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ABSTRACT
Model for Bathtub-shaped Hazard Rate:
Monte Carlo Study
by
Glen S. Leithead, Master of Science

Utah State University, 1970

Major Professor: Professor Ronald V. Canfield
Department: Applied Statistics

A new model developed for the entire bathtub-shaped hazard rate
curve has been evaluated as to its usefulness as a method of relia-
bility estimation. The model is of the form:

M
BEGt) =21 -cexpi= (~ltL t O,t + O3t )

where "L'" and 'M" were assumed known.

The estimate of reliability obtained from the new model was
compared with the traditional restricted :sample estimate for four
different time intervals and was found to have less bias and
variance for all time points.

This was a monte carlo study and the data generated showed that
the new model has much potential as a method for estimating relia-
bility.

(51 pages)




INTRODUCT ION

Reliability has become a very commonly used term today, espe-
cially with the advent of space travel. As is common with all new
sciences, the state of the art is rapidly changing and improving.
This thesis is a combination programming and evaluation of a new
model for reliability estimation. For this evaluation the estimate
of reliability will be an important criterion.

It is known that the plot of the hazard rate (i.e., the rate at
which the component population still in test at time '"t'" is failing
(Bazovsky, 196l)) as function of time has the shape like a bathtub
for the entire life of the component. It is the bottom, flat sec-
tion that is traditionally used for the estimation of reliability.
This is called a restricted sample estimate because only data for
the middle portion of the component's life are used. The new model
proposed will utilize the data for the entire component's life. The

distribution function for "time to failure" for this model is:
=L M
B(L) =L -exp - (""lt - &j3t )

For this study the parameters '"L" and '"M" will be assumed known.

A good deal of the effort will be spent in the development of
computer programs, Lo generate data to enable certain checks and
evaluations to be made on the model. Some of the checks to be made
will be to vary the parameters '"L'", '"M" and thetas to see if any
irregularities are apparent. Estimate of reliability will be cal-

culated and examined for bias and patterns.




The thesis is divided into several sections. The first will
consist of definitions and derivations to be used in the development
of the model. A description of the computer programs developed for
the obtaining and checking of the data is given in the next section.
The third section gives results and findings for all the various
checks, tests and evaluations performed on the model. Also included
in this section is the comparison of the reliability estimates for

the model, restricted sample and true value.




DEFINITIONS AND DERIVATIONS

Reliability

Reliability is defined by Bazovsky (1961, p. l4) as 'the
probability that a component performing its purpose adequately for
the period of time intended under the operating conditions en-
countered." The term component may be used interchangeably with
other terms such as item, part, vehicle, or complete system and
still maintain the same meaning. Thus the component user is inter-
ested in the length of time that he can expect the component to
operate without failure or breakdown. For the non-repairable com-
ponents this means that the '"time to failure' is the critical
characteristic. For the astronaut the '"time to failure'" must exceed
the mission time. Thus, for these reasons, it is worthwhile to
define reliability in terms of the distribution of the '"time to
failure." The probability density of '"time to failure' is:

f(t) t 0

The distribution of '"time to failure'" or cumulative probability

is given as:
F(t) = [© £(t) dt
o

which is the probability of a failure by time '"t.'" Reliability will

now be defined as the probability of no failure by time "t."

R(t) = L - F(t) = [, £(t) dt




Hazard rate

With the definition of reliability given, the hazard rate can
now be defined as the conditional probability that a component will
fail in a unit time interval after '"t,'" given it has not failed
before time '"'t" (Lloyd and Lipow, 1962). Sometimes hazard rate is
called instantaneous failure rate or force of mortality and is given

as:
h(t) dt = £(t) dt / R(t)

or

h(t) = £(t) / R(t)
or the hazard rate can be defined as (Lindgren, 1968)

h(t) -dLn R(t)

dt

Failure periods

The term failure has been used in the previous definitions and
we shall now discuss its role in reliability. A perfectly reliable
component is one which never fails. A high reliable component would
have a low frequency of failures. Therefore, the goal would be to
have components failure free, but experience has shown that even the
best designed, engineered, tested, and maintained components do fail.
Reliability distinguishes between types of failures. These failures
are called burn-in, random, and wearout. Each one of these cate-
gories defines a distinct operating period in the lifetime of many
components. These periods are of varying length in time and
experiences. They are definitely related to each item's hazard

rate. The three categories or periods are shown in Figure 1.
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Figure 1. Bathtub~shaped hazard rate curve.
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Figure 2. Probability density for bathtub-shaped hazard rate
curve.




The model

In order to obtain a mathematical description of a bathtub-
shape hazard curve, it must be developed. One such model was pro-
posed by Krohn (1969). He selected an appropriate density for each
of the three periods of decreasing, constant and increasing hazard
rated as shown in Figure 2. He labeled them pl(t), pz(t) and p3(t)
respectively, and used a Wiebull with different shape parameters to
represent the periods. With the assumption that only one of the
failure causes will occur for each item, each cause will receive a
given probability of occurrence: Pl’ the probability of failure due
to the burn-in period; P2, probability of failure due to the random

period; and P the probability of failure due to the wearout period.

3 >

Such that:

A distribution for such a model would be of the form:
P(t) = Plpl(t) f P2P2(t) + P3P3(t)

and the density function for the above developed model would be of

the form:
a a
a-1 -(t71/b,) -(t/b,) a-1 -(t"3/b,)
p(t) - Plal/blt e I’ + P21/bze 27 + P3a3/b3t e 3
where a; <l a, = i and ag > 1

giving the decreasing, constant and increasing hazard rate respec-
tively., The reliability and hazard rate function can be developed
but would be messy.

The above model has too many parameters to be estimated (nine)

and is messy and complicated. Thus another model would be more




useful.

The proposed model is developed as follows. Investigations in
the physics of failure have shown that failures of components may
often be attributed to the three failure periods. Within each cause
there are potentially many possible failures (Shooman, 1968; Wright,
1968). 1If we associate with each potential failure a random varia-

ble, "time to failure," then the actual failure may be viewed as the
minimum value of all those random variables which describe the com-
ponent. If it is further assumed that the number of potential
failures in a component attributable to cause l is a poisson random

variable with parameter Xpl; similarly if the number of failures

caused by 2 and 3 are poisson with parameters sz and Xp3.

Where P; + Py + P3y = 1 and p, > 0

Then the total number of potential failures is poisson with parameter
A. It has been shown (Canfield, 1970) that for large A, the distri-
bution function for the components with this failure model may be

approximated by:

F(t) =1 - exp - (@ltL + 6,t + G3tM)

2
where L < |l to represent the decreasing burn-in period
and M > 1 to represent the increasing wearout period

This distribution is the product of three separate distributions as
shown in Figure 3. And the product of the three distributions has
the shape as shown in Figure 4.

The hazard function is found by using the form:

-d 1ln R(t)
(&) =& crilt '
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Figure 4. The distribution for the model F(t).




where R(t) =1 - F(t) =1 -[1 - exp —(eltL +6,t + 93tM)]
1L, M
and LnR(t) - [Glt + Byt + 65t ]
L-1 M-1
thus h(t) - L@lt + 92 + M93t

This hazard rate function has only six parameters to be estimated,
and is much neater and easier to work with. For the purpose of this

study, "L" and ''M" are assumed known.

Interpretation of thetas

A point should be made here concerning the interpretation of the
thetas in the above model. These thetas are not the same as commonly
seen and used in the Wiebull distribution, the reciprocal of the
mean '"'time to failure.'" They are a transformation of the form:

Sy s 1

where i is considered as the reciprocal of the '"mean time to
failure'" as is commonly used in the Wiebull distribution and the Pi
are the probability associated with each cause of failure. There-
fore, the thetas used in the model are approximately the product of
the reciprocal of the '"time to failure' and the probability associ-

ated with each failure period.
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COMPUTER PROGRAMS

This is a study to evaluate the feasibility of the new model
for the bathtub-shaped hazard rate function. This means consider-
able effort required in the development of computer programs to
generate data and to check the adaptability of the model. The
checks to be made consist of: varying "L'" and '"M" thetas of the
model, and comparing the estimate of reliability. Because the
estimate of reliability is the goal of the new model, it was decided
that it would be a criterion for its evaluation.

The method commonly used in industry is to place a given number
of components on test and record the times at which they fail. With
the data from the tests, the three periods are then determined and
the mean time to failure is calculated for the random failure period.
The computer will be used to simulate the same procedure using the
monte carlo techniques. One hundred components will be placed on
test and operated till all have failed. The times of their failures
will be referred to as the test data set. From the test data sets
obtained from this simulation, estimate for the thetas and relia-
bility will be calculated. Along with these two programs--generation
of test data and estimation of thetas and reliability--another program

will be used to estimate the reliability from the restricted sample.

Obtaining test data sets

The method of simulation described above makes it necessary to

generate random times for the failures of the components according
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to the parameters of the model. To accomplish this, uniform random
numbers must first be generated on the interval (0,1) and then
equated with the distribution function and then solving for "t."
This is accomplished by using the function subroutine RAN (IBM 1965)

on the U.S.U. IBM 360 computer library and then proceeding as

follows:
let S = uniform random number
and G(t) exp - (6 tL +0,t + 6 tM)
1 2 3
It M
then S Gi(t) exp - (elt + 62t + 93t )

and now by taking the logarithm of both sides gives
i M
LnS:-(Olt +92t +63t)

i M
and Ln S + elt + 62t + 63t =0

The application of numerical techniques was needed to solve the
above equation for '"t.'" The Newton-Raphson method (Duris and
Moursund, 1967, p. 29) is used because of its speed and ease to pro-

gram. Repeated iterations of the following equation give the solu-

tion.
g(t) =t - £(t) / £'(t)
where f(t) = Ln S + 6 tL + 6.t + 6 tM
L 2 3
: CaEEl e s ]
and FUCE) = lalt + 6, + mwBt

In this method an initial guess for '"t'" is needed, and then on each
successive iteration the '"t'" is replaced by the new value g(t).
Most solutions were obtained in less than six iterations with five
place accuracy.

This program requires only one data card containing the values
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of "L," '"M," and thetas. The test data sets, with the one hundred
random times of failure, are next sorted in ascending order by a
subroutine SORT1 and then written on tape to be used by the other
programs.

Before the test data sets can be used for any calculations they
must be checked to see if they do indeed follow the desired distri-
bution. The Kolomogrov-Smirnov goodness of fit statistic (Siegel,
1956) is used and is calculated as follows:

D max imum IS(t) = F(t)l
where S(t) is the theoretical distribution under the null hypothesis
which is the empirical distribution (l-i/n+l). F(t) is the observed
distribution. The statistic '"D'" is then compared against the tabular
value with appropriate degrees of freedom and selected & level. If
the statistic '"D'" exceeds the tabular value, the null hypothesis
will be rejected. The null hypothesis is that the sample has been
drawn from the specified distribution.

A listing of the program and output is listed in Appendix A.

Estimation of thetas and
conditional reliability

The method used to obtain estimates for each theta of the distri-
bution is a least squares approach proposed by Bain and Antle (1967).
The problem is to obtain estimates of the thetas which minimize the

squared deviations between the theoretical and observed distributions

1This subroutine was written by Dr. Rex L. Hurst, Department of
Applied Statistics and Computer Science, Utah State University,
Logan, Utah.
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as shown below.
z = z[s(t) - F(e))°
where S(t) and F(t) are given above.

n
Z S[(1-i/n+l) - (exp - {eltL + 93t i tpa)]z
i

In this form it is not easily solved so the logarithm will be taken
giving:

7. = %[(l—i/twl) - (OltL + ()Zt + (}>3tM)J2
and then the partials will be taken with respect to each theta and

set equal to zero giving:

n
2

82 _ slia(l-i/n+1)t + 0 ¢2" + 0. e 4 o MM
80, ~ § 1 2 3

n
HZ S[Ln(l-i/n+l)t + © tL+l + 6 t2 + 8 tM+l]
36, = § 1 2 3

n
4z Z[Ln(l—i/n+l)tM 6 Lk + B tM+l + 6 tZM]
36, ~ § 1 2 3

Each of the above partials is a linear equation in three unknowns
thus giving three equations in three unknowns. The solution for
each theta is obtained by using matrix algebra and a method known

as Cramer's rule (Stien, 1967). The estimated for each theta test
data set is then written on disk for use by the program CORR (Hurst,
1968). This program CORR calculates the mean and standard deviation
for the estimates of each theta.

The reliability estimate for each test set is calculated using
each of the above estimates. Because reliability is always calcu-
lated for the random failure period and the estimates using the
model method use the complete data on the entire life of the com-

ponent, the formula for reliability is given as
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R(t) = R(t + At) / R(t)
where A is the time interval of interest. This estimate of relia-
bility will be referred to as the conditional reliability. For
example, the conditional reliability for t = 1 is found as follows:
R(1) = R(21) / R(20)
where t = 20 is the end of the burn-in period. This gives the re-
liability for a component which is to be operated for a unit time
period.
These estimates are also written on disk for use by the CORR
program.

A listing of this program and output is in Appendix B.

Estimation from restricted sample

The third program is used to calculate the estimate of relia-
bility from the restricted sample assuming a constant hazard rate.
The formula is given as:

R(t) exp - (At)

where "A" is the failure rate and '"t" is the time of operation for
the component. The failure rate '"A'" is the reciprocal of the mean
time to failure, '"MTTF," which is calculated using only the failures
occurring in the random failure period. Due to the difficulty in
writing a program that would evaluate the appropriate times for the
beginning and ending times of the random failure period for each
test data set, it was decided to use two set times, ”Tb” and ”Tw.”
This means that for every test data set the "MTTF" would be calcu-
lated using only the failures between “Tb” and ”Tw.” The values of

”Tb” and ”Tw“ were determined from the theoretical hazard rate
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curve. The formula now looks like this:
R(t) = exp - (t/MTTF)
These estimates are also written on disk for use by CORR.

A listing of this program is in Appendix C.
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RESULTS OF CHECKS

Kolmogorov-Smirnov statistic

The first task with any monte carlo study is to test the random
number generator and this was done using the Kolmogorov-Smirnov
""'goodness of fit'" statistic as described in the previous section.

To make sure the generator for the test data would be valid for
small as well as large sample sizes, two different sample sizes were
tested--one of size 50 and the other of size 100. Each size has 20
test data sets. The maximum absolute differences 'D'" between
theoretical and generated for each set are listed in ascending order

in Table 1. As can be noticed, the null hypothesis, that the random

Table 1. The absolute maximum difference '"D'" for the Kolmogorov-~
Smirnov ''goodness of fit' statistic

Test data sets of size

50 . 100
.04372 .07923 .05791 .05888
.08039 .08930 .06038 .06121
.09373 .09589 .06953 .07184
.09898 .09908 .07613 .07648
. 10465 . 10666 .07965 .08061
.10674 .10898 .08241 .08433
11516 .11810 .08702 .08726
.12153 .13947 .08971 .09826
14163 . 14789 .11520 11722
.15798 . 16137 12114 .12355

Tabular values

a = .05 .23 . . . . . y . . 163
.01 .19 . ; ; . ; . : . 136
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times follow the model distribution, was not rejected at either
level or for either sample size. Another observation to be made is
that the larger the test data sample size the smaller the 'D" values
indicating that the more items placed on test the better the fit for
the generated times. Thus the conclusion that the random times were
generated according to the model distribution function for the

"times to failure."

Varying "L" and ''M"

Because '"L'" and 'M" were assumed to be known for this study, a
check was made to see just what effect varying '"L'" and '"M" would
have on the estimates of thetas and reliability. The reason was
that if "L" and '"M" were to be estimated, which they must in prac-
tice, it would be helpful to discover exactly what effect, if any, a
poor estimate of these values would have on the estimation of
reliability. It was decided to vary '"L" by I .1 and ™" by T 1
giving four combinations. All four combinations plus the constant
values for "L'" and '"M" which are .5 and 6 respectively were evalu-
ated using 100 sets of test data and calculating the mean and
standard deviation for each theta and conditional reliability for
four times. Table 2 contains the deviations from expected theta
values for each combination of test data sets. Deviation is defined
as follows:

Deviation = observed - expected
for the thetas and for reliability the term expected is replaced by
true value. Table 3 contains the deviations from true values for

the conditional reliability estimates for each combination.
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Table 2. Deviations from expected theta values for various
combinations of "L'" and ''M"

Combinations of Deviations from expected

T ""M" Theta 1 Theta 2 Theta 3

.5 6 -.0034 -.0008 .0468 E-12
4 5 L1794 .0010 -.3135 E-12
.6 5 .0355 -.0416 -.3134 E-12
b 7 -.0687 . 0355 .2598 E-14
.6 7 -.1788 . 0135 .2641 E-14

E-12 mean the number x 10—12

Table 3. Deviations from true reliability for various combinations
Of ”L” and HMH

Combinations of Deviations from true reliability for times
LA ™" 1l unit 3 units 5 units 30 units
.5 6 .0007 .0382 .0024 -.0005
ya 5 .0019 .0054 .0083 .0156
.6 5 .0015 .0044 -.0067 .0163
N 7 .0001 -.0001 -.0007 -.0140
.6 7 -.0003 -.0010 -.0020 SEIES)
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These tables bring out one of the more interesting aspects of
this method of reliability estimation and that is that the estimates
of reliability are relatively good, while the estimates of thetas
bounce all around. This is in part due to the difference of sign on
the exponents '"L" and ''M" which tend to offset each other's errors
when used to estimate reliability. The exponent '"M'" is the more
dominate factor for this model distribution, having the most influ-
ence in the estimation of thetas which is to be expected due to its
magnitude. It would appear that an error is to be made in estimation
of "L'" and "M" that it is better to over estimate '"M'" and under
estimate "L" yielding less error in reliability estimation. The
offsetting tendencies of "L" and '"M" would merit further investiga-
tion.

The standard deviations for reliability were very small and
constant., bearing out the fact that the estimates are constant.

From this set of calculations it is concluded that relatively small
errors in the exponents "L" and '"M" of the model distribution do not

appreciably alter the estimates of reliability for short times.

Varying thetas

One of the inherent problems with this type of study is the
obtaining of good realistic numbers, because sometimes just any old
number may work but not be realistic. Real test data are hard to
find. With this in mind, a check was done to see if there were any
readily apparent problems or restrictions to be placed on the values
selected for thetas. A total of five combinations of various thetas

was tried using 20 sets of test data. The deviations of the
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estimates of thetas and reliability were calculated and tabulated to
see if any irregularities appeared. The values for thetas were
selected to give different percentages of observations in each of
the three failure periods. The results are given in Tables 4 and 5.

These tables show that the estimates for thetas were generally
very close, being low for theta 1 and high for the other two. The
magnitudes were very consistent for each combination. Again the
estimates for reliability were very close with extremely consistent
standard deviations, all approximately .045. No problems for dif-
ferent magnitudes for thetas were discovered so with the lack of
real test data the above results indicated that any one of the com-
binations could and would be a feasible choice for the production
runs.

The values of:

6, = 0474
0, = -0139

-12
05 = 3186 x 10

were selected to use for production and evaluation of the model.
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Table 4. Deviations from expected theta values for various
combinations of thetas

Combinations of Deviations from expected
el O2 03 Theta 1 Theta 2 Theta 3
.0791 .0100 .5645 E-12 -.0155 .0040 .0199 E-12
.0633 .0120 L4321 E-12 -.0100 .0019 .0251 E~-12
.0633 .0139 .6302 E-12 -.0103 .0020 .0402 E-12
.0470 .0139 .3186 E-12 -.0098 .0018 .0221 E-12
.0470 .0035 .3237 E-14 -.0056 .0065 .0178 E-14
12

E-12 mean the number x 10

Table 5. Deviations from true reliability for various combinations

of thetas
_____Combinations of Deviations from true reliability for time
%1 ) %3 15 50 85
.0791 .0100 .5645 E-12 -.0092 -.0056 -.0085
.0633 .0120 4321 E-12 .0082 -.0052 -.0079
.0633 .0139 .6302 E-12 .0073 -.0060 -.0074
.0470 .0139 .3186 E-12 .0055 -.0049 -.0076
.0470 .0035 .3237 E-14 .0105 .0057 .0001

12

E-12 means the number x 10
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FINDINGS

Estimation of thetas

Now that the preliminary checks concerning the random generator,
varying exponent 'L'" and '"M" and various combinations of thetas have
been described and presented with no apparent handicaps having been
discovered, three production runs which consist of the three previ-
ously described programs will be used for the evaluation. Each
production run consists of 500 test data sets. The only difference
between each run will be the argument for the function subroutine
RAN, thus giving a completely new set of random times. The distri-

bution for the model now has the form:

F(t) =1 - exp - (s‘,;ltL - :,>2t " ‘1;3tM)
where L .5 el L0474
M 6 62 = .0139
6, = .3186 x 107

The theta values were chosen arbitrarily from the five sets of 20
test data combinations described in the last section. And they will
remain constant for the three production runs. For each production
run the means and standard deviations were calculated for the
estimates of thetas and reliability for time intervals of 1, 3, 5,
and 30 units. Table 6 contains the deviations and standard devia-
tions for the estimates of thetas for all three runs.

The estimate of thetas was generally fairly consistent and had

standard deviations that were very close to one another for each of
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Table 6. Deviations from expected theta values and standard
deviations for thetas for each of the three runs

Theta 1 Theta 2 Theta 3
Production St. St.
run Dev. dev. Dev. dev. Dev. St. dev.
1 -.0046 .0342 .0010 .0052 -.0473 E-12 . 1420 E~12
2 -.0076 .0327 .0012 .0049 -.0500 E-12 .1307 E-12
3 -.0017 .0336 .0003 .0053 -.0278 E-12 .1619 E-12

. 1449 E-12

1
o
N
w
[\S)
o
1
5
N

Average -.0046 .0335 .0008 .0052

E~12 means the number x 10-12

the production runs. The average, taken for the 1500 test data
sets, showed small deviations for the true expected values leading
to the conclusion that the model and least squares procedure for

estimation of thetas is satisfactory, having some small bias.

Estimation of conditional

reliability

As mentioned above, the means and standard deviations for the
conditional reliability estimate of the three runs of 500 test data
sets were obtained and are shown in Table 7. The reliability esti-
mates were based on the constant failure period of the hazard curve
for the time between t = 15 and t = 80 units based on the theoreti-
cal curve. The actual formula for reliability will be given again:

R(t) = R(15 + At) / R(L5) t =1,2,..... N

This has been referred to as conditional reliability.




24

Table 7. Deviations from true reliability and standard deviations
for the conditional reliability estimates for the three
production runs

Conditional reliability for time -

1 unit 2 units 5 units 30 units
Production Sit Sit St St.
run Dev. dev. Dev. dev. Dev. dev. Dev. dev.
1 -.0004 .0084 -.0011 .0100 -.0019 .0132 -.0069 .0463
2 -.0003 .0081 ~-.0007 .0l101 =-.0013 .0l32 ~-.0061 .0449
3 -.0003 .0067 ~-.0005 .0108 =-.0017 .0l46 =-.0060 .0530
Average -.0003 .0082 -.0008 .0103 -.0019 .0137 -.0063 .0480

The table shows that the estimates obtained from the model are
very close to the true reliability at the times calculated. 1In all
cases the estimates are slightly lower or conservative. The
standard deviations being constant as well as small indicating the
estimates are doing a good job, being only slightly biased low. The
one pattern that developed and is what would be expected is that as
"t" increases the bias and standard deviations also increase.

Consistency and accuracy of these estimates of conditional
reliability give promise for this model and method of estimation for
reliability. One big factor in its favor is that the estimates are
based on the complete life of the components and are easy to calcu-

late.

Comparisons

A criterion established for the evaluation of the proposed
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model of the bathtub-shaped hazard rate function would be its

est imate of reliability as compared to the theoretical value and
restricted sample estimates. The comparison at four time intervals
is given in Table 7 and proved to be slightly low with a small vari-
ance. The comparison with the restricted sample estimates is given
in Table 8 below.

This table shows that the model in all four time intervals had
much more accurate estimates of reliability. In all but the time
interval t = 30 the variance was smaller. This tends to indicate
that the new model has potential as possibly a better method of
estimating reliability.

One additional supposition is the belief that the restricted
sample estimates given are minimum variance. The reason for this

belief is that the times for the random failure period were estab-

lished from the expected empirical hazard rate curve and not for

Table 8. Average deviations from true reliability and average
standard deviations of the three production runs for the
estimates for reliability computed by the conditional
reliability and restricted sample methods

Average Average

RelTabaliey deviations st. dev.
times Cond. Rest. Cond. Rest.
L unit -.0003 -.0177 .0082 .0086
3 units ~-.0008 -.0505 .0103 .0129
5 units -.0019 -.0801 .0137 .0178
30 units -.0063 ~-.2537 .0480 .0369
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each individual test data set. Thus if the test data set was biased
either up or low, our method did not take it into account; therefore,
mor e variance and bias would have been introduced. Therefore, it is
felt that if it were possible to have treated each set of test data
individually, as would have been done in industry, the estimates
wou.ld have been more biased and have larger variances than was ob-
tained.

The conclusions of the comparisons are that the new model has a
great deal of potential and promise. The fact that the estimates of
reliability were much closer to the true values for the model as
compared to the restricted sample indicates that the additional data
are of great value; therefore, in practice, if an estimate of
reliability is bias, it is never known because there is no theoreti-

cal value with which to compare.
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SUMMARY

The purpose for the development of the new model was to facili-
tate the use of all the available test data compiled on the complete
life of the component that is useful over the entire bathtub-shaped
hazard rate function. All indications and preliminary checks failed
to show any apparent restrictions or limitations for the new pro-
cedure. The reliability estimates obtained using the new model
showed that they were extremely close to true reliability with
smaller variances than the restricted sample estimates currently
being used.

The estimates of thetas were not always as close as desired,
especially when the parameters "L'" and '"M" were varied, but the
deviations from true reliability for the estimate of reliability
were never very large. This points up an interesting facet of the
model and that is it appears to be insensitive to moderate errors in
its parameters, which is a good trait when they must be estimated.

Another good characteristic is that this model provides a
method for determining the point in time at which the conditional
reliability for the component reaches the peak. This is convenient
because this is the most efficient estimate for the beginning of the
random failure period.

Over-all, this new model has very high potential from all pre-
liminary indications and checks completed in this pilot study. Part

of the purpose for this study was to do preliminary evaluation and




28

find areas that would require further study and applications. One
such area would be to try and find a feasible method of estimating
the parameters "L' and ''M'" as well as seeing exactly what the limita-
tions on their deviations from expected could be tolerated.

The exact relationship between the Pi and 9? for the thetas in
the model would be worthwhile investigating to attach the proper
interpretation to them.

There appears to be an invariant property between the estimates
of reliability and time. If this property holds there would be the
possibility of placing confidence limits on the estimates of relia-
bility.

The last thing to add is that it would be worthwhile to try and
locate some real data, not computer generated, to check the real

potential of the model.
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Appendix A

Listing of the Program to Obtain

the Test Data Sets
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THIS PRCGRAM IS USED TO GENERATE THE RANDCM TIMES
FUNCTIGCN SUBRCUTINE RAN GENERATES UNIFORM RANCGCM NGS
RAN REQUIRES A LARGE O0OD INTEGER FCR THE ARGUMENT
SUBRCUTINE KCL FOR THE KOLMOGUROV-SMIRNGV STATISTIC
SUBROUTINE SCRT ARRANGES THE TIMES IN ASENDING CRDER
THE RANDOM TIMES ARE WRITEN ON TAPE, DRIVE 180 t.U.8

X IS THE POWER OF THETALl L
Y IS THE POWER OF THETA3 M
RN IS THE ARRAY OF RANDCM TIMES

eleoNeloloNeloNoNaNeN e

DIMENSION RN(100),IA(100),C(100)
100 FORMAT(FS5+544F5.C)
200 FCRMAT(10X,10F10.5)
201 FORMAT(10X,5F1C.5)
203 FORMAT{1HO)
204 FCRMAT (1HO,5X,'THE ESTIMATES ARE =',3(2X,E15.8))
300 FORMAT(25F10.5)
301 FORMAT(25F10.5)
400 FORMAT(6E15.8)
500 FORMAT(10X,'THE RANDOM NUMBERS FRCM TAPE ')
REAC (541C0) X,Y,THETALl,THETA2,THETA3
WRITE(64,201)X,Y,THETALl,THETA2, THETA3
P = X - 1l
PP = Y - 1.
DO LT "= T3 L0C
DG 2 J = 1,100
S = RAN(5461)
SS = ALOGI(S)
A= 8.
N =0
10 BB
ccC
DD
FX

A/THETAL
A/THETA2
A/THETA3
SS + BB%%X + CC + DD**Y
DFX=(X/THETAL) *BB*%P+1./THETA2+ (Y/THETA3) *[D%%Pp
AA A-FX/DFX
ER = ABS(A-AA)
IF (ER .LT. .00005 .0R.N .EQ. 6) GO TC 11
N N + 1
A ABS(AA)
GO TC 10
11 RN(J) = ABS(AA)
2 CGNTINUE
CALL SORT (RN,IA,100)

[Tl




WRITE
WRITE

(64203)
(6,200) (RN(I),I=1,100)

CALL KOL (THETAL,THETAZ2,THETA3,X3Y,RN,C)

WRITE
WRITE

(89300) (RN(II),II=1,25)
(89y300) (RN(II)yII=26,50)

WRITE (8,300) (RN(II),1I=51,75)

WRITE

(89300) (RN(II),II=76,100)

CONTINUE
END FILE 8
REWIND 8

WRITE

(64500)

DG 5 IKI= 1,10

REAC(8,301) (RN(IK),IK=1,25)
READ(849301) (RN(IK),IK=26,50)
READ(8,y301) (RN(IK),IK=51,75)
REAC(8,301) (RN(IK),IK=76,100)

WRITE

(69203)

WRITE(6,2C0) (RN(I),I=1,50)
CONTINUE

sSTOP
END

33
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SUBRCUTINE SCRT(A,IA,N)
DIMENSICN TA(1),A(1)
CO 50 I = 1yA
50 TA(I} = 1
M = N
51 M = M/2
IF(M.EQ.0) GC TC 57
N—-M
1
J
I+M
A(I).LE.A(L)) GO TO 56
A(T)
IT = TIA(I)
A(I) = A{(L)
IACD = IA(L)
A(L) = T
IA(L) = IT
I = I-M
IF(I.GE.1) GO TG 54
56 J = J+1
IF(J-K) 53,53,51
57 RETURN
END

53
54
F

-~ =T o X

o= n u




OOOOOOOOOOO OO0

35

SUBROUTINE KOL (THETALl yTHETAZ2,THETA3,X,Y,RN,C)

THIS SUBROUTINE IS USED TO CALCULATE THE KOLMOG3ROV
SMIRNOV STATISTIC FOR THE RANDGM TIMES

RN IS THE RANDCM TIMES ARRAY

X IS THE POWER OF THETAl

Y IS THE POwWER OF THETA3

C IS THE ARRAY FOR THE CIFFERENCES BETWEEN THE
EXPECTED AND OBSERVED

AB IS THE MAXIMUN CIFFERENCE

DIMENSION RN(1€C0), C(100)
FORMAT(1HO,10X, *KOLMOGOROV—-SMIRNQOV STAT =!,F8.5)
FORMAT (1HO)
AB = 0.0
XI = 100
DO 3 K = 1,100
(RN(K)/THETAL) *%X
(RN(K)/THETA2)
(RN(K)/THETA3) %%y
(U+V+w) 2 (=-1.)
K/XI
ABS(C(K)-D)

AB = AMAX1(E,AR)
3 CONTINUE

WRITE (6,203)

WRITE (6,202) AB

RETURN

END

mMOoOOomE<C
(T | B~ | [ T | I 11




KOLMYAGNENY=SMT PNTY

N.GH40

BISBID)IEN

CehPES

QL.T254
12.927¢
12.4000
1 7eG4k7
2¢,.1725
2T0.27473
3h.P1724
44 1508
S5ke 77T
£3.0562
AR5
RE JLOAF
101.39268
1D0.5658

KO MO G

OV-5M

THIS IS THE QUTPUT
N0.0657 0.1216
2.2531 0e2555
l.4565 [ R
5.01F84 5.9171
ReT7632 10,9153

15 . RE4Y 15.9137
1. 06Gs 2 20,929
2T.2652 29,6523
32.6906 33.0432
37.2075  393,A7T58
40,6365 40,6394
47,7003 4¢,545]
56.4420 A1.H54644
L7221 T3, 1965
B7.1108 P7,3239
1C0.507¢ 101.31¢23
115.80C0 116~,.1287

0.1253

3.1137

6HJRAR?
1N 7T0O&T7
13.43@2
159756
W7 e ZARIGeS
24.2560
249482
ANPGRS NS
AR VEL
3 26 153
SB8%e 17 ) 52
T2.7712
PH,HL GAH
I1Gl.7T3V7
193 2% 253 241

1EMOV

FCR THIS PROGRAM

G.1436

C.7274

e TARERS

5.7733
11.2514
164747
21.3413
ARk 3312
3232.92020
3C¢,73990
42.3038
46,6939
64,0365
74,3293
Q11,0294
101.5077
123.9004%

STAT =

(Dot
3,7253
7.:2208
12.3824
14.1964
16.N501
2N0.4990
24,5239
31.4204
3R,4537
¢5,00695
54,2734
£4,40556h
Ele2914
PT.2521
104,448
1466.24560

STAT =

0.13938
N.7/17
le e 125
6.7628
11.4175
L7.1187
22.23490
31.2964%
34,2533
3G.9962
45,3037
51.8215
66,8932
74,5474
Al.4S77
102.9843
124.1622

0.08022

l1.5416

2.72q69

T.2550
12.56407
l4.5581
1636573
eG4 15
25.41¢%1
34,7418
3Q.645%
47,3420
ERtse OISV
£5.500¢9
Bla4247
B4 143
105.343%
154.2596

Qe DF LA T

0.72081
1.N774
1,278 %
0 oo RS
12.9502
1850268
24,5334
31,9929
35,0415
40,2555
45,4759
51.9764
AG.DNN1]
7¢ ,q08]
Gl.690)
104, 1672

2. 1027
% . 12495
1,30473
12.7215
V4o 7780
lFe7A173
22427%773
2RHA7T
34.537¢
41.1037
49, 3RA1
HDeGH27
HT BSER
32,3227
Q93,3603
105.74502

Ve 2225
1.28113
2.Q280
VN2
14,6264
1P.1342
25.4759
32.6432
36.2956
L0457
LT 2967
ER.0]18A
£.Ce3TAT
7f.1460
A2 .8273
112.9024

2.5316

5. 4806

°,0161
12.0125
15.1713
L(.c420
26,1222
208 0 T 515
3°,4060
41,6395
£1.3751
Al1.P179
45 L6422
PO NTGCA
90, £ 503
167.7971

36
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Appendix B

Listing of the Program to Estimate the
Thetas and Conditional Reliability
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THIS PROGRAM CALCULLATED THE ESTIMATES OF THETA'S
AND THE ESTIMATES FOR RELIABILITY

USES CRAMERS METHCD FOR SCLVING THREE EQUATICNS

THIS IS PROGRAMED FOR THE TIME INTERVAL 15 - 80

X IS THE POWER OF THETALl L

Y IS THE POWER OF THETA3 M

RN IS THE ARRAY OF RANDCM TIMES

DET IS THE DETERMINANT FOR THE MATRIX A

DET1 IS THEt DETERMINANT OF THE MATRIX A AND THETAl
DET2 IS THE DETERMINANT OF THE MATRIX A ANC THETAZ2
DET3 IS THE DETERMINANT OF THE NMATRIX A ANC THETA3

REL1 IS THE RELIABILITY FCR TIME = 1 UNIT
REL2 IS THE RELIABILITY FOR TIME = 2 UNIT
REL4 IS THE RELIABILITY FOR TIME = 30 UNITS

OX IS THE ESTIMATE FOR THETALl
OY IS THE ESTIMATE FOR THETAZ2
0Z IS THE ESTIMATE FGR THETA3

RN ARRAY IS STORED ON TAPE, DRIVE 180 L.U.8
O0Xy0Y,CZ ARE STORED ON DISK Le.U.1l4

THE PROGRAM CORR IS USED TG CALCULATE THE MEANS

aNelelelsEeNeNeloNeNeleNeloleNeoNeNeloNeloNaXaRa )

DIMENSION RN(1CO),IA(100)

bousLE PRECISICN PAl1,PA2,PA3,PA4,PA5,PB1,PB2,PB3
DOUBLE PRECISICN PB4,PB5,PCl,PC2,PC3,PC4,PC5
DGUBLE PRECISICN UOX{500),0Y(500),02(500),0ET,DET1
DOUBLE PRECISICN DETZ2,DET3,CAA,CA,CB,0C,CD,0E,OF
DOUBLE PRECISICN 0OG,UJ,CI,CH

100 FORNMAT (F2.2,F1.0)

200 FORMAT(10X,'THE ESTIMATES ARE GIVEN FOR L= ',F5.2,
I * M .= ', F5.,2/)

204 FCRMAT (12X, 'THETAL® 12X, 'THETA2',12X,'THETA3',GX,
l "REL—==1"3GX,'RELeT=3"y7Xy'RELT=5"',7X,'REL.T=30")

205 FCRMAT(5X,7{E15.893X))

300 FORMAT(25F1GC.5)

400 FORMAT(T7EL15.8)

REWIND 8

REAC(5410CIX,Y
WRITE(642C0) X,Y
NN = Q.

WRITE (6,204)

00O 1 IL = 1,10C
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REAC(8,30C) (RN(II)yII=1,25)
READ(8,300) (RN(IT)yI1I=26,50)
REAC(8,30C) (RN(II),1I=51,75)
REAC(8,300) (RN(II),II=76,100)
oA O.

(8]:)
ocC
(0]
OE
OF
06
OH
0l
0J
DO
A =L

OAA = l. = (A/101.)

0B =08+ (RN(L)*DLCG(OAA))

NeoNeoNoNoNoNeoNeoNoNe)

LS T | | | | T O T T I

1,100

0C =0C + RNI(L)=*RN(L)

0D =0D + ((RN(L)**X)*DLOG(CAA))
Ot =0E + RN(L)**(X+1l.)

GF =0F + RN(L)**(2%X)

0G =0G + RN(L)** (X+Y)

OH =0H + ((RN(L)*xY )*DLCG(GAA})
OI =0I + RN(L)**(Y +1.)

0J =0J + RN(L)**(Y *2)

CONTINUE

DET = GF*0C*0J+CE*OI* UG+OE*OI*CG-0G*0G*CC—-0E*OE*
0J-0I*0I*0F
DET1=0G*0C*0OH+CI*0I*0D+CB*CE*OJ-0D*0C*CJ-0E*OI *
OH-CB%*0I *CG
DET2=06*0G*0B+CI*0H*0F+0E*CD*0J-0F*0B*0J-00*01 *
OG—-CE*QCH*CG
DET3=0F*0I*CB+CE*JE*UH+0D*0C*0C-0F*0C*0R-0E*OB*
GG-CEX*QI*CD

IF (DET .EQ. 0.0) GO TO 6

NN = NN + 1

OX(NN) CETL/CET

OY{NN) DET2/CET

O0Z (NN) DET3/0ET

CONTINUE

PAl (15%%X)*CX(NN)

PA2 (L6¥%xX)*OX(NN)

PA3 (18%%X)*CX(NN)

PA4 (20%xX)*CX(NN)

1]

I
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PA5 = (45%%X)*CX(NN)

PBl1 = 15%0Y(NN)

PB2 = 16*GY(NN)

PB3 = 18*%CY(NN)

PB4 = 20%CY(NN)

PB5 = 45%CY(NN)

PCl = (15%%Y)*CZ(NN)

PC2 = (16*%*%Y)*CZ(NN)

PC3 = (18%%Y)*CZ(NN)

PC4 = (20%*Y)*CZ(NN)

PCS5 = (45%%Y)*CZ(NN)

POl = (-1l.)*(PA1+PB1+PC1)
PO2 = (—-la)*(PA2+PB2+PC2)
PO3 = (-1l.)*(PA3+PB3+P(C3)
PO4 = (—-1l«)*(PA4+PB4+PC4)
P05 = (—1l.)*(PA5+P35+PC5)
PRELL = EXP(PO1)

PREL2 = EXP(PG2)

PREL3 = EXP(P(03)

PREL4 = EXP(PO4)

PRELS = EXP(PGEZ)

REL1 = PRELZ2/PRELL

RELZ2 = PREL3/PRELL

REL3 = PREL4/PREL1

REL4 = PRELS/PREL1

WRITE( 64400) CX(NN),OY(NN),GZ{NN),RELL1,RELZ
REL3,REL4

WRITE(144400) CX(NN),OY(NN),GZ(NN),RELL1,RELZ2
REL3yREL4

CONTINUE

END FILE 14

REWIND 14

STCP

ENC
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THIS TS THE JUTPUT £0R THIS PRIOGRAM

THE ESTIMATES ARE SIVEN FOR L= 0,50 M = 6.0C

THETAL THETA2 THETAZ REL.T=1 XgL.T=3 REL.T=9 REL.T=30

X

N,N3¢H5 N,0186 —-.,0004 00,9796 00,2405 D.C034 0,557¢
=IO NO7 SOLZBI68. S LININICH 0.5731 MFR.950 B2 460 (M, 5RR2
N.0¢50 0.012C =-,0002 0,9821 92478 G192 Qb0
0,0ef0 00,0111  -.N002 0.932°8 0.94°8 n,c185 0.6218

N.N0£G5  D.N134 LN001 0.9772 0.9354 N,83¢]1 0O.8544¢C

~. 0402 0.N204 0001 Ne3767 0.9214 0.8%37A 1N.,4728

D.02PQ Dn.N1KS LNC01L 0.9801 0.2417 0.€051 00,5613

N.06EFE ND,0109 .0003 0.9808 9.7%441 0.9097 N,85G3%

D, 0841 0,009 L0002 0,7799 0.9419 0.9064 0,.58937

l

-, 021¢ N, 0243 L0002 0.9786 0.9369 0N,Ra046F (Q,510F°

N.0e10 0.0171 LON01 Ok IR0 af35% Qa5552 Q3725
Ne 078 4 N, 0062 - .00 Ne. 0G4 nN,25¢409 @ 0, 66 B8
Q. GH1T 10 JGV22 =JA0RE <2162 D.82895 O.C'O?Ié N.5A?2C
N 0228 Q,R153 -—-.0002 D.3800 9D.%54158 D.90%0 Q,5647
D114 N.NI02  =,0004 0,977 0.5274 0.853F 05112
0. 0547 QL0128 -.0002 0.2307 0..94228 0,089 0.5866

N.0253 0,0140 =-,0002 0.9828 0,904 00,0176 00,4004

-.0016 0.0194  —,0001 00,9910 0.942¢  0,08083 00,5404

N.0t76 0,012« LN001 NLO3INT N.9437  N,SORT  0,6834

N.C1G7 €.0174 =.7002 0.9314 N.9452 0,910¢ ° 0,5728
N.0F21 0.0172 —,0001 0.9765 0.9217 0.8R9% 0.5149

=.0015 N,0170  =,0003 0,233 N.NEN7  N,C182 NL4A00E
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Appendix C

Listing of the Program to Estimate the
Reliability from the Restricted Sample
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€
€ THIS PROGRAM CALCULATES THE ESTIMATES CF RELIABILITY
€ USING THE TRADITICN MENTHOGCS AND TECHNIQUES
€ THIS IS PROGRAMED FOR THE TIMES INTERVAL 15 - 80
C
C RN IS THE ARRAY CCNTAINING THE RANDCM TIMES
C AVE IS THE MEAN TIME TO FAILURE MTTF
€ RELL IS THE RELIABILITY FOR TIME = 1 UNIT
C REL2 IS THE RELIABILITY FOR TINME = 3 UNITS
c REL3 IS THE RELIABILITY #0OR TIME = 5 UNITS
C REL4 IS THE RELIABILITY FGR TIME = 30 UNITS
©
€ THE RN ARRAY IS STCREC ON TAPE, DRIVE 180 Le.U. 8
C REL'S ARE STCRED CN DISK LeU.l4
C
€ THE PRCGRAM CORR IS USED TG CALCULATE THE MEANS
C
OIMENSION RN(1CO)
102 FORMAT(10Xy'AVERAGE', 10X, 'RELIABILITY T=1',10X,
1 'RELIABILITY T=3',10X,'RELIABILITY T=5',10X,
2 'RELIABILITY T=30'/)
100 FORMAT(5Xy5(ELS.8495X))
101 FORMAT(5EL15.8)
300 FCRMAT(25F10.5)

REWIND 8
WRITE(6,102)
DO 1 M = 1,100
READ (8,300) {RN(I),I=1,25)
READ (8,300) (RN(I),1=26,50)
REAG (8,300) (RN(I),I=51,75)
REAC (8,300) (RN(I),1=76,1C0)
N = 0.0
XY = 0.0
DG 2 MM=1,100
IF (RN(MM) .GE. 15. .ANU. RN(MM) .LE. 80.) GU TO 4
GO TO 2
4 N = N+l
XY = XY + (15. = RN(MM))
2 CONTINUE
AVE = XY /N

A = (1./AVE) * 1.
B = (la/AVE) * 3.
C = (la/AVE) * 5.
D = (l./AVE) * 30.

REL1 = EXP(A)
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REL2 = EXP(3)
REL3 = EXP(C)
REL4 = EXP(D)

WRITE (6,100) AVE,REL1,REL2,REL3,REL4

WRITE(14,101) AVE,REL1,REL2,REL3,REL4
1 CONTINUE

END FILE 14

REWIND 14

STCP

END
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