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ABSTRACT
Integral Representation Theorems
by
Leiko Hatta, Master of Science
Utah State University, 1971
Major Professor: Dr. S. G. Wayment

Department: Mathematics

Since F. Riesz showed in 1909 that the dual of C[0,1] is

1]

BV[0,1] (the functions of bounded variation on [0,1] with l[g“
BV

V(g)) via the Stieltjes integral, obtaining representations for linear

operators in various settings has been a problem of interest. This

paper shows the historical manner of representationss the

road map type theorems and representations obtained via the

v-integral ,

(44 pages)




INTRODUCTION

Historically integration has been studied in the sup-norm or
weaker topology on the function space as Riemann and Lebesgue integra-
tions in which integrable functions are approximated by step functions
and simple functions, respectively. This presents complications in
obtaining a representation for linear operators on the space of con-
tinuous functions, for step functions and simple functions are not
continuous. One must work in the weak sequential extension of a space
in order to extend the domain of linear operators in question. The
main topic of this paper is to discuss historical methods for the
integral representation and the characterization of the linear opera-
tors on the space of continuous functions on [0,1] with the BV norm

(the norm given by the H f H = V(f), the variation of f over [0,1].

Dual of C[0,1], Riesz Representation Theorem

In 1909, F. Riesz [17) characterized the dual of the space C[0,1],
the space of continuous functions onthe interval [0,1] with the sup-

norm topology. The Riemann-Stieltjes integral is defined to be

i - o = = < < ese < -
lim gf(ti)[g@i+l) g(xi)] where {0 X, < x x 1}
| o | >0
q PR < < ] = LI ) O =
is a partition of [0,1], X, _ St 2%, 1 1,2, n and l [
max {}x, - X, |+ 1i=1,2,°*+,nl}.
i i-1

Theorem 2.1
For each geBV[0,1], the space of the functions of bounded varia-

1
tion on [0,1], F defined by F(f) = [ fdg for each feC[0,l] is a
(o]




continuous linear functional on C[0,1], where the above integral is the
Riemann-Stieltjes integral. Furthermore, HF” < V(g).
Proof. Clearly F is linear since the integral depends linearly on

feCc[0,1], and on geBV[0,1]. For arbitrary partition O = XO < xl <eee< xn =

1, and x <t, £ X for each i, we have
i i

-1 -

[Inslt=]

| )| <

i e et - glx;

n
I f(eple®) - g, _ DI 2y 7

Il
el 2,1 etx) - g _ )

IN

from which it follows that | f;fdgl || £ || v(g) and hence |F|| < V(g).
Any two choices of g which differ by an additive constant define

the same functional F. Thus, we may consider only the functions in

BV[0,1] which are zero at zero. However, the following example shows

that it is necessary to impose a further condition on g in order to

obtain the uniqueness of g.

Examgle 2.2

L]

Let g (x) = 0 if x < 1/2 and g, (x) = 1 if x > 1/2, and let

gz(x) =0 if x € 1/2 and g2(x) =1 if x > 1/2. For each feC[0,1],

1 1 .
fofdgl = fofdg2 = £(1/2). Although both 8, and g, vanish at zero,
they are distinct and generate the same functional.

The following lemma will eliminate this ambiguity.

Lemma 2.3
For each geBV[0,1], there exists a unique g which is zero at zero
and continuous from the right such that féfdg = féfdg for each

feCc[0,1] and V(g) < V(g).




Proof. Let geBV[0,1] and define g as follows.

g(0) = 0, g(1) = g(1) - g(0) and g(t) = g(t') - g(0) if 0 < ¢t < 1.

Clearly é is continuous from the right. The uniqueness follows from

the definition of é. For arbitrary partition 0 = to < tl SROCORKS tn =1,
choose Sl’ 32, D00 sn _ 1 at which g is continuous with each sk
oF €
2 2 =" & . = =]
sufficiently close that Ig(tk) g(sk)| /2r1 If S, 0 and s, 1,

n

= - I
th - -
en I le(t) -alt, _ DS Lles) -gls, _ D] +e<vie +e

e

from which it follows that V(é) < V(g). For any feC[0,1], we have

n -— -
2 EGe)8(e) - 8(t, _ D]

n
5 -
I 2 EGe8(s) - gls _ D]+
|| £]| €, hence féfdé - féfdg for each feC[0,1].
Let BVN[O,1] denote the subspace of functions in BV[0,1] which

are zero at zero and continuous from the right. Therefore, each

gEBVN[0,1] determines a unique functional F on C[0,1].

Theorem 2.4

For each F in the dual of C[0,1], there exists a unique
g€BVN[0,1] such that F(f) = féfdg for every feC[0,1]. Furthermore,
[[E[]= v(e).

Proof. Consider C[0,1] as a subspace of the space M[0,1] of

bounded functions on [0,1] with the sup-norm topology. For each
feM[0,1], p is defined by p(f) = |[|F || || £ || has the properties that
p(ﬁl + f2) < P(fl) + p(f2) for any fl, f2€M[O,l], p(af) = ap(f) for

o > 0 for each feM[0,1] and finally F(f) < p(f) on C[0,1]. It follows
from the Hahn-Banach theorem [5] that F has a norm-preserving exten-
sion to all of M[0,1]. For each xe€[0,1] let ¢x be the characteristic

function on [0,x). Since F has been extended to all of M[0,1], we may

define g(x) = F(¢X). If 0 = X < Xy < siee < x = 1 is any partition




n n
L Loglex) ety I = g B lelx) - glx, _ il men [glx) - gle, - o)1
3 & N\
s i ; l(¢x, o ®x. ) sgn [g(xi) N g(xi - l)]
i i-1
n
< |l F | i L l(¢xi - ¢Xi ) l) sgn [g(xi) = g(xi ~ l)]“ = | [F ||

Hence geBVN[0,1] so that V(g) < V(g) and féfdé = féfdg for each

feCc[0,1].

i~ B

ke, . |
T, €®) = b _ gy (£)].

n n

Let feC[0,1] and define f by f (t) =
n n k

Each fn is a step function having the value f(%) on the interval
[(k - l)/n, k/n] for k = 1,2,°**,n. Hence {f } converges uniformly to
n
f and by the continuity of F,{F(fn)} converges to F(f). Now F(f ) =
n

n
D fS @ - g1 from

| {ng =]

k v
(EEEG, ) - F(@

2 ] =
/ (k = 1) k

/

n n
which it follows that {F(fn)} converges to Iéfdg. Therefore F(f)
= flfdg for each feC[0,1]. Now we can apply Theorem 2.4 to prove the
0

following.

Theorem 2.5

If {ﬁl} is a sequence of functions from C[0,1], then {ﬁ1} con-
verges weakly ({F(ﬁ1)} converges for each FeC*[0,1]) to feC**[0,1] if
and only if {H gl |H is uniformly bounded and {%1} converges pointwise
to f.

Proof. For each xg[0,1], FX defined by Fx(f) = f(x) for each
feC(0,1] is a linear functional on C[0,1]. Therefore, if {ﬁl} converges
weakly to f, then {%1} converges pointwise to f and {H ﬁl ”} is uni-

formly bounded by the uniform boundedness principle [5].




Conversely, for each FeC*[0,1] there is a unique geBVN[O0,1] such
that F(f) = féfdg for each feC[0,1] by Theorem 2.4. Since each dg
generates a unique regular bounded additive set functions p(dg) de-
fined on the field generated by the closed sets [18] so that F(f)
= féfdg = féfdu(dg). If {fn} converges pointwise to f, then f is
Lebesgue integrable and f is bounded since {llfn ||} is uniformly
bounded. Therefore by the Lebesgue Dominated Convergence Theorem [18]

we have

.l ! . _ L
lin jofndu(dg) = fofdu(dg) = lim F(f ) = F(f) from which it follows

that the sequence {fn} converges weakly to f.

Representation in the Vector-Valued Setting

In this section X and Y denote linear normed spaces with the sup-
norm, C the set of X-valued continuous functions defined on [0,1] and
B the space B[X,Y] of bounded linear operators from X into Y. If T is
a linear operator from X into Y, then T is continuous if and only if
T is bounded [18]. Thus we shall use "bounded linear operator' and
"continuous linear operator' interchangeably. If X and Y are the spaces
of real numbers a representation is given in the previous secion in
terms of the Riemann-Stieltjes integral. In 1936, M. Gowurin [6] wrote
a paper on the Stieltjes integral for vector valued functions as follows.
If K(t)eB for each te[0,1] then K is said to have the Gowurin w-property

provided that there exists a constant M > O such that for each parti-

tion 0 = t < t, < ¢°* < t = 1 and each subset {x.}? -1 of X,
o 1 n i'i=20
n =1
_ | < . hi . .
|h X O[K(ti + l) K(ti)]xih <M max(i)” xi|| This is equivalent to

bounded variation when K(t) is real and X is the space of real numbers.




The smallest such constant will be denoted by WK. The Gowurin w-

property is called the semi-variation. The total variation is defined

n-1

using . z 0|“K(ti o l) = K(ti)]xiH <M max(i)” xi‘l. Therefore in the

case of real-valued setting the total variation and semi-variation are
equivalent.
The integral used throughout this section is defined as follows.
1 ;
For feC and K(t)eB for each tE[O,l],dekf = 1jm RIK(t; o ) - K(e)IEE))
whenever this limit exists. The following theorem concerning conditions

under which the integral exists was first shown by Gowurin [6].

Theorem 3.1
1
If Y is complete, then deKf exists for all feC if K has the w-
property and this integral defines a continuous linear operator from

C into Y. Furthermore, for each feCR, the space of continuous real

) - K(£)IE(E)

valued functions on [0,1] with the sup-norm, lém 25[K(ti .

exists in B and hence is denoted by fédKf.

Proof. Since feC is uniformly continuous on [0,1], given € > 0
there corresponds a § > 0 such that || f£(t) - £(s) || x < € for all t and
s with | t = s | < 8. Let g and o' be any two partitions with the

mesh fineness less than §. Then,

I50KCe; | ) = K(EDIEE) - Silk(e, | ) - Ke)1EM ]|

[K(t ) = K(E)I(EE) - f(nU)H < €WK. It follows that

- H&%o Yeme it

fédKf exists because Y is complete. Let feCR, then for each xeX

1
f(t)xeC. Existence of f dKf is shown exactly as above. For any
0

partition O,

I LK (t, ) = K(tinf(gi)xu < WK max<i>‘| E(E, )% |

]




= WK max(i)lf(éi)|"x || . 1t follows that || %[K(t. = K(ti)]f(gi)HB

i+ 1
1 =
< WK max(i)ff(gi)'. Hence the norm of deKf in B is less than or equal
to WK.

The following example obtained by D. H. Tucker [20] shows that
not all of B[C,Y] are represented by the integral fédK(') where K has

values in B[X,Y].

Example 3.2

Let X be the space of real numbers and I be the identity operator
on C =Y, then B[X,Y] = B[R,Y] = B[R,C]. For each x£[0,1], let K(x)
be ¥ © X],the characteristic function on (0,x]. We show that K
b

generates the transformation I.

Lo o B s _
Let feC, then fodKf = 1im ZIK(t; , ) - K(e)IE(EY) = 1im I Xe, ¢, FE

= f = I(f). But K(x)¢#B[X,Y] except x equals 0 or 1 and we see
that K(x)EB[X,Y+] by Theorem 2.5.

D. H. Tucker [20] represented the linear operators from C into Y.
Although the development involved in this is far more complicated than
that of the previous section, the historical methods of building an
integral representation is clearly observable. Since continuous func-
tions are approximated by step functions which are discontinuous, we
first investigate the weak sequential extension of arbitrary linear

normed space S.

Lemma 3.3
. . + .
The weak sequential extension S of S, the space of equivalence
classes of weakly convergent sequences in S, can be viewed as a linear

= s o
normed space and the inclusions STS C S+C St o ld ismetrically




and isomorphically where S and S+ denote the closure of S and S+,
respectively.

Proof. Suppose {sn} is a sequence of points in S which converges
weakly. Since S can be imbedded isometrically and isomorphically in
S**k {sn} may be considered as a sequence in S**, where the identifi-
cation s €2 s*%* is given by s*(s) = s**(s*) for each s*eS*. Thus for
each s*eS¥% I%m sn(s*) = s**(s*) exists and s** is linear. By the

uniform boundedness principle the sequence {sn} is bounded and

lsxx(e 1] = 1am [Fs 1] < 1gm il s, 1 ¥l < 1l s% il sypi s, i vxom
which it follows that s** is bounded and Hs**|‘f sup “sn H. Define
the norm on 57 by || (s M| = | s [l = sup  Jerr(en)|
) Bl < 1

= sup |1im s*(s )|. 1f {s_} converges weakly to seS, then

fex =z ® : :
w( i = -
s Hi= s .

Lemma 3.4

+ -
If KeB , then K represents a bounded linear operator K from X into

a4

Proof. Let {bn} be an element in K and y*eY*. Then y*(b_)eX#
and [[y* )[[< |[y* || [[b |l . For a fixed xeX,y*(+)xeB* and since
ly*®x [ < [[y* [ lleco (1< [hyx (Pl xS0 y*Coxll < (Fy*ll =]
and { y*(bn)x} converges. Let b (x) = x €Y, then {xn} converges

-— + -
weakly in Y and {Xn} €K(x)eY . K(x) may be considered an element of

+
Y** and hence a linear operator from X into Y . If || x “X = 1, then

|‘E(x)| + = sup |Lim y*(b x| < sup lim || y* H Ib (x) ||
" y*[ <1 " : Iy <1 ® :
= l%m I bn(X)” < I biuﬂ < l\l%m b*(bn)l = |l x HB+ and hence

1R Iy gty < 1K e




Lemma 3.5

If T is a continuous linear operator from C into Y, then T has a
norm preserving extension T** from C** into Y** and hence from C+ into
Y+.

Proof. Define a function T* from Y* into C* by taking (T*y%*) (x)
= y*(Tx) for each xeC. We show that T*eB[Y*,C*] and || T*I|= [[T I
By the definition of T* the linearity of T* follows immediately. For
any x€C and y*eY¥*, I(T*y*)(X)! = Iy*(TX)] < |l y* Il Il Tx I

<l yx I lIT]l =l - Thus || T*y* || < || y* || [IT || from which it follows

that || T* || < ||T || and T*eB[Y*,C*]. Let € > 0 and xeC with |x] <1

and ||[Tx || > || T||-€. Choose y*eY* so that | y*| = 1 and |y*(Tx)|

= |l T || [5]. Then [(T*y*)(x)| =[y*(Tx)| = [[Tx [| > [[T]| - €, hence

|| T*y* || 2 ||T|| - € since || x || < 1. It follows that || T* |2 | T]|- ¢
since || y* || = 1, and hence || T* || 2 || T|| . We now have the equality
|t ||= || T || . Similarly, we may define T** from C** into Y** so

that T**eB[C**,y**] and | T** |[|=| T* || = |l T]]-

Lemma 3.6

If CR is the space of real valued continuous functions on [0,1]
with the sup-norm, then for feCR and xeXf(t)xeC and T(f(t)x) = T(f-°x)
induces a continuous linear operator T from CR into B by taking T(f)x
= T(f*x) and || 7 || < || T || [19].

Proof. 7T(f)(@,x, + a2x2) = T[f(t)(alx

1¥1 + aZXZ)] = alT(f(t)Xl)

1
+‘a2T(f(t)X2) = alT(f)Xl + azT(f)Xz.
I7ox [ = | TE@o s [T ]l foleex [, de

1
= [l [oleceylae x|l < NIl I €l gl x Iy, hence [[ 2 [ < [[ 7]l
[aT(f) + bT(g)]x = T@f (t)x) + T(bg(t)x) = Tlaf(t)x + bg(t)x]

= T[(@f(t) + bg(t))x] = T(af + bg)x.
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+
Theorem 2.5 shows that (CR) contains the step functions. There-

fore, if fl,fz,'",fn are characteristic functions of subintervals of

[0,1] and X15%

O 1 1 +-oo
99 sX_ are points in X, then T(fl)xl + T(fn)xn

= T(flx + "'+fnxn). We may identify 7 with T and make no notational

:
. . ; . + +
distinction between them and their extensions to (CR) and C , respec-

tively.

Lemma 3.7
Let G , denote the characteristic function on [a,b) and define
a.

K(t) = T(Got(s)) if 0 <t <1, K(0O) = T7(0) and K(1) = T(1). Then K

has the w-property and WK < ||T|!.

Proof. If 0 = £ < ty SO tn = ] is a partition of [0,1] and
X »X;,°**,Xx _ , are points in X, then
n-1 n-1
~ _ (e (s)) x. ||+
g 2 gireey 4 ) mkepIxgllgr = Il 2 F17ee, L
n-1
g, el < Tl ma llx, I
ii+1
Suppose feC, then the sequence of step functions {¢n} converges
1= il
uniformly to f where each ¢ _(t) = . I oGi/ G+ l)/ (£)£(g,;) and
n n
n-1
i (i +1) _ N
fn 2818 /p» 80d T(8) = 4 L 1T(Gi/ , G+ 1), R
. n n
n-1 i+ 1) i
=~ % l[K( /n) K( /n)]f(ii)-

Theorem 3.8
+
{T(¢n)} converges to T(f) in the norm of Y .

Proof. Since each step function is a weak limit of continuous

functions, we first construct a sequence {0 } of continuous
n,m m 2 2n
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+
functions so that {T(Gn m)} converges to T(¢ ) in the norm of Y as m
bl

tends to infinity. Let en m(t) = f(go) if 0 <t< / - H
l

(t) xf(g ) + (1 - A)f(g 0 <A<, if ) -7/

l)’ n m

£(€ ) if ks l)f £t<1and B (t)
n n,m n-1 n n,m

(1 + n, _1

(VAN
-
IN
s
S~
D
—~
t
~
]

]

£(g,) if 7/ <t /,+ Clearly []en’m || = Ilcbn |

Il

max ‘lf(gi),‘for each m. Since l!@ - f[h:= max 'Ien’m(t) - f(t)”X

n,m

and this maximum value is assumed in one of the four cases in the

definition of © it is dominated by twice the maximum oscillation of

5 1

. 2 . . .
f on an interval of length /n. From the continuity the oscillation of
f on any interval tends to zero as the length of the interval tends to

zero and hence {T(@n m)} converges weakly to T(f) as n tends to infinity.

Now T of the nth row of the triangular array {6 } s = 1,2,0¢,

n,mm > 2n

is an element of T(¢n) and each sequence {en o } converges uniformly

i’i

to f as n; tends to infinity.
+
If we consider T(f)eY as a point in Y , T(f) is an equivalence
class. We shall show that the sequence {T(¢n)} of equivalence classes

. + .
converges to T(f) in the norm of Y . By construction {T(en,m)}m > 2n

is an element of the equivalence class T(¢n) and will be used as a

representative element of the class. For a representative element of

the equivalence class T(f) {T(fm)} where fm = f for each m will be used.

| T ) - T(£) ||+ = sup  |lim y*[T(8_ ) - T(f )]
|l TCo, IF 1y ll im y* [T D1
[ly*ﬂ |l%m y*[T(en,m = fm)]l < sup I Tl]l[@n,m = fm’“l' As shown
before ”6 3 & Il tends to zero as n tends to infinity from which it
n,m m 'C

+
follows that {T(¢n)} converges to T(f) in the norm of Y . Therefore




1%

T(f) = fédKf makes sense where the convergence of the integral is in
the norm of Y . Moreover, || T(f) ||Y= | T£) I'Y-+ = f dKf ||Y+
n-1 :
q i+1 i
= lim || ; L [XC 1) = KCIDIEED ||+

IN

sgp WK max]]f(gi)||5 WK||f||C.

Thus ||T‘l§ Wk and together with the reverse inequality established in
Lemma 3.7, we have ”T|,= WK.

We now have the following theorem.

Theorem 3.9

If T is a bounded linear operator from C into Y, then there exists
a function K on [0,1] with values in B+, hence in B[X,Y+], such that K
has the w-property and T(f) = fédKf for each feC where the convergence
of the integral is in the norm of Y+. Furthermore, ||T|l= WK.

As Example 3.2 shows, the converse of Theorem 3.9 is not true.
Given a funtion K with the w-property and its values in B+, K determines
a continuous linear operator from C into ;+, the completion of Y+. The
question under what conditions K determine a continuous linear operator
from C into Y has been answered in [15] for the case in which X and Y

are both complete, and a complete characterization is given in [10].

Now we will investigate the uniqueness of the function K.

Lemma 3.10
If K has the w-property with values in B[X,Y+] for each te[0,1],
then for each FEB*[X,Y+L FK is of bounded variation on [0,1] and V(FK)

< || F| wk.
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Proof. If O = to < ty SSROU0 RS tn = 1 is a partition of [0,1];

and each s; = sgn F[K(ti * l) - K(ti)], then

n-1 n-1
g BoIFRGey ) - BRG] =y B |FIRG ) - R
U il

= L s;FIR(e, o ) - K(t))]

oy = il n -1
= |F, L s;[K(e, ) - K] < !]Fll! o & G9gtle, Y= K(ti)]H ,

B
: ’IFJMIqu< 1 ? 4 isi[K(ti ¢ R IR
| | = 3 N : Y+
e =il

- |7 | o P EoIR(e; 4 ) = KEeDIlegm ] | 8 ¥l wk.

Theorem 3.11
Two functions K, and K, generate the same continuous linear

1 2

operator T from C into Y if and only if (i) each of Kl and K2 generates
such a T and (ii) there exists a point d€B+ such that Kl(O) - K2(O)
= k(1) - K,(1) = d and for each FeB*[X,¥'], F[K (t) - K,(t)] = F(d)
except on a countable set E and that % ] F[Kl(t) - K2(t)]‘ is finite.

Proof. Suppose Kl and K2 have the w-property and generate the
same continuous linear operator T from C into Y, then K = Kl - K2
generates the zero operator on C. There is no loss of generality in

assuming K(0) = 0, for if any two K differ by an additive constant then

+, (1
they generate the same operator. For each FeB*[X,Y ],IOdFK'f

1
F f dKf for each feCR since lim Z[FK(t,
0] g O S]8

o) - FR(EDIEE))

. . 1 _
lém F(g [K(ti + l) K(ti)]f(gi)) by Theorem 3.1. Since fong =10
for each gecC, fédK(f‘x) = 0 for each feCR and each x€X and it follows

that fédKf = 0 and IédFK‘f = 0 for each feCR. K(0) = 0 implies
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FK(0) = 0 and IédFK'l = 0 implies FK(1) = O for each F, hence K(1) = 0.
Let fs(t) =t if 0 £ t £ s and fs(t) = s if s £ t £ 1 where 0 < s < 1.
An integration by parts yields fédFK-fS = - féFdeS = - fiFK(t)dt from
which it follows that FK(t) = 0 a.e. Since FK is of bounded variation,
the set E = {tE[O,l][FK(t) + 0} is countable and % lFK(t)| is finite.

To show the converse suppose Kl and K2 generate Tl and T

23
respectively and the conditions (i) and (ii) are satisfied. Let

K = Kl - K2 and assume K(0) = K(1) = 0. For each FEB*[X,Y+],(ii)
implies that FK is of bounded variation and féFde = 0 for each feCRr.
An integration by parts shows that FfédKf = 0 for each feCR and each
FEB*[X,Y+]. Therefore fédKf = 0 for each feCR. Since K has the w-

1
property, T(g) = deKg exists for each geC and IITIIS WK. Let

(t) = ; ntk(l—t)n—k(k/)fr h then {g } r
g e g("/ ) for each n, then {g )} converges
uniformly to g. By the continuity of T {T(gn)} converges to T(g).

m 1 k n - k, k k
O[k][ [oake™ - o) I Qv

0, for féthk(l - t)n N = (

i\

s

T(gn) =

for each k, from which it follows that T(g) 0 for each gecC.

A Unifying Representation Theorem

The technique used in the previous section motivated the work in
this section [7]. The main result in this section generarizes many
representation theorems [3,4,14,17,20,21, and 22] and gives a road

map for obtaining a representation.

Let H be an arbitrary point set, Z be a field of sets in p(H), the
power class consisting of all subsets of H, X and Y be 1linear normed
spaces and B[X,Y] be the space of bounded linear operators from X into
Y. Let F denote a linear normed space of functions from H into X with

a norm not stronger than the sup-norm. The space of X valued simple
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functions over I is denoted by S(Z,X). The elements in S(I,X) are of
n

z
the form i lXE «

i

where EiEZ,Eir)Ej = ¢ if i % j, and xiEX. The set
i

function K from Z into B[X,Y] is said to be quasi-Gowurin relative to

the norm || * IIS(Z x) °n S(Z,X) provided there exists a positive con-
b

stant M such that for each partition p = {Ei} of H into elements of

2 and elements {Xi} in X,

| ZIKE)Ix. ||, £ M I| zx_ x. || . The smallest such constant M
poo T PEi T s(z,%)

will be denoted by WK. In the case the norm on S(Z,X) is the sup-norm,
this definition agrees the Gowurin w-property [3, 19, 20, and
21] and in the case H = [0,1], then WK is the Gowurin w constant as
defined by Gowurin [6].

The following lemma is straightforward and hence is stated with-

out proof.

Lemma 4.1

Suppose fecl{S(Z,X)} under the sup-norm. Then for each net of

n(p)

partitions of H, {{Ei}i c l}p, which is cofinal with the net of parti-

tions of H (there always exists a partition in the net of partitions

P

g X = f where convergence
1
i

of H which is finer than a given one), lim ZY
P

is in the sup-norm and for each pair p and i, x?ef(Ei).

V is a norm on g(Z,X) which

From Lemma 4.1 it follows that if |
is not stronger than the sup-norm and if K is quasi-Gowurin with re-

1
[ ,then f is K - integrable, i.e., def exists. The

spect to |

following lemma is also immediate.
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Lemma 4.2

If each fn and f are K integrable and l%m fn = f in the sup-norm,
then lim [dKE = [dKf.

Proof. || [dKE - fake ||, < wk e - £l .

Theorem 4.3

'
] which is not

Suppose F is a linear normed space with norm l
stronger than the sup-norm, and suppose that there is a field of sets

] can be extended to S(Z,X) and such that

Z such that the norm |
there is a subspace S'(Z,X)C S(I,X) satisfying (i) F€ cl{S'(Z,X)}
under the sup-norm and (ii) there is a linear operator 0:S(Z,X)

+ F > F+ which is the identity on F and is continuous when restricted

L}

| . Then

to each of S(Z,X) and S'(Z,X) + F, both under the norm |
if T is a continuous linear operator from F into Y, there is a finitely

+
additive set function K on 2 with values in B[X,Y ] which is quasi-

| such that T(f) = [dKf for each feF.

Gowurin with respect to |

Furthermore, wK/He H < ||T H < WK where |l6||l is the norm of 6
1

restricted to S(Z,X).

Proof. By Lemma 3.5, T has a norm preserving extension T+ from
+, + . . ' + .
F into Y . Define the set function K from 2 into B[X,Y ] by taking

+

K(E)x = T (6(XEX)). Clearly K is finitely additive.

Suppose {Ei} is a partition of H over I and that {Xi} is a cor-
responding subset of X. Then

_ + < it ' .
I 201 =111 O g %) | ST I I8 I 1 2 %] erom whscn

it follows that K is quasi-Gowurin and WK < H T||||6 |h or equivalently

Fzllz ™7 |
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For any feFcc1{s' (£,X)}, def exists in ?, the completion of Y,
by Lemma 4.1 and there is a sequence {Sn} ={ZXEn x?} which converges to

f in the sup-norm. By Lemma 4.2 l%m Z[K(E?)]xg = l%m desn = def.

[ is a norm not stronger than the sup-norm, {sn} converges

Since l

1
* || . Hence the continuity of 6 on S'(Z,X) + F

to f in the norm ‘
+
implies that {G(SH)} converges to 6(f) = f in the norm of F and the

+
continuity of T implies that {T+(6(s ))} converges to T+(f) = T(f).

BB

+
But for each n, T (e(sn)) = Z[K(E?)]x and it follows that T(f)
i ’+' 3 = 1] 7 OED ) £5 1 = < S S5 i es
= 1im ) (6(an)) iim L[n(ni)in Lém faKsn Jjdrf. Since K is

quasi~Gowurin,

l|T¢E) || =] fakE || Lim I ZK(EIi))f(tli)) || < Ili)Tn WK || ZXEIi)f(tIi))H, where
tEEEE. It follows from Lemma 4.1 that ZXEpf(t§> converges to f in
!

L
= ||f H', we have the inequality H T(f)|| £ wK Hf || from which it

a— 1
the sup-norm and hence in the norm | Since l%m | ZXEpf(ti)H
i

follows that || T|| < WK.

Remark 4.4
+
If 6 in Theorem 4.3 maps into F instead of into F , then the
definition of K given in the proof of Theorem 4.3 becomes K(E)x

= T(B(XEX)). Therefore K takes its values in B[X,Y] instead of in

BIX,Y ).

Remark 4.5
In general, conditions for the uniqueness of K are not known.
For example, if F consists of only the identically zero function, then

it is clear that K need not be unique.
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Representations for Functionals
Continuous in the BV Norm

In this section we are back to the space of real valued con-
tinuous functions on the interval [0,1]. This section [8] shows
that it is possible to get away from the sup-norm topology on a
space of functions and the norm will be changed to the stronger norm.
In the BV norm neither the class of step functions nor that of simple
functions can get close to the continuous functions. It will be shown
that the set of polygonal functions is demnse in the subspace AC of
absolutely continuous functions in the BV norm.

If any two functions f and g differ by an additive constant, then
||f - g‘IBV: 0. Hence we shall always choose the representative

element from each class in BV[0,1] so that f£(0) = O.

Theorem 5.1
The space AC is complete in the BV norm and equals the closure
of the set of polygonal functions in the BV norm.
Proof. feAC implies that f'ELl and hence there is a sequence
{si} of step functions converging to f' in the e G D pi(x)
= fﬁsidu, then P is polygonal and ]If - Py ’,sz 1L f‘(f - pi)" du
= || £' - s, [El . Therefore {pi} converges to f in the BV norm.
Conversely if {pi} is a Cauchy sequence of polygonal functions in

the BV norm, then {pi} is a sequence of step functions and H pi”BV

= félpfldu implies that {pi} is Cauchy in the It e CErer i i
i
complete, there is a function f'ELl such that {pi} converges to f'

in the Ll norm, i.e., {pi} converges to f in the BV norm where

£(x) = [T£'dn.
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It is possible to show that a Cauchy sequence {pi} of polygonal
functions converges to an AC function with a straightforward calculus
type argument which does not depend on any knowledge of Ll. Such a
proof gives insight and shows that the sequence {pi} is equi-absolutely-
continuous. Since the results in the vector valued setting depend on
this proof, we outline the proof as follows.

Since {pi} is Cauchy in the BV norm, it is Cauchy in the sup-
norm and the pointwise limit function f is continuous. If ¢ is any
particion or [0,1], then
W) LGy ) = G| S E[8Gy ) = Gy D]+ 2l Gy )
R MCHIE DI NCI R ICII P
The first and third terms on the right of (1) can be made small for

sufficiently larger n and the middle term is less than H pn|| Since

BV’
sup Hpn I BY is finite, the left side of (1) is bounded independent
of ¢ and is an increasing function of . It follows that feBV.

Choose M so that n,m > M implies "pn - pm“BV < € and let

Aif = f(xi + l) - f(xi).
Lo, (F - p)] s gJAi<f - e+ glAi<pn - )|
$ Tim [ (£ - p )| + 1im 8, ¢ - p )|

I

+ 1i = <
0+ lim [[p - p_llpy <€
It follows {pn} converges to f in the BV norm.

> > i i - < .
Let € > 0 and choose M so that n,m > M implies ” P, " P, HBV 3

For p, there exists a ¢ > 0 such that if Z|yi ~ Xi|< S then
E o q
leM(yi) = pM(xi)| < /3. For any finite collection {[xi,yi]} of

intervals with Zlyi = Xil < 8, we have




20

(2) I|fy) - £&)| = ZlEG) - p )]+ Ze 0 - py()) - (B (xp)

RN VGRS MCID) Il L NCIDIL S ACHI P

The first and fourth terms can be made less than t'/3 for sufficiently
large n, the second term is dominated by || p - pM,EV which is less
n

than E/ and the third term is less than E/3 by the absolute continuity

3
of Py Therefore feAC.

Theorem 5.2

If pfO is the polygonal function with corners at exactly the
points (xi,f(xi)) for xiEO, then feAC implies l%m pr = f in the BV
norm.

Proof. Let {q]} be a sequence of polygonal functions converging
to f in the BV norm and o be the values of x at which 9, has corners.
Since %‘Ai(pfo - qn)i = llpfdrqn HBV and is also an approximating sum
to the value of ||f -9, IEV which is obtained as the limit with re-
spect to partitions of a nondecreasing function of partitions,

lgy s I £ = ay ”BV' Hence if || f - q, ‘IBV < € then for

lpf, - a_ lgy € |

n

o' finer than © ,lf = pfo| ”BV < H f - qn“BV + “ qe = Pfov “BV

S f-a gy + lla - £y < 2e.

Theorem 5.3

Let |o’ denote the max {{X.

P41 Xi’} for x, , ;, x,€0. Then

feAC implies 1im pfO = f in the BV norm.
lol » 0

Proof. Let ol be a partition such that 02 finer than Ol implies

€
_ y _ . .
pr02 pfOlIEV /3. Let 61 > 0 such that Zlyi xil < 61 implies
3 and N be the number of points in Ql. Choose
8

o' to be any partition with |o'| = § < l/2N and let O = O'{lOl.

IlEr) - £Ge] <
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Since 0 is finer than ays ||pfCI = f||< 8/ Let A = {[xi,x. ]I

3 i+1

X sX, 4 €0 and eithgr X €0, or x. ledl}. Then [Xi’ X 4 l]€A implies
1 .
!Xi g xi] < 8§ < /2N and hence ilxi g xi( < 61. Since
& €
Ipfs = iy llgy = & 1925 - pEglly < 2 [l psge Dy < /5 + 7/

< Ve
- - - <
l£ - pfll gy I E - pE Il gy + IPES - PE . |l gy < € for any o' with
lo'] < 8.
A half-open interval (a,bJc(0,1] will be called a fundamental set.
The set function K is said to be convex with respect to length pro-

vided if the fundamental set H is the finite union of disjoint

le-12

fundamental sets {H.}? _ then K(H) = . A.K(H.) where A is the
i"i = i 11 i

1
ratio of the length of Hi to the length of H. K is said to be funda-
mentally bounded if for some constant M, IK(H)’ < M for each fundamental
set H and the smallest such constant, denoted by WK, is called the
fundamental bound for K. The integral involved in the representation
theorems is defined as follows. If K is a set function defined on the
fundamental sets, then the v-integral of K with respect to f, denoted

by v [Kdf, is defined to be v [Kdf = Lim ZRCGegoxg oy DIEGy | ) - £(x)]

whenever this limit exists.

Example 5.4
If f is a continuous function satisfying f(0) = 0, then the
. ) 1 1
Riemann integral R fofdx =v foKldf where Kl((a,b]) =1-b.

) - f(x)] =s Ié(l - x)df

1 .
v fokldf = lém g(l X, 4 l) [f(xi o

where the last integral is the Stieltjes integral. An integration by
parts yields s fé(l - x)df = £(1)*0 - £(0)*1 + R féfdx = R féfdx.
Note that the set function Kl is fundamentally bounded but not convex
with respect to length. If 0 < t <1, s fg(l - x)df = £(£)(1 - t)
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+ R [Cfdx and it follows that R [ fdx v [[K df. The definition of

t
\Y f K.df is in the beginning of the next section.
o 1

Example SEO)
If f is a continuous function satisfying £(0) = 0, then
1 ol B (a + b) .
R fofdx = VIOKde where KZ((a,b]) =1 /2. Since

(x, + x, )
i i+1
v [GRydf = lim (1 - IDlEx, | - £x)] = s o - x0dt,

+ 1

R lfdx =v lK df. K, is fundamentally bounded and is convex with
0 02

2

respect to length.

Example 5.6

1

Let K((a,b]) = 0 if b < 1/2 or if a > 1/2, K((1/2,b]) = ~/

(b -~ 1/2)°
and K((a,b]) = [(b - 1/2)/(b - a)]lK((1/2,b]) = 1/(b - a) if a < 1/2 < b.
Then K is fundamentally bounded and convex with respect to length.
Furthermore, v féde equals the right-hand derivative of f at 1/2.

1
Thus v IOde generates a continuous linear functional on C the space

l’
of continuously differentiable functions on [0,1] with the Cl norm

+ || £ The v-integral is

given by ||f ”Cl = "f ‘lm ess - sup.

extended to represent the continuous linear operators on spaces of
continuously differentiable vector-valued functions in [9].

If H = (a,b], then the function wH is called the fundamental
function determined by H where wH(t) = O et =g wH(t) = (t - a)/
(b - a) if a <t <b and wH(t) =1 if t > b.

Suppose p is a polygonal function anchored at zero which has

corners at each point of o= {0 = X < X, S GRS x = 1}, and let
n-1

o] - ; = 2 o)

. denote f(xi+l) f(xi) for each i. Then p =i ini where

H = (x = ]. This shows that the set of fundamental functions

1 i’ i+ 1
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forms a basis for the space of polygonal functions which are zero at

Zero.

Lemma 5.7

Let K be a convex with respect to length set function, p be a
polygonal function and O = {xi} be the partition determined by the
corners of p. If O' = {Xij}’ x; < X4 <%, ,,, is a refinement of

O, then Z[p(x.
(e}

RS IR RIS A eICTPNNIO IR ICHRINCHOR

Hence it follows that v dep = %K(Hi)Aip'

for each j

Proof. Since p has a constant slope on [xi,xi + l]’

[p(xi(j P l)) = p(xij)]/[p(xi " l) = p(xi)] = (xi(j +1) xij)/
(xi +1° xi). By the convexity of K, K(Hi) = §[(Xi(j + 1) Xij)/
(x; | 1 - xi)]K(Hij) = §{[p(xi(j N l)) = p(xij)]/[p(xi e = p(xi)]}

K(Hij) from which the lemma follows.
We now state and prove the main result of this section, a

characterization of AC* (the dual of AC with the BV norm).

Theorem 5.8

TeAC* if and only if there exists a unique fundamentally bounded
set function K which is convex with respect to length such that T(f)
=V féde for each feAC. Furthermore, H TI‘= WK.

Proof. For each fundamental set H let wH denote the corresponding
fundamental function and define the set function K by taking K(H)
= T(wH). If feAC, then it follows from Theorem 5.2 that pf, converges
to f in the BV norm. Thus T(f) = lém T(pfy) = l&m T(gAipfowHi)

= lim YK(H.)A.f = v def. Furthermore,
g o i’7i

||T|l = sup |T(E)| > sup | T(wH)|=sup | K(H)| = WK, and

£k, =1 by H
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sup _ sup o sup . -
T = T(f = Kdf| = 1 LK(H,)A, £

IN

sup lém glK(Hi)l |Aif| < |

lelly, = 1

sup .
|f|Ev o Um 2 wx\Aif[

]

- sup

I ell,

Note that the inequality |v defl < WK || £ HBV always holds. Since

Wk [ £ ]] 5y = WK

T(py) = dewH = K(H), K is unique.
Conversely, if K is a fundamentally bounded convex set function,
then we will show that l%m %K(Hi)Aif exists. From Theorem 5.1

IK(H A f = IK(H DA pE_ = v depfO. Since |v jdefo - v jdeO,|
= | 6 K(H A, (pfy - pfg )| < WK || pfy - {v [kdpf_} is
o|jo!

Cauchy and it follows that v def exists. Furthermore if {fn} converges

to f in the BV norm then l%m v defn = v def, from which it follows
that T(f) = v def is a continuous operator and the linearity is

immediate from the definition of the v-integral.

Remark 5.9

As shown in Example 5.4, the convexity of K is not necessary to
generate a linear functional via v def. In the case of Lebesgue
integral additivity of a measure U is not required to generate a linear
functional L ffdu . Once a linear functional is generated from a
bounded set function then there is a unique additive (in the case of
Lebesgue) or a unique convex (in Theorem 5.8) set function which
generates the same transformation. This is illustrated by Example 5.4

and Example 5.5.
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Remark 5.10
Theorem 5.3 allows the definition of the v-integral to be restated

in terms of 1lim rather than in terms of lém which is a limit with
lo| >0

respect to the net of partitions. Likewise, Lemma 5.7 and Theorem 5.8
can also be restated. Hence the v-integral is as computable as the

Riemann integral.

Some Consequences of the Calculus
of the v-Integral

In this section L denotes the linear normed space of Lipschitz
functions on [0,1] which are zero at zero with the norm ]|fHL given
by the Lipschitz constant. We will show L is isometric and isomorphic
to the linear normed space ! of bounded convex set functions defined
on fundamental sets of (0,1] with the norm given by the fundamental

bound.

]

b
If KeQ and v féde exists, then we define v fade v fédea

b

where £, () f(a) for x < a, fab(X) = f(x) for a £ x < b and fab(x)

v

= f(b) for x b.

Theorem 6.1
Let feAC and Kefi. Then v fZde exists for a,be[0,1] and
b
v [°kdf = v [Kdf + v [SKAf for a < b < c.
a a b
Proof. f€AC implies fabEAC. It follows from Theorem 5.2 that

b
v fade exists for a,be[0,1]. Suppose 0 is a partition which is finer

than {0,a,b,c,1}. Then

C b
X K((Xi’xi i 1])Aif = §0K<(Xi’xi + l]

C
: JB,E + 2K(Geox; 4 DO By

taking the limit over 0, we obtain the desired equality.
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Theorem 6.2
If F(x) = v fdef for feAC and Kef?, then FeAC.

Proof. Given € > 0, there is a § > 0 such that if {[xi,xi + 1

1}

£

/

is a collection of intervals with ZAix < § then ZIAifI < Tk

X, X, X,
zloF| = 2|/ P * Tkas - f tkag| = z|f P lkag| = 2] [okas |
i 0 o X, 0 x.x,
i iti +1

swk zfe I, < wk E/WK = €. It follows that FeAC.
i1+ 1

In the next two lemmas the isometry and isomorphism between §?

and o are establrished.

Lemma 6.3

If KeQ2 then there is a unique Lipschitz function GKEL defined by

GK(x) = XK((0,x]). Furthermore HGKHZ}= WK.

Proof. The proof to the above Lemma is straightforward and omitted.

Lemma 6.4

If GeL with || G ]E = L, then the set function KGSQ where K, is

defined by KG((a,b]) = [G(b) - G(a)]/(b - a). Furthermore WKG = L.

Proof. Since G is a Lipschitz function it follows that KG is

fundamentally bounded andthat WKG = L. We next show KG is convex with
respect to length . If (a,b]JC(0,1] and {xi} is a partition of (a,b],
then

LA gy _ gy Kg((myoxmy o 1) = LIAsx (o _

-1,
][AiG/Aix] = (b - a) ZAiG
= [G(b) - G(a)]/(b - a) = KG((a,b]).

We now have established the following theorem.

Theorem 6.5
The space ! is isometric and isomorphic to the space L with the

mapping given by K& GK' It follows that AC* is isometric and isomor-
phic to L.
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The well-known classical characterization given in [2] for AC*
states that TeAC* if and only if there exists gELm such that T(f)
= L ff'gdu for each feAC. We now relate this to Theorem 5.2 and show
that for some elements TEAC* Theorem 5.2 gives a more explicit represen-
tation of the norm preserving extension of T on BV[0,1] than that of
[2]. Since the set of polygonal functions is dense in AC in the BV
norm, it is not difficult to see the following lemma which is stated

without proof.

Lemma 6.6

The closure of C the continuously differentiable functions on

l’

[0,1] which are zero at zero, is AC in the BV norm .

Theorem 6.7
co . . il
1f a sequence {gn}of L functions converges to g in the L= norm
. X a
and if Gn(x) =1L fogn (Lebesgue integral) for each n, then

l%m VfKG.df = v fKGdf for ferl.

n

Proof. |v [K, df - v fKGde =]l%m FIK, ((x, 5%, D

G i+1

o : BeLd,
=Ko (e %y DA E] = Ljm | g[(fxi gy — 8)/A;x]A, f]
= X5 10
< Tqm 5( f Tole e A s |
35
2 Wisles el | Bl

Since {gn} converges to g in the Ll norm, it follows that v fKG df
n
converges to v fKGdf.
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Theorem 6.8
If feAC, gELOO and GeL is given by G(x) = L fzg, then v fKGdf
= L ff'g.
Proof. Let C denote the set of differentiable functions.
Case(l), feC and geC.

v [Kdf = Lim IR (Geoxy o 1A = 1im D[A,G/8,x]4 £

= lém Z[AiG/AiX][Aif/Aix]Aix = lém L f (Ei)g(ni)AiX

by the Mear Valuve Thenrem, where ¥y <& ,m < By Bliss'

X, I
1701 i+ 1

Theorem, the above limit is the Riemann integral R ff'g from which the
special case follows.

Case(2) fECl and gELm.

1
gel” implies that there is a bounded sequence {gn} in C which con-

verges to g in the Ll norm. By Theorem 6.7 l%m \Y% IKG df = v IKGdf,
n

X
where Gn(x) =L fog for each n. For each n, v fKG df = L ff'gn and
n

by the Bounded Convergence Theorem l%m I ff'%1 = L ff'g and hence
v [Rdf = L [f'g.

Case(3) feAC and gELL.

Lemma 6.6 implies that there is a sequence {fn} in Cl which con-
verges to f in the BV norm from which it follows that lim v fKGdfn
=v IKGdf. From Case(2) v IKGdfn = L ff'ng for each n. Since {f_}
converges to f in the BV norm, {f'n} converges to f' in the Ll norm.

Holders inequality yields L fl(fn = f)'gl < H £ = f||Ll ’Ig‘km from

which it follows that lim L [f' g =1L [fg and hence v [K. df =L [f'g.
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Corollary 6.9

If feAC, KeQ, and F(x) = v fdef, then F' = £'G} a.e.

Theorem 6.8 gives the most natural relations between the repre-
sentation given by the v-integral and that in [2] by the isomorphism
e 3T K€ >C =1L [5.

The following development gives a sufficient condition on the
convex set function K so that the v-integral of K with respect to every

BV function will exist (Corollary 6.12).

Theorem 6.10
Let feBV and {Kn}CiQ such that the v-integral of each K, with
respect to f exists and suppose {Kn} converges to Kef2. Then the v-
integral of K with respect to f exists and l%m v fKndf =V def.
€9 . B X
Proof. For each n let g€L  for which GKn(x) =L fogn.

Y fKG df is Cauchy, because
n

v [Ry df - v [K, df| = Lin|ZIK, (Gpoxp 1) = Ky (Gryoxy o DIAE]
n m n m
G i+ 1
= lémlg[(L fx, By — gm)/Aix]Aiff
T3l 50 - s = 82/, 8 ]
s

= ik | ]

Since {K_ } converges to KeQ, {G, } converges to G €L and hence {gn}

Kn K
converges to g in the L® norm. Therefore l%m v IKG df exists. Let
n
V = 1lim vaG df and we show that V = v def. Given € > 0, there is a
n

n

positive integer N such that n > N implies Hgn - gll < €/3” f“ and
BV

that |V - v IKGndf| <

Let ¢' be a partition so that if ¢ is finer

3
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€ .
' 5 = < . g
than 0' then ISKG ((xi,xi . l])Aif Y fKG df’ /3 For finer
n n
than o'

¢ (Gepoxy o DAE

|v - Ko ((syoxy (DOE] < V- v [r,dE| + v fKGndf - gx )

n

+‘§KGH((Xi’Xi g 8GR KGR, g 118 £]

€ E
STyt Elle - lh laf]

R T | - R S

This completes the proof.

Theorem 6.11
If G is polygonal, then v fKGdf exists for each feBV[0,1].

Proof. Let OG = {ai} be the partition of [0,1] determined by the

corners of G. For feBV and O finer than O gKG((xi,x,

i+ l])Aif

G,
= é[A,G/A,x]A,f = 2o..A, f where o, is the slope of G on the interval
i i i g3 1 N

IC[a.>a. ]. Therefore,

[a"aj 411 and [xgx; o §°85 + 1

J

K ((x 5% DAE = §aj[f(aj - D= f(aj)] = v [Kdf.

If KeQ and feBV(0,1], then |v [Kdf| < WK | £ ], . Hence if the
v-integral of K with respect to each feBV[0,1] exists, then K defines
a continuous linear functional on BV[0,1]. This observation together

with Theorem 6.10 and Theorem 6.11 establish the following corollary.

Corollary 6.12

If g is in the sup-norm closure of the step functions and if G(x)

=L fzg, then T(f) = v [K,df exists for each feBV[0,1] and TeBV*[0,1].
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The v-Integral in the Vector-Valued Setting

As one would expect it is a very natural thing to extend the re-
sults of the v-integral to the vector-valued setting [8], as D. H.
Tucker [20] extended the result of the Riesz Representation Theorem.
In this section X denotes a Banach space, Y denotes a linear normed
space, and B[X,Y] is the linear normed space of bounded linear opera-
tors from X into Y. The variation of an X-valued function f is
defined to be V(f) = sup L HQ;f | and BV(X) denotes the linear normed
space of X-valued functions of bounded variation which are GX (the

additive identity of X) at O with || £|| = V(f). The space of X-

BV (X)

valued absolutely continuous function, AC(X), is defined in the

analogous manner. A function of the form p ZwH X, is called an

i
X~-valued polygonal function where each xiEX. Let [' denote the closure

of the set of X-valued polygonal functions in the BV norm. Although

r + AC [11], 'C AC as in the following theorem.

Theorem 7.1

If {pn} is a Cauchy sequence of polygonal functions in the BV
norm, then there exists f€AC such that {prg converges to f in the BV
norm.

The proof follows as in the second proof of Theorem 5.1.

The following theorem is a generalization of two theorems from
Section 5 and is stated without proof since the proof follows as

earlier.

Theorem 7.2
(i) If fel', then l%m pfO = f where the convergence is in the

BV norm. (ii) If K is a set function with values in B[X,Y] which is
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convex with respect to length, p is a polygonal function and O is the
partition of [0,1] determined by the corners of p, then o' finer than a

L;,K((xi,xi = l])uip = %K((xi,xi 2 l])Aip from which it follows that

o

K is v-integrable with respect to p and v dep - gK((xi,xi + l])Aip.

Theorem 7.3

Suppose K is a fundamentally bounded convex with respect to length

set function and takes values in B[X,Y]. Then the transformation given
by [(f) = v fhdz 1S & bounded linear ovpeiaior {10 I inio ?, tlie con-
pletion of Y. Furthermore “T|]= WK.

The proof follows as in Theorem 5.2.

Theorem 7.4
If T is a bounded linear operator from ' into Y, then there is a
unique fundamentally bounded convex with respect to length set function
with values in B[X,Y] such that T(f) = v def for each fel'. Furthermore,
Il = we.

Proof. Define a linear map T from AC into B[X,Y] by taking

T(wH)x = T(wa) for each fundamental function H. It follows from

Lemma 3.6 that || T|] || T|| . Let K be the set function on fundamental

IN

sets defined by K(H) T(wH). The remainder of the proof follows as
in Theorem 5.2.

If Y is complete, then the following corollary follows from

Theorem 7.3 and Theorem 7.4.

Corollary 7.5

Suppose Y is complete, then a transformation T from I' into Y is

a bounded linear operator if and only if there is a unique fundamentally
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bounded set function K with values in B[X,Y] which is convex with re-
spect to length such that T(f) = v def for each fel'. Furthermore,
[Tl = wk.

The variation of an X-valued function f may be defined to be
SV(f) = SBp{sup{H g a A f [| | o | < 1}} which is called the semi-
variation of f. Let BSV denote the space of functions of bounded
semi~variation which are 9X at zero and with the norm given by the
semi-variation. The notion of semi-absolutely continuity is defined
analogously and SAC denotes the corresponding function space. Let SI
be the closure of the set of X-valued polygonal functions in the BSV

norm. A similar proof to that of Theorem 7.1 shows that SI'C SAC.

Lemma 7.6
If Py and p, are X-valued polygonal functions, and Ol and 02 are
the partition of [0,1] determined by the corners of Py and P,, respec-

tively, then
ll2y = 8, gy & sup {lloléozaiﬁi(pl =)l ¢ [ o | 21}

Proof. Let {xi} = olUOZ'

e peil = sgp{SUP{H 580, (p - )|+ [B] < 13}
= syplsupl 2B, 0Cey (5 4 gy = % /Gy = %18, ) -l B [ <1

where T is any partition finer than © U0, and

1

[Xij’xi(j + l)]“'[xi’xi " l]. Since

LB

- < s
- xij)/(xi " xi]] < for lBj[ < 1, the desired

R TC

equality holds.
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Due to Lemma 7.6 similar proofs to Theorem 7.2, 7.3, and 7.4 show
the analogies of these theorems can be established in the semi-variation

setting. The following is the analogous theorem to Corollary 7.5.

Theorem 7.7

Suppose Y is complete, then a transformation T from SI' into Y is
a bounded linear operator if and only if there is a unique fundamental-
ly bounded set function K with values in B[X,Y] which is convex with
respect to length such that T(f) = v [Kdf for each feSI'. Furthermore
] = wk.

In the special case Y = R, Theorem 7.5 and Theorem 7.7 imply
I'* = (ST)*,

Let Q2(B[X,Y]), be the space of bounded convex with respect to
length set functions K with the norm || K|| = WK. Let L(B[X,Y]) denote
the space of Lipschitz functions on [0,1] with values in B[X,Y] which

are 6 at zero with the norm given by the Lipschitz constant L.

B[X,Y]
The results obtained in Theorem 6.2 - 6.6 and 6.10 - 6.12 can be all

carried over to the vector setting and hence will be stated without

proof.

Theorem 7.8
The space Q(B[X,Y]) is isometric and isomorphic to the space

L(B[X,Y]) by the map given by G« .K Therefore I'* and (ST)* are

G
isometric and isomorphic to L(B[X,Y]).
Theorem 7.9

If feBV[0,1] and {Kn} is a sequence 1in Q(B[X,Y]) which converges
to KeQ(B[X,Y]), and if each Kn is v-integrable with respect to f, then

is v-integrable with respect to f and l%m v fKndf = v def.
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Theorem 7.10

If G is polygonal, then v IKGdf exists for each feBSV.

Corollary 7.11

A sufficient condition that T(f) = v fKGdf be a bounded linear
operator from BV[0,1] into Y is that G be in the closure of the
polygenal functions in L (B[X,Y]).

A v-Integral Representation for Linear Operators
on a Space of Continuous Vector-Valued Functions

Section 3 shows a very elaborate and difficult construction by
D. H. Tucker [20] to obtain a Stieltjes integral type representation
for continuous linear operators from C into a linear normed space Y
where C is the space of continuous functions on [0,1] with values in
a linear normed space X. This last section of the paper shows a rep-
resentation by the v-integral which is rather straightforward [10].

Let K be a set function defined on fundamental sets (half-open
intervals) with values in B[X,Y]. 1If there is a constant M such that
for any disjoint collection {Hi} of fundamental sets and any cor-

J

responding subset {xi} of X H ZK(Hi)inIS M max H ) xi“ , then K is
i=1

said to be convex-Gowurin and the smallest such constant M is denoted
by WK. For any continuous linear operator T from C into Y and any

£ = = 5 + f =
feC, T(f) T(f X[O,l]f(o)) T(X[O,l] (0)) and hence we only con

sider the functions in C which are @‘g at zero.

Theorem 8.1
If K is a set function with values in B[X,Y] which is convex-
Gowurin and convex with respect to length, then T(f) = v def is a

bounded linear operator from C into Y. Furthermore !lTII = WK.
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Proof. Let 0 and 0' be partitions of (0,1] and for feC let pfO

and pfOl be the polyganal functions with corners determined by f, O,

t . -
and o', respectively. Then ”ZOK((ti,ti " l])Aif g'K((tj’tj + l])Ajf“

[74)

”ogo'“(tk’tk L DA GE - pE LD
n
WK mgx Ilk L lAk(pr = pfg,)H - Since pf_ and pf .

IN

t

both converge to f as the mesh fineness of 0 and tend to zero,

n
max ||k z lAk(pfO = pfO,) tends to zero, and it follows that
n =
() = v def exists. HT“ = sup ]IT(f}h
| £ll< 1
=  sup v[Kdf|| = sup lim IK((t, ,t, DA
- T ey T Gy D8
J
< WK max ||, 2 Af || = WK

J

Let wH denote the fundamental function determined by a fundamental set
H (see Section 5), then v de(wa) = K(H)x for xeX. If {Hi} is a dis-

joint collection of fundamental sets and {xi} is a corresponding subset

of X, then
lzxax, | = [lv de(szixi>n = | T<zwﬂixi>1!s II'T JIZwHixiH-
]
But ||zwﬂixi || < m?x lli L 1% || from which it follows that WK < || T|,
and we now have HT||= WK.

Theorem 8.2

If T is a bounded linear operator from C into Y, then there is a
unique set function K with values in B[X,Y] which is convex-Gowurin and
convex with respect to length such that T(f) = v def for each feC.

Furthermore, ||T” = WK.
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Define from CR, the space of continuous real valued

functions on [0,1], into B[X,Y] by taking 7(f)x = T(f*x), then it

follows from Lemma 3.6 that T’H < | T“. For each fundamental set H

let K(H) = A(JH). If H is a union of disjoint fundamental sets {Hi},

then U, = ZA, U where A, is the ratio of the length of H. to the
H i"H 1 1

Irad

length of H. Since 7 is linear, it follows that K is convex with re-

spect to length. If {xi} is a subset of X, then

I 2k x| =]

[

1 1 L L

and jlzw

i o

k< max |

iy H, hence K is convex-Gowurin. For any
i J i

H

—

K LA By, e _
feC, T(f) lém T(pf) = lim T(guHiAif) Lim ZK(H D £ = v [xat.

Since K determines T uniquely on polygonal functions which are dense
in C, K is unique.

Therefore, in the case Y is complete we have a characterization,
as opposed to a representation, of the linear operators which is not
immediate in Section 3.

The v-integral development [8] is extended [l] to a more general
setting [16] by parallel development. A v-derivative can be defined
in the real valued setting appropriately [12,13] in order to establish

the Fundamental Theorem of Calculus type theorem.
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