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ABSTRACT 

A µ-Model Approach on the Cell Means: 

the Analysis of Full, Design Models 

With Non-Orthogonal Data 

by 

Richard Van Koningsveld, Master of Science 

Utah State University, 1979 

Major Professor: Dr. Ron Canfield 
Department: Applied Statistics and Computer Science 

This work considers the application of a µ-model approach on 

V 

the cell means to a special yet important class of experimental 

designs. These include full factorial, completely nested, and mixed 

models with one or more observations per cell. By limiting attention 

to full models, an approach to the general data situation is developed 

which is both conceptually simple and computationally advantageous. 

Conceptually, the method is simple because the design related 

effects are defined as if the cell means are single observations. 

This leads to a rather simple algorithm for generating main effect 

contrasts, from which associated interaction contrasts can also be 

formed. While the sums of squares found from these contrasts are 

not additive with non-orthogonal data, they do lead to the class of 

d~sign related hypotheses with the clearest interpretation in terms 



of the cells. 

The computational method is advantageous because the sum of 

squares for each source of variation is evaluated separately. This 

avoids the storage and inversion of a potentially large matrix as­

sociated with alternative methods, and allows the user to evaluate 

only those sources of interest. 

The methodology outlined in this work is programmed into a user­

easy, interactive terminal version for the analysis of these n-factor 

design models. 

(52 pages) 



INTRODUCTION 

The analysis of variance technique is widely applied to data 

arising from experiments. Its utility as a statistical technique 

comes not only as a method to estimate 'treatment' effects, but 

because it provides a means of testing the likelihood such effects 

are distinguishable. 

The computational methods for the analysis of variance are 

simplest for orthogonal data. This occurs when the cell frequencies 

are either equal, or can be considered proportional to their respective 

populations (A cell is defined by a specific value (level) from each 

factor in an experiment). With orthogonal data the sums of squares 

(SS) for component sources of variation are mutually independent and 

together add up to the total SS. In practice, various submodels may 

also be investigated simply by adding the SS of appropriate sources 

of variation (SV) together. This is because, for orthogonal data, 

the various component SS and effects remain invariant to the model. 

Frequently, however, the cell frequencies are both unequal and 

disproportionate, and the above situation does not hold. The effects 

and SS obtained for a particular SV depends on the model assumed in 

the analysis, and the additivity property for SS is lost. Concurrently, 

the computational methods for non-orthogonal data are inherently more 

difficult. This arises directly from the unequal and disaproportionate 

nature of the cell frequencies themselves, causing the various effects 

and SS to become entangled. 

In certain instances, observation balance can be restored by 



randomly deleting observations or by generating them through missing 

data formulae. When this is undesirable or impossible one must be 

satisfied with an approximate analysis or resort to the more com­

plicated computational procedures. 

Approximate methods closely parallel those for orthogonal data. 
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Because of this, they are easy to apply and remain conceptually simple. 

While these alternatives give good results for 'nearly' orthogonal 

data, it is difficult to establish the effect of observation imbalance 

on the degree of approximation in the analysis. 

Subsequently, regression on dummy (0,1) or (1,0,-1) variables 

has become the standard exact method to handle the general data 

situation. This least squares approach is not easily seen as a natural 

extension of the techniques used for orthogonal data. In part, this 

is because the focus is shifted away from the cell means (or totals) 

to the individual parameters of a regression model. 

In the past decade, a method for the general data situation has 

been formalized in terms of the cells of the experiment. This is known 

as the µ-model approach. While stastically equivalent to dummy variable 

regression, conceptually it is somewhat easier to understand because 

the cells represent the 'objects' on which the data were initially 

collected. 

While the µ-model approach is conceptually easier, in general 

there is no real computational advantage over the regression approach. 

The only exception for the general data situation arises when the 

cell parameters of the µ-model are estimated by the observed cell 

means. Such models are called full (or saturated) models. 



This work considers the application of a µ-model approach to 

a special and important class of experimental designs, which include 

full factorial, completely nested, and mixed models with one or more 

observations per cell. By limiting attention to full models, an 

approach to the general data situation is developed which is both 

conceptually simple and computationally advantageous. To accomplish 

this, an algorithm for computing the effects and SS associated with 

any SV for these n-factor ANOVA models is derived. 

3 



LITERATURE REVIEW 

The analysis of variance for multi-factor experiments is easiest 

to compute and interprete when the data are orthogonal. Despite this 

fact, and for various reasons, the need to analyze non-orthogonal 

data frequently arises. Several methods, both approximate and exact, 

are available in this situation; each approach having its own advan­

tages and disadvantages. 

Early Methods 

The first approximate solutions to the problem of non-orthogonal 

data in multi-factor experiments were the method of unweighted means 

(Yates, 1933) and the method of expected subclass numbers (Snedecor, 

1934). Respectively, they are recommended when the cell frequencies 

'nearly' satisfy the equal and proportional numbers case. With only 

minor adjustments, each defines treatment effects in terms of the 

cell means, treated as single observations; and proceed as if the 

data were balanced. Bancroft (1968, p.35), in describing these 

methods, points out that "both make use of the addition theorem 

for the analysis of variance which holds for orthogonal data and thus 

make the SS calculations less complicated." While these methods are 

exact for orthogonal data, their utility as a quick alternative is 

diminished by the degree of observation imbalance in the cells. 

However, when justified, these methods are especially advantageous 

in that a wide range of experimental designs can be handled. 

4 



Yates (1934) published another procedure known as the method 

of weighted squares of means. Its utility is generally restricted 

to finding exact main effect SS for full factorial (fixed effects) 

models. Like his other method, the cell means are treated as single 

observations; but as noted by Searle (1971), each component SS is 

inversely weighted by the variance of that component. The weights 

are a function of the cell frequencies so as to account for the 

different sampling distributions of the cell means involved. This 

fact, ignored by the approximate methods mentioned, provides for its 

exactness. Each main effect SS derived by this method is adjusted 

for the remaining main effects and interactions in the full model. 

Their corresponding mean squares, divided by the (pooled) within cell 

variance, provide F statistics upon which differences in the effects 

are detected. 

Least Squares 

5 

The methods mentioned were developed to avoid the available but 

time consuming method of least squares. Computers made a least squares 

solution routinely practical and the technique rapidly evolved. Un­

like the methods mentioned so far, the least squares approach is not 

framed in terms of the cells of the experiment. In this way, it de­

parts from the traditional ways of conceptualizing the analysis of 

variance. However, as an exact method it provides a unified approach 

to handle the whole gamit of linear models. For comparative purposes, 

it is worthwhile to quickly review this approach. 

In a contemporary form, an analysis of variance (ANOVA) model 

written, 
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Y .. =u+A.+ ... +e .. 
i. .Jm 1 i. .Jm 

[l] 

is parameterized through dummy variable (0,1) concepts to the regression 

form: 

Y = XB + E. [2] 

Here, Bis the vector of unknown paramters and Xis an incidence 

matrix which governs the selection of parameters pertinent to each 

observation in the vector Y. The vector Eis a vector of observational 

errors or residuals. Under the usual ANOVA assumptions each element 

of E 2 is NID ( 0, a ) . 
e 

To obtain a unique solution for Ba variety·of constraints may 

be imposed. The constraints normally associated with ANOVA models 

are the 'usual' constraints, and one of the following of these is 

imposed on each SV depicted in the model given by [l]. 

a) Crossed Main Effect 

LA. = 0 
l 

where the summation extends over the I levels of the 

single factor A. 

b) Nested Main Effect 
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where the summation extends over the L levels of B 

existing within each particular set of nesting subscripts 

(.j .. k.). These tenns can be viewed as a main effect 

within each unique set of nesting subscripts. 

c) Crossed Interaction 

IA ... B. . = 0 
l.. ·J 

where the summation extends over the existing levels 

defined for any particular crossed factor appearing in 

the interaction. 

d) Nested Interaction 

IA ••• B ( . k ) . l = 0 
•J • •• l. • • 

where the summation extends over the levels existing for 

any particular crossed factor within each unique set of 

nesting subscripts, (.j .. k.). This latter tenn may be 

viewed like a crossed interaction existing within each 

unique set of nesting subscripts. 

By imposing constraints, such as the ones above, the X matrix 

of [2] is brought to full column rank and a unique solution for the 

unknown parameters in B may be found. This is given by: 

B = (X'X)-l X'Y, [3] 



where now, the column rank of Xis equal to the degrees of freedom of 

the model assumed in the analysis. 

After a statistical solution is found by this least squares 

procedure, the SS associated with an individual subset of parameters 

may be computed. The SS for a SV is found when the subset is com­

posed of the parameters the source represents. Specifically, the 

SS for testing the multivariate hypothesis: 

H 
0 

b = 0, 

with K contiguous parameters from the solution vector B will have k 

degrees of freedom. 

The SS for this SV is found by: 

SS (H) = b S-l b. 
0 

where bis a vector, and Sis a (k x k) sub-matrix of its related 

-1 
elements in the (X' X) matrix. Repeated use of the proceeding ex-

pression generates the SS for each SV in the ANOVA model. A more 

detailed discussion of linear models can be found in Searle (1971). 

µ-Model 

General Discussion 

[4] 

[ 5] 

Speed (1969) formalized what amounts to a reparameterization of 

the regression form just discussed, known as the µ-model approach. 

Like least squares, this approach provides a unified method for the 

8 



analysis of variance. While in general the µ-model approach has no 

real computational advantage over least squares, the µ-model is framed 

in terms of the cells of the experiment, giving it greater conceptual 

appeal. 

Instead of expressing the observations directly in terms of the 

parameters of a model written: 

Y. . = u +A.+ ... + e .. ; 
l. .. Jill l l. ,Jill 

the µ-model begins by expressing the observations more simply by the 

model: 

Y. . = u. . + e. . . 
i. .Jm i. .J 1.. .Jrn 

That is, each observation is divided into two components where: 

ui .. j represents a parameter characteristic of the cell 

(i..j); 

[6] 
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th 
e .. is the random error associated with the rn observation 

i. . J rn 

collected on the cell (i .. j). 

The generalization of expression [6] to all observations is given in 

matrix form by: 

Y=WU+E [ 7J 

where: 



Y is a vector of the observations 

Wis a matrix of weights 

U is a vector of the cell parameters, and 

Eis a vector of observational errors. 

10 

The equivalence of the regression and µ-model is demonstrated 

by introducing the identity matrix, I, into equation [7] and partition­

ing it into two parts. That is: 

y = WU + E 

y = WIU + E 

y = W(K-1K) u + E 

y = (WK-1) (KU) + E [8] 

y = ZB + E [9] 

Equation [9] is recognized as the regression form. 

The key observation in examining equations [8] and [9] is that 

the effects (parameters) in Bare represented by a set of linear 

functions of the vector U. This set is denoted by K. As a consequence 

of this, the SS due to a subset of k contiguous parameters in Bis 

statistically equivalent to the SS corresponding to k linear functions 

of U. That is, if H represents these k functions, then in direct 

analogy to equation [5] the SS is given by: 

SS(H) =(HU)' (H(W'W)-l H')-l (HU) [10] 

In general, the matrix Wis unknown, so the matrix solution 

U = (W'W)-l W'Y [11] 



11 

cannot be used to evaluate U directly. Instead, a completely different 

computational method is required. The general procedure for doing so 

is outlined by Speed (1969) and this has been programmed by Bryce (1974). 

Applied to Cell Means 

Searle (1971) mentions the special case of the µ-model Y =WU+ E 

where U is a vector of the cell means. In this case Wis a (0,1) 

incidence matrix governing the selection of the cell mean in U appropri­

ate to each observation in Y. And as before, Eis a vector of errors 

associated with corresponding observations in the vector Y. 

The nature of Wis such that (W'W)-l is a diagonal matrix with 

the reciprocals of the cell !requencies along the diagonal. This 

result can be seen directly from first principles. 

cell (observational) errors are assumed to be NID 

th tribution of the mean of, say the p cell is NID 

is, each mean has a variance proportional to 1/n . 
p 

Since the within 

2 (O,a ), the dis­
e 

2 (u , a In). That 
P e P 

The independence 

of the cell means implies the off-diagonal (covariance) elements are 

zero. Thus the SS associated with H (the linear combinations of these 

cell means) follows from [10] and is given by: 

SS(H) =(HU)' (HD(l/n )H')-l (HU) 
pp 

D(l/n ) represents the diagonal matrix of the reciprocals of the 
pp 

th cell frequencies; the p element along its diagonal corresponding 

• th 
to the p mean is U. 

[12] 

In practice, U is replaced by a corresponding vector of observed 

cell means as the best linear unbiased estimates of the cell population 
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means. Upon making this substitution and writing: 

SS(H) = (HY)' (HD(l/n ) 11')-l (HY) 
pp 

[13] 

it is apparent that its evaluation only awaits framing the appropriate 

linear functions of interest in· terms of the cell means. And, as 

Searle (1971) points out this is done within the context of what the 

data represent. In any event the estimated variance-covariance matrix 

for any set of linear functions of the cell means, estimated by HY, 

is given by: 

= (HD(l/n )H')s
2 

pp e 
(14] 

2 2 wheres is the estimator of a pooled from the cells containing data. 
e e 

This work incorporates expression [13] as the basis for an analysis 

of variance procedure applied to common experimental designs with no 

missing cell. In the analysis of multi-factor experiments with un­

balanced data, the SS obtained from the use of [13] are those derived 

in considering the full (or saturated) model. Full models are those 

which include all possible interactions among the factors it contains, 

whereas those lacking one or more interactions are called restricted. 

This distinction is unnecessary with balanced data as the SS obtained 

for a SV, say a main effect, is the same whether the model is full or 

restricted. This is untrue for unbalanced data. The SS for a given 

SV depends on the model assumed in the analysis. Subsequently, the 

hypotheses actually tested by their associated mean squares must also 
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differ when expressed in terms of the cells of the experiment. 

Hypothesis Testing 

The SS derived in the analysis of variance are the fundamental 

quantities used in estimating components of variance and for testing 

hypotheses. Searle (1971) discusses methods for estimating components 

of variance and are not considered further in this paper. However, 

some discussion of hypotheses tested with non-orthogonal data seems 

worthwhile, particularly when considered in terms of the cells in 

the experiment .. 

Kutner (1974) and Searle (1971) discuss the hypotheses tested 

in the two-way model. For clarity, the reduction notation used by 

Greybill (1961) accompanies each type of hypotheses as an aid to the 

model assumed in each case. The two-way model is considered in its 

µ-model form: 

with 

i = 1,2, ... ,I 

j = 1,2, ... ,J 

k 1,2, ... ,n .. 
1J 

N = Hn .. 
ij 1J 

and where u .. is the mean of the cell (i,j). 
1J 



The levels associated with the factors A and Bare respectively 

denoted by the subscripts i and j. By adopting the convention that 

14 

a dot indicates that a subscript has been summed over, the unique types 

of hypotheses can then be enumerated in terms of the cells of the 

experiment. These are: 

a) R(A/u,B,AB) 

H: u
1 0 . 

= u 

b) R(AB/u,A,B) 

2. 

H: u .. -u.,. -u .. , +u.,., =O 
0 lJ l J lJ l J 

(1/I)Zu .. 
J lJ 

for all i,i' ,j,j' provided i # i',j # j' 

c) R(A/u) 

H : ~(n .. /n. )u .. equal for all i 
0 J lJ l. lJ 

d) R(A/u,B) 

2 
H : ~(n .. - n .. /n .)u .. -

1
.I

1
., I(n .. n., ./n .)u.,., 

0 J lJ lJ . J lJ 'f j lJ l J . J l J 

equal for all i. 

Several points about these hypotheses, framed in terms of the cell 

means, deserve discussion. Hypotheses a) and b) result from the use 

of the full model considered here and these appear as the same simple 

functions of the cell means found with orthogonal data. Hence, Francis 

(1973) contends these tests reflect conceptually what most people desire 

from their experiments. The hypothesis given in a) implies a test 



for the equality of the marginal means evenly weighted over the re­

maining factor(s). In general, this is equivalent to the manner 
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main effects are defined in the balanced case. The interaction hypothe­

sis given in b) also indicates a test for no interaction effects in 

the same way as for balanced data. 

The interpretation of the hypotheses c) and d) are not as simple, 

because they involve the cell frequencies. Kutner (1974) contends 

the hypothesis c) is ''appropriate only when then .. /N are good esti-
.iJ 

mates of the population proportions." And this is suggested for a 

proportional analysis only when the interaction is negligible. For 

unbalanced data, the hypothesis given ind) is impossible to interprete 

in terms of the cell means. As Searle (1971) notes, this hypothesis 

reflects less about the relative magnitudes of the cell means than 

the number of observations the cell contain. This is clearly undesira­

ble as the cell means themselves are the 'objects' of interest in the 

experiments, not the cell frequencies. Of course, this is not to say 

that one cannot assume this 'no interaction' model with non-orthogonal 

data, but rather that this hypothesis has no clear meaning in terms 

of the cell means themselves. 

Summary 

Various computational methods for the analysis of variance are 

available for non-orthogonal data. The methods of unweighted means 

and expected subclass numbers provide a quick, approximate analysis 

for a wide variety of experimental designs. The method of weighted 

squares of means, by contrast, yields exact suras of squares but only 
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for main effects in factorial models. Computers made a least squares 

solution to the analysis of variance a practical exact method. However, 

it is not a generalization of the methods used for orthogonal data. 

The µ-model approach is conceptually advantageous in this respect, 

as it is framed in terms of the cells of the experiment. But, in general 

it has no computational advantage over least squares. An exception 

to this arises in the case of full design models considered in this 

thesis. Additional justification for developing this approach to these 

commonly encountered designs comes from the interpretation given full 

model hypotheses. 
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HETHODOLOGY FOR THE CELL MEANS MODEL 

The purpose of this thesis is to develop a computer program for 

the analysis of variance of full model, multi-factor experiments having 

one or more observations per cell. The basis of this program is a 

µ-model approach applied to cell means. This allows the sums of squares 

(SS) of individual sources of variation (SV) in the model to be evaluated. 

Prior to the discussion of the development of this procedure, it is 

necessary to define some basic notation. 

Basic Model Notation 

The general framework of this approach begins by considering an 

experiment with M factors described by the µ-model: 

where: 

[15] 

Y .. *l is the n Lt observation taken on the cell with factor 
iJ mn 

level subscripts (ij*lm). 

yij*lm is the (observed) mean of the cell with factor level 

subscripts (ij*lm). 

e. '*l iJ • mn 
• h • d • h h th b • is t e error associate wit ten o servation 

taken on the cell with factor level subscripts 



(ij>',lm). 2 
These are assumed to be NID (o, a). 

e 
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The asterisk is used to denote the subscripts of other possible factors 

in the experiment. 

Since no structure (design) has been given the experiment, a general 

notation to describe the levels for each of the M factor is necessary. 

This follows the notation describing a nested classification. 

factor 

1 

2 

M-1 

M 

subscript and levels 

i 1,2, ... ,I 

j = 1,2, ... ,J(i) 

1 = 1, 2, ... , L ( ij .. ) 

m 1,2, ... ,M(ij .. l) 

When the number of levels for a factor is the same, as it is for example 

with crossed factors, the subscripts defining the levels may be dropped. 

For much of the following discussion it is easiest to reparameterize 

the model so as to have a way of addressing a cell by a single subscript. 

This can be done by letting p(p = 1,2, ... ,P) be uniquely associated 

with an existing combination of the M factor levels. The number of 

observations in the pth cell is then denoted simply by n, and the total 
p p 

number of observations, N, by N Zn 
p p 

Using this notation, the model 

given by [15] is rewritten: 
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e ' pn 
[16] 

with the corresponding terms defined as before. 

Preliminary One-Way Analysis 

Before proceeding with the analysis of multi-factor experiments, 

it is often recommended to first determine if the (whole) model shows 

significance. For full models this amounts to a one-way analysis of 

variance conducted on the cells; and this usually requires sufficient 

2 observations to provide an estimate of the within cell error, s . 
e 

The basic quantities for this preliminary analysis are calculated 

in the usual manner as given below: 

n 
2 

a) ss = HP 
ypn - CT total p n 

(H 2 2 T where CT = ypn ) /N y .. h:, 
pn 

b) 
-2 

L 
2 ss = [n y - CT = y p. /np - CT 

among p p p p 

c) ss = ss -ss 
error total among 

These results are summarized in an ANOVA table with their degrees 

of freedom (df) as follows: 



TABLE 1. ANOVA table for one-way analysis. 

Source of Variation 

Total 

Among cells 

Within cell (error) 

df 

N - 1 

p - 1 

N - p 

MS 

SS 
1

/ (N-1) 
tota 

ss I (P-1) 
among 

SS . h. / (N-P) wit in 

F-ratio 

MS /MS . h' among wit in 

This F-ratio with (P-1) and (N-P) degrees of freedom used to test 

the (full) model, is at the same time a test for the equality of the 

cell means. 

Evaluation of Sums of Squares 

General Discussion 

A µ-model of the cell means can always be equated to a full model 

reflecting the SV associated with its design. That is to say, 

provided the model on the right includes all possible interactions of 

the factors it contains. 

These individual SV do not generally produce an analysis of 

variance in the sense of SS which add up to the total SS. But, they 

do provide an analysis with the same degree of freedom partitions. 

Hence, any full model, with P cells, has P degrees of freedom; one of 

which is lost estimating the overall location parameter, u. The 

20 
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remaining (P - 1) degrees of freedom (among cells) are partitioned in 

accordance with the SV in the experimental design. 

The SS for these SV can be calculated once the effects (parameters) 

associated with these sources are defined. It is a feature of full 

models that these effects are defined in terms of the same marginal 

means found with orthogonal data. The cell means in this sense are 

treated as single observations, and the various design related marginal 

means are computed as if the data were balanced. A 'usual' constraint 

imposed on a SV then defines the effects as straight-forward functions 

of these marginal means. 

The utility of the SS expression: 

SS(H) [18) 

reproduced from equation [13) hinges on the ability to unravel these 

effects and re-express them directly in terms of the cells. 

At this point, it is worthwhile to review the terms in equation 

[18) and discuss their dimensionality. 

a) As just mentioned, His a matrix specifying the linear 

combinations (contrasts) of the cell means which define 

the effects associated with a SV. In general, this is 

a (k x P) matrix where k is the df in the source, and P 

is the number of cells. 

-
b) Y is the (P x 1) vector of the (observed) cell means. 

c) D(l/n ) is a diagonal (P x P) matrix whose p
th 

element 
pp 

on the diagonal is the reciprocal of the number of 

th 
observations in the p cell. 
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As already noted, it is a property of full models that the 'usual' 

constraints define the effects for a SV in terms of straight-forward 

functions of the marginal means. Before attempting to unravel these 

functions, it is critical to have a way to express these marginals in 

terms of the cells. 

Definitions of Marginal Means 

There are four design related marginals which need to be discussed; 

these are involved with main effects. But first, some further notational 

conventions need to be established. 

In keeping with an earlier convention, an asterisk(*) denotes 

subscripts of other possible factors in the experiment. However, 

another symbol is needed to indicate that these additional subscripts 

have been appropriately averaged over. The symbol used for this is 

a hash mark(#). Each dot (.) associated with a mean also implies an 

averaged over factor, but these relate to factors of explicit interest. 

_T_h_e_o_v_e_r_a_l_l_m_e_a_n__,_, ____ Y,fl" The overall mean is an estimator for the 

location parameter,µ; and is one of the marginals involved in defining 

crossed main effects. It is not necessarily a simple average where 

each cell mean is given the same weight, although this is the case 

with cell balanced experiments like factorials. 

In general the overall mean is given by: 

I J( i) 
- JL ~ ~ Y • • 1t • = l, L, [19] 

i j m 



Examination of [19] reveals that the weight (divisor) applied to each 

cell mean is a function of the subscripts of that cell. In designs 

which may lack cell balance, like completely nested designs, these 

weights are not necessarily equal. 

To facilitate the unraveling of the marginals into tracable 

functions of the cells, it is prudent to express the various marginals 

as weighted averages. As before, let p(p = 1,2, ... ,P) be uniquely 

associated with a specific combination of its M factor levels (ij*m) 

so that: 

th 
Yp = y is the mean of the p cell with associated 

ij*m 

subscripts (ij*m), and 

c = c(ij>'<m) 
p 

= 1/IJ(i) ... H(ij*l) 

is the corresponding cell weight. 

The overall mean can now be re-written from [19] more simply by: 

yff =LC y 
p p p 

= L z . 
p p 

Like any weighted average, these weights have the property that: 

[20] 

23 



L c = 1 
p p 
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Crossed factor marginal, Yttk'lf. A crossed factor with K levels 

has K distinct marginal means denoted: 

yltklt with k = 1,2, ... ,K. 

These are involved in the definition of main effects for crossed factors. 

The overall mean, just discussed, can always be expressed as a 

simple average of these marginals. That is: 

[21] 

Each marginal, say y#k'#' has been averaged over only those cells for 

which the subscript k = k'. This suggests that the overall mean 

given by [20] can be segregated into K terms related to those of the 

marginal means: 

= L z 
p p 

= ( LZp + LZP + ... + LZp ) . 
p: k=l p: k=2 p: k=K 

[22] 

Equating [21] and [22] and multiplying through by K leads to: 



+ ... + K( LZP ) . 
p: k=K 
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From this expression, it is clear that corresponding terms on the left 

and right hand sides are equivalent. Thus, a marginal mean of a 

crossed factor is given in terms of the cells by: 

[23] 

Deriving the crossed factor marginals in this manner serves to illus­

trate their relationship to the overall mean. However, this result 

can be obtained in a more general way. Any marginal mean can be 

expressed as a weighted average of the cell means; subject to the 

condition that the weights sum to one. This can be guaranteed by 

expressing a weighted average in its general form: 

(1/Ic )Ic yp = (1/Ic )Iz 
p p p p 

where the summations range over the same values of p. 

In this particular case, only the cells of p for which k = k' 

were included in the sum. However, the multiplicative factor (1/K) 

was included in the definition of the c 's, reflecting that this 
p 

factor had already been averaged over. Subsequently, the result of 

[ 24] : 



= K LZ 
p: k=k' 

is identical to that previously obtained in (23]. 

_N_e_s_t_e_d __ ' _o_v_e_r_a_l_l_m_e_a_n_'~·~~Y~c k' ·kn I ) II" The 'overall mean' for a 

nested main effect parallels the role played by the overall mean when 

defining crossed main effects. However, in this case there is one 

such marginal associated with each unique set of nesting subscripts, 

(k' ,'<n') . 
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From the principles established earlier, a specific nested ''over­

all mean' can be expressed as a weighted average of the cell means: 

Y = (1/ LC ) 
(k'*n')I/ o 

p: (k 1 *n') 

(25] 

where the summations extend only over the cells of p which have the 

same corresponding subscript values as the nesting subscripts, (k' '"n') . 

The multiplicative constant, (1/ I:cp ) is equal to the product 
p: (k'*n') 

of the levels associated with the subscripts (k'*n'), but for compu-

tational reasons it is convenient to leave it in its present form. 

_N_e_s_t_e_d __ f_a_c_t_o_r_m_a_r_..g_i_n_a_l_,'---_,,_Y ( k , "'n , ) !fl , If • There is a set of nested 

marginals associated with each unique set of nesting subscripts, (k'*n'). 
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The number of marginals depends on the number of levels defined within 

each nesting set. In general, these marginals and their levels may be 

represented: 

Y(k'*n')#l# with 1 = 1,2, •.• ,L(k'*n'). 

A simple average of nested marginals yields their 'overall mean;. 

That is: 

[26] 

where L = L(k'*n'). 

Since any nested marginal, denoted y(k''f<n')//l'#' involves only 

those cells with nesting subscripts (k'*n') and 1 = l', expression 

[25] can be segregated into L terms related to those of each marginal. 

That is: 

y (k' *n') If = (1/ Lcu ) ( LZp 
p: (k' 1<n') p: (k'>'•n')//1// 

+ 

LZp 
p: (k'*n')l/2# 

+ ... + LZP ) 
p: (k' >'<n') #Lil 

[27] 

By equating [26] and [27] and multiplying both sides by L, it can be 



seen that corresponding terms are equivalent. It follows that a 

general nested factor marginal may be represented: 
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y (k' *n') Ill' If 
(1/ Lc ) L(k',~n') Lz 

p: (k' *n') p: (k' *n') 1 1 

[28] 

Definition of Main Effects 

It was stated earlier that the effects in full models can be 

expressed as straight-forward functions of the marginal means. Now 

that the design marginals have been derived, it is a simple matter 

to express the various effects in terms of the cells. The one re­

maining step is to manipulate the main effect expressions so that 

a single weight can be applied to each cell involved in the effect. 

_C_r_o_s_s_e_d __ m_a_i_n_e_f_f_e_c_t__,_,_......_Y, II k , ti - y I,! • Each main effect for a crossed 

factor is estimated by the difference be~ween a specific marginal and 

the overall mean. These may be denoted, say for factor A with K levels, 

by: 

k 1, 2, ... ,K 

Substituting expressions [23] and [20] for a specific effect, Ak'' 

yields: 

= K LZp 
p: k=k' 

LZ 
p p 

[29] 

The right most term involves all P cells, including those for which 



k=k'. Segregating these cells into the term on the left divides the 

cells into two groups; those cells for which k=k' and those where 

k#k'. Thus from [29]: 
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= (K-1) LZ + (-1) LZP. [30] 
p: kgk, p: kik' 

Nested main effect, y(k'*n')#l# - y(k'*n')#" Deriving the 

weights for a nested factor based on the subscripts of the cells 

closely follows the procedure for crossed factors. Each nested main 

effect is estimated by the difference between a specific nested marginal 

and its corresponding 'overall' mean. These are denoted, say for 

factor B, by: 

1 1, 2, ... , L (k' >'<n') 

[31] 

The number of levels for B depends on the factor(s) which nest it. 

Letting L = L(k'*n') and substituting expressions [28] and [25] into 

[31], a specific nested effect becomes: 

(1/ LCp ) (L LZ - LZp ) [32] 
p: (k' *n') p: (k' fn') 1' p: (k' *n') 

Only those cells with the nesting subscripts (k'*n') are involved 

in this effect. However, the right-most summation in [32] includes all 
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L levels whereas the adjacent term involves only those for which l=l'. 

So that each cell appears only once, those cells in the right-most 

term for which 1~1' are segregated into the adjacent one. This gives: 

General main effect. Separate expressions were derived for 

crossed and nested main effects to facilitate the discussion. However, 

it is possible to treat a crossed factor as a special case of a nested 

one. Later it is seen that the cell weights defining an interaction 

effect can be obtained from the product of its corresponding main 

effect weights. This leads to the desirability of having a single 

expression (algorithm) to handle either type of main effect. With 

slight notational changes, this is now done. 

Let all cells having the same value(s) for its nesting subscript(s) 

be organized into Q distinct sets. Let these sets be represented by 

S(q), q=l,2, ... ,Q. And let 1=1,2, ... ,L(q) be the factor levels in 

th 
the q such set. Then any specific main effect is given by: 

= (1/ Icp ) ((L(q')-1) Izp + (-1) Izp ) 
p:S(q') p:S(q') p:S(q') 

l=l' 1/1' 

[34] 

This is the general form given in [33] for a nested main effect. When 

p 
Q=l, s (q') includes all p cells. And since ~cp = 1, [34] reduces to 

[30] as given for a crossed main effect. 
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Earlier, it was mentioned that the utility of the SS expression 

[18] was tied to expressing an effect in terms of the cell means. A 

cursory examination of [34] reveals this was done in terms of a trans­

formed variate, z = c y . However, from [34] it is also apparent 
p p p 

this would not be difficult to do. Before His displayed, a slight 

problem has to be resolved. The summations in [34] extend only over 

those cells involved in the effect. However, in [18]: 

SS(H) [35] 

H was defined as a (df x P) matrix involving all P cells. This diffi­

culty is rectified by letting the weights for these excluded cells 

to be zero. Thus, it is fairly obvious from [34] that an element of 

H for a main effect, say hl'p' is given by: 

w(L(q')-_) c 
p 

= W (-1) C 
p 

W (0) C 
p 

where w = (1/ Ecp ), and l' 
p: S(q') 

linearly independent effects. 

for p: S(q'), l=l' 

for p: S(q'), 1#1' 

for p: S(q) f S(q') 

1,2, ... , df are the first (L(q')-1) 
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Definition of General Interactions Effects 

Because the models considered here are all full models, the means 

are viewed as single observations in the cells of the design. The 

effects are all subsequently defined as if the data were orthogonal. 

In this connection, the weighted averages defining the effects are 

contrasts of the cell means. That is, any specific effect given by 

I h1'pYp has the property that I h1
1 ~ = 0. 

p: S(q') p: S(q) 
And further, pair-

wise contrasts for distinct sources of variation are orthogonal in 

the sense that This leads to generating the con-

trasts for interaction eftects through their specific main effect 

contrasts just as is possible for orthogonal data. 

To show how this is done, it is easiest to begin by letting the 

three components of a main effect element given by [36] to be repre­

sented by: 

This can be generalized to all such elements by: 

H = wGC [37] 

where: w is the scalar, (1/ Icp ) 
p: S(q') 

G is a (df(q') x P) matrix whose element, g is given by: l'p' 
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df(q') = (L(q')-1) for p: S(q'), l=l' 

= (-1) for p: S(q'), 1#1' 

(0) for p: S(q) # S(q') 

th C is a (P x P) diagonal matrix where the p element on the 

diagonal is c ; defined as before. 
p 

The elements of Care a set of proportional weights related to 

the cell structure of the design which put the cells on an equal basis 

with one another. And the scalar w is the reciprocal of the sum of 

the weights associated with the cells involved in the specific effect. 

Hence, w is a scale factor to guarantee these already proportional 

weights sum to unity. 

Within a design, the only component of H which makes an effect 

unique is the matrix G. And it is only this component which is 

necessary to generate the G matrix for interaction effects. 

The procedure for obtaining the matrix G for a general two-way 

interaction can be illustrated in the following way. Let: 

G 
A be the (Adf(q') x P) matrix for the main effects of 

factor A in the q 1th set from the P cells. And let 

i = 1,2, ... ,Adf(q') correspond to the effect associated 

with a row in AG. 

Let BG be the similarly defined (Bdf(q') x P) matrix for the factor B 

with its rows denoted by j = 1,2, ... ,Bdf(q'). The interaction matrix 

ABG is then the ((Adf(q'))(Bdf(q')) x P) matrix obtained by miltiplying 

out the rows of AG and BG. That is, the row of ABG associated with 



the interaction effect AG( ').,., is given by: 
q 1 J 

Repeating this for all i' ,j' pairs for which i' ~ j' gives ABG for 

the set of linearly independent interaction effects. 

This illustrates the procedure for two-way interactions, however 

this same rationale can be generalized to higher order interactions. 

Each row of ABG forms a contrast of the cell means in that 

w Lg(i'~j ')p Cp = 0 as before. Another factor composed with 
p: Stq') 

ABG yields the G matrix for a three-way interaction, again defining 

a set of contrasts; and so on. 

In summary, there is a matrix G for each factor appearing in an 
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interaction. A particular row in each of these matrices is associated 

with a specific main effect, and can be found by applying the defi­

nition of Gin [37]. When one row from each of these matricies is 

selected and their corresponding column elements multiplied together, 

a single row of the interaction matrix is found. (The specific inter­

action row so determined is identified by the specific main effect 

rows selected.) The whole interaction matrix G can be build up by 

repeating this basic procedure until all unique rows have been gener­

ated. Once this has been done, the matrix His completely determined 

by H = wGC, where wand Care defined as in [37]. 
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Computational Methodology 

Applying the SS expression 

SS(H) [38] 

to a µ-model approach on the cell means requires the matrix H to be 

specified. An algorithm to generate this matrix has been derived 

for both main effects and interactions in full design models. 

The primary difficulty in deriving His ultimately tied to the 

manner the marginal means are defined in designs which may lack cell 

balance. Specifically, this can arise in designs which involve 

nested factors. The source of this difficulty comes from the fact 

that the contribution of each cell mean in a marginal is not the same. 

Subsequently, it is more tracable to express the marginals, and the 

effects derived from them, in terms of the transformed variables, 

z = c y , than the cell means themselves. The c 's are the cell 
p p p p 

specific and proportional contributions of the cell means; and depend 

solely on the cell structure of the design. It is not surprising, 

therefore, that certain computational advantages accrue from the use 

of this transformation. This is now done. 

The matrix H can be decomposed into three separable components: 

H wGC [39] 

where from [ 37] : 

C is a (P x P) diagonal matrix of these proportional weights. 



th 
the p element on the diagonal is given by c = 1/IJ(i) 

p 
th - -

M(ij ... 1) and corresponds to the p mean, yp' in Y. 
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w is a scalar which guarantees these weights sum to unity. 

and G is a (df x P) matrix of generated weights associated with 

the linearly independent effects in a source of variation. 

The effects, given by HY can then be written: 

HY= (wGC)Y 

= wG(CY) 

= wGZ [40) 

where Z is a (P x 1) vector of the transformed variates (z = c y). 
p p p 

The SS associated with these effects is found by substituting [40) 

and [39) into [38). That is: 

SS(H) = (HY)' ( HD (1 / n ) H ' ) - l 
p 

(HY) 

= (wGZ)' ( (wGC)D(wGC) ')-l (wGZ) 

(w2 /w2) (GZ)' ( ( GC ) D ( C ' G ' ) ) - l (GZ) 

= (GZ) I (G(CDC')G')-l (GZ) 

= (GZ)' (GS(c 2/n )G')-l (GZ) [41) 
p p 

th 
where Sis a diagonal (P x P) matrix whose p element on the diagonal 

2 
is (c /n). 

p p 

The corresponding variance of each effect estimated in HY= w(GZ) 

is found on the diagonal of the variance-covariance matrix. This 
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matrix follows from [14] and is given by: 

Var-Cov (HY) 

Degrees of Freedom 

In full design models the degree of freedom for the various 

sources of variation are well known. But reviewing this topic serves 

to clarify a point about the computational methodology for nested terms. 

A crossed factor with K levels has (K - 1) degrees of freedom; 

and those for a crossed interaction are found by taking the product 

of the degrees of freedom in the individual factors composing it. 

In either case, the degrees of freedom are reflected by the number 

of linearly independent effects, or rows in G. 

For nested terms, the effects involve only those cells which have 

the same value(s) for its nesting subscript(s); and hence, the cells 

can be divided into Q distinct sets. The sums of squares for the 

effects within each set are, of course, not independent. However, 

the SS between these Q sets are independent because they involve 

completely different cells. This means that the sums of squares for 

each of the Q sets can be computed separately and simply added to­

gether to obtain the sums of squares for the term. Within each of 

the Q sets, the degrees of freedom are computed like a crossed term; 

and when added together give the degrees of freedom in the source. 



Summary 

The basic methodology for the analysis of full, design models 

was developed in this chapter. This procedure is framed as a µ-model 

approach on the cell means. Because the models are full, the design 

related marginals are defined as if the cell means are single obser­

vations. Subsequently, the effects from one source of variation form 

contrasts which are orthogonal to the contrasts of any other source, 

just as if the cells were observation balanced. This leads to a 

simple algorithm for generating the main effect contrasts from which 

the interaction contrasts can also be derived. 

A definite computational advantage accrues by applying a trans-_ 

formation on the cell means which put the cells on a proportionally 

equivalent basis with one another. This methodology is incorporated 

in an interactive terminal version of a computer program to analyze 

these design models. 
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SUMMARY AND CONCLUSION 

The objective of this thesis was to develop a method for the 

analysis of full, design models and to incorporate this procedure 

into a computer program. The methodology was developed in the con­

ceptual context of a µ-model approach on the cell means. A Fortran 
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IV program makes tangible the algorithm devised in the previous chapter. 

The user documentation for this program is found in Appendix A, and 

the program listing is on file with the Applied Statistics/Computer 

Science Department at Utah State University. 

The program is interactive and is designed to be executed from a 

remote terminal. The program was validated by analyzing a variety of 

models and data situations. The results agreed with those obtained 

from a multiple regression analysis using Statpac, a statistical package 

available at Utah State University. 

The application of this program is primarily intended for the 

exact analysis of non-orthogonal data from full factorial or completely 

nested designs. However, the same basic algorithm allows the analysis 

of full, mixed models, which characteristically involve interactions 

between crossed and nested factors. Exact tests of hypotheses are 

unavailable for mixed models with unbalanced data because the distri­

bution of the various sums of squares are unknown. Despite this, the 

extension to mixed models provides the fundamental quantities for 

estimating components of variance, and is potentially useful for 

analyzing designs with orthogonal data. 
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With orthogonal data, the analysis obtained for experiments handled 

by the program is not restricted to cases where each source of variation 

is specifically delineated. Other analyses can be obtained from pooling 

appropriate sums of squares. Anderson (1974) gives a good account of 

how this is done for the split-plot and other designs. Application of 

this program to orthogonal data would, of course, be less efficient 

computationally than one using orthogonal data methods for the same 

design. However, to an individual well versed in these procedures, 

there are advantages in having a single program which is easy to use 

and requires little or no set-up time. 

For designs with non-orthogonal data, the sums of squares derived 

from this procedure are limited to those obtained from a model contain­

ing all possible interactions. Thus, the sum of squares for each 

source of variation found by this algorithm is adjusted for every other 

source. 

Computing these same sums of squares using regression (or general 

µ-model) procedures requires the inversion of a matrix whose rank 

equals the degrees of freedom in the model. This can become a practical 

difficulty in large multi-factor experiments. Since the approach 

taken here directly evaluates sums of squares for individual sources, 

and this only requires the inverstion of matrices whose rank equals 

the source degrees of freedom, this problem is not as limiting. Thus, 

this program can be applied when a full model analysis is desired, 

or as a check to determine if certain interactions are indeed negligible, 

thereby reducing the model degrees of freedom for subsequent analysis. 
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APPENDIX A 

User Documentation for ANOVA 

A. Description 

This program may be used to compute the analysis of variance for 

full, design models with non-orthogonal data, This includes factorial, 

completely nested, and mixed models with one or more observations per 

cell. 

It will on control print the mean and standard error for each cell, 

along with its associated factor level subscripts. The program auto­

matically computes and prints the between and within cell mean squares. 

Their ratio is generally used to test the overall significance of the 

model. 

The degrees of freedom and mean square of specific sources of 

variation are then computed for model terms the user supplies. The 

effect coefficients for each term and its single degree of freedom 

partitions are under a print control option left to the user. 

The program is writtein in Fortran IV. Logical units 5 and 6 

are used as input and output files in the terminal version. Logical 

unit 15 is reserved as an alternate input file when the data is read 

from disk. For this option, a file equate is required prior to 

program execution. A program listing is on file with the Applied 

Statistics/Computer Science Department at Utah State University. 



B. Methodology 

The program applies the 'usual' constraints to the cell means, 

where each mean is treated as a single observation in a cell of the 

experiment. However, unlike the method of unweighted means, the 

pooled within cell variance is weighted by the individual cell 

frequencies. This procedure provides an exact analysis for full 

models. 

A general outline of the procedure begins with the 'usual' 

constraints for main effects, like 
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r. a. = O 
i 1. 

where a. = y. - Y 
1. 1. •• 

[l] 

ES = 0 for all (i .. k) 
1 (i. .k)l. 

A 

where S = y 
( i. . k) 1. ( i. . k) 1. 

are respectively defined in terms of means which are 'evenly' weighted 

over the remaining factors. For design models these expressions can 

be unraveled and expressed as linear combinations (contrasts) of the 

observed cell means. Interactions, similarly defined, can be found 

from its main effect contrasts. The sum of squares for each source 

of variation can subsequently be computed separately. 

The sum of squares (SS) associated with a particular hypothesis, 

say 

H : a.= 0 
0 J_ 

for all i, 



is written as 

H: HY= 0 
0 

and can be computed by: 

SS(H) = (HY)' (HD(l/n )H')-l (HY). 
p 
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Dis a diagonal matrix of reciprocals of the cell frequencies. The 

vector (HY) with k degrees of freedom has k corresponding elements in 

the solution vector of the dummy variable regression approach. The 

degrees of freedom and sum of squares for a source of variation derived 

in this manner are subsequently the same as those found due to subsets 

using regression. In each case the SS obtained by this method is 

adjusted for every other source of variation in the full (design) 

model. 

C. Input 

1. CONTROL 

The program is called for by one of the following commands: 

(1) E$ANOVA 

(2) E$ANOVA;FILE FILE 15 (KIND= DISK, TITLE= , ... ) 

depending on whether the formatted input data is to be read from the 

terminal or disk. 

The program first requests the user to enter the number of 

factors. This may vary from 1 to 6 in the current version, but may 

be increased by changing dimension sta,tements. 



The program will then request in turn the maximum number of 

1 f h f • • h h f. • th b • leve s or eac actor, starting wit t e irst or i su script, 

the second or j
th 

subscript, etc.; until all such maximums have 

been specified. Each is supplied free format and while none may 

exceed 40 levels, their product may not exceed 200. After the data 

input device is given, the data format is required. The format may 

not exceed 80 characters and should begin with a left parenthesis 

in column one. 

2. DATA RECORDS: 

The input data can be one of two types. In either case, the 

input source can originate from the terminal or disk. The first 

option takes the raw data from which the cell frequencies and means 

are tabulated. The second option allows the user to input the cell 

frequencies and means directly. This latter option requires an 

estimate of the within cell (error) variance. The expected input 

form for each of these options is discussed in turn. 

a. Raw Data 
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The data read statement expects the codes for the cell subscripts 

to be followed by an observed value of the dependent variable. The 

Fortran read statement for a data record is of the form: 

READ(IRD,FMT,END=l4) (NT(L),L=l,NFACT),YT. 

The codes, representing the levels for each factor, are required to 

be one of the consecutive integers beginning with one for the first 

or lowest level; and extending sequentially to the last or highest level. 
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It is unnecessary to sort the data records as the program uses 

these cell subscripts as they are read in to compute the proper cell 

address for each observation. Because of the way each address is 

computed, the factor code associated with the first or i
th 

subscript 

must be read first, followed by the second or j
th 

subscript code, etc.; 

until all cell subscripts have been read. It is usually possible to 

properly arrange this read order by using 'T' format specifiers in the 

data input format. If the data is entered from the terminal, the last 

record is followed by a ?END. 

b. Cell Data 

For this option, the data read statement expects the codes for 

the cell subscript(s) to be followed by the cell frequency, then the 

cell mean. The Fortran read statement is of the form: 

READ(IRD,FMT,END=l4)(NT(L),L=l,NFACT),KN,YT. 

The cell subscripts are subject to the same conditions as outlined 

above for raw data. 

3. ENTERING MODEL TERMS: 

The user may terminate the program by a '?END' anytime after the 

basic ANOVA table is printed. At this point the program is in a loop 

which reads in a model term, decodes it, and performs the necessary 

computations. After the results are printed, the next model term may 

be entered or the program terminated. 

The expected input form closely resembles terms as they ordinarily 
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appear in analysis of variance models. In general, this form is given 

by: 

TEXT/(NESTING SUBSCRIPTS: IF ANY) CROSSED SUBSCRIPTS/P. 

The text may consist of any string of alphanuraeric characters and 

is followed by a slash. A slash is used as a delimiter. Any sub­

scripts enclosed within parentheses are considered nesting subscripts 

by the program, hence parentheses appear only for nested model terms. 

The non-nested or crossed subscripts are then given, and are followed 

by another slash. The program scans for the subscript information 

between the two right-most delimiters, so it is permissible for the 

text to contain slashes. The text itself is ignored. The letter P, 

immediately following the right-most delimiter, causes the estimated 

effect coefficients and their associated mean squares to be printed. 

The model terms may be entered in any order and each may consist 

of up to 24 characters. A string of 24 dashes is provided as a 

guide to accommodate this constraint. 

To illustrate the input expected for various model terms, consider 

the hypothetical model: 

The format appropriate to each source of variation in the above model 

is given below: 
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1) A/I/ 

2) B/J/P 

3) C/(IJ)K/P 

4) D/(IJK)L/ 

5) AB/IJ/ 

Note that the effects will be printed in 2) and 3). 

Current dimensioning restricts the degrees of freedom a term may 

have. For terms involving only non-nested factors this limit is 40. 

Because of the way nested factors are handled, there can be up to 40 

degrees of freedom within any specific set of nesting subscripts. The 

subscript set associated with the effects are printed to the right of 

the F ratio column in the output for nested effects. The flow diagram 

(Attached) summarizes the various input-output options available in 

the program. 

D. Output 

The output is labeled and should present no difficulties to 

persons familiar with analysis of variance. Particular care should 

be taken, especially with unbalanced data, to ensure proper F tests. 

F-ratios are computed only for the single degree of freedom partitions. 

In each case the denominator is the within cell mean square. 

E. Sample Problem 

This is an example of a 2 X 3 factorial represented by the model: 

u + A. + B . + AB . . + e .. k 
l J lJ lJ 
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so 

ENTER THE :t-..TUMBER OF FACTORS (1-6) ✓ 
IN TURN THE MAXIMUM NUMBER OF LEVELS (2-40) FOR EACH FACTOR 

ENTER DATA INPUT DEVICE (5=TERMINAL, 15=DISK) 

YES NO 

j 
ENTER DATA FOR.MAT; READ ORDER: 

I,J, ... ;THEN DEPENDENT VARIABLE, 

l 
• ENTER WITHHI CELL MEAN SQUAREJ 
ENTER INPUT FORMAT: READ ORDER: 
I,J, ... ; CELL FREQ.; CELL MEAN 

YES NO 

/ ENTER DATA ONE RECORD PER L LINE; TERMINATE BY A ?END DATA READ FROM FILE 15 DISK 

YES 

RINTS MEAN, STANDARD ERROR, 
SUBSCRIPTS FOR EACH CELL NO 

PRINTS 1-WAY ANOVA TABLE 

ENTER MODEL TERM / 
----

NO 

PRINT DF AND MEAN 
SQUARE FOR TERM 

YES 

YES 

PRI::-1T EFFECTS 
AND VARIANCES 

Flow Diagram for Input/Output Options 



where 

i = 1,2 

j 1,2,3. 

The data, entered from the terminal one record per line, is 

organized so that the level of A is given first followed by the level 

of B. Each pair of subscripts is followed by an observed value of 

the dependent variable. The data records are terminated by a ?END. 

E$ANOl)A 
:H:UNNING 0015 

iP 
ENTER THE NUMBER OF FACTORS (1-6) 

ENTER THE MAXIMUM CODE FOR EACH (1-40) 

ENTER DATA INPUT DEVICE(5=TERMINAL, 15=DISK)5 
RAU DATA INPUT? (Y OR N)Y 
ENTER DATA FORMAT: ORDER I,J, ... ; THEN Y 

(211,Fl.0) 

E,nrn DATA ONE RECORD PER LINE. TERMINATE BY A 1 END 
11 26 
11 16 
12 18 
13 04 
13 14 
21 39 
21 .::ci 

21 28 
.. ,,1 
. .:.. . ..:. 19 
')') 05 
') .. 
..:. ,) 29 
?END 

:j 
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CELL MEANS7 (Y OR NJ 

'( 

i'IO. OBS CELL MEAN CELL s. ERROR SUBSCRIPT 

2 .210000E+02 .544059E+01 1 1 
') .180000E+02 .769415E+01 1 2 ,._ 

3 2 .900000E+01 .544059E+01 1 3 
4 3 .310000E+02 .444222E+01 2 
5 2 .120000E+02 .544059E+01 2 2 
6 .290000E+02 .769415E+01 ') 3 .:.. 

SOURCE 
TOTAL 
MIONG 
~JITHIN 

OF MEAN SQUARE 

COEFFICIENT VAR{COEFFJ 

Fr~CTOR A /I/P 

1 -4.00000 

Fi;CTOR B / J/P 

6.00000 
2 -5.00000 

A*B INTERACTION/IJ/P 

0.11)6481 

0.175926 
0.231481 

-.100000E+010.175926 
2 7.00000 0.231481 

-~ET=4:27.2 PT=l .1 I0=().4 

10 lil.45 

5 

C" 
J 163 .71 

59.200 

150. 261 
150.261 

204.632 
108.000 

2 112.982 

5.68421 
211. ,S81J 

2 115.509 

F 

2.7654 

2.5382 

3.45b6 
1. 8243 

,9,SOPE·-01 
3.5757 
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