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ABSTRACT 

Integral Representation Theorems 

by 

Leiko Hatta, Master of Science 

Utah State University, 1971 

Major Professor: Dr. S. G. Wayment 
Department: Mathematics 

iv 

Since F. Riesz showed in 1909 that the dual of C[O, l ) is 

BV[O, l ) (the functions of bounded variation on [O, l ) with II g II =

BV 
V(g)) via the Stieltjes integral, obtaining representations for linear 

operators in various settings has been a prob lem of interest. This 

paper shows the historical manner of representations , the 

road map type theorems and representations obtained via the 

v-integral . 

(44 pages) 



INTRODUCTION 

HistoricallY, integration has been studied in the sup-norm or 

weaker topology on the function space as Riemann and Lebesgue integra­

tions in which integrable functions are approximated by step functions 

and simple functions, respectively. This presents complications in 

obtaining a representation for linear operators on the space of con­

tinuous functions, for step functions and simple functions are not 

continuous. One must work in the weak sequential extension of a space 

in order to extend the domain of linear operators in question. The 

main topic of this paper is to discuss historical methods for the 

integral representation and the characterization of the linear opera­

tors on the space of continuous functions on [O,l] with the BV norm 

(the norm given by the II f II = V(f), the variation of f over [O,l]. 

Dual of C[O,l], Riesz Representation Theorem 

In 1909, F. Riesz [17] characterized the dual of the space C[O,l], 

the space of continuous functions on the interval [0,1] with the sup­

norm topology. The Riemann-Stieltjes integral is defined to be 

lim 

I a I 
H(t.)[gQ{.+l) -g(x.)] where a= {O = x 

+ 0 a 1. 1. 1. 
o

< X < • • • < X 
1 n 

l} 

is a partition of [O,l], x. 1 
� t. < X

1
., i 1 , 2 , • • • n and l a l =

1. - l. 

max {!x
i 

- x
i

_ 
1

[: i = 1,2,•••,n}. 

Theorem 2.1 

For each gEBV[O,l], the space of the functions of bounded varia-

tion on [O,l], F defined by F(f) 
1 

= J fdg for each fEC[O,l] is a 
0 
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continuous linear functional on C[O,l], where the above integral is the 

Riemann-Stieltjes integral. Furthermore, !!F Ii � V(g). 

Proof. Clearly F is linear since the integral depends linearly on 

fEC[O,l], and on gEBV[O,l]. For arbitrary partition O = x < � <•••< x 
o 1 n

1, and � _ 1 � ti 5 4- for each i, we have

n n 
Ii L l

f(ti)[g(X

i) - g(Xi 1)) I < 
i � 1lf(ti) I lg(x

i) - g(x
i - 1) I 5

II f ll L 11 g(x
i) - g(xi - 1)1

1 
from which it follows that I f fdg I � 11 f II V (g) and hence !IF II S V (g). 

0 

Any two choices of g which differ by an additive constant define 

the same functional F. Thus, we may consider only the functions in 

BV[O,l] which are zero at zero. However, the following example shows 

that it is necessary to impose a further condition on g in order to 

obtain the uniqueness of g. 

Example 2.2 

Let g1(x) O if x < 1/2 and g
1 (x) 1 if x � 1/2, and let

g2(x) = 0 if x S 1/2 and g2(x) = 1 if x > 1/2. For each fEC[O,l],

f�fdg1 = f�fdg2 = f(l/2). Although both g1 and g2 
vanish at zero,

they are distinct and generate the same functional. 

The following lemma will eliminate this ambiguity. 

Lemma 2.3 

For each gEBV[O,l], there exists a unique g which is zero at zero 

f
l fl -

and continuous from the right such that fdg = fdg for each
0 0 

fEC[O,l] and V(g) 5 V(g). 



Proof. Let gEBV[0,l] and define g as follows. 

3 

g(O) = 0, g(l) = g(l) - g(0) and g(t) g(t
+

) - g(0) if 0 < t < 1. 

Clearly g is continuous from the right. The uniqueness follows from 

the definition of g. For arbitrary partition 0 = t
0 

< t
1 

< ••• < t
0 

1,

choose s1, s
2, ••• s at which g is continuous with each sk' n - 1 

sufficiently close that lg(t;) - g(sk) I < E
/2n' If so= 0 and s n

= 1, 

then k f 1lg(tk) - g(tk _ 1)1 S k f 1lg(sk) - g(sk - 1
)1 +ES V(g) + E

from which it follows that V(g) < V(g). For any fEC[0,l], we have 

n n 
lk g lf(xi)[g(tk) - g(tk - l)] I � lk f lf(xi

)[g(sk) - g(sk - l)]I + 

I I  fJI E, hence f�fdg = f�fdg for each fsC[0,l]. 

Let BVN[0,l] denote the subspace of functions in BV[0,l] which 

are zero at zero and continuous from the right. Therefore, each 

gEBVN[0,l] determines a unique functional F on C[0,l]. 

Theorem 2.4 

For each F in the dual of C[0,l], there exists a unique 

gEBVN[0,l] such that F(f) = f�fdg for every fEC[0,l]. Furthermore, 

JIFII= V(g). 

Proof. Consider C[0,l] as a subspace of the space M[0,l] of 

bounded functions on [0,1] with the sup-norm topology. For each 

fEM[0,l], p is defined by p(f) = I I  F II II f II has the properties that 

p(f
1 

+ f2) S p·(f
1

) + p(f2) for any f
1
, f2sM[0,l], p(af) = ap(f) for

a 2 0 for each fEM[0,l] and finally F(f) S p(f) on C[0,l]. It follows 

from the Hahn-Banach theorem [5] that F has a norm-preserving exten-

sion to all of M[0,l]. For each xE[0,l] let ¢ be the characteristic 
X 

function on [0,x). Since F has been extended to all of M[0,l], we may 

define g(x) = F(¢ ). If 0 = x < x < ••• < x = 1 is any partition 
X O 1 n 



of [O,l], then 

n n 

if 1 lg(xi
) - g(xi - 1) I =if l[g(xi) g(x. 

l 

4 

) sgn [g(x.) - g(x. 
_ l 

L l 

:S II F 11 jj if 1 (</ix. - </ix. ) sgn [g(x.) - g(x. 
- l) ]  II= II F Ii-

i i - 1 
i i 

Hence gEBVN(O,l] so that V(g) :S V(g) and f�fdg = J�fdg for each 

fEC[O,l]. 

Let fEC[O,l] and define f by f (t)
n n 

k Each f is 
n a step function having the value f(-) on the intervaln 

[(k - l) / , k; ] for k= 1,2,•••,n.
n n 

Hence {f} converges uniformly to 
n 

f and by the continuity of F,{F(f )} converges to F(f) . Now F(f ) = 
n n 

n 

L f(l) [g(l) - g((k - l) ) ]  fromk 1 n n n 

n 

which it follows that {F(f )} converges to J1
fdg. Therefore F(f) n O 

= f1fdg for each fEC[O,l]. Now we can apply Theorem 2.4 to prove the 
0 

following. 

Theorem 2.5 

If {f} is a sequence of functions from C[O,l], then {f} con-n n 

verges weakly ({F(f )} converges for each FEC*[O,l]) to fEC**[O,l] ifn 

and only if { II f II} is uniformly bounded and {f } converges pointwisen n 

to f. 

Proof. For each xE[O,l], F defined by F (f) = f(x) for each 
X X 

fEC[O,l] is a linear functional on C[O,l]. Therefore, if {f} converges 
n 

weakly to f, then {f } converges pointwise to f and { II f II} is uni-n n 

formly bounded by the uniform boundedness principle [5]. 
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Conversely, for each FEC*[O,l] there is a unique gEBVN[O,l] such 

that F(f) j�fdg for each fEC[O,l] by Theorem 2.4. Since each dg 

generates a unique regular bounded additive set functions µ(dg) de­

fined on the field generated by the closed sets [1 8] so that F(f) 

= j
1

fdg = j
1

fdµ(dg). If {f} converges pointwise to f, then f is
0 0 n 

Lebesgue integrable and f is bounded since { II f II} is uniformly 
n 

bounded. Therefore by the Lebesgue Dominated Convergence Theorem [1 8] 

we have 

lim j
1

f dµ(dg) = j
1

fdµ(dg) = lim F(f ) = F(f) from which it follows
n on O n n 

that the sequence {f} converges weakly to f. 
n 

Representation in the Vector-Valued Setting 

In this section X and Y denote linear normed spaces with the sup­

norm, C the set of X-valued continuous functions defined on [O,l] and 

B the space B[X,Y] of bounded linear operators from X into Y. If T is 

a linear operator from X into Y, then T is continuous if and only if 

Tis bounded [1 8]. Thus we shall use "bounded linear operator" and 

"continuous linear operator" interchangeably. If X and Y are the spaces 

of real numbers a representation is given in the previous secion in 

terms of the Riemann-Stieltjes integral. In 1936, M. Gowurin [6] wrote 

a paper on the Stieltjes integral for vector valued functions as follows. 

If K(t)EB for each tE[O,l] then K is said to have the Gowurin w-property 

provided that there exists a constant M > 0 such that for each parti-

tion 0 

n = 1 

= t < t < ••• < t = 1 and each subset {x.}� 
-

0
1 

of X,
o 1 n 1.1. = 

I l f O [ 
K (t

i + 1
) - K (t

i
) ] x J � M max ( i) 11 xi 1 1  This is equivalent to

bounded variation when K(t) is real and X is the space of real numbers. 
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The smallest such constant will be denoted by WK. The Gowurin w­

property is called the semi-variation. The total variation is defined 

n - 1

using 
i
· Z:: 0

jj[K(t. + 1) - K(t.)]x.11.:s M max
(.) II x. jj. Therefore in the

= l l l l l 

case of real-valued setting the total variation and semi-variation are 

equivalent. 

The integral used throughout this section is defined as follows. 

For fEC and K(t)EB for each tE[O,l],j�dkf = 1&11 b[K(ti + 1
) - K(ti)]f(�

i
)

whenever this limit exists. The following theorem concerning conditions 

under which the integral exists was first shown by Gowurin [6]. 

Theorem 3.1 

If Y is complete, then f1
dKf exists for all fEC if K has the w-

0 

property and this integral defines a continuous linear operator from 

C into Y. Furthermore, for each fECR, the space of continuous real 

valued functions on [O,l] with the sup-norm, lim Z::[K(t. + 
1

) - K(t.)]f(�.) 
a a i i i 

exists in Band hence is denoted by J1
dKf.

0 

Proof. Since fEC is uniformly continuous on [O,l], given E > 0 

there corresponds a o > 0 such that II f (t) - f (s) II X < E for all t and 

s with I t - s I < o. Let a and a' be any two partitions with the 

mesh fineness less than o. Then, 

= I IJi0, [K(tk + 1
) - K(tk) l (f (�) - f (n

µ
) II .:S EWK. It follows that

f1
dKf exists because Y is complete. Let fECR, then for each xEX 

0 

f(t)xEC. Existence of J
1

dKf is shown exactly as above. For any 
0 

partition a, 
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It follows that II I[K(t. + 1) - K(t.)]f(C)II B O l l l 

I I f
l -� WK max

(i) 
f(si) . Hence the norm of 

0
dKf in B is less than or equal

to WK. 

The following example obtained by D. H. Tucker [20] shows that 

not all of B[C,Y] are represented by the integral J
1

dK(•) where K has 
0 

values in B[X,Y]. 

Example 3.2 

Let X be the space of real numbers and I be the identity operator 

on C = Y, then B[X,Y] = B[R,Y] = B[R,C]. For each xE[0,l], let K(x) 

be X (O,x ]
'the characteristic function on (0,x].

generates the transformation I. 

We show that K 

Let fEC, then f
0

1
dKf = 1

0
im �[K(ti. + 1

) - K(t
i
.)]f(s

i.) = 1
0
im I0 X(t t J:(s.) u 

. . + l J i l' l 

= f = I(f). But K(x)¢B[X,Y] except x equals 0 or 1 and we see 

+ 
that K(x)EB[X,Y ] by Theorem 2.5.

D. H. Tucker [20] represented the linear operators from C into Y.

Although the development involved in this is far more complicated than 

that of the previous section, the historical methods of building an 

integral representation is clearly observable. Since continuous func­

tions are approximated by step functions which are discontinuous, we 

first investigate the weak sequential extension of arbitrary linear 

normed space S . 

Lemma 3.3 

+ 
The weak sequential extension S of S, the space of equivalence 

classes of weakly convergent sequences in S, can be viewed as a linear 

- + + ·'(·'( normed space and the inclusions SC S CS C S'' hold ismetrically



and isomorphically where 

respectively. 

Sands
+ + 

de·note the closure of S and S , 

8 

Proof. Suppose {s} is a sequence of points in S which converges 
n 

weakly. Since S can be imbedded isometrically and isomorphically in 

S**, {s } may be considered as a sequence in S**, where the identifi­
n 

cation s +-+ s** is given by s ><(s) = s**(s*) for each s*ES*. Thus for 

each s*ES* lim s (s*) = s**(s*) exists and s** is linear. By the 
J n n 

uniform boundedness principle the sequence {s } is bounded and 
n 

II s**(s*) I I= lim JI s (s*) ii :S lim jj s
n 

/j
n n n iis*il� IJs� ilsgpj/ 

Jls** II::: sgp II sn JJ. 

s ii :nor.1 
n 

which it follows that s** is bounded and 

+ the norm on S by sup 

l ls"' II .s; 
lls** (s*) II

1 

Define 

I lim s * cs ) I . 
1 

n n If {s} converges weakly to sES, then 
n 

Lemma 3.4 

+ -
If KEB , then K represents a bounded linear operator K from X into

+ 
y .

Proof. Let {b} be an element in K and y*EY*. Then y*(b )EX* 
n n 

and JI y*(bn) JI S JI y* J I  JI bn JJ . For a fixed xEX,y*(•)xEB* and since 

Jy*(b)x IS JJy* 11 I J b(x) JJ:; IIY* II JJb JJ llx ll ,JJ y*(•)x JJ� IJy,•JJ llx l l  

and { y*(b )x} converges. Let b (x) = x EY, then {x} converges 
n n n n 

- + 
weakly in Y and {x } EK(x)EY . K(x) may be considered an element of

n 

Y** and hence a linear operator from X into Y
+

. If JI x llx = 1, then 

JI K(x) J�+ = sup J lim y*(b )x J S sup 
11 y* II S 1 

n n 
II y* II < 

lim 
1 

n II y* II lb ex) IIn 

= 11im I I b
n 

(x) II _s; II b!
u

11 <

11 K I� [ X 'y 
+ 

l ::: 11 K I IB 
+.

lllim b*(b ) I 
n n 

JI K JIB
+ and hence
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Lemma 3.5 

If T is a continuous linear operator from C into Y, then T has a 

norm preserving extension T** from C** into Y** and hence from C
+ 

into 

+ 
y . 

Proof. Define a function T* from Y* into C* by taking (T*y*)(x) 

y*(Tx) for each xEC. We show that T*EB[Y*,C*] and II T* II  = II T II-

By the definition of T* the linearity of T* follows immediately. For 

any xEC and y*EY*, I (T*y*) (x) I = I y* (Tx) I ;; 11 y* II 11 Tx II 

S II Y* II !IT II II x II Thus II T*y* Ii� II y* 1111 T II from which it follows 

that II T* II� II T II and T*EB[Y*,C*]. Let E > 0 and xEC with l!x!I S 1 

and ljTx II > II T II- E:. Choose y*EY* so that II y* II = 1 and jy*(Tx) I 

= II Tx II [5]. Then I (T*y*) (x) I= jy*(Tx) I = II Tx II> II T jj - E, hence 

II T*y* II� II T II - E since II x II� 1. It follows that II T* II � II T I I  - E 

since 11 y* I I = 1, and hence II T* II � II T II . We now have the equality 

II T* II == II T II . Similarly, we may define T** from C** into Y** so 

that T**EB[C**,Y**] and II T** 11=11 T* II= IIT I I  -

Lemma 3.6 

If CR is the space of real valued continuous functions on [O,l] 

with the sup-norm, then for fECR and xEXf(t)xEC and T(f(t)x) = T(f•x) 

induces a continuous linear operator T from CR into B by taking T(f)x 

= T(f•x) and II T I I .:5 II T II [19]. 

Proof. T(f)(a 1x1 + a 2x2) = T[f(t)(a 1x1 + a 2x2)] = a.1T(f(t)x1)

+ a 2T(f(t)x2) = a1T(f)x1 + a 2T(f)x2.

II T(f)x II= II T(f(t)x) !�� I IT llf�llf(t)x l lxdt 

= l!Tllf0j
f(t)jdt l! x l lx'.S IITljll fllcRl! x llx, hence IIT II< IITl l-

[aT(f) + bT(g)]x = T(af(t)x) + T(bg(t)x) = T[af(t)x + bg(t)x] 

= T[(a f(t) + bg(t))x] = T(af + bg)x. 
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Theorem 2.5 shows that (CR)
+ 

contains the step functions. There­

fore, if f1,f
2

,•••,fn are characteristic functions of subintervals of

[O,l] and x1,x
2

,•••,xn are points in X, then T(f1)x1 
+ ••• + T(f

n
)xn

= T(f x + •••+f x ). We may identify T with T and make no notational1 1 n n 
+ + 

distinction between them and their extensions to (CR) and C , respec-

tively. 

Lemma 3.7 

Let G, denote the characteristic function on [a,b) and define 
a,;, 

K(t) = T(G
0t(s)) if O < t < 1, K(O) = T(O) and K(l) = T(l). Then K 

has the w-property and W K  < 11 T 11 . 

Proof. < ••• 

n - 1 

< t n 1 is a partition of [O,l] and

II i Z: 
0

[K(ti + 1) - K(t
i

) JxJ y + II
n - 1

T (G (s)) xi. II y +
i; o l t

i
ti + 1

n - 1 
= 11 T [ 

i· ; G ( s) x . ] 11 y+ � 11 T 11 max 11 x . 11 ·0 t
i

ti + 1 
l l 

Suppose fEC, then the sequence of step functions {¢} converges
n - 1 

n 

uniformly to f where each ¢ (t) = . Z: G. n i o i 
/ 

(i + l) / (t)f(�
i

) and

(i + 1) /i; < C � n'n - l 

l[K(
i + 1) /n - ) -

z: n 
i 1 

n 

n - 1 
and T(¢) = n i 

K(
i/ )]f(�.).

n i 

; l
T(G

i 

n 

(i + 1) / )f (C)
l 

In n 

Theorem 3.8 

{T(¢ )} converges to T(f) in the norm of Y
+ 

n 

Proof. Since each step function is a weak limit of continuous 

functions, we first construct a sequence {8 } of continuous n,m m � 2n 
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functions so that {T(8 )} converges to T(¢) in the norm of Y
+ 

as m n,m n 

tends to infinity. Let 8 (t) = f(� ) if 0n,m o 

8 (t) = Af(�.) + 
n ,m 1. 

(1 - A)f(�i _ 1), 0 SAS 

i < t < / · e (t) f(� - n' n,m n 
- 1) if (n

s t< 
i/ - i/

m' n 

1, if 1/ 
n 

- 1/ 
m 

S t S 1 and 8 ( t)n,m 

. 
(i + = f(�.) if 1./ <ts 

1. n 
l) 

/n -
1

;m. Clearly I I  en,m 
II= IJ ¢n II

max II f(C) I I for each m. 
1. 

Since I! e - f II , = max II e ( t) - f ( t) II Xn,m C n,m 

and this maximum value is assumed in one of the four cases in the 

definition of 8 it is dominated by twice the maximum oscillation of n,m. 

f on an interval of length 2
; . From the continuity the oscillation of n 

f on any interval tends to zero as the length of the interval tends to 

zero and hence {T(8 )} converges weakly to T(f) as n tends to infinity.n,m 

Now T of the nth row of the triangular array {8 } 2n,n = 1,2,•••,
n,m m 2': 

is an element of T(¢) and each sequence {8 } converges uniformlyn ni
,m

i 
to f as n. tends to infinity. 

1. 

+ 
If we consider T(f)EY as a point in Y, T(f) is an equivalence

class. We shall show that the sequence {T(¢ )} of equivalence classesn 
+ 

converges to T(f) in the norm of Y . By construction {T(8 )} > 2nn,m m 

is an element of the equivalence class T(¢) and will be used as an 

representative element of the class. For a representative element of 

the equivalence class T(f) {T(f )} where f = f for each m will be used. 
J m m 

sup 
II y* II s

llim y*[T(8 ) - T(f )] I 
1 m n,m m 

llim y*[T(8 - f )] I 
1 m n,m m 

< sup
m 

As shown 

before lie - f 11 tends to zero as n tends to infinity from which itn,m m C 
+ 

follows that {T(¢ )} converges to T(f) in the norm of Y . Thereforen 
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T(f) = f
1

dKf makes sense where the convergence of the integral is in
0 

the norm of Y
+ 

Moreover, II T(f) lly= II T(f) IJy+ = IJ J dKf liy+ 

lim 
n 

n

1.· 
� 

l
[K(

i + 1 
/) II = o n 

K(
i

/ )]f(�.)Jly+ 
n l. 

:; sup 
i 

WK max 11 f ( � . ) 11 < 
l. 

WKll fllc·

Thus IJT II� Wk and together with the reverse inequality established in 

Lemma 3. 7, we have JITI J = WK. 

We now have the following theorem. 

Theorem 3.9 

If T is a bounded linear operator from C into Y, then there ex ists 

a function K on [O,l] with values in B
+

, hence in B[X,Y
+

], such that K 

has the w-property and T(f) = f;dKf for each £EC where the convergence 

of the integral is in the norm of Y
+

. Furthermore, IJ TIJ = WK. 

As Example 3.2 shows, the converse of Theorem 3.9 is not true. 

Given a funtion K with the w-property and its values in B
+

, K determines 

a continuous linear operator from C into Y
+

, the completi on of Y
+

. The 

question under what conditions K determine a continuous linear operator 

from C into Y has been answered in (15] for the case in which X and Y 

are both complete, and a complete characterization is given in (10]. 

Now we will investigate the uniqueness of the function K. 

Lennna 3. 10 

If K has the w-property with values in B[X,Y
+

] for each tE[O,l], 

then for each FEB*[X,Y
+

] FK is of bounded variation on [O,l] and V(FK) 
J 



13 

Proof. If O = t
0 

< t1 < ••• < tn = 1 is a partition of [O,l];

and each s. 
]._ 

- K(t.)], then
]._ 

n - 1 n -

if OIFK(ti + 1
) - FK(t

i
) I =

i � 

n - 1 

i E 
0

siF[K(t
i + 1) - K(ti)]

n - 1 
= jFi E 

0

s
i[K(t

i + 1
) - K(ti)] I <

Theorem 3.11 

1

OIF[K(ti + 1) - K(t.)] I
]._ 

II F II WK. 

Two functions K1 
and K2 generate the same continuous linear

operator T from C 

such a T and (ii) 

= K (1) - K (1) = 

1 2 

into Y if and only if (i) 

there exists a . d 
+

point E:B 

d and for each Ft::B*[X,Y
+

], 

each of K1 and K
2 

generates

such that K
1 

(O) - K2(0)

F[K1 
(t) - K2(t)] = F(d)

except on a countable set E and that i I F[K1 
(t) - K2(t)Jj is finite.

Proof. Suppose K
1 

and K2 have the w-property and generate the

same continuous linear operator T from C into Y, then K = K1 
- K2

generates the zero operator on C. There is no loss of generality in 

assuming K(O) = 0, for if any two K differ by an additive constant then 

they generate the same operator. For each FE:B*[X,Y
+

]
1 

J�dFK•f 

= F f�dKf for each fE:CR since 1�m �[FK(ti + 1
) - FK(ti

)]f(�i)

= 1�m F(� [K(ti + 1
) - K(ti)]f(�

i)) by Theorem 3.1. Since f;dKg = 0

for each gE:C, f;dK(f•x) = 0 for each fE:CR and each xE:X and it follows 

that J;dKf = 0 and f�dFK•f = 0 for each fECR. K(O) = 0 implies 
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FK(O) = O and J
1dFK•l = 0 implies FK(l) = 0 for each F, hence K(l) = 0. 
0 

Let f (t) = t if O � t � s and f (t) = s if s� t � 1 where O < s < 1. 
s s 

An integration by parts yields J1dFK•f = - J
1

FKdf 
O s O s 

= - J
s

FK(t)dt from 
0 

which it follows that FK(t) = 0 a.e. Since FK is of bounded variation, 

the set E = {tE[O,l]/FK(t) f O} is countable and E /FK(t)/ is finite. 
E 

To show the converse suppose K
1 

and K
2 

generate T1 and T
2,

respectively and the conditions (i) and (ii) are satisfied. Let 

+ 
K = K

1 
- K

2 and assume K(O) = K (1) = 0. For each FEB,� [X, Y ], (ii)

implies that FK is of bounded variation and j0
FKdf = 0 for each fECK. 

An integration by parts shows that Ff1dKf = 0 for each fECR and each 
0 

FEB*[X,Y
+

]. Therefore f�dKf = 0 for each fECR. Since K has the w-

1 
property, T(g) = f0dKg exists for each gEC and /jT II� WK. Let

g
n
(t) =

k
t [

n

]t
k

(l - t)n 
-

kg(k/ ) for each n , then {g} converges = o k n n 

uniformly to g. By the continuity of T {T(g )} converges to T(g). 
n 

T( ) f (
n

] [ J1
dKt

k
(l - t)

n - k
]g(

k / ) = 0, for J
0
1

dKtk
(l - t)

n 
8n = k = o k o n 

for each k, from which it follows that T(g) = 0 for each gEC. 

A Unifying Representation Theorem 

- k

The technique used in the previous section motivated the work in 

this section [7]. The main res ult in this s ection generarizes many 

representation theorems [3,4,14,17,20,21, and 22] and gives a road 

map for obtaining a representation . 

Let H be an arbitrary point set, Ebe a field of sets in p(H), the 

power class consisting of all subsets of H, X and Y be linear normed 

spaces and B[X,Y] be the space of bounded linear operators from X into 

Y. Let F denote a linear normed space of functions from H into X with

a norm not stronger than the sup-norm. The space of X valued simple

0 
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functions over Lis denoted by S(E,X). The elements in S(E,X) are of 
n 

the form L 
i 

X where E.EE,E.n E. =�if it j, and x.EX . 
1 E 

xi
i 1. J i 

The set 

1. 

function K from L into B(X,YJ is said to be quasi-Gowurin relative to 

the norm II• II S(E,X) on S(E,X) provided there exists a positive con­

stant M such that for each partition p = {E.} of H into elements of 
1. 

Land elements {x.} in X, 
1. 

IIE(K(E.)]x.lly < M 
p 

1. 1. II LX X. I I
P Ei 1. s(E,X)

The smallest such constant M 

will be denoted by WK. In the case the norm on s(E,X) is the sup-norm, 

this definition agrees the Gowurin w-property [3, 19, 20, and 

21] and in the case H = [O,l], then WK is the Gowurin w constant as

defined by Gowurin [6].

The following lemma is straightforward and hence is stated with-

out proof. 

Lemma 4.1 

Suppose fEcl{S(E,X)} under the sup-norm. Then for each net of 

partitions of H, {{E�}�(p)
1}p, which is cofinal with the net of parti-

1. 1. = 

tions of H (there always exists a partition in the net of partitions 

of H which is finer than a 

is in the sup-norm and for 

given one), lim 
p 

each pair p and 

Ex x� = 
E. 1. 

f where

i, 

1. 

x�Ef(E.). 
1. 1. 

convergence 

From Lemma 4 .1 it follows that if II • I I' is a norm on s (I ,X) which 

is not stronger than the sup-norm and if K is quasi-Gowurin with re­

spect to II • II', then f is K - integrable, i.e., jdKf exists. The 

following lemma is also immediate. 
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Lemma 4.2 

If each f and f are K integrable and lim f 
n n n 

f in the sup-norm, 

then lim fdKf = jdKf. 
n n 

Proof. // J dKf n 
- J dKf II Y < 

Theorem 4.3 

WK II f 
n - f II .

S uppose F is a linear normed space with norm /I • II which is not 

stronger than the sup-norm, and suppose that there is a field of sets 

L such that the norm // • II can be extended to S(I ,X) and such that 

there is a subspace S' (I ,X)C S(I ,X) satisfying (i) FC c l{S' (I ,X)} 

under the sup-norm and (ii) there is a linear operator 8:S(I,X) 

+ F + F
+ 

which is the identity on F and is continuous when restricted

to each of S(I, X) and S' (I ,X) + F, both under the norm II • /I Then 

if Tis a continuous linear operator from F into Y, there is a finitely 

additive set function Kon I with values in B[X,Y
+

] which is quasi­

Gowurin with respect to II· I I such that T(f) = jdKf for each fE:F. 

Furthermore, WK
/ II 8 II 

:S II T II < WK where II 8 111 
is the norm of 8

1 

restricted to S(I,X). 

Proof. + By Lemma 3.5, T has a norm preserving extension T from 

+. + 
Finto Y. Define the set function K from I into B[X,Y

+
] by taking 

+ K(E)x = T (8(xEx)). Clearly K is finitely additive.

S uppose {E.} is a partition of Hover I and that {x.} is a cor-
1 1 

responding subset of X. Then 

I + < + 
I II I[K(E

i
)]x

i II= I T (8(IxE_xi
)) I/ -./IT 11118111 I/ IxE_

xJ from which
1 1 

it follows that K is quasi-Gowurin and WK :S II T II I/ 8 111 
or equivalently
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For any fEFCcl{s' (E,X)}, jdKf exists in Y, the completion of Y, 

by Lemma 4.1 and there is a sequence {s } ={Ex
E

n x�} which converges ton . i 
l 

f in the sup-norm. By Lemma 4 . 2 lim 
n 

E[K(E�)]x� = lim jdKs = jdKf.
i i n n 

Since 11 • II is a norm not stronger than the sup-norm, {s } converges
n 

to f in the norm II· II . Hence the continuity of 8 on S'(E,X) + F 

implies that {8(s )} converges to 8(f) =f in the norm of F
+ 

and the 
n 

continuity of T
+ 

implies that {T
+

(8(s ))} converges to T
+

(f) = T(f).
n 

+ n n But for each n, T (8(s )) = E[K(E.)]x. and it follows that T(f)n i i 

+ ·c. ( . ) 
• __ [ ( n) _ n 

J r f = lim f (vs J - iim L Ki. JX. = lim aKs = ;dK. 
n n n l l n n 

quasi-Gowurin, 

Since i. ls 

IIT(f) II =llfdKf 11 lim II LK(E�)f(t�) /I :Slim WK IIEx
E

pf(t�)II, wherep l l p i l 

tiEEi. It follows from Lemma 4.1 that LXE�
f(ti) converges to f in

' l ' 

the sup-norm and hence in the norm 11 • II . Since lim II LXEPf ( t�) II
' 

p i l 
= 11 f 11 , we have the inequality ii T (f) II � WK II f II from which it 

follows that !Ir II S WK. 

Remark 4.4 

If 8 in Theorem 4.3 maps into F instead of into F
+

, then the 

definition of K given in the proof of Theorem 4.3 becomes K(E)x 

= T(8(x
E

x)). Therefore K takes its values in B[X,Y] instead of in

+ 
B[X,Y ]. 

Remark 4.5 

In general, conditions for the uniqueness of K are not known. 

For example, if F consists of only the identically zero function, then 

it is clear that K need not be unique. 



Representations for Functionals 
Continuous in the BV Norm 

In this section we are back to the space of real valued con-

tinuous functions on the interval [0,l]. This section [8] shows 

that it is possible to get away from the sup-norm topology on a 
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space of functions and the norm will be changed to the stronger norm. 

In the BV norm neither the class of step functions nor that of simple 

functions can get close to the continuous functions. It will be shown 

that the set of polygonal functions is dense in the subspace AC ot 

absolutely continuous functions in the BV norm. 

If any two functions f and g differ by an additive constant, then 

I I  f - gjjBV
= 0. Hence we shall always choose the representative

element from each class in BV[0,l] so that f(0) = 0. 

Theorem 5.1 

The space AC is complete in the BV norm and equals the closure 

of the set of polygonal functions in the BV norm. 

Proof. fEAC implies that f 1 EL
1 and hence there is a sequence 

{si} of step functions converging to f' in the 1
1 

norm. Let p. (x)
l 

J�s
i

dµ, then p
i 

is polygonal and II f - p
i II BV

= L JI (f p.) I I dµ 
l 

Therefore {p.} converges to f in the BV norm. 
l 

Conversely if {p.} is a Cauchy sequence of polygonal functions in 
l 

the BV norm, then {p �} is a sequence of step functions and II p
i 

II
BV

= J;lp�jdµ implies that {p�} is Cauchy in the 1
1 

norm. Since 1
1 

is 

complete, there is a function f'EL
1 

such that {p'.} converges to f' 
l 

in the 1
1 norm, 

f (X) = rf Idµ, 
0 

i.e., {p.} converges to f in the BV norm where 
l 
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It is possible to show that a Cauchy sequence {p.} of polygonal 
l 

functions converges to an AC function with a straightforward calculus 

type argument which does not depend on any knowledge of 1
1. Such a 

proof gives insight and shows that the sequence {p.} is equi-absolutely-
1 

continuous. Since the results in the vector valued setting depend on 

this proof, we outline the proof as follows. 

Since {p.} is Cauchy in the BV norm, it is Cauchy in the sup-
1 

norm and the pointwise limit function f is continuous. If o is any 

partition oi [O,i], chen 

(1) �lf(xi + 
1) - f(xi) I � �lf(xi + 1

) - p
n(xi + 1

) I + �lp
n
(xi + 1

)

- p. (x. ) / + L Ip (x. ) - f (x. ) I .n i o n i i 

The first and third terms on the right of (1) can be made small for 

sufficiently larger n and the middle term is less than II p 
n 

II BV
. Since

sgp I/ Pn II BV 
is finite, the left side of (1) is bounded independent

of a and is an increasing function of a, It follows that fEBV. 

Choose M so that n,m > M implies II pn - pmllBV 
< E and let

L\f = f(xi + 1
) 

LI 6. (f - p ) I < 
o i m 

< 

< 

It follows {p}n 

- f (x.).
l 

LI 6. (f - p ) I 
o i n 

+ L I 6. (p - p ) I
o i n m 

lim n 
2; I 6. (f - p ) I + lim I 6. <P - p .) I
o i  n n i n  m 

0 + lim II pl -
Pm II BV '.::: E

n n 

converges to f in the BV norm. 

Let E > 0 and choose M so that n,m � M implies II p
n 

- p
m IIBV 

<

For pM 
there exists a o > 0 such that if Lly. - x. I< o then

l l 

rlpM(yi) - p
M

(x
i

)I < 
E

/3. For any finite collection {[xi,y
i)} of

intervals with r!y. - x. I < o, we have 
l l 

E 
13·
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(2) Llf(y.) - f(x.) I = Llf(y.) - p (y.) I + Ll(p (y.) - pM(y.)) - (p (x.)1 1 1 n 1 n 1 1 n 1 

- pM(x.»I + LlpM(y.) - pM(x.)I + L)p (x.) - f(x.)I .1 1 1 n 1 1 

The first and fourth terms can be made less than /3 for sufficiently

large n, the second term is dominated by IJ p - pMJ �v which is less 

than 
E::
/

3 
and the third term is less than E::/

3 
by the absolute continuity

of pM. Therefore fEAC. 

Theorem 5.2 

If pf is the polygonal function with corners at exactly the 
a 

points (x.,f(x.)) for x.E::O, then fE::AC implies lim pf =f in the BV 
1 1 1 a a 

norm. 

Proof. Let {
'h

} be a sequence of polygonal functions converging 

to f in the BV norm and a be the values of x at which% has corners. 

Since �Ji\ (pf
0 - q

n) j = J J pf
0

.-q
n 

JJBV and is also an approximating sum

to the value of JI f - q
n l�v which is obtained as the limit with re­

spect to partitions of a nondecreasing function of partitions, 

II pfo - qn IJBV :S JI f - qn II Bv· Hence if JI f - qn IJBV < E:: then for

a' finer than a II f - pf
0, IJBV::: II f - qnllBv + II qn - pf

0, IJ BV

::; II f - qn IIBv + I I  qn - f lJBV < 2E,

Theorem 5.3 

Let lol denote the max {lxi + 1 - xiJ} for xi+ 1, xiE::o. Then

fEAC implies lim 

I a I -+ 

pf
O a 

=f in the BV norm. 

Proof. Let o.1 
be

J�f
o2 

- pfol
l�v < E::

/
3.

[J fCy.) - f(x.)I < E::;
3

a partition such that o.
2 finer than o

1 
implies

Let o
1 

> 0 such that Ijy
i - x

i
i < o

1 
implies

l l 

and N be the number of points 

01 
a' to be any partition with Jo' J = o < 

! 2N 
and let

in a
1
. Choose

a = a' U a 
1



Since o is finer than o:
1, II pfo: - fll

either x.Eo
1 

or x. +
0 

1. 1. 

o < 
1

;2N and hence flx
i 
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Let A= {(x
i

,x
i 

+ 1) I

Then [x
i

, x
i

+ 1]EA implies

Since

I I pf o - pfo' IIBv = i II pfo - pfo' lkv :5 I 11 pfo' IIBv < 
E

/3 
+ E

/3,

I I  f - pf 0, II BV 2 II f - pf0 II BV 
+ 

I pf0 - pf 0, II BV < E for any 0 1 with

lo' I < o.

A half-open interval (a,b]c(O,l] will be called a fundamental set. 

The set function K is said to be convex with respect to length pro­

vided if the fundamental set H is the finite union of disjoint 

fundamental sets {H.}� 
1. 1. = 1 then K(H) = . L 1A.K(H.) where A is the

1. = 1. 1. 

ratio of the length of H. to the length of H. K is said to be funda-
1. 

mentally bounded if for some constant M, IK(H) I � M for each fundamental 

set H and the smalles t such cons tant, denoted by WK, is called the 

fundamental bound for K. The integral involved in the representation 

theorems is defined as follows. If K is a set function defined on the 

fundamental sets, then the v-integral of K with respect to f, denoted 

whenever this limit exists. 

Example 5.4 

If f is a continuous function satisfying f(O) = 0, then the 

f
l 

f
l 

Riemann integral R 0fdx = v 
0

K
1

df where K1 
((a,b]) = 1 - b.

v f�K1df = 1�m �(l - xi+ 1) [f(xi + 1) - f(xi
)] = s J�(l - x)df

where the las t integral is the Stieltjes integral. An integration by 

par ts yields s f�(l - x)df = f(l)•O - f(O)•l + R j�fdx = R j�fdx. 

Note that the set function K
1 

is fundamentally bounded but not convex

with respect to length. If O < t < 1, s jt(l - x)df = f(t)(l - t) 
0 
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+ R ftfdx and it follows that R f
t

fdx f v J
tK

1
df. The definition of

0 0 0 

v J� K
1

df is in the beginning of the next section. 

Example 5.5

If f is a continuous function sat isfying f(O) = 0, then 

R J�fdx = vf�K2
df where K2((a,b]) = 1 -

(a+ b) 
;2. Since

(x. + X. 1) 

V f�K
2

df = 1�m �(l -

R f�fdx = v f�K
2

df. 

1 1 + 
/ 1 

2)[f(xi + 1) - f(xi)] = s fo(l - x)df,

K
2 

is fundament ally bounded and is convex with

respect to length. 

Example 5.6

1 Let K((a,b]) = 0 if b S 1/2 or if a> 1/2, K((l/2,b]) = / (b 1/2)'

and K((a,b]) = [(b - 1/2)/(b - a)]K((l/2,b]) = 1/(b - a) if a< 1/2 < b. 

Then K is fundamentally bounded and convex with respect to length. 

Furthermore, v J�Kdf equals the right-hand derivat ive of f at 1/2. 

Thus v J�Kdf generates a continuous linear functional on c1
, the space

of continuously differentiable functions on [O,l] with the c
1 

norm

given by 11 f /I 
Cl 

= I/ f II 
00 

+ I/ f' II 
ess _ sup

. The v-integral is

extended to represent the continuous linear operators on spaces of 

continuously differentiable vector-valued functions in [9]. 

If H = (a,b], then the function �H is called the fundamental

function determined by H where �H(t) = 0 if t � a, �H(t) = (t - a)/

(b - a) if a< t <b and �H(t) = 1 if t > b. 

Suppose p is a polygonal function anchored at zero which has 

corners at each point of a= {o = X < 

Cl.. denote f (xi+1) -
1 

f (x.) 
1 

for each i.

x. < . . .  < X 
1 n 

Then p = 

= 
n-1 
°L 

i=l 

l}, and 

a.�H
1 . 

1 

let 

where 

H. = ( ] This shows that the set of fundamental functions 
1 

x
i' xi + 1 . 
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forms a basis for the space of polygonal functions which are zero at 

zero. 

Lemma 5.7 

Let K be a convex with respect to length set function, p be a 

polygonal function and a= {x.} be the partition determined by the 
l 

corners of p. If o' = {x . . }, x. < x .. < xl.. + is a refinement of 
lJ 1 l.J 1' 

a, then I[p(x. + 1) - p(x.)]K(H.) = I,[p(x.(. + l)) - p(x .. )]K(H .. ).
a J. J. J. o J. J 1J 1J 

Hence it follows that v jKdp = fK(H.)6.p. cr· l. , 

Proof. Since p has a constant slope on [xi,xi + 1], for each j

[p(xi(j + 1)
) - p(xij)]/[p(xi + 1) - p(xi)] = (xi(j + 1) - xij)/

(xi+ 1 - xi). By the convexity of K, K(Hi) = 

3
[(xi(j + l) - xij)/

(xi+ 1 - xi)]K(H
ij) = �{[p(xi(j + 1)

) - p(xij)]/[p(xi + 1) - p(xi)]}

K(H .. ) from which the lemma follows. 
l.J 

We now state and prove the main result of this section, a 

characterization of AC* (the dual of AC with the BV norm). 

Theorem 5.8 

TEAC* if and only if there exists a unique fundamentally bounded 

set function K which is convex with respect to length such that T(f) 

= v J�Kdf for each fEAC. Furthermore, II T II= WK. 

Proof. For each fundamental set H let �
H 

denote the corresponding

fundamental function and define the set function K by taking K(H) 

= T(�H). If fEAC, then it follows from Theorem 5.2 that pf0 converges

to f in the BV norm. Thus T(f) = lim T(pf0) 
a 

= 1�m T(�6ipf0�H.)

= lim IK(H.)6.f = v fKdf. Furthermore, 
a a 1 J. 

IITII = sup 
II f IIBv 

IT(f) I
1 

2: sup 

�H 

I T(�H)i =sup I K(H)I = 

H 
WK, and 



II T II

< 

= sup 

11 f l�v

sup 

I I sup 
= 1 

T(f) 
= II f lkv

II f l�v
lim E/K(H.) / /fl.f / < /I

s

l /
up 

1 
lim E WK/fl. f /

1 a a i i - f BV = 
a a i 

= 

II ;,�v = 1 
WK II f II BV 

= WK.
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Note that the inequality / v jKdf I < WK I/ f 1/BV 
always holds. Since

T(�
H

) = jKd�
H 

= K(H), K is unique.

Conversely, if K is a fundamentally bounded convex set function, 

then we will show that lim EK(H.)fl. f exists. From Theorem 5.1 
a a i i 

EK(H.)6.f = EK(H.)6.pf = v jKdpf . Since /v jKdpf - v jKdp , I
a i i i i a a a a 

= I E K(H. )6. (pf0 -
aLJa' i i 

Cauchy and it follows that v jKdf exists. 

pf 0, /IBV
, { v jKdpf0} is

Furthermore if { f } converges n 

to fin the BV norm then lim v jKdf = v jKdf, from which it follows 
n n 

that T(f) v jKdf is a continuous operator and the linearity is 

immediate from the definition of the v-integral. 

Remark 5.9 

As shown in Example 5.4, the convexity of K is not necessary to 

generate a linear functional via v jKdf. In the case of Lebesgue 

integral additivity of a measure µ is not required to generate a linear 

functional L jfdµ . Once a linear functional is generated from a 

bounded set function then there is a unique additive (in the case of 

Lebesgue) or a unique convex (in Theorem 5.8) set function which 

generates the same transformation. This is illustrated by Example 5.4 

and Example 5.5. 
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Remark 5.10 

Theorem 5.3 allows the definition of the v-integral to b e restated 

in terms of lim rather than in terms of lim which is a limit with
a 

lol-+ O 

respe ct to the net of partitions. Likewise, Lemma 5.7 and Theorem 5.8 

can also b e restated. Hence the v-integral is as computab le as the 

Riemann integral. 

Some Consequen ces of the Calculus 
of the v-Integral 

In this se ction L denotes the linear normed spa ce of Lipschitz 

fun ctions on [ 0, 1] whi ch are zero at zero with the norm II f IJL given 

b y the Lips chitz constant. We will show Lis isometric and isomorphi c 

to the linear normed spa ce� of b ounded convex set functions defined 

on fundamental sets of (O,l] with the norm given by the fundamental 

b ound. 

If KE� and v j�Kdf exists, then we define v J!Kdf = v J�Kdf
ab 

where f
ab

(x) f(a) for x � a, f
ab

(x) f(x) for a� x � b and f
ab

(x)

= f(b ) for x > b . 

Theorem 6.1 

Let fEAC and KE�. Then v j
b

Kdf exists for a,bE[O,l] and
a 

v f
c
Kdf = v f

b
Kdf + v J

b

c
Kdf for a< b < c. 

a a 

Proof. fEAC implies f
ab

EAC. It follows from Theorem 5.2 that

v J
b

Kdf exists for a,b E[O,l]. Suppose a is a partition which is finer 
a 

than {O,a,b , c,l}. Then 

C b C 

� K((x. ,x. + 1])ti1.
f = I:0K((x. ,x. + 1

])ti. f + I:0K((x. ,x. + 1])ti1.
f. By

0 i 1 a 1 1 1 b i 1 

a 

taking the limit over a, we ob tain the desired equality. 



Theorem 6.2 

If F(x) = v J
x

Kdf for fsAC and Ksn, then FsAC. 
0 
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Proof. Given s> 0, there is a o > 0 such that if {( x
i

,x
i + 1]}

is a collection of intervals with It.. x < o then I/ t..f/ < 
s

/ 
i i WK. 

I/t..F/ = I/J
x

i + 1Kdf - J
x

iKdf/ = I/J
x

i + 1Kdf/ =I//1Kdf /
l O O x. 0 x . x . + 1l l l 

S WK I 1/ f
x

i
x

i + 1
/�v < WK 

s
/

WK 
= s. It follows that FsAC.

In the next two lemmas the isometry and isomorphism between n 

and Lare established. 

Lemma 6.3 

If Ksn then there is a unique Lipschitz function G sL defined by 
K 

G
K(x) = XK((O ,x]). Furthermore //G

K
// L = WK.

Proof. The proof to the above Lemma is straightforward and omitted. 

Lemma 6.4 

If GsL with I/ G JJL 
= L, then the set function KGsn where KG is

defined by KG((a,b]) = [G(b) - G(a)]/(b - a). Furthermore WKG = L.

Proof. Since G is a Lipschitz function it follows that KG is

fundamentally bounded and that WKG = L. We next show KG is convex with

respect to length . 

then 

If (a,b]C(O,l] and {x.} is a partition of (a,b], 
l 

[G(b) - G(a)]/(b - a) 

We now have established the following theorem. 

Theorem 6.5 

The space n is isometric and isomorphic to the space L with the 

mapping given by KH GK. It follows that AC* is isometric and isomor­

phic to L.
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The well-known classical characterization given in [2] for AC* 

states that TEAC* if and only if there exists gEL such that T(f) 

= L ff 'gdµ for each fEAC. We now relate this to Theorem 5.2 and show 

that for some elements TEAC* Theorem 5.2 gives a more explicit represen­

tation of the norm preserving extension of T on BV[O,l] than that of 

[2]. Since the set of polygonal functions is dense in AC in the BV 

norm, it is not difficult to see the following lemma which is stated 

without proof. 

Lemma 6.6 

The closure of c
1

, the continuously differentiable functions on 

[O,l] which are zero at zero, is AC in the BV norm 

Theorem 6.7 

00 1 
If a sequence {gn}of L functions converges to g in the L norm

and if G (x) = L f
x

g (Lebesgue integral) for each n, then
n o n 

1�m vfKG df = v fKGdf for fEL. 

Proof. Iv JK
G 

df 
n 

KG((xi,xi + 1
])]6i

f l

Since {gn} converges to g in the 11 norm, it follows that v JK
G 

df
n 

converges to v fKGdf. 



The orem 6.8 

(X) 

If f€AC, gsL and GsL is given by G(x) 

L ff'g. 

Proof. Let C denote the set of differentiable functi ons. 

Case(l), fsC and gEC. 

= lim E[6.G/6.x][6.f/6.x]6.x = lim E f' (s.)g(n.)6.x 
0 l l l l l 0 l l l 

b•J• th2 Mea� Ual�2 Thenr��, where x. < [ .n < x. . . Ry Bliss' 
l ·i · 

1
1 l + i 
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Theorem, the above limit is the Riemann integral R ff'g from which the 

special case follows. 
(X) 

Case(2) fEC1 and gsL .
1 

g€L implies that there is a bounded sequence {g } in C which con­
n 

verges to g in the L1 norm. By The orem 6.7 1�m v JK
G 

df = v JKGdf,
n 

where G (x) = L J
x

g for each n. n o For each n, v JK
G 

df = L ff'gn and
n 

by the Bounded Convergence Theorem 1�m L ff'
f4-i 

= L ff'g and hence 

Case(3) f€AC and g€L 

Lemma 6.6 implies that there is a sequence {fn} in c
1 

which con-

verges to f in the BV norm from which it follows that lim v fK
Gdfn

= v fK
G

df. From Case(2) v fK
Gdfn = L ff'ng for each n. Since {fn}

1 
converges to f in the BV norm, {f'n} converges to f' in the L norm.

Holders inequality yields L fl (fn

which it follows that lim L ff'ngn 

f)'gl:::; II fn - f I ILl II gll00 from

L ffg and hence v JKGdf = L ff'g.



Corollary 6. 9 

) Jx ' , ' I f fEAC, KEQ, and F(x = v 
0

Kdf, then F = f GK 
a.e.
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Theorem 6.8 gives the most natural relations between the repre­

sentation given by the v-integral and that in [2] by the isomorphism 

The following development gives a sufficient condition on the 

convex set function K so that the v-integral of K with respect to every 

BV function will exist (Corollary 6.12). 

Theorem 6.10 

Let fEBV and {Kn}CQ such that the v-integral of each Kn with

respect to f exists and suppose {Kn} converges to KEQ. Then the v­

integral of K with respect to f exists and lim v fK df = v fKdf. 
n n 

Proof. For each n let gnEL
00 

for which GK 
(x) = L J:gn.

n 
v fK

G 
df is Cauchy, because 

< lim I <JJ gn - gm JJ1
00 6. x/6.x) J 6 . f Ja a i 1 1 

Since {Kn} converges to KEQ, {G
K

} converges to
n 

converges to g in the L00 norm. Therefore lim v n JK
G 

df exists. Let
n 

V = 1�m vfKG df and we show that V = v JKdf. Given E > 0, there is a
n 

positive integer N such that n > N implies llgn - g JJ < 
E 

/ 3 IJ f JJBV and

that Iv - v JK
G 

df l < 
E

/3
. Let cr' be a partition so that if a is finer

n 



30 

than a' then 1
5

KG ((x
i
,x

i 
+ 1J)6

i
f - v JK

G 
df l < 

E
;3

. For a finer

than a'

n n 

Iv - [KG((s. ,x. + 1
])6.f l s Iv - v JK

G 
df l +

Iv JK
G 

df - [K
G 

((x.,x. + 1
])6.f l

a i i i 
n n a n i i i 

< f_ / + f_ / + L II g - g I I 00 I 6. f I 
3 3 n IL i 

This completes the proof . 

Theorem 6.11 

If 
G is polygonal, then v JKGdf exists for each fsBV[0,1].

Proof . Let OG = {ai} be the partition of [0,1] determined by the

corners of G. For fsBV and a finer than a
G

, �KG((xi
,x

i + 1J)6i
f

= 1.[6.G/6.x]6.f = [a.6.f where a. is the slope of G on the interval
O i  i i OJ l J 

LKG((x. ,x. + 1))6.f = [a.. [f(a. + 1) - f(a
J
.)] = v jKGdf.

a i i  i jJ J 

If Ksrl and fEBV[0,1], then Iv fKdf I � WK IJ f JIBv· Hence if the

v-integral of K with respect to each fEBV[0,1] exists, then K defines

a continuous linear functional on BV[0,1]. This observation together 

with Theorem 6.10 and Theorem 6.11 establish the following corollary. 

Corollary 6 .12 

I f g is in the sup-norm closure of the step functions and if 
G(x)

L J:g, then T(f) = v jKGdf exists for each fEBV[0,1] and TEBV*[0,1]. 
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The v-Integral in the Vector-Valued Setting 

As one would expect it is a very natural thing to extend the re­

sults of the v-integral to the vector-valued setting [8], as D. H. 

Tucker [20] extended the result of the Riesz Representation Theorem. 

In this section X denotes a Banach space, Y denotes a linear normed 

space, and B[X,Y] is the linear normed space of bounded linear opera­

tors from X into Y. The variation of an X-valued function f is 

defined to be V(f) = sgp L 16
4

£ II and BV(X) denotes the linear normed

space of X-valued functions of bounded variation which are 8X (the

additive identity of X) at O with II f IIBV(X) 
= V(f). The space of X­

valued absolutely continuous function, AC(X), is defined in the 

analogous manner. A function of the form p = L�
H 

x. is called an 
. l 
l 

X-valued polygonal function where each x.sX. Let r denote the closure
l 

of the set of X-valued polygonal functions in the BV norm. Although 

r f AC [11), re AC as in the following theorem. 

Theorem 7.1

norm, 

norm. 

If {p} is a Cauchy sequence of polygonal functions in the BV
n 

then there exists fEAC such that {p} converges to f in then 

The proof follows as in the second proof of Theorem 5.1. 

The following theorem is a generalization of two theorems from 

Section 5 and is stated without proof since the proof follows as 

earlier. 

Theorem 7. 2 

(i) If £sf, then lim pf = f where the convergence is in thea a 

BV 

BV norm. (ii) If K is a set function with values in B[X,Y] which is 
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convex with respect to length, p is a polygonal function and a is the 

partition of [O,l] determined by the corners of p, then a' finer than a 

K is v-integrable with respect to p and v fKdp 

Theorem 7.3 

I:K((x. ,x. + 1])6.p.
a i i i 

Suppose K is a fundamentally bounded convex with respect to length 

set function and takes values in B[X,Y]. Then the transformation given 

by T(fJ = v fKdi is a bouncie<l linear upe�aLor �rofu r lntc Y, t�e com-

pletion of Y. Furthermore JJ T J J = WK. 

The proof follows as in Theorem 5.2.

Theorem 7.4

If T is a bounded linear operator from r into Y, then there is a 

unique fundamentally bounded convex with respect to length set function 

with values in B[X,Y] such that T(f) = v fKdf for each £sf. Furthermore, 

lit II= WK. 

Proof. Define a linear map T from AC into B[X,Y] by taking 

T(�H)x = T(�Hx) for each fundamental function H. It follows from

Lemma 3. 6 that 11 TI I < 11 TI I . Let K be the set function on fundamental 

sets defined by K(H) 

in Theorem 5.2.

T(�H). The remainder of the proof follows as

If Y is complete, then the following corollary follows from 

Theorem 7.3 and Theorem 7.4. 

Corollary 7.5 

Suppose Y is complete, then a transformation T from r into Y is 

a bounded linear operator if and only if there is a unique fundamentally 
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bounded set function K with values in B[X,YJ which is convex with re­

spect to length such that T(f) = v fKdf for each £sf. Furthermore, 

II T II = WK. 

The variation of an X-valued function f may be defined to be 

SV(f) = sup{sup{ II  I: a.6.f II : I a. I :;; l}} which is called the semi-o O l.l. l. 

variation of f. Let BSV denote the space of functions of bounded 

semi-variation which are 0X 
at zero and with the norm given by the

semi-variation. The notion of semi-absolutely continuity is defined 

analogously and SAC denotes the corresponding function space. Let sf 

be the closure of the set of X-valued polygonal functions in the BSV 

norm. A similar proof to that of Theorem 7.1 shows that SfCSAC. 

Lemma 7.6 

If p1 
and p2 are X-valued polygonal functions, and o1 and o2 are

the partition of [O,l] determined by the corners of p1 
and p2, respec­

tively, then 

Proof. Let 

sup { II J. a. 6. (p1 ... P2) II0
1

002 1. 1. 

{xi}= o
l

uo2.

a. l. < l}.

sup{sup{ II I:B .6 . (p
1 - p2) II : I B

J
. I :S l}}

o o J J 

= sup{sup{ IILB.[(x.(
. + l) 

- x .. )/(x. + 1 - x.)]6.(p
1 - p2)11 :IB.I <l}}TT TT J l. J l.J l. l. l. J -

where TT is any partition finer than 01
002, and

[x
ij ,x

i (j + l)] C [xi 
,x

i + 1]. Since

equality holds. 
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Due to Lemma 7.6 similar proofs to Theorem 7.2, 7.3, and 7.4 show 

the analogies of these theorems can be established in the semi-variation 

setting. The following is the analogous theorem to Corollary 7.5. 

Theorem 7.7 

Suppose Y is complete, then a transformation T from sr into Y is 

a bounded linear operator if and only if there is a unique fundamental­

ly bounded set function K with values in B[X,Y] which is convex with 

respect to length such that T(f) = v /Kdf for each fESf. Furthermore 

II Tl! = WK. 

In the special case Y 

f* (Sr)*. 

R, Theorem 7.5 and Theorem 7.7 imply 

Let n(B[X,Y]), be the space of bounded convex with respect to 

length set functions K with the norm I) K II WK. Let L(B[X,Y]) denote 

the space of Lipschitz functions on [O,l] with values in B[X,Y] which 

are 8B[X,Y] at zero with the norm given by the Lipschitz constant L.

The results obtained in Theorem 6.2 - 6.6 and 6.10 - 6.12 can be all 

carried over to the vector setting and hence will be stated without 

proof. 

Theorem 7.8 

The space n(B[X,Y]) is isometric and isomorphic to the space 

L(B[X,Y]) by the map given by Gt--,KG. Therefore f* and (Sr)* are

isometric and isomorphic to L(B[X,Y]). 

Theorem 7.9 

If fEBV[O,l] and {K} is a sequence in n(B[X,Y]) which convergesn 

to KEn(B[X,Y]), and if each K is v-integrable with respect to f, thenn 

K is v-integrable with respect to f and lim v fK df = v fKdf.n n 
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Theorem 7.10 

If G is polygonal, then v fKGdf exists for each fEBSV.

Corollary 7 .11 

A sufficient condition that T(f) = v fK
G

df be a bounded linear

operator from BV[O,l] into Y is that G be in the closure of the 

polygonal functions in L(B[X,Y]). 

Av-Integral Representation for Linear Operators 
on a Space of Continuous Vector-Valued Functions 

Section 3 shows a very elaborate and difficult construction by 

D. H. Tucker (20] to obtain a Stieltjes integral type representation

for continuous linear operators from C into a linear normed space Y

where C is the space of continuous functions on [O,l] with values in

a linear normed space X. This last section of the paper shows a rep­

resentation by the v-integral which is rather straightforward [10].

Let K be a set function defined on fundamental sets (half-open 

intervals) with values in B[X,Y]. If there is a constant M such that 

for any disjoint collection {H.} of fundamental sets 
l j 

responding subset {x.} of X II 2:K(H. )x. 11 � M max II L 
l l l j i = 

and any cor-

x. II , then K is 
1 l 

said to be convex-Gowurin and the smallest such constant Mis denoted 

by WK. For any continuous linear operator T from C into Y and any 

fEC, T(f) T(f - X[O,l]f(O)) + T(X
[O,l]f(O)) and hence we only con-

sider the functions in C which are 8 at zero. 

Theorem 8.1 

If K is a set function with values in B[X,YJ which is convex­

Gowurin and convex with respect to length, then T(f) = v jKdf is a 

bounded linear operator from C into Y. Furthermore II T 11 = WK. 
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Proof. Le t a and a' be parti tions of (O,l] and for fEC let pf0

and pf I be the polygonal functions with corners determined by f, cr,
a 

and cr', respectively. Then III K((t.,t. + 1])6.f - I,K((t.,t. 1])6.£11 
0 1 1 1 0 J J 

+ 
J. 

:S 11 I , K ( ( tk, tk + 1 J ) �(pf 
0 

- pf 
0, ) 1 1  

crucr 

:S WK m�x II k f 1 � (pf
0 - pf 

0,) II . Since pf
0 

and pf
0, 

both converge to f as the mesh fineness of a and ' tend to zero, 

n 
mgx II k f 16k(pf

0 - pf
0,) tends to zero, and it follows that 

'i(f) = v fKcif exists. 11TI! = sup II T(O Ii 

= sup llvfKdf JJ= sup 
1 1  f II = 1 1 1  f 11 = 1

5 WK m-:x 11 i f l' if 1 1  = WK.
J 

11 f 115 1

JJ lim IK((t. ,t. + 1 ])6.f II 
a a 1 1 1 

Le t �H denote the fundamental function determined by a fundamental set 

H (see Section 5), then v fKd(�Hx) = K(H)x for xEX. If {H.} is a dis-
1 

joint collectio� of fundamental set s and {x.} is a corresponding subset 
1 

of X, then 

JJIK(H
i)x

i II = II v fKd(I�H.xi) II JIT(I�H.xi)l!:s !IT l!I�H_xJ.
1 1 1 

j 
But II I�H x. 11 5 max J I. I 1x

1
. II from which it follows that WK� II T l!,

i 
1 

j 
1 

and we now have II T 1 1  = WK. 

Theorem 8.2 

If T is a bounded linear operator from C into Y, then there is a 

unique set function K with values in B[X,Y] which is convex-Gowurin and 

convex with respec t to length such that T(f) = v jKdf for each fEC. 

Furthermore, 11 T II = WK. 
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Proof. Define T from CR, the spRce of continuous real valued 

functions on [O,lJ, into B[X,Y] by taking T(£)x = T(f•x), then it 

follows from Lemma 3.6 that jj1' IJ S: IJ Tjj. For each fundamental set H 

If H is a union of disjoint fundamental sets {H.},
l 

then 1/1 - �, ''' where A. is the ratio of the length of H. to the 
�H - �Ai�H. L l 

length of H. Since 1' is linear, it follows that K is convex with re-

spect to length. If {x.} is a subset of X, then 
l 

III:K(H
i

)xill=III:T(l/JH_)x
j
ll =/I I:T(l/Jq x)I/ =IIT([l/JH_xi)I! < IITII IJ[l/JH_x

ill
l l l l 

and II I:1/;H_
xJ s max 11 I: x. II , hence K is convex-Gowurin. 

j i = 1 i 

For any

£EC, T(f) = lim T(pfa) 
a 

lim T(I:lj;
H 

6.£) = lim I:K(H.)6.f = v jKdf.o a i 
i a a i i 

Since K determines T uniquely on polygonal functions which are dense 

in C, K is unique. 

Therefore, in the case Y is complete we have a characterization, 

as opposed to a representation, of the linear operators which is not 

immediate in Section 3. 

The v-integral development [8] is extended [l] to a more general 

setting [16] by parallel development. Av-derivative can be defined 

in the real valued setting appropriately [12,13] in order to establish 

the Fundamental Theorem of Calculus type theorem. 
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