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ABSTRACT 

Assessment of Restoration Seedings on Utah Watershed Restoration  

Initiative Project Sites 

 
by 
 
 

Lacey E. Wilder, Master of Science 

Utah State University, 2017 
 
 

Academic Advisor: Dr. Kari E. Veblen 
Research Advisor: Dr. Thomas A. Monaco 
Department: Wildland Resources 

 
 
Currently the United States is facing trend of woody species overabundance; 

specifically in the Western United States the growing amounts of sagebrush, Artemisia 

tridentata, is degrading understory herbaceous vegetation. This pattern requires shrub 

reduction and seeding to recover ecosystem services. However, there are several 

complications with shrub reduction treatments, contemporary shrub reduction treatments 

vary in how they influence soil surface and seedbed conditions and they have variable 

effects on seeded species performance. It remains unclear which plant species perform 

best with specific shrub reduction treatments as well as how characteristics of the 

restoration sites influence seeding success. To address this concern we calculated changes 

in seeded species abundance following the effects of burning and mechanical shrub 

reduction treatments.  We followed the performance of 15 commonly seeded species at 

63 restoration sites across Utah. This study was followed for up to ten years to record two 
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post-treatment timeframes affects on species abundance (1-4 years and 5-10 years). 

Native shrubs did not increase across these restoration sites, large increases in perennial 

grasses over time suggest that seeding efforts contributed to enhancing understory 

herbaceous conditions. While increases in perennial grasses signal the possibility that 

interference among seeded species may have influenced the results of our assessment. 

We then evaluated germination patterns of six commonly seeded restoration 

species in soils from Wyoming big sagebrush (A. t. ssp. wyomingensis [Beetle & A. 

Young] S.L. Welsh) and mountain big sagebrush (A. t. ssp. vaseyana [Rydb.] Beetle) 

plant communities that differ in soil texture and soil organic matter. We devised a novel 

experimental design by regularly wetting soils to a standardized soil water potential (i.e., 

field capacity; -0.03 MPa) and allowing soil moisture contents to variably fluctuate. 

Resulting in inherent differences in soil texture and OM between vaseyana and 

wyomingensis soils translate into fundamental differences in soil water holding capacity. 

Although species collectively exhibited greater germination in vaseyana soils than 

wyominensis soil and differences between soils became more pronounced under low soil 

water, patterns were vastly different among species. My results also highlight that broad 

differences exist in emergence patterns between species within the same functional 

groups. 

 
 (93 pages) 
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PUBLIC ABSTRACT 

Assessment of Restoration Seedings on Utah Watershed Restoration  

Initiative Project Sites 

Lacey E. Wilder 

Overabundance of shrubs poses a major threat to semiarid ecosystems due to 

degraded understory vegetation. Previous efforts suggest a need for greater understanding 

of which management practices work best to improve these ecosystems. I sought to 

develop a better understanding of how the relative performance of commonly seeded 

species is influenced by three sagebrush removal techniques.  

I calculated effect sizes for cover and frequency to estimate relative changes in 

abundance of 15 common plant species seeded at 63 restoration sites throughout Utah. 

Shrubs were reduced by fire or mechanical treatment. Effect sizes were assessed using 

meta-analysis techniques for two post-treatment timeframes. Introduced grasses and 

shrubs had greater increases in cover and frequency following treatment, respectively. 

The introduced shrub Bassia prostrata experienced the largest increases in abundance 

following treatments. Forb abundance was highest when treated with fire. Over the long 

term the fire treatment resulted in greater increases for four of the seven grass species. 

Large increases in perennial grasses over time suggest that seeding efforts contributed to 

enhancing understory herbaceous conditions. My results provide new insights regarding 

the interactive effects of species and shrub-reduction treatments.  
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Secondly, I evaluated emergence patterns of six commonly seeded restoration 

species in soils collected from Wyoming big sagebrush (A. t. ssp. wyomingensis [Beetle 

& A. Young] S.L. Welsh) and mountain big sagebrush (A. t. ssp. vaseyana [Rydb.] 

Beetle) plant communities. I developed a novel experimental design that regularly wetted 

soils to field capacity and allowed them to naturally dry by evaporation, which resulted in 

distinct differences in the duration of wet-dry cycles. Results showed that inherent 

differences in soil texture and organic matter between vaseyana and wyomingensis soils 

translated into fundamental differences in soil water holding capacity. Although species 

collectively exhibited greater emergence in vaseyana soils than wyomingensis soil, 

patterns were vastly different among species and differences between soils became more 

pronounced under low soil water for two of the test species. I concluded that the manner 

in which soils and water uniquely influenced emergence patterns provide new insights in 

species suitability for restoration sites and how inherent soil differences may constrain 

seeding success. 
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CHAPTER 1 

INTRODUCTION 

 Woody species, such as big sagebrush (Artemisia tridentata Nutt), have become 

overabundant in many semiarid ecosystems in the Intermountain Western United States. 

This shift in vegetation has resulted in degraded understory conditions, including reduced 

abundance of small-statured shrub plants and herbaceous species (Archer and Predick, 

2014). Such degradation of understory conditions has been linked to reduced forage for 

livestock grazing, poor wildlife habitat, increased soil erosion, (Miller et al., 2014; 

Chambers et al., 2017), lack of soil stability, and invasion by exotic annual grasses that 

perpetuate increases in wildfire frequency (D’Antonio and Vitousek, 1992; Van Auken, 

2009; Eldridge et al., 2011). To remedy these problems, land managers typically apply 

shrub-reduction treatments in combination with seeding, but degraded understory 

conditions and environmental constraints can make it difficult for new species to 

establish and survive (Ravi et al., 2009; Pierson et al., 2011). Considerable research effort 

has focused on identifying effective methods of shrub reduction and evaluating suitable 

restoration species (Archer et al., 2011). In addition, guidelines exist to help restoration 

practitioners assess restoration sites and choose appropriate management techniques 

(Pyke et al., 2015). However, there is a tremendous need to comprehensively evaluate in 

situ restoration projects at realistic operational scales to identify the relative performance 

of seeded species over both the short- and long-term timeframes.   

Shrub reduction treatments have not consistently yielded desired improvements in 

understory vegetation (Miller et al., 2014; Pyke et al., 2015), and shrub density often 
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rapidly returns to pre-treatment levels (Archer et al., 2011). Variable results have been 

attributed to differences in climate, as well as post-treatment grazing and browsing 

(Archer et al., 2011; 2017). This is particularly the case for semiarid shrublands and 

shrub-steppe ecosystems in the Intermountain Region of North America, where pairing 

among appropriate treatments, adapted seeded species, and restoration sites are not 

clearly understood (Monsen, 2004; Miller et al., 2014; Brabec et al., 2015). Furthermore, 

shrub reduction treatments differ in their capacity to create suitable conditions for 

establishment and persistence of certain species due to contrasting effects on soil surface 

conditions as well as resource availability (Young et al., 1990; Monsen and Stevens, 

2004; Montalvo et al., 2002). This uncertainty can be addressed by retrospectively 

evaluating past restoration efforts to better understand how disparate treatments influence 

establishment of seeded species (i.e., Pyke et al., 2013; Knutson et al., 2014; Monaco et 

al., 2017).   

Shrubland and shrub-steppe ecosystems in the western United States have 

historically been managed to increase perennial herbaceous vegetation to support forage 

production for livestock, improve wildlife habitat, and reduce fuel loads to prevent 

wildfires (Hirsch et al., 2012; Hufford and Mealer, 2014; Miller et al., 2014; Dahlgren et 

al., 2015). Such measures often entail reducing shrub density and cover and seeding of 

herbaceous species to restore degraded understory vegetation and prevent the invasion by 

exotic annual species and improve watershed functioning (Miller et al., 2014; Redmond 

et al., 2014). Without such forms of intervention, degraded sites can experience 

proliferation of invasive annual grasses that can drive disturbance regimes and impact 
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numerous ecosystem processes (e.g., Hirsch et al., 2012; Miller et al., 2014).  

Perhaps the biggest challenge to restoring degraded understory conditions is 

devising a management scenario that does not lead to further ecosystem degradation. For 

example, restoration activities can often lead to unintended, negative consequences 

because some level of disturbance or stress must be applied to the ecosystem in order to 

reduce shrub dominance and create suitable seedbed conditions for seeded species 

(Monsen and Stevens, 2004). Thus, because both risk and uncertainty exist when 

applying restoration treatments to an already degraded system, practitioners must possess 

a robust understanding of complex ecological processes when developing treatment 

choices (Leffler and Sheley, 2012). Nonetheless, disturbances are needed that create or 

mimic natural conditions for the establishment of seeded species (Call and Roundy, 

1991). When these conditions are not met, seeded species will not successfully establish 

and soil disturbances can promote invasion by exotic species that already reside in the 

ecosystem (Chambers et al., 2017). Gaining knowledge about suitable seedbed conditions 

for seeded species as well as how treatments support these conditions should be a primary 

research endeavor, yet we know very little about how consistently these two entities 

converge when restoration efforts are applied to enhance degraded understory vegetation 

(Knutson et al., 2014; Germino et al., 2015). 

Resilience concepts applied to shrubland and shrub-steppe plant communities in 

the Intermountain West suggest that a clear dichotomy exists among sagebrush 

ecosystems such that productive, cold-moist sites that occur at higher elevation are more 

resilient to environmental perturbations than less productive, warm-dry sites that occur at 
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lower elevation (Chambers et al., 2014). Variation in soils over this gradient may also be 

responsible for resilience differences among sites, yet the influences of soil properties 

such as texture, organic matter, and water holding capacity on seedling emergence of 

common restoration species have not been evaluated. Inquiry into how inherent soil 

properties influence this critical aspect of restoration will provide new insights into 

ecosystem resilience and give practical information about species suitability. 

 
OBJECTIVES 

My thesis research consisted of a comprehensive assessment of combined shrub 

reduction-seeding treatments applied at 63 sites throughout Utah between 2003 and 2013 

(Study 1) as well as controlled experiments to explore the influence of soils on the 

emergence of six commonly seeded species (Study 2). For Study 1, I compiled a long-

term dataset from the Utah Watershed Restoration Initiative (UWRI) project that 

included three shrub reduction techniques and 15 different seeded species. My objective 

was to clarify how shrub reduction treatments influence changes in species abundance 

(i.e., frequency and cover) in both the short (1-4 yr) and long term (5-10 yr) and address 

two questions: 1) Do burning and mechanical treatments (aerator and pipe harrow) 

differentially influence the relative abundance of seeded species? 2) Do native and 

introduced species differ in relative abundance following shrub reduction? For Study 2, I 

collected soils from two commonly seeded big sagebrush plant communities in Utah 

(wyomingensis; dominated by Artemisia tridentata ssp. wyomingensis [Beetle & A. 

Young] S.L. Welsh and vaseyana; dominated by A. t. ssp. vaseyana [Rydb.] Beetle) and 
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conducted experiments to explore how differences in soil texture and organic matter 

influence emergence patterns. I tested the following two hypotheses: 1) greater water 

holding capacity of vaseyana soil would result in higher emergence rates, and that 2) this 

pattern would be more pronounced under low soil water content due to higher 

evaporation rates in wyomingensis soils. 
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CHAPTER 2 

INFLUENCES OF BURNING AND MECHANICAL SAGEBRUSH REDUCTION 

TREATMENTS ON RESTORATION SEEDINGS IN UTAH 

 
ABSTRACT 

Overabundance of woody plants in semiarid ecosystems degrades understory 

herbaceous vegetation and often requires shrub reduction and seeding to recover 

ecosystem services. However, contemporary shrub reduction treatments vary in how they 

influence soil surface and seedbed conditions, which in turn have variable effects on 

seeded species performance. Consequently, it remains unclear which plant species 

perform best with specific shrub reduction treatments as well as how characteristics of 

the restoration sites influence seeding success. We calculated changes in seeded species 

abundance (i.e., frequency and cover) and used meta-analysis techniques to assess the 

effects of burning and one of two mechanical shrub reduction treatments (i.e., aerator and 

pipe harrow) on the relative performance of 15 commonly seeded species (comprised of 

three functional groups; grasses, forbs and shrubs) at 63 restoration sites across five, 

Level III Ecoregions throughout Utah. Abundance was assessed during two post-

treatment timeframes, including short term (1-4 years) and long term (5-10 years). The 

magnitude of treatment effects on the abundance of seeded species was significantly 

larger for introduced grasses and shrubs compared to native counterparts. Native grasses 

and introduced shrubs increased over time, yet the abundance of native shrubs did not 

change significantly regardless of shrub reduction treatment; however, the introduced 
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shrub Bassia prostrata experienced the largest increases in abundance during both 

timeframes. Forb abundance in the short term was generally lowest in the aerator 

treatment and highest in the fire treatment followed by the harrow treatment; forb 

abundance was also highest for the fire treatment in the long term. In general, shrub 

reduction treatments had similar effects on grass abundance, but over the long term, the 

fire treatment resulted a greater response compared to the other treatments for four of the 

seven grass species. Although native shrubs did not increase across this broad array of 

restoration sites, large increases in perennial grasses over time suggest that seeding 

efforts contributed to enhancing understory herbaceous conditions. Increases in perennial 

grasses, coupled with the extraordinary increases in B. prostrata (regardless of treatment) 

signal the possibility that interference among seeded species may have influenced the 

results of our assessment. Further research is needed to understand the causes of forb 

mortality over time as well as decipher how greater abundance of introduced species will 

influence species diversity and successional trajectories of restoration sites. 

 
INTRODUCTION 

Increased woody plant dominance is one of the most pronounced and widespread 

vegetation shifts within dry-land ecosystems in the last century, and these shifts have 

negatively impacted understory herbaceous vegetation, habitat suitability for wildlife, 

forage for livestock, and hydrological functioning (Van Auken, 2009; Eldridge et al., 

2011; Wilcox and Thurow, 2006). When woody plants become overabundant in semiarid 

dry-land ecosystems, as manifested by shrub densities exceeding historical ranges of 
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variation, numerous ecosystem services, such as soil nutrients and soil stability are 

compromised (Bestelmeyer and Briske, 2012; Archer and Predick, 2014; Wilcox et al., 

2017). In addition, soil erosion can increase as a result of degraded understory 

herbaceous vegetation, which often results in lower restoration potential (Ravi et al., 

2009; Pierson et al., 2011). Consequently, remediating herbaceous understory vegetation 

and achieving a desired shrub density is a major land management challenge (Archer et 

al., 2017), and often requires land managers to simultaneously reduce shrub abundance 

and seed restoration sites with a mix of suitable species (Chambers et al., 2014; Knutson 

et al., 2014; Redmond et al., 2014; Hardegree et al., 2016). However, this restoration 

strategy relies on the pivotal assumption that shrub reduction treatments will increase 

resource availability for seeded species as well as support understory species growth. 

Accordingly, recovery of ecosystem services may become contingent on the success of 

seedings (Monsen, 2004; Staub et al., 2016), yet a clear understanding of the manifold 

interactions between shrub reduction treatments and seeded species abundance on such 

sites does not currently exist (Miller et al., 2014; Pyke et al., 2015).  

The fact that shrub reduction has not consistently enhanced understory herbaceous 

vegetation in many dry-land ecosystems beckons a careful examination of how various 

treatments influence the factors known to control the success of restoration seedings 

(Chambers, 2000; Beck et al., 2012; Archer and Predick, 2014). Shrub reduction 

treatments may differ in their capacity to create suitable conditions for establishment and 

persistence of certain species due to contrasting effects on soil surface conditions as well 

as resource availability (Young et al., 1990; Monsen and Stevens, 2004; Montalvo et al., 
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2002). For example, mechanical shrub removal techniques disturb soil surfaces to a 

greater extent than non-mechanical treatments such as fire and herbicide treatments 

(Condon et al., 2011; Chambers et al., 2014). While mechanical treatments are effective 

at creating furrows and pits that modify hydrology (water infiltration) and improve 

establishment of seeded species (Hardegree et al., 2016), they also run the risk of 

proliferating invasive annual species in the short term (Archer and Predick, 2014; 

Monaco et al., 2017) and can cause excessive loosening of seedbed firmness and soil 

friability, thereby compromising the success of seedings by altering the depth of seed 

placement (Monsen and Stevens, 2004). In contrast, the application of fire treatments to 

burn woody species are typically effective and low cost, yet depending on burn intensity, 

litter and seeds on the soil surface can be entirely consumed, reducing native seed banks 

and increasing the erosion potential of treated sites (Frischknecht and Plummer, 1955; 

Pierson et al., 2013). Fire treatments can also produce resins and waxes that, when 

deposited on soil surfaces, can create water-repellent soil layers that limit soil water 

infiltration, increase soil erosion and runoff (DeBano, 2000; Beyers, 2004), and inhibit of 

seeded species (Miller et al., 2013; Ellsworth et al., 2016). Mechanical and fire treatments 

can also vary widely in how they impact the resource pools available to residual species 

in the plant community and, in turn, the seeded species (Leffler and Ryel, 2012; Roundy 

et al., 2014). Soil water and nutrient availabilities for herbaceous vegetation typically 

increase following shrub reduction in semiarid shrub and woodland ecosystems (Miller et 

al., 2014; Rau et al., 2014; Roundy et al., 2014). However, changes in herbaceous 

production varies with time since treatment (Archer and Predick, 2014) and competition 
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for these resources remain intense (e.g., Blaisdell, 1949), creating a strong biotic filter 

mediating abundance of seeded species as well as the assembly of post-treatment plant 

communities (Keddy and Shipley, 1989; Pyke and Archer, 1991; Hulvey and Aigner, 

2014). 

Numerous shrub reduction and seeding treatments have been explored for 

semiarid shrublands and shrub-steppe ecosystems, yet much of what we know stems from 

specific treatments applied to a limited number of sites (Monsen, 2004; Miller et al., 

2014; Brabec et al., 2015) and few studies consider treatment and species interactions 

among functional groups (i.e., shrubs, forbs, grasses) simultaneously across broad 

ecological regions. Diverse seed mixtures are deemed necessary to increase species 

diversity, rapidly stabilize soils, and prevent the spread of invasive species (Burton et al., 

2006; Sheley and Half, 2006; Davies et al., 2014). Consequently, identifying appropriate 

seeded-species mixtures that work best with specific shrub reduction treatments will help 

characterize species and treatment interactions (Knutson et al., 2014; Redmond et al., 

2014). While establishment success and subsequent increases in species abundance over 

time depend on a complex interaction among species in the mix, species traits, and site 

suitability for individual species (Jones and Johnson, 1998; Monsen, 2004; Calvino-

Cancela, 2011), we still know very little about these interactions despite years of site-

specific evaluations (Hull, 1971; Keller, 1979; Stevens, 1983). Specifically, there is need 

to identify general patterns of seeding success and failure among functional groups, so 

that seed mixtures, seeding techniques, and long-term management efforts can be 

enhanced and undergo further testing (Jones et al., 2010, Jones et al., 2015; Hardegree et 



13 
 

 

al., 2016). In addition, the relative merits and ecological implications of seeding native 

and introduced mixes are equally complex (Asay et al., 2001; Pyke et al., 2013; Knutson 

et al., 2014). In order to refine management options and produce the greatest long-term 

species diversity of seeded sites (Leger and Baughman, 2015), research is needed to 

understand interactions among species within native-introduced seed mixes. For example, 

introduced species may establish more rapidly and interfere with the establishment and 

growth of native species that exhibit less vigorous seedling growth and development 

(Waldron et al., 2005; Thompson et al., 2006; Nafus et al., 2016). 

Although combined application of shrub reduction treatment and post-treatment 

seeding is a major component of ecosystem management to enhance herbaceous 

vegetation in the Western United States (McIver et al., 2014; Redmond et al., 2014), 

generalizations regarding the relative success of treatments and species combinations are 

still lacking. To address this need, we examined 63 restoration sites where shrubs were 

reduced with fire, aerator, and pipe harrow treatments with the goal of identifying 

patterns in short- and long-term changes in the abundance of species and functional 

groups (e.g., shrubs, forbs, grasses). We asked the following questions: 1) Do burning 

and mechanical treatments (aerator and pipe harrow) differentially influence the relative 

abundance of seeded species? 2) Do native and introduced species differ in relative 

abundance following shrub reduction? 

 
METHODS AND MATERIALS 

To assess the relative performance of seeded species following the application of 
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shrub reduction treatments in Utah, USA, we used data accumulated from Utah 

Watershed Restoration Initiative (UWRI) project (http://wildlife.utah.gov/range/). The 

UWRI is a collaborative effort among landowners, private organizations, and state and 

federal agencies to enhance wildlife and biological diversity and water quality and yield 

through management approaches such as mechanical vegetation manipulations (UWRI; 

http://wildlife.utah.gov/watersheds/). Over 1,000 hectares were treated and seeded in 

Utah between 2003 and 2013 as part of UWRI.  

After reviewing metadata from 1,438 completed restoration project sites 

associated with the UWRI (as of 2013), we selected projects that met the following 

criteria: 1) both shrub reduction and seeding treatments were applied and 2) both pre- and 

post-treatment data were available for analysis, with post-treatment data comprised of 

either short term (1-4 years), long term, (5-10 years), or both timeframes. A total of 63 

project sites met these criteria (Table 1); accordingly, we acquired the seeded species list 

and compiled pre- and post-treatment data that were collected by the Utah Big Game 

Range Trend Studies Project (Utah Division of Wildlife Resources [DWR]; 

http://wildlife.utah.gov/range/). Shrub reduction treatments for the 63 sites were 

categorized as mechanical (aerator and pipe harrow) or fire (natural and prescribed fire). 

Each project site was also seeded with a custom mix of species deemed most suitable for 

the environmental, soil, and vegetation conditions, yet a total of 15 perennial species 

were most commonly seeded for our selection of 63 sites (Table 2). These 15 species 

included three shrubs, five forbs, and seven grasses (Table 1). 

The two mechanical treatments were applied as implements pulled by a rubber-

http://wildlife.utah.gov/watersheds/
http://wildlife.utah.gov/range/
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treaded tractor. The aerator consisted of a double drum roller with affixed blades that 

penetrate the soil and create shallow depressions for water catchment while 

simultaneously crushing and chopping (RanchWorx®, Palm Harbor, FL, USA). Thus, the 

aerator roller has low surface disturbance, promotes water infiltration, and creates 

furrows to trap water and seeds. In contrast, the pipe harrow (regionally known as Dixie 

Harrow) consists of a series of 2 m x 10 cm diameter pipes with spikes arranged at 

alternating angles to rip shrubs and cause considerable scarification and disturbance to 

the soil surface as debris is dragged (Dahlgren et al., 2006). When pulled, the pipes spin, 

causing the spikes to grade into the soil surface, removing shrubs and breaking up the soil 

surface. Finally, unlike the two mechanical shrub reduction treatments, fire treatments 

had little control over fire intensity and the continuity of burned area across sites. 

Depending on available fuel and subsequent fire intensity, fires typically burn through the 

vegetation and may also burn the soil surface, consuming seeds and litter. However, most 

fires typically do not greatly disturb soils other than how it influences litter and duff on 

the soil surface.  

Project sites were primarily seeded using a broadcast method; 46 of the 63 sites 

dispersed the seed mix from a seed box mounted in front of the rear drum (aerator) or 

directly from the tractor (pipe harrow). On seven of the 63 sites, a rangeland drill was 

used for seeding when sites contained fewer standing shrubs (e.g., after fire) and rock 

obstacles (Appendix 1). Finally, aerial seeding was applied for the remaining 10 sites 

over rough terrain inaccessible to large ground equipment, or when project sites were 

subsequently seeded as part of large-scale rehabilitation effort and ground equipment was 
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impractical. Although seed mixes varied among sites, they typically contained a mixture 

of perennial grasses, forbs, and shrubs. 

Pre- and post-treatment cover (grasses and forbs) and frequency (shrubs) of 

seeded species were monitored with a standard protocol used by the UDWR Range Trend 

Studies Project (wildlife.utah.gov/about-range-trend). Each site was sampled by 

establishing one 152.4-m baseline transect in the treatment area. Along this baseline 

transect, five, 30.5 m belts were placed perpendicularly at predetermined positions (3.4 

m, 40.8 m, 78.9 m, 113.0 m, and 150.9 m). A steel stake was placed at the beginning of 

each belt to ensure consistent placement of future sampling. Vegetation was monitored 

along each of the five belts within 20, 25 cm x 25 cm nested frequency quadrant frames 

placed at 1.5 m intervals. Frames were customized with clear markings indicating five 

nested areas of increasing space: 1) 1%, 2) 5 %, 3) 25 %, 4) 50 %, and 5) 100 %. Using 

these markings, percentage foliar cover of grass and forb species was estimated visually 

by assigning species to one of seven possible cover classes: 1) 0.01-1 %, 2) 1.1-5 %, 3) 

5.1-25 %, 4) 25.1-50 %, 5) 50.1-75 %, 6) 75.1-95 %, and 7) 95.1-100 %). In addition, 

shrub abundance was estimated by searching nested areas 1-5 and recording the first area 

that contained a rooted plant; smaller areas were scored higher, such that nested areas 1-5 

were scored from 5-1, respectively. The resulting estimate, nested frequency, was 

deemed a better source of data to assess seeded shrubs because foliar cover data included 

mature shrubs that had not been seeded, yet they contained canopies that overtopped 

smaller seedlings. For each species, we calculated average percentage cover (based on 

midpoint cover class values) and nested frequency (based on summed scores for each 
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belt) and accompanying standard deviations for each site (n = 5). 

 
Statistical Analysis  

Mean and standard deviation data for seeded species abundance from the 63 

project sites were analyzed using meta-analysis procedures (Gurevitch and Hedges, 

1999). Pre- and post-treatment data were used to calculate individual effect size estimates 

for the predetermined seeded species at each project site for short term (1-4 yr), long term 

(5-10 yr), or both post-treatment timeframes. Effect sizes were calculated as the natural 

log of the ratio between post- and pre-treatment (ln[post/pre] = lnRR). Due to 

inconsistent monitoring years and seeding mix composition, different project sites did not 

generate effect sizes for the same species and timeframes (Table 1).  

Effect sizes were analyzed with R (www.r-project.org) in the RStudio console 

(www.rstudio.com). Specifically, we used the metafor package to perform meta-analysis 

with the RMA function (Viechtbauer, 2010) and fixed-effect models to independently 

evaluate the influence of five moderators (i.e., functional group, species origin, shrub 

reduction treatment, seeded species identity, and treatment x species) on seeded species 

abundance. We analyzed fixed-effect models, which make conditional inferences (i.e., 

only to the set of sites included in the meta-analysis) and used unweighted mean 

estimates of the true effect sizes (Hedges and Vevea, 1998). These mean lnRR estimates 

were graphed with 95% confidence intervals to visually compare effects (Nakagawa and 

Cuthill, 2007). Due to all forbs being introduced species, the effect of origin was 

analyzed for the grasses and shrubs only. Actual pre- and post-treatment cover and nested 

frequency values (i.e., mean ± SE) were also summarized by species for each timeframe. 

http://www.r-project.org/
http://www.rstudio.com/
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RESULTS 

Actual Nested Frequency and Cover Values 

Frequency for Artemisia tridentata (sagebrush) and Atriplex canescens (fourwing 

saltbrush) changed little between pre- and post-treatment, yet Bassia prostrata (forage 

kochia) increased during post treatment for both timeframes (Figs. 1a, 2a). In contrast, all 

forbs increased in cover during post treatment in the short term, but over the long term, 

values declined during post treatment (Figs. 1b, 2b). Grass cover was also highly variable 

among species; however, even the species with low increases in the short term, showed 

marked increases during 5-10 yrs post treatment (Figs. 1c, 2c). Pre-treatment values also 

indicate that numerous species were already present on these sites due to previous 

restoration efforts (i.e., A. tridentata, B. prostrata, L. perenne (forage kochia), Medicago 

sativa  (alfalfa), Agropyron cristatum (crested wheatgrass), Achnatherum hymenoides  

(Indian wheatgrass), Pascopyrum smithii (Western wheatgrass), Pseudoroegneria spicata  

(bluebunch wheatgrass)) or due to their nativity to sites. By comparison, five of the 

seeded species were introduced to sites by seedings conducted during our assessment 

period (i.e., A. canescens, Melilotus officinalis  (yellow sweetclover), Onobrychis 

viciifolia (sainfoin), Sanguisorba minor (small burnet), and Leymus cinereus(Great Basin 

wheatgrass)).  

 
Contrasts of Functional Group and Species Origin 

All three functional groups demonstrated highly significant increases in 

abundance during both post-treatment timeframes (Table 2; Fig. 3). Increases for grasses 

http://plants.usda.gov/java/profile?symbol=MEOF
http://plants.usda.gov/java/profile?symbol=LECI4
http://plants.usda.gov/java/profile?symbol=LECI4
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and shrubs exceeded those for forbs. Grass and shrub abundance also increased between 

1-4 and 5-10 yrs, while forbs slightly declined. The abundance of introduced species 

exceeded that of native species in both timeframes, especially for shrubs, whose native 

counterpart showed no net change in either timeframe (Fig. 4). Differences between 

introduced and native species were most pronounced during in the long term (i.e., 5-10 

yrs post treatment).  

 
Interaction Between Species and Treatment 

Tests of species, treatment, and the species by treatment interaction were highly 

significant for all functional groups with the exception of the borderline significant effect 

of treatment on grasses in the short term (Table 3). Bassia prostrata frequency increased 

much more than the native shrubs and with was more than two fold greater abundance in 

the fire treatment compared to mechanical shrub removal treatments (Figs. 5a, 6a). 

Seeded forb cover was also generally higher in the fire treatment, especially for M. sativa 

in both timeframes and S. minor during the 5-10 yr timeframe. All forbs except M. 

officinalis also increased in the pipe harrow treatment in the short term, but this effect 

disappeared in the long term for M. sativa and S. minor. In contrast, cover for three forb 

species (i.e., L. perenne, O. viciifolia, and S. minor) increased in the aerator treatment, 

but only in the short term. Although the main effect of treatment was not significant for 

grasses during the 1-4 yrs post-treatment timeframe, treatments influenced grass species 

differently. For example, L. cinereus was not affected by any of the treatments, yet cover 

of P. smithii was higher in the mechanical treatments compared to the fire treatment. The 

most dramatic variation in grass species among the treatments emerged in the long term 
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when the increases in A. cristatum, Elymus lanceolatus  (thickspike wheatgrass), L. 

cinereus, and P. smithii within the fire treatment exceeded both mechanical treatments. 

Cover of A. cristatum and Psathyrostachys juncea (Russian wildrye) was also higher in 

the pipe harrow treatment compared to the aerator treatment. Although grass abundance 

was generally lower in the aerator treatment compared to the other treatments in the long 

term, it improved the overall abundance of four grasses, especially A. hymenoides.  

 
DISCUSSION 

A consensus exists that the restoration of degraded sagebrush steppe and semiarid 

shrublands through mechanized approaches and fire, followed by seeding native 

bunchgrasses, has had limited success (Pyke et al., 2013; Knutson et al., 2014; Svejcar et 

al., 2017). This is particularly true for sites that have suffered extensive disturbances and 

alterations to vegetation, soils, and hydrology (Briske et al., 2006; Suding and Hobbs, 

2008; Davies et al., 2016) and where current land use may also be perpetuating degraded 

understory conditions (Morris and Rowe, 2014; Bestelmeyer et al., 2015). Although 

similar degraded conditions were common throughout the regions evaluated in this study, 

it is important to emphasize that the particular sites we evaluated encompassed a 

collection of restoration locations where qualitative attributes of rangeland health (Pyke 

et al., 2002), as well as conceptual understandings of site resilience to disturbance and 

resistance to invasion by exotic annual grasses (Miller et al., 2014; Chambers et al., 

2017), were generally understood. In fact the restoration sites included in our study have 

been monitored on a regular five-yr schedule since 1982, and were critically evaluated by 

http://plants.usda.gov/java/profile?symbol=ELLA3
http://plants.usda.gov/java/profile?symbol=ELLA3
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a rigorous panel of experts to forecast site suitability prior to initiating shrub reduction 

and seeding methods (www.wri.utah.gov). Thus, our results present an interpretation of 

restoration outcomes when many of the typical constraints to restoration success were 

avoided. Our study provides a clear picture of how shrub reduction treatments 

differentially influenced the abundance of ten preexisting herbaceous species and five 

seeded species that had not previously existed on the study sites. 

Seeded species identity and shrub reduction treatments strongly interacted, and 

our results indicated numerous new insights into treatment-species combinations that 

enhance understory vegetation conditions. First, it is clear that fire treatments promoted 

the notable increases in B. prostrata, M. sativa, and A. cristatum as well as long-term 

increases for three of the perennial grasses. The effectiveness of fire may be related to its 

greater overall reduction in shrub cover relative to the mechanical treatments at these 

restoration sites (C. Riginos, unpublished data). Accordingly, competition for soil 

resources between seeded species and surviving sagebrush plants may have been lower in 

the fire treatment, offering more favorable conditions for a broad range of species to 

experience successful growth. Greater increases in seeded species within the fire 

treatment may also be a consequence of heterogeneous soil surface conditions produced 

by fire, which often creates mosaics of burned and unburned patches and a greater 

number of regeneration niches for seeded species (Pyke et al., 2013). Fire, through the 

combustion of plant biomass and organic matter on the soil surface has also been linked 

to enriching soils with limiting mineral nutrients that are known to promote seedling 

growth (Rau et al., 2007; Miller et al., 2013). Fire also creates bare soil surfaces where 

http://www.wri.utah.gov/
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seeds may have occurred in more favorable safe sites. For example, the most successful 

seeded species, B. prostrata, is known to establish best on bare soils following wildfires, 

and establishment becomes poor when seeding into thick vegetation or litter (Monaco et 

al., 2003; Sullivan et al., 2013). In contrast, the mechanical treatments may have buried 

aerially- and broadcast-dispersed seeds too deep, thus compromising seedling 

establishment and growth. Accordingly, by creating deep divots, the aerator treatment 

showed consistently lower species abundances compared to the other treatments. In 

addition, compared to the aerator, A. cristatum showed greater increases in the long term 

in the pipe harrow treatment that creates small furrows. Lastly, our assessment showed 

that cover for many of the seeded forbs was higher in the pipe harrow treatment, similar 

to Dahlgren et al., (2006), who found that the pipe harrow treatment increased forb cover 

more than 3 % relative to the aerator treatment.  

Recent analyses purport that basing the performance of species on geographic 

origin (i.e., introduced vs native) is a false dichotomy since plant species appear to follow 

the same ‘rules’ for establishment and growth (Leffler et al., 2014; Lemoine et al., 2016). 

Our assessment of mixed-species seedings sheds some light on this interpretation by 

offering a direct examination of species performance when exposed to the same 

conditions (i.e., rules) within a restoration context. Greater performance of introduced 

species relative to native species is clearly portrayed from our assessment, suggesting that 

relative differences between native and introduce species identified nearly 50 years ago 

still stand (Eckert et al., 1961; Hull, 1971). It is not clear from our data whether 

introduced species show greater adaptation to the conditions at restoration sites, but traits 



23 
 

 

exhibited by these species, including high seedling vigor, drought tolerance, rapid 

growth, and recovery from defoliation are often sought in breeding programs (Asay et al., 

2001; 2013), and likely contributed to the better performance of introduced species. In 

contrast, native species seed enhancement programs have focused less on these traits, but 

typically emphasize selecting for seed and seedling traits to overcome seed production 

bottlenecks and developing plant materials for distinct geographic locations, all the while 

having a shorter history of selecting for adaptations such as stress tolerance (Jones and 

Johnson, 1998; Jones et al., 2015; Leger and Baughman, 2015; Staub et al., 2016). 

However, despite the lesser performance of native species in our study, four out of the 

five native grass species showed significant levels of persistence over the long term, 

suggesting that these currently available and widely utilized seed sources effectively 

assisted in the recovery of degraded understory conditions. While it is understood that 

early seedling development is critical for successful species establishment and persistence 

following brush control in Utah (Plummer, 1943), an ongoing challenge for restoration 

practitioners will be to better understand how to manipulate seedbed conditions such that 

poorer performing native species can achieve higher establishment and greater increases 

following disturbance. In addition, post-treatment management of restoration sites (i.e., 

livestock grazing and wildlife use) may play a large role in establishment and species 

persistence patterns. For example, grasses typically dominate initial establishment 

dynamics after disturbance followed by the recruitment of later successional species 

(Jentsch et al., 2009; Hoelzle et al., 2012), thus, characterizing the influence of animal 

use on the persistence of seeded species over time should be emphasized in future 
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research efforts. 

Our finding of generally lower establishment and persistence of seeded forbs 

echoes the concern that this critical component of understory vegetation is a major 

concern to plant community diversity and provisioning of ecosystem services for big 

game ungulates and imperiled wildlife species (Wirth and Pyke, 2003; Dumroese et al., 

2015; Pennington et al., 2016). The mechanism responsible for lower persistence of forbs 

is not entirely clear, but because our restoration sites are within critical winter-range 

habitat for big-game ungulate species, the decline in forb abundance we observed over 

time may be due to heavy utilization (Scotter, 1980; Dumsoese et al., 2015; Pennington et 

al., 2016). Nonetheless, even under heavy utilization from big game, our results indicated 

significant increases in forbs relative to pretreatment conditions that remained evident 

through the 5-10 yr post-treatment timeframe, particularly from the introduction and 

establishment of three new species to the understory. These results are promising as they 

relate to the benefits of provisioning forbs to the diets of big game and sage grouse 

(Centrocercus urophasianus), which are often a primary reason for restoring understory 

vegetation in this region (Kufeld et al., 2016; Lyons et al., 1996, Dahlgren et al., 2015). 

A cautionary result of our assessment is the possibility that the notably greater 

increases of introduced species may have interfered with either the establishment or 

growth of native species (i.e., Pyke et al., 2013; Knutson et al., 2014). This speculation is 

based on the observation of more rapid increases in cover for the most successful species 

in each functional group (i.e., B. prostrata, M. sativa, and A. cristatum), while their 

native counterparts were slower to increase, possibly due to competition. However, 
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disentangling potential interference among seeded species is challenging in this context 

because seed mixes varied across sites and we did not simultaneously analyze species 

abundances in the same response years. The relative abundance of B. prostrata may be a 

concern on these restoration sites, especially given its ability to spread within sagebrush 

ecosystems following disturbances (Gray and Muir, 2013). Subsequent monitoring is 

needed to determine if vigorous species that rapidly establish diminish over time as 

native sagebrush plants recover or whether they spread outside of the seeded area into 

native shrublands (Frischknecht and Plummer, 1955; Sullivan et al., 2013). 

 
IMPLICATIONS 

We conclude that all three functional groups experienced notable increases in 

abundance, but just a few species were actually responsible for these increases. In 

addition, the greatest increases were observed in introduced species that tended to do 

better within certain shrub-reduction treatments. The interaction between species and 

treatment was most dramatic over the long term due to fire having a greater influence 

than mechanical treatments on species abundance. Based on these results, the influence of 

potential shrub reduction treatments should be considered on a species by species basis 

when planning restoration seedings. Because the sites we evaluated had high potential for 

success, our study offers an unbiased comparison of species-treatment interactions. In 

addition, greater increases for introduced species signal the need to better understand the 

long-term implications and potential pitfalls of shifting understory composition from 

native to introduced species. Future research is also needed to determine how post-
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treatment wildlife management influences forb persistence. In addition, the greater 

seeded species increases within the fire treatment beckons the need opportunistically seed 

sites after wildfires. Lastly, further research is needed to clarify how mechanical 

treatments influence seedbed conditions, especially for native species that have not been 

specifically developed for the prevailing anthropogenic disturbances that currently exist 

within sagebrush ecosystems. 
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TABLES AND FIGURES 

Table 1  
Functional group classification, name, code, and origin for the 15 species evaluated for 
establishment and persistence on shrub reduction restoration sites in Utah, USA. 
 
Functional 

 
Species Common name 

 
Species 

 
 

Origin 
Shrub Artemisia tridentata Nutt. Sagebrush ARTR Native 
Shrub Atriplex canescens (Pursh) Nutt. Fourwing 

 
ATCA Native 

Shrub Bassia prostrata (L.) A.J. Scott  Forage Kochia BAPR Introduced 
Forb Linum perenne L. Blue Flax LIPE Introduced 
Forb Melilotus officinalis (L.) Lam. Yellow 

 
MEOF Introduced 

Forb Medicago sativa L. Alfalfa MESA Introduced 
Forb Onobrychis viciifolia Scop.  Sainfoin ONVI Introduced 
Forb Sanguisorba minor Scop. Small Burnet SAMI Introduced 
Grass Agropyron cristatum (L.) Gaertn.  Crested 

 
AGCR Introduced 

Grass Psathyrostachys juncea (Fisch.) Nevski  Russian Wildrye PSJU Introduced 
Grass Achnatherum hymenoides (Roem. & 

  
Indian Ricegrass ACHY Native 

Grass Elymus lanceolatus (Scribn. & J.G. Sm.) 
 

Thickspike 
 

ELLA Native 
Grass Leymus cinereus (Scribn. & Merr.) Á. 

 
Great Basin 

 
LECI Native 

Grass Pascopyrum smithii (Rydb.) Á. Löve  Western 
 

PASM Native 
Grass Pseudoroegneria spicata (Pursh) Á. Löve  Bluebunch 

 
PSSP Native 

 
  

http://plants.usda.gov/java/profile?symbol=MEOF
http://plants.usda.gov/java/profile?symbol=MEOF
http://plants.usda.gov/java/profile?symbol=MEOF
http://plants.usda.gov/java/profile?symbol=MEOF
http://plants.usda.gov/java/profile?symbol=ELLA3
http://plants.usda.gov/java/profile?symbol=ELLA3
http://plants.usda.gov/java/profile?symbol=ELLA3
http://plants.usda.gov/java/profile?symbol=ELLA3
http://plants.usda.gov/java/profile?symbol=ELLA3
http://plants.usda.gov/java/profile?symbol=ELLA3
http://plants.usda.gov/java/profile?symbol=LECI4
http://plants.usda.gov/java/profile?symbol=LECI4
http://plants.usda.gov/java/profile?symbol=LECI4
http://plants.usda.gov/java/profile?symbol=LECI4
http://plants.usda.gov/java/profile?symbol=LECI4
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Table 2 
Meta-analysis test of moderators (Qm) for studies of functional group (shrub, forb, and 
grass) and species origin (introduced and native).  
 

 1-4 yr post treatment  5-10 yr post treatment 
Study Qm df P-value  Qm df P-value 
Functional group 128.59 2 <0.0001  323.01 2 <0.0001 
Origin Shrub 60.60 1 <0.0001  196.48 1 <0.0001 
Origin Grass  18.98 1 <0.0001  39.67 1 <0.0001 
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Table 3 
Meta-analysis test of moderators (Qm) for studies of species, treatment, and the 
interaction of species and treatment for three functional groups.  
 

 1-4 yr post treatment  5-10 yr post treatment 
Study Qm df P-value  Qm df P-value 
Shrub        

Species 68.67 2 <0.0001  273.29 2 <0.0001 
Treatment 35.20 2 <0.0001  30.68 2 <0.0001 
S x T 48.15 4 <0.0001  28.12* 2 <0.0001 

Forb        
Species 43.60 4 <0.0001  59.81 4 <0.0001 
Treatment 63.92 2 <0.0001  44.86 2 <0.0001 
S x T 31.62 8 <0.0001  73.73 8 <0.0001 

Grass        
Species 228.90 6 <0.0001  208.51 6 <0.0001 
Treatment 5.87 2 0.0531  128.36 2 <0.0001 
S x T 42.51 12 <0.0001  174.71 12 <0.0001 

*The shrub A. canescens was removed from analysis of the S x T interaction in the 5-10 yr post-treatment 
timeframe because all values were zero and models would not converge.  
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Figure 1. Mean (± SE) nested frequency and cover of 15 seeded species evaluated prior 
(pre) and 1-4 yr after applying shrub removal-seeding treatments (post). Values in 
parentheses, directly above bars, indicate the number of sites included in the analysis for 
each species. Seeded species included three shrubs (a: ARTR, Artemisia tridentata; 
ATCA, Atriplex canescens; BAPR, Bassia prostrata), five forbs (b: LIPE, Linum 
perenne; MEOF, Melilotus officinalis; MESA, Medicago sativa; ONVI, Onobrychis 
viciifolia; SAMI, Sanguisorba minor), and seven grasses (c: AGCR, Agropyron 
cristatum; PSJU, Psathyrostachys juncea; ACHY, Achnatherum hymenoides; ELLA, 
Elymus lanceolatus; LECI, Leymus cinereus; PASM, Pascopyrum smithii; PSSP, 
Pseudoroegneria spicata).  
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Figure 2. Mean (± SE) nested frequency and cover of 15 seeded species evaluated prior 
(pre) and 5-10 yr after applying shrub removal-seeding treatments (post). Values in 
parentheses, directly above bars, indicate the number of sites included in the analysis for 
each species. Seeded species included three shrubs (ARTR, Artemisia tridentata; ATCA, 
Atriplex canescens; BAPR, Bassia prostrata), five forbs (LIPE, Linum perenne; MEOF, 
Melilotus officinalis; MESA, Medicago sativa; ONVI, Onobrychis viciifolia; SAMI, 
Sanguisorba minor), and seven grasses (AGCR, Agropyron cristatum; PSJU, 
Psathyrostachys juncea; ACHY, Achnatherum hymenoides; ELLA, Elymus lanceolatus; 
LECI, Leymus cinereus; PASM, Pascopyrum smithii; PSSP, Pseudoroegneria spicata).   
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Figure 3. Mean (± 95 % CI) establishment effect size (lnRR = ln[post-treatment/pre-
treatment]) for shrubs, forbs, and grasses (pooled for seeded species and shrub reduction 
treatments) evaluated during two post-treatment timeframes. Values in parentheses, 
directly below symbols, indicate the number of sites included in meta-analysis of 
functional groups (Table 2). 
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Figure 4. Mean (± 95 % CI) establishment effect size (lnRR = ln[post-treatment/pre-
treatment]) for introduced and native species (pooled for seeded species and shrub 
reduction treatments) evaluated during two post-treatment timeframes. Values in 
parentheses indicate the number of sites included in meta-analysis of species origin 
(Table 2). 
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Figure 5. Mean (± 95 % CI) establishment effect size (lnRR = ln[post-treatment/pre-
treatment]) for 15 seeded species evaluated 1-4 yr after applying shrub removal-seeding 
treatments. Values in parentheses indicate the number of sites included in species x 
treatment meta-analysis (Table 3). Shrub reduction treatments included mechanical 
(aerator and pipe harrow) and fire methods. Seeded species included three shrubs (a: 
ARTR, Artemisia tridentata; ATCA, Atriplex canescens; BAPR, Bassia prostrata), five 
forbs (b: LIPE, Linum perenne; MEOF, Melilotus officinalis; MESA, Medicago sativa; 
ONVI, Onobrychis viciifolia; SAMI, Sanguisorba minor), and seven grasses (c: AGCR, 
Agropyron cristatum; PSJU, Psathyrostachys juncea; ACHY, Achnatherum hymenoides; 
ELLA, Elymus lanceolatus; LECI, Leymus cinereus; PASM, Pascopyrum smithii; PSSP, 
Pseudoroegneria spicata).   
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Figure 6. Mean (± 95 % CI) establishment effect size (lnRR = ln[post-treatment/pre-
treatment]) for 15 seeded species evaluated 5-10 yr after applying shrub removal-seeding 
treatments. Values in parentheses indicate the number of sites included in species x 
treatment meta-analysis (Table 3). Shrub reduction treatments included mechanical 
(aerator and pipe harrow) and fire methods. Seeded species included three shrubs (a: 
ARTR, Artemisia tridentata; ATCA, Atriplex canescens; BAPR, Bassia prostrata), five 
forbs (b: LIPE, Linum perenne; MEOF, Melilotus officinalis; MESA, Medicago sativa; 
ONVI, Onobrychis viciifolia; SAMI, Sanguisorba minor), and seven grasses (c: AGCR, 
Agropyron cristatum; PSJU, Psathyrostachys juncea; ACHY, Achnatherum hymenoides; 
ELLA, Elymus lanceolatus; LECI, Leymus cinereus; PASM, Pascopyrum smithii; PSSP, 
Pseudoroegneria spicata).   
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CHAPTER 3 
 

INFLUENCE OF MOUTAIN AND WYOMING BIG SAGEBRUSH PLANT 

COMMUNITY SOILS ON SEEDLING EMERGENCE PATTERNS OF SIX 

RESTORATION SPECIES 

 
ABSTRACT 

The influences of soil properties on recruitment of restoration species seeded to 

improve degraded herbaceous understory conditions in big sagebrush (Artemisia 

tridentata Nutt.) plant communities are largely unexplored. We evaluated emergence 

patterns of six commonly seeded restoration species in soils from Wyoming big 

sagebrush (A. t. ssp. wyomingensis [Beetle & A. Young] S.L. Welsh) and mountain big 

sagebrush (A. t. ssp. vaseyana [Rydb.] Beetle) plant communities that differed in soil 

texture, soil organic matter content, and soil water holding capacities. We conducted two 

separate experiments that regularly wetted soils to standardized soil water potentials (i.e., 

field capacity; -0.03 MPa) and allowed differences in evaporation to create distinct wet-

dry watering pattern cycles over a 26-29 d period. We hypothesized that greater water 

holding capacity of vaseyana soil would result in higher emergence than wyomingensis 

soil, and that this pattern would be more pronounced under low soil water content due to 

higher evaporation in wyomingensis soils. Results supported our assumption that inherent 

differences in soil texture and organic matter between soils translate into fundamental 

differences in soil water holding capacity: finer-textured vaseyana soils held roughly two-

fold more water than course-textured wyomingensis soils. On the other hand, seeds in 
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vaseyana soils were exposed to less frequent watering and less frequent wet-dry cycles 

compared to wyomingensis soils. Although species collectively exhibited greater 

emergence in vaseyana soils than wyomingensis soil, patterns were vastly different 

among species and differences between soils became more pronounced under low soil 

water for only two species. Consequently, both hypotheses were rejected due to variable 

responses among species. We conclude that the manner in which soils and water uniquely 

influenced emergence patterns provides new insights in species suitability for restoration 

sites and how inherent soil differences may constrain seeding success. 

 
INTRODUCTION 

The Intermountain Region in the western United States is home to expansive big 

sagebrush (Artemisia tridentata Nutt.) ecosystems, which occupy an extraordinary 

variety of environmental conditions (West, 1983; Davies et al., 2006). This variety 

encompasses plant communities in semi-desert shrublands, shrub-steppe, and upland 

foothills and woodlands, as well as high mountain plateaus (West, 1988; Miller et al., 

2011). Furthermore, big sagebrush plant communities are often dominated, and thus 

classified, by different subspecies (West, 1983; Shultz, 2009), with distinct affinities to 

environmental factors, topographic position, and soils (Meinke et al., 2009; Davies et al., 

2007; Chaney et al., 2017). For example, two major subspecies—Wyoming big 

sagebrush (A. t. ssp. wyomingensis [Beetle & A. Young] S.L. Welsh; hereafter 

wyomingensis) and mountain big sagebrush (A. t. ssp. vaseyana [Rydb.] Beetle; hereafter 

vaseyana)—generally occupy different topographic positions (i.e., lower and higher 
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elevation sites, respectively), and vary widely in resilience to environmental stress and 

resistance to invasion by exotic annual grasses as well as temperature and precipitation 

regimes (Wisdom and Chamber, 2009; Chambers et al., 2017). In addition, soils 

occurring in both plant communities are considered well drained, but soils found in 

vaseyana sagebrush communities are typically deeper, finer-textured and have higher 

organic matter (Jensen, 1990; Mahalovich and McArthur, 2004; McArthur, 2005; Davies, 

et al. 2007). In contrast, coarser soils found in wyomingensis sagebrush communities 

drain more rapidly and experience higher rates of evaporation due to higher sand and 

lower organic matter content (Bauer, 1974; Kuss, 1986; Wang et al., 2016). Despite these 

documented differences, relatively little is known about how variation in soil properties 

influences recruitment opportunities of restoration species that are actively seeded to 

improve ecosystem health by remediating degraded herbaceous understory conditions 

(West, 1988; Miller et al., 2011).   

The roles of soil texture and soil organic matter in determining plant community 

dynamics and restoration potential has gained recognition in the last few decades 

(Bronick and Lal, 2005; Heneghan et al., 2008; Baer et al., 2010). Soil texture is a crucial 

soil property that directly influences moisture content, porosity, bulk density, organic 

matter stability, cation exchange capacity, and nutrient availability (Bauer, 1974; Tuller 

and Or, 2004; Saxton and Rawls, 2006). Consequently, sandy soils have high porosity 

and low water-holding capacity (WHC), but clayey soils have higher bulk density, greater 

surface area, and higher WHC (Noy-Meir, 1973; Lin et al., 1997). Soil organic matter 

content also strongly influences WHC of soils and water retention (Baumann and Bauer, 
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1974; Naeth et al., 1991; Hudson, 1994; Huntington, 2006). Accordingly, inherent 

differences in soil texture and OM content between wyomingensis and vaseyana soils 

may lead to considerable variation in soil water holding capacity (i.e, Jensen, 1989; 

1990). 

Seed germination and seedling emergence are recognized as major regulators of 

restoration success in semi-arid ecosystems in the Intermountain West (James et al. 2013; 

Svejcar et al. 2014). However, little is known regarding how WHC capacity influences 

germination and seedling growth of commonly seeded species in this region. Although 

seeded species success can be improved by soil surface modifications to increase the 

number of favorable microsites for seed germination and emergence, as well as seed 

enhancements to remedy restoration barriers (Mangold et al., 2007; Hardegree et al., 

2016; Madsen et al., 2016), site specific factors, such as soil properties, can have 

overriding effects on germination and emergence patterns of seeded species (Stevens, 

1983; Young et al., 1989; Brabec et al., 2015). For example, inherent site differences in 

WHC among sagebrush soils may interact with soil water availability, such that as 

moisture declines, the amount of water freely available for seeds to imbibe and germinate 

will vary among sites (e.g., Evans and Etherington, 1990). These differences in soil 

texture and WHC among also dictate matric water potential (i.e., water stress), which 

directly influence germination potential of seeds (Doescher et al., 1985; Wuest and 

Lutcher, 2013). Thus, seeds germinating and emerging in wyomingensis and vaseyana 

soils could experience vastly different wet-dry cycling at given water potentials. If true, 

the effects of inherent soil differences on these processes would become more 
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pronounced under lower soil moisture contents due to greater water retention and lower 

evaporation in finer-textured vaseyana soil and more frequent wet-dry cycling in coarse-

textured wyomingensis. 

Native species germination patterns have been correlated with habitat conditions 

in big sagebrush plant communities (Meyer and Monsen, 1992; Kitchen and Monsen, 

1994; Hardegree and Van Vactor, 1999), yet the influence of soil properties on species 

germination and emergence patterns is poorly understood. To clarify these relationships, 

we evaluated the effects of vaseyana and wyomingensis soils on emergence patterns of 

six restoration species commonly seeded on degraded sagebrush plant communities in the 

Intermountain Region. A novel experimental design was developed to account for soil 

water holding capacity differences between soils by regularly wetting soils to 

standardized soil water potentials (i.e., field capacity; -0.03 MPa) and allowing 

differences in evaporation rates to create distinct wet-dry cycles over a 26-29 d period. 

We hypothesized that 1) greater water holding capacity of vaseyana soils would result in 

higher emergence, and that 2) this pattern would be more pronounced under low soil 

water content due to higher evaporation in wyomingensis soils. We anticipated that 

evaluating emergence patterns of these two soils would improve our understanding of 

species suitability for restoration sites and provide insights into site-related constraints on 

seeding success. 
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METHODS AND MATERIALS 

Site Descriptions 

Soils from two different big sagebrush plant communities in northern Utah, 

dominated by either Wyoming (Artemisia tridentata ssp. wyomingensis) or mountain 

(Artemisia tridentata ssp. vaseyana) big sagebrush, were collected for use in this study. 

The Wyoming big sagebrush plant community was located near Park Valley in Box Elder 

County, UT (41° 49’ 26.21” N, 113° 17’ 25.21” W), at 1680 m elevation, on a 3 % south-

facing slope. The parent material is derived from alluvium; soils are in the Kapod and 

Donnardo series and classified as loamy-skeletal, mixed, superactive, mesic Calcic 

Argixerolls and loamy-skeletal, mixed, superactive, mesic Typic Argixerolls, respectively 

(Box Elder County, Western Part; http://websoilsurvey.nrcs.usda.gov/app/). The plant 

community was classified as Semidesert Gravelly Loam (Wyoming Big Sagebrush) 

North (R028AY215UT; Ecological Site Information System; 

https://esis.sc.egov.usda.gov). Vegetation resembled a Wyoming big sagebrush-

dominated phase, with a number of less common species including, rubber rabbitbrush 

(Ericameria nauseosa [Pall. ex Pursh] G.L. Nesom & Baird), bottlebrush squirreltail 

(Elymus elymoides [Raf.] Swezey ssp. elymoides), and bluebunch wheatgrass 

(Pseudoroegneria spicata [Pursh] Á. Löve). Long-term mean (30-year; 1986-2016) 

annual precipitation and air temperature are 368.3 mm and 7.8 °C, respectively (Box 

Elder County, Western Part; http://websoilsurvey.nrcs.usda.gov/app/). 

The mountain big sagebrush plant community was located near Mantua in Box 

Elder County, UT (41° 33’ 15.77” N, 111° 57’ 9.27” W), at 1800 m elevation, on a 10 % 

http://websoilsurvey.nrcs.usda.gov/app/
https://esis.sc.egov.usda.gov/
http://websoilsurvey.nrcs.usda.gov/app/
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north-facing slope. The parent material was quartzite alluvium derived from sandstone; 

soils are part of the Hendricks series and classified as fine-silty, mixed, superactive, 

mesic Pachic Argixerolls (Box Elder County, Eastern Part; 

http://websoilsurvey.nrcs.usda.gov/app/). Current vegetation was classified as Mountain 

Loam (Mountain Big Sagebrush) (R047XA430UT; Ecological Site Information System 

https://esis.sc.egov.usda.gov); vegetation resembled a mountain big sagebrush-dominated 

phase with bluebunch wheatgrass (P. spicata) and a number of less common species 

including mountain snowberry (Symphoricarpos oreophilus A. Gray) and prairie 

junegrass (Koeleria macrantha [Ledeb.] Schult). Long-term mean (30-year; 1986-2016) 

annual precipitation and air temperature were 622.3 mm and 6.1 °C, respectively (Box 

Elder County, Eastern Part; http://websoilsurvey.nrcs.usda.gov/app/). 

 
Soil Collection and Analysis 

Soil was excavated to a depth of 20 cm from the interspace areas between 

dominant shrubs within a single 10 m x 10 m area at each plant community, excluding 

the top litter layer, until 100 L of soil was obtained. Soils were transported to a 

greenhouse, homogenized by mixing, and air-dried for three weeks before sieving 

through a 1-cm wire mesh to remove larger organic material and rock.  

Air-dried subsamples from each soil (n = 5) were analyzed for cation exchange 

capacity (CEC), organic matter content (OM), percentage soil water content (SWC % at -

0.03 MPa, -1.5 MPa, and soil saturation.), pH, and texture. CEC and OM were 

determined with flow injection analysis (Quick Chem 8500, Lachat Instruments, 

Loveland, Colorado, USA) using the ammonium replacement method (Gavlak et al., 

http://websoilsurvey.nrcs.usda.gov/app/
https://esis.sc.egov.usda.gov/
http://websoilsurvey.nrcs.usda.gov/app/
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2005) and the dichromate oxidation method (Walkley and Black, 1934), respectively. 

Percentage SWC values was measured with the pressure plate method (Gavlak et al., 

2005) at -0.03 MPa and the samples were allowed to equilibrate for 24 h. For permanent 

wilting point, the pressure plate was set at -1.5 MPa and allowed to equilibrate for 48 h. 

SWC % values are expressed gravimetrically (i.e., the weight of water as a fraction of the 

total soil wet weight; Bittelli, 2011). Samples were also analyzed for pH and texture (i.e., 

percentage sand, silt, and clay) using the hydrometer and slurry methods, respectively 

(Gee and Bauder, 1986; Thomas, 1996). For pH, 15 g of soil was mixed with 30 mL of 

deionized water, shaken at 100 rpm for 30 min, then measured with a pH meter (Orion 3 

star bench-top pH meter; Thermo Scientific). To quantify percentage sand, silt, and clay, 

50 g of soil was mixed with a 100-mL sodium hexametaphosphate–water solution and 

250 mL of deionized water and shaken at 150 rpm for 1 h, placed into a 1-L cylinder, and 

filled with deionized water. A custom plunger was used to mix the slurry before 

measuring its temperature and density (g · L-1) with a Bouyoucos hydrometer (14-331-

5C; Thermo Scientific, Beverly, MA) after 30 s and again after 1,440 min (Table 4). Soil 

variables for each soil were compared statistically using the unpaired (i.e., independent 

samples) two-sample Student’s t-test (p = 0.05). 

 
Plant Species 

Six species commonly used in restoration projects in Great Basin, Rocky 

Mountain, and Colorado Plateau ecoregions in the Intermountain West were selected for 

our study (UWRI; http://wildlife.utah.gov/watersheds/; Lambert 2005). These included 

the shrubs Wyoming and mountain big sagebrush, two forbs (alfalfa; Medicago sativa 

http://wildlife.utah.gov/watersheds/
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[L.] and sanfoin; Onobrychis viciifolia Scop.), and two perennial grasses (bluebunch 

wheatgrass; (Pseudoroegneria spicata). and “Hycrest II” crested wheatgrass; Agropyron 

cristatum [L.] Gaertn). Seeds for the study were obtained from Great Basin Research 

Center and Seed Warehouse, Ephraim, Utah, USA (shrubs; wildland collected at 

Piute/Wayne/Sevier counties in Utah in fall 2016) and Wheatland Seed Brigham City, 

Utah, USA (forbs and grasses; commercially produced in Utah 2015). Seeds were hand 

cleaned and selected for consistency in shape and size prior to experiments. 

 
Experiment 1  

To study the influence of sagebrush soils on cumulative seed emergence, 100 

seeds of each species were sown in plastic containers (11 cm x 11 cm x 4 cm) filled with 

50 g of either vaseyana or wyomingensis soil (n = 5). We then covered seeds with either 

1 mm of soil (i.e., sagebrush) or 3 mm of soil (i.e., all other species) and placed unsealed 

containers in a growth chamber with onboard environmental controls (model PGW132, 

IntellusUltra C8T, Percival, Perry, IA 50220) for photosynthetically active radiation 

(PAR), air temperature, and relative humidity (RH %). The chamber was set to a 12/12 h 

day/night regime, and temperature and RH values were chosen to mimic a springtime 

regime (e.g., 15 April to 15 May) for Tremonton, Utah, a site located geographically 

between the two plant communities where soils were obtained. Spring conditions were 

mimicked due to the fact that these species are typically sown with fall-dormant seeding 

to promote spring emergence when SWC is available and the risk of seedling mortality 

from freezing temperatures is low (Jensen et al. 1999). We obtained average hourly air 

temperature and RH data for Tremonton from the Utah Climate Center 
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(https://climate.usurf.usu.edu/agweather.php) and calculated mean daytime (0900 – 2100) 

and nighttime (2100 - 0900) values for a 4-year period (2013-2016). Based on these 

calculations, we set the day/night temperature and RH to 14.6/8.4 °C and 50.9/70.8 %, 

respectively. Daytime PAR was set to an uncharacteristically low PAR value of 100 

mol ⋅ m-2 ⋅ s-1 to prevent high rates of evaporation within containers over a 24 h period. 

SWC of each container was adjusted gravimetrically according to pre-determined field 

capacity values for each soil (-0.03 MPa; Table 4). We recorded daily low SWC (i.e., 

after a 24 h period) of each container for 26 d and readjusted SWC to field capacity. In 

addition, we recorded emergence (based on the appearance of a coleoptile extending 2 

mm above the soil surface) for each container. Cumulative emergence data were assessed 

for normality and homogeneity of variance, then analyzed with repeated measures 

MANOVA as a factorial experiment using a completely randomized design (p = 0.05). 

We also analyzed total seedling emergence and learned that emergence was generally 

higher in vaseyana compared to wyomingensis soil. Consequently, we used mean 

maximum seedling emergence in vaseyana soil as a proxy estimate of seed purity for 

each species for use in Experiment 2.   

 
Experiment 2 

To study the interactive influence of soil water content and sagebrush soil on 

cumulative seedling emergence over a 29-d period, we followed the same procedures of 

Experiment 1, but to minimize intraspecific competition with the small containers, seeds 

were sown at a lower density and total soil weight within containers was increased to 200 

g. A greater amount of soil in containers increased soil volume and allowed us to create 

https://climate.usurf.usu.edu/agweather.php
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distinct watering levels that could be maintained feasibly over a 24 h period. In addition, 

using seed purity estimates obtained from Experiment 1, a standard sowing density was 

calculated for each species to potentially yield 30 seedlings per container. A total of 140 

containers were prepared for the experiment (2 soils x 2 water levels x 6 species + a non-

sown control x 5 replicates). 

Distinct water levels were created by adjusting daily SWC to either field capacity 

(high treatment) or to the midpoint between field capacity and the permanent wilting 

point (low treatment). Midpoint SWC levels for vaseyana and wyomingensis soils were 

25.0 and 13.7 %, respectively. Thus, unlike Experiment 1, adjustments were not made 

each day, but only when the SWC of at least one container from a species-water level 

combination reached permanent wilting point due to evaporation. Gravimetric SWC and 

seedling emergence was recorded daily even if water adjustments were not necessary. 

Cumulative emergence data were assessed for normality and homogeneity of variance 

and analyzed as a factorial experiment using a randomized complete block design with 

repeated measures MANOVA (p = 0.05).  

 
RESULTS 

Soil Properties and Water Content 

Differences between vaseyana and wyomingensis soils were highly significant 

(Table 4). Organic matter, CEC, as well as silt and clay content of vaseyana soil were 

typically two-fold higher than wyomingensis soil (Table 4). On the other hand, sand 

content of wyomingensis soil was nearly four-fold higher than vaseyana soil. 
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Consequently, vaseyana soils required nearly twice the amount of water to attain the 

same soil water potential (i.e., field capacity; -0.03 MPa) and, thus, SWC of vaseyana 

soils remained much higher relative to wyomingensis soils for both experiments (Fig. 7). 

Even when distinct soil water levels were applied in Experiment 2, the low water level of 

vaseyana soil maintained higher daily-low SWC than both water levels of the 

wyomingensis soil. Vaseyana soil also retained water longer than wyomingensis soil 

based on the fact that the number of watering events was approximately double for 

wyomingensis compared to vaseyana soil in both the high (9.0 ± 0.0 vs 14.1 ± 0.1; t = 

36.0, df = 6,  P < 0.0001) and low water level treatment (14.0 ± 0.3 vs 25.0 ± 0.6; t = 

15.2, df = 6,  P < 0.0001).  

 
Emergence Patterns 

In Experiment 1, emergence was significantly greater in the vaseyana than 

wyomingensis soil, yet species exhibited vastly different patterns in the two soils (Table 

5; Fig. 8). Final emergence percentage was much higher in vaseyana soil for both 

sagebrush subspecies compared to the wyomingensis soil, but not for the other four 

species. Emergence was also notably higher for M. sativa and A. cristatum in vaseyana 

soil, but only during the midpoint of the experiment. In addition, emergence of O. 

viciifolia and P. spicata was not significantly affected by the different sagebrush soils, 

although values for P. spicata in the wyomingensis soil showed a marked increase over 

vaseyana soil between Days 20 and 26 of the experiment. Consequently, although 

emergence patterns were significantly different between vaseyana and wyomingensis 
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soils (Table 5), final values (mean ± SE pooled for species) differed by less than 4 % (i.e, 

61.8 ± 5.2 vs 58.6 ±7.3, respectively). 

Although water was added less frequently in Experiment 2 relative to Experiment 

1, the patterns of species emergence and how they were influenced by soils were similar. 

Emergence of all species was generally more rapid and higher for the combination of 

high water and vaseyana soil, yet a number of exceptions were observed (Fig. 9). For 

example, unlike the other species, final emergence of P. spicata in wyomingensis soil 

exceeded vaseyana soil regardless of soil water level. In addition, O. viciifolia, and A. 

cristatum showed greater emergence in wyomingensis compared to vaseyana soil under 

low water. Water levels also modulated germination patterns differently among species 

(Fig. 9, Table 6). Significant differences between soils were not found for either 

sagebrush subspecies or O. viciifolia under the high water level. In contrast, emergence 

patterns were different between soils, regardless of water level, for M. sativa, P. spicata, 

and A. cristatum. However, differences between soils were more pronounced under low 

water only for O. viciifolia and P. spicata. Although emergence patterns were 

significantly different between vaseyana and wyomingensis soils (Table 6), final values 

(mean ± SE pooled for species) were similar under high water (56.0 ± 5.0 vs 55.5 ± 5.9), 

but quite different under low water (32.8 ± 3.6 vs 50.2 ± 5.2), respectively. 

 
DISCUSSION 

My results support the assumption that the inherent properties of soil texture and 

OM between vaseyana and wyomingensis soils translate into fundamental differences in 
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soil water holding capacity (i.e., Bauer 1974; Lin et al. 1997) and suggest a number of 

important considerations relevant to seed emergence patterns. First, fine-textured 

vaseyana soils held more water (i.e., roughly two-fold higher SWC) than coarse-textured 

wyomingensis soils. Thus, differences in evaporation created fluctuating SWC conditions 

and highly variable seed emergence patterns for a broad range of restoration species. For 

example, the variability in SWC between soils, exposed germinating seeds in vaseyana 

soils to less frequent watering and less frequent wet-dry cycles compared to 

wyomingensis soils. In addition, this signature difference in SWC became more 

pronounced in the low water level treatment for two of the study species. Second, 

because soils and species strongly interacted, our hypotheses were not supported; not all 

species experienced higher emergence rates in vaseyana soil and differences between 

soils were not consistently more pronounced under the low water treatment. The 

emergence patterns observed under these experimental conditions provide insight into 

species suitability for restoration sites and how inherent soil differences may constrain 

seeding success. 

Differences in soil texture and OM content between wyomingensis and vaseyana 

soils directly influenced evaporative water loss (e.g., Bauer, 1974; Saxton and Rawls, 

2006) and exposed germinating seeds to different wet-dry cycles. While rapid 

evaporation of moisture is known to limit germination of semiarid plant species (e.g., 

Frasier et al., 1997), alternating wet-dry cycles accelerates germination and seedling 

emergence (Zhu et al., 2013), but responses can vary widely among species native to the 

Intermountain Region (Bleak and Keller, 1972; Kastner et al., 1981). Furthermore, the 
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influence of alternating wet-dry cycles on germination rates (e.g., Doescher et al., 1985; 

Evers and Parsons, 2003) depends on the interval length between rewetting events (Fay 

and Schultz, 2009; Gao et al., 2014). In both of our experiments, interval lengths were 

greater for vaseyana soil and rewetting occurred more frequently in wyomingensis soils. 

In addition, seeds in Experiment 2 were exposed to 6 and 11 more wet-dry cycles in the 

high and low water treatments compared to the vaseyana soils, respectively. These 

differences in wet-dry cycles provide an important clarification when interpreting 

emergence patterns overall (i.e., pooled-species responses) as well as for individual 

species.  

Considerable variation in emergence patterns among species necessitated 

rejecting Hypothesis 1 that greater water holding capacity of vaseyana soil would lead to 

higher emergence compared to the coarser wyomingensis soil. In fact, differences 

between soils were evident for only four species in Experiment 1, and among these, only 

the two sagebrush subspecies clearly illustrated greater final emergence values in 

vaseyana soil. Considering both experiments together, only M. sativa and A. cristatum 

responded according to our first hypothesis. We speculate that greater emergence in 

vaseyana than wyomingensis soil for both sagebrush subspecies in Experiment 1 was a 

consequence of less rapid evaporation experienced between watering intervals in 

vaseyana soil (e.g., Gill and Jalota, 1996), which reduced the chances of dry soils 

desiccating seeds between watering intervals, especially since they were planted more 

shallowly compared to Experiment 2. Sagebrush seeds are very small compared to the 

other species, and require shallow seeding depths (Walck et al., 2008; Meyer, 1994; 
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Daws et al., 2008). Thus, rapid emergence under the higher and less fluctuating water 

conditions of vaseyana soil may be a mechanism to reduce the risk of drought induced 

mortality of these species. On the other hand, consistently more rapid emergence of the 

broadly adapted M. sativa and A. cristatum in vaseyana soil suggests that both species 

benefited from the buffered, i.e., less extreme changes in daily SWC provided by finer 

textured, vaseyana soils. Less wet-dry cycling in the vaseyana soil over the course of our 

experiments likely improved M. sativa emergence by increasing the rate of imbibition 

(i.e., Hegarty, 1977), a process known to strongly control germination speed and 

consistency in the this legume species (Chon et al., 2004; Yacoubi et al., 2011). Greater 

emergence of A. cristatum in vaseyana soil also appears to be related to higher soil water 

retention in finer soils. This aggressive forage grass has been shown to be most 

productive and maintain dominance on silty loam compared to sandy loam soils in the 

Intermountain Region (Shown et al., 1969; Williams et al. in press). In addition, previous 

research illustrated that supplementing clayey field soils with sand to reduce water-

holding capacity resulted in significant reductions in crested wheatgrass germination and 

seedling emergence (Mangold and Sheley, 2007). 

Water content of surface-soil horizons can fluctuate greatly from day to day in 

sagebrush ecosystems (Obrist et al., 2004; Ivans et al., 2006), and can vary by vegetation 

type (Castelli et al., 2000; Ducas et al., 2011), particularly during spring conditions that 

coincide with seed germination and seedling emergence of seeded species (Schlaepfer et 

al., 2015). Soil water depletion can be rapid if not recharged by precipitation or through 

hydraulic redistribution. Such diel fluctuation in soil surface water conditions can be 
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extreme, and reflects daytime depletion due to evaporation and transpiration and 

nocturnal resupply by hydraulic redistribution and both liquid and vapor flow along 

temperature and pressure potential gradients (Caldwell et al., 1998; Schelde et al.,1998). 

These environmental gradients make it difficult to measure soil water conditions at the 

soil surface, yet from modeling, we know that fluctuations in water and temperature 

strongly regulate seed germination patterns (Flerchinger and Hardegree, 2004; Hardegree 

et al., 2013). When soils become dry and are not recharged, available soil water 

conditions are not suitable for seeded species germination and may lead to desiccation 

and mortality of emerged seedlings (Evans et al., 1970 Abbott and Roundy, 2003; James 

and Svejcar, 2010; James et al., 2011). Although pooled-species emergence patterns 

suggested that differences between soils became more pronounced under low water in 

Experiment 2, the second hypothesis must be rejected because species-level patterns did 

not consistently respond as expected. In fact, O. viciifolia and P. spicata were the only 

two species with more pronounced differences between soils under low water; however, 

surprisingly, both species showed higher emergence rates in wyomingensis soil. A 

mechanism for these unexpected results is difficult to speculate, but it is possible that 

longer interval lengths spent at suboptimal water conditions in vaseyana soil reduced 

emergence relative to coarser, wyomingensis soil that was recharged more frequently due 

to higher evaporation rates. Greater emergence of P. spicata in wyomingensis soil than 

vaseyana soil regardless of water level also agrees with a previous report that showed 

~two-fold greater germination in sandy compared to clay soil (Madsen et al., 2012). 
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Further research that expressly varies the temporal dynamics of wet-dry cycles is needed 

to characterize germination and emergence patterns in soils of different textures. 

 
IMPLICATIONS 

My results showing variable species emergence patterns for vaseyana and 

wyomingensis soils provides a greater understanding of species suitability for restoration 

sites and new insights into site-related constraints on seeding success. Emergence was 

generally greater in vaseyana soil and within the high water treatment, yet the low water 

treatment did not seem to prevent any of the species from emerging. In a few cases, the 

magnitude of differences in emergence between the two soil was greater under low water 

treatments, which was likely caused by alternating wet/dry cycles promoting water 

imbibition and increasing germination. My results also highlight that broad differences 

exist in emergence patterns between species within the same functional groups. Further 

research is needed to characterize the role of soil texture and how it influences the 

temporal dynamics of alternating wet/dry cycles. Such information could assist in 

determining the suitability of sites for proposed restoration seedings as well as selecting 

the most appropriate species to plant.  
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TABLES AND FIGURES 

Table 4 
Mean (± SE; n = 5) soil measures and statistical comparison (unpaired Student’s t-test 
and P-value) of two big sagebrush plant community soils used in seed germination 
experiments.   

 
 
 
 
 
 
 
 
 
 
 
 

 
  

Soil measure vaseyana soil  wyomingensis soil t-ratio P-value 
Organic matter (%) 7.86 (0.06) 3.78 (0.13) 34.23 <0.0001 
CEC (meq/100g)  41.92 (0.22) 19.62 (0.15) 85.32 <0.0001 
SWC % (-0.03 MPa) 34.58 (0.49) 20.82 (0.36) 16.63 <0.0001 
SWC % (-1.5 MPa) 15.34 (0.16) 6.51 (0.15) 52.85 <0.0001 
SWC % (saturated soil) 58.90 (0.59) 29.43 (0.35) 45.90 <0.0001 
pH 7.30 (0.03) 7.91 (0.01) -18.60 <0.0001 
Sand (%) 15.61 (0.85) 65.60 (0.31) -57.11 <0.0001 
Silt (%) 47.83 (0.84) 23.34 (0.29) 26.15 <0.0001 
Clay (%) 36.52 (0.43) 11.06 (0.09) 64.93 <0.0001 
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Table 5 
Results of MANOVA showing degrees of freedom (df), F statistics, and p-values for the 
effects of sagebrush community soil (i.e., vaseyana and wyomingensis) on germination of 
six species in Experiment 1. 
 
Effect Df F p-value 
Soil 1,48 83.68 <0.0001 
Species 5,48 290.52 <0.0001 
Soil*Species 5,48 26.01 <0.0001 
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Table 6 
Results of MANOVA showing degrees of freedom (df), F statistics, and p-values for the 
effects of sagebrush community soil (i.e., vaseyana and wyomingensis) and soil water 
content levels on germination of six species in Experiment 2. 
 
Effect Df F p-value 
Soil 1,92 2.07 0.1536 
Species 5,92 87.19 <0.0001 
Water 1,92 63.77 <0.0001 
Soil*Species 5,92 22.59 <0.0001 
Soil*Water 1,92 12.56 <0.0001 
Water*Species 5,92 6.42 <0.0001 
Soil*Species*Water 5,92 3.10 0.0124 
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Figure 7. Analysis of daily low soil water content percentages in experiments one and 
two. Dashed and dotted lines indicate SWC % values at permanent wilting point (i.e., -
1.5 MPa) for vaseyana and wyomingensis soils, respectively. Experiment 1 had one water 
level (i.e., high water content) and Experiment 2 incorporated two water levels (i.e., high 
and low).  
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Figure 8. Cumulative daily mean (± SE) percentage emergence of A. t. vaseyana, A. t. 
wyomingensis, M. sativa, O. viciifolia, P. spicata, and A. cristatum in Experiment 1. 
Emergence was assessed daily for 26 days in vaseyana and wyomingensis soils; P-values 
indicate significant differences between soils (P < 0.05).  
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Figure 9. Cumulative daily mean (± SE)  percentage emergence of A. t. vaseyana, A. t. 
wyomingensis, M. sativa, O. viciifolia, P. spicata, and A. cristatum in Experiment 2. 
Emergence was assessed daily for 29 days in vaseyana and wyomingensis soils 
maintained at high and low soil water content; within a water content level, P-values 
indicate significant differences between soils (P < 0.05).  
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CHAPTER 4 

CONCLUSION 

Sagebrush (Artemisia tridentata Nutt.) ecosystems are managed to balance the 

relative dominance of woody shrub species and herbaceous species, prevent 

environmental damage, and promote a broad range of ecosystem services (Van Auken, 

2009; Eldridge et al., 2011; Archer et al., 2017). My research sheds light on how shrub 

removal treatments and restoration seedings help remediate degraded understory 

conditions, which has been a long standing challenge to managing sagebrush ecosystems 

(Monsen, 2004). In Chapter 2, seeded grasses experienced greater increases in abundance 

after shrub removal than forbs and shrubs; however, these increases were primarily 

driven by a single, high performing species within each functional group. Increases over 

time were also higher for introduced species compared to native species. The interaction 

between species identity and treatment was most dramatic over the long term (5-10 yrs), 

primarily due to fire having a greater influence on seeded species than the mechanical 

treatments 

In Chapter 3, I determined how soils from two different big sagebrush plant 

communities (i.e., wyomingensis; Artemisia tridentata ssp. wyomingensis and vaseyana; 

Artemisia tridentata ssp. vaseyana) influence emergence patterns of six commonly 

seeded restoration species. My study identified that differences in soil texture and organic 

matter (OM) created fundamental differences in soil water holding capacities and 

evaporation between vaseyana and wyomingensis soils. I found that finer-textured 

vaseyana soils held more water than course-textured wyomingensis soils, yet at a given 
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soil water content (SWC), seeds in vaseyana soil were exposed to greater water stress 

(Jensen, 1990; McArthur, 2005). There was large variation in the emergence patterns 

among species, thus, greater water holding capacity of vaseyana soils did not necessarily 

lead to higher emeregence compared to coarser wyomingensis soil. In a second 

experiment, I varied SWC to determine whether SWC and soil type had interactive 

effects on seedling emergence. Results showed strong interaction between these factors; 

however, species did not consistently show higher emergence in vaseyana soil and only a 

few species experienced greater differences between soils under the SWC treatment. 

Emergence was generally greater in vaseyana soil and within the high water treatment, 

yet the low water treatment did not seem to prevent any of the species from emerging. In 

a few cases, the magnitude of differences in emergence between the two soils was greater 

under low water treatments, which was likely caused by alternating wet/dry cycles 

promoting water imbibition and increasing germination. These findings  provide greater 

understanding of species suitability for restoration sites and new insights into site-related 

constraints on seeding success. 

My findings can help researchers and restoration practitioners understand which 

species perform best at big sagebrush project sites. Furthermore, fundamental differences 

in emergence patterns between soils from commonly rehabilitated big sagebrush sites 

suggests that further research is needed to characterize soils based on the temporal 

dynamics of alternating wet/dry cycles. Such information could assist in determining the 

suitability of sites for proposed restoration seedings as well as selecting the most 

appropriate species to plant. 
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Appendix 1. Summary of project sites showing treatment type, seeding method (A, 
aerial; B, broadcast; and D, drill), seeding/treatment year, and general site characteristics. 
 

Project Site Treatment  Seeding 
method 

Years pre- and post- 
monitoring 

Elevation 
(m) 

Aspect 

Brown’s Field Aerator D 2008-2011 1712 NW 
Brown’s Park db Drum Aerator B 2005-2008, 2012 1661 SW 
Cache Cave 1 Aerator B 2004-2007, 2011 2003 N 
Cache Cave 2 Aerator B 2004-2007, 2012 1996 N 
Consumer Bench Aerator B 2004-2009, 2012 1859 S 
Consumer Bench 2 Aerator B 2005-2008, 2012 1867 NE 
Consumer Bench North aerator B 2004-2009, 2012 1829 N 
Deadman Greenstrip aerator D 2007-2011 1768 S 
Deep Creek aerator A, D 2005-2008, 2011 1676 NE 
Duck Creek 1 aerator B 2003-2006, 2011 2222 NW 
Duck Creek 3 Low aerator B 2003-2006, 2009 2012 NE 
Dugout aerator B 2004-2008, 2013 1999 NW 
Hart Draw Flat 1 aerator B 2005-2008, 2013 1935 N 
Hart Draw Flat 2 aerator B 2005-2008, 2013 1935 SW 
Harts Draw aerator B 2004-2009 1951 SW 
Harts Windmill aerator B 2005-2008, 2013 1920 W 
Porphyry Bench aerator B 2004-2009 1920 W 
Purple Cabin aerator A 2005-2008, 2013 2134 N 
Upper Porphyry aerator B 2004-2007, 2012 1929 NE 
Anderson Dixie pipe harrow B 2007-2010, 2011 1570 W 
Beaver Easement Harrow pipe harrow B, A 2008-2011 1920 S 
Bell Draw Dixie pipe harrow B 2006-09, 2010 2103 NE 
Brush Creek Dixie pipe harrow D 2010-2012 1756 SE 
Buckskin Valley Highway pipe harrow B 2005-2008, 2013 2172 W 
Chew Dixie pipe harrow B 2006-2009 2347 NW 
Diagonal/Electric Harrow pipe harrow B 2008-2009, 2010 1736 Flat 
East Pasture Harrow pipe harrow B 2007-2012 1768 W 
Elbow Ranch 1 pipe harrow B, D 2004-2012 1868 W 
Fountain Green Dixie pipe harrow B 2006-2010 1768 SW 
Hamlin Valley Harrow pipe harrow B 2008-2011 2621 SE 
Harvey John Mesa pipe harrow B 2006-2010 2164 SW 
Ibapah Harrow pipe harrow B 2007-2012 1835 W 
Ibapah Harrow (2) pipe harrow B 2008-2012 1798 W 
Lower Dog Flat pipe harrow B 2004-2009, 2013 2469 S 
Mountain Home Seeding pipe harrow B 2003-2008, 2013 2286 NW 
North Narrows Dixie pipe harrow B 2008-2010, 2013 2065 W 
North Spring pipe harrow B 2006-2010 1890 S 
Panguitch East Beach pipe harrow B, A 2004-2007, 2012 2134 SW 
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P-Hill Dixie pipe harrow B 2005-2008, 2013 1920 E 
Poverty Dixie pipe harrow B 2005-2010, 2013 1798 N 
Row of Pines Exclosure A pipe harrow B 2004-2009, 2013 2454 SE 
Sage Valley Dixie pipe harrow B 2006-2008, 2010 1890 NE 
Scofield Dixie pipe harrow B 2008-2011 2398 NE 
SITLA Dixie pipe harrow B 2006-2009, 2010 2073 SE 
SITLA Dixie 2 pipe harrow B 2006-2012 2073 SE 
South Narrows  pipe harrow B 2004-2007, 2012 2045 S 
Stateline North pipe harrow B 2006-2009, 2013 2036 E 
Trout Creek Dixie pipe harrow B 2006-2010 2332 W 
West Stuntz  pipe harrow B 2006-2010, 2013 2393 NW 
Wildcat Dixie Harrow pipe harrow B 2008-2010, 2013 2578 N 
Yergy  pipe harrow S 2003-2008 2176 Flat 
Big Cedar Cove fire A 2003-2008, 2013 1844 SW 
Big Hollow  fire A 1997-2002, 2007 1966 SE 
Buckskin 1 fire A 2005-2008, 2013 1925 N 
Doubleup Hollow fire A 2003-2008, 2013 2323 S 
Mouth of Blacksmith Fork fire A 2006-2011 1494 W 
Pack Creek fire B 2007-2010 1798 N 
Peter’s Canyon fire B 2007-2010 2957 SE 
Quacking Aspen Spring   fire A, B 1999-2004, 2010 2073 NW 
Tintic Knapweed Control fire D 2008-2011 1798 E 
Tobin Bench fire A 2003-2008, 2013 1417 E 
Wide Canyon fire A 2003-2008 1682 W 

Hereford 1 fire D, A 2005-2008, 2013 1631 SW 
Coldwater 1 fire D 2005-2009, 2013 1451 E 
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