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NOTATION AND DEFI NITIONS OF TERMS 

USED IN CHAPTERS I-III 

(O~l) Definitions. If X an d Y are sets then 

XxY=[(x,y) Ix f_X, y E-Y}. A relation is any set of 

ordered pairs. A relation f is single-valued iff if 

(x,y),(x,z)Ef then y=z. A single-valued relation is 

a function. The set f- 1=f(x,y) / (y,x) E fj where f is a 

-1 relation is the inv erse off. If f and f are both 

functions then f is one-to-one (1-1). The set domf=ix I 

(x,y) E f for some y 1 is the domain of f, and rngf=f y I 
(x,y) E f for some x} is the range of f. If domf=X, 

rngfCY, and f is a function then f is said to be a 

function on X into Y and we write f:X-?Y. f is a 

function on X iff fCXxY, f is a function, and domf=X. 

f is a function on X onto Y iff f C XxY is a function on 

X and rngf=Y. The image of A und er f is the set f( A)= 

(Y ( (x,y) ~ f for some x EA}. 

(0.2) Notation. Let wrt be an abbreviation of 

with respect to, and iff of if and only if. A CE. B means 

A is a proper subset of B. N will denote the natural 

numbers and I the integers. A-B=[ x f A I x € BJ. If (R, +, •) 

and (R,+,:) are rings then+ and+ will both be written 

as+ and• and: as. or no symbol. When no confusion 

will arise R will be written for (R,+,·). If (R,+,.) is 

a set with two binary operations on it then na=a+ ••• +a 



(0.3) Definitions. If Mis a set then# is a binary 

operation on Miff (a) #C(Mx:M)xM and (b) # is a function 

on MxM into M. If Mis a set with binary operations#., 
l 

i=l,2, ••• ,n, on it, N is a set with binary operations 

o., i=l,2, ••• ,n, on it, and cxC MxN is a function on Minto 
l 

N then ex is a homomorphism of Minto N iff (a#.b)cx= 
l 

(acx)o.(bcx) for i=l,2, ••• ,n; and ex is an isomorphism iff 
l 

ex is a homomorphism that is one-to-one. If M=N, #.=o. 
l l 

for i=l,2, ••• ,n then ex is an endomorphism of Miff ex is 

a homomorphism of Minto N; and ex is an automorphism 

iff a, is an endomorphism that is one-to-one and onto. 

If ex is a homomorphism of a g roup or a ring into a group 

or ring respectively then the kernal of ex is the set 

Ka,= x xcx=o, where o is the additive identity 

(0.4) Notation. Let E(R,# 1 , ••• ,#n) be the set of 

endomorphisms of (R, # 1 , ••• ,#n), and when no ambiguity 

will arise let E(R) denote the set. Also , let 

A(R,# 1 , ••• ,#n) be the set of automorphisms. 

(0.5) Definitions. If Mis a set and (G,#) is a 

group then M-(G,#) is an M-Group wrt n iff n (GxM)xG is 

a function on GxM such that for x,y E: G and mE. M (x#y,m)n 

=(x,m)n#(y,m)n. If (R,+,•) and (R,+,7) are rings then 

R is embedded in Riff R is isomorphic to a subring of R. 

If (R, +) is a group and SC R then x+S=.[ x+s / s E s} and 

R/S= tx+S l x ER}. 

, . 
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by 
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The main objective of the thesis was to extend the 

definition of an M-Group to what is called an M-Ring. 

From this extension a system called an expanded ring 

follows naturally. To facilitate the development of the 

expanded ring, chapter I is devoted to developing pro­

perties on systems that are not quite rings where 

many interesting examples are constructed. In chapter II 

the definition of an M-Ring is given and some of its 

properties are derived. In chapter III some of the 

properties of expanded rings are proved, and examples 

of expanded rings are given to show their existence. 
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INTRODUCTION 

The main objectiv e of this thesis is to extend the 

definition of an M-Group to what is called here an 

M-Ring. From thi s extension a system called an ex­

panded ring follo ws naturally. To f ac ilit ate the 

development of the expanded ring, chapter I is devoted 

to developing properties on systems that are not quite 

rings where many interesting examples are constructed. 

In chapter II the definition of an M-Rin g is given 

and some of its properties are derived. In chapter III 

some of the properties of expanded rings are proved , 

and examples of expanded rings are given to show 

their existence. 



CHAPTER I 

SEMI-RINGS AND M-GROUPS 

2 

The definitions of bare rings and semi-rings are given, 

along with a theorem concerning their equivalence with a 

class of M-Groups. The examples are listed in the last 

section of the chapter, and structural properties are dis­

cussed by referring to the proper examples. 

Section 1. Right semi-rings 

(1.1) Definitions. (R,+,·) is a bare ring (shortly 

BR) iff (R,+) is an abelian group and• is a binary 'opera­

tion on R. If (R,+,•) is a BR then (R,+,•) is a right 

semi-ring (RSR) iff for any x,y,z f R (x+y)•z=x•z+y•z. 

(R,+,•) is a commutative RSR iff (R,+,•) is a RSR that is 

commutative wrt •. 

(1.2) Remark. From the definition, an M-Group is 

dependent up on the map n. Hence, many M-Groups may be 

formed from a set Mand a group G. Also, from Jacobson 

(1951) an M-Group can be equivalently defined as the fol­

lo wing . If Mis a set and (G,+) is a grou p then M-(G,+) 

is an M-Group wrt n iff there exists a function a on M 

into E( G) such that x(ma) = (x ,m)n for x ( G and m ~ M. So 

as to make the dependency of an M-Group, M-(G,+), upon its 

mappings be more explicit let Ma-(G,+) denote the M-Group. 
n 

When no confusion can arise we s ometimes will denote it 



by M-(G,+) or M-G. 

(1.3) Theorem. If (R,+, 0 ) is a RSR and n~ 0 then 

Ra-(R,+) is an M-Group. n 
Proof. n is a function on RxR since O is a binary 

operation on Rand for x,y,z ER (x+y,z)n=(x+y)•z= 

x•z+y.z=(x,z)~+(y,z)~. 

(1.4) Theorem. If R~-(R,+) is an M-Group and •=n 

then (R,+,•) is a RSR. 

Proof. Since n C (RxR)xR is a function on RxR • is 

a binary operation on R. Furthermore, for x,y,z ER 

(x+y)•z=(x+y,z)n=(x,z)n+(y,z)n=x•z+y•z. 

In view of the theorems (1.3) and (1.4) we can con­

sider a RSR as a special M-Grou p an d any M-Group, M-G, 

with M=G as a RSR. 

(1.5) Notation. For an M-Group, M-G, denote Ma as 

MCE(G) and ma for m(M as m. 

(1.6) Theorem. If M°'-(R,+) is an M-Grou p then 
~ 

(a) (o,m)~=o(ma)=o for mEM, 

3 

(b) (kx,m)n=(kx)(ma)=k[ x (ma)]=k(x,m)n for x ER, m EM 

and k E I, 

(c) (-x,m)n=(-x)(ma)=-[x(ma)]=-(x,m)n for x E Rand 

ml M. 

Proof. Since ma=m is an endomorphism the results are 

obvious. 

(1.7) Definitions. If (R,+,•) is a BR then r i s a 

right (left) identity of R wrt • iff for any x ER x•r=x 

(r.x=x). R has a two sided identity r wrt O iff r is both 
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a left and a right identity of R wrt •• 

(1.8) Theorem. If Risa RSR with a left identity 

rand R/fof then r/o. 

Proof. Assume r=o. Since R/fo] there exists an x E R 

such that x/o. From theorem (1.6) x=r•x=o•x=o. 

(1.9) Remark. If Risa RSR with a right identity 

then r need not be different from zero. Such is the case 

in example ( 6 .2). 

(1.10) Theorem. If Risa BR,r is a right identity, 

and e is a left identity then r=e. 

Proof. e=e•r=r. 

(1.11) Theorem. If Risa BR and e is a two sided 

identity then e is unique and any right (left) id entity 

of R is equal toe. 

Pro of. Assume there exists e 1 E R such that e 1/e and 

e 1 is a two sided identity. Then e=e•e '=e'. Let r be a 

right identity of R. Then e =e•r=r. 

(1.12) Remarks. From the above theorems a BR that 

has more than one right (left) identity cannot have a left 

(right) id entity. 

Since a RSR is equivalent to a special M-Group , 

namely Ra-(R,+), the notion of identiti e s is e quivalent to 
Tl 

the following. r is a ri gh t identity of Riff rE Ha=tx€ RI 

l(xa)=I E' E(R) where xI=x for all x € R], and e is a l eft 

identity of R iff for every x E RaC E(R) ex=x. If Ho:,=0 

then R has no right identity (look at examples (6.1) and 

(6.3)). From above it appears that the condition on the 

left identity may be so strong that a left identity may 
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not exist for any RSR, but example (6. 3) shows that this 

assertation is false. Furthermore, one might ask whether 

there exists a RSR th a t has a left identity but no right. 

Such is the case in example (6.3). 

(1.13) Theorem. If Risa RSR with Ra-Ras its 
Tl 

M-Group equivalent an d R has a left identity e then (a) 

a is one-to-one and (b) if R has no right identity then 

I i Ra=R where for x f R xI=x. 

Proof. (a) Let x,yE R such that x=y. Then X=ex= 

ex=ey=ey=y. Hence, xa=ya implies x=y. (b) Assume IE R. 

Then there exists x ER such that xa= I=x. Which implies 

yx=yx=yI=y for all y E R. Thus, x is a right id entity, 

but R contains no right identities. 

(1.14) Definitions. If R is a BR then (a) xE R is 

a right divisor of zero (zero divisor) iff there exists 

y E' R such that y/o and yx=o, and (b) x ( R is a left divisor 

or zero iff there exists yE R such that y/o and xy =o. 

(1.15) Remarks. In a RSR zero is always a left 

divisor of zero by theorem (1.6), but as shown in example 

(6.1) zero is not al ways a right divisor of zero. 

Again in terms of an M-Group we have that x ER is a 

right divisor of zero iff Kx=fyE RI yx=oJ E:>[oj and xER is 

a left di visor of zero iff there exists a y €. RC E(R) such 

that xy=o (i.e. xEKY) and y/o. 

If x €. R is a left di visor of zero then x need not be 

a right divisor of zero as shown by example (6.2) and if 

x ER is a right di visor of zero then x need not be a left 

divisor of zero as shown by example (6. 3). 
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(1.16) Theorem. If Risa RSR, R/fo}, and R has a 

right identity r then r i s not a right divisor of zero. 

Proof. Let x € R such th a t xi o. Then x 0 r=x/o. 

(1.17) Remark. If Risa RSR, R/[oS, and R has a 

right identity r then as shown by example (6.2) it may be 

a left divisor of zero. 

( 1.18) Definitions. If R is a BR then x € R obeys 

the right cancellation law iff whe n y , z f R such that yx= 

zx then y=z; x € R ob eys the l ef t cancellation la w iff when 

y, z f R such that xy=xz then y=z. 

(1.19) Remark. In example (6.2) for x=-1 we see 

that if x obeys the left cancellation la w it need not obey 

the right cancellation la w, and also in example (6.2) for 

x= o we see that if x obeys the right cancellation law it 

n eed not obey the l eft canc e ll ation law. 

Zero does not obey the left canc el la tion la w unless 

R=[o]. However, as shown in example (6.2) o may obey the 

r i ght cancellation la w even when Rl[of. 

(1.20) Theorem. If R is a RSR then x € R obeys the 

right canc e llation law iff x i s not a right divisor of 

zero. 

Proof. If yx=o for some y E R then yx=ox an d henc ·e 

y=o when the cancellation la w holds. Also, if yx=zx for 

some y, z E R then (y-z ) x= o and henc e y= z when x is not a 

right divisor of zero. 

(1.21) Remarks. From theorem (1.20) if we know 

what the set, Dr' of right diviors of zero is, th en the 

set of elements, Cr' that obeys the right cancellation 



law is R-D, and vice versa. r 

A natural question is whether a similar theorem to 

7 

(1.20) exists when right is replaced by left. In example 

(6.2) every element x/o obeys the left cancellation law, 

but also is a left divisor of zero. In example (6.3) x= 

(m,-m) m/o is not a left divisor of zero, and furthermore 

x does not obey the left cancellation law. Hence, such a 

theorem does not exist. Furthermore, as shown no theorem 

with the same hypothesis as theorem (1.20) exists when 

either right is replaced by left. If x obeys the right 

cancellation law then x may be a left divisor of zero or 

not as shown by example (6.2) for x/-1 and by example 

(6.1) for x=(a,b) where a,b/oo If xis not a right divi­

sor of zero then it need not obey the left cancellation 

law as shown by example (6.3) for x=(m,-m) m/o. However, 

if xis not a right divisor of zero then x can obey the 

left cancellation law as shown by example (6.2) for x/-1,o. 

(1.22) Definitions. If Risa RSR and R has a 

right (left) identity r wrt • then y is a right inverse 

of x wrt • relative tor iff xy=r, and y is a left inverse 

of x wrt • relative tor iff yx=r. 

(1.23) Remark. Considering Ras an M-Group then y 

is a right inverse of x iffy maps x onto r, and y is a 

left inverse of x iff x maps y onto r. 

Section 2. Semi-rings and n-multiple M-Groups 

(2.1) Definitions. If (R,+,•) is a BR then (R,+,•) 

is a left semi-ring (LSR) iff for any x ,y,z(R z(x+y)=zx+zy. 
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(R,+,•) is a semi-ring (SR) iff Risa RSR and a LSR. 

(2.2) Remark. A LSR is really the same as a R.SR ex­

cept for notational chan ges . Hence, all of the properties 

of a RSR carries over for a LSR. 

(2.3) Definition. If (G,+) is a group then 

FfX-1,•••,an-(G,+) is an-multiple M-Group wrt ri
1

, ••• ,TJn and 
Tl1,•••,Tln 

a 1 , .•• ,a iff FfX'i-(G,+) is an M-Group for i=l , •• • ,n. If 
n TJi 

Gal,a2-(G,+) is a 2-multiple M-Group and V C(G xG)x(GxG) 
Tl1,Tl2 

is a function on GxG such that ( -::.:,y)V=(y,x) for x,yE G 

then Gal,a2-(G,+) is a symmetric 2- multiple M-Group iff 
Tl1,Tl2 

TJ1=Vn2• 

(2.4) Theorem. If (R,+,·) is a SR and ri
1

=• then 

Ral,a2-(R,+) h ,r · t · 2 1t· 1 were ri2=vri1 is a symme ric -mu ip e Tl1,Tl2 

M-Group. 

Proof. Clearly, TJ1an d ri2 are both functions on RxR 

into R. For x,y,z ER (x+ y ,z)ri 1 =(x+y)z=xz+yz=(x,z)ri
1 

+ 

(y,z)TJ 1 and (x+y,z)ri 2=(z, x +y)ri 1=z( x+y)=zx+zy=(z , x )ri
1

+ 

(z,y)n 1=(x,z)ri 2+(y,z)ri 2 • 

(2.5) Theorem. If Ral,a2-(R,+) is 
Tl1,Tl2 

2-multiple M-Group and ·=n 1 then (R,+,•) 

a symmetric 

is a SR. 

Proof. Clearly• is a binary op eration on R. For 

x,y,z E'R (x+y)z=(x+y,z)ri 1=(x,z)ri 1+(y,z)ri 1=xz+yz and 

z(x+y)=(z,x+y)ri 1=(x+y,z)ri 2=(x,z)ri 2+(y,z)ri 2=(z,x)ri
1

+(z,y)ri
1 

=zx+zy. 

From theorems (2.4) and (2.5) we can consider a SR 

as a symmetric 2-multi p le M-Group and vice versa. 
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(2.6) Theorem. If +C(E(R,+)xE(R,+))xF, FCRxR, 

and (R,+) is an abelian group such that for a,f3E E(R) and 

xER x((a,S)+)=xa+xf3 then (E(R,+),+) is an abelian gro up. 

Proof. Let (a,f3),(a 1 ,f3') f E(R)xE(R) such th ot (a,p)= 

(a 1 ,f3 1 
). Then a=a1 and f3=f31 , and hence for arbitrary x ER 

x((a,f3)+)=xa+xf3=xa 1+xf31=x((a 1 ,f31 )+) which implies that 

(a,f3)+=(a 1 ,f3' )+. Therefore + is a function. For x,y ( R 

(x+y)((a,f3)+)=(x+y)a+(x+y)f3=(xa+y a)+ (xf3+yf3)=(xa+xf3)+(ya+yf3) 

=[ x (a,f3)+J+[y(a,f3)+]. Therefore (a,f3)+E E(R) and hence 

FCE(R). 

Clearly since (R,+) is commutative and associative 

(E(R), +) is too. The function o C RxR on R such that for 

x ER xo=o is also in E(R), and for x f R and a E E(R) 

x( o+a)=xo+xa=xa. Therefore o is the identity for E(R). 

Clearly for a E E(R) (-a) C RxR such that for x ER x(-a)= 

-(xa) is in E(R). Thus for x E" R and a ( E(R) x[a+(-a) J = 

xa +x(-a)=o=xo which implies a+(-a)=o. Hence, (E(R),+) 

is an abelian group. 

(2.7) Theorem. If (R,+,•) is a SR 

as its symmetric 2-multiple M-Group th en 

homomorphism of (R,+) into (E(R),+). 

with Ral,a2-(R,+) 
111,112 

o:1 (a 2 ) is a 

Proof. We know a 1 is a function of (R,+) into E(R). 

For x,y,zE: R z((x+y)a 1 )=(z, x+y)TJ1=(x +y,z)TJ
2

=(x,z)TJ
2

+ 

(y,z)TJ 2=(z,x)T\ 1+(z,y)T\ 1=z (xa 1 )+z (y a 1 )=z[(xa
1

)+(ya
1

)J. 

Since z was arbitrary (x+y)a 1=(xa 1 )+(ya
1

). Hence, a
1 

is 

a homomorphism and hence Ra1=RC E(R ) is a subgroup of E(R). 

(2.8) Remarks. From th eorem (2.7) every abelian 



10 

group (R,+) that has a homomorphism a of itself onto a sub -

group of (E(R),+) can be considered a SR if e is defined 

as x•y=x(ya)=xy for all x,y ER. 

Section 3. Right rings (RR) 

(3.1) Definitions. If (R,+,•) is a RSR then Ri sa 

right ring (RR) iff the operation• is associative. If R 

is a SR then Risa ring iff th e operation° is associative. 

(3.2) Remark. Most of the theorems about RSRs hold 

for RRs and similarly for SRs and rings. The additional 

property of associativity will permit the proof of more 

theorems on invers es and divisors of zero, but only one 

will be given. 

(3.3) Theorem. If Risa RR with a right identity 

r, and x has a right inverse then xis not a ri ght divisor 

of zero. 

Proof. Let y be the right inverse of x. Assume x 

is a right divisor of zero. Then there exists a z ER 

such that z/o and zx=o. Hence, xy=r implies z=zr=z(xy)= 

(zx)y=oy=o. 

Section 4. Ideals and homomorphisms 

(4.1) Notation. When BR is used in the same sen­

tence several times it refers to the same type of BR 

under discussion. 

(4.2) Definitions. If (R,+, 0 ) is a BR and 0/SC R 

then (S,+,•) is a subBR iff (S,+, 0 ) is a BR. S/0 is a 

right (left) ideal of the BRR iff (S,+) is a subgroup of 

(R,+) and xs E: S (sx f S) for all x ER and for all s E: S. 
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Sis an ideal of the BRR iff Sis both a right ideal of 

Rand a left ideal of R. 

(4.3) Theorem. If (R,+, 0 ) is a BR and .0/SCR then 

S is a subBR iff for x,y E S x-y E'S and xy ES. 

Proof. Obvious. 

(4.4) Theorem. If (R,+, 0 ) is a SR, .0/SCR is an 

ideal of R and EB,© C (R/SxR/S )xR/S such that for x=a+S, 

y=b+S E R/S (x,y)EB=(a+b)+S and (x,y)©=ab+S then (R/S,EB,@) 

is a SR and® is associative (commutative) iff. is 

associative (commutative). 

Proof. First we need to prove that EB and~ are 

binary operations. If a=(a+S,b+S),~=(a 1+S,b 1+S)E R/SxR/S 

such that a=~ then a+S=a'+S and b+S=b 1 +S. Hence there 

exists s,tES such that a=a'+s and b=b 1 +t. Because R is 

a SR and Sis an ideal of R a+b=(a'+b 1 )+(s+t) and ab= 

(a'+s)(b 1 +t)=a 1b 1 +(a 1t+sb 1 +s t) which implies that (a+b)+S 

=(a 1 +b 1 )+S and ab+S=a'b'+S. Hence, a©=(a+b)+S=(a 1 +b 1 )+S= 

~EB and a~=ab+S=a 1b 1 +S=~®. 

Clearly (R/S,EB) is an abelian group since (R,+) is 

an abelian group. For x=a+S,y=b+S,z=c+SER/S 

(a) (x©y)~z=[(a+b)+S]®z=(a+b)c+S=(ac+bc)+S=(ac+S)EB(bc+S) 

=(XilZ)EB(y@z) 

(b) z@(xEBy)=z®[(a+b)+S]=c(a+b)+S=(ca+cb)+S=(ca+S)EB(cb+S) 

=(Z@X)EB(z.;y). 

Hence, (R/S,EB,~) is a SR. Also from 

(c) (x@y)~z=(ab+S)@z=(ab)c+S 

x@(y@z)=x~(bc+S) =a (bc)+ S 

(d) x@y=ab+S and y®x=bc+S 
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we see that® is associative (commutative) iff • is asso­

ciative (commutative). 

(4.5) Remark. If R had been a RSR in theorem (4.5) 

instead of a SR then (R/S,~,~) need not be a RSR since® 

is not necessarly a binary operation on R/S. 

(R/S,~,~) is called the factor SR of the SR (R,+,•) 

wrt the ideal S. 

(4.6) Theorem. If n is a homomorphism of th e BR 

(R,+,•) into the BR (R,+,~) then RnCR is a subBR. 

Proof. Since n is a homomorphism we know that (Rn,+) 

is an abelian subgroup of (R,+). For x=an ,y=bn E Rn x•y= 

(an)7(bn)=(ab)n E Rn. Hence, by theorem (4.4) (Rn,+,:-) is 

a BR. 

(4.7) Theorem. If n is a homomorphism of the RSR 

(LSR) (R,+,•) into the RSR (LSR) (R,+,~) then the kernal, 

KT\' of n is a left (right) ideal of the RSR . (LSR) R. 

Proof. We know that (KT\,+) is a subgroup of (R,+). 

Let x ER and a EK • 
T\ 

Then (ax)n=(an) 7 ( xn )=o7(xn)=o. 

Therefore, ax EK and hence K is a left ideal of R. 
Tl Tl 

(4.8) Theorem. If n is a homomorphism of the SR 

(R,+,•) into the SR (R,+,~) then K is an ideal of R. 
Tl 

Proof. Follo ws from theorem (4.7). 

(4.9) Theorem. If (R,+,•),(R,+,7) and (R,+,7) are 

BRs, and n C RxR and n C RxR are homomorphisms on R and on 

R respectively then nn (the resultant) is a homomorphism 

on R into R. 

Proof. If x,yE: R then (x+y)(nn)=((x+y)n)n=(xn+yn)n 

=(xn)n+(yn)n=x(nn)+y(nn) and (xy)(nn)=((xy)n)n=[(xn)(yn)Jn 



=[(xn)n][(yn)rr]=[x(nrr)J[y(nn)]o Therefore, nn is a 

homomorphism. 
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(4.10) Theorem. If (R,~,@) is the factor SR of the 

SR (R,+, 0
) wrt the ideal S and -r C RxR such that for x ER 

x-r=x+S then -r is a homomorphism. 

Proof. If x,y e R such that x=y then x-r=x+S=y+S=y -c. 

Therefore, -r is a function on R. Again if x,yE R then 

(x+y)-r=(x+y)+S ~(x+S)@(y+S)=(x-r)~(y-c) and (xy)-c=xy+S = 

(x+ S)~(y+S)=(x-r)@(yT). Hence~ -c is a homomorphi sm. 

(4.11) Remark. -r as defined in theorem (4.10) is 

called the natural homomorphism on R into R=R/S. 

(4.12) Theorem. If Rand R' are SRs, (!)CRxR' is a 

homomorphism on R, R is the factor SR of R wrt the ideal 

SC K , and 'q;c RxR I such that (x+S)<r=x<.p for all x ER then (j) 

(a) (j) is a homomorphism on R=R/S into R' and <.p=-r<r where 

-c is the natural homomorphism on R into R~ and (b) w is 

a iso morphism iff K =S. (j) 

Proof. If x+S ,y+S ( R such that x+S=y+S then x=y+s 

for some s ES, and (x+S)<p=X(!)=(y+S)(!)=y<.p+s<.p=y(!)=(y+S)cp. 

Hence, (j) is a function on R. Also, if x+S ,y+S t: R then 

[(x+S)@(y+S)]<p=[(x+y)+SJ<r=(x+y)<.p=X(j)+y<.p=(x+S)Q+(y+S)Q 

and [(x+S)~(y+S)]<r=(xy+S)cp=(xy)(!)=(x(!))(yc.p)=(x+S)'q;(y+S)<po 

Therefore,~ is a homomorphism on R. The natural homo­

morphism on R into R is such that x-r=x+S for xE R. 

-rep C RxR I i.s a homomorphism on R by theorem ( 4. 9. Let 

xER then x(-c<p)-=(x-r)cp=(x+S)°Zp=x(j). Since x was arbitrary 

If 'Zp is an isomorphism then it is one-to-one. Let 
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xE K o Then o=x<p=(x+S)<p=o<p=(o+S)'q;. Which implies x+S =o+S <p 

or ioe. xE"S. Therefore, KmCSo By hypothesis SCK. 
't' <.p 

Hence 'i S=Kcp. Let Kcp=S. For x=x+S 7 y=y+S E: R such that x<p= 

y(p then xcp=ycp which implies (x-y)cp=o or i.e. x-yEK<p=S. 

Thus 7 x=x+S=y+S ~y . Therefore 9 <pis one-to-one and hence 

an isomor phism. 

(4.13) Remark. In theorem (4.12) if R 1=R<p and S=K 
<p 

then cp is an iso morphism of R onto R 1 o 

Section 5. An embedding theorem 

The purpose of this section is to derive an embedding 

theorem that wi ll help us in finding examples of rings 

with identities . 

(5.1) Theorem. If (R,+, 0
) is a BR, A=IxR'i and +'lo 

are subsets of (AxA)xA such that for (m,a),(n,b)EA 

(a) ((m,a),(n,b))+ =(m+n ,a+b) 

and (b) ((m 1 a) 1 (n,b))o=(mn 1 na+mb+ab), 

where na=a+ .•• +a n-times, then+ and o are binary opera­

tions on A and (A,+) is an abelian group. 

Fro of • Let x = ( ( m 1 a ) , ( n , b ) ) , y= ( ( m 1 , a 1 ) , ( n r , b r ) ) E AxA 

such that x=y. Now x=y implies m 1=m,n 1 =n ,a 1=a, and b 1 =b. 

Thus x+=(m+n,a+b)=(m 1 +n 1 ,a 1+b')=y+ and x•=(mn,na+mb+ab)= 

(m 1n 1 ,n 1 a 1 +m1b 1+a 1b 1 )=yo. Therefore, +and• are binary 

operations on A. 

The proof that (A,+) is and abelian group is obvious. 

(5.2) Theorem. If (A,+) is the abelian group in 

theorem r5.1) and O is the binary operation defined on A 

in theorem (5.1) then 
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(a) A i s commutative wrt O iff R is commutatuve wrt a
9 

(b) every element of A obeys the right (left) dis = 

tributive law iff every element of R obeys the right (left) 

distributive law 9 

(c) (l,o) is a right (left) identity iff xo=o (ox =o) 

for all x f R, 

and (d) A is associative only if R obeys the distributive 

laws and is associativeo 

Proofo Let (m,a),(n,b),(k,c) be arbitrary elements 

in A o 

(a) Since (m,a)(n,b) ~ (mn,na+mb+ab) and (n,b)(m,a)= 

(nm,mb+na+ba) =(mn,na+mb+ba) it is clear that A i s com­

mutative iff R is commutative. 

(b) Since [(m,a)+(n,b)](k,c)=[(m+n)k,k(a+b)+(m+n)c+ 

( a +b)c]=[mk+nk,ka+kb+mc+nc+(a+b)c] and (m,a)(k,c)+(n,b)(k,c) 

= (mk,ka+mc+ac)+(nk,kb+nc+bc)=(mk+nk,ka+kb+mc+nc+ac+bc) it 

is clear that A obeys the ri ght distributive la w iff R 

obeys the ri ght distributive lawo 

(c) Now because (m,a)(l,o)=(m,a+ao) and (l,o)(m,a)= 

(m,a+oa) we see that (l,o) is a right (l eft) identity 

iff xo=o (ox=o) for all xE R. 

(d) From the following (m,a)[(n,b)(k,c)] = 

(m,a)(nk,kb+nc+bc)=[mnk,nka+mkb+mnc+mbc+a(kb+nc+bc)J and 

[(m,a)(n,b)](k~c) = [mnk,kna+kmb+mnc+kab +(na+ mb +a c)c] it 

is clear that A is associative only if R obeys the dis­

tributive la ws and is associative. 

(5o3) Theorem o If Rand A are as in theorem (5.1) 

and B= [Co ,x) / x ER} the n R and B are isomorphic. 
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Proofo Obviousc 

(5.4) Remark. If R is a RSR then by theorems (5.1)
9 

(5o2) and (5.3) R can be embedded in a RSR with a left 

identity. If Risa SR then R can be embedded in a SR 

with an identityo 

If Risa RSR i.n which the associative law does not 

hold and is not a SR then R cannot be embedded in a RR 

or a LSR since if there did exist an isomorphism of R in­

to a subright ring or a subleft semi-ring it would imply 

tha t R is assoc i ative or is a SR. 

Section 6. Examples 

The following examples are given without proof so as 

to save space. Furthermore (R,+) in the examples will 

al ways be an abelian group. The following abreviations 

will be used. C-commutative wrt 0 , A-associative wrt •
9 

RD-all the elements of the set obey the right distributive 

law, LD-all the elements of the set obey the left dis­

tributive la w. If N is placed before any of the above 

letters is stands for not (e.g. NC means not commutative). 

Also, the following sets will be used. I = f x ER Ix is a r 

right identity] (I 1 ), Dr=[xE Rix is a right divisor of 

zero] (D1 ) ~ Cr :=:{x E Ri x obeys the right cancellation law] 

( c1 ), and v; = [ x E RI x has a ri.ght inverse wrt the right 

(left) identity e] cvf). 
(601) Righ · sem i =ring with no identitieso Let 

(A ,+,o) be any field and R=AxAo For (x~y)~(z,w) ER de­

fine (x,y)+(z, r)=(x+z,y+w) and (x~y) .. (z,w)==(=xw,yz+x). 
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Then (R 9 +,•) i s a RSR such that O is NC, NA9 and NLD. 

Furthermore 'l I ~L =.0, D a::D1 =R=C and Cr ""'C
1

= [(x 9 y) I x 9 y ER r ~ r r' 

and X 9y/-o j. 

(6.2) Right semi -ring with a right identity. Let 

(R,+ 9 °) be a field. For x,y ER define x~y=x+xy. Then 

(R'l+ 9*-) i s a RSR such that-* is NC, NA, and NLD. Howeve r, 

Ir=foJ 9 I 1 =.0, Dr= [=li,D 1 =R9 Cr=R-Dr, C1 =R-fo}, V~=D1 , and 
0 V
1

::::D. . r 

(6.3) Right semi - ring with left identity. Let 

(R 9 + 9 *) be the RSR in example (6.2) 9 and (R 9 + 9 •) obtained 

fr om theore ms (5.1) and (5.2). Then (R,+, 0 ) is a RSR such 

tha t O is NC'l NA, and NLD; and Ir=.0, I 1= t(l 9 o)f 9 Dr= 

[( n.,-(n+l))lnE I}U[(o 9 x)lx/l1, D1 = [(o 9 x)lxE Rf U[(m 9 x)I 

x/0 9 m/0 9 and x/ - m] 9 Cr=R-Dr, c1= [(m,x)l m/o and x/-m] 9 

v~190 ) = f_rm,a)lm=±l and a/-m] and vfl,o)=f(l, b ) / b/--(n+l)}U 

i(-1,b)jb/o{. 

(6.4) Semi-ring with right identity. Let (A9 +,•) 

be a field and R=AxA. For (x,y),(z, w) f R define (x,y)+ 

(z, w)=(x+z,y+w) and (x,y)(z,w)=(-xw,yz). The n (R,+,•) 

is a SR such that O is NC and NA; an d I r= ( :1 , -~ )J, I 1= 

.0, D ==D-.::::f( x 9 o) /x EA]U{_(o,x)/xf A7 , C ::.cC~=R-D, and r .1. - J r J. r 

v~l,-l\ ,vf 19 -l) -=[(x 9 y)lx,yE ·_ and x , ;;-1,o]. 

(6.5) Semi-ring with left ident i ty . Let (A,+,•) 

b " · 1 ~ h +h . 2 2 . 1 . f E A ea ri e Q sue u at x +y =o imp ies x,y=o or x,y , 

and R=AxA. For ( ::'.:,y),(z,w)E R define (x,y)+(z,w)= 

(x+z,y+w) and (x,y)(z,w) =(yz=xw,xz+yw). Then (R,+,•) is 

a SR such that O is NC and NA; and Ir =.0, I 1=t(o,l)j, Dr= 

D1= f( o,o)}, C =C1=R- D, and vCo,l ; =v
1
Co,l)=R- f( o,o)]. 

r r r 
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(6.6) Semi-ring with ident~ty . Let (R~+,•) be the 

SR in example (6.5) and (R,+,•) be obtained from th eorems 

(5.1) and (5o2). Then (R,+,•) is a SR such that O is NC 

and NA. Furthermore, Ir=I 1 = £(1,o) ] . 

(6.7) Right ring with a right identity. Let (R,+) 

be a commutative group suc h th a t R E)[o] • If x ,YE: R define 

X*Y=X. Then (R~+,*) is a RR such that * is NC and NLD. 

However, Ir =R, I 1=09 Dr=0, D1 = £o}, Cr=R, and c1=¢. 

(6.8) Ri ght ring with an identity. Let F=ff l f maps 

the reals into the reals and f is a function] and for 

f ,g E F and for an arbi t.rary x E reals define f +g and f*g 

such that (f+g)(x) =f(x)+g(x) and (f*g)(x)=f(g(x)). Then 

(F,+,*) is a RR such that * is NC and NLD. Also, Ir=I 1= 

fI} where I is def i ned such that for x E reals I( x)=x, Dr= 

{fEF l f is not onto], D1=(fEF l there exists an x Ereals 

such that f(x) =o], Cr=F-Dr , c1 =F-D 1 , and v; =vf={f E F If 

is onto and one-to-one?. 

(6.9) Ring with no identity . Let R be the set of 

2x2 matrices over E(even in tege rs). Then under matrix 

addition,+, and multiplication ,• , (E,+,•) is a ring such 

that • is NC. Furthe rmore, Ir=I 1=¢. 

(6.10) Ring wi th right ide ntity. Let RC 2x2 ma­

trices over I such that if ex€ R then ex=( ;~ ) for x,y EI. 

Then (R,+ 9 •) is a ring where+ and. are matrix addition 

and multiplication r espec tively. Furthermore, • is NC, 

Ir= [( ~~ )j x E:r] , I 1=0, Dr ~{( ~~)l x Er], D1 =R, Cr= {( ;~ ) I 
x/.o and XsY Er] , and c1 =0. The set of right inverses 
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wrt "and wrt the identi~y s=(;~) is r;={(;~)I x=±l and yls] 
where as t he set of left i n ve rses wrt the identity sis 

rI-= [(;~) I xc=±~ 0 

(6011) Ring with lef t i dentityo Let R be a subset 

of the set of 2x2 matrices over the integers such that i f 

ex.ER then CX.""-(~r) for X ,Y E I 0 Then (R ' + 'a ) i s a ring when 

+and . are the usua l ma trix addition and multiplicationo 

Furthermore, Ir ""0~ I 1=[(;~)jx~I] , Dr= R, D1=[(~~)1: EI} , 
Cr=0, c1 =[(~ )I x,'o, x 9 y E rJ , r;= t(~ ) I x=±l ] , and rf = 

[ ( ~~ )/ x =±l and y ! s} where s=(;~)
0 



CHAPTER II 

M=RINGS 
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Two definitions of M-Rings will be given with a the­

orem on their equivalence. M-Subrings, M-Factor rings and 

M-Ring homomorphisms are defined. As in Chapter I the 

last section wi ll in c lude the exampler.. 

Section 1. M-Rings and n - multiple M-Rings 

(1.1) Definition. If Mis a set and (R,+, 0 ) is BR 

then M-(R, +, •) is a M-BR wrt T] iff ri C (RxM)xR is a func­

tion on RxM such that (a) (x+yjm)ri=(x,m)ri+(y,m)ri and (b) 

( x O y ,m) T'\""' ( x, m) T\ 0 
( y, m) ri f o:r any x, y E R and m E: M. 

The two conditions (a) and (b) in definition (1.1) 

are similar to those for a homomorphism. This similar­

ity gives rise to an alternate definition for an M-Ring. 

(1.2) Definition. If Mis a non-empty set and 

(R,+, 0
) is a BR then M-R(R,+, 0

) is a M-BR wrt ex iff 

exC MxE(R,+, 0
) is a function on M. 

(1.3) Theorem. Definition (1.1) and definition 

(1.2) are equivalent. 

Proof. Let M-(R,+, 0 ) be an M-BR wrt definition 

( 1.1). Fo::::-a fixed m E M and any x ER define inc RxR such 

that xm=(x,m)rio rn i s a func t ion on R since 11 is a function 

on RxMo If x,y f R then (x+y)m '=(x+y ,m)ri==(x,m)ri+(y ,m)ri= 

xm+ym and (x 0 y )m: (x 0 y, m) T\"" (x ,m) T] 0 ( y ,m) ri =:x2 ° yin o Hence, 

in E E(R, + , 0
). Now define ex C lVIxE(R) by mcx=m for any m E Mo 
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If m=m1 the~ for any xE R xm=(x~m)n=(x~m')n=xm 1 o There~ 

fore~ ex is a function on Mo Hence, M-(R,+, 0
) is an M-BR 

wrt definition (l.2)o 

Let M-(R,+ ~0
) be an M=BR wrt definition (l.2)o De­

note mex=m for m E: Mo Define n C (RxM)xR such that for any 

x ER and any m E: M (x'jm)n=x(mex) ::::xm. If (x ~m) ~ (x 1 'Im 1 ) E RxM 

such that (x~m)=(x 1 ,m 1 ) then x~x 1 and m=m''j and hence 

(x'jm)n=x(mex)=x' (m 1ex),=(x 1 ,m' )n.. Therefore n is a function 

on RxM. For x,yf Rand mE M (x+y~m)n=(x+y)m=xm+ym=(x,m)n+ 

(y,m)n and (x 0 y,m)n=(x 0 y)m=xm0 ym=(x,m)n•(y,m)no Hence, 

M-(Rs+,·) is an M-R.ing wrt definition (1.1). 

(1.4) Remark. Fr om defini tions (1.1) and (1.2) an 

M~BR is dependent upon both n and ex. To stress this de­

pendency let Mex-(R'j+,•) denote an M-BRo When no confusion n 
will arise let M-( R,+,•) or M=R denote an M-BR. 

Given a non -empty set and a BR more than one M-BR may 

be formed. 

(1.5) Theorem. If Mis a non-empty set and (R,+,·) 

is a BR, then there are at least two different M-BRs 

formed from Mand R. 

Proof. Let ex C MxF (F is a non-empty set) be the 

function on M such th at for x ER and m E. M x(mcx)=o. For 

x,y ER and mEM (x+y)(mcx) =o=o+o=x (ma)+ zv(ma) and (x•y)(ma) 

=o=o·o= [x (ma)J • [y(ma)] o Therefore, FC E(R) and hence, 

Ma=R is an M=BR where (x,m)n=x(ma) for x ER and m EM. n 
Define cx,1C MxF (F is a set) such that for x ER and 

m EM x(mcx, 1 ):::x. Clearly ex I is a function on M and for 

x,y ER and m E M (x+y) (ma 1 ) =x+y=x(mex 1 )+y(mex 1 ) and 
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(xo y) (mcx 1 ) =xo y =x(mcx v) o;r(mcx 1 ) o Henc. e, F C E(R) o Therefore ~ 

~:-R is an M=BR where (x~m ) n° =x (mcx1 ) for xER and m€Mo 

(1 .6 ) Remark. To shorten the notation for mappings 

i .n an M=BR, ~-R, we let xm=(x,m)no Also denote Mex by 
Tl 

MC E(R) and mcx for m EM as m. 

Because more than one M- BR can be otained from a set 

Mand a BRR it is interesting to consider a system con­

sisting of more than one M=BRo 

(1 . 7) Def initions. If M i s a non-empty set and 

then Rcxl,cx2-(R,+, 0 ) 

Tl1,Tl2 

M-BR and V C (RxR)x(RxR) 

(x,y)V=(y,x) for x,yE R 

is a symmetric 2-multiple M=BR iff 

n1 :::in 2 • 

(1.8) Theorem. 

x E R, m € M ~ k E" I and j E N 

(a) (o'lm)n :=o 

(bJ (kx,m)n ==k(x,m)n 

(c) (-x,m)n ==(x,m)n 

(d) (xj,m)n =[ (x,m)n] j 

(e) if (R,+,o) is a division ring then 

(1) k k (x ,m)n :oc:[(x,m)nJ 

(2) cx= 1 ,m)n ~ [(x,m)n]=l 

(3) (l,m)n ~l when 1 i s the identity of R wrt e 

if mcx/o 

( f' ' -) if (R,+, 0
) i s a SR with a right (left) identity r 

wrt •, R has no lef t (right) di visors of zero, and R/[o} 
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then (r,m)ri =r. 

Proof O Let mcx=m for mE' M. Then for XE R (x,m)ri =xm. 

Part (a). Since ill is a ring endomorphi sm om=o. 

Part (b). Again since ill is an endomorphism (kx)ill = 

k(xm). 

Part (c). Now O=Oill=[x+(-x)]ill=xm+(-x)ill which implies 

(-x)ill =-( xm). 

Part (d) . If j=l then x 1m=(xm)1 • Assume true for 

j. Then (xj+l)m =(x j xl)ill=(xjm)(x 1m)=(xm)j(xm) 1=(xm) j+ l. 

Part (e). Si nce (R- fo] ,•) is a group part (a) , (b) 

and (c) c an be applied with notational changes for x/o. 

It is cle ar that (1 ) and (2) hold for x=o. 

Part (f) . Now (x,m)rir=(x,m)ri=(xr,m)ri=(x,m)n(r,m)ri. 

By analogous theorems to theorems (1.20) and (1.8) in 

chapter I all xER obey the left cancellation law and 

r/o. Hence, r=(r 9m}ri. 

(l o9) Remark d At first part (d) in theorem (1. 8) 

appears not to need the added condition that R has no 

zero divisors, but the example presented in section 4 

gives an example of a ring with identity 1 that has an 

endomorphism~ on it such that l~/1. This implies that 

the identity of a ring is not always mapped onto the 

identity by an endomorphism. 

Section 2. M~Subrings, M~Factor rings 9 

~M-homomorphisms 

(2.1) Definition. If 1f =R is a M~BR and S i.s a 
Tl 

subBR of R 1 then Mcx=S is a M-S ubBR of Mcx=R iff for all 
Tl Tl 



xf S and m EM (x 9 m)ri E So 

Le t fS1 denote a collection of M-Sub BRs of the M-BR 

~-R, n s denote the intersection of all the SE ~s} 
9 

and 

R 1 :=[ U S ] to denot e a set generate d by the f i n ite sums of 
k 

finite prod·c1.cts ( L a i • o o . • a 9 where a . E S for some 
i=l -1 ni Ji 

S E LS}). 
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(2.2 ) Th eorem. If Ma-Risa M=BR and tS] is a col= 
Tl 

lectio n of M=Sub BRs of R then (a) 

M~=R and (b) ~-R 1 is a M=SubBR of n ri 
Proofo 

is a M-Sub BR of 

Par t (a). We need first to show that n S is a sub BR 

of Ro Let a~b c ns t hen a~bE S for all S EtS] o Since S 

is a sub BR of R a -b E S and a 0 b ES for all SE [S}o This 

implies that a~b En s and a 0 b Ens. Therefor e ns is a 

sub BR of R. Furth ermore because fo r all SE£ SJ S is a 

M-SubBR of Ma=R (a 9 m)ri E S for any a ES and for any m EM. 
Tl 

Hence~ (a 9 m)riE n s fer any a f ns and for any mE M. 

Th erefore ~ - ns is a M-SubBR of the M=BR Ma- R. 
Tl Tl 

Part (b) . First let us show that R ' = [ U SJ is a 
k 

For any x ,YE R I x = ~ a 1 . • ••• 0 a 1 . and y= 
l=l l l 

su bBR of R. 
q 

L b 1 ° •• ob o . 1 . n. By ob servat io n we see that x-y ER I and 
l = l l 

x 0 yf°R 1 o Therefor e R 1 is a subBR of R. Letting (a 9m)11= 

am then for any xE R 1 and for any m EM 

k k 
xm= ( .L a l. 0 o o •• an . )m= _L ( a 1 . 0 o • o 

O an . )m 
l=l l l l = l l l 
k 

=L (a 1 m• ••• oa m) 
i=l · i ni 

since a . mE' Sf{SJ and by defini tio n of R 1 xm= (x 9m)11 E.R 1 • 
lj 

Th ere fo re M°'=R 1 is an M~SubBR of t he M~BR M°'~R. 
Tl Tl 



(2.3) Definitions. If ~-Sis an M-SubBR of ~-R 

then Tur-Sis a right (left) M-Ideal of Tur-Riff Sis a 
Tj Tj 

right (left) ideal of R. M~-S is an M-Ideal of ~-Riff 

Sis an ideal of R. 

(2.4) Theorem. If Tuf'-R is an M-Ring with R being 
Tj 

a divison ring then the only left (right) M-Ideals of 

Tur-Rare Ma- [oj and Ma-R. 
Tj Tj Tj 

Proof. The only ideals of Rare {o} and R. Hence 

the theorem follows from the definition of an M-Ideal. 

(2.5) Remark . If Tur- R is an M-BR then Ma-R has at 
Tj T) 

least tw o M- Ideals since fo} and Rare ideals of Rand 

for any aE R (a,m)T\ f Rand (o,m)ri=o E.{oJ. 

Theorem. If Tur-(R,+,o) is an T) M-SR, Ma-Sis T) 
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(2.6) 

an M-Ideal of Tur-R, R=R/S, and riC (RxM)xR T) such that (x,m)ri 

=(x+S,m)ri=(x,m)T)+S for all xER and mEM, then 

is an M-SR called the factor M-SR of Tur-R wrt T) 

ex. -M--(R @ @) 
'Y\ ' ' 

a M -S. T) 
Proof . First we need to prove that ri is a function 

on RxM. If (a,m) ~(b,m 1 ) then a=b and m=m1 • If a~a+S and 

b=b+S then a=b+i for some i E S. Since T) is a function 

and (a,m)T)=(b+i,m)T)=(b,m)T\+(i,m)T) where (i,m)T\E S then 

(a,m)ri=(a~m) T)+S=(b,m) T\+(i,m)T)+S =(b,m)T) +S=(b,m)ri. There­

fore ri is a function of RxM. 

By theorem (4.4) in chapter I (R,@,~) is a SR. For 

a~ b E: R and m E M 

(a~b,m)ri=((a +b)+S,m)n= (a+b,m)T\+S=[(a,m)n+(b,m)n]+S 

=[(a,m)T)+S ]©[(b,m)T)+S]=(a+S,m)ri@(b+S,m)n 

=(a,m)ri@(b,m) ri 

(a~b,m)n=(ab+S,m)n =(ab,m)n+S=(a,m)T)(b,m)T\+S 



= [(a,m)n+SJ@[(b,m)n+S]=(a+S,m)n®(b+S,m)n 

=(a,m) n@(b ,m)n 0 

Therefore M~-R is an M-SRo 
n 

(2.7) Defin ition . If Ma-Rand ~
1

-R' are M-BRs n n' 
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and n C RxR I is a ring-homomorphism then n is an M-BR ho mo­

morphism (M-homomorphism) of ~-R into ~:-R' iff for all n n 
xER and m€M [(x,m)n]n:=(xn:,m)n'. 

(2.8) Remarkso Of course we have the special cases 

of homomorphisms: isomorphisms, endomorphisms and auto­

morphismso 

• .ex, Q I 
Note that when M -R=M ,-R' (ie n=n',a=a' and R=R') n n 

and rr is an M-homomorphism of Ma-R into Ma:-R' then for n n 
any aE Rand m EM, whe re (a,m)n=a(ma)=am, a(mn:)=(am)rr= 

[(a,m)n]n=(arr,m)n=(arr)m=a(rrm). Hence, the M-endo morphisms 

of ~-Rare just those endom orphi sms of R that commute. 
n 

(2.9) Notation. When considering homomorphisms of 

~-(R,+, 0
) into ~:-(R',+' , 01 ) no distinction will be made 

between the different operations. Both+ and+' will be 

denoted by+ and both• and• 1 wi ll be denoted bye (or 

by no symbol) o 

is an 

is an 

Section 3. Fundam ental theorems of 

M-homomorphisms on M-Rings 

(3.1) Theorem. If ~-Rand 
11 

~'-R' 
Tl 1 are 

M-homomorphism of ~-R onto 
n 

r 1
-R 1 

T) I 
then 

a' and M-SubBR of M 1 -R 1 , 
Tl 

(b) the kernal 

M-BRs and rr 

(a) a' M -Rn: 
n' 

of rr is a 

l eft (right) ~-Ideal of r-R 
n 

only if Rand R 1 are RSRs 
Tl 

(LSRs) o 



27 

~roof . Part (a). Rn is a subBR of R' by th eorem (4. 6) 

in chapter I. Now for any anERrr and mE M (an,m)ri '=[(a,m)ri]n 

is in Rn:. a' a 1 
Therefore M ,-Rn is an M-SubBR of M 1-R', 

Tl Tl 

Part (b). By theorem (4.7) in chapter I K (kernal of 
TI 

n:) is a l eft ideal of the RSR R. For any a E K and m E: M 
TI 

[(a,m)ri]n=(an,m)ri'=o'. 

r1f-K is a left M-Ideal 
Tl 

Therefore, (a,m)riEK and hence 
TI 

of ~-R. 
Tl 

(3.2) Theorem. If ~-R ~
1
-R 1 

Tl ' 1'11 

a' I and M 1 1 -R 1 1 are M-BRs , 
Tl 

nC RxR I and n I C R 1xR 1 1 are M-homomorphisms then nn r (the re ­

sultant) is an M-homomorphism. 

Proof. nn' is a homomorphis m of R into R' 1 by theorem 

(4.9) in chapter I. For aE R and mE M [(a,19-)ri](nn' )= 

[[ ( a ,m) T)] TIJ TI I= [ ( a TI ,m) T) 1 ] TI I= ( ( a TI) TC 1 ,m) T] 1 1 = ( a ( TITI I ) ,m )TJ I I • 

Therefore nn 1 is an M-homomorphism. 

(3,3) 

M-SR ~-R 
Tl 

Theor em. If #-R 
Tl 

wrt Ma-S and -rC RxR 
Tl 

is the f acto r M-SR of the 

such that a-r=a+S for a ER 

then -r is an M-homomorphism on R (ie Risa homomorphic 

image of R under -r). 

Proof. -r is a homomorph ism by theo rem (4.10) in 

chapter I. Now by definition (a+ S ,m)n=(a,m)ri+S for aE R 

and mE M. Hence, [(a,m)ri]-r=(a,m)ri+ S=(a+S,m)n=(a-r,m)n. 

Therefore, -r is an M-homomor ph ism. 

(3,4) Remark. -r as defined in theorem (3.3) is 

called the natural M-homomorphism of R into R=R/S. 

(3,5) Theorem. If ~-Rand 
Tl 

a' M 1 -R' are M-SRs, 
T]_ 

(j) C RxR I is an M-homomorphism on R, #-R is the factor 
Tl 

M-SR of Ma-R wrt Ma-S, and Zpc RxR 1 such that (a+S)<p=a(j) 
Tl Tl 

for all a ER then (a) Zp is an M-ho~ omorphism of R=R/S 
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into R' and <.p= 't <.p where 't' is the natural M-homomorphism of 

R into R and (b) <.p is an M-isomorphism iff K =S. 
(j) 

Proof. Part (a)o <.p is a homomorphism on R into R' 
' 

<.pis also a homomorphism on R into R', and <.p=-r~ by theorem 

(4.13) in chapter I. For aE R and mE M [(a+S,m)n]~= 

[(a,m)~+S]~=[(a,m)~]<.p=(a<.p,m)n'=((a+S)~,m)~'· Hence, <.pis 

an M-homomorphism. 

Part (b). The result follows directly from part (b) 

of theorem (4.12) in chapter I. 

(3. 6) Theorem. If Ma-R and Ma:-R' are M-BRs, <.pC RxR' 
n n 

is an M-homomorphism on R onto R', tSJ=fsls is an M-SubBR 

of Rand K<PC S7, .[s 1 1 S 1 is an M-SubBR of R'f, and 

nC[S{x{s 1J such that Sn=S-r for SEfSJ then (a) n is 1-1 

and onto (ie f sJ~{s 1] under n), and (b) S is a right 

(left) M-Ideal in M-R iff S'=Stp is a right (left) M-Ideal 

in M-R 1 • 

Proof. Part (a). Clearly n is a function on [Sj. 

Let us prove that n maps fs~ onto fs1J. Let S 1 E \s 1}. 

Now define S=<.p-1·( S 1 ). For a, b ES ( a-b )<.p=atp-b<.p ES I and 

(ab)tp=a<.pb<.p f S I which implies a-b E: S and abE: S. Therefore 

S is a subBR of R. For a€ S and m € M and by definitions 

[(a,m)n]<.p=(ac.p,m)n I E S 1 which implies (a,m)n ES and hence 

Sis a M~SubBR of R. Clearly S=<.p-1 (S') contains K<.p= 

<.p-1 (o') and S<.p=S1 • Thus, every M-SubBR of R' can be ob­

tained by applying <.p to some M-SubBR of R that contains 

K<.p • Hence, n is onto. Now let us proven is 1-1. Let 

SE { S1 and Sl =<.p-l(Sc.p). Clearly S{:) S. If s 1 E s1 then 

s 1 <.p=S<.p for some s Es. Hence s 1=s+k for some k E K<.p. Now 
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since K(J)C S s 1 E S. Therefore S=<p-l(S(J)). Now if s1 , s2 
C 1 2 -1 ( ) -1 ) ~ iSJ and s1<p=S2(J) then s1=~ S1(J) =(j) (S 2(J) =S2 • Therefore 

<pis 1-1. 

Part (b). Assume Sis a right M-Ideal in M- R. Since 

~ is a homomorphism (S 1 ,+) is a subgroup of (R'~+). Let 

x'=x~ fR 1 and a 1 =a~ES 1 • Then x 1a'=(xa)(J)ES 1 and hence 

S I is a right ideal of R 1 • Furthermore for a<p E S I and m E M 

(a(J),m)n '= [(a,m)n]<pES. Hence, S 1 is a right M-Id ,eal of 

M-R'. 

Assuming 8 1 to be a right M-Ideal of M-R' we can 

prove that Sis an M-Ideal of R analgous to the above 

method . 

(3.7) Theor em. If ~-R is 
T\ 

an M-BR, n C ( M<p -R)x 
T\ 

(Tuf-R) is an M-endomorphism, 
T\ 

and R'={a ER\ an =a} then 

Ma-R, is a M-SubBR of Ma-R. 
T\ T\ 

Proof . Since on=o R'/0. If a,bER 1 then (a-b)n= 

an+(-b)n=a1t-b1t=a-bER 1 and (ab)n=anbn=ab€R 1 • Hence, 

R 1 is a subBR of R by theorem (4.3) in chapter I. For 

aE' R' and mE M [(a,m)n]1t=(an,m)n=(a,m)n ER'. Therefore 

Ma-R I is an M-SubBR of Ivf-R. 
T\ T\ 

(3.8) Theore m. If Ma- R is an M-Ring and Risa 
T\ 

division ring then E(Ma-R)-toy=A(Ma-R) 
T\ T\ 

the set of M-endomorphisms of Ma-Rand 
T\ 

set of M-autom orphisms of ~ - R. 
Tl 

where E(Tuf-R) is 
Tl 

A(M~-R) is the 

Proof. From definition E(~-R)-foJ :J A(~-R). Let 
T\ T\ 

m E E(Ma~R)-l o} and K- be the kernel of m. K- is an M-
T\ m -""m 

Id eal of ~-R de noted by Tuf-K-. Since 
Tl Tl m 

~-Risa division 
T\ 

M-Ring Ma -K- =Ma- [ o } or ~- K-m=~-R. 
Tl m Tl Tl Tl 

Since m/o and Tuf-K-/ 
Tl m 
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There f ore E(M°'-R ) -~o J =A(M°'-R). 
ri Tl 

Section 4 . A par ticu lar examp le 

The purpose of this section is to give an example of 

a ring that has an identity 1 along with an endomorphism 

f3 on it such that lf3/l, and hence give a counter example 

to the p seudo -theorem if ~-R is an M-Ring and R has an 

identity then for mE M (l,m)ri=l. 

Let R be the fo l lowing ring : 

+ 0 1 a a+l 9 0 1 a a+l 

0 0 1 a a+l 0 0 0 0 0 

1 1 0 a+l a 1 0 1 a a+l 

a a a+l 0 1 a 0 a a 0 

a+l a+l a 1 0 a+l 0 a+l 0 a+l 

Clearly the following subset R 1 of Risa subring of R. 

+ 0 a • 0 a 

0 0 a 0 0 0 

a a 0 a 0 a 

Define f3CRxR 1 such that of3=o, lf3==a, af3=a and (a+l)S =o. 



Now we need to check to see if 13 is an endomorphism. If 

x ,y E R then for 

(1) x=o, (x+y)i3=y p=o+yi3=oi3+yi3=xi3+yi3 and (xy)p=O p=o= 

yp=oi3yi3=xi3yi3 

(2) x=l, y=a. (l+a)i3=o=a+a=li3+ai3 and (la) p=ap =a=aa= 

lpa p 

(3) x=l, y=a+l. (l+a+l)p=ap=a=a+o=lp+(a+l) ~ and 

[l(a+l)]i3=(a+l)p=o=lpo=li3(a+l)i3 

(4) x=l, y=l. (l+l)p=Op=o=o+o=lp+lp and (ll ) p=l p=a = 

aa=lplp 

(5) x=a, y=a. (a+a) i3=oi3=o=a +a=a i3+ap an~ ( aa ) p=a~ = 

a=aa=apai3 

(6) x=a, y=a+l. (a+a+l)i3=li3=a=a+o= l~+(a +l)i3 and 

[a(a+l)]i3=oi3=o=ai3o=ap(a+l)i3. 

Henc e , 13 is an endomorphism such that lp=a/1 . 

Let M=f2( and define a such th Qt 2a =p. Then Ma-R 
Tl 

is an M-Ring. 

Section 5. Examples of 1\:- Rings 
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(5.1) Example of an M-Ring. Let (R,+,•) be any 

ring. Define Tl C [RxE(R)]xR such t ne .. t (a,m)ri=am for af R 

and m E E(R) . The a associated wi tn Tl is t he identity map 

of E(R) onto E(R). If (a,m) =(a' ,m') then a=a' and m=ini", 

and (a,m)ri=am=a'm'=(a' ,m')ri. Henc e , Tl is a function on 

RxE(R) . For a,b ER and mE E(R) (a+b,m)ri=( a +b)m=am+bm= 

(a,m)ri+(b,n)ri and (ab,m)ri=(ab)m=ambm=(a,m)ri(b,m)ri. 

Therefore E(R )a-R is an M-Ring. 
Tl 

(5.2) Example of an M-Rin g . Let C denote the set 
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of complex numbers 9 and R=[(~ ~) / a,b,c,d E c] and define 

+ and o as the usual matrix addition and multiplication 

on Ro Then (R,+~o) is a non-commutative ring. Let S= 

f(~ ~) f a,b,c E cjCR. Then for a=(~~), ~=(~' ~:) ( s 

= (a b) (a r b ') == (aa I ab 1 +be') E a/3 0 C O C 1 0 CC I S 

and 

( - )=(a b) (-a i -b ')=ca-a I b-b ') E 
a+ l3 0 C + o =C 1 o c-c 1 So 

Hence, Sis a subring of Ro Define the map m such that 
rl 

- (a o) amrl= o o o 
Clearly m is single-valued. Also, 

rl 

and 

- (1 0) am = , r 6 o o It can be shoV1n 

that all of the above def ined maps are in E(S)o Consider 

now the set M= tl,ooo,8} and the map TI such that iTI~m for 
r. 

l 

i=l,•oo,8. By the definition of TI it is clear that it is 

a single-valued map of Minto E(S). Hence Mand S along 

with TI form an M-Ringo 

(5.3) Example of an M-Ring. Let Rand S be the same 

rings as in example (5.2) o For a EC let a denote the con-



jugate of a. Define the maps m1 ,••e,m 1 such that for 
1 , 8 

Clearly 

(a b) (a I b ') E m1 is single-valued. For a- A- s - 0 C ',-,- 0 C 1 
1 

(al3)m ==(aar o) = (aai o) =(a o)·( aT o) =am l3m 
11 0 0 0 0 0 0 0 0 11 11 

and 

(a+l3)m 1l= (a+oa
1 

oo)=(ao+aT o) (a o)(a' o) - -o = o o o o =am1
1

l3m1
1 

Hence, ml E E(S). Sim ilar ly it can be shown that the 
1 

rest of the maps are in E( S) also. Define -r C: MxE(S) (M= 

tl, ••• ,8}) such that n-r~m1 for n =l, •.• ,8. By the defini­
n 

tion of -r is is clear that it is a single-v alu ed map on M 

into E(S). Hence, Mand S along with -r form an M-Ring. 

(5.4) Example of a 2-multiple M-Ring. By consider­

in g examples (5.2) and (5.3) together we have a 2-multiple 

M-Ring. Note that if we denote the images of am and 
rn 

am1 as a#n and n#a respectively then 4#a=a~4, 5#a=a#5, 
n 

6#a=a#6 and 8#a=a#8 are the only ones that commute. 

(5.5) Example of an M-Ring. Let (F[ x ],+,·) be the 

extension of the field F over x. Then for a,b,c E F[x] 

na . nb . nc . 
a=[:a.xi, b=Lb . xi, and C= Lc . xi. Define m CF[xJxF[x] 

. l . l . l u 
l~O l=O l=O 

n a . 
such that am = L a . u 1 where u E F [x] • If a= b then na=nb u . l 

l=O 

n . nb . 
and a .=b. for i=l, ••• ,na• Hence am =r=a.u 1 ='b . u 1 =bm. 

l l u . l f-i u 
lo::O l=O 

Ther efore mu is a function on F[x]. Furthermore, 
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n +nb . n +nb . 
(ab)m ,=( 1= ( t a_.:b, .)xi~m = r (ta .b. ·)ui u . . ,, l-J u . . J l-J 

1=0 J=O u l=O J=O 

n ) ~ (La O u i ( L b • u i) = ( am, ) ( bm ) 0 1! i . i u u 
l=O l=O 

Now define cx.CF [x]xE(F[x]) such that ucx.=m f or u~F[x]. u 

n n a . a . 
If U:-::U I th en am =La. Ul= L a. ( u r) l=am '. Ther efore ex, u . l . l u 

l= O l=O 

is a functi on on F [x] . Defining a(ucx.)=(a,u)n for a,u E 

F[x] F[x]~ -F [x ] is an M-Ring. 
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(5. 6) Exampl e of an M-Ring. If in the example above 

we ha d required u E F then M=F and Fcx,-F [x] would be an M-
n 

Ring. 

(5.7) Bxample of an M-Sub rin g . Consider the M-Ring 

in example (5. 5) . Fis a subri ng of F[x] and for af F and 

muf E(F [x]) am =a E F. Henc e~ F[ x ]cx,-F is a M-Subring of u n 
F[ x]cx,-F [x]. 

n 
(5. 8) Example of an M-Subring. Consider the M-Ring 

in example (5.6 ). Cl early Fcx,-F is an M-Subring of Fcx,-F [x]. 
~ n 

Example of an M=homomorphism. On the M-Rings 

F[x]~-F[x] and F[x]~-F define n:CF[x]xF such that for a 



n a . 
in F[x] an:=a where a= L. a; x 1 

0 

0 i=o ~ 
If a=b then an:=a =b =brr 

0 0 

and hence re is a function on F[x]. For a,b E' F[x] (a+b)rc 
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morphism of F[x] into F. For aE F[ x] ( am )n=a =arc=(arc)m . 
U O U 

Hence n: is an M-homomorphism of F[x] into F. 

(5ol0) Example of an M-Ring. Let R=[(a 1 , ••• ,an) l 
ai E reals for all i 1 and define + and • such that for a= 

(a 1 , •.• ,an)~ b =(b 1 , ••• , bn) ER a+b=(a 1 +b1 , ••• ,an+bn) and 

a 0 b =(a 1 •b 1 , ••• ,an·bn). Clearly (R,+,·) is a ring. Define 

the map m. such that am.; =(a .., 'o O O ,a. ) where (il' • • 0 ,in) 
l ..L .1.l in 

is a permutation of (1, .•• ,n). Clearly m. is a function 
l 

on R. For a,bER (a+b)m.=(a 1+b1 , ... ,a +b )m.=( a. +b . " 
1 n n 1 1 1 i 1 

o o O 'a • + b • ) = (a • 7 0 0 O 'a • ) + ( b • ' o o o 'b • ) = aiii • + bm • and 
l l ll l ll l l l n n n n 

(ab)m.=(a. b . , ••• ,a. b . )=(a. , ••• ,a. )(b . , ••• ,b. )= 
1 1 1 1 1 in in 1 1 in 1 1 in 

(am. )(bm . ). Hence m. E E(R). Now define ex( MxE(R) such 
l l l 

that iex=mi where M=[l, •.• ,n!}. By the definition of ex 

it is a function on M. Therefore Mex-R for (a,i)~=a(iex)= 
~ 

am. is an M~Ring. 
l 

(5.11) Example of an M-Ring where Mis the set R. 

Let R be any division ring. 
-1 a ER acpb=bab where b ER. 

Define cpbC RxR s uch t hat for 

If a=a 1 t h en b a =oa ' an d bab-l= 

ba 1b-l. Hence cpbis functio n on R for any o/bE R. For 

- -1 -1 -1 a,c ER (a+c)cpb ::::b(a+c)b =bab +bcb =acpb+bcpb and (ac)cpb= 

b(ac)b- 1~b[a(b- 1b)c ]b-l =(b ab- 1 )(bcb- 1 ) =( acpb)(c cpb)o 

Therefore <Pb E E(R) for each b ER. Define exC RxE(R) such 
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t ha t bcx.=~b ' If b~b' then b-l=(b 1 )-l and a(j)b=bab-l=b'a(b 1 )-l 

=a(j)b I fer a ll a ER. Therefore ex. is a function on R. Hence 

for T]C(RxR)xR such that (a,b)ri=a(bcx.) for a,bER RO'..-R is 
T\ 

an M-Ring. 

Note that if Risa comutative division ring then a(j)b 

=a=a(i)c for all b,c ER and hence (j)b-=<.f-c f or all b,cER. 

Furth ermore the mappin g cpb i s jus t t he identi ty map for 

all bf R, 

(5.12) Example of an 

M-Ring in exampl e ( 5,11 ) , 

M- Subr in g . Let HO'..-R be t he 
r1 

LcL R '=[aE R lab=ba for all bE RJ. 
R 1 '/-(/J since l,oER 1 • If a,b~R' then for any cER ac=ca 

and bc=cb. Thus (ab)c=a(bc)=a(cb)=(ac)b=(ca)b=c(ab) and 

(a-b)c=ac-bc=ca-cb=c(a-b). Therefore ab,a-bE R 1 and 

hence R' is a subri.ng of R. For a ER I and (i)b f E(R) a(j)b= 

bab-l==a(bb-l)=a ER 1 • Hence RO'..-R I is an M-Subring of 
T\ 

O'.. R -R. 
T\ 

(5.13) Example of an M-Ring. Let F={f jf is a 

function that maps the reals into the reals}. By defining 

+ and • such that for any f ,g E F and x E reals (f+g)(x)= 

f(x)+g(x) and (f•g)(x)=f(x)•g(x) (F,+,•) is a ring. De­

fine T\ C(FxF)xF such that (f 'lg)T]=f#g where for xE R 

[f#g](x) =-f(g(x)). For (f'lg)=(f 1,g 1 ) [f#gJ(x)=f( g (x))= 

f(g'(x))=f 1 (g 1 (x))=[f 1#g'](x), Th erefore T\ is a function 

on FxF . Futhermore for f,g,hEF and xfR [( f+ g ) lkh](x)= 

(f+g)(h(x))=f(h(x))+g(h(x))=[f#h](x)+[g#h ]( x)=[(f#h)+ 

(g#h)J(x) and [(fg)#h](x)=(fg)(h(x))=f(h(x))g(h(x))= 

[f#h](x)[g#h](x)=[(f#h)(g#h)J(x). Therefore FO'..-F is an 
Tl 

M~Ring where (f,g)ri=f(gO'..) for f,gE F. 
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(5.14) Example of an M-Rin g . Let R be a commutative 

ring of c haracteristic p where pis a prime. Define ID C 

RxR such that for a ER am:::aP ER. Then if a=a I aP=(a I )P. 

Therefore ID is a function on R. Al s o for a,bE R (a+b)ID= 

(a+b)P =aP+bP=am+bID and (a b )ID=(ab) P =aPbP=aIDbID. Hence 

IDEE(R). Define a 1CRxE(R) such that for all aER aa 1 =m 

and (a,b)TJ=a(ba 1 )=a ID. Hence , R~l - R is a n M- Rin g. 

We can ob t a i n anot h er M- Rin g fr om the above example 

by de fining a 2 Cto,l, 2 }xE( R ) such that oa 2 =oE E (R), la 2= 

IE E(R ) [I is tbe identity en d omor p h i sm] a nd 2a 2 =ID. Then 
. ('! 

{o, 1 , ~] '- H :u:; o.n t --Rin g. 
Y\ 
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The right expanded rin g will be defined and its 

equivalence with an M-Ring proved. The question as to 

whether an expanded ring exists will be resolved. Again 

the last sections will be reserved for examples. 

Section 1. Right semi-expanded rings 

(1.1) Defini t ions. (R-i+, 0 , # ) is a bare expanded BR 

(BEBR) iff (R,+, 0
) is a BR and # is a binary operation on 

R. If (R,+,•,#) is a BEBR then Risa right semi-expanded 

BR (RSEBR) i f f for any x,y,z ER (a) (x+y)#z=(x#z)+(y#z) 

and (b) ( x •y) # z=(x # z)•(y#z). 

(1.2) Notation. We adopt the convention that when 

x#y.z#w or x#y+z~w are written we mean (x#y)•(z#w) and 

(x#y)+(z#w) respectively. 

(1.3) Theorem. If (R,+,•, # ) is a RSEBR and #=n 

then Ra-(R,+,•) is an M-BR. 
n 

Proof. n is a function on RxR since# is a binary 

operation on R. For x,y,z ER (x+y,z)n=(x+y)#z=x#z+y#z = 

(x,z)n+(y,z)n and (x 0 y,z)n=(x.y)#z=x#z 0 y#z=(x,z)n°(y,z)n. 

(1.4) Theorem. If Ra-(R,+,•) is an M-BR and ~=n n 
then (R,+,•, # ) is a RSEBR. 

Proof. Same as in theorem (l.3). 
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(1.5) Remark. From theorems (1.3) and (1.4) a RSEBR 

is simply an M-BR where Mis equal to the set R. 

(106) Theoremo If (R,+, 0 ,#) is a RSEBR then for 

x ,Y £ R, k E: I, and j E N 

(a) o#x=o 

(b) (kx)#y=k(x#y) 

(c) (-x)#y=-(x#y) 

(d) xj#y==(x#y)j 

(e) if (R,+, 0
) is a SR with a right (left) identity 

r wrt •, R has no left (right) divisors of zero, and R/fo} 

then r#x=r. 

(f) if (R,+, 0 ) is a division ring then 

(1) k k 
X #y=(x#y) 

(2) x- 1#y=(x#y)-l 

(3) l#x=l where 1 is the identity of R wrt. 

an d xa is not equal to the zero-endomorphism 

of R. 

Proof. Follows from theorem (1.8) in chapter II. 

(1.7) Remark. If (R,+,•,#) is a BEBR we can consider 

(R,+,#) as a BR, and if (R,+, 0 ,#) is a RSEBR (R,+,#) can 

be considered as a RSR. Hence, all of the theorems in 

chapter I section I can be applied to (R,+,#) with no­

tational changes. However, many of the theorems and def­

initions will be restated to give more continuity to this 

section. 

(1.8) Definitions. If (R,+, 0 ,#) is a BEBR then r# 

is a right (left) identity of R wrt # iff for any xER 

x#r#=x (r##x=x). R has a two sided identity (or identity) 
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r# wrt # iff r# is both a left and a right identity of R 

wrt # o 

(1.9) The orem. If Risa RSEBR with a left identity 

r# wrt # and R/to} then r#/o. 

Proof. Same as in theorem (1.8) in chapter I. 

(1.10) Theorem. If (R,+,.,#) is a RSESR with a left 

identity r# wr t #, (R,+,•) has a right (left) identity r 

wrt • and (R,+,•) has no left (right) divisors of zero, 

then r# (/. [o ,r}. 

Proof. Theorem (1.9) shows r#/o. Assume r# =r. Then 

o=r##o=r#o=r. But this contradicts theorem (1.8) in 

chapter I. 

(1.11) Remark. If Risa RSEBR which has a right 

identity r# wrt # then r# may be zero as shown by example 

(5.1). Furth ermore , if Risa RSEBR which has a right 

(left) identity r wrt • and has a right identity r # wrt 

# then r ~ may be equa l tor as shown in example (5.3). 

(1.12) Theorem. If Risa RSEBR with Ra-Ras its 
T] 

M-Ring equivalence and R has a left identity e wrt # 

but R has no right identities wrt ~ then (a) a is one 

to one and (b) I¢Ra=R where for xER xI=x. 

Proof. Same as in theorem (1.13) in chapter I. 

( 1.13) Defin itions . If R is a BEBR then x ER is 

a right (left) divisor of z ER wrt # iff there exists 

a y ER such that y/z and y#x=z (x#y=z). x E: R is a 

general right (left) divisor of z wrt # iff there exists 

a y ER such that y#x=z (x#y=z). x ER is a divisor of z 
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(general divisor of z) wrt # iff xis both a right and 

a left divisor of z (xis both a general right and a 

general left divisor of z). 

(1.14) Remark. Our attention will be focused on 

divisors of zero and divisors of identities wrt •• In 

example (6.3) b+l is a general divisor of o, 1, a, and a+l 

as well as a divisor of o, 1, a, and a+l wrt #. Also, in 

example (6.3) we see that b+l is a divisor of a+b+l wrt • 

but b+l is not a divisor of a+b+l wrt ~. Furthermore, 

in example (6.3) b+l is a divisor of a+l wrt # , but b+l 

is not a divisor of a+l wrt •• Hence th e re seems to be 

no connection between divisors wrt # and divisors wrt • 

for arbitrary divisors. 

(1 ,15) Definitions. If R is a BEER then xER obeys 

right cane ellation law wrt # iff when y, z ER such that 

y#x=z#x then y=z; x ER obeys the left concellation law 

wrt # iff when y,zE R such that x#y=x~z then y=z. 

(1.16) Theorem. If Risa RSEdivision ring with 

1 as the identity wrt O and x ER obeys the right cane ell­

ation law wrt # then xis not a right divisor of zero or 

1 wrt #, and xis a general right divisor of 1 only if 

x/o. 
Proof. If there exists y E: R such that y#x=o then 

by theorem (1.6) y#x=o#x=o. Since x obeys the right 

cancellation law y=o. Hence, xis not a right divisor of 

zero. If there exists a y ER such that y#x=l then by 

theorem (1.6) y#x=l#x=l. Which implies y=l because x 

obeys the right cancellation law. Hence, xis not a right 
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divisor of lo If x=o then by theorem (1.6) l#x=l. 

(1.17) Theorem. If Risa RSE division ring with 

1 as its identity wrt •, xER is not a right divisor of 

zero wrt #, and xis not a right divisor of 1 wrt # then 

x obeys the right cancellation law. 

Proof o Let y s z E: R such that y#x=z4x. If y=o then 

Z=o since xis not a right divisor of zero wrt 4. Also, 

if z=o then y=Oo Sox obeys the right cancellation la w 

in these cases. Suppose y,z/o. Then y#x,z4x/o. Because 

(R,+,•) is a division ring z4x has an inverse wrt ·, and 

by theorem (1.6) (z#x)- 1=z- 1#x. Hence, l=(y#x)(z#x)-l= 

(y#x)(z- 1#x)~(yz- 1 )#x. Since xis not a right divisor of 

1 wrt # yz- 1=1 which implies y=z. 

(1.18) Remarko From theorems (1.16) and (1.17) if 

D = {.x f R Ix is a right divisor of q wrt #] and Cr=tx f R l rq 

x obeys the right cancellation law wrt #} then Cr=(R-Dr
0

) 

(\ (R-Dr 1 )=R-(Dr 0 U Dr 1 ). 

(1.19) Definition. If Risa BEER and R has a right 

(left) identity r wrt # then y is a right inverse of x 

wrt # relative tor iff x#y=r, and y is a left inverse of 

x wrt # relative tor iff y#x=r. 

aection 2. Semi -ex panded rings 

In tbis section we are going to define the left 

semi-BR and the semi-BR. Then the rest of the section 

is devoted to deriving an equivalence theorem that wi ll 

be helpful in finding an example of a semi-ring. 
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(2.1) Definitionso If (R,+,•,#) is a BEBR then R 

is a left semi-expanded BR (LSEBR) iff for any x,y,z E: R 

(a) z#(x+y)=z#x+z#y and (b) z#(xy)=(z#x)(z#y); and R is 

a semi-expanded BR (SEBR) iff Risa RSEBR and a LSEBR. 

(2o2) Remark. A LSEBR is really the same as a 

RSEBR except for the notation. Hence, all of the pr0per­

ties of RSEBRs apply to LSEBRs. 

(2o3) Notationo If · (R,+,•,#) is a BEBR let #
1

=+, 

# 2=•, and # 3=#. 

(2.4) Theorem. If (R,+,•,#) is a SEBR, n1 =#, and 

n2=~n 1 where~ C(RxR)x(RxR) is a function on RxR such 

that (x,y)~=(y,x) for x,y ER then Ral,cx.2-(R,+,•) is a 
n1,n2 

symmetric 2-multiple M-BR. 

Proof. A symmetric 2-multiple M-BR was defined in 

definition (1.7) of chapter II. 

Clearly n 1 and n 2 are both functions on RxR into R. 

For x,y,z ER and i=l,2 

and 

(x#iy,z)n 1 =(x#iy)#z =(x#z)#i(y#z)=(x,z)n 1#i(y,z)n 1 

(x# . y,z)n 2 =(x#.y,z)~n 1 =(z,x#.y)n 1 =z#(x#.y)= 
l l l l 

(z#x)#i(z#y)=(z,x)n 1#i(z,y)n 1 =(x,z)~n 1~i(y,z)~n 1 = 

(x,z)n 2#i(y,z)n 2 ° 

(2.5) Theorem. 

2-multiple M-BR and #=n 1 then (R,+,•,#) is a SEBR. 

Proof. Since n 1 is a function on RxR # is a binary 

operation on R. For x,y, z f R and i=l, 2 

(x# . y)#z=(x#.y,z)n 1 =(x,z)n 1 # . (y,z) n 1 = (x ~z)# . (y#z) 
l l ~ l l 
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and z# (x# .y)=(z,x#.y)n 1=(z,x#.y)~n 2=(x#.y,z)n 2= 
l l l l 

(z #x)#i (z #y). 

(2.6) Remarks. From theorems (2.4) and (2.5) a SEER 

can be considered as a symmetric 2-multiple M- BR and a 

special type of a symmetric 2-multiple M-BR can be co n~ 

sider ed as a SEBR. The theor ems for RSEBRs and LSEBRs 

hold for SEBRs. 

(2.7) Theorem. 

2-multiple M-BR that is equivalent with the SEER (R,+, 0 ,#) 

then for x,y,z ER (z, x# 1y )n 1=( z,x) n1#i(z,y )n 1 for i=l,2. 

Proof. Let x,y,z ER. Then ( z ,x#iy )n 1=(z,x #iy )~n 2= 

(x#iy,z)n 2=(x,z)n 2#i(y,z)n 2=(x,z)~n 1#i(y,z)~n 1= 

(z,x)n 1#i(z,y) n1 • 

(2.8) Def initio n. If (R,+,•) is a BR and E(R) is : 

the set of all endomorphisms on R then we define+ and~ 

subsets of [E(R)xE(R) ]xF where F C RxR such that if z ER 

and f3,6 EE(R) then z(i3,6)+ =z i3+z6 and z([3,6)7=z[3•z6. 

(2.9) Theorem. If (R,+,•) is a BR, and+ and• 

are defined as in definit i on (2.8) then (a) F={/ If is 

a function on R into R} and (b) +and: are functions. 

Proof • Let 't = ( i3 , 6 ) , -r 1 = ( i3 ' , 6 1 ) E E ( R ) xE ( R ) ., 

Part (a). Let z '"'w ER. Then for ¥1 =+, ¥2=:, #1 =+, 



Hence, T#i for i=l , 2 is a function on Ro Therefore, F= 

(f \ f is a function on R into RJ. 
Part (b) o Let z E R and T= TI which implies ~= ~ 1 and 

6=6 1 o Then for i=l,2 

Since z was arbitrary Ti .= T 1i . for i~l,2o Hence, ¥1=~ 
l l 

and ~2=: are functions. 
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(2.10) Remarko As shown in theorem (2o9) ~ + o and 

~ 0 6 are both functions on R into R for ~, 6 E E(R), but 

for an arbitrary BR, R, neither~+ 6 nor~ 7 6 need be 

an endomorphism on Ro 

(2.11) Theoremo If (R,+, 0 ,#) is a SEER with 

Ra:.l,a:.2-(R,+,•) as its symmetric 2-multiple M-BR equivalent, 
111 '112 

and R=Ra:.1 CE(R) then (R,+,~) is a BR where+ and~ are 

defined as in definition (2.8), and a:.1 is a homo­

morphism of R onto R. 

Proofo From theorem (2o9) +and• are functions. 

If a' b ER then there exists a' bf R such that aa:.l =a and 

ba:.1 =b. Let x ER. Then by the definition of xa:.1 and 

theorem (2.7) 

x(a#ibJ=x[(a#ib)a:. 1J =(x,a#ib)11 1=(x,a)~ 1#i(x,b)11 1= 

x(aa:,1)#ix(ba:.1)=x(a ii b) for i=l,2. 

Since x was arbitrary {aJ:;°"b;=a i. b for i=l,2. Thus for 
l l 

a,b ER a r.. b=(a# . b) ER. So, + and -;;-restricted to 
l l 



RxR are binary operations on Ro Furthermore, since 

a homomorphism of R onto R,, Thus, Risa BR under+ 

and 0 o 

(2ol2) Theoremo If (R,+,•) is a BR, (S,+,~) is 

a BR of endomorphisms of R wrt + and O as defined in 

definition (2.8), and a is a homomorphism of R into S 

then (R,+, 0 ,#) i s a SEER where x#y=x(ya) for x,yER. 
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Proof. By definition #C(RxR)xR. Let (a,b) = (a',b') 

which implies a =a 1 and b =b 1 • Then 

(a,b)#=a #b =a (o a) ~a 1 (b 1a) =a 1#b' =(a 1 ,b 1 )#. 

Therefore~# is a function on RxR and hence a binary 

operation on R. Let x,y~z ER. Then for i=l,2 

(x# . y)#z=(x#.y)(za)=[x(za)]# . [y(za)]=(x#z)# . (y#z)o 
l l l l 

Since a is a homomorphism 

z#(x#.y)=z[(x# . y)a]=z[(xa)J . (ya)]=[z(xa)J#. [z(ya)J 
l l l l 

=(z#x)# . (z#y) for i=l,2o 
l 

Therefore, (R,+,•,#) is a SEBRo 

(2.13) Remark. As shown in section 6 there does 

exist rings that satisfies the hypothesis of theorem 

(2ol2), and hence there exists SEBRso 

(2oJ ) Theoremo If (R,+,•,#) is a SESR with 

Ral,a2-(R,+, 0
) as its sy.!Jl.Illetric 2-multiple M-BR equi-

Tl1,Tl2 

valent, R=Ra 1 , and x#y=x(ya 1 )=xy for x,yER then for 

x ,Y, a, b ER ( a) axby+aybx=o (b) axby+bxay=o ( c) 

aybx=bxay (d) (ab+ab)x=o (e) (ab+ba)x=o (f) (a 2 +a 2 )x=o 



(g) x 7 y=y: x (h) (ab)x=(ba)x (i) -ao=o for all a ER 

(j) - 2 - 2 - - 2 (ax) +(bx) =( ax+bx) (k) 

X O y + y: X=O and (m) X 7 y + X: y=Oo 

Proof. Let x~y ,a, b ER and x=acx., y=ya ER. Then 

since x+y =x + y and x 0 y~x ~ y are endomorphisms 

(a) (ab)(x+y)=a(x+yJb(x+y)=a(x + y)b(x + y)= 

(ax+ay)(bx+by) =axbx+axby+aybx+ayby and (ab)(x+y)= 

(ab)x+(ab)y =axbx+aybyo Therefore, axby+aybx=Oo 

(b) (a+b)"'[xyj =(a+b)(x: y)=(a+b)x(a+b)y= 

(ax+bx)(ay+by)=axay+axby+bxay+bxby and (a+b)°(xyj= 

a(x 7 y)+b(x 7 y)=axay+bxby. Therefore, axby+bxay=o. 

(c) From (a) and (b) aybx=bxay. 

(d) Let y=x in (a). 

(e) Let y=x in (b). 

(f) Let Y=X and a=b in (a). 

( g ) If a=b in (c) then a(y: x)=a(x 7 y). Since 

a was arbitrary y • X==X O y • 

(h) Let x=y in (c). 

(i) Let a ER. Then ao=a(x-xJ=a[x + r:xTJ= 

ax+a"f=x). By the analogous t heo rem of theorem (1.6) for 

LSEBRs and since R is a RSring x#(-y)=-(x#y). Thus, 

aZ-::iJ =a#(-x)=-( a#x) =-[ a(xa)J =~(ax). Hence, ao=o. 

(j) Since (ax) 2=a2x (ax+bx) 2=a2x+b 2x+axbx+bxax= 

a2x+b 2x=(ax) 2+(bx) 2 o 

(k) Similar to (j). 

(1) By (i) and (a) if a=b and arbitrary a(x: y + 
-X o 

-, -YJ=o=ao. Since a was arb itr ary the theorem followso 
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(m) Similar to (1). 

(2.15) Theorem. If R satisfies the same conditions 

as in theorem (2.14-) and R has a right identity r wrt • 

then (a) a 9 r=a (b) 0 0 a=o, and (c) a+ a=o for all 

a Ro 

Proof. For aER (a) follows since a =a ·r=a • r. 

Since o-a=o for a SR o=o•a=o • a. In theorem (2.14-) 

part (m) let y~r and a=x. Then from part (a) above 

a O r+a ~ r=o implies a+a=o. 

(2.16) Theorem. If R satisfies the same conditions 

as in theorem (2.14-) and R is not commutative wrt • then 

the identity map of R onto R is not in R. 
Proof. If I E. R, where IC RxR such that xI=x for 

all x ER, then by part (c) in theorem (2.14-) ab=aibI= 

biaI=ba for all a,bER. 

(2.17) Theorem. If R is the same as in theorem 

(2.14-) and every non-zero element of R has order diff­

erent than two wr t (R,+,•) then a: b=a•b=o. 

Proof. Assume there exists a, b ER such that 

a• b/o. Then there exists cER such that c(a•b);io. 

By part (1) of theorem (2.14-) c[(a•b) + (a•b)]=co=o. 

Hence, o/c ( a 0b) E: R has order two. 

(2.18) Theorem. If R is the same as in theorem 

(2.17) and R has a right (left) identity then a#b=o 

for all a, b E R. 

Proof. Follows from theorems (2.15) and (2.17). 

(2.19) Theorem. If R is an integral domain with 
I 



characteristic different than two then there doesnot 

exist a binary operation :ft on R such that (R,+,•,#) 

not a trivial SEring (a triYial SEring is one where 

a#b=o for all a,b ER). 

Proof. Follows directly from theorem (2.18). 

(2.20) Theorem. If (R,+~ 0
) is a division ring 

and [o,l} (ER where 1 is the identity of R wrt o then 

there doesnot exist a binary operation# such that 

(R,+~·,#) is a not a trivial SEring. 

is 

Proof. Assume such a binary operation# exists. 

From theorem (2.15) part (a) I 7 l=l. Hence, for 

any o/x E. R x(I 7 l)=(xI) 0 (xl)=xl which implies that 

xl::::l. If there doe snot exist an o/x ER such that 

x+l/.o then for all o/x ER x+l=o. Thus, x=-1 for all 

x/o. Hence, x=-1=1 which implies R=fo,1}. Therefore, 

there exists a o/x ER such that x+l/o. Now l= (x+l )l= 

xI+ll=l+l which implies that l =o . But by theorem 

(1.8) in chapter I 1/.o. 

Section 3. Right expanded rings 

(3.1) Definition. If (R,+,•,#) is a RSEBR then 

Risa right expanded BR (REBR) iff the operation# is 

associative. If Risa SEBR then R is an expanded BR 

iff the operation# is associative. 

(3.2) Remark. Most of the theorems about RSEBRs 

hold for REBRs. 

(3.3) Theorem. If Risa BEBR with a right 
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identity r wrt # and x has a right inverse wrt # then x 

is not a r i ght div i sor of zero wrt # o 

Pr oof . Apply theorem (3.3) in c hapter ' I. 

(3 .4) Th eorem . If (R,+ 9 °,#) is a REd ivisio n ring 

with a right identity r wrt # and x has a right inverse 

wrt # then xis not a right divisor of 1 wrt # where l 

is the identity wrt •• 

Pr oof . Le t y be the right inverse of x wrt # 

relative tor. Assume xis a right divisor of 1. The n 

th ere ex i sts a z ER such that z;il and z#x:.:l. Usin g 

theorem (1.6) z=z#r=z#(x#y)~(z#x)#y=l#y=l. 

Section 4. Ideals and homomorphisms 

(4.1) Notation. When BEBR is used in the same 

sentence several times it refers to the same type of 

BEBR under discussion. 

(4.2) Definiti on s. If (R,+ 7 o,#) is a BEBR and 

.0/SCR then (S,+,•.#) is a subBEBR i ff (S,+,•,#) is a 

BEBR • .0/SCR is a right (lef t) ideal of the BEBR R 

i f f (S 7 +,•) is a subBR and x#=sES (s #x ES) for all xER 

and s E S. .0t'S CR is a rig ht=right (right-left) ideal 

of t he BEBR Riff S is a right (left) ideal of the 

BR (R,+, 0
) and Sis a right ideal of the BEER (R,+,•,#). 

s · milarly, le ft =left and left-right i deals of a BEER 

R are def i ned. .0/S CR is a i deal of the BEER R iff S 

is a left i d ea l of the BEBR Rand S i s a right ideal of 

the BEER R. .0/ S CR i.s a dual i deal of the BEBR iff S 
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is an ideal of the BEER (R,+~ 0 ,#) and S :is an ideal of 

the BR (R, +, •). 

(4.3) Theorem. I.f R i.s a BEER and 0/S CR then S 

1.s a subBEBR iff fer x,y ER x-y f R, x 0 y ER and x#y ER. 

Proof. Obvious. 

(4.4) Theorem. If (R,+, 0 ,#) is a SESR, 0/SCR is 

a dual ideal of R and @,®,iC (R/SxR/S)xR/S such that :for 

x=a+S,y :c-:b+SER/S (x,y)@=(a+b)+S, (x,y)®=a•b+S, and 

(x,y)@ ""a.#b+S then (R/S,@,®,i) is a SESR with e:l and@ 

being associative 1 f f O and# are associative respect­

ively. 

Proof. From the definitions of dual ideals and 

SEBRs, and from theorem (4.4) i n chapter I (R/S,©,®) 

and (R/S,©,@) are SRs wit h~ and@ being associative 

iff O and# are associative respectively. For x=a+S, 

y ::::: b +S, Z:=c+S E R/S 

(x©y)Oz=(ab+S)iz=(ab)#c+S=(a#c)(b#c)+S= 

(a#c+S)®(b# c+S)=[(a+S)@(c+S)J~[(b+S)@(c+3)]=(x@z)G(ylz) 

and zO(xQy) =zO(ab+S)=c#(ab)+S=(c#a)(c#b)+S = 

(c#a+S)®(c#b+S)=[(c1S)@(a+S) ]®[(c+S)@(b+S) ] =(z@x)®(z@y). 

Hence, (R/S,@,0,@) is a SESR. 

(4.5) Theorem. If 71 is a homomorphism of the 

BEER (R,+, 0 ,#) into the BEER (R,+,-;-,i) then Rn CR is 

a subBEBR. 

Proof. By theorrn (4.6) in ch ap ter I (R11,+,'7) is a 

subBR of (R, +, 7 ). For x=ari ,Y= b71 E Rn x#y== ( a11 )# (brl)"" 

(a#b)71 E R71. Hence, by theorem (4.3) (R71,+, 7 ,#) is a 
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subBEBR of Ro 

(4.6) Remarko One might wonder if there are two 

BEBRs with a homomorphism between them as defined in the 

definition (0 • . 3)o Examples (7.3) and (7.4) shows that 

they do exist. 

(4.7) Theorem. If Tl is a homomorphism of the 

RSEBR (R,+,·,#) in t o the RSEBR (R,+,~,#) and (R,+,•) 

and (R,+,~) are RSRs (LSRs) then K (kernal of n) is a 
n 

left-lef t (left=right) ideal of the RSERSR (RS ELSR) R. 

Proof. By theorem (4.7) in chapter I Kn is a 

left ideal of (R,+, 0 ). Let x E R and a E K • 
T' 

Then 

(a#x)n=(an)i(xn)=o '.A° (xn)=o. Therefore, a#xE K and 
Tl 

hence K is a left -l e1t ideal of (R,+,• ,#). 
Tl 

(4.8) Remark. A similar theorem to (4.7) holds 

for LSEBRs. 

( 4. 9) Th eore1 .,. If n is a homomorphism of the 

SESR (R,+, 0 ,#) into the SESR (R,+,7,J) then K is a 
Tl 

dual i.deal of R. 

Proof. Fol lows from theorem (4.8) in chapter I, 

theorem (4.7) above and remark (4.8) above. 

(4.10) Theorem. If (R,+,•,#), (R,+,7,J) and 

(R, +, 7 ,'i) are BEBRs, and <p C RxR and <p C RxR are homo~ 

morphisms then <p<p (the resultant) is a homomorphism of 

R into R. 
Proof. Similar to the proof of theorem (4.9) in 

chapter I. 

(4.11) Theorem. If (R,@,O,i) is the factor SESR 
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of the SESR (R,+, 0 ~#) wrt the dual ~de al S of Rand 

p C Rx:R such that for x ER xp:=x+S then p is a homomorphism. 

Proof. If x,y €R then (x#y)p::.:(x#y)+S=(x+S)i(y+S)= 

xp@yp. Hence, by theorem (4.10) in chapter Ip is a 

homomorphism of R into R. 
(4.12) Remark. pas defined in theorem (4.11) is 

called the natural homomorphism of R into R=R/S. 

( 4 .13) Theorem. If R and R I are SESRs, <.p C RxR 1 

is a homomorphism, R is the factor SESR of R wrt the dual 

ideal ¢;,{SC K<.p, and <p C RxR I such that (x+S)cp=x<.p for all 

x ER then (a) <.p is a homomorphism of R=R/S into R I and 

<.p=p<p where pis the natural homomorphism of R into Rand 

(b) <.pis an isomorphism iff K<.p=S. 

Proof. Along with the proof of theorem (4.12) in 

chapter I and with the fact that for x+S,y+S ER 

[(x+S)@(y+S) ] cp=(x#y+ S)cp=(x#y)<.p=(x<.p)#(y<.p)=(x+S)cpi(y+S)<p 

we have part (a). Pa rt (b) follows from part (b) of 

theorem (4.12) in chapter I. 

(4.14) Remark. Note that there is a difference 

between ar1 M-homomorphism and a homomorphism. As shown 

in example (7.3) they may be the same, but need not be 

as shown in example (7.4). 

Section 5. Examples of RSEBRs 

The following examples are given with out proof so 

as to save space. Furthermore, (Rj+) in the examples 

will always be an abelian group. The following abrevia-
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tions will be usedo C~commutative, A-associative, RD­

obeys the righ~ distributive law, LD- obeys the left 

distribut_;ive law. If N is placed before any of the above 

abreviations it stan ds for not (e.g. NC means not com-

mutative). Also, the following sets are used. I ::: r 

f.x ER Ix is a right identity wrt #} (I 1 ), Dr
2

-{xE RI x is 

a right divisor of z vJr"G ¾ 5 (D12 ), Cr==Zx ER I x obeys the 

right cancellation law wrt #} ( C1 ), and Ve= tx ER I x has 
·- r 

a right inverse wrt # relative to the right (left) 

!dentity e} (V~)G 

(5.1) REBR R with right identities but no left 

identities. Let R be a BR with at least two elements. 

Defins x#y==x for all x'lyE R. 

such that# is NC and NLDo However, I =R, r 1~¢, D = r · ro 

If (R,+,•) is a division 

ring then Drl =¢ and D11 a={lf • 

(5.2) RER with a unique right identity. Let R be 

the M-Ring in example (5.5) in chapter II. Define# as 

na . na . nb . 
a#b = L a.(b)l where a=L a.x~ b=Lb,xlE F [x]o Then 

i=o l i=o 1 i=o 1 

(R,+, 0 ,#) is a RER. # is NC and NLD. Ir=txJ, I
1
=¢, 

Dro""Dr 1 = \aEF[x] \ afF}, and c1 =~aEF[x] j a~Ff. The 

sets Cr' D10 , and n11 are not easily fc,·un d. 

( 5. 3) RSE di vision ring with a unique right ident-­

i ty. Le t R be the M-Ring in example (5.11) in chapter 



II. For# defined as x#y=x~y=yxy-l (R,+, 0 ,#) is a RSE 

di vision ri.ng where # is NC, NA, and NLD o Ir =-= \l! , r
1 
=0, 

Dr
0

= {o}, D10 ~ {~, Dr1==0, n11 ~f11, Cr =R, c1 is not easily 

de te rminedo v1~R and v1
1~ 1 o , r ' 

Notice that the identity wrt O is the same as the 

ri ght .ident ity wr-1:; # o 

(5.4) RER with an ide n tit y. Let R be the M-Ring 

in example (5.13) in ch apter II. Then (R,+,·, # ) is a 

RER where# is NC and NLDo Ir=I 1cfI1 where I(x) =x for 

all x E reals, Dr
0

==\ f E-R If i.s not onto) and D10 =\f ER I 

there exists an x f reals such that f (x)=O). 1 such that 

l(x) ,:::l for all xEreals is the identity of (R,+,•) wrt 

•. Drl = [f E R I f is not onto J, n11 = \f E R I there exists 

an x E reals such that f(x)=lJ, Cr = \f ER l f is onto], 

c1 = 1f ER I f is one-to-oneJ , and v;=vf= t f ER I f is one­

to-one and onto]. 

Se cti on 6. Examples of SErings 

Using the equivalence theorems and conditions on 

a SEBR examples of SEr ings will be given . 

(6.1) Trivial SBR (semi-B R). Let (R,+,•) be a BR 

such t hat o• o=o . Def i ne # C (RxR)xR such th at for x,yE R 

x#y =oo Clearly,# is a binary operationo Furth ermore , 

for x~y,z fR (x+y)#z :::::o=o+o=x #z+y #z , (xy)#z=O= O•O= 

(x#z)(y#z), and x#y=o ~y#x. Hence, (R,+,·,#) is a semi ~ 

ring. 
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(6.2) Example of an expanded ring that is com­

mutative wrt the third operation and an example of a 

SEring that is not commutative wrt to the third opera­

tion. 

Let R be the following ring. 

+ 0 1 a a+l . 0 1 a a+l 

0 0 1 a a+l 0 0 0 0 0 

l 1 0 a+ l a 1 0 1 a a+l 

a a a+l 0 1 a 0 a a 0 

a+l a+l a 1 0 a+l 0 a+l 0 a+l 

The following are subrings of R. 

+ 0 0 

0 0 0 0 

+ 0 l . 0 1 

0 0 1 0 0 0 

1 l 0 l 0 1 
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+ 0 a . 0 a 

0 0 a 0 0 0 

a a 0 a 0 a 

+ 0 a+ l • 0 a+l 

0 0 a+l 0 0 0 

a+l a+ l 0 a+l 0 a+l 

Define 

(a) o CRxR 1 such that xo=o for all x ER 

(b) (()2 CRxR 2 such that 0(() 2 =o=a(j)2 and 1(()2 =l=(a+l)(()
2 

( c) cp
3 

C RxR
3 

such th a t o<p
3

=o= ( a+l )(()
3 

and 

l(()
3

=a=a<p
3 

(d) (()4 CRxR 4 such that 0(() 4 =o=a(()4 and 

Clearly o~ (()2 ~ (/)
3

~ and <p4 are functions. If x~yER 

then (x+y)o=O=O+O=Xo+yo and (xy)o=O=OO=(xo)(yo). 

Hence o E E(R). Let us show that (()2 9 (1)
3 

~ and (1)
4 

are 

also in E(R). If x~yER then for i=2,3~4 

(x+X)(!) o =O(p., =O=X(po +X(po ~ (xx)(()
1
o =(X(!)l,) (X(!)l0 )=X(/)

1
° 

l .1. l l 

and for 
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(a) x=o, y/o 

(x+y )cpi=y<pi=o+y<pi=xcpi+y~i 

(xy)cp~ =o<p. ::::o=oycp. ==(.xcp. )(yep . ) • 
.J.. l l l 1. 

(b) X=l, y=a 

(l+a)cp 2=l=lcp 2+acp2 , (l+a)cp
3

=o=lcp
3

+acp
3

, 

(l+a)cp 4 =a+l =lcp4 +acp4 , (la)cp 2=acp2=o=(lcp 2 )(acp
2

), 

(c) x=l , y=a+l 

(l+a+l)cp 2=acp2=o=lcp2+(a+l)cp 2 i (l+a+l)cp
3

=acp
3

= 
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a=lcp3+ ( a+l) cp3 ~ ( l+a+l) cp1+ =acp4 = o=lcp4 + ( a+l) cp4 , 

[l(a+l)Jcp 2=(a+l)cp 2=1=(lcp 2 )[(a+l)cp 2J, [l(a+l)Jcp
3 

= (a+l)cp 3=o=(lcp 3 )[(a+l)cp
3

J, [l(a+l)Jcp 4 =(a+l)cp 4 

= a+l =(lcp4 )[(a+l)cp 4 J. 

(d) x=a , y=a+l 

(a+a+l)cp 2=l<p2=l=acp2+(a+l)cp 2 , (a+a+l)cp
3

=lcp
3

= 

a =a<p3+(a+l)cp 3 , (a+a+l)cp 4 =lcp4 =o=acp4 +(a+l)cp 4 , 

[a(a+l)Jcp 2=o<p2=o=(acp2 )[(a+l)cp 2 J, [a(a+l ) Jcp
3

= 

o<p3=o=(acp3 ) [(a +l)cp
3

J, [a(a+l)Jcp 4 =ocp
4

=o= 

(acp4 )[(a+l)cp 4 J. 

Hence~ cp2 , cp3 , and cp4 are also in E(R). 

Let us show now that [o ,~31 forms a ring wrt the 

operations+ and· as defined in theorem (2.8). For 

arbitr ary x ER 



(a) x(o+o)=XO+XO=O+O=XO 

x(o 0 o)=xo 0 xo=o 0 o=xo 

(b) x(o+~3)=XO+X~3=0+X~3=X~3 

x(~3+o)=X~3+XO=X~3*0=X~3 

x(o·~3)=XO•X~3=0·X~3=XO 

x(~3 ° o)=x~3 °XO=X~3 ,. O=XO 

(c) x(~ 3+~3 )=x~
3

+x~
3

=o=xo 

x(~3·~3)=X~3·X~3=X~3 

Hence, 

- - -
+ 0 ~3 0 

- - -
0 0 ~3 0 

-
~3 ~3 0 ~3 

is a ring with identity. 

-
0 ~3 

- -
0 0 

-
0 ~3 

Clearly 'J T2 C R2xR, T
3 

C R
3
xR and T4 C R4xR defined 

as OTi=o for i=2~3,4, 1T2=~
3

, aT
3

=~
3

, and (a+l)T 4 =~ 4 

are isomorphisms. Define a 2 =~ 2 T2 'Ja
3

=~
3

T
3 

and a 4 =~4 T
3 

where for i=2,3,4 xa.=(x~.)T .• Clearly, a 2 ,a
3 

and a 4 1 l l 

are homomorphisms of R onto R. Hence if for x,y ER 

we define #2 '1#3 and #4 such that x#iy=-x(ya.) for 
l 

i=2,3,4 then (R'J+ , 0 ,# 1 ) for i=2,3,4 are SErings with 

the following tables for the operations # 1 • (The 

tables were filled in by considering specific values 

for XsY and i in x#iy=x(ya.)=x ((y~ . )T,))o 
l l 1 
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#i 0 l a a+l #3 0 1 a a+l 

0 0 0 0 0 0 0 0 0 0 

1 0 a 0 a 1 0 a a 0 

a 0 a 0 a a 0 a a 0 

a+l 0 0 0 0 a+l 0 0 0 0 

i=2 and 4 

Since the tables for i=2 anld i=4 are the same we have 

only two distinct SErings . From the tables we see that 

(R,+,·,# 2 ) is a noncom.mutative and (R,+,• , #
3

) is com­

mutative. By trying every combination of three elements 

(R,+,·,#
3

) can be shown to be associativ e while (R,+,·,# 2 ) 

is not since a# 2 [1# 2 (a+l )] =,a # 2 a=o and (a # 2 1)# 2 (a+l)= 

a# 2 (a+l) =ao Hence, (R,+,•, -# 2 ) is a noncommutati v e SEring 

and (R,+,·, #
3

) is a commutative Ering (ER). 



(603) Let R be the fol iowing ring 

+ 0 1 a b a+l b+l a+b a+b+: ..L 

0 0 1 a b a+l b+l a+b a+b+ 

1 1 0 a+l b+l a b a+ b +J a+b 

a a a+l 0 a+b 1 f3.+ b+l b b+l 

b b b+l a+b 0 a+b+ . 1 a a+l 

a+ l a+l a 1 f9.+b +J 0 a+b b+l b 

b+l b+l b 13-+b+l 1 a+b 0 a+l a 

a+b a+b a+b+J b a b+l a+l 0 1 

a+b+J a+b+ a+b b +l a+ l b a 1 0 



. 0 1 a b a+l b+l a+b a+b+J 

0 0 0 0 0 0 0 0 0 

1 0 1 a b a+l b+l a+b a+b+J 

a 0 a a 0 0 a a 0 

b 0 b 0 b b 0 b 0 

a+l 0 a+l 0 b a+l a+b+ b a+b+J 

b+l 0 b+l a 0 19.+b+J b+l a f:3..+b+l 

a+b 0 a+b a b b a a+b 0 

a+b+j 0 t:i+b+l 0 0 19.+b+J a+b+J 0 a+b+J 

Define (j)l =o C Rx fo J such that for x ER xo=o. As 

shown before o C E(R). Define (1)2 C Rx fo, 1, a, a+l} such 

that o(j)2=o, 1(1)2=1, a(j)2=a, (a+1)(1)2=a+l,b(j)?=o,(b+l)(1) 2=1, 

(a+b)(1)2=a, and (a+b+1)(1) 2=a+l. (1)2 is an endomorphism 

since if x ,YER then (x+x) (1)2==o(j)2=o=x(j)2+x(1)2 , 

(x,x)(1) 2=x(j)2=x(1)2x(1)2 ~ (let (1) denote (1)2 ) 

(a) X=o: (x+y)(j)=y(j)=O(j)+Y(J), (xy)(j)=O(j)=O(j)y(j) 

(b) x=l~y=a: (l+a)(J)=l+a=l(J)+a(J), (la)(J)=a(j)=l(j)a(j) 

x=l,y=a+l: (l+a+l)(J)=a(j)=a=l(J)+(a+l)(J), [l(a+l)](J) 

~ (a+l)(J)=(a+l)=l(J)(a+l)(J) 
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X=l,y=b: (l+b)~=l =l~+b~, (lb)~=b~=O=l~b~ 

X=l,y=b+l: (l+b+l)~=b~=O=l~+(b+l)~, [l(b+l)]~ 

=(b+l)~ =l=l~(b+l)~ 

x=l,y=a+b: (l+a+b)~=a+l=l~+(a+b)~, [l(a+b)]~= 

(a+b)~=a=l~(a+b)~ 

x=l,y =a+b+l: (l+a+b+l)~=(a+b)~=a=l~+(a+b+l)~, 

[l(a+b+l)]~=(a+b+l)~=a+l=l~(a+b+l)~ 

(c) x=a,x=a+l: (a+a+l)~=l~=l =a~(a+l)~, [a(a+l)]~= 

o~=o=a~(a+l)~ 

x=a,y =b: 

X=a,y=b+l : 

a=a~(b+l)~ 

(a+b)~=a=a~+b~, (ab)~=O~=o=a~b~ 

(a+b+l)~=a+l=a~+(b+l)~, [a(b+l)]~= 

x=a,y=a+b: (a+a+o)~=b~=o=a~+(a+b)~ , [a(a+b)J~ 

=a~=a=a~(a+b)~ 

x =a,y=a+b+l: (a+a+b+l)~=(b+l)~=l=a~+(a+b+l)~, 

[a(a+b+l)]~=o=a~(a+b+l)~ 

(d) x=b,x=a+l : (b+a+l)~=a+l=b~+(a+l)~, [b(a+l)]~= 

b=b~(a+l)~ 

X=b,y=b+l: (b+b+l)~=l~=l=b~+(b+l)~, [b(b+l)]~ 

=O~=O=b~(b+l)~ 

x=b,y=a+b: (b+a+b)~=a~=a=b~+(a+b)~, [b(a+b)J~ 

=b~=O=b~(a+b)~ 
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x=b,y=a+b+l: (b+a+b+l)~=(a+l)~=a+l=b~+(a+b+l)~, 

[b(a+b+l)]~=o~=o=b~(a+b+l)~ 

(e) x=a+l,y=b+l: (a+ +b+l)~=(a+b)~=a=(a+l)~+(b+l)~, 

[(a+l)(b+l)]~=(a+b+l)~=a+l=(a+l)~(b+l)~ 

x =a+l,y =a+b: (a+l+a+b)~=(l+b)~=l=(a+l)~+(b+l)~, 

[(a+l)(a+b)]~=b~=o=(a+l)~(a+b)~ 



x=a+l,y=a+b+l: (a+l+a+b+l)~=b~=o =(a+l)~+ 

(a+b+l)~, [(a+l)(a+b+l)]~=(a+b+l)~=a+l= 

(a+l)~(a+b+l)~ 

(f) x=b+l,y=a+b: (b+l+a+b)~=(l+a)~=a+l=(b+l)~+ 

(a+b)~, [(b+l)(a+b)]~=a~=a=(b+l)~(a+b)~ 

x=b+l,y=a+b+l : (b+l+a+b+l)~=a~=a=(b+l)~+ 

(a+b+l)~, [(b+l)(a+b+l)]~=(a+b+l)Q=a+l= 

(b+l)~(a+b+l)Q 

(g) x=a+b,y=a+b+l: (a+b+a+b+l)~ =lQ=l=(a +b)~+ 

(a+b+l)~, [(a+b)(a+b+l)]Q=OQ=O=(a+b)Q(a+b+l)~o 

Define Q3CRx 1o,a} such that oQ3=o, 1~
3

=a, (a+l)~
3

= 

o, (b+l)~ 3=a, (a+b)Q 3=a and (a+b+l)Q 3=o. ~
3 

is an en­

domorphism since if x,yER then (x+x)~ 3=o~3=o=xQ
3

+x~
3

, 

(xx) ~3=x~3=x~3xQ3 , (let Q denote ~3) 

- (a) X=o: (x+y)Q=Y~=x~+y~, (xy)Q=OQ=x~y~ 

(b) x=l,y=a: (l+a)Q=o=l~+aQ, (la)~=a~=a=l~a~ 

x =l ,y=b: (l+b)Q=a=lQ+b Q, (lb)~=b~ =o~l~b~ 

x=l,y=a+l: (l+a+l)~=aQ=a=l~+(a+l)Q, [ l (a+l)J ~ 

=(a+l)Q=O=l~(a+l)~ 

X=l,y=b+l: (l+b+l)~=b~=O=l~+(b+l)~, [l(b+l)]Q 

=(b+l)~ =a=lQ(b+l)Q 

x=l,y =a+b: (l+a+b)~=o=l~+(a+b)~, [l(a+b)]Q= 

(a+b)Q =a=lQ(a+b)Q 

x=l,y=a+b+l: (l+a+b+l)~=(a+b)~=a=l~+(a+b+l)~, 

[l(a+b+l)]~=(a+b+l)~=o =l~+(a+b+l)Q 

(c) x=a,y=b: (a+b)~=a=a~+bQ, (ab)~=o~=o=a~b~ 
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x=a,y=a+l : (a+a+l)~=l~=a=a~+(a+l)~, [a(a+l)J~ 

=o~=o=a~(a+l)~ 

x=a,y =b+l: (a+b+l)~=o=a~(b+l)~, [a(b+l)]~=a= 

a~(b+l)~ 

x=a,y=a+b : (a+a+b)~=b~=o=a~+(a+b)~, [a(a+b)J~ 

=a~=a=a~(a+b)~ 

x=a,y=a+b+l: (a+a+b+l)~=(b+l)~=a=a~+(a+b+l)~, 

[a(a+b+ l)]~=o~=o=a~(a +b+l)~ 

(d) x=b,y~a+l: (b+a+l)~=O~=o=b~+(a+l)~, [b(a+l)J~ 

=b~=O=b~(a+l)~ 

X=b ,y =b+l : (b+b+l)~=l~=a=b~+(b+l)~, [b(b+l)]~ 

=O~=O=b~(b+ l)~ 

x=b,y=a+b: (b+a+b)~=a~=a=b~+(a+b)~, [b(a+b)J~ 

=b~=O=b~(a+b)~ 

x=b,y=a+b+l: (b+a+b+l)~=(a+l)~=o=b~+(a+b+l)~, 

[b(a+b+l)]~=o=b~(a+b+l)~ 

( e ) x=a +l,y =b+l: (a+l+b+l)~=(a+b)~=a=(a+l)~+(b+l) ~, 

[(a+l)(b+l)]~=(a+b+l)~=o=(a+l)~(b+l)~ 

x=a+l,y=a+b: (a+l+a+b)~=(b+l)~=a=(a+l) ~+(a+b) ~, 

[(a+l)(a+b)]~ =b~ =o=(a+l)~(a+b)~ 

x=a+l,y=a+b+l: (a+l+a+b+l)~=b~=o=(a+l)~+ 

(a+b+l)~, [(a+l)(a+b+l)]~=(a+b+l)~=o= 

(a+l)~(a+b+l)~ 

(f) x=b+l,y =a+b: (b+l+a+b)~=(a+l)~=o=(b+l)~+(a+b)~, 

[(b+l)(a+b)]~ =a~~a=(b+l)~(a+b)~ 

x~b+l,y =a+b+l: (b+l+a+b+l)~=a~ =a= (b+l)~+ 

(a+b+l)~, [(b+l)(a+b+l)]~=(a+b+l)~=o= 

(b+l)~(a+b+l)~ 
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( g ) x=a+b,y=a+b+l: (a+b+a+b+l) ~=l~= a =(a+b) ~+ 

(a+b+l) ~, [(a+b)(a+b+l)]~=o~=o=(a+b)~(a+b+l)~ 

Define ~4 C Rx [ o, a+l f such that o~4 =o, 1~4 =a+l, a~4 =o, 

b~4 =o , (a+ l)~ 4 =a+l, (b+l)~ 4 =a+l, (a+b)Q 4 =o, and (a+b+l)~ 4 = 

a+l. Q4 is an endomorphism since if x,yER then (x+x) ~4 = 

o=x~4 +x~4 , (xx)Q 4 =x~4 =x~4x~4 , (let ~ denote ~4 ) 

(a) x=o: (x+y) Q=Y~=o~+y~, (xy)~=o~=o~y~ 

(b) x=l,y=a: (l+a)~=a+l=l~+a~, (l a)~=a~=o=l~aQ 

X=l,y=b: (l+b)Q=a+l=l~+b~, (lb)~=b~=O=l~bQ 

x=l,y=a+l: (l+a+l)~=a~=o=lQ+(a+l)~, 

[l(a+l)]~=(a+l)~=a+l=l~(a+l)Q 

X=l,y=b+l: (l+b+l)~=b~=O=lQ+(b+l)Q, 

[l (b +l)] ~=(b +l) ~=a +l=l ~ (b+l) ~ 

x=l,y=a+b: ( l+a +b)~=a +l a l ~+(a+b) ~ , [l(a+b)] ~= 

( a +b) ~=o=l~ ( a +b)~ 

x= l, y=a +b +l : (l+ a+b +l) ~= (a+b) ~=o= l ~+(a+b+l) ~, 

[l (a +b+l) ] ~=( a +b+l)~=a+l =l ~ (a+b+l) ~ 

(c) x=a,y=b: (a+b)~= o=a~+b ~ , (ab) Q=O~=oa~bQ 

x=a,y=a+l : (a+a+l)~=lQ=a+l=a ~+(a+l) ~ , 

[a(a+l)]~=o ~=o=a~(a +l)Q 

x=a,y=b +l : (a+b+l) ~=a+l=a~+(b+l)~, 

[a(b+l)]Q= a~= o=a~ b+l)~ 

x=a,y=a +b: (a+a+ b )~=b~=o=a~+(a+b)~, 

[a(a+b)] ~=a~=o =a~ (a+b)~ 

x=a,y=a+b +l : (a+a+b+l)~=(b+l)~=a+l=a~+(a+b+l)~, 

[a(a+b+l)]~=o~=o=a~(a+b+l)Q 



(d) x=b,y=a+l: (b+a+l)~=a+l=b~+(a+l)~, 

[b(a+l)]~=b~=o=b~(a+l)~ 

X=b,y=b+l: (b+b+l)~=l~=a+l=b~+(b+l)~, 

[b(b+l)]~=O~=O=b~(b+l)~ 

x=b,y~a+b: (b+a+b)~=a~=o=b~+(a+b)~, 

[b(a+b)]~=b~=o=b~(a+b)~ 
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x=b,y=a+b+l: (b+a+b+l)~=(a+l)~=a+l=b~+(a+b+l)~, 

[b(a+b+l)]~=O~=o=b~(a+b+l)~ 

(e) x=b+l,y=b+l: (a+l+b+l)~=(a+b)~=o=(a+l)~+(b+l)~, 

[(a+l)(b+l)]=(a+b+l)~=a+l~(b+l)~ 

x=a+l,y=a+b: (a+l+a+b)~=(b+l)~=a+l= 

(a+l)~+(a+b)~, [(a+l)(a+b)]~=b~=o=(a+l)~(a+b)~ 

x=a+l,y=a+b+l: (a+l+a+b+l)~=ba=o=(a+l)~+ 

(a+b+l)~, [(a+l)(a+b+l)]~=(a+b+l)~=a+l= 

(a+l)~(a+b+l)~ 

(f) x=b +l,y=a+b: (b+l+a+b)~=(a+l)~=a+l=(b+l)~+ 

(a+b)~, [(b+l)(a+b)]~=a~=o=(b+l)~(a+b)~ 

x=b +l ,y=a+b+l: (b+l+a+b+l) ~=a~=o=(b +l) ~+ 

(a+b+l)~, [(b+l)(a+b+l)]~=(a+b+l)=a+l= 

(b+l)~(a+b+l)~ 

(g) x=a+b,y=a+b+l: (a+b+a+b+l) ~=l~=a+l=( a+b ) ~+ 

(a+b+l)~, [(a+b)(a+b+l)]~=o~=o=(a+b)~(a+b+l)~. 

Let us now prove that R=[~ 1=o,~2 ,~
3

,~ 4} is a ring 

with the operations+ and. as defined in theorem (208). 

Let x be an arbitrary element in R. Then 

(a) 

(b) x(~-~-)=x~ . x~.=x~ . for i=l,2,3,4 
l l l l l 



(c) 

(d) 

(e) 

(f) 

(g) 
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x(~-~-)=x~ .x~ .=x~ .x~ . =x(~-~- ) for i?j=l,2,3,4 
l J l J J ' l J l 

x(~.+~.)=x~.+~.=x~.+x~.=x(~.+~.) for i,j=l,2,3,4 
l J l J J l J l 

x(~.+o)=x~.+XO=X~- for i=l,2,3,4 
l l l 

x(~.o)=x~ .XO=X~-O=O=XO for i=l,2,3,4 
l l l 

=o=a~ 4 , b(~ 2+~3 )=o+o=b~ 4 , (a+l)(~ 2+~
3

)=a+l+o=(a+l)~ 4 , 

(b+l)(~ 2+~3 )=l+a=(b+l)~ 4 , (a+b)(~ 2+~
3

)=a+a=o=(a+b)~ 4 , 

(a+b+l)(~ 2+~3 )=a+l+o=(a+b+l)~ 4 

(h) o ( ~2+~4 ) =o+o=o~ 3 , l ( ~2+~4 ) =l+a+l=l~
3

, a( ~2+~LJ_) 

:a+o=a~ 3 , b(~ 2+~4 )=o+o=b~ 3 , (a+1)(~ 2+~4 )=a+l+a+l=o= 

(a+l)~ 3 , (b+l)(~ 2+~4 )=l+a+l=a=(b+l)~
3

, (a+b)(~ 2+~4 )= 

a+o=(a+b)~ 3 , (a+b+l)(~ 2+~4 )=a+l+a+l=o=(a+b+l)~
3 

(i) o(~ 3+~4 )=o+o=o~ 2 , 1(~ 3+~4 )=a+a+l=l=l~ 2 , 

a(~ 3+~4 )=a+o=a~ 2 , b(~ 3+~4 )=o +o=b~ 3 , (a+1)(~
3

+~4 )=o+a+l= 

(a+1)~ 2 , (b+l)(~ 3+~4 )=a+a+l=l=(b+l)~ 2 , (a+b)(~
3

+~4 ) =a +o= 

(a+b)~ 2 , (a+b+l)(~ 3+~4 )=o+a+l=(a+b+l)~ 2 

(j) o(~ 2~3 )=oo=o~ 3 , 1(~ 2~3 )=la=l~
3

, a(~ 2~
3

)=aa=a = 

a~ 3 , b(~ 2~3)=oo=b~ 3 , (a+1)(~ 2~3)=(a+l)o=o=(a+1)~
3

, 

(b+l)(~ 2~3 )=la=(b+l)~ 3 , (a+b)(~ 2~3)=aa=a=(a+b)~
3

, 

(a+b+1)(~ 2~3)=(a+l)o=o=(a+b+l)~
3 

(k) o(~ 2~4 ) =oo=o~4 , 1(~ 2~4 )=l(a+l)=(a+l)~ 4 , a(~ 2~4 ) 

=ao =o~a~ 4 , b(~ 2~4 )=oo=-b~4 , (a+l)(~ 2~4 )=(a+l)(a+l)=a+l = 



(a+b)~ 4 , (b+l)(~ 2~4 )=l(a+l)=(b+l)~ 4 , (a+b)(~ 2~4 )=ao=o= 

(a+b)~ 4 , (a+b+1)(~ 2~4 )=(a+l)(a+l)=a+l=(a+b+l)~ 4 

(1) o( y3~4)=00=0o, l(~3~4)=a(a+l)=o=lo, a(~3~4)=ao 

=O=ao, b(~ 3~4 )=00=bo, (a+1)(~ 3~4 )=o(a+l)=O=(a+l)o, 

(b+l)(~ 3~4 )=a(a +l) =O=(a+l)o, (a+b)(~ 3~4 )=aO=O=(a+b)o, 

(a+b+l)(~3~4)=o(a+l)=o=(a+b+l)o. 

Hence, Risa ring with identity and has the fol­

lowing tables for+ and·· 

- -+ 0 ~2 ~3 ~4 • 0 ~2 ~3 ~4 

- - - - - - -0 0 ~2 ~3 ~4 0 0 0 0 0 

- -
~2 ~2 0 ~4 ~3 ~2 0 ~2 ~3 ~4 

- - -
~3 ~3 ~4 0 ~2 ~3 0 ~3 ~3 0 

- - -
~4 ~4 ~3 ~2 0 ~4 0 ~4 0 ~4 

Now R'=[o,l,a,a+lJ with its addition and multi­

plication tables on page 70 is a subring of R with 

identity. In fact ~2 is an endomorphism of R onto R'. 

Define TCR':x:R such that OT=o, 1T=~ 2 , aT=~
3

, and (a+l)T 

~~4 • Cl.early, Tis an isomorphism of R' onto R. Hence, 

by theorem (2.12) if we define# such that for x,yER 

x#y ~x(ya) =x((y~ 2 )T) then (R,+,•,#) is a SEring with the 

following table for# since a=~ 2 T is a homomorphism of R 
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onto R. 

+ 0 1 a a+l . 0 1 a a+l 

0 0 1 a a+l 0 0 0 0 0 

1 1 0 a+l a 1 0 1 a a+l 

a a a+l 0 1 a 0 a a 0 

a+l a+l a 1 0 a+l 0 a+l 0 a+l 

Addition and multiplication tables for R 1 • 

# 0 1 a b a+l b+l a+b a+b+: 

0 0 0 0 0 0 0 0 0 

1 0 1 a 0 a+l 1 a a+l 

a 0 a a 0 0 a a 0 

b 0 0 0 0 0 0 0 0 

a+l 0 a+l 0 0 a+l a+l 0 a+l 

b+l 0 1 a 0 a+l 1 a a+l 

a+ b 0 a a 0 0 a a 0 

a +b + 0 a+l 0 0 a+l a+l 0 a+l 

~ table for (R,+,o,#) 



Section 7. ExalIIlples of subBEBRs 

and of homomorphisms 
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(7.1) SubRER of a RER. Let R be the RER in example 

(5.2). Let S==FCR. If x,yES then x-yfS, xoyES, and 

x#y ES. Hence, by theorem (4.3) Sis a subRER. 

(7.2) SubSER of a SER. In example (6.3) let S== 

to,l,b,b+l}CR. Then the following tables show that Sis 

a subSER of R. 

+ 0 1 b b+l 0 0 1 b b+l 

0 0 1 b b+l 0 0 0 0 0 

+ l 0 b+l b 1 0 1 b b+l 

b b b+l 0 1 b 0 b b 0 

b+l b+l b 1 0 b+l 0 b+l 0 b+l 

# 0 1 b b+l 

0 0 0 0 0 

1 0 1 0 1 

b 0 0 0 0 

b+l 0 1 0 1 



(7.3) Homomorphism of a RER into a. RER. In exampl e 

(7.1) define <.pCRxS such that for 
n a . 

a= La.xi ER 
. l 
l=O 

ac_p=a. As shown in examplie (5.9) in chapter II <.pis a 
0 

ring homomorphism. If a,bE R then (a#b)<.p=(ac_p)#(bc_p). 

Hence, <.pis a homomorphisnn of R into S. Note that <.pis 

also an M-homomorphism as shown in example (5.9) in 

cha pter II. 

(7.4) Homomorphism O)f a SER into a SER. Let S be 

t he subSER of the SERR im example (7.2). Then by tediou s 

work it can be sho wn that f3CRxS such that of3=o, lf3=1, 

bf3=b, (b+l)f3=b+l, af3=o, (m+l)f3=1, (a+b)f3=b, and (a+b+l)f3 

=b+l is a homomorphism (im fact f3 is an endomorphism). 

Note that in this case f3 is not an M-homomorphism since 

[(b+l) # (a+l)]f3=(a+l)f3=1 where as (b+l)f3#(a+l)=(b+l)#(a+l) 

=a+l ¢ S. 
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