o\varphi_3 = o = x\varphi_3 + x\varphi_3$, $(xx)\varphi_3 = x\varphi_3 x\varphi_3$, (let φ denote φ_3)

- (a) $x = o$: $(x+y)\varphi = y\varphi = x\varphi + y\varphi$, $(xy)\varphi = o\varphi = x\varphi y\varphi$
- (b) $x = l, y = a$: $(l+a)\varphi = o = l\varphi + a\varphi$, $(la)\varphi = a\varphi = a = l\varphi a\varphi$
- (c) $x = a, y = b$: $(a+b)\varphi = a = a\varphi + b\varphi$, $(ab)\varphi = o\varphi = o = a\varphi b\varphi$
\[
x = a, y = a + l: \quad (a + a + 1)\varphi = 1\varphi = a = a\varphi + (a + 1)\varphi, \quad [a(a + 1)]\varphi = 0\varphi = a\varphi(a + 1)\varphi
\]
\[
x = a, y = b + l: \quad (a + b + 1)\varphi = 0\varphi = a = a\varphi + (b + 1)\varphi, \quad [a(b + 1)]\varphi = a = a\varphi(b + 1)\varphi
\]
\[
x = a, y = a + b: \quad (a + a + b)\varphi = b\varphi = 0\varphi = a = a\varphi + (a + b)\varphi, \quad [a(a + b)]\varphi = a = a\varphi(a + b)\varphi
\]
\[
x = a, y = a + b + l: \quad (a + a + b + 1)\varphi = 0\varphi = a = a\varphi + (a + b + 1)\varphi, \quad [a(a + b + 1)]\varphi = a = a\varphi(a + b + 1)\varphi
\]

(d) \[
x = b, y = a + l: \quad (b + a + 1)\varphi = o\varphi = o = b\varphi + (a + 1)\varphi, \quad [b(a + 1)]\varphi = b = b\varphi(a + 1)\varphi
\]
\[
x = b, y = b + l: \quad (b + b + 1)\varphi = 1\varphi = a = b\varphi + (b + 1)\varphi, \quad [b(b + 1)]\varphi = b = b\varphi(b + 1)\varphi
\]
\[
x = b, y = a + b: \quad (b + a + b)\varphi = a\varphi = a = b\varphi + (a + b)\varphi, \quad [b(a + b)]\varphi = b = b\varphi(a + b)\varphi
\]
\[
x = b, y = a + b + l: \quad (b + a + b + 1)\varphi = 0\varphi = a = b\varphi + (a + b + 1)\varphi, \quad [b(a + b + 1)]\varphi = b = b\varphi(a + b + 1)\varphi
\]

(e) \[
x = a + l, y = b + l: \quad (a + l + b + 1)\varphi = (a + b)\varphi = a = (a + l)\varphi + (b + 1)\varphi, \quad [(a + l)(b + 1)]\varphi = (a + b + 1)\varphi = o = (a + l)\varphi(b + 1)\varphi
\]
\[
x = a + l, y = a + b: \quad (a + l + a + b)\varphi = (b + 1)\varphi = a = (a + l)\varphi + (a + b)\varphi, \quad [(a + l)(a + b)]\varphi = b\varphi = o = (a + l)\varphi(a + b)\varphi
\]
\[
x = a + l, y = a + b + l: \quad (a + l + a + b + 1)\varphi = b\varphi = o = (a + l)\varphi + (a + b + 1)\varphi, \quad [(a + l)(a + b + 1)]\varphi = (a + b + 1)\varphi = o = (a + l)\varphi(a + b + 1)\varphi
\]

(f) \[
x = b + l, y = a + b: \quad (b + l + a + b)\varphi = (a + l)\varphi = o = (b + l)\varphi + (a + b)\varphi, \quad [(b + l)(a + b)]\varphi = a\varphi = a = (b + l)\varphi(a + b)\varphi
\]
\[
x = b + l, y = a + b + l: \quad (b + 1 + a + b + 1)\varphi = a\varphi = a = (b + l)\varphi + (a + b + 1)\varphi, \quad [(b + l)(a + b + 1)]\varphi = (a + b + 1)\varphi = o = (b + l)\varphi(a + b + 1)\varphi
\]
(g) \(x = a + b, y = a + b + l: \) (a+b+a+b+l)\(\varphi = l\varphi = a = (a+b)\varphi + (a+b+l)\varphi \)

Define \(\varphi_4 \in \mathbb{R}_x \{ 0, a + 1 \} \) such that \(a\varphi_4 = a, l\varphi_4 = a + 1, a\varphi_4 = o, b\varphi_4 = o, (a + 1)\varphi_4 = a + 1, (b + 1)\varphi_4 = a + 1, (a + b)\varphi_4 = o, \) and \((a + b + 1)\varphi_4 = a + 1. \) \(\varphi_4 \) is an endomorphism since if \(x, y \in \mathbb{R} \) then \((x + x)\varphi_4 = o = x\varphi_4 + x\varphi_4, \)

\[(xx)\varphi_4 = x\varphi_4 = x\varphi_4 x\varphi_4 , \] let \(\varphi \) denote \(\varphi_4 \)

(a) \(x = o: \) (x+y)\(\varphi = y\varphi = o\varphi + y\varphi, \) (xy)\(\varphi = o\varphi = o\varphi y\varphi \)

(b) \(x = l, y = a: \) (l+a)\(\varphi = a + 1 = l\varphi + a\varphi, \) (la)\(\varphi = a\varphi = o = l\varphi \varphi \)

(c) \(x = a, y = b: \) (a+b)\(\varphi = o = a\varphi + b\varphi, \) (ab)\(\varphi = o\varphi = o\varphi b\varphi \)
(d) \(x=b, y=a+l: \) \((b+a+l)\varphi=a+l=b\varphi+(a+l)\varphi, \)
\[[b(a+l)]\varphi=b\varphi=o=b\varphi(a+l)\varphi \]
\(x=b, y=b+l: \) \((b+b+l)\varphi=l\varphi=a+l=b\varphi+(b+l)\varphi, \)
\[[b(b+l)]\varphi=o\varphi=o=b\varphi(b+l)\varphi \]
\(x=b, y=a+b: \) \((b+a+b)\varphi=a\varphi=o=b\varphi+(a+b)\varphi, \)
\[[b(a+b)]\varphi=b\varphi=o=b\varphi(a+b)\varphi \]
\(x=b, y=a+b+l: \) \((b+a+b+l)\varphi=(a+l)\varphi=a+l=b\varphi+(a+b+l)\varphi, \)
\[[b(a+b+l)]\varphi=o\varphi=o=b\varphi(a+b+l)\varphi \]

(e) \(x=b+l, y=b+l: \) \((a+l+b+l)\varphi=(a+b)\varphi=o=(a+l)\varphi+(b+l)\varphi, \)
\[[(a+l)(b+l)]=(a+b+l)\varphi=a+l\varphi(b+l)\varphi \]
\(x=a+l, y=a+b: \) \((a+l+a+b)\varphi=(b+l)\varphi=a+l=(a+l)\varphi+(a+b)\varphi, \)
\[[(a+l)(a+b)]\varphi=b\varphi=o=(a+l)\varphi(a+b)\varphi \]
\(x=a+l, y=a+b+l: \) \((a+l+a+b+l)\varphi=ba=o=(a+l)\varphi+(a+b+l)\varphi, \)
\[[(a+l)(a+b+l)]\varphi=(a+b+l)\varphi=a+l=(a+l)\varphi(a+b+l)\varphi \]

(f) \(x=b+l, y=a+b: \) \((b+l+a+b)\varphi=(a+l)\varphi=a+l=(b+l)\varphi+(a+b)\varphi, \)
\[[(b+l)(a+b)]\varphi=a\varphi=o=(b+l)\varphi(a+b)\varphi \]
\(x=b+l, y=a+b+l: \) \((b+l+a+b+l)\varphi=a\varphi=o=(b+l)\varphi+(a+b+l)\varphi, \)
\[[(b+l)(a+b+l)]\varphi=(a+b+l)\varphi=a+l=(b+l)\varphi(a+b+l)\varphi \]

(g) \(x=a+b, y=a+b+l: \) \((a+b+a+b+l)\varphi=l\varphi=a+l=(a+b)\varphi+(a+b+l)\varphi, \)
\[[(a+b)(a+b+l)]\varphi=o\varphi=o=(a+b)\varphi(a+b+l)\varphi. \]

Let us now prove that \(\bar{R} = \{ \varphi_1 = \bar{0}, \varphi_2, \varphi_3, \varphi_4 \} \) is a ring with the operations \(+ \) and \(\cdot \) as defined in theorem (2.8).

Let \(x \) be an arbitrary element in \(R \). Then

(a) \(x(\varphi_i + \varphi_i) = x\varphi_i + x\varphi_i = o = x\bar{0} \) for \(i=1,2,3,4 \)

(b) \(x(\varphi_i \varphi_i) = x\varphi_i x\varphi_i = x\varphi_i \) for \(i=1,2,3,4 \)
(c) \(x(\varphi_i \varphi_j) = x\varphi_i x\varphi_j = x\varphi_j x\varphi_i = x(\varphi_j \varphi_i) \) for \(i, j = 1, 2, 3, 4 \)

(d) \(x(\varphi_i + \varphi_j) = x\varphi_i + x\varphi_j = x\varphi_j + x\varphi_i = x(\varphi_j + \varphi_i) \) for \(i, j = 1, 2, 3, 4 \)

(e) \(x(\varphi_i + o) = x\varphi_i + xo = xo = x\varphi_i \) for \(i = 1, 2, 3, 4 \)

(f) \(x(\varphi_i o) = x\varphi_i xo = xo = xo \) for \(i = 1, 2, 3, 4 \)

(g) \(o(\varphi_2 + \varphi_3) = o = o \varphi_4, \ l(\varphi_2 + \varphi_3) = 1 + a = 1 \varphi_4, \ a(\varphi_2 + \varphi_3) = a + a = a \varphi_4, \)
\(b(\varphi_2 + \varphi_3) = o + o = b \varphi_4, \ (a + l)(\varphi_2 + \varphi_3) = a + l + o = (a + l) \varphi_4, \)
\((b + l)(\varphi_2 + \varphi_3) = 1 + a = (b + l) \varphi_4, \ (a + b)(\varphi_2 + \varphi_3) = a + a = o = (a + b) \varphi_4, \)
\((a + b + l)(\varphi_2 + \varphi_3) = a + l + o = (a + b + l) \varphi_4 \)

(h) \(o(\varphi_2 + \varphi_4) = o + o = o \varphi_3, \ l(\varphi_2 + \varphi_4) = 1 + a + 1 = 1 \varphi_3, \ a(\varphi_2 + \varphi_4) = a + o = a \varphi_3, \)
\(b(\varphi_2 + \varphi_4) = o + o = b \varphi_3, \ (a + l)(\varphi_2 + \varphi_4) = a + l + o = (a + l) \varphi_3, \)
\((b + l)(\varphi_2 + \varphi_4) = 1 + a = (b + l) \varphi_3, \ (a + b)(\varphi_2 + \varphi_4) = a + a = o = (a + b) \varphi_3, \)
\((a + b + l)(\varphi_2 + \varphi_4) = a + l + o = (a + b + l) \varphi_3 \)

(i) \(o(\varphi_3 + \varphi_4) = o + o = o \varphi_2, \ l(\varphi_3 + \varphi_4) = 1 + a + 1 = 1 \varphi_2, \ a(\varphi_3 + \varphi_4) = a + o = a \varphi_2, \)
\(b(\varphi_3 + \varphi_4) = o + o = b \varphi_3, \ (a + l)(\varphi_3 + \varphi_4) = a + l + o = (a + l) \varphi_3, \)
\((b + l)(\varphi_3 + \varphi_4) = 1 + a = (b + l) \varphi_2, \ (a + b)(\varphi_3 + \varphi_4) = a + a = o = (a + b) \varphi_2, \)
\((a + b + l)(\varphi_3 + \varphi_4) = a + l + o = (a + b + l) \varphi_2 \)

(j) \(o(\varphi_2 \varphi_3) = oo = o \varphi_3, \ l(\varphi_2 \varphi_3) = 1a = 1 \varphi_3, \ a(\varphi_2 \varphi_3) = aa = a = a \varphi_3, \)
\(b(\varphi_2 \varphi_3) = oo = b \varphi_3, \ (a + l)(\varphi_2 \varphi_3) = (a + l) o = o = (a + l) \varphi_3, \)
\((b + l)(\varphi_2 \varphi_3) = 1a = (b + l) \varphi_3, \ (a + b)(\varphi_2 \varphi_3) = aa = a = (a + b) \varphi_3, \)
\((a + b + l)(\varphi_2 \varphi_3) = (a + l) o = o = (a + b + l) \varphi_3 \)

(k) \(o(\varphi_2 \varphi_4) = oo = o \varphi_4, \ l(\varphi_2 \varphi_4) = 1(a + 1) = (a + 1) \varphi_4, \ a(\varphi_2 \varphi_4) = ao = o = a \varphi_4, \)
\(b(\varphi_2 \varphi_4) = oo = b \varphi_4, \ (a + l)(\varphi_2 \varphi_4) = (a + l)(a + 1) = a + l = \)
\[(a+b)\varphi_4, (b+l)(\varphi_2\varphi_4)=l(a+l)=(b+l)\varphi_4, (a+b)(\varphi_2\varphi_4)=ao=o=(a+b+l)\varphi_4 \]
\[(a+b)\varphi_4, (a+b+l)(\varphi_2\varphi_4)=(a+l)(a+l)=a+l=(a+b+l)\varphi_4 \]

(1) \(o(\varphi_3\varphi_4)=oo=0\overline{0}, 1(\varphi_3\varphi_4)=a(a+l)=o=1\overline{0}, a(\varphi_3\varphi_4)=ao=0\overline{0}, b(\varphi_3\varphi_4)=oo=b\overline{0}, (a+l)(\varphi_3\varphi_4)=o(a+l)=o=(a+l)\overline{0},
\[(b+l)(\varphi_3\varphi_4)=a(a+l)=o=(a+l)\overline{0}, (a+b)(\varphi_3\varphi_4)=ao=o=(a+b)\overline{0}, (a+b+l)(\varphi_3\varphi_4)=o(a+l)=o=(a+b+l)\overline{0}. \]

Hence, \(\overline{R} \) is a ring with identity and has the following tables for + and \(\cdot\).

<table>
<thead>
<tr>
<th>+</th>
<th>(\overline{0})</th>
<th>(\varphi_2)</th>
<th>(\varphi_3)</th>
<th>(\varphi_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{0})</td>
<td>(\overline{0})</td>
<td>(\varphi_2)</td>
<td>(\varphi_3)</td>
<td>(\varphi_4)</td>
</tr>
<tr>
<td>(\varphi_2)</td>
<td>(\varphi_2)</td>
<td>(\overline{0})</td>
<td>(\varphi_4)</td>
<td>(\varphi_3)</td>
</tr>
<tr>
<td>(\varphi_3)</td>
<td>(\varphi_3)</td>
<td>(\varphi_4)</td>
<td>(\overline{0})</td>
<td>(\varphi_2)</td>
</tr>
<tr>
<td>(\varphi_4)</td>
<td>(\varphi_4)</td>
<td>(\varphi_3)</td>
<td>(\varphi_2)</td>
<td>(\overline{0})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\cdot)</th>
<th>(\overline{0})</th>
<th>(\varphi_2)</th>
<th>(\varphi_3)</th>
<th>(\varphi_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{0})</td>
<td>(\overline{0})</td>
<td>(\overline{0})</td>
<td>(\overline{0})</td>
<td>(\overline{0})</td>
</tr>
<tr>
<td>(\varphi_2)</td>
<td>(\varphi_2)</td>
<td>(\varphi_2)</td>
<td>(\varphi_2)</td>
<td>(\varphi_2)</td>
</tr>
<tr>
<td>(\varphi_3)</td>
<td>(\varphi_3)</td>
<td>(\varphi_3)</td>
<td>(\varphi_3)</td>
<td>(\varphi_3)</td>
</tr>
<tr>
<td>(\varphi_4)</td>
<td>(\varphi_4)</td>
<td>(\varphi_4)</td>
<td>(\varphi_4)</td>
<td>(\varphi_4)</td>
</tr>
</tbody>
</table>

Now \(R'=\{0,1,a,a+1\}\) with its addition and multiplication tables on page 70 is a subring of \(R\) with identity. In fact \(\varphi_2\) is an endomorphism of \(R\) onto \(R'\).

Define \(\tau \subset R' \times \overline{R}\) such that \(o\tau=\overline{0}, 1\tau=\varphi_2, a\tau=\varphi_3,\) and \((a+l)\tau=\varphi_4\). Clearly, \(\tau\) is an isomorphism of \(R'\) onto \(\overline{R}\). Hence, by theorem (2.12) if we define \(\#\) such that for \(x,y \in R\)
\[x\#y=x(y_{\varphi_2})=x((y\varphi_2)\tau)\) then \((R,+,-,\#)\) is a SEring with the following table for \(\#\) since \(a=\varphi_2\tau\) is a homomorphism of \(R\).
onto \(\mathbb{R} \).

<table>
<thead>
<tr>
<th>+</th>
<th>o</th>
<th>l</th>
<th>a</th>
<th>a+l</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>o</td>
<td>l</td>
<td>a</td>
<td>a+l</td>
</tr>
<tr>
<td>l</td>
<td>l</td>
<td>o</td>
<td>a+l</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a+l</td>
<td>o</td>
<td>l</td>
</tr>
<tr>
<td>a+l</td>
<td>a+l</td>
<td>a</td>
<td>l</td>
<td>o</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*</th>
<th>o</th>
<th>l</th>
<th>a</th>
<th>a+l</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>l</td>
<td>a</td>
<td>o</td>
<td>a+l</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>a+l</td>
<td>a+l</td>
<td>o</td>
<td>o</td>
<td>a+l</td>
</tr>
<tr>
<td>a+l</td>
<td>o</td>
<td>a+l</td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>

Addition and multiplication tables for \(\mathbb{R}' \).

<table>
<thead>
<tr>
<th>#</th>
<th>o</th>
<th>l</th>
<th>a</th>
<th>b</th>
<th>a+l</th>
<th>b+l</th>
<th>a+b</th>
<th>a+b+l</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>l</td>
<td>a</td>
<td>o</td>
<td>o</td>
<td>a+l</td>
<td>l</td>
<td>a</td>
<td>a+l</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>o</td>
<td>o</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>o</td>
</tr>
<tr>
<td>b</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>a+l</td>
<td>o</td>
<td>a+l</td>
<td>o</td>
<td>o</td>
<td>a+l</td>
<td>a+l</td>
<td>o</td>
<td>a+l</td>
</tr>
<tr>
<td>b+l</td>
<td>o</td>
<td>l</td>
<td>a</td>
<td>o</td>
<td>a+l</td>
<td>l</td>
<td>a</td>
<td>a+l</td>
</tr>
<tr>
<td>a+b</td>
<td>o</td>
<td>a</td>
<td>a</td>
<td>o</td>
<td>o</td>
<td>a</td>
<td>a</td>
<td>o</td>
</tr>
<tr>
<td>a+b+l</td>
<td>o</td>
<td>a+l</td>
<td>o</td>
<td>o</td>
<td>a+l</td>
<td>a+l</td>
<td>o</td>
<td>a+l</td>
</tr>
</tbody>
</table>

table for \((\mathbb{R},+,\cdot,\#)\)
Section 7. Examples of subBERs
and of homomorphisms

(7.1) SubBER of a RER. Let R be the RER in example (5.2). Let $S = FC_R$. If $x, y \in S$ then $x - y \in S$, $x \cdot y \in S$, and $x \# y \in S$. Hence, by theorem (4.3) S is a subRER.

(7.2) SubSER of a SER. In example (6.3) let $S = \{0, 1, b, b+1\} \subset R$. Then the following tables show that S is a subSER of R.

+ \quad o \quad l \quad b \quad b+1
\hline
o \quad o \quad l \quad b \quad b+1
l \quad l \quad o \quad b+1 \quad b
b \quad b \quad b+1 \quad o \quad l
b+1 \quad b+1 \quad b \quad l \quad o

. \quad o \quad l \quad b \quad b+1
\hline
. \quad o \quad o \quad o \quad o \quad o
l \quad o \quad l \quad b \quad b+1
b \quad o \quad b \quad b \quad o
b+1 \quad o \quad b+1 \quad o \quad b+1

\quad o \quad l \quad b \quad b+1
\hline
. \quad o \quad o \quad o \quad o \quad o
l \quad o \quad l \quad o \quad l
b \quad o \quad o \quad o \quad o
b+1 \quad o \quad l \quad o \quad l
(7.3) Homomorphism of a RER into a RER. In example (7.1) define \(\phi \subseteq R \times S \) such that for

\[
a = \sum_{i=0}^{n} a_i x^i \in R
\]

\(a \phi = a_0 \). As shown in example (5.9) in chapter II \(\phi \) is a ring homomorphism. If \(a, b \in R \) then \((a \# b) \phi = (a \phi) \# (b \phi) \).

Hence, \(\phi \) is a homomorphism of \(R \) into \(S \). Note that \(\phi \) is also an \(M \)-homomorphism as shown in example (5.9) in chapter II.

(7.4) Homomorphism of a SER into a SER. Let \(S \) be the subSER of the SER \(R \) in example (7.2). Then by tedious work it can be shown that \(\beta \subseteq R \times S \) such that \(\alpha \beta = o \), \(1 \beta = 1 \), \(b \beta = b \), \((b+1) \beta = b+1 \), \(a \beta = o \), \((a+1) \beta = 1 \), \((a+b) \beta = b \), and \((a+b+1) \beta = b+1 \) is a homomorphism (in fact \(\beta \) is an endomorphism). Note that in this case \(\beta \) is not an \(M \)-homomorphism since

\[
[(b+1) \# (a+1)] \beta = (a+1) \beta = 1 \quad \text{where as} \quad (b+1) \beta \# (a+1) = (b+1) \# (a+1) = a+1 \notin S.
\]
LITERATURE CITED

VITA
Johnnie George Slagle
Candidate for the degree of
Master of Science

Thesis: Algebraic Properties of Endomorphisms of Abelian Groups and Rings

Major Field: Mathematics

Biographical Information:

Personal Data: Born August 13, 1941 in Douglas, Wyoming.

Education: Graduated from Niobrara County High School, Lusk, Wyoming in May 1959. B.S. in Mathematics from Utah State University, Logan, Utah in June 1966.