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ABSTRACT 

A Survey in Mean Value Theorems 

by 

David A. Neuser, Master of Science 

Utah State University, 1970 

Major Professor: Dr. Stanley G. Wayment 
Department: Mathematics 

V 

A variety of new mean value theorems are presented along with 

interesting proofs and generalizations of the standard theorems. 

Three proofs are given for the ordinary Mean Value Theorem 

for derivatives, the third of which is interesting in that it is 

independant of Rolle's Theorem. The Second Mean Value Theorem for 

derivatives is generalized, with the use of determinants, to three 

functions and also generalized in terms of n-th order derivatives. 

Observing that under certain conditions the tangent line to the 

curve of a differentiable function passes through the initial point, 

we find a new type of mean value theorem for derivatives. This 

theorem is extended to two functions and later in the paper an integral 

analog is given together with integral mean value theorems. 

Many new mean value theorems are presented in their respective 

settings including theorems for the total variation of a function, the 

arc length of the graph of a function, and for vector-valued functions. 

A mean value theorem in the complex plane is given in which the dif

ference quotient is equal to a linear combination of the values of the 



derivative. Using a regular derivative, the ordinary Mean Value 

Theorem for derivatives is extended into R
n

,n>l.

(so pages) 
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CHAPTER I 

INTRODUCTION 

Early in the study of calculus we learn of the ordinary 

mean value theorems for derivatives and integrals, and of their 

generalizations. However, there are many other less well known 

theorems which can be classified under the general heading of 

mean value theorems. In this paper we will present many of these 

theorems together with interesting proofs and generalizations of 

the standard theorems. 

In Chapter II we restrict ourselves to mean value theorems 

for derivatives of real-valued functions. We present three proofs 

of the ordinary Mean Value Theorem: the first being the standard 

proof using Rolle 1 s Theorem, the second using an area function, 

determinants, and Rolle 1 s Theorem, and the third using a sliding 

interval technique by R. J. Easton and S. G. Wayment [2] which is, 

interestingly enough, independent of Rolle 1 s Theorem. This same 

technique is then used to prove a theorem by Darboux [ll] showing 

that the derivative possesses the intermediate value property. We 

will at times refer to this property of the derivative as the 

Darboux property. 

The Second Mean Value Theorem for derivatives, often referred 

to as the Generalized Mean Value Theorem, is presented in a linear 

form, thus avoiding any assumptions about non-vanishing terms [l]. 

Devinatz [l] then generalizes the theorem to three functions with 
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the use of determinants. Another generalization is given by D. H. 

Trahan [14] in terms of n-th order derivatives. 

An new mean value theorem for derivatives is given by T. M. 

Flett [4] in which he observes that for a differentiable function f 

defined on [a,b], there is a point c in (a,b) at which (c - a)f'(c) =

f(c) - f(a), provided f'(a) = f'(b). D. H. Trahan [13] generalizes 

Flett's results by relaxing the condition that f'(a) = f'(b), and then 

follows this with an extension of the theorem to two functions. 

In Chapter III we consider integral mean value theorems for real

valued functions. The ordinary Integral Mean Value Theorem is proved 

under a stronger hypothesis than is necessary. As a result, the 

theorem has an immediate generalization in which the requirement of 

continuity is relaxed. K. S. Miller [7] has extended the Integral 

Mean Value Theorem in what he refers to as the ''First Mean Value 

Theorem" and the "Second Mean Value Theorem." We follow these theorems 

with two more general theorems, the proofs of which are relatively 

less involved. 

Recently S. G. Wayment [16] submitted an integral analog to 

Flett's Theorem in which he observed that for a continuous function 

f defined on [a,b], there is a point w in (a,b) at which (w - a)f(w) =

J;f(x)dx, provided f(a) = f(b). We include his proof along with an

other proof for comparison. The additional proof is interesting in 

that it uses Flett's Theorem. Wayment's proof could be generalized if 

the sum of a continuous function and a function with the intermediate 

value property was in turn a function possessing the intermediate 

value property. However, we provide a counterexample, the construction 

of which was suggested by J. W. Cannon. 
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In Chapter IV we look at a variety of different mean value 

theorems in their respective settings. If f is an absolutely con

tinuous function defined on [a,b] which is differentiable on (a,b), 

then S. G. Wayment has shown [17], with the use of the Lebesgue 

integral, that there exists mean value theorems for the total varia

tion of f over [a,] and the arc length of the graph of f on [a,]. 

The proofs would also follow using the Riemann integral if, under the 

given hypotheses, the absolute value of the derivative was necessarily 

Riemann integrable. However, E. W. Hobson [5] provides us with a 

counterexample. The theorems are then generalized by relaxing the 

condition that f be absolutely continuous. 

For a real-valued function f, the total variation of f and the 

arc length of the graph of f are quite different. However, for vector

valued functions it is customary to define the arc length of the 

graph of the function to be the total variation [12:. If 

we think of the real-valued function f rather as the vector-valued 

function given by f:x+(x,f(x)), we find that its total variation and 

the arc length of its graph are equivalent. With the above definition

in mind, similar proofs would follow if the norm of the derivative 

had the intermediate value property. However, a counterexample is 

given. We also provide a counterexample showing that the original 

theorems cannot be extended to Rn,n>2. 

If we consider the differentiable vector-valued function v(t) =

(t,f(t)) defined on the unit interval [a,b], we find an interesting 

vector analog to the ordinary Mean Value Theorem for derivatives in

that there is a point p in (a,b) at which v 1 (p) has the same direction 

and magnitude as the vector (b - a,f(b) - f(a)). Under certain 
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conditions we find similar results with the more general function v(t) =

(x(t),y(t)). However, we find it easy to construct a differentiable 

vector-valued function v from [a,b] into R3 
whose derivative is dif

ferent in magnitude and direction from [v(b) - v(a)]/(b - a) at each 

point in ( a , b) . 

For a holomorphic complex-valued function f defined on a connected 

open subset G of the complex plane where z1EG, z2EG, and A is an arc

in G connecting z1 and z2, there may not exist a point ZEA at which

(z2 - z1 )f 1 (z) = f(z2) - f(z1). However, McLeod [6] gives us 

a mean value theorem in which the difference quotient is equal to a 

linear combination of the values of the derivatives. 

The main problem in establishing a mean value theorem for functions 

defined on Rn,n>l, is that there are many ways of defining the deriva

tive. Using a regular derivative [9], R. J. Easton and S. G. Wayment 

[3] give a mean value theorem with the additional hypothesis that the

function be absolutely continuous with respect to Lebesgue measure. 

For notational purposes, the proof is given only for the case n = 2 

and uses a sliding 1

1interval 11 technique similar to that used in the 

third proof of the ordinary Mean Value Theorem for derivatives. We 

remark that L. Misik [8] gives the same theorem without the added 

condition of absolute continuity. 
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CHAPTER I I 

MEAN VALUE THEOREMS FOR DERIVATIVES 

For completeness we begin with some elementary results. 

Let D be the set of all real-valued functions f which are 

defined and continuous on [a,b] and such that f' exists at each point 

in (a,b). 

Theorem 2. l (Rolle' s Theorem) 

If fED and f(a) = f(b), then there exists a point CE(a,b) such 

that f' (c) = 0. 

Proof. Since fED, there exists points m and M in [a,] such that 

f(m)�f(x).2._f(M) for each XE[a,b]. If f(m) = f(M), then f is constant 

on [a,b] implying that f'(x) = 0 for each XE(a,b). If f(m) f f(M), 

assume f(a)<f(M) and hence ME(a,b). Since fED, f'(M) exists and 

f�(M) =lim 
h-�-<l

f�(M). 

(1/h) [f(m + h) - f(M)] = lim (l/h) [f(M + h) - f(M)] = 

h+O 

But f'(M)<O and f'(M)>O so it follows that f'(M) = 0. 
+ 

- - -

The case f(a)>f(m) is handled similarly. 

The following theorem is a statement of the ordinary Mean Value 

Theorem for derivatives. We follow it with three proofs, the first 

two of which depend on Rolle's Theorem. 

Theorem 2.2 (Mean Value Theorem) 

If fED, then there exists a point CE(a,b) such that (b - a)f'(c) = 

f(b) - f(a). 
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Proof 1. Let g(x) be the equation of the straight line joining 

the points (a,f(a)) and (b,f(b)), that is 

g(x) = [f(b) - f(a)J [(x - a)/(b - a)]+ f(a). 

Define d(x) = f(x) - g(x). Since fED and gED it follows that 

dED. Now d(a) = 0 = d(b) so applying Rolle's Theorem, there exists a 

point cE(a,b) such that d' (c) = 0. Thus 

d' (c) = f' (c) - g' (c) = f' (c) -[f(b) - f(a)]/(b - a) = 0 

and the result follows. 

We note in the above proof that d(x) attains either a relative 

maximum or a minimum value at the point x = c. Let A, X, and B be the 

point's (a,f(a)),(_x,f(x)), and (b,f(b)),respectively. Let AB denote 

the line segment joining A and Band Lx denote the line segment joining

X and (x,g(x)). Since the acute angle formed by L and AB is constant 
X 

for each XE(a,b), it follows that the perpendicular distance h(x) from 

X to AB is in direct proportion to d(x). Thus by maximizing (or 

minimizing) d(x), we maximize (or minimize) h(x) which results in maxi

mizing (or minimizing) the area of the triangle having verticies at A, 

X, and B. This gives us a slightly similar but interesting way of 

proving the Mean Value Theorem. 

Proof 2. Using the notation in the above paragraph, we find that 

the area T(x) of the triangle having verticies at A, X, and Bis given 

by T(x) = (l/2)luXvl where u and v are the vectors (x - a, f(x) - f(a),0) 

and (b - a, f(b) - f(a), 0), respectively. Now 

i j k 
uXv = x - a f(x) f(a) 0 = k[(a - b)f(x) - (x - b)f(a) + (x - a)f(b)] 

b - a f(b) - f(a) 0 



7 

where k is the unit vector (0,0,l ). Since T(x).:::_0, we now define a 

somewhat similar but less restrictive area function A(x) as 

A ( x ) = ( 1 / 2 ) I k I [ ( a - b ) f ( x ) - ( x - b ) f ( a ) + ( x - a ) f ( b ) ] . 

If we let 

f(x) X 1 
F ( x) = f (a) a 1 

f(b) b 1 

then A(x) = (l/2)F(x). Since AED and A(a) = 0 = A(b), it follows by 

Rolle's Theorem that there exists a point CE(a,b) such that A'(c) = 0. 

Thus 

f'(c) O 

A'(c) = (l/2) f(a) al = (l/2) {(a - b)f'(c) - [f(a) - f(b)]} = 0 

f ( b) b 

and the result follows. 

In most standard calculus text, the proof of the ordinary Mean 

Value Theorem is dependent on Rolle's Theorem. The third proof of 

Theorem 2.2 is dependent on the nested interval theorem rather than 

on Rolle's Theorem [2]. We first consider the following lemmas. 

Lemma 2.1 

Let a,b,c, and d be real numbers with d>O and b>O. If a/b�c/d, 

then a/b�(a + c)/(b + d)�c/d. 

Proof. Multiplying both sides of our given equality by bd>-0, we 

obtain ad<bc. We now add cd to both sides and factor to obtain 
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(a + c)d.::.(b + d)c and hence (a + c)/(b + d).::. c/d. Similarly, if we 

add ab to both sides of the inequality ad.::.bc and factor we obtain 

a(b + d).::.b(a + c) which in turn yields a/b.::.(a + c)/(b +d). Therefore, 

a/b.::.(a + c)/(b + d).::.c/d. 

Lemma 2.2 

If f' exists at each point of the open set G and XEG, then f'(x) 

exists if and only if 

L = lim f(b) -f(a) exists 
a+x- b -a 
b+x+ 

Proof. If L exists and b = x, then L = fJx). Similarly, if a_ 

x, then L = f+(x) and hence f'(x) exists. 

If f'(x) exists, then f'(x) = f+(x) = f Jx). Now for a fixed a 

and b, we can assume without loss of generality that 

f(x) -f(a) < f(b) - f(x). 
x -a - b -a 

By lemma 2.1 we have that 

f(x) - f(a) f(b) -f(a) < f(b) - f(x) 
x-a ..'.:. b-a - b-x 

and hence 

f�(x) = lim f(x) -f(a) < L< lim f(b) - f(x)
= x -a - - b-+x+ b - x 

a-+x 

Therefore L = f'(x) and L exists. 

f +(X). 

We now establish some notation for use in the following lemma and 

in the third proof of Theorem 2.2. If r1 = [a,b], then let F(I1) = f(b) 

f(a) and /11 J = b - a. Observe that for a.::. x .::_b, if I'= [a,x] and I''=

[x, b J, then F (I 1 ) = F (I ' ) + F (I ' ' ) and I I 1 J = II 'J + JI ' ' I . A 1 so, 1 et h = jI 1 I-
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Lemma 2.3 

If f 1 exists at each point of the open set G and I1 = [a,b]CG, 

then there exists a point cd1, such that f 1 (c) = F(I1 )/ I r1 I·
Proof. Divide I1 into tv.10 equal intervals, namely I11 = [a,a + h/2] 

and I12 =[a+ h/2,b]. Since F(I1) = F(I11) + F(I12), we can assume

without loss of generality that F(I11 )2_(1/2)F(I1)2_F(I12). Define the

auxiliary function 

g(t) = f(a + h/2 + t) - f(a + t) 

which is continuous on [O, h/2]. Since g(O) = F(I11 )�(l/2)F(I1 )2_

F(r12) = g(h/2), it follows from the intermediate value property for 

a continuous function that there exists a point t
0
s[O,h/2] at which 

g(t
0

) = (l/2)F(I1 ). This value of t
0 

determines the interval I2 =

[a + t
0

, a + h/2 + t
0
]CI

1 
where F(I2) = (l/2)F(I1) and I I2 I = (1/2) I I1 / ·

Thus 

We proceed inductively to obtain a nested sequence of closed intervals 

{I ,} such that 

F(I ) = F(I;)
i + 1 2 I I =llil· 

and Ii + 1 2 

If we let () I. = {c}, then it follows from lemma 2.2 that
i = 1 1 

f1(c) = lim F(Ii) = F( l 1) 
i� ITT ITT 
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We now turn to the third proof of Theorem 2.2. 

Proof 3. In view of lemma 2.3, it will suffice to show that there 

exists a closed interval I
0
C(a,b) with the property that F(I

0
);j1

0j = 

F(I
1
)/II

1 I· 

Jivide r
1 

into two equal intervals Ill and 1
1 2. If F(Ill)<(l/2)

F(I1)<F(I12), then the procedure in the proof of lemma 2.3 yields an 

interval 12 = I
0
(':(a,b) with the desired property. If F(I12)<(1/2) 

F(I
1
)<F(Ill), define the auxiliary function g as 

g(t) = f(b - t) - f(b - h/2 - t) where tE[O,h/2]. 

Then following the procedure described in the proof of lemma 2.3, we 

again obtain an interval I
0
c(a,b) with the desired property. If 

F(Ill) = (l/2)F(I1) = F(r
1 2), let Ill = I2 and divide 12 into two equal 

intervals 121 and I22" If F(I21)<(1/2)F(I2) or F(I21)>(1 /2)F(I2), 

then the procedure in lemma 2.3 gives an interval I3 = I
0
C(a,b) with 

the desired property. If F(I21) = (l/2)F(I2) = F(I22), choose 122 = 

I
0
c(a,b). Therefore, from the above arguments and lemma 2.3, there 

exists a point cEI
0
C(a,b) such that (b - a)f'(c) 

= 
f(b) - f(a). 

A function f defined on [a,b] is said to have the intermediate 

value property provided the closed interval from f(x) to f(y) is con

tained in the image of the closed interval from x to y for each x and 

y in [a,b]. In the following theorem, Darboux [11 ] has shown that if 

f 1 exists on [a,b], then f' has the intermediate value property. The 

proof will use a sliding interval technique [2] similar to that used 

in the third proof of Theorem 2.2. 
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Theorem 2.3 (Theorem of Darboux) 

If f 1 exists on [a,b], then f 1 has the intermediate value property. 

Proof. Let [x,y] be an arbitrary closed subinterval of [a,b]. 

Since the result is obvious when f 1 (x) = f 1 (y), we will assume without 

loss of generality that f 1 (x)<f 1 (y). For any positive s <[f 1 (y) -

f 1 (x)]/2, there exists an h such that O<h<y - x and 

/u(x + h) - f(x)]/h - f 1 (x)/< E and l[f(y) - f(y - h)]/h - f 1 (y)/< E.

If we define F(t) = [f(x + h + t) - f(x + t)]/h, we see that F is con

tinuous on [0,y - x - h] and thus has the intermediate value property. 

By the way s was chosen, F(O)<f 1 (x) + s<f 1 (y) - s<F(y - x - h) and 

hence [f 1 (x) + s,f 1 (y) - s]CF([O,y - x - h]). Now for each ts[O,y - x - h]

we can apply the Mean Value Theorem to f on [x + t,x + h + t] and obtain 

a t'E(x + t,x + h + t) such that f'(t 1 ) = F(t) and hence F([O,y - x - h]) 

Cf 1 ([x,y]). Since E can be made arbitrarily small, it follows that 

(f 1 (x),f 1 (y))Cf 1 ([x,y]) and thus [f 1 (x),f 1 (y)]Cf 1 ([x,y]). 

Theorem 2.2 is a special case of a more general theorem. In con

trast to the standard form of the theorem, the Second Mean Value Theorem 

(or Generalized Mean Value Theorem) is given here without any assump

tions about non-vanishing terms [l]. 

Theorem 2.4 (Second Mean Value Theorem) 

If fsD and gsD, then there exists a point cs(a,b) such that 

g 1 (c) [f(b) - f(a)J = f 1 (c) [g(b) - g(a)J.



Proof. Define 

F(x) = [g(b) - g(a)J [f(a) - f(x)J + [g(x) - g(a)] [f(b) - f(a)J. 

12 

Since fED and gED, it follows that FED also. Now F(a) = 0 = F(b) so 

applying Rolle 1 s Theorem, there exists a point CE(a,b) such that 

F 1

(c)=O. Thus 

F 1 (c) = g 1 (c) [f(b) - f(a)J - f 1 (c) [g(b) - g(a)J = 0

and the result follows. 

We remark that Theorem 2.2 follows as a corollary if g is the 

identity function defined on [a,b]. 

Theorem 2.4 has the following generalization with the use of 

determinants [l]. 

Theorem 2.5 

If fED, gED, and hED, then there exists a point CE(a,b) such that 

9 1 (c)[f(b)h(a) - f(a)h(b)] = f 1 (c)[g(b)h(a) - g(a)h(b)] + h 1 (c) 

[f(b)g(a) - f(a)g(b)]. 

Proof. Define 

f(x) 

F(x) = f(a) 

f(b) 

g(x) h(x) 

g(a) h(a) where XE [a,b]. 

g(b) h(b) 

Since fED, gED, and hED, it follows that FED, Now F(a) = 0 = F(b) so 

applying Rolle 1 s Theorem, there exists a point CE(a,b) such that 

F 1 (c) = O. Thus 



f 1

(c) g 1

(c) h 1

(c)

F 1 (c) = f(a)

f(b)

and the result follows 

g(a)

g(b)

h(a) = 0 
h(b) 
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We note that Theorems 2.4 and 2.5 are extensions of the Mean Value 

Theorem in terms of the number of functions involved. We now turn our 

attention to extending the Second Mean Value Theorem in terms of n - th 

order derivatives [14]. It will be convenient in the following theorem 

to let the symbol n! ! represent 1 !2!3! • • • n!. 

Theorem 2.6 

If f and g are continuous on [a,a + nh], h>0, the n-th deriva

tives of f and g exist on (a,a + nh), and ck = ( -1/[�J, then there 

exists a point cE(a,a + nh) such that f(n)
(c)[c

0
g(a) + • • · + c

n
g(a + nh)] = 

g(n)(c)[c
0
f(a) + · • • + c

n
f(a + nh)]. 

Proof. Define 
2 n -1 g(x) f(x)X X • X 

1 2 n - 1 g(a) f(a)a a a 
¢(x) (a+ h)

2 . . . 

(a+ h)
n-1 g(a + h) f(a + h)= 1 a + h 

. . . . 

1 a+ nh (a+ nh)
2 

. . . 

(a + nh r-, g(a + nh) f(a + nh)

and note that ¢(a+ ih) = 0 for each i = 0,1,2, • • •,n. Since¢ is 

continuous on each [a+ (j - l)h,a + jh], j = 1,2,3, • • · ,n, and dif

ferentiable on each (a+ (j - l)h,a + jh), it follows by Rolle 1 s 

Theorem that in each (a+ (j - 1 )h,a + jh) there exists a point b. 

such that ¢ 1 

(bj) = 0. Now ¢( 2) exists on each [bk,bk + 1J, 
k = 1,2,

• • •,n - 1, and hence ¢ 1 is continuous on each (bk,bk + 1). Again
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applying Rolle 1 s Theorem we find that in each (b
k
,b

k + 1 ) there exists 

a point p
k 

such that ¢(2)
(pk) = 0. Continuing in this way we arrive

at a unique point cE(a,a + nh) such 

0 0 0 
l 2 a a 

¢(n)
(c) = l a + h (a+ h)

2 • . 

. . . . . . . . . . 

l a+ nh (a + nhl· . 

that ¢(n) 
(c) 

=

·0
·a n-1

·(a+h) n-1
. . . . . 

• ( a + nh) n-1

0. That

g(n)
(c)

g(a)

g(a + h)

. . . 

g(a + nh)

is, 

. 

f(n) 
(c)

f(a)

f(a + h) 
. . . . 

f(a + nh)

The minor of f(n)
(c) can be calculated by expanding down its last 

column, for the subsequent minors of g(a + kh),0�k�n, are Vandermonde 

determinants. The minor of f(n)
(c) is 

[hn(n - l)/2
(n - l)!!J[c

0
g(a) + • • • c

n
g(a + hn)J.

Since the minor of g(n)
(c) is similar, it follows that 

equals zero. 

We note that Theorem 2.4 follows as an immediate corollary if n = l 

and h = b - a. 

Corollary 2.1 

If f is continuous on [a,a + nh], h>0, the n-th derivatives of 

f exists on (a,a + nh), and c
k

= (- l)
k [�), then there exists a point

cs(a,a + nh) such that hnf(n)
(c) = c f(a + nh) + • • • + c f(a). 

o n 

Proof. In Theorem 2.6, if we let g(x) = xn/n!, then c
0
g(a) + 

• + c g(a + nh) = [c an+ c1 (a + h)
n + • • • + c (a+ nh)

n]/n!.
n o n 

= 0. 
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The corollary follows from the last equation and the equations below: 

1 co + c, + c2 + . . . + C = 0 n 
2 c, + 2c2+ . . . + ncn = 0

3 2 2 0 c, + 2 c2 + . . . + n en =

. . . . . . . . . . . 

2n-l n - 1 0n c, + c2 + . . . + n en
= 

(n 1 ) n n 
(- 1) nn !+ c, + 2 c2 + . . . + n C = 

n 

The above equations can be generated in the following manner. 

The binomial expansion of (1 X )n gives

which when evaluated at x = l yields equation 1. By taking the

derivative of i) and multiplying through by x we obtain 

which when evaluated at x = 1 yields equation 2. By taking the deriva

tive of ii) and multiplying through by x we obtain 

which when evaluated at x = 1 yields equation 3. Continuing in this 

way we obtain the above n + 1 equations. 

T. M. Fleet [4] first observed that for a differentiable function

f on [a,b] where f 1 (a) = f 1 (b), that at some point in the interval, the 

tangent to the curve at that point passes through the initial point 

(a,f(a)). Thus we have the following new type of mean value theorem 

for derivatives. 



Theorem 2.7 (Flett 1 s (Theorem) 

If f 1 exists on [a,b] and f 1 (a) = f 1 (b), then there exists a 

point cs(a,b) such that (c - a)f 1 (c) = f(c) - f(a). 

Proof. Consider the function g defined by 

g ( X) = c
( X) - f ( a ) - f 1 (a) , a <X < b

X - a 

0,x = a 
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We note that g is continuous on [a,b] and differentiable on (a,b], and 

g 1 (x) - - f(x) - f(a) + f 1 (x) 
2 

(x - a) x - a 
for a<x<b.

It will therefore be sufficient to prove that there exists some point 

cc(a,b) such that g 1 (c) = 0. 

If g(b) = 0, the result follows immediately by Rolle 1 s Theorem. 

Suppose then that g(b)>0, so that g 1 (b) = - g(b)/(b - a)<0. Thus 

there exists a point x1c(a,b) such that g(x1)>g(b). Since g is con

tinuous on [a,x1J and g(a)<g(b)<g(x1), there exists a point x2c(a,x1)

such that g(x2) = g(b). Now applying Rolle 1 s Theorem to the function 

g on [x2,b], there exists a point cc(x2,b) such that g 1 (c) = 0. A

similar argument applies if g(b)<0 and the proof is completed.

We note that in the cases g(b)>0 and g(b)<0, the existance of 

the point c is also guaranteed by Darboux 1 s Theorem. For if we assume 

g(b)>0, then there exists a point x
0
c(a,b) such that g 1 (x

0
)>0, for if 

not then g 1 (x)<0 for each xc(a,b). But since g(a) = 0, this would 

imply that g(b)<0, a contradiction. Now g 1 (x
0
)>0>g 1 (b), so by Darboux 1 s 

Theorem there exists a point cc(x
0
,b) such that 9 1 (c) = 0. A similar 

argument would apply if g(b)<0. 
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D. H. Trahan [13] has generalized Flett 1 s result in the following

two theorems. We first consider the following lemma. 

Lemma 2.4 

If f is continuous on [a,b] and f 1 exists on (a,b] , and f'(b)• 

[f(b) - f(a)]_:::_0, then there exists a point cs(a,b] such that f 1 (c) = 0. 

Proof. If f(a) = f(b), the result follows from Rolle 1 s Theorem. 

If f 1 (b) = 0, then choose c = b. If f 1 (b)[f(b) - f(a)] <0, then f 

assumes a maximum or minimum value at some point cs(a,b) and f 1 (c) = 0. 

Theorem 2.8 

If f 1 exists on [a,b] and 

then there exists a point cs(a,b] such that (c - a)f 1 (c) = f(c) - f(a). 

h(x) 

Proof. Define the auxiliary function 

, a<x.:::_b 
= C

(x
x
) 

_
-

a
f (a) 

f 1 (a) , x = a 

We note that h is continuous on [a,b] and differentiable on (a, b],and 

h'(x) = 
(x - a)f 1 (x) - [

�
(x) - f(a)J

(x - a) 

Since h' (b)[h(b) -h(a)J " 1Tb - a)f' (b) - [f�b) - f(a)Jl
�

) - f(a) 
L (b - a) J b - a 

_ f'(a-;i = -
l f";'(b) _ f(b) - f(a)I f;'(a)-f(b) - f(afl<O,

� (b - a) L b - a :J l: b - a :J-

it follows from lemma 2.4 that there exists a point cs(a,b] such that 

h 1 (c) = 0 and hence (c - a)f 1 (c) = f(c) - f(a).
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We observe that Flett's Theorem follows as a corollary to 

Theorem 2.8. For if (b - a)f'(b) = f(b) - f(a) we consider the function 

h as defined in the above proof and note that since f'(a) = f'(b), then 

h(a) = h(b). Applying Rolle's Theorem to h on [a,b] we find a point 

cs(a,b) such that h'(c) = O and the result follows. On the other hand, 

if (b - a)f' (b)tf(b) - f(a), then either i) (b - a)f' (b)<f(b) - f(a) or 

ii) (b - a)f' (b)>f(b) - f(a), and we note that cfb. If i) holds , then

I+' (b) _ f(b) - f(a)J E
· (a) _ f(b) - f(a)J >O

L b - a b - a -

and the result follows from Theorem 2.8. A similar argument applies if 

ii) holds.

The following corollary is a stronger statement of Flett's

Theorem in that the condition f'(a) = f'(b) is relaxed. The proof 

follows directly from Theorem 2.8 and will be deleted. 

Corollary 2.2 

If f' exists on [a,b] and f' (a) and f' (b) are both less than or 

both greater than [f(b) - f(a)]/(b - a), then there exists a point 

cs(a,b) such that (c - a)f' (c) = f(c) - f(a). 

Theorem 2.9 

If f' and g' exist on [a,b], g'(a)to, g(x)tg(a) for all xs(a,b], 

and 

�:f:l - ml= :f:8§(b) - g(a)J f'(b) - [f(b) _ f(a)J g'(b)J"-o, 

then there exists a point cs(a,b] such that [g(c) - g(a)J f'(c) = 

[f(c) - f(a)] g'(c). 



Proof. Define the auxiliary function 

- f(a)_ g(a) 
, a<X<b 

h (x) = 

We note that h is continuous on [a,b] and h' exists on (a,b], and 

h, (x) = 

[g(x) - g(a)] f' (x) - [f(x) - f(a)J g 1 (x) 

[g(x) - g(a)J
2
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Since h'(b)[h(b) - h(a)]_::0, it follows from lemma 2.4 that there exists 

a point CE(a,b] such that h'(c) = 0 and hence 

[g(c) - g(a)J f' (c) = [f(c) - f(a)] g' (c). 

We note that Theorem 2.8 follows as an immediate corollary if 

g(x) = x for each XE[a,b]. 

Corollary 2.3 

If f' and g' exist on [a,b], g' (a)tO,g(x)tg(a) for each XE(a,b], 

g'(b)[g(b) - g(a)J 0, and f'(a)/g'(a) = f'(b)/g'(b), then there exists 

a point cs(a,b) such that [g(c) - g(a)J f'(c) = [f(c) - f(a)J g'(c). 

Proof. If 

f(b) - f(a) _ f' (b), 
g(b) - g(a) - g' (b) 

define h as in the proof of Theorem 2.9. Since f'(a)/g'(a) = f' (b)/g'(b), 

it follows that h(a) = h(b). Thus by Rolle's Theorem, there exists a 

point CE(a,b) such that h'(c) = 0 and the conclusion follows. If the 

above equality does not hold, the conclusion follows from Theorem 2 .9 

and the fact that g' (b)[g(b) - g(a)]>O. 
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CHAPTER III 

MEAN VALUE THEOREMS FOR INTEGRALS 

The integral mean value theorems of introductory calculus are 

usually proved under stronger hypotheses than are required. Continuity 

is often demanded when only a consequence of continuity is necessary. 

Theorem 3.1 (Integral Mean Value Theorem) 

If f is continuous on [a,b], then there exists a point ws(a,b) such 
·b that (b - a)f(w) = Jaf(x)dx.

Proof. Consider the inequality 

inf f(x).2.n � a f�f(x)dx.:5..sup f(x).

If equality l1olds on either side of this inequality, then f(x) = inf 

f(x) a.e. or f(x) = sup f(x) a.e. and thus there exists at least one 

point ws(a,b) with the desired property. If strict inequality holds 

on both sides of this inequality, then by the intermediate value 

property of a continuous function there exists a point ws(a,b) such 
b that (b - a)f(w) = faf(x)dx.

We note that continuity is required only to insure that f be 

integrable and have the intermediate value property. The function f 

defined by f(x) = x2sin(l/x)for xfo and f(O) = 0 does not have a con

tinuous derivative on [- l ,l] but the derivative does have the inter

mediate value property and is Riemann integrable. Hence the conditions 

of the ordinary Integral Mean Value Theorem are not met. We also note 

that there is a function F whose derivative exists at each point in 
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[a,b] but F' is not Riemann integrable (see example 4.1). In view of 

these results, the Integral Mean Value Theorem has the following im

mediate generalization. The proof is similar to the proof of Theorem 

].1 and will be omitted. 

Theorem 3.2 

If f has the intermediate value property and is integrable 

(Riemann or Lebesgue), then there exists a point ws(a,b) such that 

(b - a)f(w) = f�f(x)dx. 

It is interesting to note that there exists a Lebesgue integrable 

function which possesses the intermediate value property and is dis

continuous at each point. Such a function is given in example 3.1. 

We next present a generalization of a theorem due to K. S. Miller 

[7] and note that Theorem 3.1 follows as an immediate corollary if

g(x) = l for each xs[a,b].

Theorem 3.3 

If f is continuous on [a,b] and g is Riemann integrable on [a,b] 

and either g(x)�O or g(x)-2_0 for all xs[a,b], then there exists a 

point ws(a,b) such that f(w)f�g(x)dx = f�f(x)g(x)dx. 

Proof. We will prove only the case g(x)�O. Let M = sup f(x) 

and m = inf f(x), then 

b b bmfag(x)dx.::_ faf(x)g(x)dx.2_M fag(x)dx.

If equality holds on either side of the above inequaltiy, then 

f(x) = m a.e. or f(x) = M a.e. which implies that there exists at 

least one point ws(a,b) such that f(w)f�g(x)dx = f�f(x)g(x)dx. If 



22 

strict inequality holds on both sides of the above inequality, then it 

follows by the intermediate value property of a continuous function 
b b that there exists a point WE(a, b) such that f(w)fag(x)dx = faf(x)g(x)dx.

K. S. Miller [7] states the Second Mean Value Theorem with a 

stronger hypothesis than is necessary. We therefore follow his result 

with a more general theorem. 

Theorem 3.4 (Second Mean Value Theorem) 

If f is a continuous, monotone increasing function defined on 

[a, b], and g(x)�O is integrable on [a, b], then there exists a point 

WE[a, b] such that 

J�f(x)g(x)dx = f(a)J�g(x)dx + f(b)f�g(x)dx. 

Proof. By Theorem 3.4, there exists a point pE(a, b) such that 

f�f(x)g(x)dx = f(p)f�g(x)dx. Define ¢(x) = f(x) - f(a) and note that 

¢ is a continuous, nonnegative, monotone increasing function on [a, b]. 

Now 

b b b ¢(p)fag(x)dx = f(p)fag(x)dx - f(a)fag(x)dx,

so 

b b b f(p)fag(x)dx = ¢(p)fag(x)dx + f(a)fag(x)dx.

If we define G(x) = fbg(x)dx, then G is a continuous, nonnegative, 
X 

monotone decreasing function on [a, b]. Since G(b) = 0, 

¢(p)f�g(x)dx = ¢(p)G(a) = ¢(p)G(a) + [¢(b) - ¢(p)]G(b). 

But ¢(p)�O, ¢(b) - ¢(p)�O, so there exists a number a with 

G(b).:_ a .:_G(a) such that 
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b¢(p)fag(x)dx = a {¢(p) + [¢(b) - ¢(p)]} = a¢(b). 

By the intermediate value property of a continuous function, it follows 

that there exists some point WE[a,b] such that G(w) = a and thus

b b¢(p)fag(x)dx = G(w)¢(b) = [f(b) - f(a)Jfwg(x)dx.

Therefore, 

b b
faf(x)g(x)dx = f(p)fag(x)

= ¢(p)f�g(x)dx + f(a)J�g(x)dx 

= [f(b)Jeg(x)dx - f(a)Jeg(w)dx] + [f(a)f:g(x)dx + f(a)feg(x)dx] 

= f(a)f:g(x)dx + f(b)feg(x)dx 

which completes the proof. 

By relaxing the condition that f be a monotone increasing function 

on [a,b] we obtain the following more general theorem, the proof of 

which is similar to the proof of Theorem 3.4 and thus will be deleted. 

Theorem 3.5 

If f is continuous on [a,b] and f(a).::_f(x).::_f(b) for each XE[a,b], 

and if g(x)�O is integrable on [a,b], then there exists a point 

WE[a,b] such that 

f�f(x)g(x)dx = f(a)J:g(x)dx + f(b)feg(x)dx. 

We now turn our attention to an integral analog to Flett's result 

(Theorem 2.5). S. G. Wayment [16] first posed the following theorem 

and we include his proof (Proof 2) here along with an additional proof 

for comparison. 
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Theorem 3.6 

If f(t) is a continuous function defined on [a,b] and f(a) = f(b), 

then 

F is 

there exists a point ws(a,b) such that (w - a)f(w) = f:f(t)dt. 

Proof 1. Let F(x) 

differentiable and 

= J;f(t)dt. 

F' (x) = f(x) 

Since f is continuous, we have 

for all xs[a,b]. Now F' (a) =

that 

f(a) = f(b) = F'(b), so applying Flett's result, there exists a point 

ws(a,b) such that (w - a)F'(w) = F(w) - F(a). This reduces to 

(w - a)f(w) = J:f(t)dt, the desired result. 

We remark that Proof 1 uses the full power of continuity to 

insure that F' (x) = f(x) for all xs[a,b]. 

Proof 2. Since f is continuous, there exist points t1 and t2 in

[a,b] such that f(t1).:::_f(x) and f(t2)�f(x) for all xs[a,b]. Now

(t
1 

- a)f(t1)2:_ J�1f(t)dt and (t2 - a)f(t2)� J�2f(t)dt. Define

F(x) = J;f(t)dt - (x - a)f(x). Since f is continuous, we have that F 

is continuous also. Now F(t
1
).2_0 and F(t2)�0 so by the intermediate

value property of a continuous function, there exists a point ws(a,b) 

such that F(w) = 0 and hence (w - a)f(w) = f:f(t)dt. 

Proof 2 can be generalized if F has the intermediate value 

property whenever f does. This, in turn, would be implied if the sum 

of a continuous function and a function with the intermediate value 

property were necessarily a function with the intermediate value 

property. The following example shows that such is not the case. The 

techniques used in the construction of this example are somewhat 

standard in topology and were suggested by J. W. Cannon. 

Example 3. 1 . We first generate a sequence {Ci} of Cantor sets in

the following way. Construct c
1 

on [0,1] and let L1 be the largest
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number for which there exists at least one open interval (a1 ,b1) in

�c1 with length L1. Construct c2 on the closed middle third of

(a1 ,b1). Let L2 be the largest number for which there exists at least

one open interval (a2,b2) in �(c
1
uc

2
) with length L2_2.L1. Construct c3

on the closed middle third of (a2,b2). In general, construct en on the

closed middle third of the open interval in�(; 9
1 

Ci) with length Ln,

where L is the largest number for which there exists at least one openn 
interval in �(i Y 1 Ci) with length Ln-2.Ln _ 1.

For each i, let gi be a continuous, monotone increasing function

which maps Ci onto [0,l]. The construction of such functions can be

found in [10]. Define. 

g(x) 

( 
\ gi (x) if xsCi-) (o if xs[O,l] - i V l Ci.

We note that g has the intermediate value property, for given any 

arbitrary open interval (a,b) contained in [0,l], there is an i such 

that cic(a,b) and g(Ci) = [O,l]. 

For a real valued function p(x) defined on [O,l], let IIP/1 = sup 

lp(x)I. We next define a sequence {fi} of continuous functions on

[O,l] such that 'f IJf-l/<00 and hence f = 'f f. is continuous on 
i=l l i=l 1 

[O,l]. The {fi} will be constructed in such a way that (f + g)(x)tl/2

for any value of x in [0,l]. Since g is continuous on c1, there is a

finite collection u1 of open intervals whose closures are pairwise

disjoint which covers c1 and such that if x and y are in o1isu1 for

some i, then Jg(x) - g(y)l<s1<l/3. Let v1 be the collection of those

open intervals in u1 which contain values of x satisfying g(x) = 1/2.
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Defi ne f
1 
(x) = El for the values of x covered by v

1
, and let f

1
(x) = 0

for the values of x wh i ch are covered by u
1 

but not covered by v
1

. 

Extend f
1 

to be cont i nuous on [0,1 ] w i th functional values between 

0 and E1. If XEC
1 

and i s covered by v
1
, then g(x)>l/2 - El and hence

(f
1 

+ g)(x)>l/2. Thus f
1 
+ g i s cont i nuous on c

1 
and (f

1 
+ g)(x)tl/2

for any xEC
1
. Let o

1 
be the distance from 1 /2 to the image of c1

under f1 + g, that is, o
1 
= p(l/2,[f

1 
+ g](c1 )). We note that

o1..::_E
1 

and choose Ez such that 0<E
2
<o

1
/3. Let h

2 
= f

1 
+ g on c

2
. Since

h
2 

i s continuous on c
2
, there is a fin i te collect i on u

2 
of open i nter

vals whose closures are pa i rw i se disjoint which covers c
2 

and such that 

i f x and y are i n o
2 i

EU
2 

for some i, then lh
2
(x) - h

2
(y) l<E

2
. Let v

2

be the collection of those open i ntervals in u
2 

wh i ch conta i n values 

of x satisfying h
2
(x) = 1/2. Define f

2
(x) = Ez for the values of x 

covered by v
2
, and let f

2
(x) = 0 for the values of x which are covered 

by u
2 

but not covered by v
2
. Extend f2 to be cont i nuous on [0,1 ] with

functional values between 0 and E
2
. If XEC

2 
and i s covered by v

2
, 

then h
2
(x)>l/2 - Ez and hence (f

2 
+ h

2
)(x)>l/2 . Thus f

2 
+ h

2 
i s 

continuous on c
2 

and (f
2 
+ h

2
)(x)tl/2 for any XEC

2
. Let o

2 
= p(l/2, 

[f
2 
+ h

2
J(c

2
)). We note that o

2
..::_E

2 
and choose E3 such that 0<E3<o

2
;3.

Let h3 = f
2 

+ h
2 

on c3. We proceed i nductively to define {E;}, {o
i
}' 

{f.}, and {h.} such that 6. = p(l/2,[f. + h.](C.)), not i ng that 
1 1 1 1 1 1 

00 

o-<E., and 0<E. 
1
<o./3. If f = I: f., then s i nce 

1- 1 1 + 1 
i = 1 1 

p(l/2,[f. + h.](C.)) = p(l/2,[g + ! f.](C.)) = o
i 

and 
J J J i=l 1 J 

00 00 i r W-11< r o.(1 /3 )=o./2, it follows by the triangle inequal i ty 
i=j+l l i=lJ J 
that (f + g)(x)tl/2 for any x in 

f(x)2- ! llf - II< ! 1 ;3 i = 1;2. 
i =l l i =l 

C .• 
J 

00 

If xs -U C . , then 
. 1 1 1 = 
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We remark that it is possible to construct a function f which has 

the intermediate value property, is Riemann integrable, and such that 

J:f(x) - (x - a)f(x) does not have the intermediate value property.
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CHAPTER IV 

OTHER MEAN VALUE THEOREMS 

b For a real-valued function f defined on [a,b], let Laf represent
b the arc length of the graph of f on [a,b] and let Vaf represent the

total variation of f over [a,b]. Intuitively, L�f is the total dis

tance a particle would travel along the graph of f from point (a,f(a)) 

to point (b,f(b)), whereas V�f is the total distance a particle's 

projected image onto the y-axis v�ould travel as the particle itself 

moves along the graph of f from point (a,f(a)) to point (b,f(b)). 

We note that the above relationship between Vbf and Lbf is the 
a a 

exception rather than the rule. For if f:[a,b]+Rn is a rectifiable 

curve, i.e., continuous and of bounded variation, it is customary to 

define the arc length of the graph of f to be V�f [12]. Thus for the 

real-valued function f defined on [a,b], we find that V�f = L�f if we 

consider f as the mapping from [a,b] into R2 given by f:x+(x,f(x)). 

We now turn our attention to establishing mean value theorems 

for V�f and L�f [15,17]. 

Let D be the set of all real -valued functions f which are con

tinuous on [a,b] and such that f' exists on (a,b), and let A be the set 

of all real-valued functions f which are absolutely continuous on 

[a,b]. 

Theorem 4.1 

If fsAOD, then there exists a point ps(a,b) such that V�f = 

(b - a)jf'(p)j.



Proof. Since f is absolutely continuous, it follows that 

f�lf' I = V�f where the integral is the Lebesgue integral. Now 

(b - a)infjf'(t)i< J�lf'l<(b - a)supjf'(t)j.
ts(a, b) - - ts(a, b) 

If equality holds on either side of this inequality, then 

if'(t)i = supjf'(t)i a.e. 
ts(a, b) 

or If' (t) I = infjf 1 (t) I a.e. 
ts( a, b) 
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b Thus Vaf = (b - a) if' (t)i a.e. If strict inequality holds on both

sides of this inequality, it follows from Darboux 1 s Theorem (Theorem 

2.3) that there exists a point ps(a, b) such that V�f = (b - a) lf'(p)I.

Theorem 4. 2

If fsAOD, then there exists a point ps(a, b) such that Lbf = a 
(b - a)�l + lf'(p)l2 , 

Proof. We can say that L�f = f� � 1 + If 1 

1
2

., 

provided this 

Lebesgue integral exists [1 2 ]. Since 

it follows that 

Vbf < Jb 11 + /f 1 1
2 < (b - a)+ va

bf.a - a'-l 1_ 

Thus for a continuous function we can conclude that V�f exists (that 

is, f is of bounded variation) if and only if L�f exists. Since 

frAf\D, it follows that L�f exists. By the Darboux property, f 1 has 

the intermediate value property and hence if' I, jf 1 

1
2, 1 + jf 1

1
2, and 

�l + If' 1 2' do also. We note that in general the sum of a continuous 



function and a function with the Darboux property need not be a 

function with the Darboux property (see example 3.1 ). Now 
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I 2' b I 2' I 2' (b - a)inf --...tl + jf'(t)I � fa--.Jl + If' I < (b - a) sup :Jl + jf'(t)I .
ts(a,b) - ts(a,o) 

If equality holds on either side of this inequality, then either 

�l + jf' (t) 1
2

1 

= inf �l + If' (t) 1
2, a.e. 

td a, b) 

or 

�1 + if' (t) 1
2' = sup �l + If' (t) 1

2 

tda ,b) 
a.e.

Thus we have that L�f = (b - a)�l + jf'(t)i 2 a.e. If strict in

equality holds on both sides, then by the Oarboux property for 

�l + jf' 1
2 ', there exists a point pE:(a,b) such that 

J� � l + I f I I 2 , = ( b - a)� l + I f 1 ( p) I 2,

Thus this integral exists and we have that L�f = (b - a)�l + jf'(p)j2• 

We remark that the proofs of Theorems 4.1 and 4.2 would follow 

using the Riemann integral provided jf' I is Riemann integrable. Since 

jf' I is bounded and if jf' I is Riemann integrable, then jf' I is Lebesgue 

integrable. However, example 4.1 provides a function fsA"D such that 

If' I is not Riemann integrable [5]. 

Example 4.1. Let G be a perfect non-dense set of points in the 

interval (a,b) and such that its measure is greater than zero. Let 

(a, S) be an arbitrary open interval in the complement of G and define 

the following function on (a, S): 



¢(x,a) = (x - a)2sin -
x - a 

Thus ¢ 1 (x,a) = 2(x - a)sin x � a - cos
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We note that ¢'(x,a) = 0 at an infinite number of points in (a, s).

Let a+ A= max {xlx<(l/2)(a + S) and¢' (x,a) = O}. Define the 

following function on each component (a, S) of the complement of G: 

e
(x ,a) if xda, S) and a < x < a + A

F(x) = (a+ )..,a) if a+ )..< x <B - A 
¢(x,S) if S - A�X < S 

and F(x) = 0 for each XEG. The function F is continuous and has a 

bounded derivative on the interval (a,b). If XEG, we note that 

F'(x) = 0 and that in any a-neighborhood of x there is an interval in 

the complement of G in which there are an infinite number of points at 

which F' is greater than l. Therefore, F' is discontinuous at each 

point of G. Since G has positive measure and since F'(x) = IF'(x)I = 0 

at each XEG, it follows that IF' I is not Riemann integrable. 

Theorems 4.1 and 4.2 can be made somewhat stronger if we relax 

the requirement that f be absolutely continuous. 

Theorem 4.3 

If fED and f is of bounded variation on [a,b], then there exists 

a point pE(a,b) such that V�f = (b - a)/f' (p)/. 

Proof. Assume that there does not exist a point pE(a,b) such 

that Vbf = (b - a)/f 1 (p) I, Since f' has the Darboux property on (a,b) 

and there is not point ps(a,b) at which lf 1 (p)/ = V�f/(b - a), it 

follows that either i) /f'(x)/>V�f/(b - a) for each xda,b), or ii) 

/f'(x) l<V�f/(b - a) for each XE(a,b). 
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Suppose i) holds. Let a = x
0
<x1< • • • <xn = b be an arbitrary 

partition of [a,b], and let pi be the point in (xi _ 1,xi) guaranteed 

by the Mean Value Theorem such that f(xi) - f(xi _ 1) = f 1 (pi)6xi 
= where 6xi

xi - xi _ 1. Then taking the suprema over all possible partitions of 

[a,b], we find that 

n 

V�f = sup I /f(xi) - f(xi _ 1) I
.; -- , 
I . i 

n 

= sup I /f' (pi)/6xi 
i =l 

which is clearly a contradiction. 

Suppose ii) holds. This implies that /f' / is bounded and hence 

f is absolutely continuous. By Theorem 4.1, there exists a point 

pE(a,b) such that V�f = (b - a)/f 1 (p) I which contradicts our original

assumption. 

Theorem 4.4 

If fED and f is of bounded variation on [a,b], then there exists 

a point pE(a,b) such that L�f = (b - a)�l + /f'(p)/2 . 

Proof. As in the proof of Theorem 4.2, we note that for a 

continuous function f, V�f exists if and only if L�f exists. Since 

fED and is of bounded variation,we have that L�f exists. Since f 1 has 

the Darboux property, it follows that�l + /f 1

1
2 ' does also. If we 

now assume that there does not exist a point PE(a,b) at which L�f = 

(b - a)�l + /f 1 (p) /2 , the proof will follow by similar arguments as 

used in the proof of Theorem 4.3. 
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In view of the discussion prior to Theorem 4. 1, it would seem 

clear that similar results to Theorems 4.1 through 4.4 could be 

obtained if f is a function on [a,b] into Rn such that f is absolutely 

continuous on [a,b], f 1 exists on (a,b), and lif 1 II has the intermediate 

value property. However, the following example shows that llf 1 II need 

not have the intermediate value property. 

Example 4. 2. For a <O and b>O, define 

(x2sin(l/x),x2cos(l/x),x) for XE[a,O) U(O,b] 
F (x) = 

Then

(2xsin(l/x) - cos(l/x),2xcos(l/x) + sin(l/x),l) for 
F 1 (x) = XE[a,O)U(O,b]

( 0, 0, l ) for x = 0 

We observe that IIF 1 (0) II= 1, whereas IIF 1 (x) 11 = �4x2 
+ 2�� for 

XE[a,O) U(O,b]. 

A vector-valued function f is said to be absolutely continuous 

if and only if each of its components is absolutely continuous [12]. 

In the function F defined in example 4.2, 

i - th component of F, then lfi(x) l2_3 and 
I 

continuous. l 
-b� 2 Thus a llF 1 II= Ja4x + 2 

if we let fi represent the 

hence f. is absolutely 

Vb F. Now�4x2 
+ 2""7is a a 

continuous function on [a,b] and thus by Theorem 3.1, there exists a 

point ps(a,b) at which J��4x2 
+ 2 = (b - a)�4p2 

+ 2 So we have 

that V�f = (b - a)�4p2 
+ 2' = (b - a) IIF 1 (p) II even though /iF 1 

11 does 

not have the intermediate value property on [a,b]. 

One might ask at this point if f bein g a differentiable and 

absolutely continuous function from [a,b] into Rn is sufficient for 
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there to exist a point pE (a,b) such that V�f = (b - a) IJf 1 (p) 11-

Unfortunately, the answer to this question is no, as the following 

example shows. 
Example 4.3. Define 

[
(Ex2sin(l/x),Ex2cos(l/x),x), if XE[

g
E

(x) = (x2sin(l/�),x2

�os(l/x,x), if x E(0,l] 
(0,0,0), lf X - 0 

then 

l , 0)

(2Exsin(l/x) - cos(l/x),2Excos(l/x) + sin(l/x),l), if XE[- 1,0) 
g 1 (x) = (2xsin(l/x) - cos(l/x),2xcos(l/x) + sin(l/x),l), if xE(0,l] 

and 

(0,0,l), if X = 0 

�4x2E2 + E2 + l if X [- 1,0)

l if X = 0

Let XE[- l ,0), then for any 6>0 there exists an E>0 such that 

l�jJg�(x)Jr_l + 6. Let F(t) = t: 1gE(xJ/[t - (- l)], then Fis a

continuous function of t on [0,l]. Now 

and 

F ( l ) = ( l / 2 ) V � l g 
E 

( x ) = ( l / 2 ) J� l I I g � ( x ) 11 + ( l / 2 ) f � I I g � ( x ) 11

2_ ( l / 2 ) J� 1 l + ( l / 2 ) J � IT

= l + R
2 

Thus for sufficiently small 6>0, there exists a point tE(0,l) such 
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that l + o<F(t)< 1 + 12 < 12 and consequently there cannot exist a
2 

point ps(- l ,t) at which 

Vt 

lg ( X) = ( t + l ) Ilg I ( X) I I .
E E 

The ordinary Mean Value Theorem for derivatives of a real-valued 

function f from [a,b] into R guarantees the existence of a point in 

(a,b) at which the derivative has the same slope as the line joining 

the points (a,f(a)) and (b,f(b)). If we consider f as a vector

valued function from [a,b] into R2, we get the following interesting 

results. 

Theorem 4.5 

If v is a differentiable vector-valued function defined on [a,b], 

given by v(t) = (t,f(t)) where f is a real-valued function from [a,b] 

into R, then there exists a point ps(a,b) such that v 1 (p) has the same 

direction as the vector (b - a,f(b) - f(a)). 

Proof. Since v is differentiable on [a,b], it follows that f is 

differentiable and that v 1 (t) = (l ,f 1 (t)). By Theorem 2.2, t here 

exists a point ps(a,b) such that f 1 (p) = [f(b) - f(a)]/(b - a). Thus 

v 1 (p) = (b - a,f(b) - f(a))·[l/(b - a)].

Since 1/(b - a) is positive, it follows that v 1 (p) has the same direc

tion as the vector (b - a,f(b) - f(a)). 

Corollary 4.1 

If b - a = l, t hen v'(p) will also have the same magnitude as the 

vector (b - a,f(b) - f(a)). 
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We might ask if similar results can be obtained if v is a more 

general vector-valued function from [a,b] into R2. The answer is yes 

if we place a few more restrictions on v. 

Theorem 4.6 

If v is a differentiable vector-valued function from [a,b] into R2

given by v(t) = (x(t),y(t)) such that v' (t) is nowhere zero on [a,b] 

and v(a)tv(b), then there exists a point pE(a,b) such that v' (p) is 

parallel to the vector u = (x(b) - x(a),y(b) - y(a)). 

Proof. Since v is differentiable on [a,b], we have that v'(t) = 

(x'(t),y'(t)). Also, since v(a)tv(b), it follows that ut(O,O) and 

hence either x(b) - x(a)to or y(b) - y(a)to. 

Suppose x(b) - x(a)to. Define the auxillary function 

¢(t) = y(t) - y(a) - y(b) - y(a)[x(t) - x(a)Jx(b) - x(a) 

then ¢(a)= 0 = ¢(b). Also,¢ is continuous and differentiable on 

[a,b] since v is. Thus 

¢ 1 (t) = y' (t) - �f �j = �f!j · x' (t)

exists for all tE[a,b]. By Rolle's Theorem, there exists a point 

pE(a,b) such that ¢ 1 (p) = 0 and hence 

y' (p) = y�b) - y(a) • x' (p).x b) - x(a) 

X I ( p) 
Therefore v'(p) = u • -x-(b�)--�x(-a�)

parallel vectors. 

which implies that v'(p) and u are 

Suppose y(b) - y(a)fO. The proof is similar to the proof in the 

case above if we define our auxillary function to be 



8(t) = x(t) - x(a) 

Corollary 4.2 

x(b) - x(a) 
(b) - y(a) [y(t) - y(a)J.

If y'(p) and y(b) - y(a), or x' (p) and x(b) - x(a) have the 

same sign, then v' (p) has the same direction as u. 

Corollary 4.3 
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If y'(p) = y(b) - y(a) or x'(p) = x(b) - x(a), then v'(p) has 

the same magnitude as u. 

If we try to generalize the above results to a differentiable 

vector-valued function v from [a,b] into Rn, n>2, we find that there 

need not exist a point pE(a,b) at which v' (p) has the same direction

or magnitude as the vector [v(b) - v(a)]/(b - a). The following is 

an example of such a function. 

Example 4.4. Define v(t) = (cos t, sin t, t) on [0,2IT]. Now 

[v(b) - v(a)]/(b - a)= (0,0,1) whereas v'(t) = (- sin t, cos t,l). 

In order for these two vectors to be parallel, one must be a multiple 

of the other for some tE[0,2IT] which is clearly impossible. 

Since the magnitude of v' (t) = /2 for all tE[0,2IT] and the 

magnitude of [v(b) - v(a)]/(b - a) = l, it fol lows that there does not 

exist a point pE[0,2IT] at which v' (p) and [v(b) - v(a)]/(b - a) have the 

same magnitude. 

If we consider f as a holomorphic complex-valued function defined 

on a subset of the complex plane C, we find that a mean value theorem 

in the form of the ordinary Mean Value Theorem (Theorem 2.2) may not 

always be possible. However, McLeod [6] has shown that for a holo

morphic function f defined on a connected open set GCC where z
1 

and 
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z2 are points in G such that the segment joining them is also in G,

that 

for some p1 and p2 on the segment joining z1 and z2, and some non

negative real numbers Al and A2 such that Al + A2 = l. This seems

intuitively clear since as z2 gets ''close" to z1,

[f(z2) - f(z1)]/(z2 - z1), f'(p1), f'(p2), and hence

A f'(p ) + A f'(p ) get "close" to f'(z ) l l 2 2 l .

We note that the linear expression A1f'(p1) + A2f'(p2) cannot

in general be replaced by a vlaue f' (p). For example, if we define 

f(z) = e2 and choose z2 = z1 + 2rri, we find that f(z2) - f(z1) = 0

whereas (z2 - z1) f' (p) = 2rriepto for any p. However, if we let

Al = 1/2 = A2 and choose p1 = z1 and p2 = z1 + rri, we see that McLeod's

result holds. 

The main difficulty in establishing a mean value theorem in Rn,n>l,

is that there are many different ways of defining a derivative in

this setting. Before we present a mean value theorem in Rn we first

make the following definitions relative to Rn 
[9]. The set ICRn is a

closed interval if I = {(x1 ,x2,· • ·,x ) la. <x<b. ,i = 1,2, • • ·.J n}, and
n 1- - 1 

the set JC Rn is a closed cube if J is a closed interval having equal,

non-zero sides. The diameter of I is given by d(I) = sup{p(x,y)lxsI,ysI} 

where p(x,y) represents the distance between points x and y, and its 

Lebesgue measure is 

closed intervals is 

n 

given by µ(I)= IT (b. - a.). A sequence {I.} of 
· l 1 1 1 
1 = 

said to converge to xsRn, denoted I.+x, if xsI. for
1 1 
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each i, and l im d(I.) = 0. A sequence {I.} is said to be a regular 
. 1 1 
1-)-00 

sequence if I.+x, and if there is a constant a>O, called the parameter 
1 

of regularity, such that for each i, there is a cube J . .:)I. for which 
1 1 

µ (Ii ) 
--> a

µ(Ji) -

Intuitively, a regular sequence is one in which the intervals do not 

become too "thin." If we let T be a finitely additive set function 

defined on at least the closed intervals, then the upper and lower 

regular derivatives of T are given by 

'* _T(Ii)
f ( X) = sup � im ( I . ) 

I . +x 1 -)-00 µ 1 
1 

and 
'* 

T (x) = inf 
I .+x 

1 

l. T(I.) 
1 m 1 

i-)-00 µ(I.) ' 
1 

respectively, where the sup and inf are taken over regular sequences 
'* 

which converge to x. The regular derivative, denoted T (x), is said 
I* I* 

to exist at the point x if f (x) = l (x). 
'* 

L. Misik has shown [8] that if T exists at each point of an

interval in Rn, then a mean value theorem holds. However, we will give 

here a simpler and more direct proof of his result, as given by R. J. 

Easton and S. G. Wayment [3], using the additional hypothesis that T 

be absolutely continuous with respect toµ. 

For notational purposes, we will restrict the proof of the 

following theorem to R2 In this setting, a closed interval becomes 

a closed rectangle and its Lebesgue measure becomes its area. For this 

reason, we will use a more suggestive notation by letting R = [a,b;c,d] = 

{(x,y)lxE[a,b] and yE[c,d]} represent an arbitrary interval in R2 and 
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A(R) represent its area. Also, let h = b - a and k = d - c. We define 

the auxiliary function gR(x,y) = T(R), where (x,y) is the midpoint of R.

We note that since T is absolutely continuous with respect toµ, that 

gR is a continuous function of x and y. In general , we would define

gI on the closed intervals in Rn to be a function of n-variables. The 

following proof will use a sliding interval technique similar to that 

used in the third proof of Theorem 2.2. 

Theorem 4.7 
'* 

If T (x) exists at each point w of a closed rectangle R and T is 

absolutely continuous with respect toµ, then there exists a point 
'* 

pER such that T (p) = T(R)/A(R). 

Proof. Let R1 
= R = [a,b;c,d] and divide R1 into four similar

rectangles, namely R11 = [a,a + h/2;c,c + k/2], R12 = [a,a + h/2;d - k/2,d],

R13 
= [b - h/2,b;d - k/2,d], and R14 = [b - h/2,b;c,c + k/2]. Since

T(Rl) = I T(Rli),

i = 1 

we can assume without loss of generality that T(R11)�(1/4)T(R1 )�T(R13).

The other cases follow in a similar manner. Let a = k/h and define the 

auxiliary function 

f(t) = gR (a+ t + h/4,c + at+ k/4)
n 

which is continuous on [0,h/2]. Since f(O) = T(R11)�(1/4)T(R1)�T(R13) =

f(h/2), it follows from the intermediate value property for a continuous 

function that there exists a point t
0
E[0,h/2] such that f(t

0
) =

This value of t determines a rectangle 
0 



where T(R2) = (l/4)T(R1) and A(R2) = (l/4)A(R1 ).

Thus 

T(R1) T(R2)
--=--

A(Rl) A(R2)

We proceed inductively to obtain a nested sequence of closed 

rectangles {Ri}, each of which is geometrically similar to R1 and

having sides parallel to R1, such that

A(Ri)
and A ( R. + 1 ) =

1 4 

By the nested interval theorem there exists exactly one point 

ps n Ri, and
i = 1 

'* 
T (p) 

T ( R.) 
1 . 1 = ,m
i-+m A(R.) 

1 

T ( R i )
=--

A ( R1 )

41 

We note that by changing the selection process slightly for R3 and R4,

we can insure psint(R1).
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