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ABSTRACT
A Confidence Interval Estimate of Percentile
by
Jou, How Coung, Master of Science
Utah State University, 1980

Major Professor: Dr. Ronald V. Canfield
Department: Applied Statistics

The confidence interval estimate of percentile and its
applications were studied. The three methods of estimating
a confidence interval were introduced. Some properties of
order statistics were reviewed. The Monte Carlo Method--
used to estimate the confidence interval was the most impor-
tant one among the three methods. The generation of ordered
random variables and the estimation of parameters were dis-
cussed clearly. The comparison of the three methods showed
that the Monte Carlo method would always work, but the K-S

and the simplified methods would not.

(45 pages)




CHAPTER [

INTRODUCTION

Statistical analysis has become a very important part
of the preliminary work in dams and dikes design. It is
very important to understand the flooding characteristics
of the water system which the structure serves. Thus, many
design criteria include capacity to contain the "N year
flood" or simulate some measure of the flow. "N year flood"
is the yearly maximum of daily stream flows which is ex-
ceeded with probability 1/N, where N is specified.

The usual method of determining the N year flood is to
record the yearly maximum for Y years, select a representa-
tive distribution, then estimate the parameters. The N year
flood is estimated as the (N—l)/Nth percentile of the esti-
mated distribution. There are other methods which are also
used to determine the design flood for dams and dikes.

No matter how the design flood is determined, the avail-
able information is the observed data. Therefore it is
subject to the same inadequacies of any estimate of a random
phenomenon. It is not precisely determined. The usual
statistical characterization of this lack of the precisgion

is the confidence interval. However for the case of design




flood, no attempt has been made to estimate its accuracy.
It seems that such an evaluation should be a necessity when
the consequences of inadequate'design are considered.

The problem of deriving confidence limits for percen-
tiles of a distribution are considered in this thesis. An
existing method using the Kolomogorov-Smirnov statistic is
shown to be inadequate for the high (or low) percentiles,
and a new method based on Monte Carlo simulation is pro-
posed.

A review of the Kolomogorov-Smirnov confidence interval
and of the distribution of order statistics fundamental to
later derivations is given in Chapter II. The new confi-
dence interval using Monte Carlo simulation is derived in
Chapter 111, and applications of this method are given in
Chapter IV. A simpler method which does not involve Monte
Carlo simulation is evaluated in Chapter V. This method has
some intuitive appeal but as noted in Chapter V is very
biased for the higher percentiles. The conclusions and

recommendations of this study are summarized in Chapter VI.




CHAPTER I

REVIEW

The Kolomogrov-Smirnov confidence interval on a distri-
bution function could be used to derive a confidence inter-
val on the percentiles of the distributions. This method
uses the sample distribution function Fn(x) with sample

size n.

This function will generally differ from the population
distribution function. But if it differs from an assumed
distribution F(x) by too much, we will reject the hypothesis
that F(x) is the population distribution Eunction. That is,
the amount of the difference between the empirical and
assumed distribution function should be a usual tool in
determining whether or not to accept the assumed distribution

as correct.

The least upper bound of |Fn(x) - F(x) | is the statistic
used to test HO: the population distribution function is
F(x). That statistic is known as the Kolomogrov~-Smirnov

statistic :




D= 8Up |Fn(x) - Bl |

This statistic has a known distribution under HO. From

Table 1 we can find the critical value for rejecting HO

with a specified n and a. For large n the asymptotic values

for certain o level are given in Table 1.

Table 1. Asymptotic critical values of the Kolomogrov-
Smirnov method

o 0.2 0,15 0.1 0.05 0.01
Timiiotion 1,07 1.14 1.22 1.36 1.03
/n /n vn /n /n

The statistic Dn is two-sided, involving the "absolute" dif-
ference of F(x) and Fn(x). The critical region 1s Dn > table
value. Using this property, a confidence interval with
significant level o can be derived. Another method for

calculating the asymptotic percentiles is from the limiting

distribution:
Lingip - &) - |0 f_l(-l)j'l exp (-2 22%)
N>co /-ﬁ i=

1-2 exp(—ZZz)-

R

Through upper 1limit and lower limit we can get a confidence

interval (Xl'XZ)’ as shown in Figure 1.
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Figure 1. K-S method.

Order statistics play an important role in statistical
inference partly because some of their properties do not
depend on the distribution from which the random sample is

obtained. Let x -y Xg denote a random sample from

17 o

a distribution of the continuocus type having probability
density function f(x}). TLet Yy be the smallest of these Xs
Yo be the next X in order of magnitude, ..., and o the

largest X., d.8., ¥y, = Vob -/ < yn. Then Y0 1 = 1, 2,

. th

..; n, is called the i order statistic of the random

sample x X X, The density of a continuous random

1! 3L

variable may be defined as the derivatives of the




cumulative distribution function. Let f(x) and P(x)
represent the density and cumulative distribution functions
respectively of a random variable X. Then by definition

of derivative

F(xth) - F(x)
h .

£(x) = 1im (1)

h-0

The numerator on the right of (1) can be interpreted as
the probability of the event that the random variable lies
in the interval (x, xth).

Consider now the kth order statistic Y, a sample of
size n of the random variable of X. It will now be shown
that the probability density function Yy is

. n! k-1 n
gy = e o ) (LRG]S Bl

As in (2), the probability that Yy lies in the interval

(yk, yk+h) will be used to derive the density function.

This event requires that (a) k-1 observations lie in

e, ) By L observation lies in (y,., yk+h) and
(c) n-k observation lie in (yk+h,w). The probability that
events (a), (b) and (e) occur simultaneciely is
. n k-1
P = ek e Wl - e
(-miy +m) " (3)

k




Thus

Ph

! . .
Gapariny G e G

Consider now the transformed random variable U = F(X)
where F(.) 1s the cumulative density function of X. The

c.d.f. of U isg

Therefore U is uniformly distributed on [0, 1].

Let Vi Yo s, U be the order statistics from a
sample of size n of the random variable X. Let Ul =
F(yl), U2 = F(yz), i Un = F(yn). Because F(x) is mono-

tone increasing, the smallest U is the transform of the
smallest X, and so forth, so that the ordered U's are,

respectively, the transforms of the ordered X's:
U, = F(yk) .

The distribution of (U U ., Un) is, therefore, the

1. 2
distribution of the order statistics of a random sample
from the uniform populatien on [0, 1].

Sinece F(x) = x for tHe uniforin distribution, it follows
is

from (4] that the probability density function of Uy




n! F-1 n-k
9.7 " mevmew ) B0 L 0L s 00

This is a Beta distribution with parameters v = k,

w = n-k+1.




CHAPTER IIT

MONTE CARLO CONFIDENCE INTERVAL

In this chapter a confidence interval estimate of the
pth percentile of a distribution is developed. The tech-
nique is based upon a method of estimation developed for
the Weibull distribution (see Bain and Antls, 1968) but
which can be adapted for many other distributions. This

method of estimation is best explained by example. The

Weibull and Normal distribution are illustrated here.

Let X be a Weibull random variable. Then

=
F(x) = l—e—(x/e) y % = 0.

Let Yiv Yo o0 5 and Upr Hor ovey U be the order
statistics of a sample of size n of the Weibull and an inde-
pendent uniform random variable respectively. The para-
meters r and 6 are estimated by choosing values which pro-
vide the "bast fit" of F(x) through the points (yk, uk),
k=1.2, ... n  The "best fit! eritericn may be least
squares from Zi(ui - F(yi))z. However, in practice 1t 1s con-
venient to transform the values U, = F(yk) and Yy SO that
a simple linear relationship holds. For the Weibull case
In(-ln(l=F(x})) = r In x = ¢ 1h 6. BEhus 1n (—ln(l—uk)) has a

linear relationship to ln(yk) and the least square fit 1is
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the regression line through the points (ln(—ln(l-uk)),
ln(yk)), k=1 2.......n. THe slope of this line esti-
mates r and the intercept estimates -rln6. Let e =

In(-1n(l-u and e = ln(yk) for k=1, 2. ..., n. Then 1t

1) ]
follows that

>

5N Yy - anzvk/n

Y = 5 ) (6)
iV (ZYk) /n
and
- xn, In
8 = exp (‘ — - "E> : )
n
rn
Consider the Vi, 1 k=1, 2, ..., n values fixed. ©For each

Monte Carlo sample k=1, ..., n, there results esti-

uy
mates of 6 and r in turn the estimated p-th percentile xp
The process of sampling Ujr Ugy eeey Uy and estimating xp

is repeated for a large number of times, say 500. Then the

confidence interval is interpolated from the empirical dis-

e o g

p2’
be the ordered values of 500 xp's computed as described

tribution function of Xp' For example, let Xpl’ X
%5500
previously. Then a 0.95 level confidence interval is

), where x = (xplz + xpl3)/2’

(%10 5 By s pl2.5

Xp487.5= (XP487 + xp488)/2. Since any interval containing
475 xpi values is a 95% confidence interval it is reasonable
to explore the distribution to find the marrowest interval

which contains 475 points. This procedure is time consuming,
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however, and usually differs very little from the equal
tails interval given previously.
The normal distribution illustrates another method of

deriving the confidence interval on x Let Y91 You ==y

p*

v and u u be the order statistics from random

1’ uz, e ooy

samples of size n from the normal and uniform populations.

As noted previously, the u, represent possible values of

k

F(y,). Each sample Uy Ugs eeey U is apriori equally likely.

Yi

Let ®(z) be the standard normal distribution function

(CDF). Then Q-l(uk) k=1, ..., n are likely values

= Zk’
of (yk—u)/c. Therefore there is a linear relationship

between Z and V1 where the slope is 1/0 and the intercept 15

-u/0. Using least squares,

-1
. Zyka - ZykZZk/n
Y 2 2 (8)
\Zyk - (Zyk) /n
and
L= GZZk/n + Zyk/n . (9)

As before the xp is sampled by obtaining Monte Carlo

samples u . un. Then Xp is computed using as

l, u2, ® o o
parameters the estimates p and o obtained from each Monte
Carlo sample Ups Usyy eeey Uy with the fixed sample Yy

V-, .«.; ¥ . The confidence intetval is interpolated from
2 n

the empirical distribution of the xp’s.
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CHAPTER IV

APPLICATIONS

In this chapter the method developed in Chapter III is
applied to the Weibull distribution. Generation of Weibull
and uniform random variables is considered first. In the
final section, the Monte Carlo confidence interval is illus-

trated.

Generations of Ordered
Random Variables

The usual method of generating order statistics of a
random variable with distribution F(x) is to generate inde-
pendent uniform values, Ui’ i =1, ..., n. Then using the
inverse of F(x), transform the Ui to Xi = F_l(Ui).

The method is more efficient if the uniform random
variables are generated as order statistics. Thus avoiding
the operation of ordering the sample. This is accomplished
using Fortran subroutine ORDER, the method is given by
Hartley and Lurie (1972) in the following subroutine.

SUBROUTINE ORDER (X,N,M)
DIMENSION X(N)

TEMP=0.0

SEED=TIME (11)

Do 10 I=1,M

V=RANDOM (SEED)
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U=1.0-(1.0-TEMP) *V**(1.0/ (FLOAT(M-1)+1.0))

10 TEMP=U

Estimation of Parameters

Let Y, i=1, ..., n represent the order statistics of

a random variable with Weibull Density Function (CDF)

r
By - 1 L -

It was shown in the previous chapter that Xs i=1 .. .5
represent a random sample of observations of a random vari-
able with CDF F(x). These values must then be avoided there-

by greatly decreasing the cost of Monte Carlo experiments

which require order statistics. 1In here, I do not specify
the method to get those Xs i=1, ..., n. Replaeinhg
X(I1) = U with THETA*(-ALOG(1.0-X))**(1.0/R) the inverse

funiction of CDF of Weibull distribution. 1In Chapter 11T
for the Weibull case we get 1ln(-1n(l.0-F(x))) = rlnx-rlnb.

Thus ln(=1n(l.0-U was a linear relationship to ln(yk) and

k))
the least square fit (where ¥ is independent uniform values,
k=1, ..., n) is the regrescsion line through the points
(ln(yk), ln(—ln(l.-uk))), k=1, ..., n. The slope of this
line estimates r and intercept estimates =-rlnSf.

So we can get estimates of r and 6. The Fortran program

1l listed in Appendix A generates the Vo i=- 1 ..., n and
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repeatedly generates uniform order statistics, with each
new set of u; i =1, ..., n the parameters r and © are
estimated. These estimates are then used in the program to
compute the pth percentile for several values of p. In
Appendix D is the data when p = 0.9, r = 2.0, 6 = 10.0 and
n = 40. The first column is ordered Weibull random values
Vi ! k=1, ..., 40, the second column is ln(yk), k=1, ...,
40, the third column is ordered uniform random values Uy,
k=1 ..., n, the fourth column is ln(—ln(l.O—uk)),
k=1, ..., n. The nlot U, Vs yp (k =1, ..., 40) and pLot
ln(—ln(l.O—uk)) Vs ln(yk) (k =1, ..., 40) are listed in
Figures 2 and 3 respectively.

The estimated parameters r = 1,60999, 6 = 11.5163 and

0.9
the thesis I try to do 500 times) has been obtained from the

= 19.332724. The 953% confidence interval on Xp {1n

Monte Carlo distribution of Xp‘ The results are shown in
Table 2.
Table 2. 95% confidence interval on the pth percentile

(Monte Carlo Method)

P Lower bound Upper bound
0.9 12.,71745 20.26675
0.95 13.68255 24.84900
6.975 15.60380 29.592865
.99 17.02290 31.039065

0.995 19.63265 35.89530
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Figure 3.

Plot ln(-ln(l—uk))‘vs ln(yk).
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Table 3 shows the corresponding confidence interval
computed by the method of Kolomogorov-Smirnov using the same
initial sample from the Weibull distribution. The Fortran
program 2 listed in Appendix B is to calculate pth percen-
tile. Note that in every case the upper bound for Uk'

k=4d .. nis I,

Table 3. 95% confidence interval on the pth percentile
(K-S Method)

P Lower bound Upper bound
0.9 12.6619730 rr
0.95 13.6153340 0
0.975 j 12.4740910 »
0.99 13.3881968 s
i no meanings. For example, p = 0.99, the upper bound

24.02172 has p value 0.75. 1[It is much less than 0.99.
So I say the upper bound received from exterpolating
is meaningless. The data for r = 2.0, 8 = 10.0 and

n =40, p = 0.95 are shown in Appendix E.
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CHAPTER V

SIMPLIFIED METHOD

The method described in Chapter III provides an approxi-
mation on the pth percentile whose accuracy is determined
by the Monte Carlo sample size. Since this can be expen-
sive if a very accurate interval is needed, a simpler method
is evaluated in this section. Let Ui = F(yi), i=1, ..., n
where Yy i=1, ..., n are the order statistiecs of a random
sample of size n from a population with CDF F(x).

It was shown in Chapter II that the distribution of
Ui is Beta with parameters v = k, and w = n-k+1. 1¢f
seems intuitively reasonable to construct a confidence en-
velope for the CDF in the following manner. At each Y
i=1. ..., n, construct an (1 - a) level confidence on
Uu., i =1, ..., n. Denote the upper and lower bounds Ui and
Li respectively. Then using the same estimation techniques
used in Chapter IV, the Weibull parameters are estimated
with the set of upper bound values (Ui, i=41, ..., n) sub-—
stituted for the Ui in the equation and then repeating the
estimation with the set of lower bounds (Li' i = 1, ..., n).

The two resulting estimated CDF's constitute an envelope of

possible CDF's based upon a 1 - a level confidence interval.
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The proposed confidence interval on the pth percentile is
found by determining the percentile estimates from each of

the estimated CDF's. Graphically the procedure is illus-

trated in Figure 4.

CDF estimated from
upper confidence values

CDF estimated
from lower|

confidence,
values |
!
|
|
i
l
. O
Yn-11%n
lower bound upper bound

Figure 4. Confidence interval by simplified method.
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The Li and Ui’ i=1, ..., n are found as follows for

1 - o interval

L.
i
1 r-1 g-1 -
B(z,0) ) t (1-t) dt = a/2
0
(Ui
1 r-1 6-1 .
B(r 0 J t (1-t) dt = 1-a/2. (10)
0

An approximate solution in Li and Ui is given in the

Handbook of Mathematical Function edited by M. Abramowitz

and I. A. Stegun (1970) where

X
1 P +a] 6-1 .
5= L) t (1-t) dt = p 0=p - 1
. y_ (h+8) /2
XD = = 5 w = — - = (l/(26_1)>
= (r+6e” )

1/(2r-1) ) (At5/6 - 2/(31) )

h = 201/(2x=-1) ¢ 1/(29—1))'1, A = /ﬁn(l/pz)
2
c0+clt+c2t
yp = r ) 3 + € (p)
l+dlt+d2t +d3t
c, z.2l58il, o 0.802853, c, = 0.010328
d, = 1.432788, 4, = 0.189269, d; = 0.001308. (11)
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The absolute value of the error in xp for this approximation
is given as less than 4.5% ].O'-4 (see program in Appendix B).
The method wasAapplied to the same Weibull sample that
was in Chapter IV, so that comparisons with the exact method
could be made. The results were disappointing in that a
large bias occurs in the high percentile region. The inter-
vals are shown in Table 4 with the corresponding intervals
from the exact method. The large bias in the higher per-
centiles is evident. The extent of the bias is seen

graphically in Figure 5.

Table 4. 95% confidence interval on the pth percentile
(Simplified method)

P Lower bound Upper bound
90% 12,.702997 16.354500
95% 14.132521 17.453690
97.5% 15.162933 18.125656
99% 16.423828 18.505649

99.5% 16.961182 18.592846




38
» For simplified method

36} . For Monte Carlo method

o a Por theoretical midpoint ?
p ¢

100

Bigure 5. The plot of confidence interval vs different percentiles.

cc
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CHAPTER VT

CONCLUSIONS

Two methods for computing a l-a level confidence inter-
val were developed and illustrated. The method in Chapter
IV is limited in precision only by the Monte Carlo sample
size. Therefore it is possible to specify any reasonable
level of precision before computing the interval. The
method works for any distribution which can be inverted,
i.e., there exists a solution for FP(x) = U which can be com-
puted. The primary disadvantage is the expense of Monte
Carlo simulation.

The second method was developed on intuitive grounds
and is not based on firm theoretical prineciples. 1t is evi-
dent from Figure 5 that the method does not give reasonable
intervals for the high percentiles. 1t is instructive to
compare the confidence interval with the true value of the
population percentile. The Weibull data used in the compu-
tation of the intervals in Tables 2 and 4 were generated

using the Weibull distribution function

2
_e-(x/lO) , X > 0.

Bix) = 1

The true percentiles for this distribution are tabulated in

Table 5.
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Table 5. Percentiles of the Weibull distribution

P(%) = l-exp(-(x/10) )
Percentile 90% 95% 97.5% 99% 99.5%
Value 15.1742  17.308* 1D 2064 21 .458e 73 0ien
*
17.393 - 10.0°-1n(l-0.05) )

A rough check on the method of computing the confi-
dence interval is to see if the intervals cover the true
value at each percentile. Note from Table 4 that the
Monte Carlo method does provide intervals which cover the
true value at every point. However the short method indi-

cates a severe bias at the higher percentiles (i.e. > 90%).

Thus it is clear that this mefthod is hot good.
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Appendix A
Monte Carlo Method
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FORM L7785, 1 10N, "INTERAOETION PATINITS L/
WRITE(B,303) (I,ARRAY(I}),I=1,IiTIME)
FORMAT(IS,EZ27.06)
STOPR
EnND
SUPROQUTINE ORDER{(N,N,M,II
DIMENSION X{N)
COMMON R,THETSA
TEMP=0.0
SEED=TIME(i1)
poO 10 I=1.M
U=RANDOM(SEED}
O—=(1 . 0-TEMPY#U## (1., 0/{(FLOAT(M=-1)+1.01})
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Appendix B

Simplified Method




2

#FILE (808115)PROGRAMZ ON PACK

100 DIMENSION Y1i(40),Y2(40),X(40),8UM(3),A(3,5)
200 DOUBLE PRECISIDN A,DET,TEST

00 COMMON R.,THETA N
400 READ(5,/) DN,N

500 READ(5.,/) R,THETA

800 B0 10 1=1.N

700 TEMP=FLOAT(I)/FLOAT(N)

800 Y1(I)=TEMP+DN

a00 10 Y2(I)=TEMP-DN
“1000 CoLL ORDER(M,N)

1100 DO 200 I=1,N

1260 200 WRITE(B,250) Y1(1),y2(1) . 3(1)

1300 250 FORMAT(3¥,3(F18.8:2X))

1400 IFLAG=1

1500 5 Db 15 I=1,2

1500 SUM(IN=0.0

1700 bo 18 J=I1.3

1860 15 Atl1.1)=0.0

19 SUM(1)=SUMC1)+X(I)

2 20 SUM2)=SUM(Z3+Y1(I)

2100 DO 30 I=1,N

2200 Bll,1)=At1, 1051 ut])

2300 AlL,2)=A01.2)+X (1) aY1(1)

2400 30 A(2,2)=Y1(1)#YI(I)+A(2,2)

2500 PO 40 1=1.2

2600 DO 40 J=1.7

iz700 A(I,Jd)=A(I,4)=-SUM(I)#8UM(J)/FLOAT(N)
2800 40 Aliel,1)=a0l, )

2900 TEST=0.35E-10

3000 CaLl DMATIV(A,1.1,2,2,DET,TEST,S)
3100 RO=SUM(Z2) /FLDAT (N}

3200 BO=B0-A{1,2)#SUM(1) /FLOAT(AD

3300 ANS=(0.85-80)/4(1,2)

2400 WRITE(S,100 ANS

3500 100 FORMAT(//" THE INTERACTION BT IS",F18.7//)
2600 IF(IFLAG.ER.2) GO TO 150

3700 b0 50 1=i1,N

3800 S0 Yi(T)i=Y2(1)

3900 IFLAG=2

4000 &0 180 o5

4100 130 STOP

4200 END

A430C SUBROUTINE ORDER(X,N)

2400 DIMENSION X(N)

4500 TEMP=0,0

4500 SEED=TIME(11)

4700 B 10 I=1,N

4800 =RANDOM(SEED) :
4800 U=1,0-(1.0-TEMP)#U##(1 .0/ (FLOAT(N-I)+1.0}:
FO0C ((I)=PINU{U)




A1 Ul

] b

3300

55006
SB00
3700
IB0OO

5800

TEMP=U

RETURN

END

REAL FUNCTION PINU(U)

COMMON R,THETA
A=(-ALOG(1.~-U))##(1./R)
PINU=THETA#*A

RETURN

END

I
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Appendix C

Kolomogrov-Smirnov Method
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Appendix D

Part of Data for Monte Carlo MMethod




COLUMN
COUNT
RO

O el T S o S
FEWUORN~OOONG U D WM -

Pt b bt et b
[fs R e BN ]

20
o1

o7 e
al

23
24
23
26
27
28
29
30
g1

E e}
T e

33
34
35
36
a7
38
39
40

€2
40

0.9359
1.68088B
2.3596
2.4457
Z2:.9903
3.95200
3.8876
3.9030
3.9680
3.9829
4.3097
4.4B652
4.4823
4.6720
4.,.7280
4.7697
B8, 2375
5.4343
B.5235
6.68281
65.8535
7.03486
7.0378
7.8578
8.4136
9.0841
95.4884
10.4333
10.88922
11.0811
11.1832
11.4623
11.35096
11.6614
11.39025
12.2834
12.9944
15.6430
18.3492
21.4823

E3
a0

-0.06625
0.47339
0.85851
0.894353
1.09538

. 25847
1 .35778
1.36175
1.37827
1.38451
1.46087
1.49632
1.50013
1.54158
1.55349
1.56229
1.83058
1.86169
1.87542
1.89132
1.92476
1.85083
1.95130
2.07413
2.13057
2.20B52
2.25007
2.34500
2.38805
2.40524
2.41441
2.43807
2.44318
2.45629
2.47673
2.50825
2.36452
E2.75002
2.80958
3.06789

ca
40

0.0148987
0.0164B7
.D750786
. 0885886
113653
0.131777
0.1408987
0.191368
0.222848
0.283124
0.285831
0.3296863
0.356598
0.366233
0.379499
0.405183
0.40B720
0.408831
0.473429
0.480704
0.484213
0.488277
0.3539669
0.581534
0.585305
0.597642
0.856830
0.6G476B4
0.685885
0.714754
0.724856
0.725868
0.742368
0.750998
0.7889877
0.78937253
0.B67904
0.880875
0.804744
0.955888

0O

C5
40

~4.19304
-4.09808
-2.55048
-2.26538
-2.09633
-1.95682
-1.88407
~1.54923
-1.37734
~1.10005
-1.08834
-0.91635
-0.81874
-0.78510
~0.73978
-0.65489
-0.64992
-0.64311
-0.43823
-0.42269
-0.41240
~0.39780
-0.25385
-0.13683
-0.10024
-0.08385
0.0B749
0.08885
0.14669
0.22G66
0.25500
0.25785
0.30470
0.32952
0.38379
0.45650
0.70519
0.79537
0.85492
1.13816

37
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Appendix E
Part of Data for K-S Method




0.34000000
0.363500000
0.39000000
0.41500000
0.44000000
0.46500000
0.4%000000
0.51500000
0.54000000
0.56500000
0.59000000
0.61500000
0.64000000
0.46500000
0.49000000
0.71500000
0.74000000
0.76500000
0.79000600
0.81500000
0.84000000
0.86300000
0.89000000
0.91500000
0.94000000
0.963500000
0.99000000

1.015300000 -

1.04000000
1.06500000
1.09000000
1.11300000
1.14000000
1.16300000
1.19000000
1.21500000

-0.19000000
-0.146300000
-0.14000000
-0.11300000
-0.09000000
-0.046300000
~0.04000000
-0.01300000
0.01000000
0.03500000
0.06000000
0.08500000
0.11000000
0.13500000
0.16000000
0.18500000
0.21000000
0.23500000
0.26000000
0.28300000
0.31000000
0.33300000
0.35000000
0.38500000
0.41000000
0.43500000
0.46000000
0.48500000
0.51000000
0.53500009
0.56000000
0.58500000
0.61000000
0.463500000
0.66000000
0.68300000
0.71000000
0.73500000
0.76000000
0.78500000
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L»J
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5. 66’60415
7 068’4834
T 763"0’

12.924035323
13.405 91624
13.466854359
14.00754542
14.16143718
14.933461413
15.62837948
16.25721020

19.00057828

The first column is for upper‘bound.

The second column is for lower bound.
The third column is for Weibull order random numbers
0.95, n =

when r =

2.0,

e = 10.0,

p:

40.

39




	A Confidence Interval Estimate of Percentile
	Recommended Citation

	tmp.1511386082.pdf.JU1sZ

