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ABSTRACT 

Lactational Performance and Energy Partitioning of Dairy Cows 

Supplemented with N-Acetyl-L-Methionine during Mid to Late lactation 

by 

Tyson George Grisenti, Master of Science 

Utah State University, 2017 

 

Major Professor: Dr. Jong-Su Eun 
Department: Animal, Dairy, and Veterinary Sciences 
 

     The N-acetyl-L-methionine (NALM) molecule is a methionine (Met) derivative 

produced via acetylation of the L-Met α-amino group with an N-acetyl group. This 

molecule has been shown to be bioavailable and capable of fulfilling the dietary 

requirement for Met in animals and humans. The current experiment was conducted to 

test a hypothesis that lactating dairy cows fed with NALM would increase milk 

production by increasing N and energy utilization efficiencies in a dose dependent 

manner. Eight multiparous Holstein cows that were mid lactation (124 ± 13 days-in-milk) 

with similar milk production were used in a 4 × 4 Latin square design for 84 d. A 

developmental NALM product from CJ CheilJedang (Seoul, South Korea) was used as 

the supplemental source of rumen-protected Met in the present study. Four dietary 

treatments included 0 g (control), 15 g, 30 g, and 45 g/d/cow of NALM supplementation. 

Supplementing NALM significantly increased dry matter intake (linear effect; P < 0.01), 

while milk yield tended to increase quadratically (P = 0.07). A linear decrease in milk fat 
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concentration was seen due to supplementation of NALM in relation to the control ration 

(P = 0.02). However, milk fat yield was similar across treatments. A trend toward an 

increase in milk protein yield was observed between the control ration and the ration 

supplemented with 45 g of NALM (1.18 vs. 1.21 kg/d; P = 0.10). There were no 

differences in energy-corrected or 3.5% fat-corrected milk yields in response to 

treatments. It is likely that the supplementation of NALM to mid to late lactating dairy 

cows may have shifted nutrient and energy utilization toward tissue gain and lactation, 

which resulted in a decrease in feed efficiency for lactation (P = 0.02). Overall results 

from the present study suggest that supplementing NALM to mid to late lactating cows 

can increase milk yield in a dose dependent manner with a shift of net energy partitioning 

toward milk production and body weight gain. In addition, supplementing NALM 

increased milk nitrogen (N) output without affecting urinary N excretion. 

(111 pages) 
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PUBLIC ABSTRACT 

Lactational Performance and Energy Partitioning of Dairy Cows 

Supplemented with N-Acetyl-L-Methionine during Mid to Late lactation 

Tyson George Grisenti 

 

     The N-acetyl-L-methionine (NALM) molecule is a methionine (Met) derivative 

produced via acetylation of the L-Met α-amino group with an N-acetyl group. This 

molecule has been shown to be bioavailable and capable of fulfilling the dietary 

requirement for Met in animals and humans. The current experiment was conducted to 

test a hypothesis that lactating dairy cows fed with NALM would increase milk 

production by increasing N and energy utilization efficiencies in a dose dependent 

manner. Eight multiparous Holstein cows that were mid lactation (124 ± 13 days-in-milk) 

with similar milk production were used in a 4 × 4 Latin square design for 84 d. A 

developmental NALM product from CJ CheilJedang (Seoul, South Korea) was used as 

the supplemental source of rumen-protected Met in the present study. Four dietary 

treatments included 0 g (control), 15 g, 30 g, and 45 g/d/cow of NALM supplementation. 

Supplementing NALM significantly increased dry matter intake (linear effect; P < 0.01), 

while milk yield tended to increase quadratically (P = 0.07). A linear decrease in milk fat 

concentration was seen due to supplementation of NALM in relation to the control ration 

(P = 0.02). However, milk fat yield was similar across treatments. A trend toward an 

increase in milk protein yield was observed between the control ration and the ration 

supplemented with 45 g of NALM (1.18 vs. 1.21 kg/d; P = 0.10). There were no 
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differences in energy-corrected or 3.5% fat-corrected milk yields in response to 

treatments. It is likely that the supplementation of NALM to mid to late lactating dairy 

cows may have shifted nutrient and energy utilization toward tissue gain and lactation, 

which resulted in a decrease in feed efficiency for lactation (P = 0.02). Overall results 

from the present study suggest that supplementing NALM to mid to late lactating cows 

can increase milk yield in a dose dependent manner with a shift of net energy partitioning 

toward milk production and body weight gain. In addition, supplementing NALM 

increased milk nitrogen (N) output without affecting urinary N excretion. 
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INTRODUCTION 

     Multiple strategies have been employed in the dairy industry to decrease the cost of 

production while maintaining or increasing milk and milk component production. One 

method of improving profitability that has received considerable attention is to balance 

the amino acid (AA) profile of the diet. Depending on the dietary composition, both 

methionine (Met) and lysine (Lys) have been shown to be most limiting for milk 

production (NRC, 2001), and Met has been identified as the most limiting AA for milk 

protein synthesis (Schwab et al., 1976). Therefore, balancing for Met can potentially have 

a significant impact on dairy production. Various commercial Met products, collectively 

classified as rumen-protected Met (RPMet) products, have been developed using 

different technologies to deliver bioavailable Met to the small intestine by protecting it 

from degradation in the rumen. Physical protection of a Met molecule with coating 

materials allows RPMet products to be effectively resistant to ruminal degradation. 

Methionine analogues, a different type of RPMet product, are also widely used in the 

dairy industry, and they utilize a hydroxyl group to protect them from ruminal 

degradation (Schwab and Ordway, 2003). Despite extensive advancements with these 

technologies, multiple studies have yielded mixed results on milk and milk component 

production due to a variety of reasons, such as the method of rumen protection utilized, 

dietary factors such as crude protein (CP) and metabolizable protein (MP) concentrations 

(Lee et al., 2011), animal factors such as breed or stage of lactation (Patton, 2010), and 

even organoleptic factors (Benefield et al., 2009). The use of Met for other physiological 

functions by various tissues is also a plausible explanation for the inconsistent milk and 
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milk component production responses to RPMet supplementation that has commonly 

been overlooked.   

     Similar to milk production, Met is limiting for growth and body weight (BW) gain 

(NRC, 2001), and thus the partitioning of Met and its influence on nutrient and energy 

utilization for milk production and BW gain merits attention. It is commonly understood 

that a shift occurs in the nutrient and energy partitioning of lactating dairy cows around 

mid-lactation from milk production to BW gain (NRC, 2001). The components that affect 

the partition of energy and nutrients have long been of interest to the industry, but are not 

well understood (Friggens et al., 2013). Studies focusing on the influence of RPMet 

supplementation on nutrient and energy partitioning are severely lacking and warrants 

further investigation.  

     N-acetyl-L-Met (NALM) is a Met derivative, meaning it is a free Met molecule with a 

chemical blocking group (an acetyl group) added to the α-amino group. The acetyl group 

acts as a barrier that blocks the hydrolysis of the N-terminal of Met which protects it from 

ruminal degradation (Wallace, 1992). A preliminary study done by our group (Fagundes 

et al., 2016) reported that cows supplemented with NALM increased milk fat 

concentration and yield, but not milk protein during early lactation. However, the effects 

of NALM supplementation and the optimum rate of supplementation in mid to late 

lactating cows may be different from the initial study due to the distinctive physiological 

changes for cows in mid to late lactation compared to those in early lactation. Therefore, 

the present study was performed to explore the effects of NALM supplementation on 

production parameters and energy partitioning by mid to late lactating dairy cows. We 
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hypothesized that an increase in metabolizable Met through NALM supplementation 

would increase body tissue anabolism in a dose dependent manner rather than increasing 

milk protein synthesis in mid to late lactation Holstein cows. 
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REVIEW OF LITERATURE 

     With the advent of the multiple component pricing system in the U.S. dairy industry, 

dairymen have sought out new and innovative ways to increase the production of both 

milk protein and milk fat. Methionine has long been recognized as the first limiting AA 

in milk protein synthesis (Schwab et al., 1976) and one of two limiting AA in milk 

production (NRC, 2001). Met has also been shown to increase milk fat yield in mid 

lactation (Overton et al., 1996; Schmidt et al., 1999). For this reason, feeding RPMet, or a 

similar Met product, has gained popularity with dairyman. This literature review will 

examine the many different methods that are available for providing Met to ruminants, as 

well as their effects on feed intake, milk production, BW gain, and N utilization. Special 

emphasis will be placed on acetylated AA, specifically NALM and the metabolic journey 

it takes through the rumen, the small intestine, and the liver. 

 
Methionine 

Methionine and Ruminant Nutrition 

     The overall knowledge pertaining to applied ruminant nutrition in the dairy industry 

has evolved immensely over the past few decades. It is now well known that ruminants 

do not have a requirement for CP, per se, but rather a requirement for each of the ten 

essential AA (EAA). Thus, when a ration is balanced for CP alone, protein may 

potentially be underfed, limiting production, or protein may be overfed, decreasing 

efficiency and increasing the output of nitrogenous manure waste. Balancing rations 

according to the AA requirements of dairy cows, in theory, should overcome the 
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uncertainty of over or underfeeding protein in traditionally balanced rations. Of all the 

AA required by the cow, the most is known about Met. 

     Methionine is one of 4 AA that contain sulfur and only one of 2 sulfur-containing AA 

that are proteinogenic (Brosnan, 2006). In ruminants, Met is an EAA, meaning Met 

cannot be synthesized by the ruminant body in quantities sufficient to meet demands for 

Met, so Met itself or a precursor for the synthesis of Met must be supplemented in the 

diet. In mammals, including ruminants, Met is mainly used for the synthesis of new 

proteins and the synthesis of S-adenosyl-methionine (SAM) (Preynat et al., 2009). 

Synthesis of new proteins includes the synthesis of milk protein and, as mentioned 

previously, Met is the first limiting AA in milk protein production. This means that milk 

protein production is normally limited by Met, because it is in the shortest supply in view 

of the AA requirements for milk protein production. SAM is a primary methyl donor for 

multiple important biomolecules in all living organisms and is second only to ATP in its 

use by cells as an enzyme substrate (Atta et al., 2004). Some metabolic health events, 

such as fatty liver disease, can be combated with proper levels of SAM through sufficient 

supplementation of dietary Met (Anstee and Day, 2012). In addition to aiding in the 

metabolic health of the cow, Met aids in the methylation of DNA and is a precursor of 

taurine and glutathione, both very important antioxidants (Osorio et al., 2014). Also, in 

typical North American diets Met limits milk production in high-producing dairy cows, 

especially when soybean meal is used as a protein source (Chen et al., 2011). It is very 

apparent that Met is essential in milk and milk component production and is also very 
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beneficial for the metabolic health of the ruminant, but not all forms of Met are equally 

available and beneficial. 

 
Methionine Isomers 

     There are 2 isomers of Met: the D and the L isomer. It is important to note that both 

forms of Met are not equally available to the ruminant. In fact, the D isomer of any AA 

has to be converted into an L isomer before they can be utilized. The L isomer of Met can 

be utilized directly for protein synthesis without having to be converted to any other form 

first; however, it is not known how much of the available D isomer of Met can be 

converted to the L isomer to be utilized in ruminants. According to Lapierre et al. (2012), 

the bioavailability of the D isomer of Met depends on the rate of transformation into the 

L isomer. In monogastrics, this rate of transformation and subsequently the 

bioavailability of D isomers is well studied (Baker and Boebel, 1980; Arentson and 

Zimmerman, 1985), but there is a lack of data and information pertaining to this topic in 

ruminant nutrition (Lapierre et al., 2012). Since RPMet products contain a racemic 

mixture of both isomers, it stands to reason that it would be beneficial to investigate the 

efficiency of the transformation of the D isomer in ruminants. 

     One of the only, and certainly the most current study on the bioavailability of D-Met 

to dairy cows, was performed by Lapierre et al. (2012) using 4 multiparous cows in 3 

different trials. In the first trial, all four of the cows received different treatments of DL-

Met in addition to an AA mixture. Trial 2 involved injections of L-Met and D-Met at 

different time points. Finally, in trial 3 cows received injections of L-Met or DL-Met, 

again at different time points and in addition to injections of an AA mixture. The results 



7 

of these trials indicated that the removal rate for D-Met is slower than that of L-Met, as 

little as one-sixth as fast in some instances. Also observed was the fact that most of the 

D-Met is eventually transformed into the L-isomer at some unknown location in the body 

(Lapierre et al., 2012). This is significant, because D-isomers cannot be extracted by the 

mammary gland for milk or milk component production. So, D-Met can eventually be 

utilized by the body after the slow uptake and slow conversion to L-methionine. This 

then begs the question; what is the best way to deliver a steady supply of postruminal 

bioavailable Met to the cow? 

 
RPMet 

Product Overview of RPMet 

     Many approaches have been taken in order to deliver the most amount of bioavailable 

Met to the dairy cow. Many companies have employed various methods to efficiently 

accomplish this goal. These methods typically include either physically coating Met with 

different compounds or using compounds that can eventually be converted into Met.  

Most rumen-protected AA products on the market today fall into one of three categories:  

physically protected Met, Met analogues, or Met derivatives. Methionine analogues 

technically are not classified as true rumen protected AA products, but they do offer 

some level of rumen protection, so for the sake of this literature review I will classify 

them as Met analogues. Each of these three types of products will be discussed in this 

review. 
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     By far the most popular method of delivering postruminal Met has been to physically 

protect the AA from ruminal degradation. Lipids were initially used to protect Met from 

ruminal degradation by coating the Met with tristearin, a triglyceride. The efficacy of Met 

supplements is directly related to their ability to bypass the rumen and then be 

bioavailable in the small intestine. This is where lipid coated Met products face their 

biggest challenge. It is very difficult to find an effective lipid combination that allows for 

both a high rumen escape rate and intestinal release rate of Met when using lipids as the 

primary coating compound (Schwab and Ordway, 2003). Met-Plus (Nisso America, Inc., 

New York, NY), is one example of a lipid coated RPMet product that is available on the 

market today, and it contains about 65% Met. Met-Plus appears to be the least studied 

physically protected Met product because of the inefficiencies related to current lipid 

coating technology. 

     The coating of the surface of Met molecules with carbohydrates came along after the 

advancement of lipid coating technology, along with the hopes of improving the delivery 

of bioavailable Met to the small intestine. Ethyl cellulose is used to coat a core of DL-

Met. According to Schwab and Ordway (2003), enzymatic digestion of ethyl cellulose is 

minimal and, therefore, it is well protected from ruminal degradation. The problem that 

arises with using ethyl cellulose is degradation of the product must come from physical 

action and abrasion. This can reduce the amount of bioavailable Met delivered to the 

small intestine. Mepron M85 (Evonik Industries, Hanau, Germany) is a popular example 

of a carbohydrate coated methionine product. Mepron M85, as the name suggests, 

contains a minimum of 85% DL-Met, which is 20% more than the previously mentioned 
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Met-Plus.  More important than the amount of Met in the product, is the amount of Met 

that is bioavailable to the cow.   

     Smartamine M (Adisseo, Inc., Antony, France) provides the most bioavailable Met to 

the cow when compared with other physically protected Met products, due in part to its 

coating technology. Smartamine M, similar to Met-Plus, is a lipid coated product with the 

difference being an additional coating of a pH-sensitive copolymer added to Smartamine 

M (Schwab and Ordway, 2003). The addition of the copolymer allows for increased 

protection in the rumen, which permits more Smartamine M to bypass the rumen. The 

copolymer is degraded in low pH environments. After safe passage through the rumen, 

Smartamine M will eventually reach the acidic environment of the abomasum where its 

coating will dissolve allowing the DL-Met to travel on for absorption in the small 

intestine. Smartamine M contains 75% DL-Met. This product is perhaps the most popular 

physically protected Met product currently on the market; however, there are more 

rumen-protected products available. 

     Another unique approach that has been taken to increase the amount of bioavailable 

Met is to utilize Met analogues and derivatives. A commonly used Met analogue is 2-

hydroxy-4-(methylthio)-butanoic acid (HMB), also known as Met hydroxy analogue 

(Phillips et al., 2003). HMB is technically not a true AA, but it can be converted into Met. 

Methionine analogues are synthetically produced from the substitution of the α-amino 

group of Met with a non-nitrogenous group, such as a hydroxyl group, as is the case of 

HMB (Schwab and Ordway, 2003). The hydroxyl group is, in theory, supposed to 

partially protect the Met analogue from ruminal degradation. This, however, does not 
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appear to be an effective form of rumen protection with proportions of ingested HMB 

that escapes the rumen being reported as low as 5% (Noftsger et al., 2005). This suggests 

a ruminal mode of action, rather than an abomasal and small intestinal mode of action, or 

in other words HMB is not technically a true form of RPMet (Noftsger et al., 2003). 

Esterification of HMB to isopropanol (HMBi) does, however, appear to be an effective 

form of rumen protection, according to St-Pierre and Sylvester (2005), with as much as 

50% of HMBi escaping the rumen and being converted to Met (Ordway et al., 2009). 

Alimet (Novus International, Inc. St. Louis, MO) and Rhodimet AT88 (Adisseo, Inc., 

Antony, France) are both products that contain HMB and are widely used in the poultry 

and swine industries, with Alimet being approved for use in the dairy industry (Schwab 

and Ordway, 2003).  A more widely used product in the dairy industry is MetaSmart 

(Adisseo, Inc., Antony, France), which is an HMBi product. MetaSmart consists of no 

less than 57% HMBi, which is a 78% Met equivalent and of that percentage, 50% of it 

would be absorbed and converted to metabolizable Met (Adisseo, Inc., Antony, France). 

The use of Met analogues is a relatively new concept when compared with physically 

protected Met, and the use of Met derivatives is an even newer concept. 

     Methionine derivatives are understudied and currently are not being utilized in the 

dairy industry. A Met derivative is a free Met molecule that has had a chemical blocking 

group added to the α-amino group or a Met molecule in which the acyl group has been 

modified (Schwab and Ordway, 2003). Methionine derivatives differ from Met analogues 

in the fact that it is adding to the α-amino group, rather than replacing the α-amino group. 

The focus of this thesis is N-acety-L-Met (NALM), which is a Met derivative. Rumen 
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protection, bioavailability, absorption, metabolism, and impacts on production of this 

product will be discussed in detail later in this review. For now, I will focus on the 

impacts of physically protected Met products and Met analogue products on all aspects of 

production. 

 
Factors Influencing RPMet Efficacy 

     Plenty of research has been conducted on the effects of Met supplementation on feed 

intake, milk production, BW gain, and N utilization. The problem with the results of this 

research, however, is that the overall results can be variable and inconsistent (Patton, 

2010).  One reason for the variability in these results can be attributed to the different 

forms of Met being fed. Smartamine M, for example, has a core of DL-Met, and 

MetaSmart is a Met analogue. Both products have different bioavailabilities, different 

routes of absorption, and thus, different effects on production parameters. This needs to 

be considered when comparing the effects of different Met supplement products on the 

previously mentioned factors. Bioavailability and routes of absorption for these different 

products will be discussed in further detail at another section in this review, so focus will 

now be placed on other factors that can influence the efficacy of RPMet products. 

     One major factor influencing RPMet efficacy is the nutritional composition of the 

experimental rations that are fed. When studying rumen-protected AA, total CP and MP 

in the diet can have a major impact on the efficacy of RPMet products. Broderick et al. 

(2008) observed that milk production increased when total CP in the diet was reduced 

from 18.3% to 17.3% and then again to 16.1%, but when CP concentration was further 

reduced to 14.8%, milk production was depressed, even with supplementation of RPMet. 



12 

Broderick et al. (2008) also found that higher dietary CP concentrations led to an increase 

in dry matter intake (DMI), milk fat and true protein (TP) concentrations, 3.5% fat-

corrected milk yield , milk fat yield, TP yield, lactose yield, and solids-not-fat yield. 

Similar to CP, decreasing MP also decreased milk production (Lee et al., 2011), whereas 

it has been suggested that overfeeding MP can decrease milk production as well (Lee et 

al., 2015a).  

     It has been suggested that some nutritional factors can have different effects on 

different breeds of dairy cows. In an RPMet meta-analysis, Patton (2010) explained that 

differences in production according to breed, can perhaps be explained by the nutritional 

composition of the rations fed. For example, milk production was moderated in Holsteins 

by neutral detergent fiber (NDF) and CP, whereas non-Holstein breeds were moderated 

by energy balance. In the same meta-analysis on RPMet products, Patton (2010) noticed 

that production responses were also influenced by the ingredient composition of the 

rations fed. Alfalfa hay (AH)-based rations had greater milk production responses, 

whereas rations that contained other forages besides AH, had reduced milk production 

when Met was supplemented (Patton, 2010). 

     One major factor that could easily vary from trial to trial is days-in-milk (DIM), or the 

location of the cow in her lactation cycle. Schwab et al. (1992) suggested that milk yield 

did not readily respond to Met supplementation when cows were in mid to late lactation. 

The findings in Patton’s meta-analysis (Patton, 2010) confirm Schwab’s thinking; Patton 

(2010) found most cows in the studies had no response to Met supplementation, were 

post-peak lactation and, they could have lacked the hormonal drive needed for increased 
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milk production. Many other factors could come into play as well, such as parity and 

breed of cow. Benefield et al. (2009) even suggested that the smell of certain products 

could influence intake and thus production responses. The point proven here is there are 

many factors that come into play when evaluating the efficacy of an RPMet product, 

especially when comparing one product to another. 

 
Effects on Feed Intake 

     Feed intake, also known as DMI, is arguably one of the more important animal 

responses that should be considered on dairy studies. In general, DMI is directly 

proportional to positive responses in many aspects of dairy trials, including the health and 

production of the cow. For example, every extra kg of DMI above the requirements of 

maintenance provides enough energy to potentially support 2 kg of milk production 

(Amaral-Phillips et al., 1997). Multiple factors can affect DMI, including the nutritional 

composition of the diet fed. For instance, keeping focused on AA and protein, 

supplemental histidine in the diet has been shown to increase DMI (Lee et al., 2012; 

Giallongo et al., 2016) and deficient MP supplies have been proven to decrease DMI (Lee 

et al., 2011). In some cases, feeding supplemental Met, in any of the above mentioned 

forms, can have an impact on DMI. In a meta-analysis study conducted by Zanton et al. 

(2014) that investigated the effects of Mepron M85, Smartamine M, and HMB on 

lactational performance, it was reported that DMI was affected by the source of 

supplemental Met. In fact, it has been suggested that Met, if fed at high concentrations, 

can have a negative effect on DMI and is the AA that has the potential to impact DMI the 

most (Benevenga, 1974). 
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     Response in DMI to Met supplementation has been inconsistent and variable. 

Smartamine M seems to be the most studied RPMet product on the market today and, 

therefore, there are multiple recorded DMI responses to supplementation of Smartamine 

M. Osorio et al. (2014) supplemented Smartamine to transition dairy cows, from 21 d 

pre-partum to 30 d post-partum. An overall post-partum increase in DMI was noted, with 

an even more pronounced increase in DMI seen from 7 d to 30 d post-partum. 

Conversely, Socha et al. (2005) also in post-partum cows, found a decrease in DMI when 

supplemented with Smartamine M. Studies have also shown that supplementation of 

Smartamine M can have no effect on DMI, as is the case with Chen et al. (2011). When 

compared with other types of Met products, Smartamine M seems to have a more 

pronounced effect on DMI in some cases. Cermakova et al. (2012) demonstrated that 

dairy cows supplemented with Smartamine M had significantly higher DMI than those 

supplemented with MetaSmart. Responses in DMI with other products have also been 

seen. 

     Mepron M85, another physically protected Met product, has been shown in multiple 

studies to decrease DMI. Zanton et al. (2014) reported that Mepron M85 decreased DMI 

when compared with their respective control cows. Similarly, Benefield et al. (2009) 

observed a decrease in DMI after supplementation of Mepron M85. MetaSmart, a Met 

analogue, has been shown to both increase and decrease DMI. Osorio et al. (2014) 

demonstrated that MetaSmart fed to post-partum cows, increased DMI. An increase in 

DMI upon supplementation of Met analogues is understandable, because it has been 

reported that Met analogues have a stimulatory effect on certain rumen bacteria, which 
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could increase passage rate, thus increasing DMI (Lee et al., 2015b). In contrast, 

Cermakova et al. (2012) reported a decrease in DMI in MetaSmart supplemented cows 

when compared to those fed a control diet. There are multiple other examples of both 

increases and decreases in DMI being reported with supplementation of different Met 

products. It seems the current data on DMI related to Met supplementation is very 

variable and may not be reliable. More research needs to be conducted on the variables 

that are related to Met supplementation and DMI under different physiological 

conditions. 

 
Effects on Milk and Milk Component Production 

     Beginning in 2000, the Federal Milk Marketing Administration implemented the 

multiple component pricing system (AMS-USDA, 1999). This means there is a monetary 

value on the pounds of fat, protein, and other solids in the milk that are produced rather 

than just total volume of milk produced. To maximize producers’ milk check, dairy 

farmers focus on fat and protein concentrations in the milk and total milk volume. Other 

solids and solids-not-fat are hard to manipulate, unlike milk fat and milk protein, and also 

do not yield nearly as good of an economic return as do milk fat and milk protein. For 

that reason, other solids is usually not a main focus of dairy producers today. Therefore, 

this literature review will only focus on the effects of Met supplementation on milk, milk 

fat, and milk protein production and how different RPMet products affect production in 

their own separate ways. 

     Total volume of milk produced per cow per day, or the herd average milk production, 

is the glory number on any dairy. It is often used as a benchmark number, or a way to 
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compare how well a dairy is performing. More practically, this number directly correlates 

with how many pounds of milk fat and milk protein the dairyman will get paid for, and 

for that reason it is of great importance to focus on increasing milk production. The best 

and most recorded responses in milk production have come through the use of physically 

protected Met products, especially Smartamine (Rulquin et al., 2006). After compiling 

data from 18 different studies that used Smartamine, Patton (2010) reported that on 

average across all 18 studies, an increase in milk production was observed. Mepron has 

also shown multiple positive responses in milk production (Lara et al., 2006; Broderick et 

al., 2008). Some studies have also shown no response in milk production with 

supplementation of Smartamine (Rulquin et al., 2006) and Mepron (Leonardi et al. 2003). 

In spite of the fact that some studies show no response, physically protected Met products 

still prove to be effective in increasing milk production (Chen et al., 2011).  

     Some Met analogue products, such as MetaSmart, can also have a positive impact on 

milk production, but not all Met analogue products show such positive results. In review, 

there are two types of Met analogues, 2-hydroxy-4-(methylthio)-butanoic acid or the 

isopropyl ester of HMB; both have different effects on milk production. Generally, HMB 

does not affect milk production, but HMBi, because of its significant metabolizable Met 

supply to dairy cows, has the potential to increase milk production (Rulquin et al., 2006). 

Many studies have compared the two Met analogues and their effects on milk production. 

St-Pierre and Sylvester (2005) compared two popular Met analogue products-Alimet 

(HMB) and MetaSmart (HMBi). They found milk production in cows supplemented with 

HMB was not affected by HMB, but those supplemented with HMBi produced an 
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additional 2.9 kg of milk when compared with the control cows. Noftsger et al. (2003 and 

2005) has suggested the reason HMB does not help increase milk production is because it 

is not a major source of metabolizable Met, but rather it acts in the rumen and influences 

the microbial populations of the rumen. Lee et al. (2015b) had similar findings by 

supplementing HMB, as they observed a 1 kg numerical decrease in milk production for 

every 0.05% of dry matter (DM) increase in HMB. In periparturient cows, Piepenbrink et 

al. (2004) actually found a quadratic increase in milk production with HMB 

supplementation with a decrease occurring at a supplementation rate of 45 g/d of HMB. 

The rumen protected isopropyl ester of HMB (HMBi) has proven to have a somewhat 

better response with increasing milk production. Confirming the findings of St-Pierre and 

Sylvester (2005), Xia et al. (2012) reported an increase of up to 3.9 kg/d milk yield with 

supplementation of HMBi both pre and postpartum. Methionine analogues have been 

proven to be more effective in increasing milk fat, rather than total milk yield. 

     Unlike milk production, milk fat production shows a more positive response to HMB 

and HMBi supplementation. The use of HMB has been studied for a longer period of 

time than HMBi and, therefore, there are earlier studies that show the effect of HMB on 

milk fat production. In fact, there are multiple early studies that show a positive response 

in milk fat production from supplementation of HMB (Holter et al., 1972; Lundquist et 

al., 1983; Huber et al., 1984). Interestingly enough though, the results of current studies 

pertaining to milk fat production and HMB are mixed and not conclusive (Lee et al., 

2015b). In contrast, HMBi has recently received a lot of attention and has shown an 

ability to increase milk fat production. Xia et al. (2012), when comparing milk fat 
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production in cows supplemented with HMBi post-partum and pre/post-partum to control 

cows, reported an increase in milk fat yield (1,120 and 1,160 vs. 980 g/d, respectively). 

St-Pierre and Sylvester (2005) also noticed an increase of 166 g/d of milk fat yield with 

HMBi supplementation. Traditional RPMet products, such as Smartamine and Mepron, 

are not usually associated with increases in milk fat production, but rather with increases 

in milk protein production. 

     True rumen-protected forms of Met, normally do not contribute to an increase in milk 

fat because of their lack of a ruminal mode of action, unlike HMB and HMBi. Many 

responses in both milk protein concentration and yield have been recorded for RPMet 

products such as Smartamine and Mepron. Patton (2010) who summarized the findings of 

35 studies (17 evaluating Mepron and 18 evaluating Smartamine) showed, on average, 

supplementing these products increased both milk protein yield and concentration. Many 

studies have also been conducted comparing true RPMet products to Met analogue 

products and their effects on milk protein yield. Ordway et al. (2009) showed an increase 

in milk protein concentration in cows fed MetaSmart as well as Smartamine compared to 

those fed a control diet. Osorio et al. (2013) observed an increase in milk protein yield, 

but they reported a larger increase in Smartamine supplemented cows when compared 

with those supplemented with MetaSmart (1.24 vs 1.23 kg/d). The findings of Rulquin et 

al. (2006) also confirm the results of Osorio et al. (2013) in that Smartamine 

supplemented cows produced more grams per day of milk protein than MetaSmart 

supplemented cows, and both groups produced more than the control group. The 

important message here is when Met is made available post-ruminally, whether it be 
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through RPMet products or Met analogue products, milk protein is increased. 

Methionine, if not utilized by the cow for milk and milk component production, can also 

potentially play a pivotal role in BW gain. 

 
Effects on BW Gain 

     Effects of supplemental Met on BW gain in dairy cattle seems to be sparse and 

lacking. However, in other species information concerning this topic is abundant; for 

example, in the poultry industry supplementation of dietary Met is a common practice 

and is well researched. Lemme et al. (2002) found a positive response in BW gain, feed 

conversion, carcass yield, and breast meat yield with supplementation of both DL-Met 

and HMB, with better responses coming from DL-Met supplementation. Similarly, 

Meirelles et al. (2002) concluded that DL-Met increased BW gain and feed conversion 

more than HMB, although HMB also increased BW gain and feed conversion when 

compared with a control diet. In both studies HMB was found to have an efficacy on 

weight gain of about 65% when compared with DL-Met as a source of dietary Met 

(Lemme et al., 2002; Meirelles et al., 2002). Growing pigs also respond positively in 

weight gain and feed conversion to Met supplementation. Zimmermann et al. (2005) 

reported that pigs supplemented with DL-Met or HMB had higher weight gains than 

those consuming a control diet (501 and 488 g vs. 432 g). Very little information 

concerning Met supplementation and BW gain in dairy cows is available, but there is 

information on other ruminants.  

     Although there is data concerning weight gain in steers and lambs supplemented with 

Met, this data has been inconsistent and quite disappointing. Some studies showed 
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positive responses in BW gain and feed efficiency with supplementation of RPMet 

(Deetz et al., 1985; Oke et al., 1986). Others, such as Strasia et al. (1986) reported no 

response in BW gain. More recently, Hussein and Berger (2014) observed no response in 

BW gain with as much as 50 g of RPMet supplementation to Holstein steers. A lack of 

response to RPMet supplementation suggests that Met was not limiting in these 

experimental diets. Data on the effects of supplementation of Met analogues and 

derivatives are currently even more sparse and lacking than that of true RPMet 

supplementation. Even though BW gain results have been somewhat disappointing, Met 

has the potential to aid in BW gain in diets where Met is the most-limiting AA. 

     Similar to milk protein synthesis in dairy cattle, Met is the first-limiting AA in 

growing cattle (Richardson and Hatfield, 1978). This is significant, because Met 

functions as a precursor for protein synthesis and, therefore, a deficiency of Met will lead 

to a decrease in the turnover of dietary protein into protein deposition in the body, thus 

limiting potential BW gain (Loest et al., 2002). In competition with its use for protein 

synthesis, Met can also be converted to SAM in the liver, which acts as a methyl group 

donor for many transmethylation reactions (Finkelstein, 1990). SAM aids in the 

formation of phospholipids (Obeid and Herrmann, 2009), which in turn aids in the 

formation of the phospholipid bilayer of very low density lipoproteins (VLDL). Then, 

VLDL carries triglycerides, which, especially in finishing cattle, aids in fat deposition 

and intramuscular marbling, leading to an increase in BW gain (Dodson et al., 2010). 

Methionine has the potential to positively affect BW gain, but more research needs to be 

performed to clearly understand its mechanism. 
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Effects on N Utilization 

     Unlike the effects of Met supplementation on BW gain, the effects of Met 

supplementation on N utilization are well known and reported. As discussed earlier, 

supplementation of RPMet can increase milk yield (Patton, 2010) and milk protein yield 

(Ordway et al., 2009). Therefore, the use of RPMet may allow for the feeding of less CP 

in diets without adversely affecting production (Broderick et al., 2008). Reducing dietary 

CP concentration, while maintaining production, could potentially have a huge impact on 

N utilization and excretion, because when dairy cows are fed to meet MP requirements, 

they consume excessive N, resulting in 75% of the dietary N consumed being lost to the 

environment in urine and feces (Arriola Apelo et al., 2014). This potential decrease in N 

utilization is important today because of the need to continue to feed the increasing world 

population while focusing on the ever-present environmental concerns (OECD/FAO, 

2015).   

     Many studies show a positive response in production and a decrease in N excretion in 

relation to a decrease in dietary CP accompanied by Met supplementation. Broderick et 

al. (2008) conducted a trial in which dietary CP was reduced from 18.6% to 14.8% with 

an increase in RPMet supplementation from 0 to 15 g/d in four different diets. As 

expected, significant increases in milk production and N efficiency were observed: 39.7 

to 41.6 kg/d milk yield and 26.2 to 31.7% N utilization. Supplementation of HMB has 

also proven to increase both milk production and N efficiency. Wang et al. (2010) 

observed that upon HMB supplementation in a MP deficient diet, milk production was 

increased from 26.5 to 28.5 kg/d coupled with N efficiency improvement from 26 to 
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28.3%. In both studies, excretion of N was reduced in milk, urine, and manure. The 

ability to reduce dietary CP while maintaining or increasing production is of great value 

when focusing on the potential environmental impact of dairying. 

 
Economic Analysis 

     The worth of Met supplementation to a dairyman hinges on a positive return on 

investment. Dairymen routinely measure their return on investments in terms of the cost 

invested to increase milk and milk component production compared with how much milk 

and milk component production actually increases. Currently, as this review is being 

written, the market price of class III milk is $16.74 per hundredweight (CWT) 

(www.cmegroup.com; May 2017), $2.05 per lb. of milk fat, and $2.30 per lb. of milk 

protein (www.milkpay.com; May 2017). Smartamine, a popular RPMet product, is 

currently priced at $6.72 per lb., and the recommended feeding rate is 12 g/cow/d, 

depending on dietary deficiency of Met. Metasmart, a popular HMBi Met analogue 

product, is currently priced at $2.73 per lb. and the average feeding rate is 40 g/cow/d. At 

the average feeding rate the cost of feeding Smartamine would be $0.18/head/d, whereas 

the cost of feeding Metasmart would be $0.24/head/d. At the current cost of milk, a dairy 

farmer would need to produce 1.08 lbs. of extra milk to cover the cost of investment in 

Smartamine and an extra 1.43 lbs. of milk to cover the cost of investment in Metasmart. 

Both of those numbers are attainable. It is important to note, and has been discussed 

previously in this review, that Smartamine and Metasmart can have different impacts on 

milk component production.  Dependent on the targeted milk component, either 

Smartamine or Metasmart may have the biggest financial impact for the dairy producer. 
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Acetylated AA 

     Although the aforementioned methods of supplying useable Met to dairy cows have 

been successful, the ever-evolving dairy industry is always looking for new and improved 

methods of increasing production and herd health, while decreasing the environmental 

impact of dairying. As another way of delivering bioavailable AA to the dairy cow, 

acetylation of AA has garnered attention. Acetylation of AA occurs when the NH2-

terminals of AA are acetylated with an acetyl group (Gade and Brown, 1981). The 

beginning products of this reaction are L-AA and acetic anhydride (EFSA, 2003). The 

purpose of acetylating AA is to protect the N-terminal amino group from hydrolysis by 

rumen microbes (Wallace, 1992). The acetylation process is not new; however, the use of 

acetylated AA in ruminant nutrition is new and as a result of this, research pertaining to 

this topic appears to be sparse. 

 
Bioavailability 

     As a result of the chemical makeup of acetylated AA (L-AA and an acetyl group), the 

bioavailability of the AA in question depends on the separation of the AA and the 

attached acetyl group. The acetyl group acts as a barrier that blocks the hydrolysis of the 

NH2-terminal of the amino acid which protects it from ruminal degradation (Wallace, 

1992).  The protection provided by the acetyl group also prevents absorption of the 

attached AA in the small intestine. Thus, acetylated AA themselves are not bioavailable, 

per se, until the acetyl group and attached AA are separated. The hydrolytic reaction that 

separates these 2 compounds is catalyzed by an enzyme called acylase 1 or aminoacylase 
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1 (Baxter et al., 2001). This enzyme is found in multiple mammalian tissues, including 

the small intestine, which is the most important site in the study of the bioavailability of 

acetylated AA (Giardina et al., 1997). 

     The hydrolytic reaction separating the acetyl group and the AA is not possible without 

the aminoacylase 1 enzyme, thus the bioavailability of acetylated AA is dependent on the 

presence of the aminoacylase 1 enzyme, and the bioavailability can be predicted based on 

the ability of aminoacylase 1 to catalyze this hydrolytic reaction (Baxter et al., 2001).  

Furthermore, Gade and Brown (1981) found that the aminoacylase enzyme is the major 

and the only enzyme that catalyzes the hydrolysis of acetylated AA, especially acetylated 

Met. Therefore, if the aminoacylase enzyme is the only enzyme capable of hydrolyzing 

acetylated AA, then the theory of Baxter et al. (2001) that states the bioavailability of 

acetylated AA is directly related to the amount of enzyme present and the ability of this 

enzyme to catalyze hydrolytic reactions, holds true. Baxter et al. (2001) reinforced their 

hypothesis by studying the hydrolytic effects of aminoacylase on N-acetyl-L-glutamine 

(NAQ) and NALM. They concluded that the hydrolyzation of both NAQ and NALM was 

linearly dependent on the concentration of aminoacylase and time (Baxter et al., 2001).  

Another way to investigate the efficacy of aminoacylase is to measure the Km and Vmax of 

the enzyme. 

     An easy and simple way to define Km and Vmax, in the context of the aminoacylase 

enzyme, is that Km is a measure of how easily and quickly aminoacylase binds to 

acetylated AA, and Vmax defines how fast aminoacylase can catalyze the hydrolytic 

reaction to yield the L-AA and an acetyl group (Dixon et al., 1979). Galaev and Svedas 
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(1982) found the Km constant of the hydrolysis of acetyl-L-Met by aminoacylase to be 

0.14 ± 0.03 M while Baxter et al. (2001) found a Km constant of 0.00136 ± 0.00015 M. 

The low Km constant values presented in the two studies above suggest that aminoacylase 

binds to acetylated AA quickly and easily, or in other words aminoacylase has a high 

affinity for acetyl-L-Met and only a small amount of substrate is needed to saturate the 

enzyme. The Vmax of this same reaction is not quite as fast, when compared with the 

hydrolysis of other acetylated AA. The Vmax, as found by Baxter et al. (2001) is          

7.48 ± 0.28 nM Met/min/µg acylase 1. When comparing the Km and the Vmax of the 

hydrolytic reaction of acetyl-L-Met, one can conclude there is a high affinity for the 

substrate, but once it is saturated the reactions proceeds to completion at a moderate pace. 

One can also conclude in the presence of aminoacylase and upon completion of the 

hydrolytic process, much of the free AA released by this process will be bioavailable to 

the dairy cow. There are, however, other factors which may influence the efficacy of this 

hydrolytic process. 

     One major factor that influences the efficacy of hydrolyzing acetylated AA is the type 

of AA isomer being utilized. Birnbaum et al. (1952) concluded acetylated D-isomers of 

AA were hydrolyzed much more slowly than their corresponding L-isomers. Similarly, 

while studying the bioavailability of different acetylated AA, Boggs (1978) found 

comparable results to Birnbaum et al (1952). Boggs (1978) fed N-acetyl-D-Met and 

NALM in diets deficient in Met to rats under similar conditions. Growth of rats fed 

NALM was 62.7 ± 9.5 g/d, while the growth of rats fed N-acetyl-D-Met was 23.9 ± 0.6 

g/d, which clearly supports the assumption that acetylated D-isomers of Met are not as 
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bioavailable as the L-isomer. The pH at the location of enzymatic activity can also 

greatly influence the hydrolytic efficacy of the aminoacylase enzyme. Gade and Brown 

(1981) found the optimum pH for which aminoacylase can most effectively hydrolyze 

acetylated AA was approximately 8.5.  In the pH range of 6.0 to 10.3, enzymatic activity 

was still 90% effective, but when the pH dropped down to 3.8, no enzymatic activity 

could be detected. Similarly, Galaev and Svedas (1982) concluded the optimum pH range 

of aminoacylase activity was somewhere around a pH of 7.0 – 8.0.  The pH in the small 

intestine of ruminants falls in the range of 7.0 – 8.0, which creates the perfect pH 

environment for the hydrolyzation of acetylated AA. The concentration of aminoacylase 

in the small intestine is very high (Boggs, 1978). Thus, because of the optimal pH 

conditions in the small intestine and the high concentration of aminoacylase in the small 

intestine, the potential bioavailability of the free AA released from the hydrolytic process 

will be high. 

 
Bioavailability of Other Met Supplements 

     Unlike acetylated Met, the bioavailability of RPMet and Met analogues is more well-

known and studied. Many different methods of delivering useable Met to the dairy cow 

have been described above and although they all have the same objective in mind of 

protecting the Met in the rumen, the bioavailability of these different methods and 

products differs. Understanding and studying the bioavailability of these different 

products is important in determining their efficacy in the dairy industry, because although 

all of these products provide useable Met to some degree to the dairy cow, dairy 
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producers should choose a product based on its ability to provide the most bioavailable 

Met to the cow. The bioavailability of RPMet products is ultimately determined by the 

Met concentration of the product, the ruminal stability of the product, and the intestinal 

release of the product (Berthiaume et al., 2000). The bioavailability of different rumen-

protected products and different Met analogue products will be discussed in detail. 

 
Bioavailability of RPMet  

     As stated above, it stands to reason the Met concentration of RPMet products directly 

influences the degree of bioavailable Met delivered to the small intestine. As discussed in 

the RPMet Product Overview section of this literature review, different RPMet products 

have differing concentrations of DL-Met. As far as true RPMet products are concerned, 

potentially the most popular commercial product, Smartamine (Adisseo, Inc., Antony, 

France) contains 75% DL-Met, while another popular product, Mepron (Degussa 

Corporation, Germany) contains 85% DL-Met, and Met-Plus (Nisso America, Inc., New 

York, NY) has 65% DL-Met. In review, Met analogues do not contain DL-Met, but 

rather they contain the compound 2-hydroxy-4-(methylthio)-butanoic acid, which 

eventually can be converted to Met. Metasmart (Adisseo, Inc., Antony, France), the 

isopropyl ester form of HMB, is potentially the most popular Met analogue available on 

the market. MetaSmart consists of no less than 57% HMBi, which is a 78% Met 

equivalent, and of that 50% is reported to be absorbed and converted to metabolizable 

Met. Therefore, the actual concentration of Met in each of the products varies, with 

Mepron containing the most Met (85%). Although the concentration of Met in each of the 
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products is important, it does not independently dictate the amount of bioavailable Met in 

the product itself, ruminal degradation also influences this. 

     Ruminal degradation rate, or ruminal outflow rate, of any RPMet product is 

influenced by the particle size and density of the product (Koenig and Rode, 2001). 

Adisseo Inc., reports a particle size of 1.4 to 2.5 mm and a density of 0.7 g/cm3 for 

Smartamine and a particle size of approximately 0.3 mm and a density of 0.75 g/cm3 to 

0.80 g/cm3 for MetaSmart, while Degussa Corporation reports a pellet particle size of   

1.8 × 3 mm and a density of 0.71 g/cm3 for Mepron. To compare how particle size affects 

ruminal outflow rate, Smartamine has a mean rumen retention time of 31.9 h in lactating 

dairy cows (Mambrini and Peyraud, 1997). Also influencing ruminal outflow rate is the 

form of protection used to help Met bypass the rumen. Smartamine uses a pH-sensitive 

polymer coating (Adisseo, Inc., Antony, France), and Mepron uses a coating of ethyl 

cellulose (Degussa Corporation, Germany) to protect a core of DL-Met, while MetaSmart 

utilizes the analogue HMBi (Adisseo, Inc., Antony, France), which will be converted to 

Met after being absorbed. Differing particle sizes, densities, and forms of rumen-

protection result in differing bioavailabilities. Schwab and Ordway (2003) reported 

average ruminal outflow rates of 90% for Smartamine and 80% for Mepron. In other 

words, 90% and 80% of ingested Smartamine and Mepron, respectively will pass 

undegraded through the rumen to the acidic abomasum where the encapsulated Met will 

be released. MetaSmart has a rumen bypass rate of 50%, although technically MetaSmart 

does not bypass the rumen in the traditional manner (Adisseo, Inc., Antony, France). 

MetaSmart is absorbed across the rumen wall where it then becomes bioavailable. After 
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assessing the Met content and the rumen bypass rate of an RPMet product, the abomasal 

release and intestinal absorption of the product needs to be determined in order to 

quantify the potential efficacy of the product in question. 

     Once RPMet products, with the exception of Met analogues, bypass the rumen and 

enter the abomasum, the encapsulated Met is released in the acidic abomasal environment 

where it then passes onto the small intestine. Similar to Met concentration and ruminal 

bypass rate, the rate of release of Met from the abomasum and the subsequent absorption 

rate in the small intestine, differ among all products. One way to measure intestinal 

absorption is to measure the intestinal disappearance of Met expressed as a percentage of 

total Met entering the small intestine from the abomasum. Koenig and Rode (2001) stated 

that the intestinal disappearance rate of Mepron averaged 31.9%, while Sudekum et al. 

(2004) similarly found an average Mepron intestinal disappearance rate of 28%. Schwab 

and Ordway (2003) reported an average intestinal disappearance rate of 90% for 

Smartamine. This large difference in intestinal disappearance between Mepron and 

Smartamine can most likely be attributed to the difference in the form of rumen 

protection employed in the products, and the efficacy of the eventual release of Met. The 

polymer coating of Smartamine is degraded in low pH environments, while the coating of 

Mepron is degraded through abrasion and physical breakdown, which may not be as 

reliable as the pH-sensitive Smartamine coating. After assessing the Met concentration, 

the ruminal bypass rate, and the intestinal disappearance rate, the bioavailability of the 

RPM product can be calculated.  
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     Berthiaume et al. (2000) stated that RPMet bioavailability is based on the products’ 

AA concentration, their ruminal stability, and intestinal digestibility. Similarly, Koenig 

and Rode (2001) defined RPMet bioavailability as a combination of effective ruminal 

degradability and intestinal disappearance with the actual calculation being (100 – 

effective ruminal degradability) × intestinal digestibility. Based on these calculations, 

Koenig and Rode (2001) found the bioavailability of Mepron to be a low 23.6%. In 

comparison, only 25 to 35% of feed protein in normal dairy rations reaches the small 

intestine. By this comparison, Mepron does not seem to be an effective source of 

bioavailable Met. Contrary to the findings of Koenig and Rode (2001), the Degussa 

Corporation reports a bioavailability of 80 to 85% for Mepron. Abdi-Benemar (2016) 

reported a bioavailability of 61% for Mepron, which is closer to the bioavailability 

reported by Degussa Corporation. These differences in the bioavailability of Mepron may 

arise from the ethyl cellulose matrix coating of this product. The coating of this product is 

designed to be thinner at both ends of the pellet so that both ends can be opened, and the 

DL-Met core can be solubilized and flushed out of the pellet (Berthiaume et al., 2000). 

The problem that potentially may arise with this mode of action is that Mepron relies on 

abrasion and physical forces for the degradation of the ethyl cellulose coating, rather than 

relying on enzymatic or pH activity, which may lead to a decrease of available 

methionine (Schwab and Ordway, 2003). Unlike Mepron, Smartamine relies on a pH-

sensitive polymer coating to protect the DL-Met core, which makes estimating 

bioavailability more constant and easier. According to Robert and Williams (1997), the 

bioavailability of Smartamine falls somewhere between 75 to 97%. Similarly, Graulet et 
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al. (2005) determined the bioavailability of Smartamine to be 74%. Providing more 

evidence to the consistency of the bioavailability of Smartamine, Schwab (1995) found 

the bioavailability to be 80%. Although Met analogues are different in both composition 

and their mode of action from traditional RPMet products, the bioavailability of Met 

analogues can still be assessed and compared to the bioavailability of RPMet products.  

Graulet et al. (2005) compared the Met bioavailability of HMBi with that of Smartamine 

and found the Met bioavailability of HMBi and Smartamine to be 48 and 71%, 

respectively. This is in accordance with estimations from Robert et al. (2001, 2002) of a 

bioavailability of 40 to 58% for HMBi. According to the studies cited, Smartamine 

provides the most bioavailable Met to the dairy cow, which creates a standard for the 

future bioavailability studies of Met derivatives.   

 
Absorption of NALM in the Small Intestine 

     The use of acetylated AA in ruminant nutrition is a fairly new concept, and 

consequently information concerning its bioavailability is sparse. In review, acetylation 

of AA occurs when the NH2-terminal of an AA is protected with an acetyl group (Gade 

and Brown, 1981). The purpose of acetylating AA is to protect the N-terminal amino 

group from hydrolysis by rumen microbes (Wallace, 1992). Once NALM bypasses the 

rumen and arrives at the small intestine, the aminoacylase enzyme hydrolytically 

separates the acetyl group from the L-Met molecule, thus making both the acetate and the 

L-Met molecule available for absorption in the small intestine. Providing both an acetyl 

group and an L-Met molecule is a very unique aspect of NALM that distinguishes it from 
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other RPMet or Met analogue products. Without the separation of these 2 molecules, 

however, L-Met would not be available for absorption in the small intestine.   

 
Intestinal Absorption of AA 

     Once AA reach the small intestine, they can be incorporated into protein (constitutive 

or secretions), converted into other AA for biosynthetic processes, oxidized to CO2, or 

transported through enterocytes into the mesenteric portal vein (Stoll and Burrin, 2006). 

The small intestine is divided into three distinct regions consisting of duodenum, 

jejunum, and ileum. Absorption rates differ in each of the different sections of the small 

intestine and the site where the majority of AA absorption occurs differs according to 

species. In ruminants, it is believed that the majority of AA absorption occurs in the 

ileum (Webb and Matthews, 1994). Williams (1969) also proposed that the site of AA 

absorption can change according to the AA being absorbed. For example, Williams 

(1969), in agreement with Webb and Matthews (1994), found that the majority of AA 

absorption occurred in the ileum of sheep with the exception of Met which was absorbed 

in equal amounts in the jejunum and ileum. Similar to the influence of AA on the site of 

absorption, they can also have an impact on the absorption rate, or in other words, 

different AA are absorbed at differing rates. Armstrong et al. (1977) and Christiansen and 

Webb (1990) observed that Met was absorbed at the greatest relative quantity when 

compared to all other AA. Likewise, the mode of transportation and the mechanism used 

to transport AA through the enterocytes can differ according to the individual AA. 

     Amino acids can be transported from the intestinal lumen to the enterocytes through 

either simple diffusion, facilitated diffusion, or active transport (Wilson and Webb, 
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1990).  Facilitated diffusion mechanisms are also known as sodium-independent systems, 

and active transport is referred to as sodium-dependent transport. Sodium-dependent 

systems require energy to pump AA into the cell. This process is regulated by Na+/K+ 

ATPase, which pumps Na and AA into the cell and K out of the cell (Webb and 

Matthews, 1994). Sodium-independent systems do not require energy to pump AA into 

the cell. Amino acid concentration in the small intestine dictates which transportation 

method is utilized. Only when concentrations of AA are low does transportation through 

facilitated diffusion, and active transport exceed absorption through simple diffusion 

(Wilson and Webb, 1990). Amino acid transport systems can also be classified according 

to substrate preference (Wu, 2013). Many transport systems have an affinity for more 

than one substrate.  

     It is important to recognize the AA profile that reaches the small intestine will not be 

the same AA profile that will be absorbed through the enterocytes and enter the portal 

circulation. As stated earlier, AA can be oxidized for energy or utilized for other 

purposes, such as cellular protein synthesis or mucin production, in the small intestine. 

As these AA are irreversibly utilized, they are then nutritionally unavailable to the cow 

(Stoll and Burrin, 2006). Depending on the AA in question, small intestinal metabolism 

could drastically change the amount available for absorption. As much as 20-90% of 

dietary AA can potentially be catabolized in and by the small intestine, depending on the 

AA (Wu, 2013). Measurements of AA disappearance in the ruminant small intestine is 

lacking, but there are studies concerning AA disappearance in the monogastric small 

intestine. In similar swine studies, Wu et al. (2010) and Stoll and Burrin (2006) found 
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some AA, such as glutamate and aspartate, are almost completely catabolized by the 

small intestine and nearly 30% of Met is metabolized. In contrast, Seal and Parker (2000) 

suggested only 20% of the ruminants’ small intestinal AA requirement comes from 

lumen-derived dietary AA, with the rest being derived from the arterial supply of AA.  

Stoll and Burrin (2006) suggested the reason oxidation of AA in the small intestine can 

potentially be high compared to any other substrate is because it is the body’s way of 

meeting the high metabolic demands of the small intestine while preserving and ensuring 

the delivery of glucose, the bodies’ most important energy substrate, to the peripheral 

tissues. Once AA are transported into the enterocytes, catabolization appears to be 

negligible. Chen et al. (2009) reported that catabolism of Met in piglet enterocytes was 

negligible. Amino acids travel through the enterocytes where they pass through the 

basolateral membrane and enter mesenteric circulation on their way to the liver. 

 
Liver Metabolism 

     The liver is a very large organ that is essential for nutrient metabolism and nutrient 

distribution in the body. The liver has a variety of functions including detoxification of 

certain substrates, decomposition of red blood cells, protein synthesis, hormone 

production and removal, triglyceride production, control of feed intake, and bile 

production, just to name a few. However, one of the main functions of the liver is to filter 

the hepatic portal vein blood before allowing it to pass to the rest of the body. In 

ruminants, blood accounts for 25% of the livers mass, and the liver receives 25% of the 

cardiac output (Lobley et al., 2000). Blood supply to the liver comes from both the 



35 

hepatic portal vein and the hepatic artery. The hepatic artery only contributes 8-12% of 

total hepatic blood flow in cattle and sheep, with the rest of blood flow coming from the 

hepatic portal vein (Lobley et al., 2000). Blood flow to the liver through the hepatic 

portal vein is not controlled by the liver itself and is actually inversely related to arterial 

supply of blood to the liver (Lautt, 1996). Lobley et al. (2000) suggested that adenosine 

released in the liver and the subsequent removal of adenosine through hepatic and arterial 

flows may be responsible for regulating hepatic blood flow. In the hepatic portal vein, 

AA are carried to the liver in the plasma and not in the red blood cells (Houlier et al., 

1991). 

 
Liver Removal of AA 

     Similar to the small intestine, when AA reaches the liver they can either pass directly 

through the liver to be utilized either in peripheral tissues, or in the liver for synthesis of 

proteins, urea, or glucose (anabolism), or they may also be oxidized (catabolism) 

(Bequette et al., 2003). The liver has the difficult function of ensuring a sufficient supply 

of AA to peripheral tissues while maintaining non-toxic levels of AA in the bloodstream. 

Removal of AA from hepatic circulation is usually expressed relative to the amounts 

absorbed from the portal drained viscera (PDV), and it is important to note that the PDV 

includes the whole gastrointestinal tract, pancreas, and spleen. This is critical to note, 

because only a small portion of the AA in the portal vein actually comes from first pass 

absorption from the small intestine (Lobley and Lapierre, 2003). Similar to studies on the 

metabolism of AA in the small intestine, results on the uptake of AA by the liver are 

mixed. Variation in the uptake of AA by the liver is influenced by many factors, 
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including the nutrient profile of the ration being fed and the physiological state of the 

animal (Lobley and Lapierre, 2003). Some of this variation can also be attributed to the 

long-standing question of whether the liver acts as a “controller” and regulates the 

amount of AA that reaches peripheral tissues or whether the liver act as a “responder” 

and removes the AA that are not used by the peripheral tissues (Lobley and Lapierre, 

2003). Another big factor influencing AA uptake by the liver is the type of AA being 

absorbed (EAA vs. non-essential AA (NEAA), for example). 

     Essential AA tend to have different removal rates in the liver when compared with 

NEAA, and even some EAA, such as branched chain amino acids (BCAA), have 

different removal rates when compared with other EAA. Bequette et al. (2003) reported 

in dry dairy cows 0 to 30% of absorbed BCAA are removed across the liver, and in 

lactating dairy cows there is actually a net release of BCAA from the liver. This coincides 

with the findings of Blouin et al. (2002) who also recorded a net positive release of 

BCAA from the liver. Lobley (1992) proposed BCAA catabolism in the liver is very 

limited and once this threshold is reached, the removal of BCAA by the liver will stop, 

and catabolism of BCAA will occur in non-hepatic tissues. Concerning all other EAA, 

the amounts removed by the liver varies. According to Bequette et al. (2003), 43% of 

Met, 50% of phenylalanine, 11% of threonine, and 28% of histidine were removed in the 

liver from the net portal supply of AA. Lapierre et al. (2000) reported liver removal rates 

of 29% for Met, 64% for phenylalanine, 23% for threonine, and 39% for histidine. Liver 

extraction of NEAA tends to be higher than the extraction of EAA (Bequette et al., 2003). 

It appears the extraction of NEAA by the liver exceeds that of the extraction of EAA 
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because of their role in metabolic functions, such as gluconeogenesis (Hanigan et al., 

2004). No matter the removal rate, AA are removed for a specific purpose, including the 

use of Met for multiple functions in the liver. 

 
Liver Utilization of Met 

     In the liver, Met that is removed from the hepatic blood flow is converted to SAM, 

homocysteine, and cysteine via the methylation cycle. Then, SAM is primarily used for 

transmethylation, trans-sulfuration, and polyamine synthesis, SAM appears to be second 

only to ATP in the number of reactions in which it is a cofactor (Lu, 2000). According to 

Mudd and Poole (1975), Met prefers the catabolic pathway of SAM synthesis in the liver, 

where up to half of the daily intake of Met is converted to SAM. In the liver, Met and 

ATP are converted to SAM with the help of the enzyme Met adenosyltransferase (Mato 

et al., 1997). Once the methyl group of SAM is removed in the transmethylation 

processes, SAM will then be converted to S-adenosylhomocysteine. The adenosine is 

then removed from S-adenosylhomocysteine, resulting in the formation of homocysteine. 

From this point, homocysteine can either be transsulfurated to make cysteine or 

remethylated back to Met (Loest et al., 2002). Remethylated Met can either enter the Met 

cycle again, or it can be exported out of the liver to be used elsewhere. 

 
Physiological Impacts of Met 

     Methionine is most well known for its potential impact on milk and milk component 

production, but Met can also have a large impact on cow health through its role in liver 

lipoprotein synthesis, as a substrate for antioxidant reactions, and for its role in immune 
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function (Osorio et al., 2013). The effects on health because of Met supplementation 

appear to be most pronounced and beneficial in transition cows and is an essential 

nutrient for transition cows (Sun et al., 2016). The term transition refers to the 3 wks. 

before calving and the 3 wks. after calving. During this time, cows are much more 

susceptible to fatty liver disease, ketosis, retained placenta, hypocalcemia, clinical 

mastitis, and displaced abomasum (Sun et al., 2016). Cows are highly susceptible to these 

metabolic disorders at this time for a variety of reasons, one of which being the rapid 

growth of the fetus prior to parturition and the rapid increase in milk production 

postpartum. This rapid increase in milk production creates a high demand for energy 

which usually cannot be met with the limited DMI of fresh cows, and then results in a 

negative energy balance. This unique problem demands innovative ways of 

supplementing and feeding cows in such a way as to increase their profitability and 

viability during this stressful transition period. Methionine supplementation may alleviate 

some of the problems associated with the transition period. 

     The synthesis of SAM from Met plays a central role in the health of transition cows; 

SAM is a very important methyl donor in the formation of phosphatidylethanolamine to 

phosphatidylcholine, which is important in the packaging of VLDL (Osorio et al., 2014). 

This is significant in transition cow health, because when transition cows are in a 

negative energy balance state, they mobilize their body fat reserves to meet their high 

energy demand. As body fat is mobilized, non-esterified fatty acids (NEFA) are formed 

and sent to the liver where they can be re-esterified to form triglycerides (Gross et al., 

2013). Choline, which is synthesized from Met, facilitates the movement of NEFA to the 



39 

liver (Goselink et al., 2013). Triglycerides can be carried out of the liver through VLDL, 

or they can be stored in the liver, which is a cause of fatty liver disease. Sun et al. (2016) 

observed an increase in NEFA concentrations in postpartum transition cows 

supplemented with RPMet. The same study reported an increase in plasma VLDL 

concentrations, suggesting that Met influences liver lipid metabolism and exportation 

(Sun et al., 2016). Methionine can also have a variety of other effects on the health of 

transition cows as well.   

     It has been proposed that Met supplementation can have an impact on the proliferation 

of T lymphocyte production. For example, Soder and Holden (1999) reported an increase 

in T lymphocyte concentrations when 15 and 30 g/d of RPMet was supplemented to mid-

lactation dairy cows. In comparison, Osorio et al. (2013) reported a tendency for an 

increase in phagocytosis in cows supplemented with RPMet. The mechanism behind the 

increase in T lymphocyte concentrations and phagocytosis is not well understood, but it 

underlines the fact that Met supplementation potentially can have an impact on the 

immune function of cows. Methionine supplementation has also been shown to 

counteract the negative inflammatory effects of parturition. Osorio et al. (2013) observed 

an increase in albumin in Met supplemented cows when compared to control cows. 

Decreased albumin concentrations in control cows not supplemented with Met is 

understandable, because the lack of albumin is indicative of inflammatory conditions in 

transition cows. Methionine supplementation appears to negate some of the effects of 

inflammation in transition cows. Methionine can also potentially help in the antioxidant 

capacity of transition cows. Glutathione is a product of the methionine cycle in the liver 
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and also acts as the primary antioxidant defense in the prevention of oxidative liver injury 

(Halsted, 2013). Supplementation of RPMet has been shown to increase and expedite the 

synthesis of glutathione, which in theory would affect the antioxidant status of the 

transition cow (Osorio et al., 2014). Because of the role of Met in the liver, in lipoprotein 

synthesis, as a substrate for antioxidant reactions, and for its role in immune function, it 

can be very beneficial to the health of the transition cow. 

 
Conclusions 

     Methionine has long been recognized as a limiting AA for milk protein synthesis and 

milk production (Schwab et al., 1976). In order to meet the Met requirements of the 

lactating dairy cow, many different methods have been utilized to deliver useable Met to 

the dairy cow. These methods include protecting Met from ruminal degradation or 

utilizing Met analogues. A new approach to delivering useable Met to the dairy cow is 

the utilization of Met derivatives. A Met derivative is a free Met molecule that contains a 

chemical blocking group added to the α-amino group or a Met molecule in which the 

acetyl group has been modified (Schwab and Ordway, 2003). The Met derivative that is 

the focus of this study is NALM. Acetylated AA may be an effective way of delivering 

bioavailable Met to the small intestine where it is absorbed and utilized. This study will 

present the impacts of NALM on the lactational and physiological performance of eight 

mid to late lactation cows. 
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MATERIALS AND METHODS 

     The dairy cows used in the present study were cared for according to the Live Animal 

Use in Research Guidelines of the Institutional Animal Care and Use Committee at Utah 

State University. The study was conducted at the Caine Dairy Research Center 

(Wellsville, UT), Utah State University from January 25, 2016 to April 18, 2016. 

 
Cows, Experimental Design, and Dietary Treatments 

     Eight multiparous lactating Holstein cows were used during this trial. At the onset of 

the trial the cows averaged 124 ± 13.0 DIM with an average BW of 694 ± 39.7 kg and 

757 ± 55.5 kg at the end of the trial. 

     A double 4 × 4 Latin square design was utilized in this experiment. The duration of 

the trial was 84 d which consisted of 4 periods of 21 d each (14 d of treatment adaption 

and 7 d of data collection and sampling). Within each square, cows were randomly 

assigned to a sequence of four diets during each of the periods. The four dietary 

treatments included 0 (control), 15, 30, and 45 g/d/cow of NALM supplementation. In a 

previous study done by our group (Fagundes et al., 2016), the same NALM product was 

added at a rate of 0.13% DM, to provide approximately 15.7 g/d/cow of available Met. In 

the current study, we included half (low dose) and double the previous dose to test if the 

NALM supplementation would have a linear and/or a quadratic effect on production as 

well as ruminal fermentation parameters. Metabolizable Met and Lys concentrations and 

Lys:Met ratios were estimated using the CPM dairy ration analyzer program. The 
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experimental NALM product was top-dressed onto each of the diets supplemented with 

15, 30, and 45 g/d/cow of NALM.  

     A developmental NALM product from CJ CheilJedang (Seoul, South Korea) was used 

as the supplemental source of RPMet in this study. The NALM product was in powder 

form, and its Met concentration was reported to be 78.0%, 67% bioavailable, with 99.5% 

purity and 20-30 wt % solubility in water. 

     Diets were formulated based on NRC (2001) guidelines to ensure sufficient net energy 

for lactation (NEL), MP, vitamins, and minerals for production of 40 kg/d of milk with 

3.5% fat and 3.0% true protein. Average dietary forage-to-concentrate ratios of 54:46 

(DM basis) utilized in this trial were similar to that of a typical high-producing dairy 

ration in the Intermountain West (i.e., Utah, Idaho, Wyoming, Montana, and parts of 

Arizona and Nevada). Experimental diets consisted of good quality AH with a chemical 

composition of 21.4, 32.8, and 24.2% DM for CP, NDF, and ADF, respectively, whereas 

CS contained 8.51, 44.4, and 24.0% DM for CP, NDF, and ADF, respectively. AH and 

CS accounted for 47 and 46%, respectively, of total forage in the diet. 

     Cows were housed individually in tie stalls fitted with rubber mattresses covered with 

straw and allowed free access to water. Cows were fed twice daily for ad libitum intake at 

a level of 110% of expected daily intake with 70% of allotted feed fed at 0600 h and 30% 

fed at 1500 h. Feed offered and refused was recorded daily and samples were taken 

during the sampling week to determine DMI. 

     Cows were milked twice daily at 0400 and 1600 h, and milk production was recorded 

throughout the entire experiment. Milk was sampled for 2 consecutive d (d 17 and 18) 
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during the a.m. and p.m. milkings during each period. Individual milk samples were 

analyzed by the Rocky Mountain DHIA Laboratory (Wellsville, UT) for fat, TP, lactose, 

and milk urea nitrogen (MUN). Milk composition was expressed on weighted milk yield 

of a.m. and p.m. samples. Milk fat and TP yields were calculated by multiplying milk 

yield from the respective day by fat and TP concentration of the milk from an individual 

cow. To convert milk TP to milk N, a conversion factor of 6.38 was used (DePeters and 

Cant, 1992), and total milk N (kg/d) was calculated as milk TP/6.38 + MUN, where milk 

TP and MUN were expressed as kg/d. 

     All cows were weighed on the first 2 d of the trial (d 1 and 2) and on the last 2 d of 

each period (d 20 and 21) after the a.m. milking and before the a.m. feeding. These 

weights were used to calculate the mean BW of cows for each experimental period. 

Energy partitioning was determined using the data of milk yield, milk composition, and 

BW of experimental animals. Energy utilization was determined by calculating energy 

for maintenance as BW0.75 × 0.08 (NRC, 2001). Energy of BW change was assumed to be 

5.114 Mcal/kg of gain or 4.924 Mcal/kg of loss (NRC, 2001). Milk energy was calculated 

as (0.0929 × milk fat concentration) + (0.0563 × milk TP concentration) + (0.0395 × milk 

lactose concentration) (NRC, 2001). Estimated NEL value was calculated by total net 

energy utilization (maintenance, BW gain, and milk) divided by DMI (Neal et al., 2014). 

 
Feed Sampling and Analysis 

     Samples of AH, oat hay, and CS were pulled weekly and composited for the duration 

of each period to determine DM, and diets were adjusted accordingly to account for any 

change in DM concentrations. On d 15 to d 21 of each period, samples of total mixed 
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rations (TMR) and orts were collected from individual cows. All samples were frozen 

directly after they were pulled and remained frozen until processing. At the end of each 

period, all samples were dried at 60°C for 48 h, ground to pass a 1-mm screen (standard 

model 4; Arthur H. Thomas Co., Swedesboro, NJ), and stored for chemical analysis. The 

DM concentrations of samples were used to calculate intakes of DM and nutrients. 

     Analytical DM concentration of samples was determined by oven drying overnight at 

105°C, and organic matter (OM) was determined by ashing at 550°C for 5 h (AOAC, 

2000; method 942.05). Concentration of CP was determined using an automated N 

combustion analyzer (Elementar, Analysensysteme GmbH, Hanau, Germany; AOAC, 

2000; method 968.06). Concentrations of NDF and ADF were sequentially determined 

using a fiber analyzer (200/220, ANKOM Technology, Macedon, NY) according to the 

methodology supplied by the company, which is based on the methods described by Van 

Soest et al. (1991). Sodium sulfite was used in the procedure for NDF determination and 

pre-treated with heat-stable amylase (Type XI-A from Bacillus subtilis; Sigma-Aldrich 

Corporation, St. Louis, MO). Ether extract was measured using a fat analyzer (XT20, 

ANKOM Technology; AOAC, 2000; Method 2003.05). 

 
Ruminal Fermentation Characteristics 

     Ruminal fluid samples were collected on d 15 and d 19 at 4 h after the morning 

feeding during each period using a Geishauser probe. The fluid was collected with a 

solid, tube-like probe with rows of small holes on the end (Geishauser, 1993). To avoid 

any possible contamination from saliva, the first 100 mL of ruminal fluid extracted was 

discarded, and the next 15 mL was kept for analysis and strained through a polyester 
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screen (pore size 355 µm; B & S H Thompson, Ville Mont-Royal, QC, Canada). 

Immediately upon extraction from the rumen, the pH of the ruminal fluid was measured 

using a portable pH meter (Oakton pH 6; Oakton Instruments, Vernon Hills, IL). Five mL 

of the filtered ruminal fluid were mixed with 1 mL of 1% sulfuric acid and stored frozen 

(−40°C) for analysis of ammonia-N (NH3-N). Concentration of NH3-N in the ruminal 

contents was determined as described by Rhine et al. (1998), using a plate reader (MRXe; 

Dynex Technologies Inc., Chantilly, VA). Another 5 mL of filtered ruminal fluid was 

added to 1 mL of 25% meta-phosphoric acid, and then stored at −40°C for determination 

of volatile fatty acid (VFA) content. Ruminal VFA were separated and quantified using a 

gas chromatograph (Model 5890, Hewlett-Packard Lab, Palo Alto, CA) with a capillary 

column (30 m × 0.32-mm i.d., 1-μm phase thickness, Zebron ZB-FAAP; Phenomenex 

Inc., Torrance, CA) and flame-ionization detection. The oven temperature was held at 

170°C for 4 min, increased to 185°C at a rate of 5°C/min, then increased by 3°C/min to 

220°C, and held at this temperature for 1 min. The injector and the detector temperatures 

were 225 and 250°C, respectively, and the carrier gas was helium (Eun and Beauchemin, 

2007). 

 
Urine Sampling and Analyses 

     On d 15, d 16, and d 18, spot urine samples were collected at 0600 and 1800 h from 

each cow. Each period, 6 samples of urine were collected from each cow, and after each 

sample was collected it was acidified to pH < 4.0, stored at −40°C, and composited by 

cow per period. At a later date the samples were thawed in preparation for analysis and 

diluted with 39 parts diluent to 1 part urine. The diluent utilized consisted of 0.202% 
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sodium 1-heptane sulfonic acid and 0.086% ammonium dihydrogen phosphate 

(NH4H2PO4). The solution was brought to a pH of 2.1 using 4 M HCl. Utilization of the 

ratio of the urinary purine derivatives (PD) to creatinine is an accepted way to estimate 

the microbial protein (MCP) flow to the duodenum (Shingfield and Offer, 1998). The PD 

and creatinine were analyzed using an HPLC instrument (Waters Corp., Milford, MA) 

according to the procedures set forth by Shingfield and Offer (1998). In order to estimate 

urine volume, creatinine was used as a marker (Valadares et al., 1999), and an average 

creatinine output of 28 mg/kg of BW as estimated by Whittet (2004) was assumed. 

Similar creatinine outputs have been reported (25 to 30 mg/kg of BW daily) (McCarthy et 

al., 1983; Jones et al., 1990). In order to estimate the relative differences in MCP 

production, the ratio of urinary PD (allantoin and uric acid) to creatinine was used 

(Shingfield and Offer, 1998), and the supply of MCP was estimated based on estimates of 

urinary excretion of PD according to the method of Chen and Gomes (1992) and Janicek 

et al. (2008). In addition to MCP estimations, urinary-urea N was assayed using the 

Stanbio Urea Nitrogen Kit 580 (Stanbio Laboratory, Inc., San Antonio, TX) according to 

the instructions provided. 

 
Blood Sampling and Analyses 

     Blood was drawn from the coccygeal artery or vein into serum and whole blood 

vacuum collection tubes on d 15, d 16, and d 19 at 0 h prior to a.m. feeding and on d 19 

and d 20 at 4 and 8 h after a.m. feeding. Blood was drawn for analyzing the 

concentrations of beta-hydroxybutyrate (BHB), glucose, NEFA, blood AA, and blood 

urea nitrogen (BUN). Immediately after drawing blood, BHB concentration was 
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measured using a handheld electronic BHB meter and test strips (Precision Xtra, Abbott 

Diabetes Care, Abingdon, UK) according to Iwersen et al. (2009). The BHB values were 

multiplied by 10.3 to convert from mmol/L to mg/100 mL (Oetzel and McGuirk, 2007). 

Similar to BHB, blood glucose was measured and recorded immediately after blood was 

drawn using a handheld electronic glucometer and glucose test strips (Precision Xtra). 

After sampling, blood samples were immediately transported on ice to the laboratory for 

further processing. Samples were centrifuged at 2,300 × g for 20 min, and serum was 

then collected and stored at −40°C. At the end of the trial, serum samples were sent off to 

the Animal Health Diagnostic Center, Cornell University (Ithaca, NY) for NEFA and 

BUN analysis, and the remaining serum samples were kept for AA analysis. 

     Serum samples were prepared for AA analysis using the EZ:faast GC-FID Free 

(Physiological) Amino Acid Analysis Kit (Phenomenex Inc., Torrance, CA). 

Concentrations of plasma free AA were determined in accordance with the user manual 

provided with the kit. Extraction of free AA from the plasma consisted of a combination 

of solid-phase extraction, derivatization, and liquid/liquid extraction. The organic phase 

containing the AA in question was analyzed using a GC (Model 5890, Hewlett-Packard 

Lab) with a capillary column (30 m × 0.32-mm i.d., 1-μm phase thickness, Zebron ZB-

FAAP; Phenomenex Inc., Torrance, CA) and flame-ionization detection. 

 
Statistical Analysis 

     Analysis of variance was conducted using the MIXED procedure (Littell et al., 1998) 

of SAS (SAS Institute, 2016) for all the statistical analyses. The model included effects of 

square, dietary treatment, day, and interactions among the fixed effects, with cow within 
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square and period within square designated as random variables. The effect of day was 

included as a fixed repeated measurement. Simple, autoregressive one, and compound 

symmetry covariance structures were used in the analysis depending on low values for 

the Akaike’s information criteria and Schwartz’s Bayesian criterion. The relationship 

between N intake and N excretions into milk, urine, and feces was determined by linear 

regression using the PROC REG procedure of SAS. For all analyses, degrees of freedom 

were estimated with the Kenward-Roger specification in the models. Means were 

separated by use of orthogonal polynomial contrasts: 1) control vs. NALM treatments, 2) 

linear effect of increasing NALM, and 3) quadratic effect of increasing NALM. Least 

square means were reported throughout. Treatment effects were declared significant if    

P ≤ 0.05, and differences were considered to indicate a trend toward significance if     

0.05 < P ≤ 0.10. 
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RESULTS AND DISCUSSION 

Characteristics of Experimental Diets 

     Ingredient and chemical composition of experimental diets are presented in Table 1. 

All diets supplied NEL in excess of requirement (NRC, 2001). Mean concentrations of 

NDF, ADF, starch, ether extract, and non-fiber carbohydrates (NFC) were similar for all 

treatments. As expected, CP concentrations did not increase with NALM 

supplementation due to the top-dressing application onto the basal TMR. 

Supplementation of NALM at varying doses tested in the current trial resulted in 7.84, 

15.7, and 23.5 g/d/cow of absorbable Met in the diet in addition to the 54.9 g/d of 

absorbable Met from the basal TMR, which resulted in total absorbable Met amounts of 

62.7, 70.6, and 78.4 g/d/cow in the rations supplemented with 15, 30, and 45 g/d of 

NALM, respectively. The amount of total absorbable Met in the respective rations 

compared to amounts of MP led to concentrations of 1.95, 2.22, 2.50, and 2.77% of MP. 

Ideal concentrations of Met that are needed in MP for maximum milk protein yield have 

been reported to be 2.4% by NRC (2001) and 2.5% by Doepel et al. (2004). Comparing 

metabolizable Lys to metabolizable Met led to Lys:Met of 3.43:1, 3.00:1, 2.67:1, and 

2.40:1 for rations supplemented with 0, 15, 30, and 45 g/d of NALM, respectively. 

Optimal metabolizable Lys:Met for maximum milk and milk protein yield have 

traditionally been reported as a 3.00:1 (NRC, 2001, Whitehouse et al., 2009), but very 

recently optimal ratios as low as 2.69:1 were reported by Van Amburgh et al. (2015) after 

calculating the optimum efficiency of use for Lys and Met using data derived from a  
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Table 1. Ingredients and chemical composition of the experimental diets with varying doses of N-acetyl-L-Met (NALM) supplement-
ed to mid to late lactating Holstein dairy cows 

Item 
Diet 

0 g/d NALM 15 g/d NALM 30 g/d NALM 45 g/d NALM 
Ingredient, % of DM     

Alfalfa hay 25.0 25.0 25.0 25.0 
Oat hay 3.76 3.75 3.75 3.75 
Corn silage 24.9 24.8 24.8 24.8 
Beet pulp  3.02 3.01 3.01 3.01 
Cottonseed 4.89 4.88 4.88 4.88 
Corn, steam-flaked 19.9 19.9 19.9 19.9 
Corn grain, high-moisture 3.67 3.66 3.66 3.66 
Canola meal 5.88 5.87 5.87 5.87 
Soybean meal 5.88 5.87 5.87 5.87 
NALM1 0.00 0.06 0.11 0.17 
Fat supplement2 0.49 0.49 0.49 0.49 
Sodium bicarbonate 0.58 0.58 0.58 0.58 
Vitamin and mineral mix3 2.03 2.03 2.03 2.03 

Chemical composition, % of DM     
DM, % 58.3 ± 1.08 58.3 ± 1.42 58.4 ± 1.23 58.7 ± 1.68 
OM 89.3 ± 0.79 90.0 ± 0.73 89.8 ± 0.77 90.1 ± 0.59 
CP 17.3 ± 0.70 16.7 ± 0.85 17.7 ± 1.12 17.1 ± 1.16 

RDP4  11.1 11.1 11.2 11.2 
RUP4  6.19 6.20 6.26 6.28 

NDF 30.6 ± 2.40 31.8 ± 2.21 30.3 ± 1.72 30.2 ± 1.16 
ADF 18.3 ± 2.00 19.1 ± 1.74 17.8 ± 1.53 18.3 ± 1.20 
Starch 20.2 ± 1.25 20.8 ± 1.08 19.3 ± 1.36 20.2 ± 0.95 
Ether extract 1.95 ± 0.842 2.18 ± 0.219 1.73 ± 0.563 1.82 ± 0.572 
NFC5 39.2 ± 1.72 39.3 ± 1.60 40.1 ± 0.87 41.0 ± 1.86 
NEL,4 Mcal/kg 1.55 1.55 1.55 1.55 
    table continues 
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Absorbed MetTMR,6 g/d 54.9 54.9 54.9 54.9 
Absorbed MetNALM,7 g/d 0.00 7.84 15.7 23.5 
Total absorbed Met,8 g/d 54.9 62.7 70.6 78.4 
Absorbed Lys,4 g/d 188.3 188.3 188.3 188.4 
Metabolizable Lys,9 % of MP 6.68 6.67 6.67 6.66 
Metabolizable Met,10 % of MP 1.95 2.22 2.50 2.77 
Lys:Met11 3.43:1 3.00:1 2.67:1 2.40:1 

1Developmental NALM product made by CJ CheilJedang Co. (Seoul, Korea). 
2Calcium salts of palm oil (EnerGII®, Virtus Nutrition, LLC, Corcoran, CA). 
3Formulated to contain (per kg DM): 226.7 mg of Se (from sodium selenite), 9278.7 mg of Cu (from copper amino acid complex), 
40,537.4 mg of Zn (from zinc amino acid complex), 38,653.4 mg of Mn (from manganese amino acid complex), 552.6 mg of Co 
(from cobalt carbonate), 1,234,585.2 IU of vitamin A, 152,808.1 IU of vitamin D, 3,815.1 IU of vitamin E, and 295 mg of Rumensin 
(Elanco Animal Health, Greenfield, IN). 
4Based on tabular value (NRC, 2001).  
5NFC = 100 – CP – NDF – ether extract – ash. 
6Estimated using NRC (2001) for basal TMR without NALM supplementation. 
7Estimated supply of absorbed Met from NALM product (assuming 78% Met content and 67% bioavailability). 
8Total absorbed Met = absorbed MetTMR + absorbed MetNALM. 
9Metabolizable Lys = absorbed Lys/MP supply. 
10Metabolizable Met = total absorbed Met/MP supply. 
11Lys:Met = metabolizable Lys/metabolizable Met.
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meta-analysis of 40 published papers (Doepel et al., 2004) and a trial performed by 

Lapierre et al. (2007). 

 
Feed Intake and Productive Performance 

     Increasing NALM supplementation linearly increased intakes of DM and CP with a 

trend toward a linear increase in ADF intake (P = 0.09) but no effect on NDF intake 

(Table 2). The increase in DMI was unexpected, because little evidence exists to suggest 

that an increase in AA supplementation has any effect on DMI in dairy cows (Allen, 

2000). Similarly, Kung and Rode (1996) stated that in general, RPAA supplementation 

did not improve DMI, which corresponds to the findings of other studies performed by 

Leonardi et al. (2003) and Chen et al. (2011). In contrast, a limited number of studies 

(Broderick et al., 2009; Zanton et al., 2014) have shown an increase in DMI with RPMet 

supplementation, while Ordway et al. (2009) and Zanton et al. (2014) reported decreases 

in DMI. Intake of DM generally can increase or decrease for a number of factors, 

including animal factors, management, climatic conditions, and dietary composition 

(Hayirli et al., 2002). For example, decreases in DMI upon supplementation of RPMet 

have been correlated with excessive concentrations of Met (Robinson et al., 2000), the 

presence of co-limiting AA (Patton, 2010), and the sulfur smell of RPMet products 

(Benefield et al., 2009), while increases in DMI upon RPMet supplementation have been 

associated with dietary increases in CP (Broderick et al., 2009), parity (Ordway et al., 

2009), and the type of RPMet product utilized (Zanton et al., 2014). Supplementation of a 

Met analogue, HMBi, has also increased DMI (Osorio et al., 2014) because of the  
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Table 2. Intake of DM and nutrients and productive performance of mid to late lactating Holstein dairy cows supplemented with vary-
ing doses of N-acetyl-L-Met (NALM) 

Item 
NALM  Contrast1 

0 g/d 15 g/d 30 g/d 45 g/d SEM NALM L Q 
Intake, kg/d         

DM 29.0 29.4 30.5 31.7 1.14 0.04 < 0.01 0.57 
CP 4.98 4.85 5.44 5.44 0.253 0.02 < 0.01 0.65 
NDF 8.89 9.30 9.31 9.54 0.384 0.44 0.14 0.76 
ADF 5.32 5.57 5.50 5.79 0.249 0.26 0.09 0.89 

Yield, kg/d         
Milk 38.0 37.4 37.7 38.7 2.90 0.18 0.17 0.07 
3.5% FCM 38.9 38.2 37.8 38.5 2.87 0.45 0.48 0.72 
ECM 38.4 38.8 38.4 39.2 2.82 0.49 0.73 0.16 

Milk composition, %         
Fat 3.64 3.60 3.54 3.44 0.167 0.10 0.02 0.54 
True protein 3.13 3.13 3.14 3.09 0.084 0.68 0.43 0.36 
Lactose 4.76 4.75 4.74 4.78 0.057 0.55 0.76 0.21 

Milk component yield, kg/d         
Fat 1.39 1.36 1.32 1.35 0.110 0.27 0.16 0.26 
True protein 1.18 1.16 1.19 1.21 0.078 0.28 0.10 0.29 
Lactose 1.82 1.78 1.79 1.86 0.152 0.12 0.19 0.03 

Dairy efficiency         
Milk yield/DMI 1.31 1.26 1.23 1.22 0.078 0.30 0.07 0.66 
3.5% FCM yield/DMI 1.34 1.30 1.25 1.22 0.078 0.23 0.05 0.93 
ECM yield/DMI 1.35 1.32 1.26 1.24 0.075 0.12 0.02 0.84 

1NALM = control (0 g/d) vs. NALM treatments; L = linear effect of increasing NALM; Q = quadratic effect of increasing NALM.
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potential stimulatory effect of HMBi on cellulolytic bacteria and the subsequent increase 

in passage rate and DMI (Lee et al., 2015b). In the current study, it appears that NALM 

supplementation may have had a similar effect by stimulating MCP synthesis, thus 

increasing passage rate and subsequently increasing DMI, which will be discussed in 

more detail later in this paper. 

     In spite of the linear increase in DMI with increasing NALM supplementation, milk 

production did not follow the same pattern (Table 2). Supplementation of NALM tended 

(P = 0.07) to have a quadratic effect on milk yield, as the greatest NALM 

supplementation (45 g/d) increased milk yield, but not at 15 and 30 g/d NALM compared 

with control. Supplementing NALM did not affect yields of 3.5% FCM and ECM 

regardless of dose rate. Similar to the present study, multiple studies investigating RPMet 

have shown similar results of little to no change in milk yield (Leonardi et al. 2003; 

Rulquin et al., 2006). Patton (2010) found that many different factors affect the efficacy 

of RPMet on milk yield, including the presence of co-limiting AA, the severity or lack of 

Met deficiency in the ration, breed, type of forage fed, and stage of lactation. In the 

current study, stage of lactation appeared to be the main factor that interfered with milk  

yield, because cows that are in mid to late lactation generally tend to lack the hormonal 

drive necessary to increase milk yield (Oltenacu et al., 1980; Penasa et al., 2016) and, 

therefore, supplementation of NALM may be ineffective at increasing milk yield when 

supplemented in mid to late lactation cows. 

     Supplementation of NALM had no effect on milk true protein and lactose 

concentrations, but had a negative linear effect on milk fat concentration (Table 2). No 



55 

changes were recorded in milk fat yield, whereas milk protein yield tended to increase 

linearly (P = 0.10) with increasing NALM supplementation. RPMet has long been 

promoted as an effective way to increase milk protein concentration and yield, and many 

studies have shown increases in milk protein concentration and yield when RPMet has 

been supplemented (Ordway et al., 2009; Patton, 2010; Osorio et al., 2013). For example, 

Rulquin et al. (2006) reported a linear increase in milk protein yield (962 to 1,003 g/d) 

and Wang et al. (2010) reported a linear increase in milk protein yield (870 to 920 g/d) 

upon supplementation of RPMet. Feed efficiencies based on yields of milk and 3.5% 

FCM tended to decrease (P = 0.07 and 0.05, respectively), while feed efficiency based on 

ECM yield decreased linearly, because ECM yield did not increase in relation to the 

increase in DMI. This is a significant parameter, as it helps define the efficiency and 

productivity of a dairy herd in converting feed inputs into saleable outputs. The linear 

decrease in feed efficiency (milk yield/DMI) from 1.31 to 1.22 coupled with increasing 

NALM supplementation in our study is below the average feed efficiency of 1.36 

reported by Britt et al. (2003). Although some production parameters in the current study 

increased, the decrease in feed efficiency suggests that NALM supplementation in mid to 

late lactation cows may not be economically beneficial when looking only at production 

parameters. 

 
Change of BW and Net Energy Utilization 

     No changes were seen in BW gain with supplementation of NALM (Table 3). 

However, there was a numerical increase (0.72 to 1.04 kg/d) in BW gain seen when 

comparing the control diet to the diet supplemented with 45 g/d of NALM, which  
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Table 3. Change of BW and net energy utilization of mid to late lactating Holstein dairy cows supplemented with varying doses of N-
acetyl-L-Met (NALM) 

Item 
NALM  Contrast1 

0 g/d 15 g/d 30 g/d 45 g/d SEM NALM L Q 
BW         

Initial, kg 724 726 724 714 16.4 0.47 0.21 0.29 
Mean, kg 739 732 744 736 16.5 0.18 0.77 0.95 
Gain, kg/d 0.72 0.30 0.97 1.04 0.372 0.31 0.21 0.40 

Calculated net energy values, 
Mcal/d 

        

Maintenance 11.3 11.3 11.4 11.3 0.22 0.11 0.44 0.67 
BW gain 2.93 2.50 5.77 4.68 1.826 0.40 0.22 0.82 
Milk 26.3 26.0 25.5 26.2 1.63 0.42 0.64 0.17 
BW gain + milk 29.3 27.9 32.0 31.6 2.62 0.37 0.19 0.79 
Total2 40.6 39.2 43.4 42.9 2.67 0.35 0.19 0.80 
NEL,3 Mcal/kg of DMI 1.40 1.36 1.41 1.36 0.076 0.77 0.73 0.92 

Net energy partitioning,  
% energy intake 

     

Maintenance 29.0 29.6 26.3 27.1 1.69 0.16 0.09 0.93 
BW gain 5.92 5.56 13.1 9.15 3.73 0.29 0.21 0.56 
Milk 65.3 66.0 59.2 62.3 3.25 0.18 0.15 0.60 
BW gain + milk 71.0 70.4 73.7 72.9 1.69 0.16 0.09 0.93 

1NALM = control (0 g/d) vs. NALM treatments; L = linear effect of increasing NALM; Q = quadratic effect of increasing NALM. 
2Net energy used for maintenance, BW change, and milk. 
3Calculated NEL = calculated total net energy, Mcal/d ÷ DMI (kg/d).
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suggests that supplementation of NALM may have played a role in BW gain. Information 

concerning the effects of RPMet supplementation on BW gain in ruminants is lacking, 

but some studies have reported increases in BW gain upon RPMet supplementation 

(Deetz et al., 1985; Oke et al., 1986). Due to the chemical makeup of NALM (an acetyl 

group and a Met molecule), it would stand to reason that supplementation of NALM may 

potentially have an impact on BW gain. It is well understood that Met is a limiting AA 

for growing cattle (Richardson and Hatfield, 1978) and, therefore, an increase in 

available Met will aid in protein deposition in the body (Loest et al., 2002). The role of 

Met in the formation of phospholipids through conversion of Met to SAM will also aid in 

fat deposition in growing cattle (Obeid and Herrmann, 2009). In addition, acetate is also 

recognized for its role as a carbon source for fat synthesis (Bauman and Griinari, 2001). 

The small number of animals (n = 8) utilized in this study may account for the lack of a 

significant effect on BW gain witnessed; however, understanding the energy partitioning 

of lactating dairy cows may help highlight the importance of the numerical increase in 

BW gain observed in the current study. 

     Supplementation of NALM did not influence net energy partitioning as a percentage 

of energy intake of BW gain and milk yield (Table 3). However, there was a numerical 

increase in the proportion of energy intake that was partitioned to BW gain where 

supplementation of NALM increased the percentage of energy intake partitioned to BW 

gain from 5.92% in the control diet to 9.15% in the diet supplemented with 45 g/d of 

NALM. The numerical increase in the percentage of energy intake that was partitioned to 

BW gain tended to have an effect on increasing the net energy partitioning toward BW 
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gain and milk yield combined (P = 0.09). The net energy consumed by a dairy cow can 

be utilized and partitioned to one of three physiological processes, maintenance, growth, 

and lactation. The efficiency at which each physiological process operates is different, 

and the partitioning of nutrients to each of these processes changes throughout lactation, 

as can be seen in a normal lactation cycle where milk production, DMI, and BW gain 

follow a curvilinear pattern (NRC, 2001). During a normal lactation cycle, DMI will lag 

behind milk production until maximum milk production is reached, at which point DMI 

will continue to increase for a period of time and then decrease in the same pattern as 

milk production (NRC, 2001). When the energy necessary for milk production can be 

obtained through feed intake alone, the lactating dairy cow will stop mobilizing body fat 

and protein reserves and begin to partition energy toward BW gain (Kirkland and 

Gordon, 2001). Kirkland and Gordon (2001) stated that this curvilinearity may be 

explained by the increased partitioning of nutrients and energy from milk production to 

BW gain. Therefore, it may be inferred that any influence on DMI in mid to late lactating 

dairy cows will have an effect on energy partitioning. Vandehaar and St-Pierre (2006) 

stated that either changes in diet composition or DMI can influence the partitioning of 

energy and nutrients from the mammary gland to other body tissues. For example, a study 

using mid lactation cows (70 ± 7 DIM) fed high-grain, low-fiber diets reported an 

increase in energy intake (10%) with most of that energy being partitioned toward BW 

gain rather than milk yield (Oba and Allen, 2000). As reported earlier, DMI in the current 

study linearly increased with increasing NALM supplementation, possibly explaining the 

effect on net energy partitioning to both BW gain and milk production. 
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     Stage of lactation also plays a major role in energy and nutrient partitioning. For 

instance, in early lactation, high-producing dairy cows partition 90 to 430 g/d of AA from 

tissue protein reserves to counteract the deficiency in ingested AA (Bequette et al., 2003). 

Later in lactation due to tissue sensitivity and substrate supply, an equivalent amount of 

AA will be partitioned back to the tissue protein reserves to replenish the loss accrued in 

early lactation (Bequette et al., 2003). Utilizing multiple regression analysis, Burt (1957) 

reported that only milk yield drove the partitioning of energy and nutrients, whereas 

Coulon and Remond (1991) and Kirkland and Gordon (2001) found that both DIM and 

milk yield directed the partitioning of energy and nutrients. Both increasing DIM and 

diminishing milk yield throughout the current study in mid to late lactation appear to 

have likely influenced the energy and nutrient partitioning of dairy cows when 

supplemented with NALM, channeling more energy into BW gain and, therefore, 

impacting the combined energy proportioned to BW gain and milk production. 

Regardless of the mechanism behind the partitioning of net energy and nutrients to both 

BW gain and milk production, an effect such as the one seen in the present study would 

be beneficial to the modern, high-producing dairy cow. As cows progress later into 

lactation, there is a competition for nutrients to be utilized for milk production, BW gain, 

and fetus development. Body weight gain is often overlooked, but is a crucial factor 

during lactation because it influences the longevity and fertility of high-producing dairy 

cows in subsequent lactations (Coffey et al., 2002). Thus, NALM supplementation 

appears to be beneficial in aiding mid to late lactating cows partition more energy to both 

BW gain and milk production, potentially increasing fertility and longevity. The lack of a 
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significant effect seen in the current trial, coupled with the numerical increase seen 

suggests more work needs to be done to assess the potential effects of NALM 

supplementation. 

 
Utilization of N 

     As anticipated because of the clear effects seen on DMI, cows fed the rations 

supplemented with varying doses of NALM consumed more N than those fed the control 

(linear effect; Table 4). A previous study performed by our group (Fagundes et al., 2016) 

did not find an increase in N intake upon supplementation of NALM. Traditionally, 

supplementation of RPMet products have not been shown to increase N intake because of 

the lowered dietary CP concentration in basal diets normally associated with RPMet 

supplementation (Leonardi et al., 2003; Broderick et al., 2009). Supplementation of 

NALM at varying doses had no effect on milk N excretion in the current study. As a 

result of the linear increase in N intake and the lack of response in milk N excretion after 

supplementation of NALM, milk N:N intake decreased linearly from 0.25 to 0.23. The N 

utilization efficiencies reported in the current study are relatively low compared to the 

average efficiencies (25 to 35%) reported in the literature (Chase, 1994; Hristov et al., 

2004) but fall within the normally accepted range (15 to 45%; Dijkstra et al., 2013). 

There are multiple studies that collaborate with the results of the current study that 

increased N intake decreases N utilization efficiency (Castillo et al., 2000; Kalscheur et 

al., 2006; Dijkstra et al., 2013). The lack of response in milk N when NALM was  
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Table 4. Utilization of N by mid to late lactating Holstein dairy cows supplemented with varying doses of N-acetyl-L-Met (NALM) 

Item 
NALM  Contrast1 

0 g/d 15 g/d 30 g/d 45 g/d SEM NALM L Q 
N intake, g/d 798 777 871 870 40.4 0.02 < 0.01 0.65 
Milk N,2 g/d 197 199 194 196 10.1 0.27 0.29 0.98 
Milk N:N intake3 0.25 0.25 0.23 0.23 0.011 0.04 0.02 0.82 
MUN, mg/100 mL 16.2 16.4 15.7 15.5 0.61 0.15 0.04 0.58 
BUN, mg/100 mL 18.7 20.5 18.7 18.6 1.32 0.10 0.40 0.10 
NH3-N,4 mg/100 mL 19.4 15.4 17.7 16.1 1.80 0.26 0.28 0.42 
Urinary N excretion,5 g/d 313 311 304 298 15.7 0.23 0.05 0.70 
Fecal N excretion,6 g/d 287 272 370 373 36.8 0.02 < 0.01 0.71 
Manure N excretion,7 g/d 600 583 674 670 33.8 0.03 0.01 0.77 

1NALM = control (0 g/d) vs. NALM treatments; L = linear effect of increasing NALM; Q = quadratic effect of increasing NALM. 
2Milk N (kg/d) = milk true protein (kg/d)/6.38 + MUN (kg/d). 
3Efficiency of use of feed N to milk N. 
4Ruminal ammonia-N. 
5Predicted using the equation: 0.026 × MUN, mg/100 mL × BW, kg (Wattiaux and Karg, 2004). 
6Predicted using the equation: N intake, g/d – urinary N excretion, g/d – milk N, g/d. 
7Manure N, g/d = urinary N excretion, g/d + fecal N excretion, g/d. 
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supplemented was related to the lack of response in milk production seen in the current 

study, suggesting that NALM was utilized elsewhere in the body tissues. 

     Supplementing NALM did not affect ruminal NH3-N concentration in spite of a 

significant increase in N intake by NALM supplementation (Table 4). Ruminal NH3-N 

concentration is a result of the balance between production (proteolysis) and assimilation 

(De Visser et al., 1997), and thus any efforts to maximize N utilization in the rumen 

should involve an optimal balance between the 2 metabolic processes. Yet, 

concentrations and components of dietary CP can influence microbial activity, as RDP 

supplies peptides, amino acids, and NH3-N derived from microbial proteolysis for use in 

microbial protein synthesis (Wallace et al., 1997). Given the fact that greater N input into 

the rumen associated with increased N intake as a result of NALM supplementation did 

not have an effect on NH3-N concentration, signifies that dietary N utilization in the 

rumen may have been manipulated due possibly to a degraded fraction of NALM in the 

rumen. 

     Concentration of MUN linearly decreased with supplementation of NALM (Table 4), 

and it ranged from 15.5 to 16.2 mg/100 mL, which is higher than the accepted, optimal 

range of 10 to 14 mg/100 mL (Wattiaux et al., 2005), but the slight reduction in MUN 

concentration with NALM supplementation (Appendix A) may have a biologically minor 

impact. However, it is noteworthy to indicate that the linear increase in N intake with 

increasing NALM supplementation did not correspond to MUN concentration. 

Supplementation of RPMet has been shown to decrease MUN concentration in multiple 

studies (Broderick et al., 2008; Wang et al., 2010; Arriola Apelo et al., 2014), but this 
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decrease in MUN concentration was associated with decreased N intake as a result of 

decreased CP in the diets supplemented with RPMet. For example, Broderick et al., 

(2008) tested 4 experimental diets with decreasing concentrations of CP (18.6 to 14.8%) 

and corresponding increases of supplemental RPMet (0 to 15 g/d). As CP decreased and 

RPMet supplementation increased, milk production and N utilization efficiency increased 

linearly, N intake decreased linearly, and concentrations of MUN decreased linearly (14.5 

to 7.9 mg/100 mL; Broderick et al., 2008). In a different trial in the same study conducted 

by Broderick et al. (2008), two levels of CP (17.3 and 16.1%) were tested with either 0 or 

10 g/d of RPMet. No effect of RPMet supplementation on MUN was reported (Broderick 

et al., 2008). This study collectively suggests that the effectiveness of RPMet would be 

minimal on decreasing MUN concentration. Rather, the changes in MUN concentration 

was a direct consequence of decreasing concentrations of CP in the diets while 

maintaining potential production. 

     Concentration of BUN showed a tendency to decrease (P = 0.10) in response to 

NALM supplementation, and urinary N excretion linearly decreased. Urea N found in 

blood, urine, and milk is derived from NH3-N in the rumen and, therefore, the amount of 

urea in urine is directly proportional to that of urea in blood which is proportional to 

MUN (Jonker et al., 1998). The decrease in urinary N excretion upon increasing 

supplementation of NALM in the present study suggests that NALM supplementation 

may have improved the AA balance in MP, and thus decreased deamination of absorbed 

AA, leading to a decrease in urinary N output (Wang et al., 2010). The linear decrease in 

urinary N excretion (Appendix A) with increasing NALM supplementation is impactful, 
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because urinary N is the most environmentally volatile form of N excreted (Varel et al., 

1999). Unlike the many factors that affect MUN, BUN, and urinary N, fecal N is directly 

correlated with DMI and N intake (Huhtanen et al., 2008). Therefore, because of the 

substantial increase in N intake, NALM supplementation linearly increased fecal N 

(Appendix A) as well as manure N excretions in our study. Hence, in view of overall 

consideration on environmental N management, a partial benefit by decreasing urinary N 

output by supplementing NALM would be discounted because of the increased N 

excretion in manure. 

 
Ruminal Fermentation Characteristics 

     Supplementation of NALM had no effect on ruminal pH, which ranged from 6.15 to 

6.23 (Table 5). Total VFA concentration was similar across treatments. Except a trend (P 

= 0.06) toward a quadratic response on valerate proportion, VFA composition did not 

differ among treatments. These results are consistent with other studies; Davidson (2006) 

reported minimal effects on ruminal fermentation in continuous cultures receiving RPMet 

supplementation because of limited impact on energy metabolism in the rumen from 

traditional RPMet products. The current study, along with previous studies, suggest that 

the effects of RPMet including NALM on ruminal VFA profiles is minimal.  

     In spite of the minimal impact on VFA profiles in the rumen, NALM supplementation 

linearly increased MCP yield (Table 5). Supplementation of RPMet traditionally has not 

had an impact on microbial production, with the exception of Met analogues such as 

HMBi because of their ruminal degradability. Several studies have shown positive effects  
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Table 5. Ruminal fermentation characteristics of mid to late lactating Holstein dairy cows supplemented with varying doses of N-
acetyl-L-Met (NALM) 

Item 
NALM  Contrast1 

0 g/d 15 g/d 30 g/d 45 g/d SEM NALM L Q 
Ruminal pH 6.23 6.15 6.21 6.22 0.066 0.63 0.82 0.31 
Total VFA, mM 104 110 102 108 4.1 0.14 0.80 0.93 
Individual VFA,2 mM         
   Acetate (A)  63.3 66.9 63.6 66.7 3.01 0.37 0.43 0.90 
   Propionate (P) 22.6 23.8 21.3 23.9 1.50 0.33 0.80 0.54 
   Butyrate 13.0 14.2 13.4 12.9 0.77 0.35 0.66 0.14 
   Valerate 1.90 2.04 2.01 1.91 0.910 0.27 0.99 0.06 
   Isobutyrate 1.31 1.27 1.22 1.29 0.125 0.54 0.54 0.25 
   Isovalerate 1.84 1.75 1.74 1.80 0.167 0.90 0.76 0.50 
A:P 2.83 2.71 2.64 2.60 0.185 0.54 0.16 0.77 
MCP,3 g/d 1835 1758 1923 1891 78.6 0.02 0.05 0.50 

1NALM = control (0 g/d) vs. NALM treatments; L = linear effect of increasing NALM; Q = quadratic effect of increasing NALM. 
2Expressed as mol/100 mol. 
3Microbial protein production, g/d = ({[purine derivatives production – (0.385 × BW0.75)]/0.85} × 70 × 6.25)/(0.13 × 0.83 × 1,000) 
(Janicek et al., 2008).
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of HMB and HMBi supplementation on aspects of ruminal fermentation, including 

increases in total concentrations of VFA (Martin et al., 2013), NDF digestion (Noftsger et 

al., 2005), and MCP yield (Lee et al., 2015b). It is unclear how NALM supplementation 

increased MCP yield in the current study. It has been reported the efficiency of MCP 

yield increases when AA or peptides are used as a source of N rather than ammonia 

(Maeng et al., 1976). Multiple in vitro studies have shown a positive effect of AA 

supplementation on microbial growth (Maeng et al., 1976; Argyle and Baldwin, 1989; 

Russell and Strobel, 1993). In vivo studies have also shown similar results (Lundquist et 

al., 1985; Rooke and Armstrong, 1989). Studies concerning the effects of Met 

specifically on microbial growth are sparse, but it has been reported that rumen microbes 

utilize Met for different physiological aspects such as incorporation into cellular material 

(Patterson and Kung, 1988) and lipid biosynthesis (Patton et al., 1970). Based on the 

aforementioned data, it may be concluded if any amount of NALM was degraded in the 

rumen and converted to Met, then the available Met may stimulate MCP production. 

     A continuous culture study estimated the ruminal protection of NALM to be 67% 

(Windschitl and Stern, 1988), which was the same rate we found for the NALM product 

used in the current study after a 24-h incubation using an in vitro batch culture incubation 

(data not reported). In order for NALM to be degraded or hydrolyzed, the aminoacylase 

enzyme needs to be present (Baxter et al., 2001). This enzyme is found in multiple 

mammalian tissues (Giardina et al., 1997), but studies involving its presence or lack 

thereof in the rumen were not found. It has been reported, however, that certain 

microorganisms can produce this enzyme (Tripathi et al., 2000), including bacteria that 
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reside in the rumen. Aminoacylase has been purified from Bacillus spp. and 

Pseudomonas spp. (Story et al., 2001), which both reside in the rumen. Other rumen 

dwelling bacteria such as Aspergillus spp. and Alcaligenes spp., can also produce the 

aminoacylase enzyme (Gentzen et al., 1980; Wakayama et al., 1996). There is no in vivo 

evidence currently in the literature to validate the in vitro findings. Therefore, more 

research needs to be done on the prevalence of the aminoacylase enzyme in the rumen 

and the possible effect of its presence on NALM degradation and partial conversion to 

Met in the rumen. 

 
Plasma Metabolite and AA Profiles 

     Supplementation of NALM did not have an effect on plasma concentrations of NEFA, 

BHB, and glucose (Table 6), but it led to a trend toward a linear increase in Met (P = 

0.08), a linear increase in Gly, and a quadratic increase in Ala concentration. As plasma 

Met concentration provides a qualitative measure of the postruminal delivery of Met from 

RPMet products (Blum et al., 1999), it is important to note the relationship between 

plasma Met concentration and RPMet supplementation. In a study done by Koenig and 

Rode (2001), RPMet was supplemented at 20 and 63 g/d, and as expected a 32.5 and 

65.5% increase in plasma Met concentration above the control diet (0 g of RPMet) was 

observed for the 20 and the 63 g/d RPMet supplemented diet, respectively. The ranges 

reported by Koenig and Rode (2001) were similar to the increase in plasma Met 

concentration (51 to 71%) the authors reported in the same study when Met was infused 

into the duodenum at similar rates. Blum et al. (1999) also reported a linear increase in 

plasma Met concentration (16.6 to 144.8 µmol/L) 5 d after supplementation with 60 and 
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67 g/d of RPMet products, when compared with plasma Met concentration 3 d before 

supplementation. The relatively small increase in plasma Met concentration with NALM 

supplementation recorded in the present trial may have occurred because Met 

requirements for other physiological functions, such as BW gain, were not met. It is 

reported in the literature when available EAA are below their requirement, the plasma 

EAA concentrations will either increase marginally or not increase at all (Broderick et al., 

1974; Bergen, 1979; Koenig and Rode, 2001). Very little information exists concerning 

the relationship between duodenal AA supply and plasma AA concentrations and the 

factors affecting that relationship and the control of the removal of plasma AA (Patton et 

al., 2015). Interestingly, Patton et al. (2015) hypothesized that Met supplementation may 

stimulate MCP production which in turn would demand more removal of plasma Met, 

which supports the increase in MCP production discussed earlier in this paper and may 

account for the modest increase in plasma Met concentrations seen in the current study. 
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Table 6. Blood chemistry parameters and AA concentrations in plasma of mid to late lactating Holstein dairy cows supplemented with 
varying doses of N-acetyl-L-Met (NALM) 

1NALM = control (0 g/d) vs. NALM treatments; L = linear effect of increasing NALM; Q = quadratic effect of increasing NALM.    
table continues 

Item, µM 
NALM  Contrast1 

0 g/d 15 g/d 30 g/d 45 g/d SEM NALM L Q 
NEFA,2 mEq/L 0.08 0.09 0.08 0.09 0.008 0.10 0.43 0.79 
BHB, mg/100 mL 5.03 4.47 4.71 4.73 0.384 0.25 0.46 0.12 
Glucose, mg/100 mL 40.8 41.8 42.2 41.7 1.04 0.34 0.22 0.17 

EAA3         
   His 63.4 61.6 65.1 65.2 3.09 0.26 0.17 0.53 
   Ile 104 96.0 102 98.8 5.08 0.13 0.44 0.36 
   Leu 177 162 177 171 10.5 0.06 0.86 0.35 
   Lys 87.6 88.7 89.0 86.7 5.68 0.97 0.89 0.65 
   Met 20.8 22.1 23.0 22.5 0.93 0.09 0.08 0.22 
   Phe 87.9 78.6 81.0 78.6 3.76 0.20 0.11 0.33 
   Thr 59.6 57.4 58.5 57.4 3.71 0.78 0.48 0.74 
   Val 242 231 339 234 53.4 0.38 0.72 0.35 
   Total EAA 840 795 934 809 57.9 0.26 0.84 0.46 
NEAA4         
   Ala 172 162 170 177 7.5 0.09 0.22 0.04 
   Asp 21.9 22.1 22.5 17.7 5.05 0.76 0.46 0.49 
   Glu 29.9 29.0 33.4 32.4 3.59 0.48 0.24 0.99 
   Gly 171 180 184 188 10.0 0.11 0.02 0.64 
   Pro 82.3 79.6 86.1 85.0 4.56 0.20 0.16 0.72 
   Tyr 105 99.9 102 105 5.0 0.81 0.94 0.37 
   Total NEAA 579 566 591 601 20.9 0.26 0.12 0.38 
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2NEFA = nonesterified fatty acids. 
3EAA = essential AA. 
4NEAA = non-essential AA



71 

CONCLUSIONS 

     The developmental NALM product was supplemented in a typical lactation diet in the 

current study with the expectation of improving the conversion of feed inputs into 

production outputs through more efficient partitioning of nutrients and energy in mid to 

late lactating Holstein dairy cows. A linear increase in DMI was observed with increasing 

supplementation of NALM, which may potentially be related to a linear increase in MCP 

yield. However, we have yet to investigate the potential stimulatory effects of NALM 

supplementation on the rumen microbiota and also the presence and concentration of the 

aminoacylase enzyme in the rumen, which may contribute to identifying additional 

evidence for the positive effect of supplementing NALM in lactation diets. The increase 

in DMI allowed for more nutrients and energy to be partitioned to different physiological 

processes, but because of the stage of lactation of cows tested in the present study, the 

extra energy ingested was partitioned to both milk production and BW gain which 

resulted in a quadratic increase in milk yield with an increase in milk protein yield. 

Caution should be exerted to extrapolate overall data of BW and net energy utilization in 

the current study due to the small number of animals (n = 8) and the short length of data 

collection and, therefore, further investigation is needed to confirm our data with a 

relatively longer period of experimentation and with a larger number of experimental 

animals. From an environmental standpoint, the decrease in urinary N excretion due to 

NALM supplementation highlights an additional benefit because of the decrease in the 

most volatile form of ammonia excreted by cows, but with the linear increase in DMI, 

fecal N excretion also linearly increased, possibly counteracting the beneficial effect of 
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decreasing urinary N excretion. The increase in DMI without a subsequent increase in 

milk yield decreased the N utilization efficiency in the current study, which opposes the 

general goal of the dairy industry today. Overall, the current study suggests that NALM 

supplementation has a positive impact on increasing milk protein yield and energy 

partitioning of dairy cows in mid to late lactation by aiding in BW gain, potentially 

affecting the fertility and longevity of high-producing dairy cows. 
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APPENDICES 

Appendix. The relationship between N intake and excretion of N into milk, feces, or 
urine by mid to late lactating Holstein dairy cows supplemented with N-acetyl-L-Met 
(NALM) with varying doses (n = 32 on individual data set). 
 

 

y = 0.1974x + 34.871
R² = 0.41, P < 0.01

y = -0.0161x + 316.72
R² = 0.01, P = 0.83

y = 0.8187x - 351.59
R² = 0.77, P < 0.01
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