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ABSTRACT
A Report on the Statistical Properties of the Coefficient
of Variation and Some Applications
by
Howard P. Irvin, Master of Science
Utah State University, 1970

Major Professor: Dr. David White
Department: Applied Statistics

Examples from four disciplines were used to introduce the
coefficient of variation which was considered to have considerable
usage and application in solving Quality Control and Reliability
problems.

The statistical properties were found in the statistical
literature and are presented, namely, the mean and the variance
of the coefficient of variation. The cumulative probability
function was determined by two approximate methods and by using
the noncentral t distribution. A graphical method to determine
approximate confidence intervals and a method to determine if the
coefficients of variation from two samples were significantly
different from each other are also provided (with examples).

Applications of the coefficient of variation to solving some
of the main problems encountered in industry that are included in
this report are: (a) using the coefficient of variation to measure
relative efficiency, (b) acceptance sampling, (c) stress versus
strength reliability problem, and (d) estimating the shape parameter

of the two parameter Weibull.

(84 pages)




INTRODUCTION

This presentation will include a history summary of the coef-
ficient of variation and some of the uses to which it has been
applied with examples and comparisons. Further, an attempt will be
made to differentiate, if possible, between the coefficient of vari-
ation and what is normally referred to in engineering as a ''safety
factor." The coefficient of variation will be identified as C.V.
Historically the coefficient of variation has been associated with
economics, engineering, sociology, psychology, quality control, etc.,
in applications which provide a comparison of relative dispersion.

This study is addressed to Engineers who may have had two or
three method courses in statistics and are concerned with applying
statistical techniques to evaluating inspection and test measurements
for quality control and reliability purposes.

Statistical techniques, as was indicated previously, are universal
(in that general methods have been developed and applied to evaluating
data resulting from experiments performed in each scientific discipline);
the examples contained in this section are not restricted to quality

control and reliability. This is considered to have merit since it

broadens the base for comparison and provides more depth of application.




Definition of C.V.

T SR : ] o
The coefficient of variation (C.V.) is the ratio of ——
K
where U and 0 are the true population mean and standard deviation,
respectively. However, the true parameters and are very seldom

known and, therefore, must be estimated from sample data which

provide the statistics X and s. For the normal distribution

N Mg
’_.\
>

i

> |
n

and

where

X, is the value of the ith measurement from the
i

sample containing n items.

General Examples

i
C.V. compared to the quartile comparator. The first example

is presented to compare the wages of group (a) with group (b) where:
(a) 1is a classification used for all males under 16
years of age in the central states working in foundaries

and metal works;

1
W.L.Crum and A. Patton, Economic Statistics, (New York A. W.

Shaw Company, 1925) pp. 194-195,




(b) is a classification used for all mal:s over 16

years of age employed in the tanmeries ol the United

States.

QC is often used as an index to compare :he relationship
of the middle 50 percent of one sample with tie middle 50 percent
of another sample. This index uses 31 (the wlue below which 25
percent of the sample lies) and Q3 (thie value above which 25 percent
of the sample lies) to provide QC’ the: quartie comparator. QC does
not provide a consistent measure of relative rariation since it is
sensitive to the values of Ql and Q3. Table . is presented as an
example to portray that the C.V. is a more coisistent comparator of
relative variation then QC.

TABLE 1

Coefficient of Variation Versus Qartile Comparator

A B
n .26 519
X $5 84 $10.73
s 121 2.24
Ql (first quartile) 367 10.01
Qy (median) 4 00 10.42
Q3 (third quartile) 586 12.26
Q = B-U 23 .10

Rl
C.V. = = 21 .21
X




C.V. used as a relative measure. The scond consideration

is one that was proposed by Fredrick C. Kent:and is as follows:

The significance of the value callculatec for the standard
deviation depends on the size of the measureents. Thus a vari-
ation of two feet in a measure of 100 feet hs the same significance
as a variation of 20 feet in a measurement oi 1,000 feet. It is
the custom to divide the standard deviation tv the mean in order to
bring out its proper relation to the measuremnts. The quotient thus
obtained is called the Coefficient of Variability.

Quality variability and C.V. The: third ipplication was pre-

3
sented as a quality control technique by H. A Freeman.

Producer and buyer risk using the: coeffiient of variation.
Specification of average quality and wvrariabilty in quality may be
separately provided by other methods. Howeve, it is sometimes
desired to make use of a hybrid statisitic to :ontrol both the aver-
age and variation of a quality characteristic One such statistic
is the coefficient of variation which is give: by

Standard deviation
Arithmetic mean

2
F. C. Kent, Elements of Statistics, (Ne' York; McGraw-Hill
Book Co., Inc., 1924) p. 87.

3
H. A. Freeman, Industrial Statistics, (ew York; John Wiley

& Sons, Inc.; 1942) p. 153,




High values of this statistic will result from high variability in
quality and low mean quality, both of which we take in our examples
to be unfavorable. Correspondingly, low values of the coefficient
of variation are considered favorable.

4
C.V. over a time domain. Snedecor and Cochran give an example

which can be used as a model to present comparative statistics over
a time domain. The mean stature in centimeters, the standard
deviation, and the coefficient of variation are plotted in Figure 1
(p. 6) to show the growth pattern of girls from age 1 to 18 years.
From 1 to 12 years the standard deviation increases at a greater
rate relative to the mean stature growth. This difference in growth
causes the C.V. to decrease the first year from 3.75 percent to
approximately 3.25 percent from year one to year two. From the
second to the twelfth year there is a somewhat steady increase of
C.V. to its maximum of approximately 4.75 percent. During the time
from the twelfth year to the fifteenth year, the C.V. drops off
sharply from 4.75 percent to 3 percent and then returns to its
original position of 3.75 percent by the seventeenth year, and it
is expected to remain quite stable from then on.

Figure 1 provides the factors of the distribution in relation
to comparing growth with respect to what the mean and the standard
deviation are each doing with respect to time. However, the C.V.
by itself may not be meaningful unless the experimenter has additional

information to supplement that of the C.V.

4

G. W. Snedecor and W. G. Cochran, Statistical Methods (6th ed.;

Ames, Iowa: The Iowa University Press, 1967), p. 63.
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of Variation for Girls from 1 to 18 Years of Age




C.V. used to compare test scores. The last example of this

section was taken from Yamone.5 Assume that a group of students
took two tests. The first test has an average of 60 points and a
standard deviation of 6 points with a maximum of 100 points. The
second test has an average of 700 points and a standard deviation
of 7 points with a maximum of 1,000 points. Which of the two tests
has a larger scatter (dispersion)? Here we are comparing the dis-
persion of two frequency distributions.

One can readily see that from an absolute standpoint the 7
points is a larger scatter than the 6 points, but from a relative
standpoint we can see that the students were much closer together
in the second test. To bring this idea out explicitly, a measure
of relative dispersion has been formulated. The coefficient of
variation is used (Yamones) to compare the results of the two tests

as follows:

First test, Cc.V. = -9- = -l
60 10

Second test, GV = VAN
700 100

We observe that the relative dispersion of the second test is
only 1/10 of the first. In such problems as this, by use of the
coefficient of variation, the dispersion of different frequency

distributions can be compared.

5
Taro, Yamone Statistics, An Introductory Analysis (1lst ed. New York;

Harper and Rowe Publishers, 1964) p, 75.




Estimation of the standard deviation (of a ne'r batch using

C.V. In addition to providing a measure off relatiw variation, such as
provided in the examples that have been pwe:sented, the C.V. may be used
a standard to compare two or more experiimental esults or as a means
rapidly estimate the standard deviatiom of a saiple. In a number of
cases X and s change together so that the C!.V. is ipproximately constant.
such a situation, if there are several siets of :xperimental data that
involve calculation of X and s, calculating; the C.’.'s and comparing
with a given C.V. as well as with each: other 7ill serve as a check.
Also, if C.V. is available from previowus dataand X is known for a
batch of data, s may be estimated for tlthis newsample by s = E(C.V.).
The following sections contain the re:swults fomd in the literature
various reliability manuals which have: lbeen priwvided by industrial
concerns. Although the literature search h:as beenquite extensive, it
been all inclusive. Additional 1liteeraturesearch will probably

greater theoretical depth which wowulld provde additional uses

which the coefficient of variation can bee applid.




STATISTICAL PROPERTIESS OF SAMELE C.V.

Note on population and sample distributioms:

Before calculating the mean and the vrairiance >f C.V. from a random
sample, it is necessary to comment on the ssampling listribution and popu-
lation distributions. If an item is selec:tied, by i random process, from

population then the probability that thes item se.ected will have a
value no greater than x is the distribution: functin F(x). Similarly if
the item selected has n variates (measurab)lie chara:teristics) of concern,
then the probability that the item will havre a valu: of the first variate

no greater than x;, a value of the secomd variat: x no greater than x,,

. and a value of the nth variate no grre:ater thin x, is the multi-

variate distributions function G(x;, X9 . . . X Also, if the variates

n)‘
independent the rth variate consideredl lhas the distribution function
(Fr!\}:r) = FL(Xl)F2(X2> . « . Fo(xy). Apply:ing thi; concept to an unvariate

population and selecting a sample of n itemmtss from :he populations, each
time the sample is taken there will be n vra.lues x; X9, . . . x,. The
nature of this multivariate distribution dlejpends o1 the sampling process
used as well as the population. If the disitributim is G(x1, Xy « . . Xp)
then this function represents the probabil.iity that a random sample will
result in n values, the first not greater tlhan x;, the second not greater

than x5, . . ., and the nth not greater tham x "he x's can be regarded

n°

as corresponding to n random variables £, &2, . . . &




Since the C.V. is estimated from X and s, the sample statistic,
is desired to estimate the true byut unknownC.V., it is neces-
calculate the differences betwee2n the trueC.V. of the popu-
and the sample C.V.
of C.V.
the values of X3, X3, . . . X, aire a sampl: of n taken from

population that has a mean | and stamdlard deviat.on ¢, then the true

unknown population C.V. is {? which must be esimated by using

S

—, the sample statistics. Thie distribuion of
X
xl—U XZ—U Xn-U
g * 0 " 0o
q ; X.=H
wean of zero; that is, consider thie transfort , _ 1
1° 0

finite sample of n, WU is estimated! by

Z = - > is zero. The: proof is

Z =

10
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1 X "'ﬁ X “ﬁ X "ﬂ
- —{ e R s ) e }
n (0] ] o
- _l___ A ~ ~ ]
= oo B Gal) R )
J
1 n
= s (0) since > ( ~
L o(x.-. _
i=1 1 2 0

Zi—p
o)

This shows that a transformation of the foyrm Zi=

on the sample values and that the meain of thee transform values
is zero which is said to be expressed in sitiandard ieasure or is
standardized.6 The mean of several C.V.'s tlhat hav. been determined

samples that have been drawn repetitively froi a continuous
process would form a distribution of ratioss. The iagnitude of these
ratios would depend upon the underlying di.sttributim as well as U
and o . In order to estimate the average of the (.V.'s from samples
of n items it appears necessary to sample .a randomprocess of a known
distribution by simulation or to use the rrellevant :tatistics x; and

s; from a continuous process.

However, for the normal distribution .amd n lage by applying the

simple but important property of mean valuwes which is''the mean value

of a product of two functions is the produc«wt: of thdr mean values if

6
M. G. Kendall and A. Stuart, The Advramced Thory of Statistics,

Vol. I (6th ed.; New York: Hafner Publishimg Compan, 1952), pp. 48, 51.
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each function depends on a set of variiates indpendent of the set on

which the other depends"6 and the aritthmetic man of the sample C.V.

E(Ei) is E(é;). When X approaches zerro the vaue of using the C.V.
” b

4

appears questionable and other statisttics shoud be used.

Variance of C.V.

The variance of C.V. from a samplle of n iems is the ratio of
two random variables Xl/XZ’ and requirres that 2? 0 for the discrete

case and x2> 0 if it is continuous. 1I1The rth mment, m. (for a sample),

r

is the expected value of the powers off the ranom variable, from which
X

the variance of the ratio Xl/XZ’ that 1is V(;%) is found from

2 mn
X] V(Xl) my V(xz)) 2muov(xlx2)
el e e
2 i i 2 2

Since m; is defined as the rth moment statisti of a sample that

corresponds to the rth moment, Ur, of a populaion, that is
- 1 n
fil s = ;- z XE is the sample moment frcom n samles where the ith
i=1
item of the sample has a measurement x¢;. If te sample moments are

substituted then,

E(x,)]%[ V(xq) V(x,) 2 Cov(x%,)
vely - { Xl} { il o s o on (32, %) | (1)
% E(xy)) LIEGx))] [E(x,)’  E(xp) E(x,)]

100 m,
if the population C.V. is 6 and 6 = ——=

i |
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where B # 0
and u{ # 0
then
2 —_— —
V(o) = (_9.) [w/mz) , VM) 2cov (VW) mi ] (g
100 Em, ) [ECmi]) 2 i my) E(mj)

V(m,)  uo-u)
noting that V(ml) . 2 ;o Vmy) = 27 -
" bu, 4n 1

and

U
Cov(\/mz > mf) =1 C.owv (m2 mi)= _3
" 2n /“2

N

These equalities are substituted in equattion (2) shich becomes

2 R
O s 3
eV = Z’U; (U”]t)z 1«)_ U]’_

(3)

Applying (3) to the normal distribution ((UB’ =0mdy, = 3u3) the

V(C.V.) is
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o2 |H3(3-D) H) 0

= = + —=

V(C.V-) n | Z‘U (Ul)z Uzui

2 M 2

S P i NPT )
n 2 ()2 2o 100" |

L

62

* 7

This relationship can be used to estimate the standard deviation of
each of the C.V.s which could then be used in comparing the C.V. of
one sample with the C.V. of another sample. For each sample the true
but unknown standard deviation of the C.V. is estimated, using the

sample results and (4) as

n-V(C.V)

1, E(s?) : (5)
2 (§)2

To find an approximation to the distribution of C.V. which is

Distribution of C.V.

a function of two random variables, X and s, and that X is normally

2
distributed with parameters (g, g_); s 1is approximately normally dis-—
n

2 —
tributed with parameters (o,%_) for large f; and X and s are stochas-
f

tically independent.7 The mean is C.V. = 9 = vy, the variance of C.V.

2
is V(C.V.) = Y (1 + 2Y2) which may be considered as approximately
2f

2
2
normally distributed with mean fl.and variance I_ (1 + 2Y ) for values
£ 2f

of degrees of freedom, f, are large and small values of Y.

A. Hald, Statisltical Theory with Engineering Applications (New York:

John Wiley & Sons, Inc., 1962), pp. 301-303.
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‘ \
The P-fractile is C'V'P’ where C.V.P =y 1 + == /1 + 2y? ) (6)

and this fractile can be found by substituting %

=y and inserting
values of ZP from the tabular values of the normal distribution. An
example for this approximation is: let Y = .05 and f = 30 then the

calculation of C.V.P associated with the Pth fractile are tabulated

in cumulative distribution function form as follows:

P =GV

P) ‘ .01 .02 .025 .050 .10 .25 .50 .75

Value of C.V. } .035 .037 .0375 .040 .042 .046 .050 .054

<90y .95 975 98 .99

.058 .061 .0625 .063 .065

A better approximation to the distribution of C.V. is obtained

by solving P(C.V. < C.V.P) or Prob (z <0) = P where Z = s - X C.V.P

and is considered to be approximately normally distributed with mean
H = ¢g-E&C.V. (7)

and variance

v(z) = o©? (—14- o gk (8)
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The distribution of the variable Z is a linear function of a normally
distributed and an approximately normally distributed function which
will usually deviate less from the normal distribution than C.V.,

the quotient between the same two random variables. Solving

g EC8Hy —© Bels (=i
P(S - X C.V. < Q) =0 =0 =P , (9)
F \ 1 C¥. 2 \/ TR
P P
2F n 2F n
C.V., c.v._ ?
we have — =1 + ZP L, P (10)
B 2f n -
252 2
N
e Va0 .Y
and C.V. =y - (11)
P YZZ§
7 & S
ol

Comparison of this statistical procedure with the previous
procedure used is accomplished by comparing the results of solving
for P by this statistical procedure with the results obtained by
using the previous approximation used to determine the Pth fractiles

of C.V. when 0 = .05 and £ = 30. This was done and the two distri-

butions calculated were identical to three decimal places.
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The population coefficient of variation, 6, as previously

defined is 6 = < where 0 is the standard deviation and u is
u

the mean of the distribution. Let X be the mean of a sample
(calculated from n observations) and let s be the standard deviation
of the same sample based on f degrees of freedom where the sample
observations are from a normal distribution. In some sampling
situations, namely, the single-sample problem where one sample of
n observations only is drawn, f = n-1, but the results need not
be limited to just the single-sample case. The distribution of

C.V. = , the sample coefficient of variation is the problem of

(Sh
X
interest.
For a positive constant, k, it is necessary to compute the

probability that a noncentral t-distribution is greater than

Y T /o
= ua——; to add to

t = —— with a noncentrality parameter 8
k

this the probability that the noncentral t is zero. That is, to find
s

the probability — < k we must form the probability statement to
X

find the

—
Prob [—— <-c] = Prob [T, > —2—|6=p’—2-] + Prob [T .< 0|6

=UL_E_]
ag

where Tf is distributed as the noncentral t-distribution.

This general method of finding the distribution function of C.V was

8
indicated by Johnson and Welch to provide a precise characterization

of the probability distribution functions of the sample C.V.

N. L. Johnson and B. L. Welch, "Applications of the Noncentral
t-Distribution,' Biometrika, XXXI (1939-40), pp. 362-389.
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Note that the random variable, C.V., is largest when the non-
central t random variable T¢ is near zero, which indicates the
extremes or tails of the distribution of C.V. are around zero

for the random variable Tf. That is, consider c positive, then:

/__' —~—

Pp (29)>¢c) =Py (0 <Tf < %!6=“/—9—> e

X o
P, (<2< —c) = B (-"B <1p <06 =MDy (13)

X (0]
and
P. (&> -c) =P_ (T VB, Wy 4 p_ (1 0'~—““C£)
r _gf‘ ¢ =y £ 8= 5T r (Tg< 08 = PR (14

Z +¢

The noncentral t-distribution, T is the relationship t =

b f’ p ﬁ
where 7 is distributed about zero with unit standard deviation, &
is the noncentrality parameter and f is the degrees of freedom.

In order to determine the probability that t exceeds some value
2

of toit is necessary to calculate y = (1+ E%)— + and
t 2 i
. o
Y = [/f—_’(l+ —QJJ 2 which are estimates used to find the
2f 2f

appropriate values of a constant, in the Table of X at the desired
probability Y. Then value of A, a constant that is associated

with each Y must be used to establish 6 for each Y by solving for
2
t 1
_O) '2'.

the noncentrality parameter 6 = ts -X(1+ Y: For example, if

the C.V. = 2.8 from a sample of n = 17 then £ = 16. Then calculate

N 2
t2 1 t 2
z oL

O
t =+ = + 1.47254; y = (1+ = = .96775; Y7 = 1+—— 2
S y g ( )

2f
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that is Y = .2519 and - Y = - .2519. Tables of T, at Y are

ff
entered to find the appropriate A to use %n order to determine
t 1
2
§ with each Y, i.e., § = £, = A L+ E% )
Tables II and III provide listings of the parameters and

calculations necessary to determine Table IV which provides the

distribution of equation (2) above for this example

TABLE II

Values of A for + Y  and - Y  for Specific Y

Y X For + Y~ X For - Y

.40 .276 o231

.30 .546 .504

.20 .863 .819

.10 1.303 1.259

.05 1.665 1.623

.025 1.979 1.938

.01 2.345 2.307

.005 2.594 2.556

TABLE III
Values of 6 and G(-S) for + Y" and - Y  for Specific Y
For + Y For - Y~
9 =

e Y S G(-9) S G(-8) —6——
3.4727 .40 1.1873 .1175 -1.7112 .9565 2.4095
4.5394 .30 .9083 .1819 -1.9912 .9768 2.0707
7.1002 .20 .5807 .2808 -2.3188 .9893 1.7781
32.6971 .10 .1261 .4498 -2.7735 .9972 1.4866
16.6254 .05 -.2480 .5979 -3.1496 .9992 1.3091
7.1969 .025 -.5729 .7166 -3.4751 .99974 1.1865
4.3374 .01 -.9506 .8291 -3.8564 .99994 1.0692
3.4132 .005 -1.208 .8863 -4,1137 .99998 1.0023
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TABLE IV

Cumulative Distribution of T16 for Values of §

Pr(T1g < 1.47254]6 )

4.1137 .005
3.8564 .010
3.4751 .025
3.1496 .050
2.7735 .100
2.3188 . 200
1.9912 .300
1o 7Ll .400
1.1873 .600
.9083 . 700
.5807 .800
.1261 .900
0 .915%*
-.2480 .950
=.51729 .975
-.9506 .990
-1.2080 . 995

* Obtained from a table of Student's t-distribution.
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Since Pr(Tf i}0| §) = G(-8), then consider 6 =/—E~ and

calculate the relationship P,(C.V. > 2.8) = Pr(Tl6 < 1.47254) - G(=96)

which is presented in Table V.
TABLE V

Probability that C.V. is greater than 2.8 for ©

6 = ﬁgi P.(C.V. > 2.8)

- o .9154 - .5000 = .4154

-16.6254 .95 = .5979 = .3521

- 7.1969 .975 - .7166 = .2584

- 4.3374 .99 - .8291 = .1609

- 3.4132 .995 - .8863 = .1087

0 1.000 =-1.000 = 0

1.0023 .005 - .00002= .00498
1.0692 .01 - .00006= .00994
1.1864 .025 - .00026= .02474
1.3091 .05 - .0008 = .0492
1.4866 .10 - .0028 = .0972
1.7781 .20 - .0107 = .1893
2.0707 .30 - .0232 = .2768
2.4095 .40 - .0435 = .3565
3.4727 .60 - .1175 = .4825
4.5394 .70 - .1819 = .5181
7.1002 .80 - .2808 = .5192
32.6971 .90 - .4498 = .4502
o .9154 - .5000 = .4154

Note that the above probability distribution has a maximum of .415

for 6 = - »(i.e., - § *0), decreases to zero for 6 = 0(i.e.,§>x),
is a maximum somewhere in the interval of 6 = 4.54 to 6 = 7.1, and
then decreases to .415 for 6 = o« (i.e.,&> Ofrom the positive side).

Specifically this probability distribution is not a monotone function
of 0.
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Now assume that © = 2.8 and it is desired to know the probability

distribution of C.V. for samples with f = 16 degrees of freedom and

17. 1In order to find this probability distribution first compute

Y 17 = 52, -1

= = 1.47254 and then calculate N where n = (1 + 5%) 2= .25192
2.8 v 2t 2%

which is needed to obtain values of A for specific Y in order to

calculate 2 2
42 (1+9 - A L
- 2f 2f ' (15)
27
(1 ==10)
2f

for each specific Y.

These are provided in the following Table

TABLE VI

Noncentral t Probability Distribution

Y A For + N AFor - nt For +n t For -N

.75 .7071 .6620 2.2323 - .8039
.90 1.3181 1.2786 2.9601 - .1932
.95 1.6796 1.6476 3.4380 .1758
SIS 1.9889 1.9675 3.8853 .5028
.99 2.3414 203891 4.4521 .8957
.995 2.5759 2.5914 4.8721 1.1741

Using the equality P.(T¢ < t |8) = 1 - P.(Tf < - t| -8) the non-

central t probability distribution is obtained from the above

tables using Y and t which are listed in Table VII.
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TABLE VII

Noncentral t Probability Distribution with Noncentrality

5 = /17

Parameter ug—g for Specific Values of t
t prlTg < t]s = 22 )
2.8
-1.1741 .005
- .8957 .010
- .5028 .025
- .1758 .050
.1932 .100
.8039 .250
2.2323 750
2.9601 .900
3.4380 .950
3.8853 .975
4.4321 .990
4.8721 .995
Since G(-8) = G[- (_lz ] = .07044, it is necessary to subtract

.07044 from each of the above probabilities (i.e., one must be added
to negative values of t) in order to find the probability distribution
of s/X when 0 = 2.8. This provides the relationship given in Table VIII

which is the probability distribution of C.V. being greater than

v/ 17
t

1
N
(0]

given that GRS
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TABLE VIII

v 17

Probability that a Coefficient of Variation of Y=~
t

Being Observed in a Sample of 17 when the

Population Coefficient of Variation is 2.8.

v 17 p.(C.v. > Y17 15 = 5.8)
t t
21.3365 .02956
5.1290 .17956
1.8470 .67956
1.3929 .82956
1.1993 .87956
1.0612 .90456
L9261 .91956
.8463 .92456
-3.5118 .93456
~4.6033 .93956
-8.2010 .95456

-23.4510 .97956
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Difference between two sample C.V.'s

An approximation to compare the difference between two coef-
ficients of variation were presented by Ferbe? and Ha1dl0.
The general principle of hypothesis testing presented by Ferber is
to consider the ratio, T, of
_A sample statistic - statistic from another sample

Estimated standard error of the difference
between the two statistics

in order to determine if the degree of random variation between the
two statistics is due to chance or chance is ruled out. Considering
large sample sizes (each item of each sample is drawn at random), if
is desired to perform a test of hypothesis on the C.V.'s of two

samples, such a test would be as follows:

(a) HO: C.V.l = C.V.2 is the null hypothesis and HA: C.V.l # C.v.,

is the alternate hypothesis.
(b) Select the critical value of T.
(c) Subtract C.V.2 from C.V.l.

(d) Calculate the standard error of the difference between the

two sample C.V.'s, which is:

(16)

Q>
]
+

C.V.y = C.V.p

9Robert Ferber, Statistical Techniques in Marketing Research,
(1st ed.; New York?! McGraw-Hill Book Company, Inc., 1949), p. 123.

10Hald, pe 302




and

(e)

(£)

where C.V.l and C.V.Zarethe coefficient of variance

of sample one and sample two, respectively,

n, and n2 are the number of items in sample one and
sample two, respectively.

Compare Z~ to the Za tabulated value of the normal

curve

Z} = 2 1 N (17)

Action to be taken is (1), accept HO, if Zy tabulated
is larger than Z~ calculated, or (2) reject Hg, if 27
calculated is equal to or greater than Zu . The preceding

procedure provides a method to calculate O

C.V.2 = C.V.1

for large samples that are uncorrelated. When the samples

are correlated, estimate

(C.v.)?2 (.2 =2 G, G

A e + - (18)
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where
n
'21 Eip Ao -
2, = S T
12 i = = (19)
| 2 = 2 - B —=
\f,z X141 ~ 2 X5y Xy = X951 — X
i=1 i=1
2
. (2X54)
oy T
1 - (20)
Ol =
nl -1
IX_ )2
5 (2%)))
S —
o 2 (21)
02 = ’
n2 -1

Confidence limits of C.V. (an approximate method)

The estimation of the population C.V. when the population is
assumed normally distributed but 0 is unknown, raises the problem
of dependence between u and o?. That is, we must consider using
Student's t-distribution with n-1 degrees of freedom rather than
the normal distribution. The distribution of means formed by
drawing k samples of n from a population is normally distributed

k

with mean I X.
, i
i=1

2

a
— and variance —— but the distribution of

k n
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the variance is X2 and the sample standard deviation, s, is distri-
buted as /ﬁiz_. Placing l—ai confidence limits about X and s of the
sample (individually) results in a rectangle which will be too
pessimistic except for small sample sizes and when very large confid-
interval estimates are desired.
The joint boundary region in which U and 0 are expected to lie

with (1-a) 100 percent confidence can be estimated by considering

n
independent distributions of X and I (Xi - X)? such that
i=1
n -
z (xl.—x)2
X = Lol o/ 1= - 2= <b’] =V 1o
al] =/ 1-0 and Pla” < > < b7] =V 1-a  (22)

o/

y

which the joint probability distribution of

X,- X)

2 <b] = 1l-a (23)

11

due to the independence of the variables. The boundaries of the

joint probability distributions involving u, §, 0, and s are found
- ago
by solving (W X) = i_;;:: where a, the constant of @ probability of

n

the normal distribution need not be used since l- X can be charted directly.

11
A. M. Mood and ¥. A. Graybill, Introductior to the Theory of

Statistics, (New York: McGraw-Hill Book Company, [nc., 1963), p. 255.




(a)

(b)

(c)

(d)

(e)
(£)

(g)

Example:

was found
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Let £ = X then 0 = 0.

— g ta £y
Solve u = X + —— —; n-1 Note: a = —; n-1
1-"’_ 2 2
Il
<, =
) (Xi - X)
Solve upper limit of o0 = i=1 £ 8" =% o
# ' 1- =; n-1
& 2
! =2
L (X, -X)
P i=1 * i/ 2
Solve lower limit of o =1 @ b= Xy
£ 53 o-1

Plot the values calculated in a, b, ¢, and d above.

Select U), O’, H'" and 0" at the intersection of H's calculated
and the appropriate limits of 0 from the chart (d above).

Use the values selected to provide the confidence limits for

C.V. in the following probability statement,
g o ., .
P _________§>ﬁ'i ——— =1 - — where 0 is upper limit
on 0° and 0 7 is the lower limit on O (selected at the appro-

priate points of Figure 2).

A sample composed of 25 measurements was taken and

-

— 2
X - X

([ s NV ]

i=1

to be 384 and X = 50; what is the 95.0 percent confidence inter-

val estimate for the population C.V. This is solved by considering

(b - X) =

a o
+ ——— at three points.

vf' n
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If u - X is zero then 0 is zero. Substitute t for a and ©
.025324
- a s
for to solve u = X i_;:g . That is, solve for two points of u using

the standard deviation of the sample and + t of Student's t-distribution
at @ = .025 and n-1 degrees of freedom since O is unknown. This provides

the points W = 51.6 versus O = 4 and U = 48.36 for 0 = 4 which are used
c . ] s = a 8 = a 8

to construct the two straight lines identified as X + =— and X - —
vV n v n

in Figure 2. These two lines intersect at u = X and ¢ = 0.

Next, calculate the upper and lower confidence limits of e by

0" is upper confidence limit of

0”" is lower confidence limit of

- 2 -
Note: . = 12.4 d b = = 39.4.
oter 4 X 975524 e X 025:24

The values to determine the confidence limits on the C.V. can be

P

o

taken from Figure 2 as lower limit of C.V. = —_ and upper limit of

- u
C.V. = —, or calculated directly. The direct calculation is to calcu-

u
late the upper confidence limit on O as 0”7 as before, then use 0" to

. A= = - = o’ ) Calcu-
determine the lower limit on X (i.e., U =X - t 025:0-1"" alcu

/ n : 2
late the lower confidence limit on O as 0 ~ and then use this 0 to
determine the upper limit on X (i.e., u™~ = X + T t.025;n—1)‘ These
caleulatel malues ape: G = 5.k, & = 3.0, U = 50 = (2°06g)(5-7) = bR
2 . . 3.1 -~

u = 50 + ( 062)(3 1) = 51.3, and the lower limit on C.V. is 51.3 .06,

and the upper limit is 4;‘2 = .12. Therefore, the approximate 95 percent

confidence interval in which the true but unknown population coefficient

of variation, 9 , is expected to lie is between .06 and .12.
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10.0
8.0 4 A
5 o X + 22 F
n —/
e Jn
?UI 6.0 | S — —_— 4 -— !T O’
- f Region which contains
N\ U and 0 with 95% 95% Confidence Limits
=) 4.0 1L o ) S
i \\confldence ! on g
(8 e e = e __T- e = .__.__..r‘__o.
N
2.0 b _
u’ \ _ Vi
0 L A —F *‘- — \1l’r' + }L t  —
45 46 47 48 49 50 51 52 53

Possible Values of u

Figure 2. Chart of the Region which Contains Both y and

0 with 95 Percent Confidence
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This approximation is considered to be conservative. However,

for most practical purposes it should give satisfactory results.12

Upper and lower bounds on C.V.'s

Sigeiti Moriguti considered the upper and lower bounds for the
expectation, the coefficient of variation, and the variance of the
extreme member of the sample from a symetrically distributed popu-

lation with a finite variance.13

Specific discussion was concentrated
on the largest member and considered the mean of the population equal
to zero. These conventions do not imply any essential restriction.
This is included since at times, the experimenter wants to know the
maximum or the minimum C.V. that could occur.

The cumulative density function (cdf) is denoted by F(x), then
the cdf of the largest member xn from a sample of size n is [F(x)]n,
and the expectation of the largest member can be expressed by E(Xn)

-0

= {m > [F(x)]n"l 0F(x). F(x)'s inverse function of x(F) must be

considered along with an additional definition for points of dis-

continuity, if any exist, for F(x). Then E(xn) can be written as

12
J. Earl Faulkner, Associate Professor of Statistics, Brigham
Young University, '"The Comparison of Coefficients of Variation for
Normal Random Variables” (paper presented at the 10th Western Regional
Meeting of American Statistical Association, Salt Lake City, Utah; May

16, 1969).

13
Sigeiti Moriguti, ''Annals of Mathematical Statistics' Journal,

XXII, No. 4 (December, 1951); pp. 523-528.
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n-1
x(F)n F oOF and because of symmetry, x(F) = -X(1-F) holds
1 n-1 n-1
almost everywhere. Then.E(Xn) = [ X(F)n ([F -(1-F) ] 9F. (24)
1

L

Also, the sample variance is

n-1

V(x ) = [x@E) %0 (L +@1-0)1] oF —[E(x)]? (25)
n %_ n

and the population variance is given by

o% = 2 [Y[x(F)]? dF. (26)
1
2
The bounds for the largest member is determined by (Swartz's)

inequality which is used as follows:

b
7 £ (F) g(F)dF)2_<_ fb[f(F)]2 dF [ [g(F)]? dF (27)
a a a

setting

a = %, b =1, £(F)= x(F), g(F) = n [Fn_l—(l-F)n—l]

. . . . B _on
results in a formula which means in view of E(xn) and 0° given above

that
E(x ) < /0 n ( {I[F“‘l-u—F)“‘l]z oF) T ()
2

where equality is satisfied if and only if f(F) = (a constant)
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=1l _
g(F), that is, x(F) = (constant) [Frl —(l—F)n l]. Therefore, the
expectation of the largest member is the right-hand side of (28)as
an upper bound, which is actually achieved for a type of distribution

described by x(F) above.

The integral in ( ) is evaluated as follows:

= 1 R 518 = L
{1[Fn—l-(l—F)n Lyar - e 4e(1-F) Pl - ar
- 11 4+ 1 - 28@m)]
2 2n-1 2n-1
1 2
= = =
2 ‘oo 2B(n,n)]
1
= Egjl - B(n,n) . (29)

Now applying the equal integral arguments for the Beta functions

1
(2n—1){if12)

which is expressed as R(n,n) =

then the extreme bound for E(Xn) is given by:

E(x ) <« ——— |1 -—1—|2 (30)

(0]
n Y 2(2n-1) 2n-2
n-1

The value of E(Xn) is calculated for various sample sizes and

compared with the values of E(Xn)/O for normal and rectangular

populations in Table IX.
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TABLE IX

Expectation of the largest member in the unit of:

For Normal For Rectangular
Sample Size n Upper Bound Distribution Distribution
2 .5774 .5642 .5774
3 .8660 .8463 .8660
4 1.0420 1.0294 1.0392
5 1.1701 1.1630 1.1547
6 1.2767 1.2672 1.2372
7 1.3721 1.3522 1.2990
8 1.4604 1.4236 1.3472
9 1.5434 1.4850 1.3856
10 1.6222 1.5388 1.4171
11 1.6974 1.5864 1.4434
12 1.7693 1.6292 1.4656
13 1.8385 1.6680 1.4846
14 1.9052 1.7034 1.5011
15 1.9696 187859 1.5155
16 2.0320 1.7660 1.5283
17 2.0926 1.7939 1.5396
18 2.1514 1.8200 1.5497
19 2.2087 1.8450 1.5588
20 2.2645 1.8673 1.5671

Note that the value for a normal distribution is quite close to
the values of the upper bound when n is less than eight; close

agreement of the upper bound and the rectangular distribution

is when n is less than six.
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Bounds for C.V. of the largest member of a sample are found

1
by using 7). Let a = %} b =1, £f(F)= X(F)/r;-[Fn_l+(l‘F)n—l]2
and
I Fn—l_ 1-F n-1
o (F)= n | (1=F)i ]
o ot

then with respect to E(Xn) and V(Xn) there is the relationship

V(xn) 1
s &, ] (31)
E(Xn) Jn
where
T2l I o el )
Mn =f1n[F (l F) ] dF

1 — -
2 Fn l+(l_F)n 1

Equality in (3D is satisfied if, and only if, f = (constant). g

Fn—l_(l_F)n 1
which is more precisely stated as x(F) = (constant) — ——,
F~ly (1-p)P71
Therefore, the C.V. of the largest member has//—l—»— 1 32)
M
n

as a lower bound which is achieved for a particular type of popu-
lation distribution given by x(F).

M is determined by evaluating the integral of (32) by
n

a method of quadrature.




Results for small samples are shown as follows:

M, = .33333
My = 64381
M, = .81677
Mg = .90695
M = 95300

As the sample size increases, the calculations of Mn become
more laborious and numerical integration would be preferable for
large values of n. Mn is then used in (32) to determine the lower
bound. The C.V. of the largest members are given in Table X for

normal population, a rectangular population, and the lower bound.

TABLE X

Coefficient of variation of the largest member of the Lower
Bound, Normal Population, and the Rectangular Population.

For Normal For Rectangular

Sample Size n Lower Bound __Population Population
2 1.4142 1.4634 1.4142
3 . 7438 . 8838 L7746
4 L4737 .6812 . 5443

5 . 3203 AL/ L4226

37
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APPLICATIONS OF C.V.

Utilizing a known C.V. to reduce the mean squared error

Estimation problems are solved for Bayesian approaches using
"a priori' information. 1In a sense, this approach can be applied
to reducing the variability exhibited by the means from one sample
to the next. That is, a more accurate estimate of the interval in
which, W, the unknown mean is expected to lie can be made using
prior information that is available to the experimenter. This
prior information may be in the form of sample means, sample
standard deviations, identifiable capacity of each unit/sample,
environmental exposure on each test, etc. The statistical results
of these prior experiment can be used to provide a weight, w,
that is associated with each condition of a planned experiment
and the subsequent evaluation of the n observations of the experiment.
Associating w; to the appropriate ith condition may take other
forms based on the specific scientific discipline and the statistical
rationale but in this instance the C.V. is the statistic of application.
This is due to relating gross effects that are exhibited by isolated

factors on the sample X and s individually or both X and s may change

appreciably.
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Let us consider a random sample of n observations yq, Yo + - ¥
from which it is desired to estimate, U, the true but unknown popu-
lation average in such a manner that E(§-—U)Zis a minimum. This is
achieved by considering construction of an estimator, say

n
y = w yj is to be compared with ;. Now using the Mean
j=1
Squared Error of f, MSE(;}, to the MSE(;U) the relative efficiency
gained by using the weighted sample average versus using the unweighted
~2

sample average can be determined. The MSE(;) is simply %T- (34)

and since ;v = w yj the MSE(;V) = n wiol+ ﬂz(l—nw)z. (35)

[ ol =]

j=1

Now if MSE(;u) is differentiated with respect to the weight, w, this

will give
MSE(y")] = 2n[w 0®-p? (1-nw)] (36)
and taking the second partial derivative provides

P

—— [MSE(y")] = 2n (0% + nu? ) . (37)

Now (37) is always positive, so the value of w can be found by setting

(36) equal to zero and solving. The solution for w is:
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2n[w g?-u? (1-nw)] = 0
w(82+ nﬁz) £2
e =7=l
n? u
.
w(g—»+ n) =1
2
u
1
woE (38)
(C.V.)2+ n
and
n
— 1
4= [———] 2 .
y'= BewmZ v a0 i (39)
o2
the MSE(y") = ———— 40
(C.V)?+ n )
= —. ) MSE(y )
Comparing the MSE(y) to the MSE(y~) provides R.E. = —~ "
MSE(y")

which is found by substituting equations (34) and (40) which

2
D ] 100 percent.

reduces to [1 +
n

2
That is, R.E. = —3— we find the R.E. = “—+H(C-V) g |
n + (C.V)?2
(C.V)2

100 [ 1 + ———] percent.

Relative efficiencies for specific values of C.V. and sample sizes
of n are listed in Table XI which follows. This table indicates the R.E.

of small samples is largest and should be used when it is expensive to

obtain additional observation for inspection or testing.




TABLE XI

R. E. in Percent of §-' for Various Sample Sizes from a
Distribution with a Given C.V.

C.V. Sample Size

5 10 15 20 30 50 70 90 110

.25 101.25 100.62 100.42 100.32 100.21 100.13 100.09 100.07 100.06
.50 105.00 102.50 101.67 101.25 100.83 100.50 100.36 100.28 100.23
.75 111.25 105.63 103.75 102.81 101.88 101.12 100.80 100.63 100.51
1.00 120.00 110.00 106.67 105.00 103.33 102.00 101.43 101.11 100.91
1.25 131.25 115.62 110.42 107.81 105.21 103.12 102.23 101.74 101.42
1.50 145.00 122.50 115.00 111.25 107.50 104.50 103.21 102.50 102.05
1.75 161.25 130.62 120.42 115.31 110.21 106.12 104.38 103.40 102.78

2.00 180.00 140.00 126.67 120.00 113.33 108.00 105.71 104.44 103.64

Fa
=
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Acceptance sampling using the C.V.

Controlling the variability of products sufficiently so that
not too many orders, or in some instances lot sized shipments will
be returned by the buyers, has been a major area for applying
statistical techniques. This section is restricted to sampling
incoming lots from a continuous production process. In this
continuous process, it is usually assumed that failures (defects)
are random events and that if a trend develops, this trend is due
to an assignable cause such as tool wear which can be compensated
for by taking some appropriate corrective action (i.e., adjustment,
tool sharpening, etc.).

The final products of this continuous process are put into
various quantities of size n to fill customer purchase orders.
Some customers perform incoming inspections on each lot that is
purchased while others may accept the lot and perform inspection
as part of their assembly operation. This section is for
application to incoming inspection where measurement of specific
critical characteristics is performed and the lot is either

accepted or rejected based on the statistical evaluation of the

measurement data of each lot.
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H. A. Freeman, 14 provided an evaluation of a large sample
(n = 188) of the crushing strength, in tons, of bricks wherein the
C.V. from the sample is .146. Further it is necessary to determine
how many bricks should be tested, and what is the sample C.V. that
detects the acceptable lots from the unacceptable lots? The
essential parts of evaluating this typical quality control problem
is to specify quantitative values which reflect the consumer and
producers interests, respectively. That is, assume a buyer is
willing to accept bricks of lower average strength and higher
variability in strength restricted to C.V.B = 0.3, say five per-
cent of the time (i.e., let this be the buyer's risk, identified
as B = .05). Also, assume the producer does not want to have more
than one percent of his lots rejected (i.e., let this be the producer's
risk, identified as P = .0l). Then since the producer's statistically
controlled output is characterized by C.V. = 0.146 and using

P

the following functions

n (C.V.)2 il - X (41)
n + (C.V.)? ((.146)2+ 1) F

(C.V.)? 1 B o (42)
11+ (C.V.)? ‘(.3)7 w by = XB

14

Freeman, p.63
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which are approximations, the producers and buyers interests are

provided for by the ratio

2
oo oas_,
x> = 12 :
B

Entering the Chi-Square tables the value corresponding to the ratio

4 is X%99/X%05 = %%6%' for 16 degrees of freedom, hence n is 17.
Using the appropriate X value and n = 17 in either equation (1) or
(2), it is found that C.V. = .202. This means that a sample of 17
should be drawn and if the sample coefficient of variation, C.V.,

greater than .20, the lot should be rejected. Establishing when
there is no longer any possibility of accepting a lot was investigated

an article by Robert D. Summérs. The procedure is to order the
samples from the lowest measured value to the highest and then to
discontinue inspection when the number above a certain limit (as
attributes) is exceeded. That is, consider that a bound on the C.V.
exiswe and this can be expressed as f———

Gz, 2 = (43)
under the conditions:
x; 1s the ith ordered sample value 1 < i < n,

r is the number of negative sample values,

x is the sample mean (assumed positive),

n

— 1
s = [ b Efi_:_fl }7 is the sample standard deviation.
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The application proposed is in the sampling of variables
where disposition of a lot or a group of items from a process

(sublot) is decided on the basis that the reject criteria is:

If § + Ks > U, reject the lot or process.

Y is the mean of n values of y;
. (vi - 9* )
Si= [5‘}714._)_ 2 (44)

k is a constant associated with the sampling plan,
U is a limit such that yi >U identifies the ith
largest sample item as a defective.

The sample values are expressed with relation to the deviations

limit, that is x, = U - Yy The criterion now becomes reject if
7 . . . = . X n-1 |1
X - ks <0 which is equivalent to x/s” <k or — 5 <
s n

1
k(C.V.)_l {Jtﬂ]z <k then a sufficient condition for rejection
n

r 0.4 20
. e = n-1]2 —a(n-1) I S | S — (45)
is - = < k or r >pk2 + n-1 nk?2 +n - 1 i

L1

nm - 1) = there
nk2+ n-1

is no chance to accept the lot. It is necessary to specify n and k

If the number of defectives in the lot exceed

prior to sampling and determine the maximum number of defectives that

would be acceptable or to predetermine the number of defectives

required to terminate sampling inspection.




46

Stress versus strength reliability problem

The Standard Handbook for Mechanical Engineers as revised by a
staff of specialists15 gives definitions of stress, strength, and
safety factors in a context that is usually referred to by engineers.
However, the definitions that are used in reliability assessment
and evaluations have a somewhat different implication and it is
necessary to indicate graphically the probability density functions
that represent applied stress and material strength. Applied stress
is, hopefully, less than the strength of the item to which the
stress is being or is to be applied at some future time. Figure 3
provides a representation of the applied stress function and the
end item strength function that has necessarily been of great con-
cern in liquid propellant rocket design as well as in the design

of solid propellant rocket motors.

‘ \
=S l
|
Frequency / Applied Stresgs Component Strength
4/ Fynction \ Funption
\ /
Foogh \ P ~O5— =
NGT | '
. N ) B
H 1 u 9

Figure 3. Relationship of Applied
Stress to Strength

15
Theodore Baumeister, Editor, Standard Handbook for Mechanical Engineers

(New York; McGraw-Hill Book Company, Inc., 1967).




47

Applied stress is usually a combination of several environ-
mental factors working on an item during its operational life
whereas strength is the ability of the item to withstand the
applied stress. Therefore, a failure will occur when the applied
stress, as represented by, say, the maximum chamber pressure of a
solid propellant rocket during its action time, exceeds the case-
closure strength (i.e., the case-closures ability to contain the
stresses that are applied during action time without deformation).
This is represented by the cross-hatches area of Figure 3.

Solution of this typical problem has been extensively explored

the reliability literature involving the use of liquid propellant
and solid propellant rocket motors. Four methods are presented in
this section; the first method is a straightforward evaluation
based upon the difference between two random variables such as, Xi’
strength of a case—closure%6minus Y;, the stress applied on the
case-closure. As the distance between X and Y increases for

and g, fixed, the probability of failure decreases and the

2
probability of successful operation increases. This is usually

solved by considering & = Xi = Yi to be normally distributed with

1
mean H; -~ Hj and a standard deviation of (Oi + 05)33 That 1is,

16
D. K. Lloyd and M. Lipow , Reliability: Management, Methods,

and Mathematics (Prentice Hall, Space Technology Series, 1962),

pp. 237-238.
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let X and Y be the random variables representing the burst pressure
from a sample item and the maximum chamber pressure of a sample item,
respectively. Then an estimator of the reliability, R, and the lower

confidence limit, R is found by substituting the sample means

l’

and standard deviation estimates in

My "H1
(
H, = U
2 1 N o
R =0 ,—2—2) and V(R) I & —é—— e = | )
‘o o 1 012 3
v L2 HGH? 2+ )
2

where ¢ 1is the standard normal P.D.F. using

(47)

i.e., N(0,1).

For example if M, = 800 psia and 0, = 100 are known from
design and test verification that has been performed over a long
period of time and a sample of 20 rocket motors are tested which

= 450 psia, g, = 25 and the 90 percent confidence

provides u 1

1

coefficient, Y, is desired for R, then
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R = 9(3.3955) = .999666

800 - 450 2!

. _ I 1 ( ) ! =
V(R e el I8 7205 =T 4 e 2 = =6.144 x 10 8
20 it 2 — 2 7
L) 2[ 1 +(55s) ]}
v<§>j~= .000248
and
R 90 = -999666 - (1.282)(.000248) = .99935,

The second method is to consider the relationship of
reliability to a safety margin. Reliability is the probability
that an item will successfully perform its intended function for

required period of time in the environment specified.
Safety margin usually is considered as the ratio of an equipment's
average strength prior to the point of breakdown (maximum design
and the average load that will be applied to equipment in
its normal use conditions. Both of these are random variables

with true but unknown parameters that are calculated and verified

testing a sample of n items.
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Figure 3 (page 46) indicates that My uz, 015 and 02 are
known parameters. In practice, this is seldom a true statement
and in reliability evaluations there is a tendency to be overly
pessimistic and require a large number of items to be tested.

Due to cost constraints the number of items provided for destructive
testing and the evaluation of design performance may be held to a
minimum.

Predicting the reliability of very large solid propellant
rocket motors is such a problem since each rocket motor test
is very costly. Also, new test equipment may have to be purchased
before the first rocket can be tested. However, the testing of
critical components on a proposed system may be used to estimate
the probability and safety factor, K, where K = uz/ul. When it

desired to establish a numerical value to determine if the
safety factor is sufficient,; using the C.V.'s as indicated in the
next procedure will provide a solution to this (third) problem.

Let X4 be the applied stress resulting from the level of

environment and let X, be the strength level of the component

material. 1If x = is the difference between X2 and Xl then
5 gz = gl >0; X = ié = ii and Oi = 05 + Oi. Substituting -
M x
K= XZ/Xl for uz/ul we can find the one tail probability of T
x
- B . ; = iZ/i_l b 1
for X Xi thereby solving =—=1 (48)

\/" (C.Vi1)? + (C.Vep)> (iz/il)




Syt

X

and the probability of ¢ ( ) can be found in a table of areas

X
for the normal probability density function. For example, if

Xl = 350, 0, = 31513 X2 = 500, and 62 = 25, then the safety factor

is 1.4285 and the probability of = = 3.44 is .9997.

Ox

The fourth method used to solve for reliability of applied
stress versus strength was presented in the Martin Company (Denver)

Handbook of Reliability Problems. The reliability coefficient of

variation, C.V.R, and the ratio of average strength to average
applied stress are used to find the numerical value of reliability.
The procedure to estimate reliability from sample data is:

(a) Calculate average strength from a sample

L (49)

(b) Calculate average applied stress from a sample

(c) Determine the ratio F = (50)

=
2
X

.
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Calculate the sample variance of strength

n
< 2
( 2 %y,)
22 X 2 i=1
Rl - ) ' (51)

(e) Calculate the sample variance of applied stress

(It x )’
oy i=]
L Xl' -
ay) i=l = nl
oXl e . N (52)
nl—l

(f) Calculate the coefficient of variation of reliability

A Ay
V/ o< + 0
2 1 ‘ (53)

C.V.g =

v
L3y

Note: Xl does not appear in the formula of C.V.ﬁ since the

variance of X2i = Xli is being compared to the average strength
8R
order to determine the decimal ratio of C.V.R = — which
X R
can be used with the ratio of —2 to provide the probability
=

X4

that X,.

21 2 X14-

(g) Refer to Figure 5 ; find the intersection of F with

the appropriate C.V.ﬁ line and read the reliability directly

from the chart (c.f. page 66 for Figure 5).




Example

A pressure vessel is to be installed in a line that will
have an average pressure of 1100 PSIG with a variance of 425.
Destructive tests are performed on a number of these items, the
data result in an average burst pressure of 1175 PSIG and a
variance of 800; what is the reliability of the pressure vessel

in this application?

1. Average strength; il = 1175 PSIG

2. Average load; X2 = 1100 PSIG

3. F the ratio of average strength to average load is

1175 PSIG . 1 gpg

1100 PSIG
4., Variance of strength 5% = 800
+
5. Variance of load Si_ = 425
Xy
1225 35
6. C.V.2 d 1175 = 1175 e

7. The reliability of the .03 and 1.07 point on the chart is

.98 percent.

53
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17
John Lupo presented a method that provided an estimate of

the safety margin as follows:

Let

be the average of strength resulting from
testing n sample items where Xi is the strength of the ith sample
item tested. Also, let the maximum of applied stress be Rb, the

reliability boundary, and

the standard deviation of strength,
calculated from the sample items tested. Then, the safety margin,
is calculated by the relationship of the distance between Ry

and X divided by the estimate of 5 that resulted from testing the

n sample items. That is,

(X - R
i (54)

g e

)

17

John E. Lupo, '"Safety Margin Confidence Limits - the Non-central
't' Distribution," Evaluation Engineering, Chicago (January/February,
1966) p. 51.
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—

It was then necessary to determine if t =" n Sm was a
noncentral t-distribution with n-1 degrees of freedom and had a
noncentral parameter, & =/ n Sm. The proof was completed and
the equations from the proof were used to calculate confidence
limits, Y;» on estimated Sm for various sample sizes (Table XII-XV).
Example:

If the required safety margin is 3 and the sample size is
5, what must the estimated safety margin be to demonstrate the
required safety margin at a confidence level of 80 percent?

This is solved by referring to the table for 80 percent
confidence (Table XIO) and finding the number 3.0 in the Sm row
and 5 in the sample column; the value in the 80 percent table
where Sm = 3.0 and n = 5 intersect is 4.74 which is the safety

margin that must be measured in order to demonstrate that the

true safety margin is equal to or greater than 3.0.
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TABLE XII - 70 Percent Confidence Level of Safety Margin

Sample Size n

5 10 15 20 25 30 40
0.0 0.2545 0.1719 0.1386 0.1193 0.1063 0.0968 0.0836
1.0 | 1.4510 1.2651 1.2033 1.1703 1.1491 1.1340 1.1137
2.0 | 2.7532 2.4181 2.3134 2.2592 2.2250 2.2010 2.1692
£)5(0) 4.0843 3.5903 3.4389 3.3612 3.3125 3.2786 3.2337
4.0 5.4254 4.7694 4.5700 4.4681 4.4044 4.3602 4.3017
5.0 6.7700 5.9513 5.7034 5.5770 5.4982 5.4435 5.3712

TABLE XIII - 80 Percent Confidence Level of Safety Margin

Sample Size n

5 10 15 20 25 30 40
0.0 0.4204 0.2793 0.2242 0.1926 0.1714 0.1560 0.1346
1.0 1.7382 1.4268 1.3261 1.2728 1.2387 1.2145 1.1820
200 3.2155 2.6654 2.4978 2.4115 2.3573 2.3194 2.2689
3.0 | 4.7405 3.9345 3.6938 3.5711 3.4944 3.4411 3.3703
4.0 6.2808 5.2149 4.8990 4.7385 4.6385 4.5691 4.4772

5.0 7.8276 6.5002 6.1082 5.9095 5.7859 5.7001 5.5867
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TABLE XIV - 90 Percent Confidence Level of Safety Margin

! Sample Size n
|

Smr | 5 10 15 20 25 30 40
0.0 | 0.6857 0.4373 0.3473 0.2970 0.2637 0.2395 0.2061
1.0 2.2476 1.6844 1.5150 1.4276 1.3724 1.3337 1.2820
2.0 4.0580 3.0678 2.7868 2.6456 2.5580 2.4973 2.4170
3.0 | 5.9432 4.4983 4.0957 3.8952 3.7715 3.6862 3.5739
4.0 | 7.8526 5.9464 5.4187 5.1570 4.9959 4.8850 4.7393
5.0 | 9.7734 7.4026 6.7484 6.4245 6.2254 6.0884 5.9086

TABLE XV - 95 Percent Confidence Level of Safety Margin

Sample Size n

5 10 15 20 25 30 40

0.9539 0.5797 0.4548 0.3867 0.3423 0.3103 0.2664
2.8130 1.9343 1.6906 1.5685 1.4925 1.4398 1.3700
5.0068 3.4655 3.0601 2.8620 2.7407 2.6577 2.5488
7.2994 5.0584 4.4777 4.1963 4.0251 3.9082 3.7558
4.0 9.6280 6.6746 5.9139 5.5465 5.3235 5.1716 4.9737

5.0 11.9730 8.3017 7.3588 6.9042 6.6286 6.4410 6.1968
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Proof:

Let Z be a random variable distributed normally about zero
with unit standard deviation, and let W be a random variable distri-
buted independently of Z as X2 /f with f degrees of freedom. If t

is defined by

= (2 +39)

/o

where § is some constant, then t

is said to have the noncentral t distribution with f degrees of

freedom and noncentrality parameter O.

The estimate of the safety margin can be related to t as

follows:
X ~ B
4 b / "N
5, s (55)
- 0] § 0]
where
X = estimated mean of strengths = ZXi/n,

where X, is observed strengths,
R = reliability boundary = maximum stress (known),

9 = estimated standard deviation of the strengths

1
= [Z(X; - X%/ (@-D]
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ey -

where
U 1is the true but unknown mean of the
population of strengths,
0 1s the true but unknown standard deviation
of the population of strengths.

Multiply both sides by Vv N

- R—‘

u A
a - v R b 9]
/N S N +/ N —) . (57)
o o 0]
Substitute Smr = (4 - Rb)/O , where Smr is the required safety
margin.
A X =i - gy,
/N S [V N = + N s /¢ - (58)

The quantity/ﬁﬁi(g - U/g) has a normal distribution with mean zero

~ 2
and unit standard deviation, and (0/0)? has a X /f distribution with
N - 1 degrees of freedom. Therefore/ N Sm = t and has a noncentral

distribution with N - 1 degrees of freedom and a noncentrality

pararcter 6§ =V N S

m
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Two parameter Weibull (estimate the shape parameter)

The two parameter Weibull distribution has a density function

XY

F) = (V/0) X' L exp (/) (59)
x >0
Y >0
>0
which becomes the one parameter exponential distribution when Y= 1.
Other equivalent forms of the two parameter Weibull have been
presented in the literature. Cohen18 selected this form for the

purpose of simplifying the deviations of the maximum likelihood

estimating equations.

Censored or complete samples. 1In a typical life test N items

are placed on test, and the behavior of each item is observed. The
time that each failure occurs is recorded along with any comments
pertinent to the item response during testing.

The testing is stopped at: (a) some predetermined

18
A. Clifford Cohen, '"Maximum Likelihood Estimation in the

Weibull Distribution based on Complete and on Censored Samples'
Technometrics, VII, No. 4; November, 1965; p. 579.
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time X, or (b) when a predetermined number of failures Xn have
occurred. Data consist of failures X1s X oo X after ty, ty) «.u €
test time exposure, respectively, on each item that failed. Also,
there are N-n items that survived the test time of termination, X, or
Testing programs that are terminated at a fixed X, (time) cen-
soring arereferred to as type I,and n is a random variable. For
testing programs terminated at a predetermined nth failure, then

the time of termination x, is a random variable and censoring is

n

referred to as type II.

For the complete sample consisting of n observations, the

L Y-1
likelihood function of (1) is L(xq, Xg «eoe Xp; Y,0) =11 (Y/e8) X;
v i=1
exp (—Xi/e) z

The estimating equations are found by taking the log, 1nL,

differentiating with respect to Y and 6 in-turn and equating the

results to zero. This gives
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from which 6 can be eliminated and upon simplifying becomes

n
Z X. 1ln Xi n
= P 118, (62)
nooy Y 4 1i=1 i
r X,
L
i=1
or
ZXY 1n Xi 1 o 1
L e Z 1n X; = ; (63)
ZXI i=1

then solve for the MLE of V; (MLE(Y)). Standard iterative procedures
may be used but in most cases a trial and error approach can be used
to find the required value of Y.

Once Y is estimated (a or a ! such as ? or Y indicates an

estimate of the parameters 7Y) by using this estimate, Y , in equation

(61) and solving for @, that is

5 = =L (64)

the likelihood function for simply censored and progressively censored

samples.




Estimating the shape parameter Y by using the C.V.

Numerous articles and texts have been addressed to this
problem of solving the parameters of the Weibull distribution
(shape B, Scale v, and location & ). The shape parameter is
the most difficult to estimate and various approximate methods
have been proposed. Several references which contain additional

information about the Weibull distribution are provided in the

technical journals.

Cohen, in his article, suggested using a suitable graph or
a table to establish a first approximation to his shape parameter
~ 19
Y . The C.V. of the Weibull [(C.V.)w] is a function of the shape

parameter alone.

The kth noncentral moment is determined to be

k
= /Yr[<k/y> 13

M
where
Pm) = { xm-1, ¥dx m >0
w o= TLC/y) + 1]
veo = iy +11 - 12 My + 1]

63

(65)

(66)

(67)

19
Cohen, p. 579
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that is,
V(X)) = u, - (u£>2
and

\/[r GY) +11 -1y + 1]
Tl /y) +1 ] (68)

Tables of the I' distribution can be found in most engineering hand-
books or tables for mathematicians. Table XVI provides values of

C.V., for specific values of Y (shape).

TABLE XVI

The Weibull C.V. as a Function of the Shape Parameter Yy

Y C.V. Y C.v
25 8.3066 2.5 4279
1/3 4.3589 3.0 .3633
.50 2.2361 3.5 . 3189
13 1.3612 4.0 . 2806
1.00 1.0000 4.5 . 2498
1.25 .8050 5.0 .2290
1.5 6754
1.75 . 5884
2.0

Figure 4 is a plotting of these values.
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Figure 4. Coefficient of Variation for the Weibull Distribution

for Values of the Shape Parameter Yy
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SUMMARY AND CONCLUSIONS

The intent of this thesis was to determine the statistical

properties of the coefficient of variation, C.V., and to make use

these properties in statistical procedures for solving Quality
Control and Reliability problems. The mean and the standard
deviation of the C.V. were found, in the statistical literature,
and these can be used in the same manner as the properties of the
normal distribution when the sample size is large.

The C.V. statistical properties covered in this report are
approximate methods (two) to determine the cumulative probability
distribution, using the noncentral t-distribution to determine the
cumulative probability distribution; comparison of C.V.'s from two
samples, approximate confidence limits for the C.V., the C.V.'s upper
and lower bounds. These properties are applied to compare experi-
mental results, acceptance sampling, solve stress versus strength
problems in reliability and to estimate the shape parameter of the
two parameter Weibull.

Using the noncentral t-distribution is the best of the three
methods to determine the probability function of the sample C.V.
However, it is much more complicated and requires more calculations

than either of the other two methods. These methods are used more

often due to the reduced number of calculations required.
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Evaluation procedures using the C.V. have been developed to
provide the experiementer with more precise estimates. Also, the
experiementer can determine if the difference between the C.V. of
his testing is due to chance variation or if the difference observed

is nonrandom. In addition, the C.V. is useful for solving specific

problems encountered in Reliability and Quality Control.
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The probability density functions, the mean, variance, and
coefficient of variation of the discrete probability functions
that are very often used in Reliability and Quality Control are

in the first section of this Appendix. The second section
provides the same information for the continuous probability
functions that are also very often used in Reliability and Quality
Control.

I. Discrete Probability Density Functions

Hypergeometric Distribution
If the total set contains N items and D of these items
possess a given property, then the probability that a random sample
size n, without replacement, will contain exactly x items that

possess the given property is

p, N-D
oAl
f(x:N,D,n) e
M
n
D! . (N-D)! .n! (N-n)!
x! (D-x)! (n-x)! (N-D-x+n)! N!
x = 0,1,2 n

= (0 elswhere
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A
Note: (B) is the combination of A items taken B at a time.

Three properties of the Hypergeometric distribution are:

M _ nD
Mean . « « « « . WU = S

. 2_ IU LB Shen
Variance . . . . o= (1 N) (N—l)

/ N-D (N-n)

Coefficient of Variation =y/ nD N-1

Binomial Distribution

If © denotes the probability of an event occurring at each of
n observations, then the probability that the event will occur
exactly x times is

n

£(x3n,0) = (0) 6%-6)" "

Three properties of the Binomial distribution are:

Mean . . + +« « » Y = nb

Variance . . . . @2 ng (1-9)

Coefficient of Variation = /'(I:gj/ne
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Geometric Distribution

Let © denote the probability of the event occurring at each
trial. Consider repeating each observation until the event occurs
the first time. The probability that x trials must be made

is given by the geometric distribution

£(x,0) = 0(1-0)%1 x = 1, 2,
0 < 6<1
elsewhere
=0
X . X
Fix) = £ 6@-0)1"1 =1 - (1-6)
i=1

Some properties of the Geometric distribution are:

Mean . . . . . . W =1/8
Variance . . . . g% = (1—6)/82
Coefficient of Variation = v 1-0

Poisson Distribution

The Poisson distribution is a useful approximation to the

binomial and hypergeometric distributions and also one in which
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arises when the number of possible events is large but the prob-

ability of occurrence over a given area or interval is small, e.g.,

defects, waiting lines.

A
f(x,A) = 2'e /x! x =0, 1, 2,
=0 A>0
elsewhere
b, & . —,X
F(x) = 3§ Ave /il
i=0

Some properties of the Poisson distribution are:

Mean + « « &« « « u = A
Variance . . . .g% = )
Coefficient of Variation = 1/ v A

Continuous Probability Density Functiomns
Uniform Distribution. Uniform distribution is defined by

the function

f(x) = 1/(b-a) a< x< b

=0 elsewhere
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F(x) =0 x < a
(x-a)/(b-a) a<x<b
=1 x >b

Properties of the Uniform distribution are:

Mean . . . . - « W = (b+a)/2
Variance . . . . 0% = (b-a)?/12
Coefficient of Variation = (1/v 3) [(b-a)/(b+a)]

Gamma Distribution

The gamma distribution is defined by the two-parameter

function

f(x:0,B) = (1/0!B

where the scale parameter B >0 and the shape parameter o> -1.

fx (1/a18 “Hlyx%e /By
0

(1/at) FX/B(a+l)

F(x)

]
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where T (0+1) is the incomplete gamma function tabulated in
X

Karl Pearson, Tables of the Incomplete Gamma Function, Cambridge

University Press, London, 1922.

Some properties of the Gamma distribution are:

Mean . . +« « .+ « M = B(o+l)
Variance . . . . 02 =R%(a+l)
Coefficient of Variation =1/ v a+l

Exponential Distribution

One of the most widely used distributions in the field of

reliability is the one-parameter exponential function defined by

Fx:0) =5 e */° =0
=0 elsewhere
1 2 -
F(x) =5 f e_x/edx = l-e x/8 x>0
=1 b x <0

Some properties of the Exponential distribution are:
Mean s s 2 5 % « H =0

Variance ., . . .02 = 92

Coefficient of Variation =1
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