
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-1970

A Fortran List Processor (FLIP) A Fortran List Processor (FLIP)

Karl A. Fugal
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Mathematics Commons, and the Statistics and Probability Commons

Recommended Citation Recommended Citation
Fugal, Karl A., "A Fortran List Processor (FLIP)" (1970). All Graduate Theses and Dissertations. 6861.
https://digitalcommons.usu.edu/etd/6861

This Thesis is brought to you for free and open access
by the Graduate Studies at DigitalCommons@USU. It
has been accepted for inclusion in All Graduate
Theses and Dissertations by an authorized
administrator of DigitalCommons@USU. For more
information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F6861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.usu.edu%2Fetd%2F6861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.usu.edu%2Fetd%2F6861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/6861?utm_source=digitalcommons.usu.edu%2Fetd%2F6861&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

A FORTRAN LIST PROCESSOR (FLIP)

by

Karl A. Fugal

A thesis submitted in partial fulfillment
of the requirements for the degree

Approved:

of

MASTER OF SCIENCE

in

Applied Statistics

UTAH STATE UNIVERSITY

Logan, Utah

1970

TABLE OF CONTENTS

Page

INTRODUCTION 1

KNOWN LIST AND STRING PROCESSING LANGUAGES;
THEIR CAPABILITIES AND RESTRICTIONS . 3

A FORTRAN LIST PROCESSOR (FLIP) 10

LITERATURE CITED . 18

APPENDIXES 19

VITA

Appendix A. Subroutine SETUP

Appendix B. Subroutine !AVAIL

Appendix C. Subroutine SLINK

Appendix D. Subroutine LINK

Appendix E. Subroutine STASH

Appendix F. Subroutine GET .

Appendix G. Subroutine ERASE

Appendix H. Sample Problems

• 20

• 25

• 27

30

• 3 2

• 3 6

39

• 42

61

ABSTRACT

A FORTRAN LIST PROCESSOR (FLIP)

by

Karl A. Fugal

Master of Science

Utah State University, 1970

Major Professor: Wendell L. Pope
Department: Applied Statistics and Computer Science

A series of Basic Assembler Language subroutines were

developed and made available to the FORTRAN IV language

processor which makes list processing possible in a

flexible and easily understood way.

The subroutines will create and maintain list

structures in the computer's core storage. The subroutines

are sufficiently general to permit FORTRAN programmers to

tailor list processing routines to their own individual

requirements. List structure sizes are limited only by

the amount of core storage available.

(61 pages)

INTRODUCTION

The modern high speed digital computer, in its most

general application, can be thought of as a symbol

manipulator. However, it is most often used to process

numerical data because most widely used programming

languages available for the digital computer are designed

for numerical calculations for either scientific or business

oriented data. When problems arise that require the symbol

manipulation capability of the computer, one must transform

the problem to operations on numerical data or learn a new

programming language designed specifically for symbol

manipulation problems.

Several list processing and string processing languages

are in existence that are used to program symbol manipulation

problems. Most of these existing languages have restrictions

and predefined conventions that make them difficult to use by

anyone other than a professional programmer. In addition,

most of them cannot be used as subroutines to the FORTRAN

(FORmula TRANslation) language; that is, they are independent

language translators which in turn implies that the programmer

must rely entirely on the instruction set afforded by one and

only one of these languages.

This thesis contains the documentation and assembly

listings for seven subroutines written in Basic Assembler

Language for the IBM/360 computer. It is the purpose of

this project to add list processing capabilities to a widely

known programming language, namely FORTRAN, in a more

flexible and general way than has been done heretofore, The

size of the data list is limited only by available core

storage.

256 bytes.

The size of each field within a node is limited to

These subroutines may be used on any IBM S/360

computer that uses the FORTRAN IV language processor.

2

It is assumed that any potential user of these subroutines

has a working knowledge of the FORTRAN language and is familiar

with the concept of list processing.

KNOWN LIST AND STRING PROCESSING LANGUAGES:

THEIR CAPABILITIES AND RESTRICTIONS

Many tasks exist which can be performed on a digital

computer without knowing specific values of the many variables

involved. Getting the computer to perform these tasks can

create a communications problem that reaches beyond the

capabilities of formal computer language trans+ators (1).

The subroutines developed in this thesis will ease the

above mentioned communications problem considerably.

A list may be defined as a group of logically assoc-

iated items whose sequence, relative to each other, contributes

to the meaning of the group. A page taken from a book is an

example of a list, where each sentence on that page may be

considered an item. Clearly the sequence of this group of

sentences is important. List processing is the ability to

create, change the sequence of, add to, delete from, and

retrieve information from a list or lists. A string may be

defined as a variable length sequence of characters and may

be considered as one type of list (5). The above example of

a group of sentences, or a written page, may be called a

string. String processing consists of searching for patterns

and transforming them into other patterns, and making

insertions and deletions in the string itself.

4

In order to process or manipulate symbolic data, many

list processing and string processing languages have been

developed, the oldest of these being the IPL family culminat­

ing in IPL-V.

IPL-I (Information Processing Language - I) was a list

processing language designed to handle applications involving

proving theorems in propositional calculus and playing chess.

The first implemented version was IPL-II. This was imple­

mented on the J0HNNIAC computer by the RAND Corporation (5).

IPL-III was never implemented because of core storage space

problems. IPL-IV was used in the field of artificial

intelligence, but was replaced by IPL-V before documentation

was finalized and the version implemented.

IPL-V is at a very low language level (almost assembly

like) for a list processor. It requires a professional

programmer to use it effectively. It has more than 200

primitive subroutines. Probably the most significant

contributions made by the IPL family were that they set a

groundwork for the design and development of future list

processing languages and that they added to the technology

of programming in general (5).

1 6 (Bell Telephone Laboratories Low-Level Linked List

Language) was developed in 1965 by Kenneth C. Knowlton (5).

It, too, is a list processing language. The internal

structure of 1 6 is very different and more efficient than

IPL-V. The use of 1 6, its capabilities and restrictions

do, however, resemble those of IPL-V.

In 1959, the Artificial Intelligence Group at Massa­

chusetts Institute of Technology (M. I. T.), under the

direction of Professor John McCarthy, began work on the

LISP programming system

.... designed to facilitate experiments with
a proposed system called the Advice Taker, whereby
a machine could be instructed to handle declara­
tive as well as imperative sentences and could
exhibit "common sense" in carrying out its
instructions The main requirement was a
programming system for manipulating sentences
so that the Advice Taker system could make
deductions.

In the course of its development the LISP
system went through several stages of simpli­
fication and eventually came to be based on a
scheme for representing the partial recursive
functions of a class of symbolic expressions
(2, p. 405).

LISP is ill suited for anything except general symbol

manipulation and list processing. It is meant to be used

only by experienced professional programmers. It depends

heavily on the use of matching parentheses and is therefore

an error-prone language. The LISP language is well adapted

to applications that require large amounts of recursion (5).

The first of the string processing languages was COMIT.

This system was developed at M. I. T. as a joint project of

the Mechanical Translation Group of the Research Laboratory

of Electronics and the Computation Center. The system was

5

designed to provide the professional linguist with a computer

aid to his research (5). It was intended that nonprofess-

ional programmers be able to write programs in the COMIT

language, i.e., the professional linguist himself. COMIT

was the first programming system to provide an effective

means of searching for a given string pattern and then

performing transformations in that string.

SNOBOL was developed by adding to COMIT, mainly in

the areas of string naming and arithmetic capabilities.

Work on SNOBOL was started in 1962 at Bell Telephone

Laboratories. Later developments and improvements to

the language eventually led to the creation of SNOBOL3

and later SNOBOL4.

Other less widely known list processing languages

include:

1. TRAC (Text Reckoning and Compiling)

2, TREET

3. CLIP (Cornell List Processor)

4. CORAL (Class Oriented Ring Associative Language)

5. SPRINT

6. LOLITA (Language for the On-Line Investigation
and Transformation of Abstractions)

There have been previous attempts to develop a set of

primitive subroutines that, when called by a higher level

language, provide the capability to do list and/or string

processing. Perhaps the most widely known subroutine sets

are SLIP and SAC-1. Since this thesis involves the <level-

opment of another subroutine set that may be embedded in a

high level language� i.e., FORTRAN, a more detailed

discussion of SLIP and SAC-1 will be presented.

SLIP (Symmetric List Processor) is a descendant of at

least four earlier list processors: (a) FLPL by Gelernter;

6

(b) IPL-V by Newell; (c) Threaded Lists by Perlis; and

(d) KLS by Weizenbaum (1).

The fundamental information module with which SLIP

deals is a word pair. The first word of the pair is divided

into an identification field, a left link field, and a right

link field. The second word of the pair is used to contain

data (3). A relatively complete set of subroutines and

functions are provided by SLIP. This is possible in part by

the fixed node structure of SLIP (word pair). The node

structure has a distinct disadvantage for many applications
'

in that the node size is fixed and unchangeable, space is

required for two link fields even though one field may be

sufficient and more than one node is required to store data

that are more than one word long. The programmer who uses

the SLIP subroutines has to become familiar with several

functions and subroutines and in many cases design his

application to be �ompatible with the processor rather than

having the advantage of writing a list processing program

to fit the application.

SAC-1 (System for Symbolic and Algebraic Calculations -

version 1) is a computer independent set of subroutines that

are called from a FORTRAN main-line program. SAC-1 uses a

relatively small number of simple "primitive subprograms

written in an assembly language. The remainder of the SAC-1

list processing system consists of several subprograms

written in FORTRAN, the majority of which rely on the

7

prewritten "primitives". SAC-1 is not an elaborate or

extensive list processing system. It provides only the

most basic and most essential list processing operations.

The user is expected to augment the subprograms of SAC-1

with his own subprograms in order to develop a system that

has the capabilities required of it. It should be noted,

however, that these user-written subprograms can be written

in the FORTRAN language, and thus the use of a lower level

language can be avoided.

The node structure defined in SAC-1 is a fixed length

group of cells that consist of the type field, the element

field, the reference count field, and the successor field.

The element field contains the data to be stored in the

node (4). The SAC-1 node structure poses the same variable

length restriction as does the SL1P node structure. The

field lengths of a SAC-1 cell are defined and fixed at the

time the "primitive tt assembler subprograms are implemented

at each installation. The list processing system described

by this thesis (FLIP) is very similar in appearance to SAC-1

in that the basic concept of. the system is the addition of a

small but powerful group of assembly language subroutines to

the FORTRAN language. From these "primitive" subroutines a

8

more powerful and more specialized list processing system can

be constructed by use of FORTRAN programs and subroutines.

SAC-1 has had many powerful FORTRAN subprograms added to it

since its initial implementation. Integer arithmetic,

polynomial read and write, and polynomial manipulation

routines are some examples.

FLIP is more versatile and flexible than SAC-1 in

that the node structure is not fixed. The user may design

a node structure consistent with the needs of his applica­

tion by specifying the number of fields per node and the

length (in bytes) of each field.

9

A FORTRAN LIST PROCESSOR (FLIP)

Description

FLIP is a set of seven assembler language subprograms

which may be called by a FORTRAN program. These seven

subprograms enable a programmer to design and implement

his own list processing language. The subprogram names

are SETUP, IAVAIL, LINK, SLINK, GET, STASH, and ERASE.

These seven names become reserved words in any program

using the subprograms. In this discussion a list will

consist of a set of nodes linked together by pointers,

each node consisting of a pointer stored in the link

field and any number of additional fields. The pointers

will be referred to as link variables. The link variables

may, at the option of the programmer, point forward or

backward. Nodes may be added to the list at either end,

thus providing the capability of creating a queued (first

in, first out) or stacked (first in, last out) list. Node

fields may be used to store additional link variables

which will allow the creation of multiple linked lists.

Fields of any length up to 256 bytes may be defined

in each node. The programmer has the capability of adding

to, deleting from, or changing the sequence of his list at

any time. Two or more lists may be combined to form a

single list, and a list may be segmented into two or more

10

other lists. FLIP provides the capability of creating and

processing compiler list structures as well as more elemen-

tary lists. An attempt was made to hold the·number of

primitive subroutines to a minimum and make them easy to

use by the non professional programmer.

A distinction must be made between commonly used

FORTRAN variables, link variables, and field names.

FORTRAN variables are: integer, real, subscripted, complex,

double precision, etc. Link variables are variables whose

values are restricted to addresses and must be of the

integer full word type. Field names are used to uniquely

identify each field within a node. They are actual FORTRAN

variables and as such must be defined before any reference

is made to them. Field name variables may be of either the

real or integer type.

Methodology

A list of nodes will be constructed in core and a

corresponding control table will be developed to carry

information needed to access the list. The list·will be

referred to as the available list. From it the: programmer

may take and/or return nodes as necessary during the·con-

struction of his own list or lists. The available·list

11

and control table will be created in an area of core storage

reserved by the FORTRAN program. The core storage address

of the available list must be available at all times during

12

the execution of the program. It therefore is stored as a

four byte address constant beginning in byte 12 of the

communication region in the Disk Operating System supervisor.

SETUP is the name of the subprogram that accepts the

reserved core storage from the calling program and creates

the available list and control table. SETUP must be invoked

once and only once during the execution of the FORTRAN pro-

gram. It is activated by CALL SETUP (argument list). SETUP

creates each node in the available list in the format defined

by the argument list and then links the list to form a stack.

The calling sequence has the following form: CALL SETUP (vn,

d, lfn, 2, fn1, 11, fn2, 12, ... , fnk, lk) where vn is the

�ariable �ame of a subscripted variable occurring in a

preceding DIMENSION statement, d is an integer less than or

equal to the number of full words in that array, lfn is the

link field name the user chooses to use to identify the link

field of each node, 2 is the number of bytes in the link

field. Each fni, i = 1 '
. . . ' K, is a unique field name of

a field in the node, and li, i = 1 '
. . . , k ' is the length,

in bytes, of the field named by fni, The lfn and integer

2 parameters are used only for documentation and to maintain

consistency since the link field is always the first two

bytes in each node.

The control table is created and stored in the first

segment of the array vn. The format of the control table

is alp, fn1, 11, ... , fnk, lk where alp is the available

13

list £Ointer which is the link to the next available node,

fni, i = 1, , k, are the �ield �ames as discussed above,

and li, i = 1, , k, are the corresponding field lengths

in bytes. Each field name is four bytes in length and each

field length is a two byte integer, thus the total length

of the control table for a given FORTRAN program can be

calculated as 6K + 2 where K is the number of fields per

node and the constant 2 is the number of fields per node

and the constant 2 is the number of bytes used for the

available list pointer. The SETUP subprogram next creates

a series of nodes and links them together to form the

available list. The number of nodes that will be created

is dependent upon the amount of core storage remaining in

the array vn, and may be determined by the formula:

4d - 2 - 6K

2 +
i=1

l .1

All addresses are relative to the firs t byte of the

control table which is stored as an address constant in

the subroutine SETUP and is subsequently referred to by

other primitive subroutines. Actual addresses are composed

of the table address as a base and the two bytes relative

address. This addressing method allows any location within

65,536 bytes of the beginning of the array vn to be accessed

and requires only two bytes to store all address pointers.

As a result of activating the subroutine SETUP, an address

constant is stored in a readily available location, a table

is created that fully describes each node as defined by the

calling program, and a list of nodes is made available for

use by the calling program.

bytes in length.

The subroutine SETUP is 188

14

A programmer may create his own list by obtaining nodes

from the available list and linking them together. A link

variable is returned as the value of the integer valued

function IAVAIL. IAVAIL may be activated by a reference

such as NA = IAVAIL(X). X is a dummy argument not used by

the subprogram. The link variable returned is taken from

the first two bytes of the control table. That link

variable is then replaced by the link variable of the next

node in the available list. This cycle is repeated each

time IAVAIL is invoked. When the nodes in the available

list have been exhausted, the value of IAVAIL becomes zero.

The subprogram IAVAIL requires 40 bytes of core storage.

After a new node is obtained, it can be linked to

another node or another node may be linked to it or both

links may be made. The SLINK subroutine subprogram is used

to perform this linkage. This subroutine stores the two-

byte link variable of one node in the link field of another

node. SLINK is activated by CALL SLINK (lv, n) where lv is

a link variable that is stored in the node pointed to by n

(n is thus a link variable also). If reverse linkage is

desired, the arguments lv and n would have to be written in

the reverse order, i.e., CALL SLINK (n, lv). In the event

a programmer is creating a double linked list, he must use

SLINK for one way linkage and the subprogram STASH for the

second linkage. STASH will be discussed later. By the

repeated use of IAVAIL and SLINK a programmer can thus

create a list consisting of as many nodes as is required.

The subprogram SLINK requires 70 bytes of core storage.

LINK is an integer valued function subprogram activated

15

by a call such as ID = LINK (lv). Its purpose is to retrieve
'

the value of the link field of the node pointed to by the

link variable lv. The contents of the first two bytes of

the node referenced by lv are passed back as the returned

value. In this manner the list variable of the next

sequential node is obtained. If the link variable of the

node i� sequence beyond the next node is desired, ID = LINK

(LINK (lv)) may be invoked. This nesting is valid for as

many levels as the IBM S/360 FORTRAN compiler permits. The

subroutine LINK requires 48 bytes of core storage.

Data in any machine readable form may be stored in the

fields of each node. The data are stored by field through

the activation of the subroutine subprogram STASH, i.e.,

a link variable pointing to the receiving node, fni, i = 1,

... , k, are the field names of the receiving fields, and

Vi, i = 1,
. . . '

k, are the values to be stored. "v" may

16

be any valid FORTRAN variable, subscripted or unsubscripted.

Data are transferred beginning with the first byte in v. The

number of bytes transferred is equal to the value of the

length field of fn found in the control table.

STASH requires 148 bytes of core storage.

The subroutine

Data stored in a field by the STASH subroutine may be

retrieved by the GET subroutine subprogram. It is activated

a �ink �ariable pointing to the node containing the desired

information, fni, i = 1,
. . . , k, are the field names of the

fields containing the desired information, and vi, i = 1,

... , k, are the variables capable of receiving the retrieved

information. "v" can be a subscripted or unsubscripted var-

iable. Data are transferred to v for a length equal to the

value of the length field of fn as stored in the control

table. If the length of v exceeds the length of fn, infer-

mation is stored left justified in v. All data transferred

by the GET and STASH subprograms are processed without regard

to mode. It is therefore imperative that the user assure

himself that real variables are used to receive real values

and integer variables are used to receive integer values or

use some other means to preserve mode compatability. The

subroutine GET requires 132 bytes of core storage.

Nodes that are no longer of any value to a particular

list may be returned to the available list by means of the

subroutine subprogram ERASE. This subroutine maintains a

17

current list of available space, By using ERASE, the problem

programmer prevents the accumulation of non active core

storage and thus precludes the necessity of the commonly

known function called garbage collection. Since the number

of nodes available at any given time is limited, it may be

important to return any nodes as soon as their purpose has

been served. ERASE is activated by CALL ERASE (lv). It

returns the node pointed to by the �ist �ariable lv to the

top of the available list. This node then becomes the next

available node and the former first node of the available

list linked to it. The contents of returned nodes are not

changed, with the exception of the link fields in each node.

The subroutine ERASE requires 60 bytes of core storage.

18

LITERATURE CITED

1. Rosen, Saul (Ed.). Programming Systems and Languages.
McGraw-Hill Book Company, Inc., New York. 1967. 734 p,

2. McCarthy, J. LISP 1.5 Programmer's Manual. Massa­
chusetts Institute of Technology Press, Cambridge,
Massachusetts. 1966. 107 p.

3 • Weizenbaum, J. Symmetric List Processor.
of the Association of Computing Machinery.
Number 9. 22 p. September, 1963.

Communications
Volume 6,

4. Collins, George E. The SAC-1 List Processing System.
Unpublished Program Write-up. Computer Sciences
Department and Computing Center, University of Wisconsin,
Madison, Wisconsin. 1967. 34 p.

5. Sammet, Jean. Programming Languages: History and
Fundamentals. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey. 1969. 785 p.

19

APPENDIXES

Appendix A

Subroutine SETUP

The following is a source statement listing of

Subroutine SETUP.

20

SETUP

ADCON

R1

R4

RS

R6

R7

R8

R9

R10

R11

R14

R15

SUBROUTINE SETUP

START 0

USING :'·,R15

B :':+ 8

DS

STM

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

F

14,12,12(13)

1

4

5

6

7

8

9

10

11

14

15

ADCON OF TABLE

STORE REGS FROM CALLING

PROGRAM

PARAMETER LIST POINTER

INCREMENT THROUGH TABLE

NO. OF BYTES RESERVED

NO. OF BYTES IN TABLE

WORK

NO. OF BYTES PER NODE

WORK

WORK

WORK

RETURN

BASE

* CALL SETUP(RESBLK,100,LNK,2,F1,f,F2,8,F3,2,F4,1)

* RESBLK IS AREA-DIMENSION RESBLK(100)-RESERVED FOR LIST.

* REMAINING PARAMETERS ARE FIELD NAMES AND LENGTHS FOR

* EACH NODE

LR

MVC

L

R10,R1

ADCON,O(R10)

R4,0(R10)

R10 IS NOW PARAMETER LIST

POINTER

STORE ADDRESS OF CORE

AREA IN

ADCON FULL WORD

21

-:,,':

-:,,':

-!:

STORNXT

*

LA

L

L

SLA

ST

LA

SR

LA

SR

LA

LA

LA

L

R10,4(R10)

R11,0(R10)

R5,0(R11)

R5,2

R4,RSBLKST

R4,2(R4)

R6,R6

R6,2(R6)

RB,RB

R8,2(R8)

R10,4(R10)

R10,8(R10)

R11,0(R10)

TABLE AND LIST WILL BE

ADDRESSED

RELATIVE TO THIS LOCATION

GET NEXT PARAMETER-AREA

SIZE

PUT SIZE OF DIMENSION IN R5

MULTIPLY BY 4 TO GET SIZE

IN BYTES

BUILD TABLE IN BEGINNING

OF CORE AREA AS

FOLLOWS-LIST VAR. FOR

AVAIL LIST-2 BYTES

FIELD 1-4 BYTES

LENGTH OF FIELD

1-2 BYTES

ETC.

R6 ACCUMULATES TABLE LEN.

R4 INCREMENTS THROUGH TBL.

GET NEXT PARAMETER-NAME

OF FIELD-BYPASS.

LNK FIELD AND LENGTH

SINCE THEY ARE KNOWN

MVC 0(4,R4),0(R11) PUT FIELD NAME IN TABLE

L R11,4(R10) GET NEXT PARAMETER-FIELD

L R7,0(R11) LENGTH

AR

STH

R8,R7

R7,4(R4)

ACCUMULATE NODE ·tENGTH

PUT LENGTH IN TABLE

22

-;':

-;':

-;':

-;':

:':

1:

*

*

*

*

*

*

LA R6,6(R6)

LA R4,6(R4)

TM

BZ

L

LR

SR

STH

SR

4(R10),X'BO'

STORNXT

R7,RSBLKST

R9,R4

R9,R7

R9,0(R7)

RS,R6

IS THIS LAST PARAMETER

NO

SET R7 TO BEGINNING OF

TABLE-R7 WILL

CONTAIN BASE ADDRESS R4

WILL CONTAIN

ACTUAL ADDRESS-DIFFERENCE

WILL BE

DISPLACEMENT ADDRESS TO

BE STORED IN LINK

FIELD OF EACH NODE

DISPLACEMENT OF AVAIL

LIST-FIRST ENTRY IN

- TABLE

RS NOW HAS CORE LEFT FOR

LIST

CREATE AVAIL LIST

LR

SR

DR

R7,RS

R6,R6

R6,R8

DIVIDE RS BY RB TO

DETERMINE HOW MANY

NODES WILL FIT INTO

REMAINING AREA STORE

THAT NO. IN R7

R4 NOW HAS ACTUAL ADDRESS

23

24
#': OF CURRENT NODE

LNKN XT AR R9,RB R9 NOW HAS RELATIVE

·l: ADDRESS OF NEXT NODE

STH R9,RSBLKST FOR ALIGNMENT

MVC 0(2,R4),RSBLKST

AR R4,RB

BCT R7,LNKNXT

SR R4,RB SET LNK FIELD IN LAST

#': NODE TO ZEROES

STH R7,RSBLKST FOR ALIGNMENT

MVC 0(2,R4),RSBLKST

LM 2,12,28(13)

MVI 12 (13), X 'FF'

BR R14 RETURN

RSBLKST DS F REG SAVE AREA

END

Appendix B

Subroutine IAVAIL

The following is a source statement listing of

Subroutine IAVAIL.

25

IAVAIL

RO

R1

R4

RS

R14

SUBROUTINE IAVAIL

START 0

USING :'=,R15

STM 14,12,12(13)

EQU

EQU

EQU

EQU

EQU

0

1

4

5

14

STORE REGS FROM CALLING

PROGRAM

RESULT

PARAMETER LIST

TABLE ADDRESS-BASE

DISPLACEMENT

RETURN

R15 EQU 15 BASE

:': IA-IAVAIL(X)

* IA IS WHERE RESULT IS STORED

* X IS DUMMY ARGUMENT

"':

L

L

R1, =V(SETUP)

R4,0(R1)

SR R5,R5

LH R5,0(R4)

BASE IN R4

LINK OF NEXT NODE FROM

AVAIL LIST

LR RO,R5 RESULTANT VALUE

AR R5,R4 BASE + DISPLACEMENT

MVC 0(2,R4),0(R5) GET LINK OF NEXT NODE

LM 2,12,29(13) AND PLACE IN TABLE

MVI 12(13),X'FF'

BR R14

END

26

Appendix C

Subroutine SLINK

The following is a source statement listing of

Subroutine SLINK.

27

SLINK

R1

R4

RS

R6

R7

RB

R14

R15

SUBROUTINE SLINK

START 0

USING :'·,R15

STM 14,12,12(13)

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

1

4

5

6

7

8

14

15

* CALL SLINK(IA,NODE)

* IA IS LIST VARIABLE TO BE STORED IN LINK FIELD OF NODE

* NODE IS LIST VARIABLE OF NODE

LR

L

L

L

LOOP L

L

AR

MVC

TM

BO

LA

L

R7,R1

R6,0(R1)

R5,4(R1)

R1, = V(SETUP)

R4,0(R1)

R5,0(R5)

R4,R5

0(2,R4),2(R6)

4(R7),X'BO'

RET

R7,8(R7)

R6,0(R7)

ADDRESS OF IA IN R6

ADDRESS OF NODE IN RS

TABLE BASE IN R4

PUT VALUE OF IA IN LINK

FIELD

LAST SET OF PARAMETERS

28

29
L R5,4(R7)

B LOOP

RET LM 2,12,28(13)

MVI 12(13),X'FF'

BR R14

END

Appendix D

Subroutine LINK

The following is a source statement listing of

Subroutine LINK.

30

LINK

·l:

RO

R1

R4

RS

R14

R15

SUBROUTINE LINK

START 0

USING �·:,R15

STM 14,12,12(13) STORE REGS FROM CALLING

PROGRAM

EQU 0 RETURN RESULT

EQU 1 PARAMETER LIST POINTER

EQU 4 ADDRESS OF TABLE

EQU 5 VALUE OF ARGUMENT

EQU 14 RETURN

EQU 15 BASE

* IA=LINK(LINK(LINK(LISTVR)))

* IA IS WHERE RESULTANT LIST ADDRESS IS PLACED--BASE

* DISPLACEMENT FORM

* LISTVR IS NAME OF LIST VARIABLE-DISPLACEMENT FORM­

L

L

L

A

MVC

LH

LM

MVI

BR

FWR.D DS

END

RS,O(R1)

R1, = V(SETUP)

R4,0(R1)

R4,0(R5)

FWRD(2),(R4)

RO,FWRD

2,12,28(13)

12(13),X'FF'

R14

· r

ADDRESS OF LIST VARIABLE

ADDRESS OF TABLE-BASE­

BASE + DISPLACEMENT

ALIGNMENT

31

Appendix E

Subroutine STASH

The following is a source statement listing of

Subroutine STASH.

32

STASH

-;':

R1

R4

RS

R6

R7

RS

R9

R10

R14

R15

SUBROUTINE STASH

START 0

USING �·:,R15

STM 14,12,12(13)

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

8

9

10

14

15

STORE REGS FROM CALLING

PROGRAM

PARAMETER LIST POINTER

ADDRESS OF TABLE

ADDRESS OF LISTV

ADDRESS OF NODE FIELD

LENGTH OF NODEFLD TAKEN

FROM TABLE

ACCUMULATE DISPLACEMENT

OF FIELD IN NODE

ADDRESS OF INFO FIELD

SAVE PARM LIST POINTER

RETURN

BASE

* CALL STASH(LISTV,NODEFLD,INFO,NODEFLD2,INF02,-----)

* LISTV IS NAME OF LIST VARIABLE THAT CONTAINS THE LIST

* ADDRESS OF THE NODE.

* NODEFLD IS THE FIELD NAME IN THE NODE.

* INFO IS THE VARIABLE THAT CONTAINS THE INFO TO BE

1: STORED.

L

·1

R5,0(R1)

RS,O(RS)

L R9,8(R1)

L R10,8(R1)

LOAD PARAMETERS

33

34

L R1, = V(SETUP) GET ADDRESS OF TABLE

-..': FROM SETUP

L R4,0(R1) AND PUT IN R4

LR RS,R4 BASE IN RS

LA R4,2(R4) BYPASS LINK FIELD IN

LA RS,2(RS) TABLE

STM R4,R5,SV45

ST RS,SVS

NEXT CLC 0(4,R6),0(R4) FIND FIELD NAME IN

BE FOUND TABLE

AH RS,4(R4) ADD FIELD LENGTH FROM

LA R4,6(R4) TABLE TO RS

B NEXT

EXMVC MVC O(O,RS),O(R9) STORE

FOUND LH R7,4(R4) FIELD LENGTH IN R7

AR R5,RS BASE + DISPLACEMENT

-;': OF FIELD

BCTR R7,0 SUBTRACT ONE FROM R7

EX R7,EXMVC FOR EX COMMAND

TM O(R10),X'BO'

BO FINIS

L R6,S(R10) NEXT PARAMETERS

L R9,S(R10)

LA R10,B(R10)

LM R4,R5,SV45

L RS,SVS

B NEXT

35
FINIS EQU �'::

LM 2,12,28(13) RESTORE REGS FROM CALLING

MVI 12(13),X'FF' PROG

BR R14

SV45 DS 2F

SV8 DS F

END

Appendix F

Subroutine GET

The following is a source statement listing of

Subroutine GET.

36

* SUBROUTINE GET

GET START 0

RO

R1

R4

RS

R6

R7

RB

R9

R10

R15

U S I NG :', , R 1 5

STM 14,12,12(13)

EQU 0

EQU 1

EQU 4

EQU 5

EQU 6

EQU 7

EQU 8

EQU 9

EQU 10

EQU 15

RESULT

PARAMETER POINTER

BASE

NODE VALUE - DISPLACEMENT

FIELD NAME OF NODE

DATA LENGTH

DISPLACEMENT WITHIN NODE

POINT TO VINFO

SAVE PARM LIST POINTER

�·: CALL GET(NODE,FIELD1,VINF01,FIELD2,VINF02,---------)

* NODE IS LIST VARIABLE FOR NODE OF INTEREST

* FIELD1 IS FIELD OR CELL NAME WHERE INFORMATION IS

i, STORED

* VINFO IS SYMBOLIC NAME OF CORE LOCATION WHERE THE

* INFORMATION WILL BE PLACED

L R5,0(R1)

L RS,O(RS)

L R6,4(R1)

L R9,8(R1)

LA R10,B(R1)

L R1, = V(SETUP)

L R4,0(R1)

PUT NODE VALUE IN RS

R6 POINTS TO FIELD VALUE

POINT TO VINFO

ADDRESS OF TABLE

37

38

AR RS, R4 BASE + DISPLACEMENT

LA R4,2(R4) BYPASS LINK FIELD

LA R5,2(R5) LENGTH OF LINK FIELD

STM R4,R5,SV45

NEXT CLC 0(4,R6),0(R4) FIELD IN TABLE

BE FOUND

AH R5,4(R4)

LA R4,6(R4)

B NEXT

EXMVC MVC O(O,R9) ,O(R5)

FOUND LH R7,4(R4) LENGTH OF DATA FIELD

BCTR R7,RO SUBTRACT ONE FOR EXEC

EX R7,EXMVC COMMAND

TM O(R10),X'80'

BO FINIS

LM R4,R5,SV45

L R6,4(R10) NEXT FIELD VALUE

L R9,8(R10) NEXT VINFO

LA R10,8(R10)

B NEXT

FINIS EQU #':

LM 2,12,28(13) RESTORE REGS FROM CALLING

MVI 12(13),X'FF' PROGRAM

BR 14

SV45 DS 2F

END

Appendix G

Subroutine ERASE

The following is a source statement listing of

Subroutine ERASE.

39

ERASE

R1

R4

RS

R6

R7

RS

R14

R15

SUBROUTINE ERASE

START 0

USING �·:,R15

STM 14,12,12(13)

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

1

4

5

6

7

8

14

15

�·: CALL ERASE(IA)

* RETURN TO AVAILABLE LIST THE NODE REFERENCED BY THE

* LIST VARIABLE IA

* ALSO SET VALUE OF IA TO ZERO SO THAT IA CAN NO LONGER

* BE USED WITHOUT BEING RESTORED

L

L

L

LH

LR

AR

*

L

LR

AR

R6,9(R1)

R1, =V(SETUP)

R4,0(R1)

RS,O(R4)

R8,R6

R5,R4

R6,0(R6)

R7,R6

R6,R4

ADDRESS OF IA

TABLE BASE IN R4

PUT TABLE IN LINK

FIELD OF NODE

BEING RETURNED

SAVE BASE VALUE OF IA

40

41

MVC 0(2 ,R6) ,0(R4)

STH R7,0(R4) PUT IA IN TABLE LINK

SR R1,R1

ST R1,0(R8) ZERO OUT IA

LM 2 ,12 ,28(13)

MVI 12(13),X'FF'

BR R14

END

Appendix H

Sample Problems

Three sample programs have been written to demonstrate

the use of the seven FLIP subroutines. The first is the

multiplication of two polynomials. The input is one header

card followed by one or more coefficient and exponent cards

for each polynomial. The header card contains the variable

and the number of terms in the polynomial.

the header card is:

Column Description

The format for

1-2

3

Number of terms in polynomial

Variable name

The format of the data cards is:

Column

1-10

11-12

Description

Coefficient term

Exponent term

The second sample is the division of two polynomials.

The input data format is the same as in the above sample

with the dividend taken to be the first polynomial and

the divisor taken to be the second.

The third sample will read in and create a list of

names, social security numbers, birth years, high school

codes, and the sex of a given group of people. A sort

42

will then be done on social security number and the list

printed out in sequence by social security number. It

should be noted that the only data movement will be that

of the social security numbers and their corresponding

list variables.

The format for the data is:

Column Description

1-22 Name

27-28 Year of birth

30 Sex

38-40 High school code

43-51 Social Security Number

43

C POLYNOMIAL MULTIPLY

DIMENSION POLYNOMIAL MULTIPLY

COEF=1.0
EXP=2.0

CALL SETUP(RESBLK,500,LNK,2,COEF,4,EXP,4)

LV1=IAVAIL(X)
LV2=IAVAIL(X)
LVP=IAVAIL(X)

L1=LV1

N=O
LP=LVP
PRINT 4

4 FORMAT(SX, 'MULTIPLICAND')
7 READ 1,N1,V1
1 FORMAT(I2,A1)

LOOP=1
6 READ 2,COF,IEX
2 FORMAT(F10.1,I2)

CALL STASH(L1,COEF,COF,EXP,IEX)

PRINT 8,COF,V1,IEX
IF(LOOP .EQ. N1) GO TO 5
LOOP=LOOP+1
L=IAVAIL(X)
CALL SLINK(L,L1)
11=1
GO TO 6

5 L1=LV2
N=N+1
IF(N .EQ. 2) GO TO 11
PRINT 12

12 FORMAT(8X, 'MULTIPLIER')
GO TO 7

11 II=2�':N1-2
DO 10 I=1,II
L=IAVAIL(X)
CALL SLINK(L,LP)

10 LP=L
CALL POLYMT (LV1,LV2,LVP,N1,COEF,EXP)

PRINT 3

3 FORMAT(8X, 'PRODUCT')
LOOP=1

9 CALL GET(LVP,COEF,C1,EXP,IX)

IF(C1 .EQ. 0.0) GO TO 13
PRINT 8,C1,V1,IX

8 FORMAT(1X,F10.2,A1,'EXP',I2)

13 IF(LOOP . EQ. 2�1:N1-1) STOP
LOOP=LOOP+1

LVP=LINK(LVP)
GO TO 9

END-

44

SUBROUTINE POLYMT (LV1,LV2,LVP,NTERMS,COEF,EXP)
C MULTIPLY LV1 BY LV2 RESULT IN LVP.
C ALL CELLS IN LV1 and LV2 MUST BE INITIALIZED.
C IF A TERM IS MISSING, COEF MUST BE SET TO ZERO.
C NTERMS IS NUMBER OF TERMS IN POLYNOMIAL
C COEF IS FIELD NAME OF COEFFICIENT FIELD
C EXP IS FIELD NAME OF EXPONENT FIELD

NPERMS=2*NTERMS-1
LVWRK=IAVAIL(X)
LVW2=LVWRK
LVW3=LVWRK
LV=LVWRK
IN=NTERMS-1
DO 1 I=1,NPERMS
N=IAVAIL(X)
CALL SLINK(N,LV)
LV=N

1 CONTINUE
LVV2=LV2
IOUTER=1
LVP1=LVP
LOOP=1
ZERO=O.O
IEXP=2·':NTERMS-2

6 CALL STASH(LVP1,COEF,ZERO,EXP,IEXP)
IF(LOOP .EQ. NPERMS) GO TO 5
LOOP=LOOP+1
LVP1=LINK(LVP1)
IEXP=IEXP-1
GO TO 6

5 LVW1=LVWRK
LVV1=LV1
CALL GET(LVV2,COEF,C2)
DO 9 I=1,NPERMS
CALL STASH(LVW1,COEF,ZERO)

9 LVW1=LINK(LVW1)
LVW1=LVWRK
INNER=1

2 CALL GET(LVV1,COEF,C1)
C2=C1·':c2
CALL STASH(LVW2,COEF,C3)
IF(INNER .EQ. NTERMS) GO TO 3
LVV1=LINK(LVV1)
LVW2=LINK(LVW2)
INNER=INNER+1
GO TO 2

3 CALL CELLAD (LVWRK,LVP,NTERMS,COEF,EXP)
IF(OUTER .EQ. NTERMS) GO TO 7
IOUTER=IOUTER+1
LVV2=LINK(LVV2)

45

LVW3=LINK(LVW3)
LVW2=LVW3
GO TO 5

7 DO 8 1=1,IN
LVWL=LINK(LVWRK)
CALL ERASE(LVWRK)

8 LVWRK=LVWL
CALL ERASE(LVWL)
RETURN
END

46

SUBROUTINE CELLAD (LV1,LV2,NTERMS,COEF)
LVV1=LV1
LVV2=LV2
I=1

1 CALL GET(LVV1,COEF,C1)
CALL GET(LVV2,COEF,C2)
C2=C2+C1
CALL STASH(LVV2,COEF,C2)
IF(I .EQ. 2 °'-NTERMS-1) RETURN
I=I+1
LVV1=LINK(LVV1)
LVV2=LINK(LVV2)
GO TO 1
END

..

47

48

INPUT

sz

1. 3 4

2.0 3

3.0 2

1 . 2 1

0. 0

sz

5 • 0 4

o.o

4. 0 2

3. 0 1

10. 0

MULTIPLICAND

1.30ZEXP 4

2. OOZEXP 3

3.00ZEXP 2

1.20ZEXP 1

0.0 ZEXP 0

MULTIPLIER

5.00ZEXP 4

0.0 ZEXP O '3

4.00ZEXP 2

3.00ZEXP 1

10,00ZEXP 0

PRODUCT

6.50ZEXP 8

10,00ZEXP 7

20.20ZEXP 6

17.90ZEXP 5

31.00ZEXP 4

33.BOZEXP 3

33.60ZEXP 2

12.00ZEXP 1

49

OUTPUT

PROGRAM

C POLYNOMIAL DIVIDE
DIMENSION RESBLK(SOO)
COEF=1.0
EXP=2.0
CALL SETUP(RESBLK,500,LNK,2,COEF,4,EXP,4)
LDVD=IAVAIL(X)
LDVR=IAVAIL(X)
LQ=IAVAIL(X)
LR=IAVAIL(X)
L1=LDVD
NSW=O
PRINT 8

8 FORMAT(1X'DIVIDEND')
10 READ 1,N1,V
1 FORMAT(I2,A1)

LOOP=1
6 READ 2,COF,IEX
2 FORMAT(F10.1,I2)

CALL STASH(L1,EXP,IEX,COEF,COF)
PRINT 17,COF,V,IEX
IF(LOOP .EQ. N1) GO TO 5
LOOP=L00Pt1
L=IAVAIL(X)
CALL SLINK(L,11)
L1=L
GO TO 6

5 IF(NSW .EQ. 1) GO TO 7
L1=LDVR
ND=N1
PRINT 9

9 FORMAT(1X,'DIVISOR')
GO TO 10

7 NR=N1
L1=LQ
LOOP=1
COF=O.O
IEX=O

12 CALL STASH(L1,COEF,COF,EXP,IEX)
IF(LOOP.EQ.ND) GO TO 11
L=IAVAIL(X)
CALL SLINK(L,11)
11=1

LOOP=LOOP+1
GO TO 14
PRINT 15

50

15 FORMAT(1X, 'QUOTIENT')

16 L Q =LINK (L Q)
-·

PRINT 18

18 FORMAT(1X, 'REMAINDER')
NRMO=NR-1
DO 19 I=1,NRMO

CALL GET(LR,COEF,C1,EXP,IX)

IF(C1 .EQ. 0.0) GO TO 19
PRINT 17,C1,V,IX

19 LR=LINK(LR)
STOP
END

51

SUBROUTINE POLYDV(LDVD,ND,LDVR,NR,LQ,LR,COEF,EXP)
C DIVIDE LDVD WITH ND TERMS BY LDVR WITH NR TERMS,

C PUT QUOTIENT WITH ND TERMS IN LQ AND REMAINDER
C WITH NR TERMS IN LR. FIELD NAMES ARE COEF AND
C EXP FOR COEFFICIENT AND EXPONENT TERMS IN EACH
C NODE.

WD=IAVAIL(X)
WL=IAVAIL(X)
I=1
COF=O.O
IEX=O
LDW=WD
LL=WL
LDD=LDVD

1 CALL GET(LDD,COEF,CW,EXP,IW)
CALL STASH(LDW,COEF,CW,EXP,IW)
CALL STASH(LL,COEF,COF,EXP,IEX)
IF(I.EQ.ND) GO TO 2
LDD=LINK(LDD)
L=IAVAIL(X)
CALL SLINK(L,LDW)
LDW=L
L=IAVAIL(X)
CALL SLINK(L,LL)
LL=L
I=I+1
GO TO 1

2 LWQ=LQ
LWR=LR
LDW=WD
LLW=WL
LDVRW=LDVR

5 CALL GET(LDVRW,EXP,IEXDVR)
CALL GET(LDW,EXP,IEXDVD)
IF(IEXDVR .GT. IEXDVD) GO TO 3
CALL GET(LDVRW,COEF,CDVR)
CALL GET(LDW,COEF,CDVD)
CQ=CDVD/CDVR
IEXQ=IEXDVD-IEXDVR

. LDW=LINK(LDW)
CALL STASH(LWQ,COEF,CQ,EXP,IEXQ)
LSLDW-LDW
LDRN=LINK(LDVR)
NRMO=NR-1
DO 4 I=1,NRMO
CALL GET(LDRN,COEF,CDVRN)
CALL GET(LSLDW,COEF,C1)
CW=C1-CQ1:CDVRN
CALL STASH(LSLDW,COEF,CW)

52

LDRN=LINK(LSLDW)
4 LSLDW=LINK(LSLDW)

LWQ=LINK(LWQ)
GO TO 5

3 NRMO=NR-1
DO 6 1=1,NRMO
CALL GET(LDW,COEF,C1,EXP,IEX)
CALL STASH(LWR,COEF,C1,EXP,IEX)
LWR=LINK(LWR)

6 LDW=LINK(LDW)
RETURN
END

53

54

SAMPLE INPUT

6X

2 . 0 5

1.0 4

- 5. 0 3

9.0 2

12. 0 1

2.0 0

3X

1.0 2

2. 0 1

-3.0 0

DIVIDEND

2. 0 XE XP 5

1 . 0 XE XP 4

-5.0XEXP 3

9.0XEXP 2

12.0XEXP 1

2. 0 XE XP 0

DIVISOR

1.0XEXP 2

2.0XEXP 1

-3. 0 XE XP 0

QUOTIENT

2.0XEXP 3

-3.0XEXP 2

7.0XEXP 1

-14.0XEXP 0

REMAINDER

61.0XEXP 1

-40.0XEXP 0

55

OUTPUT

C SORT

PROGRAM

DIMENSION RES BL K (5 0 0) , L K (9 9) , NAM (6)

SS=l.O
NAME=2
YBR=3.0
SEX=4.0
HSCL=5.0

CALL SETUP(RESBLK,500,LNK,2,SS,4,NAME,22,YBR,
12,SEX,1,HSCL,4)

DO 5 I=l,1000

READ(5,1,END=2) NAM,IYBR,ISEX,ISCL,ISS
1 FORMAT(5A4,A2,3X,A2,1X,A1,7X,A3,2X,I9)

LK(I)=IAVAIL(X)

CALL STASH(LK(I),SS,ISS,NAME,NAM,YBR,IYBR,SEX,
1ISEX,HSCL,ISCL)

5 CONTINUE
2 I=I-1

M=I
N=M/2

3 I=l
J=I+N

7 CALL GET(LK(I),SS,ISS)
CALL GET(LK(J),SS,JSS)
IF(ISS . GT. JSS) GO TO 6

4 IF(J .EQ. M) GO TO 9
J=J+l
I=I+l

GO TO 7
6 LSV=LK(I)

LK(I)=LK(J)
LK(J)=LSV
GO TO 4

9 IF(N .EQ. 1) GO TO 11
N=N-1

GO TO 3
11 WRITE(6,14)

14 FORMAT(1X, 'NUMBER' ,SX, 'YR' ,1X, 'SEX' ,1X, 'H.S. ',/)
DO 12 I=1,M
CALL GET(LK(I),SS,ISS,NAME,NAM,YBR,IYBR,SEX,

1ISEX,HSCL,ISCL)
12 WRITE(6,13) ISS,NAM,IYBR,ISEX,ISCL

13 FORMAT(1X,I9,2X,5A4,A2,2X,A2,2X,A1,2X,A3)
STOP
END

56

SAMPLE INPUT

KARIMI AHMAD
SAADAT MOHAMAD H
SMITH LINDA DIANE
HUNLEY MICHAEL W
BROWN LAWRENCE GUY
HARVELL WILLIAM DEAN
ANDRE RAMONA LOUISE E
BARFUS BRENT- WAYNE
ZEHNPFENNING BRENDA K
PETERSON GLEN LOREN
SIQUEIROS BRUCE WAYNE
WALTERS JACK LEROY
BROWN VERNAL A
BLACK DAVID F
COULAM WILLIAM B
WALKER CLIVE HANSEN
BARSON AARON V JR
KELSO THOMAS R
NASERI MOHSEN
MANN MICHAEL DOUGLAS
SMITH DENNI S LYLE
PREEDEDILOK KITIMA P
HESTER JAMES CLITTON
SORENSEN ARTHUR BRYCE
PLUMMER TI MOTHY N
WOODS DONA CELESTE
WEYERTS THOMAS MARTIN
EDWARDS RONALD DANE
WORZALA JAMES LYLE
MARTIN LONNIE JOSEPH
JARRELL DANIEL CRAIG
BETHERS BARTON L
TURNQUIST GARY BRUCE
LAMOUREUX BLAIN C
PETERS DONALD CARL
SIAL MUHAMAD IZBAL
PEARSON WILLIAM DEAN
HERREID BARBARA ELLEN
MURPHY DEE FRANKLIN
HESS MARGARET MYLER
REED FRANK E
TAYLOR STEPHEN COPE
QUINTANA ROCKY
HACKLEY LARAINE STUCKI
CHIDESTER MILTON WAYNE
BRIGGS BETTE MARLENE

48 M
50 M
4 8 F
47 M
39 M
49 M
34 M
42 M
44 F
44 M
49 M
3 5 M
38 M
37 M
4 5 M

3 5 M
4 8 M
50 M
50 M
50 M
47 M
39 F
47 M
29 M
48 M
49 F
4 8 M
47 M
42 M
47 M
47 M
26 M
50 M
4 9 M
47 M
4 8 M
41 M
4 8 F
46 M
42 F
28 M
4 8 M
47 M
6 9 F
51 M
4 8 F

1 11
555

12 7 528
528
539

570 520
549

108 529
145 528
014 529
282 666
027 528
620 520

527
108 528
327 777
108 528

561
888

014 528
12 7 999

529
0 89 52 8
3 82 51 8

505
457
56 2
557
339
53 o·
53 8

141 528
573
528
552
111
360
303

132 529
012 519

532
090 528
145 528

- 209 518
061 528

530

57

COPE PATRICIA
TEW RICHARD WAYNE
GUYMON MAUGHAN M
MAJOR GARY LEE
VAUGHN MICHAEL W

48 F
51 M
47 M
4 5 M
50 M

146 529
461

039 529
550

050 440

58

111
111
303
339
360
440
457
461
505
518
518
519
520
520
527
528
528
528
528
528
528
528
528
528
528
528
528
528
529
529
529
529
529
52 9
530
530
532
538
539
549
550
552
555
557
561
562

OUTPUT

KARIMI AHMAD
SIAL MUHAMAD IZBAL
HERREID BARBARA ELLEN
WORZALA JAMES LYLE
PEARSON WILLIAM DEAN
VAUGHN MICHAEL W
WOODS DONA CELESTE
TEW RICHARD WAYNE
PLUMMER TIMOTHY N
SORENSEN ARTHUR BRYCE
HACKLEY LARAINE STUCKI
HESS MARGARET MYLER
BROWN VERNAL A
HARVELL WILLIAM DEAN
BLACK DAVID F
BETHERS BARTON L
WALTERS JACK LEROY
ZEHNPFENNING BRENDA K
COULAM WILLIAM B
QUINTANA ROCKY
BARSON AARON V JR
HUNLEY MICHAEL W
HESTER JAMES CLITTON
SMITH LINDA DIANE
CHIDESTER MILTON WAYNE
MANN MICHAEL DOUGLAS
TAYLOR STEPHEN COPE
LAMOUREUX BLAIN C
BARFUS BRENT WAYNE
PETERSON GLEN LOREN
MURPHY DEE FRANKLIN
GUYMON MAUGHAN M
COPE PATRICIA
PREEDEDILOK KITIMA P
MARTIN LONNIE JOSEPH
BRIGGS BETTE MARLENE
REED FRANKE
JARRELL DANIEL CRAIG
BROWN LAWRENCE GUY
ANDRE RAMONA LOUISE E
MAJOR GARY LEE
PETERS DONALD CARL
SAADAT MOHAMAD H
EDWARDS RONALD DANE
KELSO THOMAS R
WEYERTS THOMAS MARTIN

48 M
48 M
48 F
42 M
41 M
50 M 050
49 F
51 M
48 M
29 M 382
69 F 209
42 F 012
38 M 620
49 M 570
37 M
26 M 141
35 M 027
44 F 145
45 M 108
47 M 145
48 M 108
47 M
47 M 089
48 F 127
51 M 061
50 M 014
48 M 090
49 M
42 M 108
44 M 014
46 M 132
47 M 039
48 F 146
39 F
47 M
48 F
28 M
47 M
39 M
34 M
45 M
47 M
50 M
47 M
50 M

M

59

60

573 TURNQUIST GARY BRUCE 50 M
666 SIQUEIROS BRUCE WAYNE 49 M 282
777 WALKER CLIVE HANSEN 35 M 327
888 NASERI MOHSEN 50 M
999 SMITH DENNIS LYLE 47 M 127

VITA

Karl A. Fugal

Candidate for the Degree of

Master of Science

Thesis: A FORTRAN List Processor (FLIP)

Major Field: Applied Statistics

Biographical Information:

Personal Data: Born at American Fork, Utah, December
3, 1939, son of Bryan C. and Jennie Burch Fugal;
married Carol Don Carpenter on August 26, 1962.

Education: Attended elementary school in Pleasant
Grove, Utah; graduated from Pleasant Grove High
School in 1958; received a Bachelor of Science
degree from Utah State University with a major
in mathematics and a minor in physics, in June,
1964; completed requirements for the Master of
Science degree at Utah State University in 1970.

61

	A Fortran List Processor (FLIP)
	Recommended Citation

	tmp.1507740935.pdf.R5wHp

