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Th e Buoyancy Theorem states that a compact set is 

buoyant if e v ery po i nt of the compact set has a neighbor­

hood whose intersection with the compact set is buoyant. 

In this paper, the Buoyancy Theorem is used to prove 

several s t andard results involving compact sets. The 

proof of such a resul t may be a direc t applica ti on of 

the Buoyancy Theorem or the proof may rely on a certain 

compac t ness argumen t which follows from the Buoyancy 

Theor em . The las t application in t his paper is such an 

example . 

The me t ~od u sed is to, f1rst of all, define a buoy-

ancy on t he compact set; secondly , show that every point 

of the compact set has a neighborhood whose intersection 

with t he compact set is buoyan t; and finally, apply the 

Buoyancy Theorem to conclude that the compact set is 

buoyan t . 

( 24 pages) 



INTRODUCTION 

S. T. Hu generalizes the concept of boundedness in 

l 
his book Introduction to General Topology. In his termi-

nology, a boundedness in a topological space is a non-empty 

family of subsets satisfying the following two conditions; 

(1) every subset of a bounded set is bounded and, (2) the 

union of a finite number of bounded sets is bounded. A 

member of such a family of subsets is called a bounded set. 

He calls a topological space with a boundedness defined on 

it, a universe. A universe X is called locally bounded 

if every point in X has a bounded neighborhood in X. 

Hu proves that every compact subset of a locally 

bounded universe is bounded. This will be referred to as 

Hu's Theorem. 

we introduce the concept of buoyancy, which is some-

what less restrictive than Hu's boundedness, and develop 

some applications of Hu's Theorem in this paper. The appli­

cations in this paper could be accomplished using the 

boundedness defined by S. T. Hu. However, the buoyancy has 

the virtue that there are fewer conditions to verify. 

1s. T. Hu, Introduction to General Topology (San 
Francisco, California: Holden-Day, Inc., 1966), p. 184-192. 



NOTATIONS AND CONVENTIONS 

Let Y be a subset of a topological space S. A buoy­

ancy on Y is a collection ~ of subsets of Y with the 

property that the union of two elements of ~ is an element 

of ~- Any set belonging to ~ will be called buoyant. 

Subsets of Y that are not buoyant will be called nonbuoy-

ant. 

A buoyancy on Y induces a buoyancy on X by taking 

a subset of X to be buoyant if its intersection with Y 

is a buoyant subset of Y. 

An example of a buoyancy which is not a boundedness 

follows. Let Y be a subset of a topological space X. 

Call a subset of Y buoyant if it is open in X. Let A 

and B be two open subsets of Y such that A is non­

empty. AU B is open and thus we have a buoyancy defined 

on Y. The set A being non-empty contains a point z 

and the set consisting of the single point z is not open. 

Therefore the property of being open is not a boundedness. 

Hu ' s Theorem may be modified in terms of buoyancy as 

follows. 

Buoyancy Theorem. If Y is a compact set and a buoy­

ancy is defined on Y such that every point of Y has a 

neighborhood whose intersection with Y is buoyant, then 

Y is buoyant . 
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Proof. Employing mathematical induction, we see that 

a finite collection of buoyant sets is buoyant. 

For each point y in Y, choose a neighborh ood whose 

intersection with Y is buoyant. Each selected buoyant 

neighborhood N y of y contains an open neighborhood M . 
y 

Since Y is compact, the open covering {M \yEY} contains 
y 

a finite subcollection {M , . .. ,M } which covers Y. 
Y1 yk 

Hence {N , ... ,N } is a finite covering of Y by buoy -
Yi yk 

ant sets. 

Now N n Y is buoyant for each i and 
Yi 

is a finite collection of buoyant sets such that 

U (N . n Y) = Y. Therefore Y is buoyant. Q.E.D. 
i yi 

The purpose of this paper is to give several appli-

cations of the Buoyancy Theorem. Hu's Theorem may be 

proved using the Buoyancy Theorem. 

Hu ' s Theorem. Every compact subset Y of a locally 

bounded universe X is bounded. 

Proof. Le t S be the boundedness associated with the 

universe X. Call A, a subset of Y, buoyant if A is 

in S. The definitions of boundedness and buoyancy imply 

that every boundedness is a buoyancy. Thus S defines a 

buoyancy on Y. 

Since the universe X is locally bounded, it follows 

that Y is also locally bounded in S. Let z be a point 
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in Y. The point z has a neighborhood N in S and 

N n Y, being a subset of N, is also in S. Thus z 

has a neighborhood whose intersection with Y is buoyant. 

As a result of the Buoyancy Theorem, Y is buoyant 

and therefore bounded. Q. E.D. 

The Buoyancy Theorem can be proved using Hu's Theorem. 

Buoyancy Theorem. If Y is compact and a buoyancy is 

defined on Y such that every point of Y has a neighbor­

hood whose intersection with Y is buoyant, then Y is 

buoyant. 

Proof. Since Hu defines a boundedness on the whole 

space X rather than on a subset Y, consider Y itself 

to be a topological space with the induced topology. 

Let S be a given buoyancy on Y and let cr be the 

set of all subsets of Y which are subsets of elements 

of S- If M is in cr then M is a subset of an element 

of S and so is every subset of M. Thus every subset of 

M is in cr. 

Consider [s 1 ,s 2 , ... ,Sk } , a finite number of sets in 

cr. s 1 and s 2 are subsets of elements of S, 

and B2 respectively. Since s 1 U s 2 c B1 U B2 , an ele­

ment of the buoyancy S, s 1 U s 2 is in cr. By induction 

on k, U [s 1 ,s 2 , ... ,sk} is in cr. Therefore, 
k 

boundedness on Y. 

cr is a 
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If every point of Y has a buoy ant neighborhood, then 

it also has a bounded neighborhood, in fact, the same neigh­

borhood. Hence Y is locally bounded. Since Y LS 

compact, Y is bounded by Hu's Theorem. 

Being bounded, Y is a subset of a buoyant subset of 

Y, which can only be Y. Therefore, Y is buoyant. Q.E.D. 

The proof of the following theorem is representative of 

the use of the buoyancy in routine compactness arguments. 

Theorem. If X is a Hausdorff space, F LS a compact 

subset of X and x is a point of X not in F, 

and F have disjoint neighborhoods. 

then x 

Proof. Let x and F satisfy the hypothesis. Take 

AC F to be buoyant if there exists disjoint neighborhoods 

WA of X and VA of A. 

Let A and B be buoyant. Then there exist disjoint 

neighborhoods WA of X and VA of A and also WB of 

X and VB of B . Let WAUB = w n WB which is a neigh-
A 

borhood of x, and VAUB = V U VB which is a neighbor-
A 

hood of A u B. Since WAUB n VAUB = (WA n WB) n (VA U VB) 

= 0, A u B is buoyant. Thus the buoyancy is well-defined. 

If C LS a point in F, we wish to show that C has 

a neighborhood whose intersection with F is buoyant. 

Since X is a Hausdorff space, there exist disjoint neigh-

borhoods, N 
C 

of C and N 
X 

of x. The neighborhood N 
C 



and thus N n F is buoyant. By the Buoyancy Theorem, 
C 

F is buoyant. Q.E.D. 

6 



APPLICATIONS TO LOCALLY COMPACT SPACES 

If F is a subset of a topological space, let F 

_ndicate the closure of F. 

Theorem 1. If X is a locally compact space and K 

s a compact subset of X, then there exists an open set 

? containing K such that F is compact. 

Proof. Take A a subset of K to be buoyant if there 

exis ts an open set FA containing A such that FA is 

::ompact. 

If A and B are buoyant, there exists open sets FA 

::on ta ining A and FB containing B so that FA and FB 

are both compact. Let FAUB = F u FB; then FAUB is open 
A 

and contains AU B. Moreover, FAUB = FA U FB = FA U FB, 

vhich is compact. 

Consider a point x in K. Since X is locally 

:ompact, there is an open set N 
X 

containing X where 

:ifx is compact. (N n K) c N and is therefore buoyant. 
X X 

~s a result of the Buoyancy Theorem, K is buoyant. Q.E.D . 

Theorem 2. Let X be a locally compact Hausdorff 

space. If C is a compact set and M and N are open 

sets such that Cc MUN, then there exists compact sets 

J and E such that DCM, EC N and C =D u E. 

Proof. Call Ac C buoyant if there exist compact 
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If A and B are buoyant, then there are compact sets 

Al C M, A2 C N, Bl CM and B2 c N with A = A 1 U A2 and 

B = B1 U B2 . Thus we have compact sets Al U Bl c M and 

A2 U B2 C N with A U B = A u B = (Al U Bl) u (A2 u B2) 

causing AU B to be buoyant. Thus the buoyancy is well­

defined. 

Let c be any point in C. We would like to show that 

c has a neighborhood whose intersection with C is buoyant. 

Since M and N form an open covering of C, c is in M 

or N; suppose c is in M. A locally compact Hausdorff 

space is regular so there exists a neighborhood of c, R , 
C 

such that R c M. The space X is locally compact and 
C 

thus there is a neighborhood of c, call it K, such that 

K is compact. 

The proof will be completed by establishing that R n 
C 

is a buoyant neighborhood of c. Since R n K c K and is 
C 

thus compact, we hav e two compact sets, R n K and ¢ 
C 

with R n KCM and ¢ C N such that R n K = R n K u 
C C C 

This shows that R 
C 

n K l. s a buoyant neighborhood of the 

point c. By the Buoyancy Theorem, C is buoyant. Q.E.D. 

For the next application define H to be the class of 

continuous functions which map a locally compact Hausdorff 

space X into the closed interval [0,1]. 

Theor em 3. Let C b e a compact subset of a locally 

compact Hausdorff space X. If F is a closed set such 

K 

¢. 



that C n F = ¢, then there exists a function F in H 

such that f(x) = 0 for x in C and f(x) = 1 for x 

1.n F. 

9 

Proof. Let Ac C be buoyant if there exists a con-

tinuous function g such that g:X ~ [0,l], g(x) < ½ if 

x is in A, and g(x) = 1 if x is in F. 

If A and B are both buoyant, then there exist 

functions gA and gB in H such that gA (x) < ½ for 

X in A, gB (x) < ½ for X in B and gA (x) = gB (x) = 

for X 1.n F. A u B is seen to be buoyant by letting 

gAUB = gA n gB, where (gA n gB) (x) = min ( gA (x) , gB (x) ) . 

To show C is buoyant it is sufficient to show that 

every point of C has a buoyant neighborhood and thus a 

neighborhood whose intersection with C is buoyant. 

1 

Since X 1.s completely regular, there exists a contin­

uous function h such that h:X ~ [0,1], h(c) = 0, and 

h(x) = 1 if x is in F. Since h is continuous and 

[ 0, ½) 
-1 

is open in [ 0, 1 J, h ( [ 0, ½) ) is a neighborhood of 

Since X in 
-1 

h ([0,½)) and h(x) = 1 

X in 

h (x) < ½ for 

-1 
F, h ([0,½)} is a buoyant neighborhood of c. 

Thus C is buoyant and we have a function g in 

with g (x) < ½ for X in C and g (x) = 1 for X 1.n 

Let f = ( 2g-l) u 0 where ( (2g-l) u 0) (x) = 

max ( 2g (x) -1,0). Then f is in H, f (x) = 0 for X 

C and f(x) = 1 for X in F. Q.E.D. 

c. 

for 

H 

F. 

in 
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Theorem 4. Let A be a Hausdorff space, B a topo­

logical space and let f:A ~ B be a function. Let 

G = [(a,f(a)) :aEA} be its graph in AX B. If G is a 

compact set, then f is continuous. 

Proof. If (a,f(a)) is a given point in G and we 

wish to show f is continuous at a, it is sufficient to 

prove that if N is a neighborhood of f(a), 

exists a neighborhood M of a so that f(x) 

if x is in M. 

then there 

is in N 

Let a neighborhood N of f(a) be given. Call 

Sc G buoyant if there exists a neighborhood M of a so 

that f(x) 

s. 

is in N if x is in M and (x,f(x)) is in 

If R and T, each a subset of G, are both buoy-

ant, then there are neighborhoods, and of a 

so that f(x) is in N whenever x is in MR or MT 

and (x,f(x)) is in R or T, respectively. Then 

MRUT = MR n MT is a neighborhood of a such that f(x) 

is in N whenever X is in MRUT and (x,f(x)) is in 

R U T. Thus R U T is buoyant. 

To prove that f is continuous on A, it suffices 

to prove that G is buoyant, which will follow if it 

extablished that every point of G has a neighborhood 

whose intersection with G is buoyant . 

is 
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Let (z,f(z)) be a point of G. If z -I a, take a 

neighborhood w of z so that a ~ W. Let M = A w 

so that M is a neighborhood of a. Then L = w X B is 

a neighborhood of (z,f(z)) whose intersection with G is 

buoyant for there is no X such that X is in M and 

(x,f(x)} is in L n G. 

If z = a, take L = A X N and let M = A. We have 

f(x) in N if x is in M and (x,f(x)) is in L n G. 

So again L is a neighborhood of (z,f(z)} = (a,f(a)) 

whose intersection with G is buoyant. Q.E.D. 



AN APPLICATION TO TOPOLOGICAL GROUPS 

In a topological group, let e denote the identity 

element and Z the class of neighborhoods of the identity. 

Theorem. If C is a compact subset of an open set U 

in a topological group X, then there exists a neighborhood 

V of e such that VCV c U where VCV = [vcv' I vEV, 

cEC and v ' EV} . 

Proof. Let Ac C be buoyant if there exists a 

neighborhood V of the identity e such that VAV c U. 

If A and B are both buoyant, then there exists 

neighborhoods of e, VA and VB, such that VAAVA c U 

and VBBVB C U. If w = VA n VB, then w is a neighbor-

hood of e and we have (WAW) u (WBW) CU. Thus 

W(A U B)W C u and A u B is buo y ant. 

Let x be a point in C. It will be sufficient to 

show that X has a buoyant neighborhood. For then the 

intersection of this neighborhood and C will also be 

buoyant. If is in u, then is in 
-1 and there X e X U 

exists a set w in z so that WW 
-1 C X U. Since w is 

in Z, there e x ists V in z so that W c W and we 

have 
-1 VVW C X U giving 

Since xvx -1 is in z, 

Let v2 = V 1 n w. 

such that v 2 (xV)V 2 C u 

X which is buoyant. 

xVVW CU 

we may take 

or 
-1 (xvx ) (xv) w cu. 

-1 
v 1 = xvx . 

Then v 2 is a neighborhood of e 

so that xv is a neighborhood of 



AN APPLICATION IN MEASURE THEORY 

If E is any bounded set and F is any set with a 

non-empty interior, then define the ratio E:F as the least 

non-negative integer n with the property that E may be 

covered by n left translations of F; i.e., that there 

exists a set (x 1 , ... ,xn} of n elements of x such that 

EC 
n 
u 

i=l 
x.F. 

1. 

Let A be a fixed compact set with a non-empty inte-

rior and z the class of all neighborhoods of the identity. 

For each u in z, we construct the set function A u' 

defined for all compact sets C by A (C) C:U = -- . u A:U 

To each set C in K, the set of compact sets, 

associate the clos e d interval [0,C:A J . Let P be the 

Cartesian product of all these intervals. Then the points 

of P are real-valued functions ¢ defined on K such 

that for e ach C in K, 0 ~ ¢(c) ~ C:A. 

For each U in Z the function Au is a point 1.n 

this space. For e ach U i n Z, let 6(U) = (;>.. :U :J VEZ}. 
u 

The proof of the theo r em, "In every locally compact 

topological group X there exists at least on e regular 

Haar measure", rests heavily on the following proposition 

which can be proved using t he Buoyanc y Theorem. 

Proposition. For U in z, there is a point A 1.n 

the intersection of the closure of all 6(U); i.e., 

A En (ti(u) luEz}. 
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Proof. Let the space p = 11 [O,C:A]. A subset 
CEk 

11 Ye of p will be called non-buoyant if for every u in 
C 

z there exists V CU such that the point 'A is in 
V 

TIYC; i.e. , 'A (C) l. s in Ye for each C in K. 
C 

V 

Let A and B be subsets of P. If A u B is non-

buoyant, then for every U in Z, there exists a subset 

V of U such that the point "v is in AU B indicating 

that "v is in A or B. Therefore A or B is non­

buoyant and the buoyancy on P is well-defined. 

point 

P = 11[0,C:A] 
C 

'A • The set 
V 

is non-buoyant since it contains every 

[0,C:A] is compact for each C and 

thus the product space IT[O,C:AJ is also compact. By the 
C 

contrapositive of the Buoyancy Theorem, there is a point 'A 

such that each of its neighborhoods has a non-buoyant inter­

section with P. 

Suppose for some U in Z, 'A; 6(U), then there is 

a neighborhood M of 'A which does not intersect 6(U); 

i .e. , 6(U) n M = ~- For the neighborhood U of e, 

there is no subset V of U such that 'A is 1.n M. 
V 

Thus M is buoyant and this contradicts the assertion 

that every neighborhood of 'A 1.s non-buoyant. Therefore 

'A is in 6(U) for all U in Z and we have 

'A En [6(U) luEZ}. 



A COMPARISON OF HU'S BOUNDEDNESS AND THE BUOYANCY 

A boundedness is defined to be a family of sets in a 

topological space whereas a buoyancy is a family of subsets 

of a specific set Y in a topological space. Also, every 

subset of a bounded set must be bounded, but a subset of a 

buoyant set need not be buoyant. 

In general, a buoyancy is not a boundedness. However, 

each buoyancy in this paper is also a boundedness since, in 

each case, a subset of a given buoyant set can be easily 

shown to be buoyant. For example, consider the buoyancy 

defined in the first theorem on page five. Ac F is buoy-

ant if there exist disjoint neighborhoods WA of x and 

VA of A. If R is a subset of A, R can be shown to 

be buoyant by choosing the disjoint neighborhoods WA of 

x and VA of A and thus of R. 

Since the strength of the two conditions of the bounded­

ness was not needed for the results of this paper, the weak­

er buoyancy was used. It is also evident that the buoyancy, 

being less restrictive than the boundedness, cannot be 

expected to produce all of Hu's results. 

Some of Hu's results and terminology follow with a 

comparison of the buoyancy in each case. 
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The intersection of a non-empty family of bounded sets 

is bounded. 2 

It does not follow that the intersection of a family 

of buoyant sets is buoyant since the condition of buoyancy 

does not require a subset of a buoyant set to be buoyant. 

If a universe X with boundedness 8 is not bounded, 

then the family ~ = [X-B\BES} of the complements X-B has 

the following properties: 

(Cl) None of the sets X-B is bounded. 

(C2) Every subset of X which contains a member of ~ is 

itself a member of ~-

(C3) The intersection of a finite number of members of ~ 

is a member of ~. 3 

In terms of a buoyancy 8: 

(Cl) None of the sets X-B is buoyant. X = (X-B) U B 

and xte. Since BES,X-BiS. 

(C2) Every subset of X which contains a member of ~ is 

itself a member of ~- Suppose R contains a member 

of ~, say X-B; then we need to show R is in ~, 

that is to say R = X-M, where M is in 8. But 

2s. T. Hu, Introduction to General Topology (San 
Francisco, California: Holden-day, Inc., 1966), p. 184. 

3Ibid., p. 185. 
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(X-R) c BES- If S were a boundedness , we could 

conclude that (X-R) ES- However, this need not hold 

for a buoyancy in which a subset of a buoyant set 

need not be buoyant. 

(C3) The intersection of a finite number of members of ~ 

is a member of ~- Suppose X-A and X-B are in ~ 

with A and B in S- (X-A) n (X-B) = X-(A U B) 

where AU B is in S- Thus the intersection of two 

members of ~ is a member of ~ and the result is 

obtained by induction on the number of sets. 

Any family of subsets of X satisfying conditions 

(C2) and (C3) is called a filter in X. Hence the family 

~ will be referred to as the filter at infinity of the 

universe x .4 

Since (C2) does not necessarily hold for a buoyancy, 

such a definition could not be made in terms of buoyancy. 
5 

Hu gives four different examples of a boundedness. 

In each case, the given boundedness is also a buoyancy since 

the only condition of a buoyancy is one of the conditions 

of a boundedness. 

A point x of a universe X is said to be a finite 

point if and onl y if it has a bounded neighborhood in X· f 
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otherwise, x is called a point at infinity. A universe 

X is said to be locally bounded if and only if every point 

in X is finite. 6 

These same definitions could be made using the buoy-

ancy rather than the boundedness. 

6 rbid., p. 186. 
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