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ABSTRACT 

A Confidence Interval Estimate of Percentile 

by 

Jou, How Coung, Master of Science 

Utah State University, 1980 

Major Professor: Dr. Ronald V. Canfield 
Department: Applied Statistics 

vi 

The confidence interval estimate of percentile and its 

applications were studied. The three methods of estimating 

a confidence interval were introduced. Some properties of 

order statistics were reviewed. The Monte Carlo Method-­

used to estimate the confidence interval was the most impor­

tant one among the three methods. The generation of ordered 

random variables and the estimation of parameters were dis­

cussed clearly. The comparison of the three methods showed 

that the Monte Carlo method would always work, but the K-S 

and the simplified methods would not. 

(45 pages) 



CHAPTER I 

INTRODUCTION 

Statistical analysis has become a very important part 

of the preliminary work in dams and dikes design. It is 

very important to understand the flooding characteristics 

of the water system which the structure serves. Thus, many 

design criteria include capacity to contain the "N year 

flood" or simulate some measure of the flow. "N year flood" 

is the yearly maximum of daily stream flows which is ex­

ceeded with probability 1/N, where N is specified. 

The usual method of determining the N year flood is to 

record the yearly maximum for Y years, select a representa­

tive distribution, then estimate the parameters. The N year 

flood is estimated as the (N-1)/N th percentile of the esti­

mated distribution. There are other methods which are also 

used to determine the design flood for darns and dikes. 

No matter how the design flood is determined, the avail­

able information is the observed data. Therefore it is 

subject to the same inadequacies of any estimate of a random 

phenomenon. It is not precisely determined. The usual 

statistical characterization of this lack of the precision 

is the confidence interval. However for the case of design 
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flood, no attempt has been made to estimate its accuracy. 

It seems that such an evaluation should be a necessity when 

the consequences of inadequate design are considered. 

The problem of deriving confidence limits for percen­

tiles of a distribution are considered in this thesis. An 

existing method using the Kolomogorov-Smirnov statistic is 

shown to be inadequate for the high (or low) percentiles, 

and a new method based on Monte Carlo simulation is pro­

posed. 

A review of the Kolomogorov-Smirnov confidence interval 

and of the distribution of order statistics fundamental to 

later derivations is given in Chapter II. The new confi­

dence interval using Monte Carlo simulation is derived in 

Chapter III, and applications of this method are given in 

Chapter IV. A simpler method which does not involve Monte 

Carlo simulation is evaluated in Chapter V. This method has 

some intuitive appeal but as noted in Chapter Vis very 

biased for the higher percentiles. The conclusions and 

recommendations of this study are summarized in Chapter VI. 



CHAPTER II 

REVIEW 
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The Kolomogrov-Smirnov confidence interval on a distri­

bution function could be used to derive a confidence inter­

val on the percentiles of the distributions. This method 

uses the sample distribution function F (x) with sample n 

size n. 

F (x) = i for x. < x < x. 
1

, 
n n J J+ 

j = o; 1, ... , n 

This function will generall y differ from the population 

distribution function. But if it differs from an assumed 

distribution F(x) by too much, we will reject the hypothesis 

that F(x) is the population distribution function. That is, 

the amount of the difference between the empirical and 

assumed distribution function should be a usual tool in 

determining whether or not to accept the assumed distribution 

as correct. 

The least upper bound of IF (x) - F(x) I is the statistic 
n 

used to test H0 : the population distribution function is 

F(x). That statistic is known as the Kolornogrov-Smirnov 

statistic : 



Dn = sup IF (x) - F(x) I 
X n 

This statistic has a known distribution under H0 . From 

Table 1 we can find the critical value for rejecting H0 

4 

with a specified n and a. For large n the asymptotic values 

for certain a level are given in Table 1. 

Table 1. Asymptotic critical values of the Kolomogrov-
Smirnov method 

0.2 0.15 0.1 0.05 0. 01 

Limitation 1.07 1.14 1.22 1. 36 1.03 

rn rn rn rn rn 

The statistic D is two-sided, involving the "absolute" dif-
n 

ference of F(x) and Fn(x). The critical region is Dn > table 

value. Using this property, a confidence interval with 

significant level a can be derived. Another method for 

calculating the asymptotic percentiles is from the limiting 

distribution: 

lim p (Dn < _!_) 
n+co rn 

= 1- 2 'f ( -1) j-l exp ( -2 J. 2 z 2 ) 
J=l 

2 '.::, 1-2 exp(-2Z). 

Through upper limit and lower limit we can get a confidence 

interval (x 1 ,x 2 ), as shown in Figure 1. 



F (x) 

~ F(x) 

F (x) 
n 

Confidence limits for 
a specified a and n 

X 

Figure 1. K-S method. 

Order statistics play an important role in statistical 

inference partly because some of their properties do not 

depend on the distribution from which the random sample is 

obtained. Let x 1 , x 2 , ... , xn denote a random sample from 

a distribution of the continuous type having probability 

density function f(x). Let y 1 be the smallest of these xi' 

y 2 be the next xi in order of magnitude, ... , and yn the 

largest 

... ' n' 

X. ' ]. 

J.S 

i . e . , y 1 < y 2 , ... , < y n . Then y i , i = 1 , 2 , 

called the i th order statistic of the random 

sample x 1 , x 2 , ... , xn. The density of a continuous random 

variable may be defined as the derivatives of the 

5 



cumulative distribution function. Let f(x) and F(x) 

represent the density and cumulative distribution functions 

respectively of a random variable X. Then by definition 

of derivative 

f(x) = lim 
h+O 

F(x+h) - F(x) 
h 

(1) 

The numerator on the right of (1) can be interpreted as 

the probability of the event that the random variable lies 

in the interval (x, x+h). 

th 
Consider now the k order statistic Yk a sample of 

size n of the random variable of X. It will now be shown 

that the probability density function Yk is 

n! 
= ----(k-1) ! (n-k) ! 

k = 1, 2, ... , n. 

As in (2), the probability that Yk lies in the interval 

(yk' yk+h) will be used to derive the density function. 

This event requires that (a) k-1 observations lie in 

(b) 1 observation lies in (yk' yk+h) and 

( 2) 

(c) n-k observation lie in (yk+h, 00 ). The probability that 

events (a), (b) and (c) occur simultaneously is · 

Ph= n' 
(k-1) ! (n-k) 

k-1 
F(yk) (F(yk+h) - F(yk)) 

(1-F(y +h))n-k 
k . ( 3) 

6 



Thus 

p 

gk(yk) = lim [___!!_] 
h+O h 

n! k-1 n-k 
= (k-l)!(n-k)! F(yk) (l-F(yk)) f(yk). ( 4 ) 

Consider now the transformed random variable U = F(X) 

where F(.) is the cumulative density function of X. The 

c.d.f. of U is 

P (U < u) = P (F (X) < u) = P(X < F-l(u)) = u . 

Therefore U is uniformly distributed on [O, 1]. 

Let y 1 , y 2 , ... , yn be the order statistics from a 

sample of size n of the random variable X. Let u1 = 

F( y 1 ), u2 = F(y 2 ), ... ,Un= F(yn). Because F(x) is mono­

tone increasing, the smallest U is the transform of the 

smallest X, and so forth, so that the ordered U's are, 

respectively, the transforms of the ordered X's: 

The distribution of (U
1

, U , ... , U) is, therefore, the 
2 n 

distribution of the order statistics of a random sample 

from the uniform population on [O, 1]. 

7 

Since F(x) = x for the uniform distribution, it follows 

from (4) that the probability density function of uk is 



n! 
= --~---(k-1) ! (n-k) ! 

This is a Beta distribution with parameters v = k, 

w = n-k+l. 

8 



CHAPTER III 

MONTE CARLO CONFIDENCE INTERVAL 

In this chapter a confidence interval estimate of the 

th p percentile of a distribution is developed. The tech-

nique is based upon a method of estimation developed for 

the Weibull distribution (see Bain and Antls, 1968) but 

which can be adapted for many other distributions. This 

method of estimation is best explained by example. The 

Weibull and Normal distribution are illustrated here. 

Let X be a Weibull random variable. Then 

F (x) = l-e-(x /0 )r, X > 0 • 

... , u be the order 
n 

9 

statistics of a sample of size n of the Weibull and an inde-

pendent uniform random variable respectively. The para­

meters rand e are estimated by choosing values which pro­

vide the "best fit" of F(x) through the points (yk, uk), 

k = 1, 2, ... , n. The "best fit" criterion may be least 

2 
squares from r(u. - F(y.)) . However, in practice it is con-

i l l 

venient to transform the values uk = F(yk) and yk so that 

a simple linear relationship holds. For the Weibull case 

ln(-ln(l-F(x)) = r ln x - r ln e . Thus ln (-ln(l-uk)) has a 

linear relationship to ln(yk) and the least square fit is 
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the regression line through the points (ln(-ln(l-uk)), 

ln(yk)), k = 1, 2, ... , n. The slope of this line esti­

mates rand the intercept estimates -rln8. Let nk = 

ln(-ln(l-uk)) and rk = ln(yk) fork= 1, 2, ... , n. Then it 

follows that 

y = ( 6) 

and 

( 
rn k rn k) e = exp - - A - - r1 . 
rn 

( 7) 

Consider the yk, k = 1, 2, ... , n v alues fixed. For each 

Monte Carlo sample uk, k = 1, . . . , n, there results esti­

mates of e and r in turn the estimated p-th percentile x. p 

The process of samplin g u 1 , u 2 , ... , un and estimating xp 

is repeated for a large number of times, say 500. Then the 

confidence i nterval i s i nte r polated from the empirical dis­

tribution function of xp. For example, let xpl' xp 2 ' ... , 

xp 500 be the ordered values of 500 xp's computed as described 

previously. Then a 0.95 level confidence interval is 

x0487 5 = (x + x 
488

) / 2. Since any interval containing 
" · P4 8 7 P 

475 x . values is a 95% confidence interval it is reasonable 
pl 

to explore the distribution to find the narrowest interval 

which contains 475 points. This procedure is time consuming, 



however, and usually differs very little from the equal 

tails interval given previously. 

The normal distribution illustrates another method of 

deriving the confidence interval on xp. Let y 1 , y 2 , ... , 

Yn and u 1 , u 2 , ... , un be the order statistics from random 

samples of size n from the normal and uniform populations. 

As noted previously, the uk represent possible values of 

11 

Each sample u 1 , u 2 , ... , u is apriori equally likely. 
n 

Let ¢ (z) be the standard normal distribution function 

( CDF) • 
-1 

Then ¢ (uk) = zk, k = 1, ... , n are likely values 

of (yk-µ) /0 . Therefore there is a linear relationship 

between zk and yk where .the slope is l /0 and the intercept is 

- µ/0 . Usin g least squares, 

0 = ( 8) 

and 

( 9) 

As before the x is sampled by obtaining Monte Carlo 
p 

Then x is computed using as 
p 

parameters the estimatesµ and 0 obtained from each Monte 

Carlo sample u 1 , u 2 , ... , un with the fixed sample y 1 , 

... ' y . n The confidence interval is interpolated from 

the empirical distribution of the xp's. 
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APPLICATIONS 
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In this chapter the method developed in Chapter III is 

applied to the Weibull distribution. Generation of Weibull 

and uniform random variables is considered first. In the 

final section, the Monte Carlo confidence interval is illus­

trated. 

Generations of Ordered 
Random Variables 

The usual method of generating order statistics of a 

random variable with distribution F(x) is to generate inde­

pendent uniform values, u., i = 1, ... , n. Then using the 
l 

-1 
inverse of F(x), transform the u. to X. = F (U.). 

l l l 

The method is more efficient if the uniform random 

variables are generated as order statistics. Thus avoiding 

the operation of ordering the sample. This is accomplished 

using Fortran subroutine ORDER, the method is given by 

Hartley and Lurie (1972) in the following subroutine. 

SUBROUTINE ORDER (X,N,M) 

DIMENSION X(N) 

TEMP=0.0 

SEED=TIME(ll) 

DO 10 I=l,M 

V=RANDOM(SEED) 



U=l. 0- ( 1. 0-TEMP) *V**.(1. 0/ (FLOAT (M-I) +l. 0)) 

X(I)=U 

10 TEMP=U 

RETURN 

END 

Estimation of Parameters 

13 

Let y., i = 1, ... , n represent the order statistics of 
.l. 

a random variable with Weibull Density Function (CDF) 

r 
F(x) = 1-e-(x/e) , x > 0. 

It was shown in the previous chapter that x., i = 1, ... , n 
l. 

represent a random sample of observations of a random vari-

able with CDF F(x). These values must then be avoided there­

by greatly decreasing the cost of Monte Carlo experiments 

which require order statistics. In here, I do not specify 

the method to get those x., i = 1, ... , n. Replacing 
l. 

X(I) = U with THETA*(-ALOG(l.0-X))**(l.0/R) the inverse 

function of CDF of Weibull distribution. In Chapter III 

for the Weibull case we get ln(-ln(l.0-F(x))) = rlnx-rln0. 

Thus ln(-ln(l.0-Uk)) was a linear relationship to ln(yk) and 

the least square fit (where yk is independent uniform values, 

k = 1, ... , n) is the regression line through the points 

(ln(yk), ln(-ln(l.-uk))), k = 1, ... , n. The slope of this 

line estimates rand intercept estimates -rln0. 

So we can get estimates of rand 0 . The Fortran program 

1 listed in Appendix A generates they., i = 1, ... , n and 
l. 
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repeatedly generates uniform order statistics, with each 

new set of ui, i = 1, ... , n the parameters rand 8 are 

estimated. These estimates are then used in the program to 

compute the pth percentile for several values of p. In 

Appendix Dis the data when p = 0.9, r = 2.0, 8 = 10.0 and 

n = 40. The first column is ordered Weibull random values 

yk, k = 1, ... , 40, the second column is ln(yk), k = 1, ... , 

40, the third column is ordered uniform random values uk, 

k = 1, ... , n, the fourth column is ln(-ln(l.0-uk)), 

k = 1, ... , n. The plot uk vs yk (k = 1, ... , 40) and plot 

(k = 1, • • • I 40) are listed in 

Figures 2 and 3 respectively. 

The estimated parameters r = 1.60999, § = 11.5163 and 

x 0 _9 = 19.332724. The 95% confidence interval on x (in p 

the thesis I try to do 500 times) has been obtained from the 

Monte Carlo distribution of xp. Th~ results are shown in 

Table 2. 

Table 2 . 95% confidence interval on the pth percentile 
(Monte Carlo Method) 

p Lower bound Upper bound 

0. 9 12.77745 20.26675 

0.95 13.68255 24.84900 

0.975 15.60380 29.59265 

0.99 17.02290 31. 09065 

0.995 19.63265 35.89530 
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Table 3 shows the corresponding confidence interval 

computed by the method of Kolomogorov-Smirnov using the same 

initial sample from the Weibull distribution. The Fortran 

program 2 listed in Appendix Bis to calculate pth percen­

tile. Note that in every case the upper bound for Uk' 

k = 1, • • • I n is 1. 

Table 3. 95% confidence interval on the pth percentile 
(K-S Method) 

p 

0. 9 

0.95 

0.975 

0.99 

** 

Lower bound 

12.6619730 

13.6153340 

12.4740910 

13.3881968 

Upper bound 

** 

** 

** 

** 

= no meanings. For example, p = 0.99, the upper bound 
24.02172 hasp value 0.75. It is much less than 0.99. 
So I say the upper bound received from exterpolating 
is meaningless. The data for r = 2.0, 8 = 10.0 and 
n = 40, p = 0.95 are shown in Appendix E. 
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CHAPTER V 

SIMPLIFIED METHOD 

The method described in Chapter III provides an approxi­

mation on the pth percentile whose accuracy is determined 

by the Monte Carlo sample size. Since this can be expen­

sive if a very accurate interval is needed, a simpler method 

is evaluated in this section. Let Ui = F(yi), i = 1, ... , n 

where y., 
l 

i = 1, • • • I n are the order statistics of a random 

sample of size n from a population with CDF F(x). 

It was shown in Chapter II that the distribution of 

U. is Beta with parameters v = k, and w = n-k+l. It 
l 

seems intuitively reasonable to construct a confidence en-

velope for the CDF in the following manner. At each y., 
l 

i = 1, ... , n, construct an (1 - a) level confidence on 

u., i = 1, ... , n. Denote the upper and lower bounds U. and 
l l 

L. respectively. Then using the same estimation techniques 
l 

used in Chapter IV, the Weibull parameters are estimated 

with the set of upper bound values (U., i = 1, ... , n) sub-
1 

stituted for the U. in the equation and then repeating the 
l 

estimation with the set of lower bounds (L., i = 1, ... , n). 
l 

The two resulting estimated CDF's constitute an envelope of 

possible CDF's based upon a 1 - a level confidence interval. 



The proposed confidence interval on the pth percentile is 

found by determining the percentile estimates from each of 

the estimated CDF's. Graphically the procedure is illus­

trated in Figure 4. 

CDF estimated from 
upper confidence values 

___ / 

CDF estima t ed 
from lower, 
confidence, 
values 

y 3 y 4--T Y k Y n-1 ) Y n 

19 

lowP.r bound upper bound 

Figure 4. Confidence interval by simplified method. 
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The L . and U . , i = 1, ... , n are found as follows for 
l l 

1 - a interval 

1 r tr-l(l-t) 8- 1 dt a/2 
B(r, 0 ) = 

0 

u. 
1 t• tr-l(l-tl e -1 dt l- a/ 2· (10) 

B(r, 0 ) = 

An appro x imate solution in L. and u. is given in the 
l l 

Handbook o f Mathematical Function edited by M. Abramowitz 

and I. A. Stegun (1970) where 

1 Joxp tr - 1 ( 1-t) 0-1 dt = 
B(r, 0 ) p 

X = p 
r 

2w' 
( r+ 0e ) 

w = 
y (h+ 0 )1/2 

p 
h 

- l / (2r-l)) 0. +5 / 6 - 2/ (3h)) 

0 < p < 1 

- (1 / (2 0-1)) 

h = 2(1 / (2r-l) + 1/ (2 0-1))-
1 , A = /1n(l / p

2
) 

2 
c

0
+c 1 t+c

2
t 

---------,,2---=-3 + E ( p) 
l+d1t+d2t +d3t 

c
0 

= 2.515517, c
1 

= 0.802853, c 2 = 0.010328 

dl = 1.432788, d2 = 0.189269, d3 = 0.001308. (11) 
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The absolute value of the error in x for this approximation 
p 

is given as less than 4.5* 10- 4 (see program in Appendix B). 

The method was applied to the same Weibull sample that 

was in Chapter IV, so that comparisons with the exact method 

could be made. The results were disappointing in that a 

large bias occurs in the high percentile region. The inter­

vals are shown in Table 4 with the corresponding intervals 

from the exact method. The large bias in the higher per­

centiles is evident. The extent of the bias is seen 

graphicall y in Figure 5. 

Table 4. 95 % confidence interval on the pth percentile 
(Simplified method) 

p Lower bound Upper bound 

90 % 12.702997 16.354500 

95 % 14.132521 17.453690 

97.5% 15.162933 18.135656 

99% 16.423828 18.505649 

99.5% 16.961182 18.592846 
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• For simplified method 

• For Monte Car lo method 
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Figure 5. The plot of confidence interval vs different percentiles. N 
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CHAPTER VI 

CONCLUSIONS 
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Two methods for computing a 1-a level confidence inter­

val were developed and illustrated . The method in Chapter 

IV is limited in precision only by the Monte Carlo sample 

size. Therefore it is possible to specif y any reasonable 

level of precision before computing the interval. The 

method works for an y distribution which can be inverted, 

i.e., there exists a solution for F(x) = U which can be com­

puted. The primary disadvantage is the expense of Monte 

Carlo simulation. 

The second method was developed on intuitive grounds 

and is not based on firm theoretical principles. It is evi­

dent from Figure 5 that the method does not give reasonable 

intervals for the high percentiles. It is instructive to 

compare the confidence interval with the true value of the 

population percentile. The Weibull data used in the compu­

tation of the intervals in Tables 2 and 4 were generated 

using the Weibull distribution function 

2 
F(x) = 1-e-(x/lO) x > 0. 

The true percentiles for this distribution are tabulated in 

Table 5. 



Table 5. Percentiles of the Weibull distribution 
2 F(x) = l-exp(-(x/10) ) 

Percentile 90% 95% 97.5% 99% 

Value 15.1742 17.308* 19.2064 21.4596 

*17.308 = 10.0*(-ln(l-0.95)) 112 - 0 

24 

99.5% 

23.0180 

A rough check on the method of computing the confi­

dence interval is to see if the intervals cover the true 

value at each percentile. Note from Table 4 that the 

Monte Carlo method does provide intervals which cover the 

true value at every point. However the short method indi­

cates a severe bias at the higher percentiles (i.e. > 90%). 

Thus it is clear that this rne~hod is not good. 
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#FILE <B08115> PROGRAM1 ON PACK 
100 DIMENSION XC501,UNIF(50>,AC!0,10),SUM(101,ARRAYC!001> 
200 DOUBLE PRECISION A,TEST,DET 
300 
400 
500 
GOO 
70 0 
800 -
300 
1 000 
1100 

COMMON R,THETA 
READ<5,/) N,R,THETA,P 
READ(S,I) !TIME 
PP=P 
TEMP=THETA 
I.JR I TE ( G, 1 ) 

! FORMAT(4X,"I",10>(,"ESTP1ATED R",10>(,"ESTIMAT ED THETA"///) 
CALL ORDER<X,50,N,1> 
DO 5 I= 1, N 

1200 5 X<I>= ALOGCXCI>> 
1300 DO 160 IIII=1,ITIME 
1400 C* GENERATE ORDER STAT!ST!CS OF UNIFORM DIST. U<0,1) . 
1500 CALL ORDERCUNIF,50 ,N,2) 
1600 C* USE LEAST SQUARE ~ET~OD TO FIN D THE ORDER STATISTIC 

1700 
1800 
1800 
2{)00 
2100 
2200 
2300 
240 1) 

25<)0 
260 0 
27 <)0 
2800 
2900 
300(, 
3!00 
3200 
3300 
3400 
3500 
3500 
3700 
3800 C* 
3900 
40t)i) 

'f 100 
4200 
4300 
4400 
4500 
Ll.Gf'•O 
4700 
4800 
4901) 

\ Y=P 
DO SO !:1,10 
SUM<!) =O. O 
DO 60 J=1,10 

60 A(I,J)=O.O 
DO 70 J=1,N 

70 SUMC1>=X(Jl~SUM(1) 
DO 80 I=1,N 
UNIFCI)=ALOG<<-1.)*ALOG Cl.-UNIF<I> )) 

80 SUMC2l=UNIF<I>+SUM(2) 
DO 80 I=l,N 

. A ( 1 , J. ) = >( < I ) * >( ( I ) +A ( 1 , 1 ) 
AC2,2l=UNIF<I>*UN!F<Il~AC2,2) 

90 A(1,2)=X(!l*U~IF(I)+A(1,2) 
DO 1 OG I=-1 • 2 
DO 100 J =I ,2 
AC!,J) =ACI,J>-SUM(!)*SU M(J )/FLOATCN) 

100 A(J+l,I)=ACI,J) 
TEST=O.SE-10 

CALL DMATIVCA,1,1,2,2,D~T,TEST,10 ) 
BO=SUMC2)/FLOAT (Nl 
80=80-A (1,2)* SUMC!)/ FLOAT(N> 

COMPUTE THE INTERSECT ION POINT 
P=ALOGCC-ll *ALOG!l.0 -? l) 
T:::<P-8 0 )/A{1,2) 
ARRAY<II!Il=EXPCT) 
THETA=DEXP (C- 1>*BO/AC1,2>> 
WRITE(B, 122) II I I ,A ( 1,2) , THETA 

122 FORMAT(I5,~21.G,E25.G> 
p :CC 

Tf-JETA=T~MP 

DO 2 00 I= ~ ,ITIME-1 
J= ITIME-I 



5()00 
5100 
5200 
3300 
5400 
5500 
5500 
5700 
5800 
5900 

IFLAG=O 
DO 250 K=l,J 
A1=ARRAY(K) 
A2=ARRAY(K.1.1) 
IF(Al.LE . A2l GO TO ZSO 
E=A! 
ARRAY<K>=A2 
ARRAV(K+l)=E 
IFLAG=1 

250 CONTINUE 
6000 IF!IFLAG.EQ.0) GO TO 300 
8100 200 CONTINUE 
5200 
8300 
6400 
6500 
8600 
6700 
5800 
8800 
7000 
7100 
7200 
7300 
7400 
7500 
7800 
7700 
7800 
7900 
8000 
810 0 
8200 

300 WRITECS,303) 
303 FORMAT(////4X,"!",10}{,"]:!\ITERACTION POINTS"///) 

WRITECG,305) <I,A RRAY( l),I=l,iTIME> 
305 FORMAT(I5,E27.G) 

STOP 
END 
SUBROUTINE ORDER<X,N,M,II > 
D nn::: NS I ON >( ( N ) 
COMMON R, THET~ 
TEMP=0.0 
SEED=TIMEC 11) 
DO !O I=1,M 
1.J=RANDOM (SEED) 
U=1.0-(l.O-TEMP)*V**(1.0/(FLOAT<M-I>+1.0)) 
IF ( I I • EQ. 1 ) GO TO 1 
)<(I)=U 
GO TO 10 

1 X<I> =THETA*(- ALDG<l.-Ul )**C l. /R l 
10 T!::MP=U 

RETURN 
END 
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#FILE (808115)P~OGRAM2 ON PACK 
100 DIMENSION Y1140),Y2(40>,X<40>,SUM<5),A(5,5) 
200 
300 
400 
500 
GOO 
700 

'800 
800 
1000 
1100 
12()0 
1300 
1400 

DOUBLE PRECISION A,DET,TEST 
COMMON R,THETA 
READ(5,/) DN,N 
READ{S,/) R,THETA 
DO 10 I= 1, N 
TEMP=FLOAT(!)/FLOAT <N> 
Y!<I >=TEMP+DN 

10 Y2CI )= TEMP-DN 
CALL ORDER<X,N> 
DO 200 I=l,N 

200 WR I TE ( G, 250) Y 1 C I ) , Y2 ( I ) , >( ( I ) 
250 FORMATC3X,3(F1G.8,2X)) 

IFLAG=1 
150 0 5 DO 15 I=l,2 
1800 SUMCI)=O.O 
1700 
1900 
1800 
2000 
2!00 
2200 
2300 
2400 
2500 
2800 

12700 
2800 
2900 
3000 
3100 
3200 
3300 
3400 
3500 
3600 
3700 

DO 15 J=! ,2 
15 A(I,J>=O.O 

SUMC1)=SUM<1>+X(I) 
20 SUM<2)=SUMC2>+Y1(! l 

DO 30 I=1,N 
A ( 1 , 1 ) = A < 1 , 1 ) + ){ ( I ) * >t ( I > 

A( 1,2)=AC1,2>+XCI)*Y1(I) 
30 AC2,2)=Y1C!)*Y1CI>+A(2,2) 

DO 40 I=l,2 
DO 40 J=!,2 
A(I,J)=A<I,J>-SUM(I)*SUM(J)/FLOAT(N> 

40 A{J+1,Ii=A(I,J) 
TEST=0.5E-10 
CALL DMATIV(A,1,1,2,2,DE T,TEST,5) 
BO=SUMC2)/FLOAT(N l 
80=BO-A(!,2l*SUMC1>JFLOAT(N> 
ANS=<0.85-BO>IACl,2> 
WR!TE<G,1 00) ANS 

100 FORMAT(!/" THE INTERACTION PT IS" , FlB.7/l) 
IFCIFLAG.EQ.2) GO TO 150 
DO 50 I=1,N 

3800 50 Y1 (I)=Y2(!) 
38 0 0 
4000 
4100 
4200 
4300 
4400 
4500 
4600 
4700 
4800 
4900 
5000 

:i:FLAG=2 
GO TO 5 

150 STOP 
END 
SUBROUTINE ORDERCX,N> 
DIMENSION X(N) 
TEi"!P=1). 0 
SEED=TIME(11) 
DO 10 I=1,N 
i,i =RANDOM ( SE~D) 
U=l.0-(1.0-TEMP>*V**(l.0/(FLOATCN-I>+!.0) l 

;-( ( I ) = P I N t,1 ( U ) 
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·s100 
52 0 0 
5300 
5400 
5500 
5600 
5700 
5800 
58 0 0 

10 TEMP=U 
RETURN 
END 
REAL FUNCTION PINV<U> 
COMMON R,THE"TA 
A=<-ALOG(1.-U 1)**(l./R) 
PI Nl..J=THETA*A 
RETURN 
END 
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Kolomogrov-Smirnov Method 
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J08115)PROGRAM 3 ON PACK 
DIMENSION XC40),Y(40>,A(10,10>,SUM(10> 
COMMON R,THETA . 
DOUBLE PRECISION A,DET,TEST 
READ<S,/) R,THETA 
READCS,/) N,P 
CALL ORDER(X,N) 
DO 5 I=1,N 

5 X(I ) =ALOG(X<I>> 
IFLAG=O 

PP=P 
SI GLEl.J=O. 025 

100 DO 8 I=l,3 
SUM(I)= O.O 
DO 8 J=1,3 

8 A(!,J)=O.O 
DO 50 I=1,N 
SUM ( 1) =SUM< 1) +}{<I> 

50 AC1,!)=A(1,!>+XCI>*X<I> 
IF<!FLAG.GE.2> GO TO 200 
CALL C!NTVL{Y,N,SIGLEV> 
DO 10 I= i, N 

10 Y<I>=ALOGC-ALOGC1.-Y(Ill) 
00 12 1= 1 ,N 
SUM<2>=S UMC2)+Y(I> 
A(l,2)=A<1,2)+X(Il*Y<I> 

12 A<2,2>=A(2,2)+Y(I)*Y<I> 
DO 15 I=l,2 
DG 15 J=I,2 
A(I,J)=ACI,J)-SUMCI>*SUM <J>IFLOAT<N> 

15 A(J+!,I)=AC!,J) 
TEST=O.SE-10 
CALL DMATIV(A,1,1 , 2,1,DET,TEST,10 > 
BO=SUM(2)/FLOAT<N> 
BO=BO-AC1,2>*SUM{1) / FLOAT<N> 
WR!TE( G,20) 80,A(l,2) 

34 , 

20 FORMAT( 11 THE REGR!::SSION COEFFICIENTS BO;: " ,F15.G,3>C, "81=" ,F16 
\.6/1) 

P=ALOG!-ALOG<l.0-P)) 
T=(?-80)/AC1,2) 
T=EX? (T) 
~RIT E<B,25 l PP,T 

2 5 FORMAT(" THE INTERl,JAL 80UND FOR P= ", F7.3,:J}(,"IS",F15.G///; 
SIGL:::l.J=. 975 
IFLAG=IFLAG+ 1 
P=PP 
GO TO 100 

200 STOP 
END 
SUBROUTINE CINTVL(V,N,P> 
DI !'!ENS I ON Y ( N) 
T=SQRTCALOG( !./ CP•P)l) 
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T=T-CC2.515517+.802853•T+. 0 10328*T**2.)/(1.+l.432788*T+\ 
\. i 88288* T-:H 

-2.+.001308*T**3.JJ 
TEMP=<T**2.-3.J/8.0 
DO !O I=1,N 
TA=!./(2.*FLOAT<IJ-1.) 
TB=1./(2.*FLOATCN-I+1)-1.) 
TH=2.*! ./CTA .... TB> 
W=T*SQRTCTH+TEMPJ/TH 
W=W-CTEMP~S./6.-2. /( 3.*THJ}*(TB-TA ) 
Y( IJ=FLOAT(I)/CFLOAT{I)+FLOATCN-I+ll*~XPC2,*W)) 

10 CONTINUE 
RETURN 
END 
SUBROUTINE ORDERCX,N> 
COMMON R,THETA 
DIMENSIO!'J X<N) 
TEMP=O.O 
SEED=TIME<11) 
DO 1 G I= 1, N 
l.J=RANDOM<SEEDJ 
U=l.0-<1.0-TEMP>*V**(l.0/C~LOATCN-!>+1.0J) 
XC! J=((-ALOG(!.-U))**Cl ./ RJ)*THETA 

10 TEMP=U 
RETURN 
END 
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Appendix D 

Part of Data for Monte Carlo Method 



COLUMN C2 C3 C4 cs 
COUNT 40 40 40 40 
ROW 

1 0. 93-59 -0.06625 0.014987 -4.19304 
2 1.6088 0.47538 0.018467 -4.09808 
3 2.3586 0.85851 0.075076 -2.55048 
4 2.4457 0.88435 0.098586 -2.26538 
5 2.8803 1.08538 0.115653 -2.09633 
6 3.5200 1.25847 0.131777 -1. 95682 
7 3.8878 1.35778 0.140887 -1.88407 
8 3.9030 1. 36175 0.191388 -1.54923 
9 3.9880 1. 37827 0.222948 -1.37734 

10 3.8928 1.38451 0.283124 -1.10005 
1 1 4.3087 1.46087 0.285831 -1.08834 
12 4.4652 1.49632 0.329863 -0.91635 
13 4.4823 1.50013 0.358588 -0.81874 
14 4.6720 1.54158 0.366233 -0.78510 
15 4.7280 1.55349 0.379489 -0.73976 
16 4.7687 1.56228 0.405183 -0.65489 
17 B.2375 1. 83058 0.406720 -0.64992 
18 8.4346 1.86189 0.408831 -0.84311 
19 6.5235 1.87542 0 .475429 -0.43823 
20 8.6281 1.89132 0.480704 -0.42269 
21 G.8535 1.82476 0.484213 -0.41240 
22 7.0346 1.95083 0.489277 -0.38780 
23 7.0378 1.9513 0 0 .539689 -0.25385 
24 7.9576 2.07413 0.581934 -0.13683 
25 8.4198 2.13< ) 57 0.595305 -0.10024 
26 9.0841 2.2 0 652 0.597643 -0.08385 
27 9.4884 2.25007 0.656930 0.06748 
28 10.4333 2.34500 0.664764 0.08885 
29 10.8922 2.38805 0.685885 0.14669 
30 11.0811 2.40524 0.714754 0.22686 
31 11. 1832 2.41441 0.724858 0.25500 
32 11.4823 2.43907 0.725888 0.25785 
33 11.5098 2.44318 0 .742388 0.30470 
34 11.6814 2.45828 0.750988 0.32852 
35 11.9025 2.47675 0.769577 0.38379 
38 12.2834 2.50825 0.783725 0.45650 
37 12.9944 2.56452 0.867804 0.70518 
38 15.6430 2.75002 0.880875 0.79537 
38 18.3482 2.80958 0.804744 0.85492 
40 21.4923 3.06769 0.855888 1.13816 
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Appendix E 

Part of Data for K-S Method 



0.24000000 -0.19000000 0.73087311 
0.26500000 -0.16500000 2.33184649 
0.29000000 -0.14000000 2.48551604 
0.31500000 -0.11500000 2.61515526 

' 0.34000000 -0.09000000 2.77417887 
0.36500000 -0.06500000 2.77701459 
0.39000000 -0.04000000 3.12876232 
0.41500000 -0.01500000 3.54922147 
0.44000000 0.01000000 3.67359461 
0.46500000 0.03500000 3.74741833 
0.49000000 0.06000000 4.80848285 
0.51500000 0.08500000 5.06404995 
0.54000000 0.11000000 5.37647384 
0.56500000 0.13500000 5.96092552 
0.59000000 0.16000000 6. 10206654 
0.61500000 0.18500000 6.30997937 
0.64000000 0.21000000 6.31985035 
0.66500000 0.23500000 6.53653539 
0.69000000 0.26000000 -~ .66760516 
0.71500000 0.28500000 7.06874834 
0.74000000 0. 3-1 000000 7.76320753 
0.76500000 0.33500000 8.292?2076 
0.79000000 0.36000000 8.29703542 
0.81500000 0.38500000 8.34855679 
0.84000000 0.41000000 8. 89939393 
0.86500000 0.43500000 8.93245899 
0.89000000 0.46000000 9.44444534 
0.91500000 0.48500000 11.65657047 
0.94000000 0.51000000 11.68644308 
0.96500000 0.53500000 11 • 75066906 
0.99000000 0.56000000 12.87024329 
1.01500000 0.58500000 12.92405328 
1.04000000 0.61000000 13.40591624 
1.06500000 0.63500000 13.66685459 
1.09000000 0. 66000\lOO - 14 :-007646~2 
1.11500000 0.68500000 14.16145718 
1 .14000000 0.71000000 14.93361613 
1 .16500000 0.73500000 15.62837948 
1 .19000000 0.76000000 16.25721020 
1.21500000 0.78500000 19.00051828 

The first column is for upper bound. 
The second column is for lower bound. 

\. 

The third column is for Weibull order random numbers 
when r = 2.0, 0 = 10.0, p = 0.95, n = 40. 
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