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ABSTRACT 

A Report on the Statistical Properties of the Coefficient 

of Variation and Some Applications 

by 

Howard P. Irvin, Master of Science 

Utah State University, 1970 

Major Professor: Dr. David White 
Department: Applied Statistics 

vii 

Examples from four disciplines were used to introduce the 

coefficient of variation which was considered to have considerable 

usage and application in solving Quality Control and Reliability 

problems. 

The statistical properties were found in the statistical 

literature and are presented, namely, the mean and the variance 

of the coefficient of variation. The cumulative probability 

function was determined by two approximate methods and by using 

the noncentral t distribution. A graphical method to determine 

approximate confidence intervals and a method to determine if the 

coefficients of variation from two samples were significantly 

different from each other are also provided (with examples). 

Applications of the coefficient of variation to solving some 

of the main problems encountered in industry that are included in 

this report are: (a) using the coefficient of variation to measure 

relative efficiency, (b) acceptance sampling, (c) stress versus 

strength reliability problem, and (d) estimating the shape parameter 

of the two parameter Weibull. 

(84 pages) 



INTRODUCTION 

This presentation will include a history summary of the coef­

ficient of variation and some of the uses to which it has been 

applied with examples and comparisons. Further, an attempt will be 

made to differentiate, if possible, between the coefficient of vari­

ation and what is normally referred to in engineering as a "safety 

factor." The coefficient of variation will be identified as C.V. 

Historically the coefficient of variation has been associated with 

economics, engineering, sociology, psychology, quality control, etc., 

in applications which provide a comparison of relative dispersion. 

This study is addressed to Engineers who may have had two or 

three method courses in statistics and are concerned with applying 

statistical techniques to evaluating inspection and test measurements 

for quality control and reliability purposes. 

Statistical techniques, as was indicated previously, are universal 

(in that general methods have been developed and applied to evaluating 

data resulting from experiments performed in each scientific discipline); 

the examples contained in this section are not restricted to quality 

control and reliability. This is considered to have merit since it 

broadens the base for comparison and provides more depth of application. 
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Definition of C.V. 

The coefficient of variation (C.V.) is the ratio of� 

whereµ and o are the true population mean and standard deviation, 

respectively. However, the true parameters and are very seldom 

known and, therefore, must be estimated from sample data which 

provide the statistics X and s. For the normal distribution 

X = 

and 

I Xi) 
n i=l 
I X.

n 

n-1

where 

X is the value of the ith measurement from the 
i 

sample containing n items. 

General Examples 

C.V. compared to the quartile comparator. The first example
1 

is presented to compare the wages of group (a) with group (b) where: 

(a) is a classification used for all males under 16

years of age in the central states working in foundaries 

and metal works; 

W.L.Crum and A. Patton, Economic Statistics, (New York A. W.
Shaw Company, 1925) pp. 194-195.



(b) is a classification used for all ma�s over 16

years of age employed in the tanmeries o=. the United 

States. 

QC is often used as an index to compare :he relationship

of the middle SO percent of one sample with t1e middle 50 percent 

3 

of another sample. This index uses i (the wlue below which 25 

percent of the sample lies) and q3 (true value above which 25 percent

of the sample lies) to provide QC, tfue quartLe comparator. Q
C

does 

not provide a consistent measure of reilative ,ariation since it is 

sensitive to the values of Q1 and Q3. Table : is presented as an

example to portray that the C.V. is a more cotsistent comparator of 

relative variation then QC.

TABLE I 

Coefficient of Variation Versus Q�rtile Comparator 

A B 

n -26 519 

X $5 84 $10.73 

s 1 21 2.24 

Q
l 

(first quartile) 3 67 10.01 

Oz (median) 4 00 10.42 

03 (third quartile) 5 86 12.26 

Oc = 
03 

- Q1 23 .10 
03 + 01 

c.v. = s 21 .21 

X 



C.V. used as a relative measure. The scond consideration 

is one that was proposed by Fredrick C. Kent� and is as follows: 

4 

The significance of the value caliculatec for the standard 

deviation depends on the size of the rrneasurerents. Thus a vari­

ation of two feet in a measure of 100 feet ha the same significance 

as a variation of 20 feet in a measurement of 1,000 feet. It is 

the custom to divide the standard devnation q the mean in order to 

bring out its proper relation to the rrneasurerents. The quotient thus 

obtained is called the Coefficient of Variab�ity. 

Quality variability and C.V. The third 1pplication was pre-
3 

sented as a quality control techniqu,e by H. A Freeman. 

Producer and buyer risk using tfue\ coeffrient of variation. 

Specification of average quality and v'ariabiLty in quality may be 

separately provided by other methods. Howeve, it is sometimes 

desired to make use of a hybrid statis:tic to :ontrol both the aver­

age and variation of a quality charact eristic One such statistic 

is the coefficient of variation which is give by 

Standard deviatio·n 
Arithmetic mean 

F. C. Kent, Elements of Statisticcs, (Ne' York; McGraw-Hill
Book Co., Inc., 1924) p. 87. 

H. A. Freeman, Industrial Statis tics, (ew York; John Wiley 
& Sons, Inc.; 1942) p. 153, 
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High values of this statistic will result from high variability in 

quality and low mean quality, both of which we take in our examples 

to be unfavorable. Correspondingly, low values of the coefficient 

of variation are considered favorable. 

C.V; over a time domain. 
4 

Snedecor and Cochran give an example 

which can be used as a model to present comparative statistics over 

a time domain. The mean stature in centimeters, the standard 

deviation, and the coefficient of variation are plotted in Figure 1 

(p. 6) to show the growth pattern of girls from age 1 to 18 years. 

From 1 to 12 years the standard deviation increases at a greater 

rate relative to the mean stature growth. This difference in growth 

causes the C.V. to decrease the first year from 3.75 percent to 

approximately 3.25 percent from year one to year two. From the 

second to the twelfth year there is a somewhat steady increase of 

C.V. to its maximum of approximately 4.75 percent. During the time 

from the twelfth year to the fifteenth year, the C.V. drops off 

sharply from 4.75 percent to 3 percent and then returns to its 

original position of 3.75 percent by the seventeenth year, and it 

is expected to remain quite stable from then on. 

Figure 1 provides the factors of the distribution in relation 

to comparing growth with respect to what the mean and the standard 

deviation are each doing with respect to time. However, the C.V. 

by itself may not be meaningful unless the experimenter has additional 

information to supplement that of the C.V. 

G. W. Snedecor and W. G. Cochran, Statistical Methods (6th ed.; 
Ames, Iowa; The Iowa University Press, 1967), p. 63. 
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C.V. used to compare test scores. The last example of this 

section was taken from Yamone.5 Assume that a group of students

took two tests. The first test has an average of 60 points and a 

standard deviation of 6 points with a maximum of 100 points. The 

second test has an average of 700 points and a standard deviation 

of 7 points with a maximum of 1,000 points. Which of the two tests 

has a larger scatter (dispersion)? Here we are comparing the dis­

persion of two frequency distributions. 

One can readily see that from an absolute standpoint the 7 

points is a larger scatter than the 6 points, but from a relative 

standpoint we can see that the students were much closer together 

in the second test. To bring this idea out explicitly, a measure 

of relative dispersion has been formulated. The coefficient of 

variation is used (Yamone5) to compare the results of the two tests 

as follows: 

First test, c.v.

Second test, c.v. = 

6 

60 

7 

1 

10 

1 

700 100 

We observe that the relative dispersion of the second test is 

only 1/10 of the first. In such problems as this, by use of the 

coefficient of variation, the dispersion of different frequency 

distributions can be compared. 

5
Taro, Yamane Statistics, An Introductory Analysis (1st ed. New York; 

Harper and Rowe Publishers, 1964) p. 75. 
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Estimation of the standard deviatior n rof a n� batch using 

C.V. In addition to providing a measure off relati'2 variation, such as

provided in the examples that have been prre�sented, the C.V. may be used 

as a standard to compare two or more experrlimental ,esults or as a means 

to rapidly estimate the standard deviation of a smple. In a number of 

cases X and s change together so that the c;. V. is 1pproximately constant. 

In such a situation, if there are several s;ets of �xperimental data that 

involve calculation of X and s, calculating; the C . r. 's and comparing 

them with a given C. V. as well as with each1 other Jill serve as a check. 

Also, if C. V. is available from previioms data and X is known for a 

new batch of data, s may be estimated for tlhis newsample by s = X(C.V.). 

The following sections contain the reITTults fomd in the literature 

and various reliability manuals which have! lbeen pr,vided by industrial 

concerns. Although the literature search h,as beenquite extensive, it 

has not been all inclusive. Additional li.tferature search will probably 

provide greater theoretical depth which wo,u:ld prov.de additional uses 

to which the coefficient of variation can bEe appli,d. 
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STATISTICAL PROPERTIES OF SAM:FLE C. V. 

Note on population and sample distributiom� 

Before calculating the mean and the wa:riance )f C.V. from a random 

sample, it is necessary to comment on the saimpling iistribution and popu­

lation distributions. If an item is select,ed, by 1 random process, from 

a population then the probability that the item selected will have a 

value no greater than x is the distributiom, functim F(x). Similarly if 

the item selected has n variates (measurabJlte chara:teristics) of concern, 

then the probability that the item will hawe a valu� of the first variate 

x no greater than x1, a value of the secomd variato x no greater than x2,

. and a value of the nth variate no gr:e,ater thm xn is the multi-

variate distributions function G(x1, xz . xn). Also, if the variates

are independent the rth variate considered! lhas the distribution function 

. Fr (xr). AppLy:ing thi; concept to an unvariate

population and selecting a sample of n ite!mts from :he populations, each 

time the sample is taken there will be n v1a:lues x1 x2, . . . xn. The

nature of this multivariate distribution dle1pends 01 the sampling process 

used as well as the population. If the di.s1tributiin is G(x1, x2

then this function represents the probabil.i1ty that a random sample will 

result in n values, the first not greater tthan x1, the second not greater

than xz, . . . , and the nth not greater thtam xn. �he x' s can be regarded

as corresponding to n random variables s l • s; 2, . . . s n.



Since the C.V. is estimated from� - and s, the sample statistic, 

and :Lt is desired to estimate the true b:mt unknown C. V., it is neces­

sary to calculate the differences betwee:n the true C. V. of the popu­

lation and the sample C.V.

The ime:an of C • V. 

If the values of xl, xz, . . . xn aire a sampl! of n taken from 

a population that has a mean µ and standlard deviat.on a, then the true 

but umknown population C.V. is � whic h must be es imated by using 

the ra1tio _:._, the sample statistics. 11'h1e distribu·ion of 
X 

xz-µ xn-
µ

-a-···· -a-

has a mean o� zero; that is, consider th1e transfon z. =1. 

For a finite sample of n, µ is estimated[ by 

n 
E X. 

. 1 1. 
µ = _1._= __ 

n 

and the mean of Z for n values is 

z = 

n 
E Z. 

i=l 1. 
n 

is zero. 

zl + Zz. . . + Zn 
z = 

The� proof is 

10 



1
na (O) since

r 
A 

i:l (xi--µ) = 0

This shows that a transformation of the foirrm Zi=

made on the sample values and that the mea1n of thee transform values 

is zero which is said to be expressed in s;tmndard 1easure or is 

standardized.6 The mean of several C.V. 's tlhat hav, been determined

from samples that have been drawn repetitLvc�ly fro1 a continuous 

process would form a distribution of ratio,s .. The iagnitude of these 

ratios would depend upon the underlying di.sttributim as well asµ 

and o In order to estimate the average of the (. V. 's from samples 

of n items it appears necessary to sample ,a random process of a known 

distribution by simulation or to use the rrellevant rt:atistics xi and 

si from a continuous process. 

However, for the normal distribution ,and n la�e by applying the 

simple but important property of mean valUtes which is"the mean value 

of a product of two functions is the produictt of thdr mean values if 

M. G. Kendall and A. Stuart, The Advramced Th,ory of Statistics,

11 

Vol. I (6th ed.; New York: Hafner Publishin1g Comparr , 1952), pp. 48, 51.
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each function depends on a set of varjiates indpendent of the set on 

6 which the other depends" and the aritthmetic man of the sample C.V.

E(�) is E(�). When x approaches zerro the vaue of using the C.V. 
X 

appears questionable and other statisttics shoud be used. 

Variance of C.V. 

The variance of C.V. from a samplle of n iems is the ratio of 

two random variables x1/x
2

, and requirres that 2� 0 for the discrete

case and x2> 0 if it is continuous. TThe rth mment, m; (for a sample),

is the expected value of the powers off the ranom variable, from which 

the variance of the ratio x
1
/x

2
, that is V(x�) is found from

V ( 
xl

)
Xz 

+ 

,,

Since mr is defined as the rth moment statisti of a sample that

corresponds to the rth moment, µr' of a populaion, that is
n 

E xI is the sample moment frcom n sam1es where the ith 
i=l 

item of the sample has a measurement x<i. If te sample moments are

substituted then, 

X 

V(_J._) = 

Xz 

if the population c.v. is e and e = 

2 Cov(x1x2)
]

E(x1) E(x2)
(1)



where 

then 

V(0) - (l�J

noting that V(m
1

)

and 

J.12 
n 

Cov(.r;:;, 

e # o 

1 m{) = --
2 � 

2 C ov ( /nS) m1 ]� m2) E(m£) 

C,o\V (mz tni) = _J.13 __ 
2n/� 

These equalities are substituted in equ.attion (2) ,hich becomes 

V(C.V.) = 

Applying (3) to the normal distribution (( µ3, = 0 nd µ 4 = 3µ�) the 

V(C.V.) is 

13 

(2) 

(3)



V(C.V.) = 82

n 

r µ� (3-1) 
I 4µ 
L 2

14 

µ2 

µ:µJ 
+

(µ{) 2

82 

[1 µ
2 j 82 

[1 + 2(-8 
i2

] (4) = 
2 

+ 
(µ{)2 Zn n 100 

82 

Tn 

This relationship can be used to estimate the standard deviation of 

each of the C.V.s which could then be used in comparing the C.V. of 

one sample with the C.V. of another sample. For each sample the true 

but unknown standard deviation of the C.V. is estimated, using the 

sample results and (4) as 

Distribution of C.V. 

V
n·V(C.V) 

[l µ2 l
2 

+
(µ{)�

n·V(C.V) 

r.!_ + E�s
2

)]lZ (X) 2 

To find an approximation to the distribution of C.V. which is 

a function of two random variables, X and s, and that X is normally 

(5) 

0
2 

distributed with parameters (�, _); sis approximately normally dis-

2 n 

tributed with parameters (��) for large f; and X and s are stochas­
Zf 

tically independent. 7 The mean is C.V. ; _Q_ = y, the variance of C.V.
2 

is V(C.V.); L (1 + 2y
2

) 
Zf 

which may be considered as approximately 
2 

2 

normally distributed with mean -5!_ and variance"!_ (1 + ZY ) for values
� Zf 

of degrees of freedom, f, are large and small values of Y. 

A. Hald, Statistical Theory with Engineering Applications (New York:
John Wiley & Sons, Inc., 1962), pp. 301-303. 



The P-fractile is C.V.
p

, where C.V.
p 

y 

15 

( 1 + zP h + 2y 2 )
'2i 

and this fractile can be found by substituting� =y�and inserting 
X 

values of Z from the tabular values of the normal distribution. An 

example for this approximation is: let Y�= .05 and f = 30 then the 

calculation of C.V.
p 

associated with the Pth fractile are tabulated 

in cumulative distribution function form as follows: 

.01 .02 .025 .050 .10 .25 .50 .75 

Value of C.V. .035 .037 .0375 .040 .042 .046 .050 .054 

.90 .95 .975 .98 .99 

.058 .061 .0625 .063 .065 

A better approximation to the distribution of C.V. is obtained 

by solving P(C.V. < C.V.
P

) or Prob (z <0) = P where Z = s - X C.V.
P 

and is considered to be approximately normally distributed with mean 

and variance 

]J 
z 

V(Z) = 

(7) 

(_l + 
2f 

(8) 

(6)
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The distribution of the variable Z is a linear function of a normally 

distributed and an approximately normally distributed function which 

will usually deviate less from the normal distribution than C.V., 

the quotient between the same two random variables. Solving 

we have 
c.v.P J 1 c.v.

P
2 

--- ;; ,l + z - +
Y 

P 2f n

Y2 22
(1 - __ P)

(9) 

(10) 

y[ 1 
+

ZPv2
� + y:] 

n 
(11) and c.v.P y2z2 

1 -
p 

n 

Comparisqn of this statistical procedure with the previous 

procedure used is accomplished by comparing the results of solving 

for P by this statistical procedure with the results obtained by 

using the previous approximation used to determine the Pth fractiles 

of C.V. when 0 = .05 and f = 30. This was done and the two distri-

butions calculated were identi�al to three decimal places. 



The population coefficient of variation, 8, as previously 

defined is 8 = � where o is the standard deviation andµ is 
µ 

the mean of the distribution. Let X be the mean of a sample 

(calculated from n observations) and let s be the standard deviation 

of the same sample based on f degrees of freedom where the sample 

observations are from a normal distribution. In some sampling 

situations, namely, the single-sample problem where one sample of 

n observations only is drawn, f = n-1, but the results need not 

be limited to just the single-sample case. The distribution of 

s 
C.V. = = ,  the sample coefficient of variation is the problem of

interest. 

For a positive constant, k, it is necessary to compute the 

probability that a noncentral t-distribution is greater than 

t = with a noncentrality parameter o = µ
In 

· to add to
a ' 

17 

this the probability that the noncentral t is zero. That is, to find 

s 
the probability = < k we must form the probability statement to 

X 

find the 

s Prob [-=- <-c] 
X 

rn-
1 

rn rn = Prob [T > - 6=µ -] + Prob [Tf< Olo =µ_
n
_] 

f - C O 0 

where Tf is distributed as the noncentral t-distribution.

This general method of finding the distribution function of C.V was 

8 
indicated by Johnson and Welch to provide a precise characterization 

of the probability distribution functions of the sample C.V. 

8 
N. L. Johnson and B. L. Welch, '�pplications of the Noncentral

t-Distribution," Biometrika, XXXI (1939-40), pp. 362-389.



Note that the random variable, C.V., is largest when the non­

central t random variable Tf is near zero, which indicates the

extremes or tails of the distribution of C.V. are around zero 

for the random variable Tf. That is, consider c positive, then:

Pr (-8-) > c) = Pr (O � Tf <
X 

pr ( � ) < -c)
X 

and 

Pr ( � > -c) = pr (Tf < -
X 

C 

z +o
The noncentral t-distribution, Tf, is the relationship t = FIT

18 

where Z is distributed about zero with unit standard deviation, o 

is the noncentrality parameter and f is the degrees of freedom. 

In order to determine the probability that t exceeds some value 
t2

of t
0 

it is necessary to calculate y = (l+ 
2�)- + and

y _
o

_ (1+ _g_) [ 
t t 2

l 

/zi 2f 

1 
2 which are estimates used to find the

appropriate values of a constant, in the Table of X at the desired 

probability y, Then value of \, a constant that is associated 

with each Y must be used to establish O for each Y by solving for 
t 2 1

the noncentrality parameter o = t0 -A(l+ _E,_)7 For example, if
2f 

the C.V. = 2.8 from a sample of n = 17 then f = 16. Then calculate

(12) 

(13) 

t 2 1 t t2 l
(l+ 2;)- 7 = .96775; y

,,. = � (1�
2�)2 t

0 
± 2.8 = ± 1.47254; y = 
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that is Y� = .2519 and - Y� = - .2519. Tables of Tf at Y are

entered to find the appropriate A to use in order to determine 
t 2 

J... 
0 2 o with each Y, i.e., O= t

0
-A(l+ 2£) .

Tables II and III provide listings of the parameters and 

calculations necessary to determine Table IV which provides the 

distribution of equation (2) above for this example 

TABLE II 

Values of A for 
� 

and 
� 

for Specific Y + y - y

y A 
� 

A 
� 

For +Y For - y 

.40 .276 .231 

.30 .546 .504 

.20 .863 .819 

.10 1. 303 1.259 
.OS 1.665 1.623 
.025 1.979 1. 938
.01 2.345 2.307
.005 2.594 2.556

TABLE III 

of O and G(-0) 
� � 

yValues for+ Y and - y for Specific 

For+ Y For - Y 
�

e 
G (-0) 0 y 0 G(-o) --

0 0 
3.4727 .40 1.1873 .1175 -1. 7112 .9565 2.4095 
4.5394 .30 .9083 .1819 -1.9912 .9768 2.0707 
7 .1002 .20 .5807 .2808 -2.3188 .9893 1. 7781

32.6971 .10 .1261 .4498 -2.7735 .9972 1.4866
16.6254 .OS -.2480 .5979 -3 .1496 .9992 1. 3091

7 .1969 .025 -. 5729 . 7166 -3.4751 .99974 1.1865
4.3374 .01 -.9506 .8291 -3.8564 .99994 1.0692
3.4132 .005 -1. 208 .8863 -4.1137 .99998 1.0023



TABLE IV 

Cumulative Distribution of T16 for Values of o

Pr(T16 ..:_ 1.4725410 )

4.1137 .005 
3.8564 .010 
3.4751 .025 
3.1496 .050 
2. 7735 .100 

2.3188 .200 
1.9912 .300 
1. 7112 .400 
1.1873 .600 

.9083 .700 

.5807 .800 

.1261 .900 
0 .915* 
-.2480 .950 

-. 5729 .975 
-.9506 .990 

-1. 2080 .995 

* Obtained from a table of Student's t-distribution.

20 
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Since Pr(Tf � ol o) = G(-o), then consider 17 
e = and 

calculate the relationship Pr(C.V. > 2.8) = Pr(T16 .::._ 1.47254) - G(-o)

which is presented in Table V . 

TABLE V 

Probability that C.V. is greater than 2.8 for 8 

e =fl Pr(C.V. > 2.8)
0 

- 00 .9154 - .5000 = .4154 
-16.6254 .95 .5979 = .3521 
- 7.1969 .975 - . 7166 = .2584 
- 4.3374 .99 - .8291 = .1609 
- 3.4132 .995 - .8863 = .1087 

0 1.000 -1.000 = 0 
1.0023 .005 - .00002= .00498
1.0692 .01 - .00006= .00994
1.1864 .025 - .00026= .02474
1. 3091 . 05 - .0008 .0492 
1.4866 .10 .0028 .0972 
1. 7781 .20 - .0107 = .1893
2.0707 .30 - .0232 = .2768
2.4095 .40 - .0435 = .3565
3.4727 .60 .1175 = .4825
4.5394 .70 .1819 .5181
7 .1002 .80 - .2808 = . 5192

32.6971 .90 - .4498 = .4502
00 .9154 .5000 .4154

Note that the above probability distr.ibution has a maximum of .415 
for 8 = -

00(i. e., - o-+ 0), decreases to zero for 8 = 0 (i.e. ,o -+00), 
is a maximum somewhere in the interval of 8 = 4.54 to 8 = 7.1, and 
then decreases to .415 for 8 = 00 (i.e.,o-+ 0 from the positive side). 
Specifically this probability distribution is not a monotone function 
of e.
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Now assume that 0 = 2.8 and it is desired to know the probability 

distribution of C.V. for samples with f = 16 degrees of freedom and 

n = 17. In order to find this probability distribution first compute 
117 8 t52. -..!_ 

8 = -- - 1.47254 and then calculate n where n = /� (1 + 2f) 2 = .25192 
2.8 

which is needed to obtain values of A for specific y in order to 

calculate 

t = 

for each specific y. 

8 + A (1 + §_:_ - A 2 )½
2f 2f 

(1 - ) 
2f 

These are provided in the following Table 

TABLE VI 

Noncentral t Probability Distribution 

y A For+ n A For - fl t For +n t For 

.75 . 7071 .6620 2.2323 - .8039

.90 1.3181 1. 2786 2. 9601 - .1932

.95 1. 6796 1. 64 76 3.4380 .1758 

.975 1.9889 1.9675 3.8853 .5028 

.99 2.3414 2.3391 4.4521 .8957 

.995 2.5759 2.5914 4.8721 1.17 41 

-n

Using the equality Pr(Tf � t lo)= 1 - Pr(Tf � - ti -o) the non-

central t probability distribution is obtained from the above 

tables using y and t which are listed in Table VII. 

(15)



TABLE VII 

Noncentral t Probability Distribution with Noncentrality 

Parameter o = /17 for Specific Values of t

t 

-1.1741
- .8957
- .5028
- .1758

.1932

.8039
2.2323 
2.9601 
3.4380 
3.8853 
4.4321 
4.8721 

2.8 

I ri7 Pr[Tf �t o = -- ] 
2.8 

.005 
.010 
.025 
.050 
.100 
.250 
.750 
.900 
.950 
.975 
.990 
.995 

Since G(-o) = G[- / 17 ] = .07044, it is necessary to subtract
2.8 

.07044 from each of the above probabilities (i.e., one must be added 

23 

to negative values oft) in order to find the probability distribution 

of s/X when 8 = 2.8. This provides the relationship given in Table VIII 

which is the probability distribution of C.V. being greater than 

/17 
t 

given that e = 2.8. 



TABLE VIII 

Probability that a Coefficient of Variation of 117

t 

Being Observed in a Sample of 17 when the

Population Coefficient of Variation is 2.8.

t 

21.3365 
5.1290 
1.8470 
1.3929 
1.1993 
1.0612 

.9261 

.8463 
-3.5118
-4.6033
-8. 2010

-23.4510

Pr(C.V. > I 17 ie = 2.8)
t 

.02956 

.17956 

.67956 

.82956 

.87956 

.90456 

.91956 

. 92456 

.93456 

.93956 

.95456 

.97956 

24 



Difference between two sample C.V. 's 

An approximation to compare the difference·between two coef-

9 10ficients of variation were presented by Ferber and Hald 

The general principle of hypothesis testing presented by Ferber is 

to consider the ratio, T, of 

A sample statistic - statistic from another sample 
Estimated standard error of the difference 

between the two statistics 

in order to determine if the degree of random variation between the 

two statistics is due to chance or chance is ruled out. Considering 

large sample sizes (each item of each sample is drawn at random), if 

it is desired to perform a test of hypothesis on the C. V .'s of two 

samples, such a test would be as follows: 

25 

(a) H
0

: c.v.
1 

= c.v.2 is the null hypothesis and H
A

: c.v.
1 

# c.v.2

is the alternate hypothesis. 

(b) Select the critical value of r.

(c) Subtract c.v.
2 

from c.v.
1

.

(d) Calculate the standard error of the difference between the

two sample C.V.s, which is: 

c.v.
2 

- c.v.
1 

(C.V.
1

) 2 (C.V.
2

) 2 

+ 
nl n2

9 
Robert Ferber, Statistical Techniques in Marketing Research, 

(1st ed.; New York� McGraw-Hill Book Company, Inc., 1949), p. 123. 

l
OHald, p. 302.

(16)



and 

(e) 

(f) 

where C.V. and C.V. are the coefficient of variance 
1 2 

of sample one and sample two, respectively, 

n
1 

and n
2 

are the number of items in sample one and 

sample two, respectively. 

Compare z� to the Z tabulated value of the normal 
a 

curve 

z� 

Action to be taken is (1), accept H ,  if ZN tabulated 
0 V, 

is larger than Z� calculated, or (2) reject H
0

, if Z� 

26 

(17) 

calculated is equal to or greater than Z
a 

The preceding 

procedure provides a method to calculate a 
c.v.

2 
- c.v.

1 

for large samples that are uncorrelated. When the samples 

are correlated, estimate 

(C.V.
1

) 2 (C.V.
2

) 2 

+ 

nl n2

(18)



where 

n 
E xli x2i

2 i=l 
xli

= xli X rl2 = 1 n n 
E Xfi E 

-

i=l i=l 

2 X2i Xzi 
= X2i X2

2 
(EX2i) 2

rxli - n2A 2 01 
=

nl
- 1

EX�i

o:x2i) 2
-

A 2
n202 

=
n2 - 1

Confidence limits of C.V. (an approximate method) 

The estimation of the population C.V. when the population is 

assumed normally distributed but o is unknown, raises the problem 

of dependence betweenµ and o 2 • That is, we must consider using 

Student's t-distribution with n-1 degrees of freedom rather than

the normal distribution. The distribution of means formed by 

drawing k samples of n from a population is normally distributed 
k 

with mean E X. 
i=l 1. 

and variance but the distribution of 
n 

27 

(19) 

(20) 

(21)
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the variance is X 2 and the sample standard deviation, s, is distri-

buted as /7. Placing 1-a. confidence limits about X and s of the 
l 

sample (individually) results in a rectangle which will be too 

pessimistic except for small sample sizes and when very large confid­

ence interval estimates are desired. 

The joint boundary region in whichµ and o are expected to lie 

with (1-a) 100 percent confidence can be estimated by considering 
n 

the independent distributions of X and E (X. - X) 2 such that 
i=l 

l 

X - U 
--

p [ -a < 0 / < a] =I 1-a
[Il 

and p [a ... < 

E (X. - x) 2 

l 

i=l 

from which the joint probability distribution of 

X -µ
P [ -a < <a, 

0/
/n 

1-a

= ./ 1-a 

due to the independence of the variables .11 The boundaries of the

joint probability distributions involvingµ, X, o, and s are found 

(22) 

(23) 

by 
a a 

solving (µ-X) = +--=:: where a, the constant of a probability of
- ./ n

the normal distribution need not be used sinceµ- X can be charted directly.

11 

A. M. Mood and f. A. Graybill, Introduction co the Theory of
Statistics, (New York: McGraw-Hill Book Company, Inc., 1963), p. 255. 



(a) Let 1-1 = X then a = o.

" t
a, a 

(b) Solve µ = X +-- -; 

2 

(c) Solve upper limit of a

(d) Solve lower limit of a

t
a, 

n-1 Note: a = 

2' 
n-1

L (X. - X) 
2 

l 

i=l 
= -------

a 

L (X. - x/ 
= i=l l 

,, 2 

a =X 
1- �. n-1

2'

(e) Plot the values calculated in a, b, c, and d above.

29 

(f) Select µ", a", l-i" and 0" at the intersection of µ's calculated

and the appropriate limits of a from the chart (d above).

(g) Use the values selected to provide the confidence limits for

C.V. in the following probability statement,

,,,, 
a a 

�< 
a 

< = 1 - where a is upper limit
a a -µ a a 

X +--
X 

;-;-

on a" and a"" is the lower limit on a (selected at the appro­

priate points of Figure 2). 

Example: A sample composed of 25 measurements was taken and 

25 
L 

i=l 

- 2 

(X. - ·x) 
l 

was found to be 384 and X = 50; what is the 95.0 percent confidence inter-

val estimate for the population C.V. This is solved by considering 

a a 
(µ - X) = + at three points.
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Ifµ - X is zero then 0 is zero. Substitute t 
24 

for a and 0 
.025; 

a s 

for 0 to solveµ= X + 1n. That is, solve for two points ofµ using 
- Y n 

the standard deviation of the sample and± t of Student's t-distribution 

at a= .025 and n-1 degrees of freedom since 0 is unknown. This provides 

the pointsµ= 51.6 versus 0 = 4 andµ= 48.36 for 0 = 4 which are used 
A A 

to construct the two straight lines identified 

in Figure 2. These two lines intersect atµ= 

- a 0 as X + -- and X _ a 0
/n rn 

X and 0 = 0. 

Next, calculate the upper and lower confidence limits of 0 by 

A 

0� is upper confidence limit of 0 

A 

0 is lower confidence limit of 0 

Note: a x
2 = 12.4, 
.975;24 

and 

n 
I 

i=l 

n 
I 

i=l 

b 

(X. - X) 
l 

=/1��� 
= 

� 
5. 7,

a 

(X. - X) 
l 

f¾8!i = 3.1.
b 

�

x
2 = 39.4. 
.025;24 

The values to determine the confidence limits on the C.V. can be 

0�� 
taken from Figure 2 as lower limit of C.V. =

-----:;:;-
and upper limit of 

µ 
c.v. - �, or calculated directly. The direct calculation is to calcu-

µ 
A 

late the upper confidence limit on 0 as 0�� as before, then use 0�� to 

0� 
determine the lower limit on X (i.e.,µ�= X - t 025 1

). Calcu-
/n 

A 

. ,·n-

late the lower confidence limit on 0 as 0�� and then use this 0�� to 

0�� 
determine the upper limit on X (i.e.,µ = X + 

/n 
t 025;n-l). These

calculated values are: 0� = 5.7, 0�� = 3.1, µ� = 50 (2.064)(5.7) ; 47.4;
5 

µ = 50 + <
2

·
06

�
)(3

,
l) 

� 51.3, and the lower limit on C.V. is 
3.1 
51.3 

= . 06, 

and the upper limit is ___J_:]__; .12. Therefore, the approximate 95 percent 
47.4 

confidence interval in which the true but unknown population coefficient 

of variation, 8 , is expected to lie is between .06 and .12. 
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This approximation is considered to be conservative. However, 

for most practical purposes it should give satisfactory results.12

Upper and lower bounds on C.V. 's 

32 

Sigeiti Moriguti considered the upper and lower bounds for the 

expectation, the coefficient of variation, and the variance of the 

extreme member of the sample from a symetrically distributed popu­

lation with a finite variance.13 Specific discussion was concentrated

on the largest member and considered the mean of the population equal 

to zero. These conventions do not imply any essential restriction. 

This is included since at times, the experimenter wants to know the 

maximum or the minimum C.V. that could occur. 

The cumulative density function (cdf) is denoted by F(x), then 

the cdf of the largest member x from a sample of size n is [F(x)]
n

,
n 

and the expectation of the largest member can be expressed by E(Xn)
-oo 

= f X 
_oo n 

n-1
[F(x)] clF(x). F(x)'s inverse function of x(F) must be 

considered along with an additional definition for points of dis-

continuity, if any exist, for F(x). Then E(x ) can be written as n 

12 
J. Earl Faulkner, Associate Professor of Statistics, Brigham

Young University, "The Comparison of Coefficients of Variation for 
Normal Random Variables 1 ' (paper presented at the 10th Western Regional 
Meeting of American Statistical Association, Salt Lake City, Utah; May 
16, 1969). 

13 
Sigeiti Moriguti, "Annals of Mathematical Statistics" Journal, 

XXII, No. 4 (December, 1951); pp. 523-528. 



n-1 
! 1 x(F) F clF and because of symmetry, x(F) = -X(l-F) holds
o n 

33 

almost everywhere. Then E(x ) = ! 1 x(F) [Fn-l_(l-F)n-l] clF. (24) 
n 1 n 

Also, the sample variance is 

V(x ) = J 1 [x(F)] 2
n [F

n
-

l 
+(1-F)

n
-

l
] clF -[E(x )] 2 

n .1.. n 
2 

and the population variance is given by 

2 f 1 [x(F)] 2 dF. 
j_ 

The bounds for the largest member is determined by (Swartz's) 

inequality which is used as follows: 

setting 

( �
b f(F) g(F)dF)

22_ �
b

[f(F)] 2 
b 

dF J [g(F)] 2 dF 
a 

1 
a= - b 2' = 1, f(F)= x(F), g(F)

(25) 

(26) 

(27) 

results in a formula which means in view of E(x
n

) and o 2 given above 

that 

(28) 

where equality is satisfied if and only if f(F) = (a constant) 



n-1 n-1 g(F), that is, x(F) = (constant) [F -(1-F) ]. Therefore, the 

expectation of the largest member is the right-hand side of (28)as 

34 

an upper bound, which is actually achieved for a type of distribution 

described by x(F) above. 

The integral in ( )  is evaluated as follows: 

Jl[Fn-1_(1-F)n-l]dF
1 

= 

1 (-1- + -
1- - 2S(n, n)] 

2 2n-l 2n-l 

1 
[-2- _ 

2 2B(n, n)]
2n-l 

1

2n-l 
B(n, n)

Now applying the equal integral arguments for the Beta functions 

which is expressed as B(n, n) = 
f 2n-2)(2n-l) 
n-l 

1 

then the extreme bound for E(x
n

) is given by: 

E(x ) <
n 

n 

-I 2(2n-l) 

The value of E(x ) is calculated for various sample sizes andn 

compared with the values of E(x )/a for normal and rectangularn 

populations in TableIX. 

(29) 

(30)



Sample 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

TABLE IX 

Expectation of the largest member in the unit of: 

Size n Upper Bound 

. 5774 

.8660 

1.0420 

1.1701 

1. 2767

1.3721 

1.4604 

1.5434 

1.6222 

1.6974 

1. 7693

1. 8385 

1.9052 

1.9696 

2.0320 

2.0926 

2.1514 

2.2087 

2.2645 

For Normal 
Distribution 

.5642 

.8463 

1.0294 

1.1630 

1. 2672 

1. 3522 

1.4236 

1.4850 

1.5388 

1.5864 

1. 6292 

1.6680 

1.7034 

1. 7359

1. 7660 

1. 7939

1. 8200

1. 8450

1. 86 7 3

For Rectangular 
Distribution 

. 5774 

.8660 

1.0392 

1.1547 

1. 2372 

1. 2990 

1. 3472 

1.3856 

1. 4171

1.4434 

1. 4656 

1.4846 

1. 5011

1.5155 

1.5283 

1. 5396

1. 5497

1.5588 

1. 5671

Note that the value for a normal distribution is quite close to 
the values of the upper bound when n is less than eight; close 

agreement of the upper bound and the rectangular distribution 

is when n is less than six. 
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Bounds for C.V. of the largest member of a sample are found 

1 1 

by using 07t Let a= 2, b = 1, f (F)= x(F)/-; [Fn-l+(l-F)n-l] 2 

and 

then with respect to E(x) and V (x) there is the relationship 
n n 

where 

1 

= 11 n [Fn-l_(l-F)n-1] 2 

M
n 

--------- dF 

+ pn-l+(l-F)n-1

Equality in (3] is satisfied if, and only if, f = (constant). g 

Fn-l_(l-F)n-1
which is more precisely stated as x(F) = (constant) 

Fn-l+(l-F)n-1 
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(31) 

Therefore, the C.V. of the largest member has/_l_ - 1 02) 
M

n 

as a lower bound which is achieved for a particular type of popu-

lation distribution given by x(F). 

M is determined by evaluating the integral of (32) by
n 

a method of quadrature. 



Results for small samples are shown as follows: 

M2
= .33333 

M
3 

= .64381 

M
4 

= . 81677 

M
S 

= .90695 

M
6 

= .95300 

As the sample size increases, the calculations of M become 
n 

more laborious and numerical integration would be preferable for 

large values of n. Mn is then used in (32) to determine the lower

bound. The C.V. of the largest members are given in Table X for 

a normal population, a rectangular population, and the lower bound. 

TABLE X 

Coefficient of variation of the largest member of the Lower 
Bound, Normal Population, and the Rectangular Population. 

Sample Size n 

2 

4 
5 

Lower Bound 

1. 4142
.7438
.4737
.3203

For Normal For Rectangular 
Population Population 

1. 4634 1.4142 
.8838 . 7746 
.6812 .5443 
.5752 .4226 

37 



APPLICATIONS OF C.V. 

Utilizing a known C.V. to reduce the mean squared error. 

Estimation problems are solved for Bayesian approaches using 

"a priori" information. In a sense, this approach can be applied 

to reducing the variability exhibited by the means from one sample 

to the next. That is, a more accurate estimate of the interval in 

which, µ, the unknown mean is expected to lie can be made using 

prior information that is available to the experimenter. This 

prior information may be in the form of sample means, sample 

standard deviations, identifiable capacity of each unit/sample, 

environmental exposure on each test, etc. The statistical results 

of these prior experiment can be used to provide a weight, w, 

that is associated with each condition of a planned experiment 

38 

and the subsequent evaluation of the n observations of the experiment. 

Associating wi to the appropriate ith condition may take other

forms based on the specific scientific discipline and the statistical 

rationale but in this instance the C.V. is the statistic of application. 

This is due to relating gross effects that are exhibited by isolated 

factors on the sample X and s individually or both X and s may change 

appreciably. 
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Let us consider a random sample of n observations Y1, Yz ... Yn

from which it is desired to estimate,µ, the true but unknown popu-

-
2 lation average in such a manner that E(y -µ) is a minimum. This is 

achieved by considering construction of an estimator, say 
n 

w E y. 
j=l J 

is to be compared with y. Now using the Mean 

Squared Error of y, MSE(y), to the MSE(y
,.

) the relative efficiency 

gained by using the weighted sample average versus using the unweighted 
A 2 

sample average can be determined. The MSE(y) is simply cr
n (34) 

n 
and since y

,. 

= w E y, 
j=l J 

-,. 2"2 "2 2 the MSE(y ) = n w cr + µ (1-nw) . (35) 

Now if MSE(y
,.

) is differentiated with respect to the weight, w, this 

will give 

"2 "2 = 2n[w a-µ (1-nw)] (36) 

and taking the second partial derivative provides 

(37) 

Now (3n is always positive, so the value of w can be found by setting 

(36) equal to zero and solving. The solution for w is:



and 

2n[w ; 2-µ 2 (1-nw)] = 0 

"'2 

n2 

= 
"'2 

= 1
]J 

0
2 

n) 1w(-+ = 
"' 2 

]J 

w � 

(C. V. )2 + n 

n 
Y� = [ 

l
] � Y

1· (C.V)2 + n j=l 

0
2 

the MSE (y�) = ---­
(C. V)

2 + n 

Comparing the MSE(y) to the MSE(y�) provides R.E. = 
MSE(y )

MSE (y�) 

which is found by substituting equations (34) and (40) which 

(C. V) 2 

reduces to [l + --- ] 100 percent.
n 

That is, R.E. 

0
2 

= n we find the R.E. 

n + (C.V)2 

100 [ 1 + (C.V)] percent.n 

n + (C.V)2 

n or 

40 

(38) 

(39) 

(40) 

Relative efficiencies for specific values of C.V. and sample sizes 

of n are listed in Table XI which follows. This table indicates the R.E. 

of small samples is largest and should be used when it is expensive to 

obtain additional observation for inspection or testing. 



TABLE XI 

R. E. in Percent of y � for Various Sample Sizes from a

Distribution with a Given c.v.

c.v. Sam le Size 

5 10 15 20 30 50 70 90 llO 

.25 101. 25 100.62 100.42 100.32 100.21 100.13 100. 09 100.07 100.06

.so 105.00 102.50 101.67 101.25 100.83 100 .50 100.36 100.28 100.23 

.75 lll. 25 105.63 103.75 102.81 101.88 101.12 100.80 100.63 100.51

1.00 120.00 110.00 106.67 105.00 103.33 102.00 101.43 101.11 100.91 

1. 25 131.25 llS.62 110.42 107.81 105.21 103.12 102.23 101.74 101.42 

1.50 145.00 122.50 115. 00 lll. 25 107.50 104.50 103. 21 102.50 102.05

1. 75 161.25 130.62 120.42 llS.31 llO. 21 106.12 104.38 103.40 102.78

2.00 180.00 140.00 126.67 120.00 113. 33 108.00 105. 71 104.44 103.64



Acceptance sampling using the C.V. 

Controlling the variability of products sufficiently so that 

not too many orders, or in some instances lot sized shipments will 

be returned by the buyers, has been a major area for applying 

statistical techniques. This section is restricted to sampling 

incoming lots from a continuous production process. In this 

continuous process, it is usually assumed that failures (defects) 

are random events and that if a trend develops, this trend is due 

to an assignable cause such as tool wear which can be compensated 

for by taking some appropriate corrective action (i. e., adjustment, 

tool sharpening, etc.). 

The final products of this continuous process are put into 

various quantities of size n to fill customer purchase orders. 

Some customers perform incoming inspections on each lot that is 

purchased while others may accept the lot and perform inspection 

as part of their assembly operation. This section is for 

application to incoming inspection where measurement of specific 

critical characteristics is performed and the lot is either 

accepted or rejected based on the statistical evaluation of the 

measurement data of each lot. 
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H. A. 
14 

Freeman, provided an evaluation of a large sample 

(n = 188) of the crushing strength, in tons, of bricks wherein the 

C.V. from the sample is .146. Further it is necessary to determine

how many bricks should be tested, and what is the sample C.V. that 

detects the acceptable lots from the unacceptable lots? The 

essential parts of evaluating this typical quality control problem 

is to specify quantitative values which reflect the consumer and 

producers interests,respectively. That is, assume a buyer is 

willing to accept bricks of lower average strength and higher 

variability in strength restricted to C.V.B = 0.3, say five per­

cent of the time (i.e., let this be the buyer's risk, identified 

as B = .05). Also, assume the producer does not want to have more 

43 

than one percent of his lots rejected (i.e., let this be the producer's 

risk, identified as P = .01). Then since the producer's statistically 

controlled output is characterized by C.V. = 0.146 and using

the following functions 

n (C.V.) 2 

n + (C.V.) 2 

n(C.V.) 2 

1 + (C.V.) 2 

14 
Freeman, p.63 

1 + 
(.146)2 

1) 

(c.�>2 + 1)

p 

= x
2 

p 

(41) 

= 
x

2 

B 
(42)



which are approximations, the producer's and buyer's interests are 

provided for by the ratio 

x
2 

p 48 

12 = 4·

44 

Entering the Chi-Square tables the value corresponding to the ratio 

4 is 
2 2 

X. 99/X. 05 = 
32.0 
7. 96 for 16 degrees of freedom, hence n is 17.

Using the appropriate X value and n = 17 in either equation (1) or 

(2), it is found that C.V. = .202. This means that a sample of 17

should be drawn and if the sample coefficient of variation, C.V., 

is greater than .20, the lot should be rejected. Establishing when 

there is no longer any possibility of accepting a lot was investigated 

in an article by Robert D. Summers. The procedure is to order the 

samples from the lowest measured value to the highest and then to 

discontinue inspection when the number above a certain limit (as 

attributes) is exceeded. That is, consider that a bound on the C.V. 

exists and this can be expressed as 

under the conditions: 

> ,/ r
n-r

xi is the ith ordered sample value 1 < i < n,

r is the number of negative sample values, 

x is the sample mean (assumed positive), 

[ " (xin- x°) 

J

-21s = � _____ is the sample standard deviation. 

(43)



The application proposed is in the sampling of variables 

where disposition of a lot or a group of items from a process 

(sublot) is decided on the basis that the reject criteria is: 

If y + Ks ... > u, reject the lot 

y is the mean 

or 

of 

process. 

n values of Yi

45 

s ... = [ 
(Yi - y/ 

]} (44) 

n - 1 

k is a constant associated with the sampling plan, 

U is a limit such that y i >U identifies the ith

largest sample item as a defective. 

The sample values are expressed with relation to the deviations 

limit, that is x
i

= U - Yi· The criterion now becomes reject if

X x - ks ... <0 which is equivalent to x/s ... <k or­
s 

l 

k(c.v.)-l 
[-

n
n

-11 2 
<k h ff' · d' · f · · 

j 
t en a su icient con ition or reJection 

is 
n(n-1) 

k or r >nk2 + n-1 
= 

nk2 + n - 1 
n 2 

- n

If the number of defectives in the lot exceed n (n - 1) 
nk2+ n-1 

there

(45) 

is no chance to accept the lot. It is necessary to specify n and k 

prior to sampling and determine the maximum number of defectives that 

would be acceptable or to predetermine the number of defectives 

required to terminate sampling inspection. 
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Stress versus strength reliability problem 

The Standard Handbook for Mechanical Engineers as revised by a 

staff of specialists15 gives definitions of stress, strength, and 

safety factors in a context that is usually referred to by engineers. 

However, the definitions that are used in reliability assessment 

and evaluations have a somewhat different implication and it is 

necessary to indicate graphically the probability density functions 

that represent applied stress and material strength. Applied stress 

is, hopefully, less than the strength of the item to which the 

stress is being or is to be applied at some future time. Figure 3 

provides a representation of the applied stress function and the 

end item strength function that has necessarily been of great con­

cern in liquid propellant rocket design as well as in the design 

of solid propellant rocket motors. 

Frequency 

15 

,r\ 
ed Stre s 
nction 

1 
Compone 

Fun 

Figure 3. Relationship of Applied 
Stress to Strength 

\ 

\ 
\ t

_Stren�h
tion j\ 

02 1 '\, 
-..... ___ _ 

Theodore Baumeister, Editor, Standard Handbook for Mechanical Engineers 
(New York; McGraw-Hill Book Company, Inc., 1967). 



Applied stress is usually a combination of several environ­

mental factors working on an item during its operational life 

whereas strength is the ability of the item to withstand the 

applied stress. Therefore, a failure will occur when the applied 

stress, as represented by, say, the maximum chamber pressure of a 

solid propellant rocket during its action time, exceeds the case­

closure strength (i.e.' the case-closures ability to contain the 

stresses that are applied during action time without deformation). 

This is represented by the cross-hatches area of Figure 3. 
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Solution of this typical problem has been extensively explored 

in the reliability literature involving the use of liquid propellant 

and solid propellant rocket motors. Four methods are presented in 

this section; the first method is a straightforward evaluation 

based upon the difference between two random variables such as, X., 
l 

16 
strength of a case-closure, minus Yi, the stress applied on the

same case-closure. As the distance between X and Y increases for 

o1 and a2 fixed, the probability of failure decreases and the

probability of successful operation increases. This is usually 

solved by considering � = X. - Y. to be normally distributed with 
l l 

2 2 l mean µ1 - µ2 and a standard deviation of (o1 + 02)2. That is,

16 
D. K. Lloyd and M. Lipow , Reliability: Management, Methods,

and Mathematics (Prentice Hall, Space Technology Series, 1962),
pp. 237-238. 
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let X and Y be the random variables representing the burst pressure 

from a sample item and the maximum chamber pressure of a sample item, 

respectively. Then an estimator of the reliability, R, and the lower 

confidence limit, R1, is found by substituting the sample means

and standard deviation estimates in 

" 

( 

µ2 
-

µl 
R 

qi I 2 

J
al + 02 

2 

where qi is 

i.e., N(O,l).

) and V(R) = _p2 [ 1 
n o1 

1+(-) 2 

02 

+ 

the standard normal P.D.F. using 

µ2 µl 
( 

0 2 

01: J2(1 + (-) ) 
02

For example if µ2 = 800 psia and o2 = 100 are known from

design and test verification that has been performed over a long 

period of time and a sample of 20 rocket motors are tested which 

provides µ
1 

= 450 psia, o1 = 25 and the 90 percent confidence

coefficient, Y, is desired for R, then 

(46) 

(47)



= cj)(3.3955) 

V(R)_(l - .99875)

20 

V(R)..l.. = .000248 
2 

and 

= . 999666 

1 
100 

2 +(-;?

+ 
( 800 - 450 >' t

25 
100 :6.144 

2 [ 1 +( 25)2 ]J 

R_90 = .999666 - (1.282)(.000248) = .99935

X 10-8

The second method is to consider the relationship of 

reliability to a safety margin. Reliability is the probability 

that an item will successfully perform its intended function for 

a specific required period of time in the environment specified. 

Safety margin usually is considered as the ratio of an equipments 

average strength prior to the point of breakdown (maximum design 

load) and the average load that will be applied to equipment in 

its normal use conditions. Both of these are random variables 

with true but unknown parameters that are calculated and verified 

by testing a sample of n items. 
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Figure 3 (page 46) indicates that µ1, µ2
, 01, and 0

2 
are

known parameters. In practice, this is seldom a true statement 

and in reliability evaluations there is a tendency to be overly 

pessimistic and require a large number of items to be tested. 

Due to cost constraints the number of items provided for destructive 

testing and the evaluation of design performance may be held to a 

minimum. 

Predicting the reliability of very large solid propellant 

rocket motors is such a problem since each rocket motor test 

is very costly. Also, new test equipment may have to be purchased 

before the first rocket can be tested. However, the testing of 

critical components on a proposed system may be used to estimate 

the probability and safety factor, K, where K = µ2/µ1. When it

is desired to establish a numerical value to determine if the 

safety factor is sufficient; using the C.V. 's as indicated in the 

next procedure will provide a solution to this (third) problem. 

Let x1 be the applied stress resulting from the level of

environment and let x2 be the strength level of the component 

material. If x = is the difference between x2 and x1 then

x1 and o! = 0� + of. Substituting

K µ2/µ1 we can find the one tail probability of
X 

0 
X 
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for X X. thereby solving
l 

X 

o­
x 

(48)



and the probability of "' (-x) � can be found in a table of areas 
ax 

for the normal probability density function. For example, if 

x1 = 350, a1 = 35, x2 = 500, and o
2 

= 25, then the safety factor

is 1.4285 and the probability of�= 3.44 is .9997. 

Ox 

The fourth method used to solve for reliability of applied 

stress versus strength was presented in the Martin Company (Denver) 

Handbook of Reliability Problems. The reliability coefficient of 

variation, C.V.R, and the ratio of average strength to average

applied stress are used to find the numerical value of reliability. 

The procedure to estimate reliability from sample data is: 

(a) Calculate average strength from a sample

51 

(49) 

(b) Calculate average applied stress from a sample

(c) Determine the ratio F = (SO) 



(d) Calculate the sample variance of strength

n 
( z::2 

X 2 i) 2 

n 
z:: 2 2 i=l 

"2 i=l 
x

2i nza -
z-

nz-1 

(e) Calculate the sample variance of applied stress

n 
( z::l 

Xli) 2 

n1 2 i=l 
xli 

"2 i=l nl
OX =

1 n1-l

(f) Calculate the coefficient of variation of reliability

J "2 +
0

2 
0

2 1 

Note: x
1 

does not appear in the formula of C.V.R since the

variance of x
2i 

- x1i is being compared to the average strength

OR in order to determine the decimal ratio of C.V. 
X 

R 
which 

R 

can be used with the ratio of 2 to provide the probability

(g) Refer to Figure 5; find the intersection of F with

the appropriate C.V.R line and read the reliability directly

from the chart. (c.f. page 66 for Figure 5). 
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(51) 

(52) 
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Example 

A pressure vessel is to be installed in a line that will 

have an average pressure of 1100 PSIG with a variance of 425. 

Destructive tests are performed on a number of these items, the 

data result in an average burst pressure of 1175 PSIG and a

variance of 800; what is the reliability of the pressure vessel

in this application? 

1. Average strength; x1 
= 1175 PSIG

2. Average load ; x2 llOO PSIG

3. F the ratio of average strength to average load is

4. 

5. 

6. 

ll75 PSIG

llOO PSIG

Variance of strength 

Variance of load 

/ 1225 
c.v.R ll75 

=

s
2 

x2 

35 

ll75 

S-
X] 

= 

= 

= 1.068 

800 

425 

.03 

7. The reliability of the .03 and 1.07 point on the chart is

.98 percent.
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17 

John Lupo presented a method that provided an estimate of 

the safety margin as follows: 

Let 

n 
E X. 

i=l 
l 

X = 
n 

be the average of strength resulting from 

testing n sample items where X. is the strength of the ith sample l 

item tested. Also, let the maximum of applied stress be R ,  the 
b 

reliability boundary, and 

" l=l l 

I 
.I (X. - X) 2 

a 
n - 1 

the standard deviation of strength, 

calculated from the sample items tested. Then, the safety margin, 

Sm' is calculated by the relationship of the distance between Rb

and X divided by the estimate of a that resulted from testing the 

n sample items. That is, 

54 

(54) 

a 

17 
John E. Lupo, "Safety Margin Confidence Limits - the Non-central 

't' Distribution," Evaluation Engineering, Chicago (January/February ,  
1966) p. 51. 



It was then necessary to determine if t =/ n Sm was a

noncentral t-distribution with n-1 degrees of freedom and had a 

noncentral parameter, o =In S m The proof was completed and
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the equations from the proof were used to calculate confidence 

limits, y., on estimated S for various sample sizes (Table XII�XV). 1 m 

Example: 

If the required safety margin is 3 and the sample size is 

5, what must the estimated safety margin be to demonstrate the 

required safety margin at a confidence level of 80 percent? 

This is solved by referring to the table for 80 percent 

confidence (Table XTII)and finding the number 3.0 in the S rowm 

and 5 in the sample column; the value in the 80 percent table 

where S = 3.0 and n = 5 intersect is 4.74 which is the safety m 

margin that must be measured in order to demonstrate that the 

true safety margin is equal to or greater than 3.0. 



TABLE XII - 70 Percent Confidence Level of Safety Margin 

Sample Size n 

Smr 5 10 15 20 25 30 40 

0.0 0.2545 0.1719 0.1386 0.1193 0.1063 0 .0968 0.0836 

1.0 1. 4510 1. 2651 1.2033 1.1703 1.1491 1.1340 1.1137

2.0 2.7532 2.4181 2.3134 2.2592 2.2250 2.2010 2.1692 

3.0 4.0843 3.5903 3.4389 3.3612 3.3125 3.2786 3.2337 

4.0 5.4254 4.7694 4.5700 4.4681 4.4044 4.3602 4.3017 

5.0 6. 7700 5.9513 5. 7034 5. 5770 5.4982 5.4435 5.3712

TABLE XIII - 80 Percent Confidence Level of Safety Margin 

Sample Size n 

Smr 5 10 15 20 25 30 40 

o.o 0.4204 0.2793 0. 2242 0.1926 0.1714 0.1560 0 .1346

1.0 1. 7 382 1.4268 1.3261 1.2728 1. 2387 1. 2145 1.1820

2.0 3.2155 2.6654 2.4978 2. 4115 2.3573 2.3194 2.2689

3.0 4.7405 3.9345 3.6938 3.5711 3.4944 3 .4411 3.3703 

4.0 6.2808 5.2149 4.8990 4.7385 4.6385 4.5691 4.4772 

5.0 7.8276 6.5002 6.1082 5.9095 5.7859 5.7001 5.5867 



TABLE XIV - 90 Percent Confidence Level of Safety Margin 

Sample Size n 

Smr 5 10 15 20 25 30 40 

0.0 0.6857 0. 4373 0.3473 0.2970 0.2637 0.2395 0.2061

1.0 2.2476 1.6844 1.5150 1.4276 1.3724 1. 3337 1.2820

2.0 4.0580 3.0678 2.7868 2.6456 2.5580 2.4973 2.4170 

3.0 5.9432 4.4983 4.0957 3.8952 3. 7715 3.6862 3. 5739

4.0 7.8526 5.9464 5.4187 5.1570 4.9959 4.8850 4. 7393

5.0 9. 7734 7.4026 6.7484 6.4245 6.2254 6.0884 5.9086

TABLE XV - 95 Percent Confidence Level of Safety Margin 

Sample Size n 

Smr 5 10 15 20 25 30 40 

0.0 0.9539 0.5797 0.4548 0.3867 0.3423 0. 3103 0.2664

LO 2.8130 1. 9343 1.6906 1. 5685 1. 4925 1.4398 1. 3700

2.0 5.0068 3.4655 3.0601 2.8620 2.7407 2. 6577 2.5488

3.0 7.2994 5.0584 4.4777 4 .1963 4.0251 3.9082 3.7558 

4.0 9.6280 6.6746 5.9139 5.5465 5.3235 5.1716 4.9737 

5.0 11. 97 30 8.3017 7.3588 6.9042 6.6286 6.4410 6.1968
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Proof: 

Let Z be a random variable distributed normally about zero 

with unit standard deviation, and let W be a random variable distri­

buted independently of Z as x 2 /f with f degrees of freedom. If t 

ls defined by 

t = 
(Z + o) 

/ w 
where o is some constant, then t 

is said to have the noncentral t distribution with f degrees of 

freedom and noncentrality parameter o. 

The estimate of the safety margin can be related to t as 

follows: 

where 

X estimated mean of strengths = txi/n,

where X. is observed strengths, 
l 

(55) 

¾ = reliability boundary = maximum stress (known),

& = estimated standard deviation of the strengths 

= [�(X. - X) 2 /(n-l)] T 

l 



where 

s = 
m 

µ is the true but unknown mean of the 

population of strengths, 

a is the true but unknown standard deviation 

of the population of strengths. 

Multiply both sides by /N 

A 

/Ns 

Substitute S mr (µ - Rb)/o , where Smr is the required safety

margin. 

A 

/NS m [IN Xa-µ +IT smr]/ � ) · 

The quantitylN(X - µ/0) has a normal distribution with mean zero 
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(56) 

(57) 

(58) 

and unit standard deviation, and (o/o)2 has a X
2
/f distribution with 

N - 1 degrees of freedom. Therefore/NS = t and has a noncentralm 

distribution with N - 1 degrees of freedom and a noncentrality 

parar ,'ter 
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Two parameter Weibull (estimate the shape parameter) 

f(x) 

The two parameter Weibull distribution has a density function 

-x
Y 

Y/e 
Y-1 

/ = ( ) X exp ( 0) 

X > 0 

y > 0 

e > o 

(59) 

which becomes the one parameter exponential distribution when Y= 1. 

Other equivalent forms of the two parameter Weibull have been 

presented in the literature. Cohen18 
selected this form for the

purpose of simplifying the deviations of the maximum likelihood 

estimating equations. 

Censored or complete samples. In a typical life test N items 

are placed on test, and the behavior of each item is observed. The 

time that each failure occurs is recorded along with any comments 

pertinent to the item response during testing. 

The testing is stopped at: (a) some predetermined 

18 
A. Clifford Cohen, "Maximum Likelihood Estimation in the

Weibull Distribution based on Complete and on Censored Samples" 
Technometrics, VII, No. 4; November, 1965; p. 579. 



time x
0 

or (b) when a predetermined number of failures xn have

occurred. Data consist of failures x1, x2 ... xn after t1, tz

test time exposure, respectively, on each item that failed. Also, 

61 

t n

there are N-n items that survived the test time of termination, x
0 

or 

Testing programs that are terminated at a fixed x
0 

(time) cen­

soring are referred to as type I, and n is a random variable. For 

testing programs terminated at a predetermined nth failure, then 

the time of termination xn is a random variable and censoring is 

referred to as type II. 

For the complete sample consisting of n observations, the 
n 

likelihood function of (1) is L(x1, x2 ... xn; Y,8) = TI (Y /8)
i=l 

The estimating equations are found by taking the log, lnL, 

differentiating with respect to Y and 8 in-turn and equating the 

results to zero. This gives 

n n 
clln L n 

= 
y+ I ln X, - - I xY ln x. = 0

cl y i=l 
l e i i l 

n 
xy clln L = n 1 I 

e + e"2" i=l i
ae

(60) 

(61)



from which 8 can be eliminated and upon simplifying becomes 

n y 
L X. ln X.

i=l l l 

n 
x'. L 

i=l 

or 

LX
Y 

ln X.
i l 

LXY
l 

1 
n 

1 - - = 
y 

n 
L 

i=l 

n 
1 

ln X.
n i=l l 

ln xi 
= 1

y 
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(62) 

(63) 

then solve for the MLE of Y; (MLE(Y)). Standard iterative procedures 

may be used but in most cases a trial and error approach can be used 

to find the required value of Y. 

Once Y is estimated (a 
1 

or a such as Y or Y indicates an 

estimate of the parameters Y) by using this estimate, Y , in equation 

(61) and solving for §, that is

e = 

n 
L 

i=l 

n 

xY 
l 

(64) 

the likelihood function for simply censored and progressively censored 

samples. 



Estimating the shape parameter Y by using the C.V. 

Numerous articles and texts have been addressed to this 

problem of solving the parameters of the Weibull distribution 

(shape S, Scale y, and location a). The shape parameter is 

the most difficult to estimate and various approximate methods 

have been proposed. Several references which contain additional 

information about the Weibull distribution are provided in the 

technical journals. 

Cohen, in his article, suggested using a suitable graph or 

a table to establish a first approximation to his shape parameter 

"19 
Y The C.V. of the Weibull [(C.V.)w] is a function of the shape 

parameter alone. 

The kth noncentral moment is determined to be 

where 

co 

_xdxf(m) = £ xm-le m >O 

µl 
= r[ ( /y) + l] 

V(X) = r[ ( 2 / y) + l] - r2 c 1 /y) + 1J

19 
Cohen, p. 579 
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(66) 
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that is, 

and 

j__._[ r----'C'--4 Y
-'--"

)'---+_1
-=

J_-_r_2 "-[ c
;:_

1_/ y
-'-'
)_+_ 1

_,_
J_ 

r[(l/y) + 1 ] (68) 

Tables of the r distribution can be found in most engineering hand­

books or tables for mathematicians. Table XVI provides values of 

C.V.w for specific values of Y (shape).

TABLE XVI 

The Weibull C.V. as a Function of the Shape Parameter y 

y c.v. y c.v.
w 

.25 8.3066 2.5 .4279 

1/3 4.3589 3.0 .3633 

.so 2.2361 3.5 .3189 

.75 1. 3612 4.0 .2806 

1.00 1.0000 4.5 .2498 

1.25 .8050 5.0 .2290 

1.5 .6754 

1. 75 .5884 

2.0 

Figure 4 is a plotting of these values.
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SUMMARY AND CONCLUSIONS 

The intent of this thesis was to determine the statistical 

properties of the coefficient of variation, C.V., and to make use 

of these properties in statistical procedures for solving Quality 

Control and Reliability problems. The mean and the standard 

deviation of the C.V. were found, in the statistical literature, 

and these can be used in the same manner as the properties of the 

normal distribution when the sample size is large. 
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The C.V. statistical properties covered in this report are 

approximate methods (two) to determine the cumulative probability 

distribution, using the noncentral t-distribution to determine the 

cumulative probability distribution; comparison of C. V .'s from two 

samples, approximate confidence limits for the C.V., the C.V.'s upper 

and lower bounds. These properties are applied to compare experi­

mental results, acceptance sampling, solve stress versus strength 

problems in reliability and to estimate the shape parameter of the 

two parameter Weibull. 

Using the noncentral t-distribution is the best of the three 

methods to determine the probability function of the sample C.V. 

However, it is much more complicated and requires more calculations 

than either of the other two methods. These methods are used more 

often due to the reduced number of calculations required. 
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Evaluation procedures using the C.V. have been developed to 

provide the experiementer with more precise estimates. Also, the 

experiementer can determine if the difference between the C.V. of 

his testing is due to chance variation or if the difference observed 

is nonrandom. In addition, the C.V. is useful for solving specific 

problems encountered in Reliability and Quality Control. 
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A P P E N D I X 



The probability density functions, the mean, variance, and 

coefficient of variation of the discrete probability functions 

that are very often used in Reliability and Quality Control are 

given in the first section of this Appendix. The second section 

provides the same information for the continuous probability 

functions that are also very often used in Reliability and Quality 

Control. 

I. Discrete Probability Density Functions

Hypergeometric Distribution
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If the total set contains N items and D of these items

possess a given property, then the probability that a random sample 

of size n, without replacement, will contain exactly x items that 

possess the given property is 

f(x:N,D,n) = 

= 
D! (N-D) ! • n ! (N-n)!

x! (D-x)! (n-x) ! (N-D-x+n) ! N! 

X = 0,1,2 . . . n 

N > n > 0

N - D > 0

= 0 elswhere 
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A 

Note: (B) is the combination of A items taken B at a time.

Three properties of the Hypergeometric distribution are: 

nD 
Mean . . . . .  . µ = 

Variance . . . .  

I N-D
Coefficient of Variation = nD 

Binomial Distribution 

If 0 denotes the probability of an event occurring at each of 

n observations, then the probability that the event will occur 

exactly x times is 

f(x;n,0) 

Three properties of the Binomial distribution are: 

Mean . . µ
= ne 

Variance 0
2 = ne c1 ... e) 

Coefficient of Variation = ./ (1-6)/ne
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Geometric Distribution 

Let 8 denote the probability of the event occurring at each 

trial. Consider repeating each observation until the event occurs 

for the first time. The probability that x trials must be made 

is given by the geometric distribution 

f (x' e) = 0(1-0)
x-l

X = 1, 2,

0 � 0< 1 

elsewhere 
= 0 

X 

0(1-0)
i-l X 

F(x) L = 1 - (1-0) 
i=l 

Some properties of the Geometrie distribution are: 

Mean . .  

Variance 

µ = 1/0

(1-0)/02 

Coefficient of Variation 

Poisson Distribution 

I 1-8

The Poisson distribution is a useful approximation to the 

binomial and hypergeometric distributions and also one in which 
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arises when the number of possible events is large but the prob­

ability of occurrence over a given area or interval is small, e.g., 

defects, waiting lines. 

f (x, ;>.J = 

= 0 

X _,\
,\ e /x! X = 0, 1, 2, . . .

.\ > 0 

elsewhere 

F(x) = I 

i=O 

. .\
]_ - I. I .\ e i. •

Some properties of the Poisson distribution are: 

Mean µ = .\

Variance 

Coefficient of Variation = 1/ ,;7---

Co11:t_in_uous Probability Densi1:yJunctions 

Uniform Distribution. Unjform distribution is defined by 

the function 

f(x) = 1/(b-a) 
= 0 

a < X < b 
elsewhere 



F(x) = 0

(x-a)/(b-a) 

= 1 

X < a 

a < X < b 

X > b 

Properties of the Uniform distribution are: 

Mean . .  

Variance 

µ = (b+a)/2 

o 2 = (b-a) 2 /12 

Coefficient of Variation = (1//3) [(b-a)/(b+a)] 

Gamma Distribution 

The gamma distribution is defined by the two-parameter 

function 

X > 0 

= 0 X < 0 

where the scale parameter B >O and the shape parameter a> -1. 

F(x) = f
x 

(1/a !B a+l)xae-x/Bdx
0 

(1/a !) rx/s(a+l)
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where r (a+l) is the incomplete gamma function tabulated in 
x/8 

Karl Pearson, Tables of the Incomplete Gamma Function, Cambridge 

University Press, London, 1922. 

Some properties of the Gamma distribution are: 

Mean . .  

Variance 

µ = B(a+l) 

o 2 =8 2(a+l) 

Coefficient of Variation 

Exponential Distribution 

= 1/ ./ a+l 

One of the most widely used distributions in the field of 

reliability is the one-parameter exponential function defined by 

1 -x/0f(x:0) = e 
e 

X > Q 

= 0 elsewhere 

1 
F(x) = 

e 

= 1 

Some properties 

Mean 

Variance 

2 

J 
-x/0d e X = 1-e -x/0

of the Exponential 

. µ = e

.0 2 = 02 

Coefficient of Variation = 1 

X > 0 

X < 0

distribution are: 
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