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Abstract

Real Simple Lie Algebras:

Cartan Subalgebras, Cayley Transforms, and Classification

by

Hannah M. Lewis, Master of Science

Utah State University, 2017

Major Professor: Dr. Ian Anderson
Department: Mathematics and Statistics

The differential geometry software package in Maple has the necessary tools and
commands to automate the classification process for complex simple Lie algebras. The
purpose of this thesis is to automate the classification process for real simple Lie alge-
bras. This classification is difficult because the Cartan subalgebras are not all conjugate
as they are in the complex case. For the process of the real classification, one must
first identify a maximally noncompact Cartan subalgebra. The process of the Cayley
transform is used to find the maximally noncompact Cartan subalgebra. This Cartan
subalgebra is used to find the root space decomposition and from that, the simple roots
for the given real simple Lie algebra. With this information, we can then create a Sa-
take diagram, which is unique up to isomorphism for a real simple Lie algebra. Then we
match our given real Lie algebra’s Satake diagram to a Satake diagram of a known real

Lie algebra. The programs explained in this thesis complete this process of classification.

(241 pages)



v

PUBLIC ABSTRACT

Real Simple Lie Algebras:

Cartan Subalgebras, Cayley Transforms, and Classification

Hannah M. Lewis

The differential geometry software package in Maple has the necessary tools and
commands to automate the classification process for complex simple Lie algebras. The
purpose of this thesis is to write the programs to complete the classification for real sim-
ple Lie algebras. This classification is difficult because the Cartan subalgebras are not
all conjugate as they are in the complex case. For the process of the real classification,
one must first identify a maximally noncompact Cartan subalgebra. The process of the
Cayley transform is used to find this specific Cartan subalgebra. This Cartan subal-
gebra is used to find the simple roots for the given real simple Lie algebra. With this
information, we can then create a Satake diagram. Then we match our given algebra’s
Satake diagram to a Satake diagram of a known algebra. The programs explained in

this thesis complete this process of classification.
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Chapter 1

Introduction

Sophus Lie began the study of what we would later call Lie theory in about 1870.
A general classification for all Lie algebras does not exist, but mathematicians have been
working on this question since the inception of Lie theory. There are three main types of

Lie algebras: solvable, semi-simple, and those that are neither solvable or semi-simple[1].

The classification of semi-simple Lie algebras easily reduces to the classification of
simple Lie algebras, that is, non-abelian Lie algebras whose only ideals are () and itself.
The classification of complex simple Lie algebras was initiated by Wilhelm Killing in
1888-90 and completed by Elie Cartan in his Ph.D. thesis in 1894[1]. He then obtained
the complete classification of real simple Lie algebras. In 1947, Eugene Dynkin provided
a schematic way of summarizing the results of the complex classification which was

extended to the real case by Satake in 1960.

Killing and Cartan classified simple Lie algebras into five different classes. The first
four families are called the simple classical Lie algebras: the special linear algebras, the
odd orthogonal algebras, the symplectic algebras, and the even orthogonal algebras. We
call these A,,, B, Cy,, and D, respectively. There are five exceptional algebras, Fg, F7,
Eg, Fy, and Gs.

To classify complex simple Lie algebras, we start with a Cartan subalgebra and the
corresponding root space decomposition. Once the Lie algebra is decomposed into the
root spaces, the expression of the positive roots in terms of the simple roots allows the
construction of a Dynkin diagram. Because all Cartan subalgebras of complex simple
Lie algebras are conjugate the root space, and therefore, the structure of the Dynkin
diagram does not depend on the choice of the Cartan subalgebra. The classification

theorem states that for simple Lie algebras there is a one to one correspondence between



a complex simple Lie algebra and admissible Dynkin diagrams. The differential geometry

software package in Maple already has the tools to automate this classification process.

The classification for real simple Lie algebras is more difficult because the Cartan
subalgebras are not all conjugate. At the end of this section of the introduction, we will
give some examples of inequivalent Cartan subalgebras. Because the Cartan subalgebras
are not all equivalent, this means different Cartan subalgebras for the same real Lie
algebra result in a different root space decomposition with different properties, e.g., the
number of pure imaginary roots depends on the choice of Cartan subalgebra. Because
of this we need to use a different method to classify real simple Lie algebras than is used

to classify complex simple Lie algebras.

The classification of real simple Lie algebras has two steps. The first is to choose an
appropriate Cartan subalgebra. We call this Cartan subalgebra maximally noncompact.
The precise definition of a maximally noncompact Cartan subalgebra will be given later
in chapter 3(3.3.7). A Cayley transform provides a sequence of steps by which a given
Cartan subalgebra can be transformed into a maximally noncompact Cartan subalgebra.
Given a maximally noncompact Cartan subalgebra, one finds the root space decomposi-
tion as before. The second step is to identify the simple roots which are pure imaginary
and the simple roots which are Satake associates. The precise definition of Satake as-
sociates will be given later in chapter 3 (3.3.8). From this information we can decorate
the Dynkin diagram by coloring the dots black for every imaginary root and adding red
arrows between the Satake associates. We call this decorated Dynkin diagram a Satake
diagram. The classification theorem for real simple Lie algebras states that there is a

one to one correspondence between a real simple Lie algebra and it’s Satake diagram.

The purpose of this thesis is to write a computer program which automates the
process of classifying real simple Lie algebras. We will start by using a Cayley transform
to find the maximally noncompact Cartan subalgebra. Then this Cartan subalgebra will
be used to find the root space decomposition. From that we will find the imaginary and
complex roots as well as the roots that are Satake associates. This information will be
used to match our given algebra to a Satake diagram of a known algebra. Then the

classification is complete.

The thesis is organized as follows:



In the second chapter we review the necessary definitions for Lie algebras as well
as examples that are helpful to understand the project. We also review many concepts

from linear algebra that are essential to the research.

In the third chapter we review some of the basic theory of semi-simple Lie algebras.
We give the necessary definitions and give examples that are helpful to understanding

the project.

In the fourth chapter we look at the matrix representations of the four classical
semi-simple Lie algebra classes. We start with the group operation and show the corre-

sponding relationship for the Lie algebra.

In the fifth chapter we give the details of the Cayley transform. Using the Lie
algebras sl(2) and so(4, 2), the Cayley transform is explained with theory and examples.
Then we show how the Satake diagram is constructed using the information obtained
from the maximally noncompact Cartan subalgebra that is found from the Cayley trans-

form.

In the sixth chapter we give the low dimensional isomorphisms that were confirmed

with the classification program.

In chapter seven we give an explanation of the programs with a Maple demonstra-

tion.

As we remarked earlier, Cartan subalgebras are not all equivalent in the real case.
Next we will give two examples of some of these nonequivalent Cartan subalgebras. Then
we conclude chapter 1 by giving a technical overview of the classification problem in the
real case.

Note: For this paper we will notate (x,y, z) = span{z,y, z}.

1.1 Examples
Example 1.1.1. si(2)

Let’s start with the Lie algebra si(2) with the following multiplication table:



sl(2) e1 €9 es
el 0 2e9 | —2e3
€9 —2e9 0 el
es 2e3 | —eq 0

When viewing sl(2) as a complex Lie algebra the following Cartan subalgebras are

all equivalent:

b1 = (e1), (1.1)
by = (es — e3), (1.2)
b3 = (e2 +e3), (1.3)
by = (—e1 + des — Zeg>. (1.4)

The Cartan subalgebra b; is equivalent to ha by the automorphism ¢; defined by
the mapping

1
o1 : (61,62,63) — (Ieg — Teg ,1(61 —Teg — [63) ,e1+ Ieg +I€3> .

The Cartan subalgebra h; is equivalent to hs by the automorphism o defined by
the mapping

1
o : (e1,e2,6e3) — <62+63 ,1(61 —ex+te3),e1+ e —63> .

The Cartan subalgebra b; is equivalent to h4 by the automorphism ¢3 defined by

the mapping

I
@3 : (e1,e2,e3) — (8 (4de1 — 16eg + 5es) ,

1
g (2061 — 16(1 — 2[)62 + 5(1 + 21)63) ,

1 5
— —4(1 —(1— .
10 <561 ( +2[)62 + 4( 2[)63))



The Cartan subalgebra ho is equivalent to h4 by the automorphism 4 defined by
the mapping
45 V5

P4 : (61762763) — (562 + 763,

— §<¢5+ er + é(s +/5)es — %@ +V5)es,

- i(\/g— l)e; — é(5 —V5)ez + %(5 - \/5)63)

Now, thinking of sl(2) as a real Lie algebra, we compute the restriction of the

Killing form to the Cartan subalgebra for each of the four cases above:

k(h1) = [8];
k(h2) = [-8],
k(h3) = [8];
k(ha) = [-32]

If ¢ : g — g is an automorphism of g mapping one Cartan subalgebra §) to another
Cartan subalgebra h, then the restriction of the Killing form to h and § will have the
same signature. In fact, in many cases the signature of the Killing form completely

distinguishes all inequivalent Cartan subalgebras.

Since the signature of the Killing form for h; and ho are different, these are in-
equivalent Cartan subalgebras. Because the signature of the Killing form is equal to one
for both h; and b3, these Cartan subalgebras are equivalent. Furthermore, we see that
ho and b4 are equivalent because the signature of the Killing form is negative one for

both.

Further verifying this, we inspect the automorphisms @9 and ¢4. These automor-
phisms between Cartan subalgebras that are equivalent in the real case are comprised of
real numbers while the automorphisms ¢ and ¢3 that are between inequivalent Cartan

subalgebras in the real case are complex.

In the classification of real simple Lie algebras, a Cayley transform is used to

move from one Cartan subalgebra to another. In this case, if we started with the Cartan



subalgebra hy = (e —e3), then the Cayley transform would move this Cartan subalgebra

to b3 = <€2 + €3>.

Example 1.1.2. sp(4,R)

Thinking of sp(4,R) as a complex Lie algebra the following Cartan subalgebras are

all equivalent:

b1 = (e1,e4), (1.5)
b2 = (e1 — eq, €6 — €9), (1.6)
bs = (es — es, e7 — e10)- (1.7)

Now, thinking of sp(4, R) as a real Lie algebra, we compute the restriction of the

Killing form to the Cartan subalgebra for each of the four cases above:

(12 0
k(hl) = )

0 12

24 0
k(h?) = )

0 -2

12 0
k(bs) =

0 12

Because the signature of the Killing form is equal to two for h, zero for ho and
negative two for hg these Cartan subalgebras are all inequivalent. Again, every Cartan

subalgebra will be equivalent to one of these three Cartan subalgebras.

In the classification of real simple Lie algebras, a Cayley transform is used to move
from one Cartan subalgebra to another. If we started with the Cartan subalgebra h, a
Cayley transform would move this to a Cartan subalgebra equivalent to hy. Similarly,

if the Cayley transform were applied to ho, the result would be equivalent to hs.



1.2 Technical Details
In order to understand the structure of a real semi-simple Lie algebra, we begin

with any Cartan subalgebra . Let

g:b@ga

a€A

be the corresponding root space decomposition done over the complex numbers. From
the root space decomposition we construct the Cartan decomposition. This is a real
decomposition. That is, t is a real subalgebra and p is a real subspace of g. The Cartan
decomposition is

g=tDdp.

For this decomposition the following bracket relations hold:

Lt [tLplCp, [pp]lCt

Moreover, the Killing form of g is negative definite on t and positive definite on p. Then
the compact part of the Cartan decomposition, t is a subalgebra of g. The noncompact
part p is not a subalgebra of g, but is a subspace of g. An important property of this
construction is that the Cartan subalgebra b is aligned with the Cartan decomposition

in the sense that

h=@{OnNYo®bNp).

A root is imaginary if every component is pure imaginary or zero. A root « is
noncompact if g, lies completely in p. If an imaginary noncompact root exists for this
Cartan subalgebra, then the Cayley transform needs to be applied to find the maximally
noncompact Cartan subalgebra. That imaginary noncompact root is used to construct

a new Cartan subalgebra b whose intersection with p goes up by one dimension.

When the intersection of the Cartan subalgebra with p is of maximal dimension,
then the Cartan subalgebra is said to be maximally noncompact. This maximally non-
compact Cartan subalgebra will have the minimum number of pure imaginary roots.
The root space decomposition can then be computed from this new Cartan subalgebra.

The simple roots are then found from the root space decomposition.



The simple roots are labeled as either imaginary or complex. We then determine
the Cartan matrix for the Lie algebra and transform it to it’s standard form. This allows
us to order the simple roots in the standard order. Then the simple roots are in the
order that their corresponding dots appear in the Satake diagram. For each simple root
that is pure imaginary, or has all imaginary or zero entries, the dot is colored black. If
the root is not pure imaginary but is complex or real, the dot is white. If a simple root
is the Satake associate of another simple root, then the dots represented by these roots

are connected by a red arrow.

The Satake diagram that has been constructed in this way is unique to the Lie
algebra up to isomorphism. This completes the brief technical details of the algorithm

for the classification of real semi simple Lie algebras.



Chapter 2

Lie Algebras: Definitions and Concepts

2.1 Algebras: Definitions and Concepts

This chapter will review the definitions, concepts, and examples that are most
helpful in discussing semi-simple Lie algebras. We will begin our discussion with a few
basic definitions and concepts of Algebras. This will be followed in the next chapter
by the major Lie algebra definitions needed for understanding the theory behind the

classification of real simple Lie algebras.

Definition 2.1.1. Algebra
An algebra is a vector space A over a field F' that has a multiplicative operator, * :

A x A — A that satisfies the following two conditions:

1. right and left distributivity

(y+2)xz=y*xr+2%x2

xx(y+z)=c*xy+x*z

2. scalar multiplication

Example 2.1.1. Matrices

Let M, (F) be the set of square n x n matrices. Let A,, B, € M,(F). Then the
sum of two square n X n matrices A,, + B,, = Cy,, where C,, € M, (F). So, M, is closed
under addition. Let k € R, with k- A, = D,,. Then D,, € M,(F) and M, is closed

under scalar multiplication. So, square matrices are a vector space over a field F'.
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Define matrix multiplication the usual way (AB);; = > ;_; AixBji with A,, By, E,, €
M, (F). Then (A, +By)*E,, = Ap*En+BpxE, and E,*(A,+By,) = E,xA,+E,xB,, by
the properties of matrix multiplication and the distributive property of matrices. Also
we can see that k- (A, * B,) = (k- A,) * B, = A, * (k- By,) by the associativity of
matrices. Then the properties of an algebra are satisfied by the square n x n matrices.

Thus the square n x n matrices are an algebra.

Definition 2.1.2. Lie Algebra
A Lie algebra is a vector space g over a field F' with a map [-,-] : g X g — g called the

Lie bracket, such that the following properties are satisfied:

1. bilinearity
[ax 4+ by, 2] = alx, 2] + by, 2], [z,ax + by] = az, z] + b[z, y];
2. skew symmetry
[z, 2] = 0 which implies [z,y] = —[y, z] for all z,y € g;
3. the Jacobi identity
[z, [y, 2]] + |2, [, y]] + [y, [2,z]] =0 for all x, y, z € g.

Example 2.1.2. Associative Algebra

Let (g, *) be an associative algebra. Let z,y € g. Define [z,y] = zxy —y*x as the

commutator, then (g, [,-]) is a Lie algebra.

We need to show that an associative algebra satisfies the properties of a Lie algebra

under the above multiplication. First we show bilinearity. Let z,y,2 € g, a,b € R, then

[ax + by, z] = (ax + by) * z — z * (ax + by)

= (az) *x z 4+ (by) * z — z * (ax) — z * (by)

a(x*xz) —a(zxx)+bly*xz) —b(zxy)

aaxz—z%2) + by *z—z%y)

= a[z, z] + by, z].
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Similarly it can be shown that, [z, ax + by| = a[z, ] + b[z, y].

Next, we show skew symmetry. With =,y € g,

[,z =xxz—xx2=0

and

[z,yl =xxy—yxzx

=—y*xr+T*y
= —(yxz—3%y)

Finally, we show the Jacobi identity. With x,y,z € g

[z, [y, 2]]+[2, [z, 9]l + [y, [z, 2]] =
=lr,yxz—zxy|+[z,exy—yxz|+ [y, 2%z —x % 2]
=rx(yxz—zxy)—(yxz—zxy)xx+z*(zxy—yxx)—

—(zxy—yxx)kztyx(zxx—x*xz)—(z2xx—T*2)*y
ST RYRZ —TRZAY —YRZHKT+2HRYRTF 22X T Y — 2 %Y *xT—
—THYRZ T YXT R ZFYRZHRT —YXT kL — 2 T *Y+T*k2Z*Y
STRYFRZ—TRYFRZHZHRYRT —ZXY ] T+ 2ZXT*Y — 2% TkY+
TYRTHZ — Y T2 FY*2Z*T —Y*ZRkT T H2xY —T*k2Z*xY

=0.

So, g is a Lie algebra.
Example 2.1.3. si(2)
In particular, let g be the space of 2x2 trace free matrices. We know from example

2.1.1 that the set of 2x2 matrices form an algebra. Because matrices multiplication is

associative, as long as there is closure under the Lie bracket, we know from the above
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example that this is a Lie algebra. A basis for g is

€1 = y €2= y €3 =

Let A and B be matrices. For matrices the commutator [4, B] = AB — BA is the
Lie bracket. We calculate

[ 1 0 01 01 1 0
[e1, e2] = -

i 0 -1 00 0 0 0 -1

B [ 01 ] 0 -1

- i 00 | - 0 0

B 0 2 ]

- i 00 |

= 2e9.

Similarly, it is calculated that [e1,e3] = —2es and [eg, e3] = e1. These results can be

summarized in the following table

g €1 €2 €3
el 0 2e9 | —2e3
€9 —2e9 0 €1
€3 263 —€1 0

Thus, g is a Lie algebra.

Example 2.1.4. Heisenberg Algebra

The Heisenberg algebra ns is the algebra of 3 x 3 strictly upper triangular matrices

0 a c
A=10 0 b
0 0 O
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If Ay, Ay € ng then,

0 ar C 0 as Co 0 as C9 0 ar C
[A1,Al=10 0 b 0 0 by |—10 0 by 0 0 b
0 0 O 0 0 O 0O 0 O 0 0 O

0 O a1b2 - a2b1
=100 0
0 0 0

A basis for the Heisenberg algebra is

010 0 01 0 00
etr=10 0 0],e2=]0 0 0}],e3=1]0 0 1
0 00 0 00 0 0O

Then, by computing the Lie bracket, we get the multiplication table

ng €1 €o | €3

€1 0 0 €9

e 0 00

es ||l —eo | 0| O

Thus, the Heisenberg algebra is a Lie algebra.

2.2 Basic Properties of Lie Algebras

Definition 2.2.1. Lie Algebra Homomorphism

Let g and b be Lie algebras. A Lie algebra Homomorphism is a linear map ¢ between
g and b so that: ¢ : g — b and ¢([z,y]) = [¢(z), d(y)]. In other words, it is a linear

transformation which preserves the bracket relationship.

Definition 2.2.2. Lie Algebra Isomorphism
Let ¢ be a Lie algebra homomorphism. If ¢ is also a bijective mapping, then ¢ is a Lie

algebra isomorphism.

Example 2.2.1. si(2)
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Let’s look at the Lie algebra from 2.1.3 with the multiplication table under the Lie

bracket relationship

sl(2) el €9 es
el 0 2e9 | —2e3
€9 —2e9 0 e1
es 2e3 | —eq 0

Then let’s look at a different Lie algebra with the following multiplication table under

the Lie bracket relationship:

sp(2) || fi f2 I3
fi 0 2fs | —2f2
fo | —2fs| O 2f1
I3 2fa | =2fr| O

Define ¢ : sp(2) — sl(2) by ¢(f1) = —e1, ¢(f2) = ez — ez, ¢(f3) = e2 + e3.

Then we calculate

[9(f1), &(f2)] = [—e1,e3 — ea] = —[e1, e3] + [e1, ea] = 25 + 2e2 = 2(e2 + e3) = H(2f3)
[(f1), &(f3)] = [—e1,e2 + e3] = —[e1, ea] — [e1, €3] = —2e3 + 2e3 = —2(e3 — e2) = H(—2f2)
[D(f2), p(f3)] = [e3 — €2, €2 + €3] = [e3, e + €3] — [e2, €2 + €3] =

= [e3, ea] + [e3,e3] — [e2, €2] — [e2,e3] = —e1 —e1 = —2e1 = P(2f1).

So, ¢ is a bijective homomorphism that preserves the bracket relationship. Then we can

say that there is an isomorphism between s/(2) and sp(2).

Definition 2.2.3. Lie Algebra Automorphism

A Lie algebra Automorphism is a isomorphism H : g — g.

Remark 2.1. The inner automorphism group of a complex Lie algebra g is the subgroup

of the automorphism group of g generated by the automorphisms of the form

2

d
ead”:1+adx+a2—‘x+...
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ad

for x € g where e*™* is a finite sum. We will talk about how to define ad, later in this

chapter. 2.3.1

Remark 2.2. An automorphism of a group G is a one-to-one mapping in GG. It represents

an isomorphism of a group with itself. If the inner automorphism H(a) : a — z~ lax

maps a onto itself for all x € G, then «a is called self conjugate.

Definition 2.2.4. Lie Subalgebra
Given a Lie algebra g, a subspace a C g is a Lie subalgebra if a is closed under the

bracket [-,-]. That is, if for all z,y € a, [x,y] € a, then a is a Lie subalgebra of g.

Definition 2.2.5. Ideal
A subspace a of a Lie algebra g is said to be an ideal if for any x € a and for any

y € g,[xyl€ a.
Properties 2.2.1. Any ideal is also a Lie subalgebra.
Properties 2.2.2. Every Lie algebra g has two trivial ideals {0} C g and g C g.

Example 2.2.2. si(2)

For the Lie algebra from example 2.1.3, with the following multiplication table:

sl(2) el € es
el 0 2e9 | —2e3
€9 —2e9 0 el
es 2e3 | —eq 0

Let (e1,e2) = a. Because the bracket [e1, ea] = 2eo and 2es € a, then a is closed
under the Lie bracket and is a subalgebra of sl(2). Since [e1, e3] = —2e3 and —2e3 ¢ a,

then a is not an ideal.

Let (e2,e3) = b. The Lie bracket [es, e3] = e1 and because e; ¢ b, (e, e3) is not a

subalgebra of sl(2).

Definition 2.2.6. Radical

The radical of a Lie algebra is the largest solvable ideal of that Lie algebra.

Definition 2.2.7. Abelian Lie Algebra
A Lie algebra g is called abelian if the Lie bracket equals zero for all elements x,y € g.

That is, for all z,y € g,[x,y]=0.
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Example 2.2.3. s0(2)

For the 2 x 2 skew-symmetric matrices, so(2), there is only one possible generator

up to scaling, which is

0 -1
e1 =
1 0
We calculate the Lie bracket
0 —1 0 -1 0 -1 0 -1 10 1 0 0 0
[61,61]: - = - =
1 0 1 0 1 0 1 0 01 0 1 0 0

So, the Lie algebra so(2) is an abelian Lie algebra.

2.3 Adjoint Representation and Ad
Definition 2.3.1. Adjoint Action

Let g be a Lie algebra with x € g. Then the adjoint representation is the linear
transformation ad(z) : g — g that is defined by: ad(x)(y) = [z,y] V =,y € g. We call

the map ad(z) : g — g the adjoint action of the element x on g.

Example 2.3.1. sl(2)

Let’s look at the Lie algebra from 2.1.3 with the multiplication table under the

bracket relationship

sl(2) el €2 €3
el 0 2e9 | —2e3
€9 —2es 0 e1
es 2e3 | —eq 0

Then we calculate that ad(e1)(e1) = [e1,e1] =0, ad(er)(e2) = [e1,e2] = 2e2, and ad(e1)(e3) =
[e1,e3] = —2e3. The coefficients of these make up the column vectors in the adjoint rep-

resentation matrix for ad(e;).
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This means that

0 0 O
ad(er) =10 2 0
00 —2
Similarly, ad(e2)(e1) = [e2,e1] = —2e2, ad(ez)(e2) = [e2,e2] = 0, and ad(ez)(e3) =

[e2, e3] = lej. This gives the adjoint matrix for es to be

0 0 1
ad(e2) = | =2 0 0
0O 0 0
Finally, ad(es)(e1) = [es,e1] = 2e3, ad(e3)(e2) = [e3,ea] = —le;, and ad(es)(e3) =

[es, e3] = 0. This gives the adjoint matrix for ez to be

0 -1 0
ad(es) =10 0 0
2 0 0

Properties 2.3.1. The adjoint representation satisfies the property

[ad(z), ad(y)](2) = ad([z, y])(2)-

To show this, first we note that by Jacobi identity [z, [y, 2]] + [y, [z, z]] + [z, [z, y]] = 0 =

[z, [y, 2]] = [y, [2, 2]) = [z, [, y]].

Then we calculate

[ad(2), ad(y)(2) = (ad(z))(ad(y))(2) — (ad(y))(ad(z))(2)
= [, [y, 2]l = [y, [, 2]]
= —[z [z, 4]
= [[z,y], 2]
= ad([z, y])(2).

Definition 2.3.2. Ad(x)

For a Lie algebra g, Ad and the adjoint action, ad, are related through the exponential
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map. Specifically, Ad(exp(z)) = exp(adx) for all z € g.

Properties 2.3.2. The power sum formula for Ad(exp(z)) applied on y is

Ad(exp(z))(y) = exp(adz(y))

=y + [z, y] + [z, [z, 9] + ... (2.1)
=G+ ad"’l“"!(y) + ada(y) + adi!(y) T

2.4 Killing Form, Simple, and Semi-Simple Lie algebras
Definition 2.4.1. Killing Form
Let g be a finite dimensional Lie algebra. Then the Killing form is an inner product on

g defined by

E(X,Y) = Tr(ad(X) ad(Y)),

where Tr(A) is the trace of the matrix, and ad(X) is the adjoint action on X.

Properties 2.4.1.
k(ad:(z),y) + k(z, (adz(y))) = 0

Properties 2.4.2. The Killing form is bilinear and symmetric.

Example 2.4.1. si(2)

Let’s look again at the Lie algebra from example 2.1.3 with the basis

€1 = y €2 = y €3 =

and the following multiplication table

sl(2) el €2 €3
el 0 2e9 | —2e3
€9 —2e9 0 el
es 2e3 | —eq 0

The adjoint action of these elements are represented by the matrices
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00 0 0 0 1 0 -1 0
adler) =10 2 0 |, adle2)=] -2 0 0|, adles) =0 0 0
00 -2 0 00 2 0 0

The Killing form is then calculated using the definition to be

k(e1,e2) = Tr(ad(e1) *ad(e2)) =Tr | —4 0 0 | =0,

k(e1,e3) = Tr(ad(e1) xad(e3))=Tr | 0 0 0 | =0,

2 00
k(ea,e3) = Tr(ad(e2) xad(e3))=Tr | 0 2 0 | =4.
000

Similarly k(el,el) =8, k(e2,e2) =0, k(e3,e3) =0, etc. Therefore, the Killing form

matrix is

8 0 0
0 0 4
0 40

Example 2.4.2. si(3)

Let’s look at the Lie algebra sl(3), of trace free 3 x 3 real matrices with the following

multiplication table



s1(3) e1 e es3 ey4 es eg er es
el 0 0 es 2ey —es €6 —2e7 | —eg
€9 0 0 —€3 €4 €5 266 —e7 —268
es —es3 es 0 0 e1—ea | ey —esg 0
€4 —264 —€4 0 0 —€g 0 €1 €3
es es —e5 | —e1 +e9 €6 0 0 0 —er
€e —€6 —266 —€4 0 0 0 €5 €9
er 2er er es —eq 0 —es5 0 0
€s €s 268 0 —es3 €7 —€9 0 0

Then the adjoint representation of the basis elements are calculated to be

ad(ep)

ad(e3)

o o o o o o o o

o o o o o o o o

o o o o o

—_
o o o o o o o o

o o o o o

o O o O M O O O

o o o O

o o o o o o o o
o o o o o o

o o o o o

_ o O O

o o o o

0 0
0 0
0 0
0 0
0 0
0 0
-2 0
0 -1
0 O
0 O
0 0
0 O
0 O
0 0
0 O
-1 0

ad(ez) =

ad(eq) =

o o o o o o o o

o o o O

o o o o o o o o

o o o o

o o o o o o o o

- o o O
- o o o o
S O N O O O O O

o o o O
o o O

o o o o o

o o o o o o o o

o o o o o o

o o o o o o o o
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o o o o o o o

o o o o o o o




| 0 0 -1 0000 O ]
0 0 1 0O0O0O0 O
0 0 0 0O0O0O0 O
ad(e5)= 0 0 0 O0O0O0O0O O
1 -1 0 00O0O0 O
0 0 0 1000 O
0 0 0 0000 -1
0 0 0 0O0O0O0O O
| 000 -10 0 00 ]
000 O 0 0 0O
000 O O O OO
ad(er) — 000 O 0O 0 0O ,
000 O 0 -1200
000 O O O 0O
210 0 0 0 00
001 0 0 0 00O

| 0 0 0

0 O 0

0 O 0
ad(eg) = ou A
0 O 0

-1 -2 0

0 0 0

0 O 0

| 0 00 O

000 O

0 00 —1

ad(cg) = 0 00 O
000 O

0 00 O

0 00 O

1 20 O

The nonzero Killing forms are calculated to be

k(e1,e1) = Tr(ad(er)ad(er)) = 12,

k(ea, ez) = Tr(ad(e2)ad(e2))

12,

k(es, e7) = Tr(ad(es)ad(er))

I
&

k(e1,e2) = Tr(ad(er)ad(e2))
k(es,es) = Tr(ad(eg)ad(es))

k(es,es) = Tr(ad(eq)ad(es))

o o o o o o o o

o =, O O O o o o

&

(=)

o o o o o o o o

o o o o o o

o o o o o o o o

o o o o o o o o

- o o o o

o o O

o O o o o o o o

o o o o o o +~ O




22

Thus the Killing form matrix is

12 6
6 12

o o o o o O

o o o o o O

o o o o o o o o
o o o o o o o o
o o o o o o o O
oS O O o o o o o
o o o o o o o o
o o o o o o o o

Definition 2.4.2. Simple Lie Algebra
A non abelian Lie algebra g is called simple if it has no non-trivial ideals. If g is simple

then the solvable radical of g, R(g) = g or R(g) = 0.

Definition 2.4.3. Semi-Simple Lie Algebra
A Lie algebra is called semi-simple if it is a direct sum of simple Lie algebras. A Lie

algebra g is semi-simple if the solvable radical is zero.

Theorem 2.4.1. Cartan Criteria
Let g be a finite-dimensional Lie algebra over a field of characteristic zero. Then g is
semi-simple if and only if the Killing form is non-degenerate. Note: the Killing form is

degenerate if k(X,Y) =0 for allY € g implies that X = 0.

2.5 Lower Central Series
Definition 2.5.1. Lower Central Series

The lower central series of a Lie algebra g is the sequence of subalgebras recursively

defined by

Ok+1 = [0, 0k}, with go = g.

Properties 2.5.1. We say that the lower central series terminates when either g1 =

g or the subalgebra gy is abelian, i.e g1 = 0.

Example 2.5.1.

Consider the Lie algebra with the following multiplication table
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g €1 | €2 | €3 | €4 | €5 ¢€q
€1 0 |es|es| 0 |eg| O
es ||l —es | O] 0| 0] 07]O0
es ||l —e4| O] 0| 01]01]O0
€4 0 0(0]j0]0]O
es || —e¢ | O] O O] 01O
e6 0 0O0(0]J0]0]O

Then we calculate g; = [g, g]. This means that gy is the result of bracketing every
element in g with every other element in g. By the multiplication table we can see that

g1 = <€3,€4,€6>~

We then find go = [g,91]. This is the result of taking the Lie bracket of g with
g1 These Lie brackets are [e1,e3] = eq4,[e1,e4] = 0,]e1,e6] = 0,]ea,e3] = 0, ez, e4] =
0,[e2,e6] = 0,[es,e3] = 0,[es,eq] = 0,[es,e6] = 0,[eq,eq] = 0,]eq,e6] = 0,[e5,e6] =
0, [es, €] = 0. This shows that go = (e4). Finally g3 = [g, g2/, which is the result of the
Lie brackets [e;,e4] = 0 for ¢ = 1..6. The lower central series terminates at this step

because g3 = {}.

Example 2.5.2.

Let g be the five dimensional Lie algebra with the nonzero structure equations
le2, €3] = €1, [e2,e5] = e3,[eq,e5] = eq. Then go = g, g1 = (e1,€3,€4), 92 = (e1,€4),
g3 = (e4), g4 = (e4). Since gz = g4, we have completed the lower central series for this

Lie algebra.

Properties 2.5.2. The next subalgebra in the sequence of the lower central series is

always a subset of the previous subalgebra in the series, i.e. ggr1 C gi.
Properties 2.5.3. All g; are ideals of the Lie algebra g.

Definition 2.5.2. Nilpotent
A Lie Algebra is called nilpotent when the lower central series ends in the trivial lie

algebra.

Example 2.5.3.
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Let v be the five dimensional Lie algebra with the nonzero structure equations
[es, eq] = e, [es,e5] = e1,[ea,e5] = e3. We compute the lower central series as before
to determine if the Lie algebra is nilpotent. The first of these is calculated to be tog =
(e1,€2,€3,e4,e5). Then we find that to; = (e1, ez, €3), w9 = (€1, e2), and w3 = {}. Since

the lower central series terminates with the trivial Lie algebra, tv is nilpotent.

In 2.5.2, the lower central series for the Lie algebra g terminated with (e4), so g

from that example is not nilpotent.

2.6 Normalizer
Definition 2.6.1. Normalizer

The normalizer of a subalgebra b of a Lie Algebra g is given by

Ny(b) = {z € g|][z,b] € b Vbe b}.
Example 2.6.1. si(2,C)
Let’s look at the simple Lie algebra of 2 x 2 trace free matrices allowing for complex

entries.

Then a basis for this space is

01 0 0 0 ¢
61 == 9 62 = 9 63 = ’
0 0 1 0 0 0
0 0 1 0 1 0
€4 = , €5 = y €6 =
v 0 0 —1 0 —2

The multiplication table for this algebra is
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g €1 €2 €3 €4 es €
el 0 es 0 eg —2e1 | —2e3
es || —es 0 —eg 0 269 2ey
es 0 eg 0 —e5 | —2e3 | 2eq
e4 || —es 0 es 0 2ey —2e9
es || 2e1 | —2e9 | 2eg3 —2ey 0 0
eg || 2e3 | —2e4 | —2e1 | 2e9 0 0

Then the Lie algebra, sl(2), from 2.1.3 is represented in this algebra by sl(2) = h =
{e1,e2,e5), where b is a subalgebra of g. Let y = ale; + a?ea + - - - + a®eg be in g. We

calculate the following Lie brackets to be

ly,e1] = —a’es — a'eg + 2a°e; + 2a0es,
ly, ea] = ales + aleg — 2a°ey — 2a0ey,

ly,e5] = —2ateq + 2a%es — 2a3es + 2a’ey.

From the first Lie bracket we can see that y is in the normalizer iff a* = a% = 0.
Similarly, from the second Lie bracket, a® = a® = 0 and the third a® = a* = 0. Thus,

the normalizer Ny(h) = (e1, e2, e5).

Definition 2.6.2. Self Normalizing Subalgebra
A subalgebra is self normalizing if Ny(h) = b that is, if [z,y] € hVx € b, then y € b.

Example 2.6.2. si(2,)

In the above example, because the normalizer of the subalgebra § is h, then this

subalgebra § is self normalizing in g.

This completes our review of frequently used concepts. In the next chapter we will

apply these in the theory and concepts of semi-simple Lie algebras.
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Chapter 3

Semi Simple Lie Algebras

In this chapter we review some of the basic theory of semisimple Lie algebras.
We begin with Cartan subalgebras. Then we continue the discussion with definitions
and examples of the root space decomposition, the Cartan decomposition and Cartan
involution. This will give the understanding needed for the discussion of the classification
of real simple Lie algebras using the process of the Cayley transform that happens in

chapter 5.

3.1 Cartan Subalgebras
Definition 3.1.1. Cartan Subalgebra
Let g be a Lie algebra. A subalgebra h of g is called a Cartan subalgebra if it satisfies

the following conditions:
1. The subalgebra b is nilpotent.

2. The subalgebra is self normalizing, i.e. Ny(h) = b.

Properties 3.1.1. A Cartan subalgebra always exists for any finite dimensional Lie

algebra over R or C.

Properties 3.1.2. Cartan subalgebras in complex semisimple Lie algebras are unique
up to conjugation. Because the real numbers are not algebraically closed, then unlike
the complex case, Cartan subalgebras in real semisimple Lie algebras are not unique up
to conjugation. We showed examples in Chapter 1 (1.1.1) of real simple Lie algebras

where the Cartan subalgebras are not conjugate.
Properties 3.1.3. If g is a nilpotent Lie algebra, then g is its own Cartan subalgebra.

Properties 3.1.4. For the Lie algebra of n x n real valued matrices sl(n,R), a Cartan

subalgebra is the subalgebra of all diagonal matrices.
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Example 3.1.1. sl(2,R)

Let’s look at the Lie algebra from 2.1.3 sl(2,R). A standard representation for

sl(2,R) are the following trace free matrices

1 0 0 1 0 0
€1 = y €2 = y €3 =
0 -1 00 10
1 0
Then we can see that h; = (e1) = < > is a Cartan subalgebra by the above
0 -1

property 3.1.4.

0 1
Another Cartan subalgebra is hy = (ex — e3) = < > We can show
-1 0
this by demonstrating that by is nilpotent and self normalizing. Since the Lie bracket
0
[e2 — e3,e9 — €3] = , then bo is trivially nilpotent.
00

Next we calculate the normalizer. Let y = a'e; 4+ a®es + a®e3. Then we calculate

the Lie bracket to be

[y, e2 — e3] = [y, ea] — [y, e3] = 2ates — a®ey + 2a'es — a?ey.

So y is in the normalizer iff a> = a® = 0. Then N 2)((e2 —e3)) = ({e2,e3)). This means

that ho is self normalizing. Thus hg is a Cartan subalgebra of sl(2,R).

Example 3.1.2. si(3)

Let’s look at again at 2.4.2 si(3) with the following multiplication table:
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s1(3) e1 e es3 ey4 es eg er es
el 0 0 es 2ey —es €6 —2e7 | —eg
€9 0 0 —€3 €4 €5 266 —e7 —268
es —es3 es 0 0 e1—ea | ey —esg 0
ey —2e4 | —eyq 0 0 —eg 0 el es
es es —e5 | —e1 +e9 €6 0 0 0 —er
€e —€g —266 —€4 0 0 0 €5 €9
er 2er er es —eq 0 —es 0 0
€s €s 268 0 —es3 €7 —€9 0 0

We consider the subalgebra b = (e1, e2). The lower central series of the subalgebra

b is ho = (e1,e2), and h; = {}. This means that the subalgebra b is nilpotent.

Next we calculate the normalizer. Let y = a'e; 4+ aes +ales + a'es + a’es + aleg +

a”er + aBeg be in sl(3). Then we calculate the Lie bracket to be

3

ly,e1] = —a’es — 2a%ey + a’e5 — aleg + 2a"er + ales.

So y is in the normalizer iff a®> = a* = a® = a® =a" = a® = 0.

Then based on this, let y; = a'e; + a’es. Then we calculate the Lie bracket to be
[yv 61] =0.

Then the normalizer of sl(3) with respect to b is Ny s)({e1,e2)) = (e1,e2). This shows

that b is self normalizing. Thus, b is a Cartan subalgebra of si(3).

Example 3.1.3. so(4,2)
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50(4,2) | e ) e3 eq es eg e7 eg €9 el | eir | ez | e | e | el
e1 0 ) —e3 0 es —e6 er e 0 0 —e11 | —e12 0 0 0
€ —eg 0 e —eyq € 0 0 0 0 er eg —e13 | —ei4 0 0 0
e3 e3 | —e1+eq 0 —e3 0 0 €9 e1o 0 0 0 0 —e11 | —e12 0
€4 0 —eo e3 0 es —e6 0 0 €9 €10 0 0 —e13 | —els 0
es —es 0 0 —es5 0 —e1 — ey 0 0 0 0 €9 e1o —e7 | —eg 0
€6 €6 0 0 eg | e1tey 0 e13 | elq | —e11 | —e12 0 0 0 0 0
er —er 0 —eg 0 0 —e13 0 0 es5 0 —e1 e1s —e3 0 —es
es —eg 0 —e10 0 0 —eqy4 0 0 0 es —e15 | —ep 0 —ey er
eg 0 —e7 0 —eg 0 el —es 0 0 0 —e3 0 —ey els —e1
€10 0 —eg 0 —e10 0 €12 0 —es 0 0 0 —e3 | —e15 | —e4 €9
el e e1s 0 0 —eg 0 e els es 0 0 0 eg 0 —eq2
e12 e12 el 0 0 —e1g 0 —e15 | e 0 e3 0 0 0 €6 e1l
e13 0 0 el €13 er 0 2 0 €4 els —eg 0 0 0 —e14
e14 0 0 e12 e14 eg 0 0 ey —e1s ey4 0 —eg 0 0 els
e1s 0 0 0 0 0 0 eg —e7 | el —eg | ez | —e1 | e | —eis 0

We will show that a Cartan subalgebra of so(4,2) is h = (e15,e1 + e4,e2 — e3). We

start with the lower central series. Then by = (e15, €1 + e4,e2 — e3). Then we calculate

the potentially nonzero brackets of h; = [hg, ho] to be

le1s, €1 + eq] =

le15,e2 — €3] =

le1 +eq,e0 — €3] =

le1s5,e1] + [e15,4] =0+ 0 =0,

le1s, e2] — [e15,e3] =0—-0=0,

[e1,e2 —e3] + [eq, €2 — €3] =

le1, e2] — [e1, e3] + [es, ea] — [eq, €3] =

ey +e3—ey —ez3 =0.

Then b; is the trivial Lie algebra and b is nilpotent.

Next we calculate the normalizer. Let y = a'e; + a®es + ... + a'?e1s + a'®eqs be in

s0(4,2). Then we calculate the Lie bracket to be

So y is in the normalizer iff " = a

[y) 615] =a

7

es — a

8

er + agem —a

8:

1

9 _

10 _

a” = a " =

Oeg + anem —a

CLH

=a

12

12 _

1
el +a 3614 —a

1

4
€13.
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Then based on this, let y; = ale; + a%es + ales + ates + a’es + abeg + a'er5. Then

we calculate the Lie bracket to be

3

[y1,e1 +eq] = [y1, e1] + [y1, ea] = —a?e? 4 a’es3 — a’es + aleg + a’ey — aPes — a’es 4 aleg.

So y1 is in the normalizer iff a® = a% = 0.
Then based on this, let y» = aer + a’es + ades + ates + a'®ers. Then we calculate

the Lie bracket to be

[y2, €2 — €3] = [y2, €2] — [y2, 3] = a'es — a’er + a’es + a'es + a'ez — a’e; + a’eq — a’es.

So yy is in the normalizer. Then the normalizer of so(4,2) with respect to b is
Nsl(4,2)(<6157 e1+eq,69 — €3>) = <61, €2, €3, 64, 615>. This shows that b is self normalizing.

Thus, b is a Cartan subalgebra of so(4,2).

Definition 3.1.2. Conjugation on g

A Cartan subalgbra b of a Lie algebra g for z € g, is said to be conjugate to b if

ead(z)h — 6

Definition 3.1.3. Diagonalizable

In linear algebra, if a square matrix A is similar to a diagonal matrix, then A
is called diagonalizable. In particular, A is diagonalizable if there exists an invertible

matrix @ such that Q' AQ is a diagonal matrix.

Let V' be a finite-dimensional vector space. Then a linear map P : V — V is
called diagonalizable if there exists an ordered basis of V' with respect to which P is

represented by a diagonal matrix.

Theorem 3.1.1. If g is semi simple and b is a Cartan subalgebra, then ad(x) is diago-
nalizable for any x € . In fact, since § is abelian, we can say that if (hy, ha, hs, ..., hp)

is a basis for the Cartan subalgebra, then ad(h;) are simultaneously diagonalizable.

Example 3.1.4. si(3)
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Refer back to the multiplication table for sl(3) 3.1.2. Remember that a Cartan

subalgbra for this Lie algebra is h = (e1,e2). We can see that the adjoint matrices for

the two Cartan subalgebra elements are

ad(el) =

o o o o o o o o
o o o o o o o o

- o O

o o o o o

o O O O N O O o

0 O
0 0
0 O
0 O
-1 0
0 1
0 O
0 0

o o o o o o
o o o o o o O

These are diagonal matrices.

Example 3.1.5. su(2,1)

ad(eg) =

o o o o o o o o

o O o o o o o o

= o o O
_ o o o O

o o o o
o o O

o O N O O O O O

o o o o o O

o O o o o o o

Let’s look at the real simple Lie algebra su(2,1). The multiplication table for this

Lie algebra is

su(2,1) e1 €9 es €4 es €6 e7 es
€1 0 0 367 368 0 0 —363 —364
€2 0 0 —€3 €4 —265 266 —e7 €g
€3 —367 €3 0 €2 0 —€g 265 €1
€4 —368 —€4 —e€9 0 —e7 0 (&) 266
es 0 2es 0 er 0 es 0 —es3
eg 0 —2eg es 0 —es 0 —ey 0
€7 363 €7 —265 —€1 0 €4 0 €92
es 3eq —esg —e1 | —2eg es 0 —e9 0
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A Cartan subalgebra for this Lie algebra is h = (e, e2). We can see that the adjoint

matrices for the two Cartan subalgebra elements are

000000 O O 00 0 0 0 0 0 O
000000 O O 00 0 0 0 0 0 O
0000O0O0-=-3 0 00 -10 0 0 0 O
ad(e;) = 000 0O0OO0 O =3  ad(ey) = 00 0 1 0 0 0 O
000000 O O 00 0 0 -20 0 O
00 0O0O0OO0OO0O O 00 0 0 0 2 0 O
003 000 0O O 00 0 0 0 0 -10
0003 00 0 O 00 0 0 0 0 0 1

The second of these is already a diagonal matrix. We will now show that the first, ad(e;)

is diagonalizable.

For a matrix to be diagonalizable, we know we can find a matrix P such that

P~lad(e1)P = D, where D is a diagonal matrix. For this matrix we calculate

00 0 0 0O0O01
00 0 0 O0O0OT1TO0
0 I 0 —-I 0O0O00O0
P I 0 -I 0 O0O0O0O
00 0 0 0100
00 0 0 1000
01 0 1 0O0O0O0
10 1 0 0O0O0O
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Then we calculate that P~'ad(e;)P =

| 0000 O O 0 0 ]
0000 O O 0 0
0000 O O 0 0
D— 0000 O O 0 0
00 003 O 0 0
0000 0 3I O 0
0000 O O =3I O
0000 O O 0 =3I

Note: This matrix P also keeps the matrix P~'ad(e3)P as a diagonal matrix. The
matrix P can be used to diagonalize all of the adjoint matrices for the Cartan subalgebra

elements of any given Lie algebra.

3.2 Root Space Decomposition

Definition 3.2.1. Root Space Decomposition

Let g be a semi-simple Lie algebra and let h be a cartan subalgebra. Then, let (hy, ho, hg, ...

be a basis for the Cartan subalgebra §h. A vector z € g is called a root vector if
ad(h;)(x) = a;x. The m-tuple o = [ay, ..., a,y] is called the root of x. We denote the set
of all roots by A = {ay, ag,..,an} are called the roots of g with respect to h. The root

space decomposition of g with respect to f is

g:b@ga'

a€A

The root spaces are generally complex vectors so that this decomposition should be

considered a decomposition of the complexification of g.

Example 3.2.1. sl(3)

Let’s look at again at 2.4.2 sl(3). A Cartan subalgebra for sl(3) is h = (e, e2).

Then we calculate g,, = (e3) by
ad(e1)(e3) = [e1, e3] = e,

ad(ez)(e3) = [e2, e3] = —es,

s han)



1
so that oy =

-1

We calculate g,, = (e4) to be

ad(e1)(eq) = [e1, 4] = 2e4,

ad(ez2)(es) = [e2, 4] = e,

2
so that ao =

1

We calculate go, = (e5) to be

ad(e1)(es) = [e1,e5] = —es,

ad(ez)(es) = [e2, e5] = es,

-1
so that, as =
1

We calculate g,, = (eg) to be

ad(e1)(eg) = [e1, es] = eg,

ad(eg)(eﬁ) = [62, 66] = 266,

1
so that ay =

2

We calculate go, = (e7) to be

ad(el)(e7) = [61,67] = —267,

ad(ez)(er) = [e2, 7] = —er,

34
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-2
so that a5 =
-1

We calculate g, = (es) to be

ad(e1)(es) = [e1, es] = —es,

ad(ez)(es) = [e2, es] = —2es,

-1
so that ag =
-2

So, the root space decomposition of

sl(3) = (e1, e2) @ (e3) ® (ea) @ (e5) @ (e6) © (e7) D (es)

with the corresponding roots «; associated with the elements in g,, as given above.

Properties 3.2.1. The root space decomposition satisfies the following properties:

1. If a is a root, then —a is a root.
2. If x € go and y € gg, then [z,y] € gotp if a+ B is a root. Otherwise, [z,y] = 0.

3. Root spaces are always one dimensional.

3.2.1 Roots

Definition 3.2.2. Positive Roots and Negative Roots

Let the m-tuples A = {aj, 9, ..,ap,} be the roots of g with respect to the Cartan
subalgebra f. Let

g:h@ga

a€A
be the root space decomposition of g with respect to h. Then we can choose the positive
roots oy in many ways. A common method in choosing positive roots, and the method
we will use in this paper, is to choose the roots where the first term in the root is
positive. The negative roots are a_ = —a.. It is always possible to write A = ay Ua_.

Ifa,8€ar and a+ 5 € A, then a+ f € ay.
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Example 3.2.2.

Let’s look at the Lie algebra si(3) 2.4.2 again. One possible Cartan subalgebra

h = (e1,e2). The roots of sl(3) were calculated in the previous example to be

A - ) ) ) ) )
We choose the positive roots by choosing the root with the first term being positive. So
the positive roots are

ay = ) )

Definition 3.2.3. Simple Roots
An element of the positive roots ay is called a simple root if it cannot be written as a

sum of any two elements of a.

Example 3.2.3.

In the previous example we can see that in the set positive of roots

Oy = ) )
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3.3 Cartan Decomposition and Involution

Definition 3.3.1. Cartan Involution

A Cartan involution on a Lie algebra g is a Lie algebra automorphism © : g — g such
that:

1. The square of © is equal to the identity, i.e. ©2 =Id.

2. The Killing form k has the property that ko(X,Y) = —k(X,0Y) is a positive

definite form.

3. Two Cartan involutions ©1 and ©5 are considered equivalent if they differ only by

an inner automorphism.

Definition 3.3.2. Cartan Decomposition
A Cartan decomposition of a Lie algebra g is a vector space decomposition g =t P p
satisfying the following properties:
1. The set t is subalgebra and the set p is a subspace.
2. The Lie brackets [t,t] C t, [t,p] C p and [p,p] C t hold.
3. The restriction of the Killing form of t and p are negative definite and positive
definite respectively.
The subalgebra t is called the compact part of the Cartan decomposition and the sub-

space p is called the positive part.

Definition 3.3.3. Symmetric Pair
Let g be a Lie algebra, T' C g a subalgebra, and P C g a subspace. The subalgebra,
subspace pair T, P is a symmetric pair if the following conditions hold:

1. The Lie algebra g =T & P.

2. Forallz e Tandy e P, [z,y| € T.

3. Forallz €e Pandy € P, [x,y] € T.

Cartan decomposition and Cartan involution are related in the following way.
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Theorem 3.3.1. Given a Cartan decomposition, the linear transformation which is the
identity on t and the negative identity on p is a Cartan involution. Conversely, given a

Cartan involution ©, the eigenspaces E1 = p and E_1 = t define a Cartan decomposition.

The next theorem gives an easy way of finding a Cartan decomposition of matrix

Lie algebras.

Theorem 3.3.2. For a Lie algebra with a matrix representation, if the set of matri-
ces that define the basis for the representation are closed under transposition, then the
decomposition into skew-Hermitian (t) and Hermitian (p) matrices will give a Cartan
decomposition. (note: a matriz that has only real entries is Hermitian if and only if it

is a symmetric matriz, i.e., if it is symmetric with respect to the main diagonal)

Our next theorem states the relationship between two Cartan decompositions.

Theorem 3.3.3. Let gg be a semisimple Lie algebra over R. Suppose

go=t1+p1, go=t2+p2

are two cartan decompositions of go. Then there exists an element 1p € Int(go), where

the Lie algebra of Int(g) is the image of adjoint representation of g, such that

Yotr=t2, ¥-p1=p2

Corollary 3.3.1. Any two equivalent Cartan involutions ©; and O, on a Lie algebra g

are related by an inner automorphism ¢ : g — g, where O, = O~ L.

Remark 3.1. We can start with Cartan subalgebras that do not relate by an inner
automorphism. But, the resulting Cartan decompositions will be equivalent under an
inner automorphism

Lt):g—9

Finally we remark on the role that Cartan decompositions play in studying the

isomorphism problem.
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Theorem 3.3.4. [/] Suppose g1 and go are real forms of the same simple Lie algebra
g over C. Let g1 = t1 + p1 and go = to + po be any Cartan decompositions. Then if ¢

and to are isomorphic, g1 and go are isomorphic.

Example 3.3.1. si(3)
Let’s look again at si(3) 2.4.2. For reference, here is the multiplication table for

this Lie algebra again

s1(3) e1 €9 e3 e4 es €6 er es
el 0 0 es 2eq4 —es €6 —2e7 | —eg
€9 0 0 —€3 €4 €5 266 —e7 —268
es —es3 es 0 0 e1—ea | ey —esg 0
ey —2e4 | —eyq 0 0 —eg 0 el es
es es —e5 | —e1 +e9 €6 0 0 0 —er
€e —€q —266 —€q 0 0 0 €5 €9
er 2er er es —eq 0 —es 0 0
€g €s 268 0 —es3 €7 —€9 0 0

The standard matrix representation of sl(3) is given with the following trace free matrices

(1 0
e1r=10 0
1 00
—OO
es=11 0
| 00

-OO 0
01 0
| 00 —1
[ 0 0

01
1000

€3

Il
o

er=10

10
0 0
0 0
0 0

0
0 0

Y
N
Il

Now we start to look for the symmetric matrices. The basis elements e; and es are

the first choices. The rest will have to be constructed.

The following symmetric matrices can be constructed through addition to get

01 0 0 0 1 0 0 O
estes=|1 0 0|, eat+er=|0 0 0|, e+es=]10 0 1
0 0 O 1 0 0 01 0
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Together, these symmetric matrices form

p = (e1,e2,e3+ e5,e4+ €7,66 + €3).

We then use subtraction to construct the skew-symmetric matrices to be

0O 1 0 0 0 1 0O 0 O
e3s—es= 1| —1 0 0|, e4—er= 0 00}, e—es=|0 0 1
0O 0 O -1 0 O 0 -1 0

Then we can say that

t=(e3 —es,eq —e7, 66 — €3).

To check that this is correct, we need to find the Killing forms of t and p. The Killing

form of t is
—-12 0 0
K= 0o -12 0
0 0o -=12

which is, in fact, negative definite. The Killing form of p is

(126 0 0 0
6 12 0 0 0
Kp)=|0 0 12 0 0
0 0 0 12 0

0 0 0 0 12

which is positive definite. Now, we check that [t,t] C t, [t,p] C p and [p,p] C t.

First we check that [t,t] C t by evaluating the following Lie brackets to be

les —es,e3 —e5) =0,

[63 — €5,64 — 67] = €8 — €,

les — e5,e6 — eg] = eq — e,



[es — e7,e3 — e5] = e — es,

[64 — €7,€64 — 67] — 07

les — e7,e6 — eg] = —e3 + es,
les — es,e3 — 5] = —eq + €7,
les — es,e4 — €7] = —e5 + €3,

[66 — €8,€66 — 68] = 0.

This shows that [t, ] C t.

Now we check that [t,p] C p by evaluating the following Lie brackets to be

[es — €5, e1] = —e3 — es,
[es — e5, 2] = e3 + es,
[es — e5,e3 + e5] = 2e1 — 2eq,
les — e5,e4 + e7] = —es — eg,

[es — e5, €6 + eg] = eq + e,

[eq — e7,e1] = —2e4 — 2er,
[ea — e7,e2] = —eq — ex,
les — e7,e3+ 5] = —eg — €3,

[es — e7,eq4 + e7] = 2ey,

lea — e7,e6 + eg] = e3 + es,

[66 — €3, 61] = —€g — €g,
[eg — eg, ea] = —2eg — 2es,
leg — es,e3 +e5] = —eq — e7,

les — e, eq + e7] = e5 + e3,

41
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[66 — e, 66 + eg] = 2e9.
This shows that [t, p] C p.

Next we check that [p,p] C t by evaluating the following

[617 61] = 0’

[61762] = 07
le1,e3 + e5] = e3 — e,
[61, e4 + 67] = 2e4 — 267,

le1,e6 + eg] = es — es,

[e2, e1] = 0,
[e2, e2] =0,
le2, e3 4 e5] = —e3 + es,

[e2, €4 + 7] = e4 — ex,
[e2, €6 + eg] = 2e6 — 2es,
le3 + e5,e1] = —e3 + e,

[e3 + e5,e2] = e3 — e5,

les + e5,e3 + e5] =0,

[es + e5,e4 + e7] = —eg + e,

les + es5,e6 + eg] = eq — e,

[ea + e7,e1] = —2e4 + 2e7,
lea + e7,e2] = —eq + e,
[64 +e7,e3 + 65] = —eg + €3,

[64 +er,eq + 67] =0,
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les + e7,e6 + eg] = e3 — es,

[66 + es, 61] = —eg + €3,
[66 + esg, 62] = —2eg + 2es,
leg + es,e3 + e5] = —eq + €7,

les + es,eq + e7] = e5 — e3,
[e6 + es,e6 + es] = 0.

This shows that [t,t] C t, [t,p] C p, [p,p] C t and then the Cartan decomposition of
sl(3) =t@p = (es —e5,e4 —e7,66 —eg) D (€1, ea, €3+ €5, €4 + €7, €6 + €g). Because in this
case, the decomposition defined by t,p defines a symmetric pair, we can easily construct

the Cartan Involution to be

@(61) =, 6(62) = — €2, @(63) = — €5, @(64) = —e7,

O(es) = —e3, O(eg) =—es, O(er) =—eyq, O(eg) =— es.

Example 3.3.2. sp(2,2)
For the next example, we look at the 10-dimensional real Lie algebra sp(2,2). The

matrices that form the basis for the standard representation of sp(2,2) are

(70 0 0] (01 0 o | [0 7T 0 0]
00 0 0 10 0 0 70 0 0
€1 = , €2 = , €3 = y
00 —I 0 00 0 -1 0 0 0 I
00 0 0 00 -1 0 [ 0 0 -1 0]
0 01 0] [0 0 1 0] (000 0 1]
0 00 0 000 0 0010
€4 = , €5 = ) €6 = )
~1 00 0 1000 0100
0 00 0 (000 0 100 0|
[0 0 o I] (000 0 ] (0 0 0 0]
0 0 I 0 070 0 00 01
er = , €8 = , €9 = 5
0 —I 0 0 000 0 0 0 00
| -1 0 00 (000 —T | (0 -1 0 0|
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€10 =

o o o o
~N O O O
o o o o
S O N O

Then using the theorem 3.3.2, we need to find the Hermitian and skew Hermitian ma-
trices to find the Cartan decomposition. We start by finding the compact part t of the

Cartan decomposition by finding the skew Hermitian matrices. These are

(70 0 o] [0 01 0]
00 0 0 0 000
€1 = , €64 = 3
00 —I 0 100 0
(00 0 0] 0 00 0
(00 1 0] (000 0 |
000 0 070 0
€5 = 9 €8 = )
1000 000 0
(000 0 00 0 —T |
[0 00| (00 0 0]
00 01 000 I
€9 = , €10 =
00 00 0000
(0 -1 0 0| 010 0|

The positive part of the Cartan decomposition p is the span of the Hermitian

matrices. These are

(001 0 0 | 0T 0 0]
10 0 0 70 0 0
€9 = , €3 = 5
00 0 -1 00 0 I
(00 -1 0 | 0 0 -1 0
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(000 0 1] 0 0 o I]

0010 0 0 I 0
66: 9 67:

0100 0 —-I 0 0

100 0| 1 0 0 0|

the Cartan decomposition defined by this representation is therefore sp(2,2) =
tdp = (e, eq, 65,68, €9,€10) D (€2, €3, g, €7). By using Theorem 3.3.1 the corresponding

Cartan Involution is found to be

O(e1) =e1, O(ez) =—ea, ©O(e3) =—e3, Of(eq) =e4, O(es) = es,
O(eg) = —eg, O(er) =—e7, O(es)

eg, Oleg) =eg, ©O(e1n) =eqo.

Definition 3.3.4. © Stable Cartan Subalgebra
A Cartan subalgebra is said to be ©-stable if ©(h) = h with respect to the Cartan

involution ©.

Example 3.3.3. sp(2,2)

For the previous example, O({e1, es)) = (e1, es).

Definition 3.3.5. Noncompact Root
An imaginary root § is said to be noncompact if gg Nt =0 and ggNp C p.

Note: Not compact is different than noncompact.

Definition 3.3.6. Compact Root

An imaginary root « is said to be compact if g, "p =0 and aNtC t.

Example 3.3.4. sp(2,2)

Let’s look at the 10 dimensional simple Lie algebra sp(2,2). A Cartan subalgebra of
sp(2,2) is h = (e1, eg). The Cartan decomposition of this Lie algebra is sp(2,2) =t @ p,
where

t = (e1,eq,€5,€8,€9,€e10) and p = (e, e3, €, €7).

One of the positive roots in the root space decomposition for this Cartan subalgebra
is [—1, I]T where 9—r,nr = (e2+1Ies). The root space of this root is completely contained

in the positive part p of the Cartan decomposition. Therefore, this root is noncompact.
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Another Cartan subalgebra of sp(2, 2) is 1 = (e1 —es, €6). One of the positive roots
in the root space decomposition for by is [2I,O}T where O21,07 = €4 — les — eg — Iey.
The root space of this root is completely contained in the compact part t of the Cartan

decomposition. Therefore, this root is compact.

Example 3.3.5. su(4,2)

Let’s look at the 35 dimensional simple Lie algebra su(4,2). A Cartan subalgebra
of su(4,2) is h = (e1, e, €3, €4, €5). The Cartan decomposition defined by this represen-

tation of this Lie algebra is

t =(e1,e2,€3,e6 — eg,e7 + €13, €9 + €14, €10, €11 + €16, €12 + €17, €15 + €13, €19 + €26,
e20 + €27, €21 + €23, €22 + €30, €24 + €31, €25, €28 + €33, €29 + €34, €32 + €35)
p =<€4a €5, €6 1 €g,e7r — €13,€9 — €14, €11 — €16, €12 — €17, €15 — €18, €19 — €26,

€20 — €27,€21 — €23,€22 — €30, €24 — €31,€28 — €33,€29 — €34, €32 — 635)-

The positive roots ay with their corresponding root spaces go, are

9[0,0,0,0,2]T = (e27), 91,211,017 = (e14 — Tes1),

Op21,1,—1,—1,07 = (€15 — Tes2), 911,—1,01,17 = (€13 + Teso),
9i1,21,-1,0,—17 = (€12 — Tex), 911211047 = (€17 — Tesa),
911,—1,0,—1,—17 = (€7 + Te2r), 921,711,107 = (e1s — Iess),
Op21,1,1,-1,07 = (€11 — Lezs), 9(1,—1,0-1,1]7 = (€6 + Teat),
900,0,21,0,07 = (€10 — Lezs), 9121,1,1,1,0T = (e16 — Tess),

91,211,017 = (eg — Teaa), 9[0,0,0,2,017 = (e26),

9(1,-1,0,1,—1)7 = (es — Teas).

In the root spaces of the positive roots, the only one whose intersection with p is
empty and is completely contained in t is the root space gjg 270,07 = €10 — L€2s. So
[0,0,21,0,0]7 is the only compact root for su(4,2). None of these positive roots oy have
a root space space that is completely contained in p, so there are not any noncompact

roots in this root space decomposition.

Definition 3.3.7. Maximally Noncompact Cartan Subalgebra
Let hg be a O stable Cartan subalgebra of a Lie algebra gg. Then we can say that hg
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is a maximally noncompact Cartan subalgebra if and only if there are no noncompact

imaginary roots.

Definition 3.3.8. Satake Associates

For a given Cartan subalgebra b, let g = h @peca go be the root space decomposition for
a noncompact real simple Lie algebra. Let a be a set of positive roots, «, the compact
roots, o be the simple roots and a.s; the compact simple roots. We choose the positive
roots to be closed under complex conjugation. Then for each root § € as/aps, if there is
a unique root B’ € as/aes such that 8 — B’ € {ay), then the root 3 is called the Satake

associate of f.

Example 3.3.6.

The simple Lie algebra so*(10) has the simple roots:

0] (1] 0] [0 ] [0 ]
0 1 0 1 1
ay= 2|, a=|-1|, az=10|, a4= 10|, as=10
0 1 o1 I I
0| 0 | 0] 1] 1

(1] [1] [o] J[ol TJo]

1 |-t 0 0 0
@—ar=|1|—|-1|=|21] = 21| +|0]| =1 +as
I —1| er 0 or
o] o] |o] [o] [o]

o] [o] [o]

1 1 0
ag—as= (0l — | 0| =]0]| =as

| |-1| |or

7l 1] o]
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So the Satake associate of ay is as.

This completes our review of the basic theory and concepts of semi-simple Lie al-
gebras. The reader should have the necessary information for understanding the process
of the Cayley transform. In the next chapter, we’ll discuss the seventeen different real

simple Lie algebra types and their corresponding Satake diagrams.
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Chapter 4

Real Simple Lie Algebras

In this chapter we will describe the seventeen types of classical real simple Lie
algebras. For each type, we give the standard matrix representation, the Satake diagram,
and an example. The seventeen real types are organized according to their classification

as simple complex Lie algebras.

An

sl(n,R)

sl(m, H)
su(p;q), p > q

su(p, p)*

su(n)

so(p,q)

so(n),n is odd

sp(n,R)
sp(p, p)
sp(n)

so(n,n)
so(p,q),p+ q is even
so(2n)
s0*(2n),n is even

s0*(2n),n is odd

*We distinguish su(p,q) from su(p,p) because the Satake diagrams have a different

pattern when p = gq.
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4.1 A,: The Special Linear and Special Unitary Lie Algebras

4.1.1 SL(n): Special Linear Group

The special linear group, SL(n), is the set of n x n real-valued matrices with
determinant 1. The group operations are ordinary matrix multiplication and matrix
inversion. If A(t) € SL(n) is a smooth curve with A(0) = I, then any non-singular
matrix A satisfies AA™! = A~1A = I. Then the well known formula for the derivative
of the determinant of a matrix A(t) gives [3]: %hzo det(A(t)) = trace(A’(0)). Therefore

the special linear Lie algebra is the set of all trace-free n X n matrices.

4.1.1.1 si(n,R)

The dimension of the Lie algebra sl(n, R) is n? — 1. A basis for sl(n, R) is a set of
linearly independent n x n trace-free matrices with real entries. The number of simple
roots is n — 1. All of these simple roots will be real roots. Therefore no distinct Satake
associates will occur in sl(n, R). So, red arrows will not appear on the Satake diagrams

of sl(n, R). The Satake diagram for sl(n) will have n — 1 number of white dots and will
look like this:

N M
O O e O O
Example 4.1.1. si(3):

A basis for the standard representation for sl(3) is defined by the following trace-
free matrices:

ee=10 0 O e2=101 O es= 10 0 O0lea= 1|0 0 O

(00 -1 (00 -1 000 oo o]
[0 0 0 [0 0 0 ‘ooo0] Joo o]
es=|100| es=]001| e=|000es=]00 0
00 0 000 100 010

The Cartan decomposition is sl(3) = t @ p, where t = (e3 — e5,e4 — e7,e6 — es), and

p = (e1,e2,e3+e5, e4+e7,e6+es). Therefore, (e1, e2) is a maximally noncompact Cartan
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subalgebra with simple roots

Because both of these roots have real entries, the Satake diagram will have two white
dots. The roots are not complex conjugates of each other, therefore there are no red

arrows. So the Satake diagram will look like this:

O——=O

4.1.1.2 si(m,H) also denoted as su*(n)

The Lie algebra si(m,H) is the set of quaternionic trace-free n x n matrices, where
2m = n. We look at these as complex matrices. The relationship between quater-
nionic matrices and complex matrices is as follows [2]. Writing an element v € H™
as v = a + bi + ¢j + dk with a,b,c,d € R", we can define ¢p : H™ — C?* by
Y(v) = (a+bi,c+di). The map v — (z1, 22) induces an R linear isomorphism H™ — C?"

that preserves the bracket as follows:

Let X € sl(m,H where X =Y +Ui+Wj+Vk. Set A=Y +Uiand B=W +Vi

m7
A B
and (X)) = . We will check that ¢ is a Lie algebra isomorphism, i.e.

i

A
P(X1Xe — XoX1) = [¢(X1),¥(X2)]. Then,

X1 Xy — XoX) =

= (Yi4+-Uri+Wij+Vik) (Yat-Usit Waj+Vak)— (Yot UsitWoj+Vak) (Yi+Uri+ Wy j+Vik) =
= W1Ys — U Uy — WiWo — ViV — Yo Y1 + UsUy + WoWy + VaVi)+
+(Y1Uz 4+ U Yo + WiVa — ViW, — YaU; — UsYy — WoVi 4 VoW )i+
+(Y1Wa — UiVa + W1Ys + ViUz — oWy + UaVi — WYy — ValU)j+

+ (V1 Vo + Uy Wy — WU + V1Y — Yo Vi — Us Wy + Waly — VoYh)k.
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Then ¢(X1X2 — XQXl) = _ _ y where

A= (MYy — UhUs — WiWy — V1 Vo — Yo Y1 + UsUy + WalWq + VaVi)+

+(Y1Uz + UrYa + Wi Vo — ViWy — YUy — UpYr — WaVi + VoW )i,

B = (YaWy — U Vo + WhYs + ViUs — YoWy + UsVy — WYy — ValUy )+

+(Y1 Vo + Uit Wy — WhUs + ViYa — Yo Vi — Us Wy + WaU; — VaY))i.

Then if Ay =Y +Uqi, Ao =Y + Usi, By = Wi + Vqi, Bo = Wa + Vau:
A = A1 Ay — Blgg — AsA; + BgBl
B = A1Bsy + Blfig — A9 By — B214_1.

Then we can see that

A B
(X1 Xy — XoXy) = | =
_Bl A/

A1Ag — B1By — AsAy + BoBy  A1Bg + B1As — AyBy — Bo Ay

—A1By — B1As + A3By + BoA1 A1Ay — B1By — Ay Ay + BoBy

A1 Bl Ag BQ A2 B2 A1 Bl
-B; A —By A —By A -B; A
Thus this linear isomorphism 1 preserves the bracket. Then the following char-

acterizes sl(m,H) as the set of linearly independent trace-free complex matrices of the

block form:
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A is a n X n complex matrix,

. A B
sl(m,H) = su*(n) = o B is a n x n complex matrix,
—-B

|

tr(A) + tr(A) = 0

The dimension of the Lie algebra sl(m, H), su*(n) is n?> — 1 where 2m = n. The

number of simple roots is [ = 2m — 1. There are 1—71 real or complex simple roots, and

HTI imaginary simple roots. Since n is even, the number of simple roots will always
be odd. These simple roots are a mixture of imaginary, complex, and real and no red

arrows will appear on the Satake diagrams of si(m,H).

The simple roots will start with a imaginary root and alternate with a complex or

real root until ending with an imaginary root. So the Satake diagram will look like this:

® O ® - O—0

Example 4.1.2. si(2, H), su*(4):

A basis for the standard representation for sl(2, H), su*(4) is the following trace-

free matrices:

10 0 0 000 0 1 0 0 0 01
00 0 0 070 0 0 -1 0 0 0 0

€1 = €9 = €3 — €eq =
00 —I 0 000 0 00 1 0 0 0
(00 0 0] (000 —T | 00 0 -1 [0 0
(00 0 0] (0T 0 0 | (000 0 0] [0 0
1000 000 0 I 0 0 0 0 0

€5 = € — e7 = eg =
00 0 000 —I 00 0 0 10
(00 1 0] (000 0 | 00 -1 0| 0 0
[0 0 1] [0 00 0] [0 0 0 0] [0 0
0 0 00 0 010 0 0 01 0 0

€9 = €10 = €11 = €12 =
0 -1 0 0 0 00 0 0 0 00 I 0
(0 0 00 [ —100 0 (0 -1 0 0 0 0

o o o o

o o O

O O O 0N

o [an} ) (e

o o o o
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€13 = €14 = €15 =

o o o O
S N O O
o o o o
o O O 0~
~N O O O
o o o O
S O N O
o o o O
o o o O
~N O O O
o o o O
S O N O

The Cartan decomposition is su*(4) = t@®p where, t = (e1, €2, e4—e5, e6+e7, €5, €9+
€10, €11, €12, €13 + €14,€15), and p = (e3, e4 + €5,e6 — €7, €9 — €10, €13 — €14). From the
basis of the standard representation above we can see that ej, ey and eg are diagonal

matrices. Then, (eq, e, e3) is a Cartan subalgebra with the simple roots:

0 2 0
ap= (2|, a=|-T|, a3=10
0 -1 21

The root spaces of the imaginary roots are E,, = e11 — lejs and E,, = eg — Ieq2
and these both lie completely in the compact part t of the Cartan decomposition. Then
because there isn’t an imaginary noncompact root the Cartan subalgebra is maximally

noncompact.

The order of these roots does matter, and we will discuss how to get that order
in Chapter 5. The first and third roots are imaginary and the middle one is complex.
This means that we will have a black dot, a white dot, and then another black dot.
Because the first and third roots are not complex conjugates of each other, there are no

red arrows. So the Satake diagram will look like this:

® O o

4.1.2 SU(p,q) : Special Unitary Group

Let @ be the diagonal matrix —:)p OI . Then, the group SU (p, q) is the group
of n X n complex matrices that satisfy MQ]C\}T = @ and det(M) = 1, where n = p+ ¢
and f represents the conjugate transpose of the matrix. If M(t) € SU(p,q) is a smooth
curve with M (0) = I, then for any non-singular matrix M we can take the derivative

of the above relationship with respect to t. Then, evaluating for ¢ = 0 gives us the

relationship for the corresponding Lie algebra. @ - X + XT-Q = 0, and trace(X) = 0.
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A B ]
Let X be the block matrix . Then, Q- X + XT-Q =0 gives
C D
I, 0 A B AT CT I, 0
. + . =0
0 —I C D Bt Df 0 —I
A B At
+ =0.
-C -D Bt —Dt

This leads to A = —A', D = =D, C = Bf. Finally,

A is a g X ¢ skew hermitian matrix,
A B D is a p X p skew hermitian matrix and
su(p, q) =
Bt D B is a ¢ X p matrix

tr(A) + tr(D) = 0

The case where ¢ = 0 is a special case of su(p, q) called su(n).

4.1.2.1 su(p,q),p>q

The dimension of the Lie algebra su(p,q) is (p + ¢q)? — 1, where p = + 1 — q and
[ is the number of simple roots. The simple roots will be a mixture of imaginary and
complex/real. There are 2¢ complex simple roots, and [ — 2¢ imaginary simple roots.
In the ordering of the simple roots in the Satake diagram, the simple roots will have
half the complex simple roots followed by all of the imaginary roots and ending with the
other half of the complex simple roots. Every complex simple root will have a Satake

associate in the set of simple roots. So the Satake diagram will look like this:

:
|

Example 4.1.3. su(3,1):
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A basis for the the standard representation for su(3,1) are the following trace-free

matrices:
[0 -1 0 0| (000 -1 0| (00 0 0] [0 1 0
1 0 00 00 0 0 00 —1 0 100
€1 = €9 = €3 — €q =
00 00 10 0 0 01 0 0 000
0 00 | (00 0 0 [0 0 0| (000
(00 1 0] (00 0 0] (0000 1] [0 0 0
000 0 0070 0000 00 0
€5 = €6 = er = eg =
1000 071 00 0000 00 0
(000 0 (000 0 100 0| 010
(000 0] [0 00 T [0 00| [0 0
0000 0 00 0 0 0 01 00 0
€9 = €10 = €11 = €12 =
000 1 0 00 0 0 0 0 0 00 0
(00 1 0] | -1 00 0| 0 -1 0 0| 00 -1
(7 0 0 0] (00 0 0] (000 0 |
0 I 0 0 071 0 0 000 0
€13 = €14 = €15 =
0 0 00 00 —I 0 007 0
(0 0 0 0] (00 0 0 000 -1

The Cartan decomposition is su(3,1) = t&p where t = (e, ea, €3, €4, €5, €6, €13, €14, €15),
and p = (er,es,eg9,€10,€11,€12). We can see that (e, eg,e13 + 2e14 + €15) is a Cartan

subalgebra and with simple roots:

1 0 1
ar=|—-1|, a=|0]|, az=]|1T
—I 21 —I

The order of these roots does matter, and we will discuss how to get that order
in Chapter 5. The root space of the only imaginary root is E,, = e4 — Iej3. This is

completely contained in the compact part t of the Cartan decomposition. Thus, our
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Cartan subalgebra is maximally noncompact. The first and third roots are complex and
the middle one is imaginary. This means that we will have a white dot, a black dot, and
then another white dot. Since s is a compact root and ag—az = [1,1,1]T —[1,1,-1]T =
[0,0,21]T = a3 then a3 is the Satake associate of a;. So the Satake diagram will look

like this:

4.1.2.2  su(p,p)

A basis for su(p,p) is a list of linearly independent complex matrices of the block

form:

A is a p X p skew hermitian matrix,
(0.p) A B D is a p x p skew hermitian matrix and
su{p,p) =
Bt D B is a p X p matrix

tr(A)+tr(D)=0

7
The dimension of the Lie algebra su(p,p) is (2p)? — 1, where [ = 2p — 1 and [ is the
number of simple roots. All of the simple roots are real or complex. In fact, there
is exactly one real root, and the rest are complex. Every complex simple root has its

Satake associate in the set of simple roots. So the Satake diagram will look like this:

O

Example 4.1.4. su(2,2):

A basis for the standard representation for su(2,2) are the following trace-free ma-

trices:
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[0 -1 0 0| (07T 0 0] (000 1 0] [0 0 0
1 0 00 7100 0 0000 00 0
€1 = €y = €3 = €y =
00 00 0000 100 0 00 0
(0 0 00| (000 0] 000 0 (100
(000 0] (00 0 0] [0 0T 0] [0 0 0
0010 000 1 0 00 0 0
€5 — € — €7 = €g —
0100 0000 700 0 0 00
(000 0| (010 0| 0 00 0 -1 00
[0 0 0 0] [0 0 0 0] (000 0] [0 0 0
0 0 I 0 0 0 0 I 000 0 00 0
€9 = €10 = €11 = €12 =
0 -1 0 0 0 0 0 0 000 —1 00 0
(0 0 0 0| (0 -1 0 0 001 0 | 00 1
(7 0 0 0] (00 0 0] (000 0 |
0 T 0 0 07 0 0 000 0
€13 = €14 = €15 =
0 0 00 00 —T 0 007 0
(0 0 00| (00 0 0] 000 —T |

The Cartan decomposition is: su(2,2) = t®p where, t = (e1, €2, €11, €12, €13, €14, €15),
and p = (es3, eq, €5, €6, €7, €8, €9, €19). We see that (e; + e, e3 + e, e9 — eg) is a Cartan

subalgebra with simple roots:

0 2 0
aop=121|, a=|=-2, az= 2
21 0 —21

Since none of these roots are imaginary we can say that this Cartan subalgebra is
maximally noncompact. The order of these roots does matter, and we will discuss how
to get that order in Chapter 5. The first and third roots are complex and the middle
one is real. This means that we will have three white dots. The simple root as is not
compact, so because o1 and ag are complex conjugates, ag is the Satake associate of «;.

The Satake diagram will look like this:

0 0

o o O

S N O O

S O O N
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4.1.2.3 su(n)

A basis for su(n) is a list of linearly independent n x n skew hermitian trace-free
matrices with complex entries. The dimension of the Lie algebra su(n) is n? — 1, where
Il =mn —1 and [ is the number of simple roots. All of the simple roots are imaginary. In
fact, because the basis for su(n) are skew hermitian matrices, the entire basis will be
contained in the compact part t of the Cartan decomposition. This means that every
one of the simple roots will be compact. Thus, there will not be any Satake associates

for su(n). So the Satake diagram will look like this:

Example 4.1.5. su(4):

A basis for the standard representation for su(4) are the following trace-free skew

hermitian matrices:

[ 700 0] (0 0 0 0] (00 0 0] [0 -1

0 00 0 0 -1 0 0 00 0 0 1 0
€1 = €9 = €3 — €4 =

0 00 0 0 0 0 0 00 —I 0 0 0

0 00 T | (0 0 01 00 0 1 (0 0

(00 0 0] (000 0] (00 -1 0] [0 0 0

00 -1 0 000 0 00 0 0 00 0
€5 = e = er = eg =

01 0 0 000 —1 10 0 0 00 0

(00 0 0 (001 0 00 0 0] (010

(00 0 —1| (07T 0 0] (0000 0] [0 0 0

000 0 7100 0 0070 00 0
€9 = €10 = €11 = €12 =

000 0 0000 0700 00 0

(100 0 | (000 0] 000 0] (00 T

o o o O

O ~N O O




60

€13 = €14 = €15 =

S N O O
o o o O
oS O O 0N~
o o o O
o o o O
~N O O O
o o o O
S O N O
N O O O
o o o O
o o o O
S O O 0N

The Cartan decomposition is su(4) = t @ p, where t = (e, e2, €3, eq4, €5, €6, €7, €3,
€9, €10, €11, €12, €13, €14, €15) and p = (). We see that h = (e1, e9, e3) is a Cartan subalge-

bra with simple roots:

I 0 I
ar= 1|, a=|T]|, az=|-1I
21 I 0

Because p is empty, this Cartan subalgebra must be maximally noncompact. All of
the roots are imaginary. This means that we will have three black dots. So the Satake

diagram will look like this:

4.2 B,: Odd Dimensional Special Orthogonal Lie Algebras
4.2.1 SO(p,q) : p+ q is odd: Odd Dimensional Special Orthogonal Group
0

I
Let @ be the diagonal matrix b . Then the group SO(p, q) is the group
0 -1

of n x n real-valued matrices M that satisfy M7 - Q- M = Q and det(M) = 1, where
n = p+ q and T represents the transpose of the matrix. If M (t) € SO(p, q) is a smooth
curve with M (0) = I, then for any non-singular matrix M we can take the derivative
of the above relationship with respect to t. Then, evaluating for ¢ = 0 gives us the

relationship for the corresponding Lie algebra

MY Q- M+M'- Q- M=0
Q-M+M'.Q=o.
Let M = Xthen,

Q- X+X"-Q=0.
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A B
Then let X be the block matrix . Then, Q- X + X7 -Q = 0 gives:
C D
I, 0 A B AT CT I, 0
. + ) =0,
0 —I, C D BT DT 0 —I,
A B AT —cT
+ =0
-C -D BT DT

This leads to A = —AT, D = =D, C = B”. Finally,

N A is a p X p skew symmetric matrix,
B
so(p,q) = D is a ¢ X g skew symmetric matrix and
BT D

B is a p x ¢ matrix

4.2.2 so(p,q),p+ q is odd

N A is a p X p skew symmetric matrix,
B
s0(p,q) = D is a g x g skew symmetric matrix and
BT D
B is a p x ¢ matrix

n(n—1)
2

The dimension of the Lie algebra so(p, q) is , where [ = % and [ is the number

of simple roots. There are p real/complex simple roots and [ — p imaginary simple roots.

Then the Satake diagram will look like this:
Example 4.2.1. Let’s look at so(4,1).

A basis for the standard representation for so(4, 1) are the following trace-free ma-

trices:
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(0 100 0] (00 -1 0 0] (000 -1 0]
1 0 000 00 0 00 000 0 0
ei=]{0 0 000|ee=|10 0 00les=|000 0 0
00 000 0 0 00 100 0 0
(0 0 00 0] (00 0 00 (000 0 0]
(00 0 0 0] (000 0 o] (000 0 0]
00 -10 0 000 -1 0 000 0 0
ea={01 0 00]es=|000 0 0les=|000 -1 0
00 0 00 010 0 0 001 0 0
(00 0 00| (000 0 0 100 0 0 |
(0000 1] 0000 0] (0000 0]
00000 00001 00000
er=100000| e=[00000]| e=|00001
00000 00000 00000
(1000 0] (0100 0] (0010 0]
(0000 0]
00000
ewn=10 0 0 0 O
00001
(0001 0]

The Cartan decomposition is so(4,1) = t @ p, where t = (eq, ea, €3, €4, €5, €6), and

p = (e7,es,e9,e10). We see that (eg, e7) is a Cartan subalgebra with simple roots:

The root space of the imaginary root is E,, = e4 — Ies, which is completely contained
in the compact part t of the Cartan decomposition. Then, our Cartan subalgebra is
maximally noncompact. The first simple root is complex and the second is imaginary.
This means that we will have one white dot and then one black dot. So the Satake

diagram will look like this:
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O——@

4.2.3 so(n),n is odd.

A basis for so(n) is a list of linearly independent n x n skew symmetric trace-free

n(n—1)
2

matrices with real entries. The dimension of the Lie algebra so(n) is , wWhere

l= %‘1 and [ is the number of simple roots. Since all of the matrices that make up the
basis for so(n) are skew symmetric, the Cartan decomposition will only have elements in
t, the compact part. All of the simple roots will be imaginary and compact and therefore

there will not be any Satake associates. Then the Satake diagram will look like this:

® ® s @@

Example 4.2.2. Let’s look at so(5).

A basis for the standard representation for so(5) are the following trace-free skew

symmetric matrices with real entries:

0 -1 00 0 00 -1 00 000 -1 0
1 0 00 0 00 0 00 000 0 0
ei=|0 0 000|e=|10 0 00]ea=|000 0 0
0 0 000 00 0 00 100 0 0
(0 0 00 0] (00 0 0 0] (000 0 0]
(0000 —1] [0 0 0 0] (000 0 0]
0000 0 00 -1 00 000 -1 0
e4=|0100 0 |e=|01 0 00]ec=]000 0 0
0000 0 00 0 00 010 0 0
(1000 0 | (00 0 0 0] (000 0 0]
(0000 0| (000 0 0] (0000 0]
0000 —1 000 0 0 0000 O
er=|0000 0 |es=]|000 -1 0]ew=]0000 —1
0000 0 001 0 0 0000 0
(0100 0 | (000 0 0] (0010 0|
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(0000 0|
0000 O
ewn=10 0 0 0 O
0000 -1
(0001 0 |

The Cartan decomposition isso(5) = t@p, where t = (e, e2, €3, e4, €5, €6, €7, €3, €9, €10)
and p = (). Because the positive part of the Cartan decomposition p is empty, h =

(e1,eg) is a maximally noncompact Cartan subalgebra with simple roots

They are both imaginary. This means that we will have two black dots. So the Satake

diagram will look like this:

o o

4.3 C, : Symplectic Lie Algebras
4.3.1 Sp(n,R): Symplectic Lie Group
0

I
Let J be the block matrix, J = "| where I is the n x n identity matrix.
—-I, O

Then the group Sp(n,R) is the group of n x n matrices that satisfy M7 JM = .J, where
n = p+ q and T represents the transpose of the matrix. If M(t) € Sp(p, q) is a smooth
curve with M(0) = I, then for any non-singular matrix M we can take the derivative
of the above relationship with respect to t. Then, evaluating for ¢ = 0 gives us the

relationship for the corresponding Lie algebra.

MT. g M+MT.J-M=0
J-M+MT.J=0.
Let M = X.

Then, J- X + X1 . J=0.



4.3.2 sp(n,R)

B
Let X be the block matrix X = . Then, J- X + X7 .J =0 gives
C D
0 I, A B AT T 0 I,
I, 0 C D BT DT I, 0
cC D —CcT AT
+ =0.
-A -B -pT BT
This leads to D = —AT, B =BT, C =CT.
Finally, a basis for sp(n, R) are real-valued matrices such that:
A is a n X n matrix,
A B
sp(n, R) = B is an x n symmetric matrix and
c —AT

C is a n X n symmetric matrix
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The dimension of the Lie algebra sp(n, R) is %, where [ = n/2 and [ is the

number of simple roots. All of the simple roots are real. Then, there will not be any

Satake associates for sp(n, R). So the Satake diagram will look like this:

O O

Example 4.3.1. sp(4, R):

——O0—<—0

A basis for the standard representation for sp(4, R) are the following trace-free ma-

trices:
(10 0 o] (001 0 0] (000 0
00 0 0 00 0 0 100 0
el = €9 = €3 —
00 -1 0 00 0 0 000 —1
00 0 0 00 -1 0| (000 o0

€4 =

o o o O

= O

o O

o o o O




00 10 00 01 0 0 O 0
00 0 O 00 10 0 0 0 0
€5 = e — er = eg =
00 0O 0 0 0 0 00 0
00 0 0 0 0 0 0 0 0 0
00 0O 00 0O
00 0 0 00 0 0
€9 = €10 =
01 00 00 0 0
100 0| (0100

The Cartan decomposition is sp(4, R) = t®p where, t = (ea—e3, e5 —eg, eg— €9, €7 —
e10) and p = (e1, ea+e3, €4, €5+ €3, €6+ €9, €7+ €10). We can see that (e, eq) is a Cartan
subalgebra. Because this is completely contained in the positive and noncompact part p
of the Cartan decomposition, this is a maximally noncompact Cartan subalgebra with

simple roots

Both of these roots are real. This means that we will have two white dots. So the Satake

diagram will look like this:

O—=——0

4.3.3 Sp(p,q): Symplectic Lie Group

0
Let J be the block matrix, J =
—-I, O

Then the group Sp(p, q) is the group of n x n complex matrices that satisfy M7 JM = J,

where [ is the n x n identity matrix.

where n = p + ¢ and T represents the transpose of the matrix. If M(t) € Sp(p,q) is
a smooth curve with M (0) = I, then for any non-singular matrix M we can take the
derivative of the above relationship with respect to t. Then, evaluating for ¢ = 0 gives

us the relationship for the corresponding Lie algebra.
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MT . J- M+MT.J-M=0
J-M+MT.J=0.
Let M = X.

Then, J- X + X7 .J =0.

4.3.4 sp(p,q)

A basis for sp(p,q) are complex valued matrices satisfying X.J + JXT = 0 and
XQ + QX" =0. The first of these gives

A1 Ay Br B
As; Ay BY By
O Cy —AT AT
clh ¢, —AT AT

where By, By, C1, Cy are symmetric as shown previously. The second, with

I 0 0 O
0 -1 0 0
Q:
0 0 I O
| 00 0 -1

gives:

(A A B, B, |[1 0 0 0]
A; Ay BY By O—IOO+
C, Cy —AT AT 0 0 I 0

| Cf Cy —AT AT | [0 0 0 —I |
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700 0][a 4 B B |
N 0 -I 0 0 As Ay BT By .
0 0 I 0 C, Cy —AT —AT
(0 0 0 —I][CF Cyp —A] —A] |
(A A, B, B, |[1 0 0 0]
A3 Ay BY By 0 -1 0 0 N
C, Cy —AT AT 0 0 I 0
cf oy —AY AT [0 0 0 —T |
(10 0 o |[al o4l o (@nt ]
oo Al Al cl cl 0
0 0 I o ||B B) —(AD" —4aD)
(0 0 o -I][B} B -4 —]f
[ A Ay By -By | | Al 4l of @yt ]
A; —-Ay BT —B . —AL Al ol =] 0
¢ —Cy —AT AF Bl (BT —(aDt (4]
|05 —0y —Af A7 | | -B} -B] AL (AD)
(A 4, B -B, | [ al a4 o & ]
As -4, BY —-B, . AL —Al —cl - 0
C, —Cy —AT AT Bl B, —-A -4
cf -cy -AY AT | | -B} -B] Al A,

807 Al = _A'LAil = _A,{aA?) = A}; = Tga _A4 = Ajl = A747 Cl = _B'lil = _FM
Cy = By,Cy = —Bl = —B,, where Ay, A4 are skew Hermitian and By, By are symmet-

ric.

Then sp(p, q) are complex valued matrices in the following block form:
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Ay Ao By B A1, By are p X p matrices
(. q) fg Ay Bg By Aq, Ay are skew Hermitian matrices
sp\p,q) = o _ _
—-B1 B A —As Aoy, By are p X ¢ matrices
375 —By —A2T Ay By, B4 are symmetric matrices

There are p real/complex simple roots and [ — p imaginary simple roots, where [ is
the number of simple roots. There will not be any Satake associates for sp(p, q). So the

Satake diagram will look like this:

® O o O O 06 <0

Example 4.3.2. Let’s look at sp(4,2).

A basis for the standard representation for sp(4,2) are the following matrices:

[0 -1 00 0 0] 700 0 0 0] o7 0 0 0 o0
1 0 00 0 0 000 0 00 I00 0 0 0
00 00 0 0 000 0 00 000 0 0 0
€1 = €9 = €3 —
0 0 00 -1 0 000 —I 00 000 0 —I 0
00 01 0 0 000 0 00 000 —I 0 0
(00 00 0 O] (000 0 00 (000 0 0 0
(0000 0 0] 0001 0 o0 | 0000 0 0
07100 0 0 000 0 0 0 0010 0 0
0000 0 0 100 0 0 0 0100 0 0
0000 0 O 000 0 0 —1 0000 0 0
0000 —I 0 000 0 0 0 0000 0 -1
(0000 0 0] (000 -10 0 | (0000 -1 0
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[0 07 0 0 0] [0 0 00 0 0] 0 00 1
0 00 0 00 00 I 0 0 0 0 00 0
700 0 00 0 =1 00 0 0 0 00 0
0 00 0 01 00 00 0 0 100 0
00 0 00 0 00 0 I 0 00 0
i 00 - 00| 0 00 —I 0| i 00 0
0 0 00 1 0] [0 0 000 0] (0001 0
0 0 0100 0 0 0010 00000
0 0 000 0 0 0 0000 00000

€10 = €11 = €12 =
0 =100 0 0 0 0 0000 I 0000
1 0 000 0 0 =1 000 0 00000
0 000 0| (000 000 0 10000 0
(000001 0] (000000 0] 0000 0
0007100 000010 0000 0
000000 000000 00010

€13 = €14 = €15 =
0710000 000000 00100
100000 0710000 0000 0
(00000 0| (00000 0| (10000
(00000 0] [0 o 00 I] [0 0 0 o0
000001 00 0 000 00 0 0
000010 00 0 I 00 00 0 0

€16 = €17 = €18 =
000000 0 0 - 00 0 00 0 0
001000 00 0 000 0 0 —I 0
(01000 0] | 10 0 00 0 0 -1 0 0
(00000 0| 000 0 00 0] (000 0 0
00000 0 00 0 000 0000 0
00700 0 00 0 00 1 0000 0

€19 = €20 = €21 =
00000 0 00 0 00 0 0000 0
00000 0 00 0 00 0 0000 0
(00000 —T (00 -1 00 0 007100

The Cartan decomposition is sp(4,2) = tdp, where t = (ey, e9, €3, €4, €9, €10, €11, €12,

e13, €14, €19, €20, €21) and p = (es, g, €7, €3, €15, €16, €17, €18). We can see that (e; —

o o o o o o

[ o o o o o o

O O O N ©O o © o o o o

o O O N O O

o o o o o o

o O O O ~N O
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€19, €2 + eq4 — e1g, e15 — e1g) is a maximally noncompact Cartan subalgebra with sim-
ple roots:
0 V2 0
o= |2, o= |=2I|, az3=|2]
0 —21 41

The corresponding root spaces of the imaginary roots are : E,, = (eg + Iejg — e11 +
Teio —e13 — Iejs — 2e90 + 21e21), Eqy = (69 + Le1p — e — Ieia + e13 + Ieis). These are
completely contained in the compact part t of the Cartan decomposition. Then because
there are not any noncompact imaginary roots, this Cartan subalgebra is maximally
noncompact. The first and third simple roots are imaginary and the second is complex.
This means that we will have one black dot, then one white dot and then one black dot.

There are not any Satake associates, so the Satake diagram will look like this:

o (O<—e@

4.3.5 sp(p,p)

The basis for sp(p, p) are complex matrices in the following block form.

- -
Aq As B Bs A1, By are p X p matrices
/TQT Ay Bg By Ay, Ay are skew Hermitian matrices
sp(p,p) = - = ,
—-B1 By A Ay As, By are p X p matrices
Bi2T —By —Ag Ay By, B4 are symmetric matrices

The Lie algebra sp(p, p) has 2p simple roots where p of them are real /complex, and
p of them are imaginary. They alternate starting with an imaginary simple root. So the

Satake diagram will look like this:

® O o O <O

Example 4.3.3. sp(2,2):
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A basis for the standard representation for sp(2,2) are the following matrices:

(70 0 0] (001 0 0 | 07 0 o]
00 0 0 10 0 0 70 0 0
e = ey = e3 =
00 —I 0 0 0 -1 00 0 I
(00 0 0 (00 -1 0 [ 0 0 -1 0]
[0 01 0] (00T 0] (000 0 1]
0 00 0 0000 0010
€4 = ey = eg =
100 0 71000 0100
[ 0 00 0| (000 0] 100 0
[0 0 o 1] (000 0 | (0 0 0 0]
0 0 I 0 070 0 00 01
er = eg = €9 =
0 —I 0 0 000 0 0 0 00
| 1 0 0 0] (000 -1 0 -1 0 0
(00 0 0]
000 I
€10 =
0000
(0700

The Cartan decomposition is sp(2,2) = t @ p, where t = (ey, eq, €5, €3, €9, €19) and
p = (ea,e3,¢e6,e7). We can see that h = (eg, es — e1) is a Cartan subalgebra with simple

roots:

21 —2I

The corresponding root space of the imaginary root is: E,, = (e4+Ies—eg+Ieio). This
is completely contained in the compact part t of the Cartan decomposition. Because
there are not any noncompact imaginary roots, our cartan subalgebra is maximally
noncompact. The first simple root is imaginary and the second is complex. So the

Satake diagram will look like this:

<0
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4.3.6 sp(n)
sp(n) is a special case of sp(p,q) with ¢ = 0. This is not to be confused with
sp(n,R). A basis for sp(n) are complex valued matrices that are of the form X =
A B
c —AT
X + X" =0. Then,

where B, C' are symmetric matrices and that satisfy the condition that

A B . A B

c —AT C —AT
A B At ¢t
C —AT Bt —A

This leads to A = —A!,C = —BT. Finally,

() A B Ais an/2 x n/2 skew Hermitian matrix,
sp(n) = B
-Bf A B is a n/2 x n/2 symmetric matrix
The dimension of the Lie algebra sp(n) is %, where n is the number of simple

roots. All of the simple roots are imaginary. Then, there will not be any Satake associates

for sp(n). So the Satake diagram will look like this:

( o @< @

Example 4.3.4. sp(4):

A basis for the standard representation for sp(4) are the following complex valued

matrices:
[0 -1 0 0 | (70 0 0] (o7 0 o0 ]
1 0 0 0 00 0 0 10 0 0
el = ey = e3 =
0 0 0 -1 00 —I 0 00 0 -I
0 0 1 0 | (00 0 0] (00 -1 0 |
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(000 0 | [0 01 0] [0 0 0 1]
070 0 0 00 0 0 0 10
€4 = €5 = €6 =
000 0 100 0 0 -1 0 0
(000 T | 0 00 0 -1 0 00
[0 00| (00T 0] [0 0 0 1]
00 01 000 0 00T 0
€7 = eg = €g =
00 00 1000 0700
(0 -1 0 0| (000 0] 700 0|
(000 0]
000 I
€10 =
0000
0700

The Cartan decomposition is sp(4) = t@p, where t = (e, e9, €3, €4, €5, €5, €7, €8, €9, €10)

and p = (). We can see that h = (e, ez + e4) is a Cartan subalgebra with simple roots:

21 0
—2I 21

Both of these roots are imaginary. The corresponding root space of these simple roots
are By, = (e5 + Ieg — er — Ieg + eg + Ieig), Ea, = (ea — Ies — e4). Both of these
are completely contained in t, the compact part of the Cartan decomposition. Because
there are not any noncompact imaginary roots, this Cartan subalgebra is maximally
noncompact. This means that we will have two black dots that correspond to the two

imaginary roots. So the Satake diagram will look like this:

o—<—o

4.4 D,: Even Dimensional Special Orthogonal Lie Algebras
4.4.1 SO(p,q):p+q is even: Even Dimensional Special Orthogonal Group

I 0
Let @ be the diagonal matrix @ = P . Then the group SO(p, q) is the
0 -1
group of n x n real valued matrices that satisfy M7 - Q- M = @ and det(M) = 1, where

n = p+ q and t represents the transpose of the matrix. If M(¢) € SO(p, q) is a smooth
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curve with M(0) = I, then for any non-singular matrix M we can take the derivative
of the above relationship with respect to t. Then, evaluating for ¢ = 0 gives us the

relationship for the corresponding Lie algebra.

MT-Q-M=Q

MY Q- M+MT-Q-M=0

Q-M+M".Q=o.
Let M = X.

Then, Q- X + X7 .Q =0.

s
Let X be the block matrix .Then, Q- X +XT.Q =0,
C D
I, 0 A B AT T I, 0
. + . = O
0 —1I, C D BT DT 0 —1I,
A B AT T
+ =0
-C -D BT DT

This leads to A = —AT, D = =D, C = BT Finally,

N A is a p X p skew symmetric matrix,
B
s0(p,q) = D is a g x g skew symmetric matrix and
BT D
B is a p X ¢ matrix

4.4.2 so(n,n)

A basis for so(n,n) are trace-free matrices of the form:

A is a n X n skew symmetric matrix,
A B
so(n,n) = B is a n X n matrix,
BT D
D is a n x n skew symmetric matrix

The dimension of the Lie algebra so(n,n) is 2n? — n, where [ = n and [ is the number

of simple roots. All of the simple roots are real. Then the Satake diagram will look like
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this:

Example 4.4.1. Let’s look at so(3,3).

A basis for the standard representation for so(3, 3) are the following trace-free ma-

trices with real entries:

[0 =100 0 0] (000 =1 00 0] 000 0 000
1 0 0000 00 0 00 0 00 -1 00 0
0 0 0000 10 0 000 01 0 00 0
€1 = €9 = €3 —
0 0 0000 00 0 00 0 00 0 00 0
0 0 0000 00 0 00 0 00 0 000
(000 0000 (00 0 00 0 (00 0 000
(000010 0] (000001 0] (000000 1]
000000 000000 000000
000000 000000 000000
€4 = €5 = € —
100000 000000 000000
0000 0 100000 000000
(00000 0] (00000 0] (1000 0 0]
(000000 0] (000000 O] 00000 0]
000100 000010 000001
000000 000000 000000
67: 68: 69:
010000 000000 000000
000000 010000 000000
(00000 0] (00000 0] (0100 0 0]




(00000 0] (000000 0]
000000 000000
000100 000010

€10 = €11 = €12 =
001000 000000
000000 001000
(00000 0] (00000 0]
(0000 0 0] (00000 0 |
0000 0 0 00000 0
0000 0 0 00000 0

€13 = €14 = €15 =
0000 —1 0 00000 —1
0010 0 0 00000 0
(0000 0 0 (00010 0

o o o o o o

o o o o o O

o o o o o o

o o o o o o

= o o o o o

o o o o o o

o o o o o o

o o o o o O

o o o o o o

_ o O O o o
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The Cartan decomposition is so(3,3) = t @ p where t = (e1, e, €3, €13, €14, €15)

and p = (eq, es5, €6, €7, €8, €9, €10, €11, €12). We can see that h = (e, eg, e19) is a Cartan

subalgebra with simple roots:

0 1 0
ar = |1/, az = |[—1], a3 = 1
1 0 -1

Because all of these simple roots are real, there are not any noncompact imaginary roots

and this Cartan subalgebra is maximally noncompact. We will have three white dots,

so the Satake diagram will look like this:
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4.4.3 so(p,q),p+ q is even

A basis for so(p, q) are trace-free matrices of the form:

A is a p X p skew symmetric matrix,

A B
so(p,q) = D is a g x g skew symmetric matrix and
BT D
B is a p X ¢ matrix, and tr(A)+tr(D)=0
The dimension of the Lie algebra so(p, q) is p(pigl) + @ + pq, where [ = p—;q

and [ is the number of simple roots. There are p complex/real simple roots and [ — p

imaginary simple roots. Then the Satake diagram will look like this:

Example 4.4.2. Let’s look at so(5,1).

A basis for the standard representation for so(5, 1) are the following trace-free ma-

trices with real entries:

0O -1 0 0 0 O 00 —1 0 0 O 0 0 -1 0 0 O

1 0 0 0 0 O 00 O 0 0O 00 0 0 0 O

0O 0 0 0 0 O 1 0 0 0 0O 1 0 0 0 0O
€1 = €2 = €3 =

0O 0 0 0 0 O 00 O 00O 00 0 0 0O

0O 0 0 0 0 O 00 O 0 0O 00 0O 0 O0O0

0 0 00 0 0] (00 0 0 0 0| (00 0 00 0
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(00000 -1 0] (000 0 00 0] (000 0 0 0]
0000 0 0 00 -1 00 0 000 —-10 0
0000 0 0 01 0 00 0 000 0 00
€4 = es = eg =
0000 0 0 00 0 00 0 000 0 00
1000 0 0 00 0 00 0 010 0 00
(0000 0 0 (00 0 00 0 (000 0 00
(0000 0 0] (0000 0 0 0] (0000 0 0]
0000 —1 0 000 0 00 0000 0 0
0000 0 0 000 -1 0 0 0000 -1 0
€7 = €g — €9 —
0000 0 0 001 0 00 0000 0 0
0100 0 0 00 0 0 0 0010 0 0
(0000 0 0 (000 0 0 | (0000 0 0
(0000 0 0] (000000 1] (000000 0]
0000 0 000000 000001
0000 0 0 000000 000000
€10 = €11 = €12 =
0000 —1 0 000000 000000
0001 0 0 000000 000000
(0000 0 0 (1000 0 0] (01000 0]
(00000 0] (000000 0] 00000 0]
000000 000000 000000
000001 000000 000000
€13 = €14 = €15 =
000000 000001 000000
000000 000000 000001
(00100 0] (00010 0] (0000 1 0]

The Cartan decomposition is so(5,1) = t®p where t = (e1, e2, €3, €4, €5, €6, €7, €3, €9, €10)
and p = (e11, €12, €13, €14, €15). We can see that (eq, eg, e15) is a Cartan subalgebra with

simple roots:
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The corresponding root space of the imaginary roots is: Ee(12 = (ea—les+Ies+es), Eay =
(eg—Ieg—Ies—eg). These are completely contained in t, the compact part of the Cartan
decomposition. Therefore, our Cartan subalgebra is maximally noncompact. The first
simple root is complex and the second two are imaginary. Then we will have a white

dot followed by two black dots. So the Satake diagram will look like this:

444 solp—1,p+1)

y Aisap+1xp+1skew symmetric matrix,
B
so(p—1,p+1) = Bisap—1xp+ 1 matrix,
BT D

Disap—1xp—1skew symmetric matrix

The dimension of the Lie algebra so(p+1,p—1) is (er;)(p) + (pfl);pﬂ) +(p+1)(p-1),
where [ = p and [ is the number of simple roots. All of the simple roots are complex/real.
So there will not be any compact simple roots. The last and second to last simple roots
will be complex conjugates, and therefore Satake associates, because there aren’t any

compact roots. So the Satake diagram will look like this:

Example 4.4.3. Let’s look at so(4,2).
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A basis for the standard representation for so(4,2) are the following trace-free ma-

trices with real entries:

0 -1 000 0 00 100 0 00 -1 00 0
1 0 0000 00 0 00 0 00 0 00 0
00 0000 10 0 000 10 0 000
61: 62: 63:
0 0 0000 00 0 00 0 00 0 00 0
0 0 0000 00 0 00 0 00 0 000
(000 0000 (00 0 00 0 (00 0 000
(00 0 00 0] (000 0 0 0] (0000 0 00
00 -1 00 0 000 -1 00 000 0 00
01 0 000 000 0 00 000 -1 00
€4 = €5 — € =
00 0 000 010 0 00 001 0 00
00 0 00 0 000 0 00 000 0 00
(00 0 000 (000 0 00 000 00
(000001 0] (000000 1] (000000 0]
000000 000000 0000710
000000 000000 000000
er = €8 = €9 =
000000 000000 000000
100000 000000 010000
(00000 0] (10000 0] (00000 0]
(000000 0] (00000 0] (000000 0]
000001 000000 00000
000000 0000710 000001
€10 = €11 = €12 =
000000 000000 000000
000000 001000 000000
(01000 0] (00000 0] (00100 0]




(00000 0] (000000 0]

000000 00000 D0

000000 000000
€13 = €14 =

000010 000001

0007100 000000

(00000 0] (00010 0]

€15 =

o o o o o o

o o o o o o

o o o o o o

o o o o o o

o o o o o
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The Cartan decomposition is so(4,2) = t @ p, where t = (e, e2, €3, €4, €5, €6, €15)

and p = (e7, es, €9, €10, €11, €12, €13, €14). We can see that h = (e, e11,e14) is a Cartan

subalgebra with simple roots:

There are not any imaginary roots, so our Cartan subalgebra is maximally noncompact.

All three simple roots are complex and @z = a3. Then «y is the Satake associate of as.

So the Satake diagram will look like this:

4.4.5 so(2n)

A basis for so(2n) is a list of linearly independent 2n x 2n skew symmetric trace-

free matrices with real entries. The dimension of the Lie algebra so(2n) is n(2n — 1),

where n is the number of simple roots. All of the roots are imaginary. Since the Cartan

decomposition for so(2n) will only have elements in t, the compact part, then all of the

imaginary simple roots will be compact. So, there will not be any Satake associates.

Then the Satake diagram will look like this:
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Example 4.4.4. Let’s look at so(6).

A basis for the standard representation for so(6) are the following trace-free matri-

ces with real entries:

[0 =100 0 0] (000 =1 00 0] (0000 -1 00
1 0 0000 00 0 00 0 000 0 00
0 0 0000 10 0 000 000 0 00
€1 = €9 = €3 —
0 0 0000 00 0 00 0 100 0 00
0 0 0000 00 0 00 0 00 0 00
(000 0000 (00 0 00 0 (000 0 00
(00000 -1 0] (000000 —1] (00 0 000
0000 0 0 00000 0 00 -1 00 0
0000 0 0 00000 0 01 0 00 0
€4 = €5 = € —
0000 0 0 00000 0 00 0 00 0
1000 0 0 00000 0 00 0 00 0
(0000 0 0 (10000 0 (00 0 000
(000 0 0 0] (00000 0 0] (00000 o0
000 -1 00 0000 —1 0 00000 —1
000 0 00 0000 0 0 00000 0
€7 = eg — €9 =
010 0 00 0000 0 0 00000 0
000 0 00 0100 0 0 00000 0
(000 0 00 (0000 0 0 (01000 0
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(000 0 0 0] (0000 0 0] (00000 0
000 O 0O 00 00 0 O 000 O0O0 O
000 -1 00 00 0O0 -1 0 000 00 -1

€10 = €11 = €12 =
001 0 0O 00 00 0 O 000 O0O0 O
000 O 0O 001 0 0 O 00 0 0O

100 0 0 0 | 0000 0 O] 100 100

(0000 0 0] (00000 0| (00000 0
0000 0 O 00 0 O0O0 O 000 0O0 O
0000 0 O 00 0 0 O0 O 000 O0O0 O

€13 = €14 = €15 =
0000 -1 0 00 0 0 0 -1 000 O0O0 O
0001 0 O 00 0 O0O0 O 000 00 -1
(0000 0 0 (00010 0 (00001 0
The Cartan decomposition is so(6) = t@ p, where t = (e1, e2, €3, €4, €5, €6, €7, €3, €9,
€10, €11, €12, €13, €14, €15) and p = (). We can see that h = (e1,e10,€15) is a Cartan

subalgebra with simple roots:

I 0 0
ag = |-T]|, Qg = I ) a3 = |1
0 —1I 1
These imaginary roots have the root spaces: E,, = e11 — Ieia + lejz + e1q, Eq, =

ea —Ies + leg + e7, B,y = €2 — Ies — Ieg — e7. These are all completely contained in
the compact part t of the Cartan decomposition. Because we don’t have any imaginary
noncompact roots, our Cartan subalgebra is maximally noncompact. All three simple
roots are complex imaginary roots and there are no Satake associates. So the Satake

diagram will have three black dots and look like this:
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4.4.6 so*(2n),n is even

A basis for so*(2n) are complex valued matrices that preserve two conditions: M +

A B
MT =0 and QM + MTQ = 0. The first gives M = where A and D are
-BT D
I,
skew symmetric as shown previously. The second, with ) = gives,
-I, O
T — -
0o I, A B A B 0 I,
. _|_ . e 0
—I, 0 BT D BT D ~I, 0
0 I, A B AT B 0 I,
. + . e 0
~I, 0 BT D Bt Dt —I, 0
BT D -B Af
+ =0
~-A -B -Dt Bt
This leads to BT = B,B = Bf,D = —AT = A. Then
A B A is a n X n skew symmetric complex matrix,
s0*(2n) = L
-B A B is a n x n Hermitian matrix

The dimension of the Lie algebra so*(2n) is 2n? — n, where n is the number of
simple roots. The simple roots will be a mixture of imaginary and real/complex. There
will not be any Satake associates for so*(2n) where n is even. So the Satake diagram

will look like this:

Example 4.4.5. Let’s look at so*(4).
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A basis for the standard representation for so*(4) are the following complex valued

matrices:
(0 10 0 | (0 T 0 0] [0 01 0]
1 0 0 0 I 0 0 0 0 00 0
€1 = €9 = €3 —
0 0 0 —1 00 o0 I 100 0
000 1 0 (0 0 -1 0] 0 00 0
[0 0 0 1] (0 0 0 0] (0 0 0 -1 ]
0 0 10 00 01 0 0 I 0
€4 = €5 — € —
0 -1 0 0 0 0 00 0 -1 0 0
-1 0 00 (0 -1 0 0 (7 0 0 0 |

The Cartan decomposition is so*(4) = t @ p, where t = (ej,e3,¢e4,e5) and p =

(e2,e). We can see that (ej, es) is a Cartan subalgebra with simple roots:

The imaginary root has the corresponding root space of E,, = (es — Ieq — e5). Because
this is completely contained in the compact part t of the Cartan decomposition, our
Cartan subalgebra is maximally noncompact. The first simple root is imaginary and the
second is real, then we will have a black dot and a white dot. So the Satake diagram

will look like this:
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4.4.7 s0*(2n),n is odd
Remember that
A B A is a n x n skew symmetric complexmatrix,

s0*(2n) = o
-B A B is a n x n Hermitian matrix

The dimension of the Lie algebra so*(2n) is 2n? — n, where n is the number of
simple roots. The simple roots will be a mixture of imaginary and real/complex. There
will be one Satake associate pair for so*(2n) where n is odd. So the Satake diagram will

look like this:

Example 4.4.6. Let’s look at so*(6).

A basis for the standard representation for so*(6) are the following complex valued

matrices:
0 -1 00 0 0] 00 =100 0 | (000 0 o
1 0 00 0 0 00 0 00 0 00 —1 0
00 00 0 0 10 0 00 0 01 0 0
00 00 —1 0 00 0 00 —1 00 0 0
00 01 0 0 00 0 00 0 00 0 0
(000 00 0 0] (00 0 10 0 | (00 0 0

_ o o O O O

o o o o




[0 -1 0 0 0 0] (00 -1 00 0] 000 0 0 0
I 0 0 0 00 00 0 000 00 —T 0 0
00 0 0 00 I 0 0 000 071 0 0 0
€4 = es = eg =
00 0 0 I 0 00 0 00 I 00 0 0 0
00 0 —I 0 0 00 0 000 00 0 0 0
(000 0 0 00 (00 0 T 0 0] (00 0 0 —I
[0 0010 0] 0 0 00 1 0] 0 0 0 0 0
0 00000 0 0 0100 0 0 0 00
0 00000 0 0 000 0 0 0 0 10
€7 = eg = €9 =
100000 0 =100 0 0 0 0 -1 0 0
0 00000 1 0 000 0 0 0 0 00
0 00000 0 0 000 0] 10 0 00
[0 0 000 0] 00 0 00 0] (000 0 0 0
0 0 0010 00 0 00 1 00 0 00
0 0 0000 00 0 010 00 0 00
€10 = €11 = €12 =
0 0 0000 00 0 000 00 0 00
0 -1 000 0 00 -100 0 00 0 00
(000 0000 (0 -1 0 00 0| (00 100
[0 0 00 —I 0] 000 0 00 —I| 000 0 00
00 01 0 0 00 0 00 0 00 0 00
00 00 0 0 00 0 I 0 0 00 0 01
€13 = €14 = €15 =
0 -7 00 0 0 00 -1 00 0 00 0 00
I 0 00 0 0 00 0 00 0 00 —I 0 0
(000 00 0 0 70 0 10 0 (0T 0 00

The Cartan decomposition is so*(6) = t®p, where t = (e, e9, €3, €7, €3, €9, €10, €11, €12)
and p = (eq, €5, €6, €13, €14, €15]. We can see that h = (ej, eq, e12) is a Cartan subalgebra

with simple roots:

O ~N O o o o

o o o o o =
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The imaginary root has the root space: E,, = ey — Ieg — ejg. Because this is com-
pletely contained in the compact part t of the Cartan decomposition, we don’t have any
noncompact imaginary roots and therefore our Cartan subalgebra is maximally noncom-
pact. The first and third simple roots are complex and the second is imaginary. This
means we will have a white dot, black dot and another white dot. Since as is a compact
root and a7 — ag = [1,—I,I]7 — [1,—I,—I]T =[0,0,2I]" = ay. Then a3 is the Satake

associate of a1. So the Satake diagram will look like this:

This concludes the overview of the matrix representations of the four classical semi
simple Lie algebra classes. The details of the exceptional cases Fg, F7, Eg, Fy, and Go

will not be covered in this thesis.
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Chapter 5

Cayley Transforms

The classification of real semi-simple Lie algebras has two steps. The first is to
choose an appropriate Cartan subalgebra, namely one which is maximally noncompact.
This is defined in chapter 3 (3.3.7). A Cayley transform is a conjugation of the Lie al-
gebra mapping one © stable Cartan subalgebra to another © stable Cartan subalgebra.
Through understanding the process of a Cayley transform, we can provide a sequence
of steps by which a given Cartan subalgebra can be transformed into a maximally non-
compact Cartan subalgebra. Given a maximally noncompact Cartan subalgebra, one

finds the root space decomposition.

The second step is to identify the simple roots. From the simple roots one calculates
the Cartan matrix. If necessary, one permutes the simple roots so that the resulting
Cartan matrix is in standard form. This puts the simple roots into their proper order

for the Satake diagram.

Then we determine which are pure imaginary and the simple roots which are Satake
associates. From this information we can decorate the Dynkin diagram by coloring the
dots and adding red arrows. We call this decorated Dynkin diagram a Satake diagram.
The classification theorem for real simple Lie algebras states that there is a one to one
correspondence between real simple Lie algebras and their Satake diagrams. In this

chapter we will look at the details for this process of classification.

A Cayley transform is a conjugation of gc and will map one © stable Cartan sub-
algebra of g to another © stable Cartan subalgebra of g. There are two kinds of Cayley
transforms. One generates a sequence of Cartan subalgebras resulting in a maximally
compact Cartan subalgebra and the other generates a sequence of Cartan subalgebras
resulting in a maximally noncompact Cartan subalgebra. I will focus on the second of

these.
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The basic steps for defining a Cayley transform are as follows[5]: First, find a non-
compact imaginary root 3 (See the definition from chapter 3 3.3.6) from the positive
roots of the given Lie algebra and Cartan subalgebra. Second, let Eg be a nonzero root
vector. Because 3 is purely imaginary, Eg € g—pg. Because § is a noncompact root,
we can say that Eg lies entirely in the positive part p of the Cartan decomposition.

Therefore, O(Ez = —Ep).

A Cartan involution has the property that Be(X,Y) = —B(X,0Y) is positive
definite, where B is the Killing form. Then, since § is noncompact, we have

0 < Be(Eg, Eg) = —B(Es, ©Es) = B(Eg, Es).

Then we are allowed to normalize Eg to make B(Eg, E) any positive constant. Next,

we find a unique Hg by scaling to satisfy the following bracket relationships:

[Hg, Eg] = 2Eg, [Hp, Eg] = —2Es, |[Es, Eg] = Hp. (5.1)

Note: the vectors Eg, Eg, Hg define the three dimensional Lie algebra si(2).

The elements Eg + Eg,i(Ez — Eg) € g because they are fixed by complex conjuga-

tion.

The Cayley transform for the noncompact imaginary root § is the automorphism:
[ —
cg = exp(ad( (Eps — Ep))) (5.2)
where exp is the exponential of the adjoint matrix. Our new Cartan subalgebra 6 is:

b = ker(Bly) ® R(Ej + Eg). (5:3)

Explicitly, let the Cartan subalgebra h = (Hy, Hs, ..., H,). The corresponding sim-

ple roots are Ay = (o, @2, ...,q,) and the noncompact imaginary root is f = ay, =
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[p1, D2, ..., r] T . After the Cayley transform, the new Cartan subalgebra is
b ={a'H;, Es + Eg | a'p; =0},

where Eg + Eg € p and a’'H; | a’p; = 0 has one less element in t than . Note: Ejg is

not uniquely determined and these formulas depend on the choice of 3.

The new Cartan subalgebra 6 has the following properties:

1. The Cartan subalgebra b is a real subalgebra of g.

2. The intersection h N p is one dimension greater compared to h N p.

To see that 5.3 is valid, we can use infinite series to calculate that[5]:

cg(Hp) = E + Ep (5.4)
cs(Ep — Ep) = Eg — Eg (5.5)
cs(Ep + Eg) = —Hp. (5.6)

Let’s check the first of these. Note that:

R L
sin(z) = x g—i-y ﬁ—i_@ , (5.7)
2 4 6 8
cos(x)zl—x—+x—_£+£_...’ (5.8)

20 40 6! 8!

Ad(exp(z))(y) = exp(adz(y))

=y+ [z, y] + [z, [z,y]] + ... (5.9)
_y , adg(y) | adi(y) | adi(y)
ot 2l 31

Then,

cs(Hs) = Ad(exp’, (s — Es)(Hs))

_ Hy | [n/4(B; — Ep). Hyl | [n/A(E5 = By). [v/4(E; — By), Hyl)
0! 1! 2!
N [/4(Ep — Ep), [v/4(Es — Eg), [v/4(Ep — Eg), Hp]]]
3!




=a9+ay +ay+az+---

Let’s calculate ag + a1 + a2 + a3+ - - -

calculate that 5.1
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separately using the bracket relations from. We

Hp
ag = ﬁa
_ [m/A(Es — Ep), Hg] _ w/4([Ep, Hp| — [Ep, Hg]) _ 7(Ep + Ep)
“= 1! - 1! -T2
0y = T/4Es = Ep), [/ 4Es — Ep), Hpl| _ [r/4(Ep — Ep), m/2(Ep + Ep)]
2l 5]
7\2 [Es, Eg] — [Es, Ej] T 2
:(§> : 52-2! o :_(E) He,
o [T/4(Ep — Bp), —(n/2)*Hg] _ (77)3EB+EB
5 3! 2 3
(T 4H5
- (5) 417
_(T 5EB+EB
N (2)

Then we can see that

3

esttts) = (B + ) (5 - (

(1 (5)

z>31
2/ 3!

25 @) )

HEERCETRNE

= (Eg + Eg) sin(r/2) + Hg cos(m/2)

=E3+ Eg.

Example 5.0.1. sl(2)

Let’s follow this process through with a few examples. We will start with the real

simple Lie algebra sl(2).

A standard representation for si(2

€1

, R) are the following trace free matrices
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Given the Cartan subalgebra h = (es — e3), the Cartan decomposition,

t=(e2 —e3),p=(e1,e2 + €3), (5.10)

and the Cartan involution, ©® = e; — —ej,e0 — —e3,e3 — —eo, we can see that the
given Cartan subalgebra is entirely contained in the compact part t of the Cartan de-

composition.

The root space decomposition with respect to this Cartan subalgebra is

g="hDgor B g_or where

g1 = (€1 + Lez + Ie3),

9—2n = (e1 — Tea — Ie3).

There is one positive root and therefore one simple root, 5 = [2I]. This root is
imaginary, so we need to check to see if it is noncompact. Since gg = (e1 + Iea + Ie3)
which is entirely contained in p, the positive noncompact part of the Cartan decom-
position, £ is a noncompact imaginary root and we can use it to construct the Cayley

transform, cg of the Cartan subalgebra h = (ea — e3).

After scaling gg and finding Hg to satisfy the bracket relations 5.1 :

I 1 1
Eg = 561 - 562 - 563,
— I 1 1
EFg=——e — -9 — —
B 261 262 263,

Hpg = —TIes + Ies.

Then, the new element of the Cartan subalgebra is

— T 1 1 I 1 1
EB—I—Eﬁz 561—562—563—561—562—563:—62—63.

Since there is only one element to our Cartan subalgebra, this means that the new Car-

tan subalgebra is h = (ea + e3). Looking back at the Cartan decomposition 5.10, we
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can see that the new Cartan subalgebra has “moved” over to the positive part p of the

Cartan decomposition.

Following the formula 5.2 for this example we find that

— I 1 1 I 1 1
X :Eﬁ _E,B = —561 — 562 — 56’3 — 56’1 —1—562—1—563 = —Je;.

Then we find the adjoint matrix of expX 7 which is

1 0 0

m —
cg = exp(ad(Z(Eﬁ -Eg)=10 —I 0
0o 0 I

Using this matrix to form a Lie algebra homomorphism e; — cg(e;) gives the following:
e1 —~>e1, ey — —les, ez — Ies.

Let’s use this map to verify the equations from above 5.4 to be

cg(—lea + Iez) = —ea — e3, (5.11)
cg(ler) = Ieq, (5.12)
cglea —e3) = —Ieg — Ies. (5.13)

Then we can also see that cg sends the original Cartan subalgebra h = (e — e3)
to our new maximally noncompact Cartan subalgebra § = (I(—e2 — e3)) Note: we can
simplify this to be b = (ea +e3). The corresponding root space decomposition using this

new Cartan subalgebra is g = b @ g[_g) © g[z], where

g—9 = (e1 +e2 —e3),

gy = (e1 — ez +e3).

The real root [2] is the positive simple root. There aren’t any imaginary noncompact
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roots, so this Cartan subalgebra is maximally noncompact and can be used to draw the
Satake diagram and classify the Lie algebra. Since we have just one simple root, and
that root is real, we simply have one white dot for the Satake diagram. It will look like

this:

O

Example 5.0.2. so(4,2)

Let’s look at this process with another example. Consider the Lie algebra so(4, 2).

It is 15 dimensional with the following multiplication table:

so(4, 2) H el ‘ es ‘ es ‘ ey ‘ es ‘ €6 ‘ er ‘ €g ‘ €9 ‘ €10 ‘ €11 ‘ €12 ‘ €13 ‘ €14 ‘ €15 ‘
€1 0 €2 —€3 0 €5 —€6 ey €8 0 0 —€11 —€12 0 0 0
€9 —€2 0 €1 — €4 €9 0 0 0 0 €7 €3 —€13 —€14 0 0 0
€3 es —e1 + ey 0 —es 0 0 €9 €10 0 0 0 0 —e11 | —e12 0
€4 0 —€2 €3 0 €5 —€6 0 0 €9 €10 0 0 —€13 —€14 0
es —es 0 0 —es5 0 —e1 — ey 0 0 0 0 [ elp | —er | —es 0
eg ep 0 0 [ e;+eq 0 €13 e1l4 | —€11 | —€12 0 0 0 0 0
er —er 0 —€9 0 0 —€13 0 0 €5 0 —e€1 €15 —€2 0 —€g
es —eg 0 —eln 0 0 —e14 0 0 0 es —e15 | —er 0 —e9 er
e9 0 —er 0 —eg 0 el —es5 0 0 0 —e3 0 —ey els —e10
€10 0 —es8 0 —€10 0 €12 0 —€5 0 0 0 —€3 —€15 —€4 €9
€11 €11 €13 0 0 —€9 0 €1 €15 €3 0 0 0 €6 0 —€12
€1 el e14 0 0 —e10 0 —e15 | €1 0 es 0 0 0 eg el
€13 0 0 €11 €13 €y 0 €2 0 €4 €15 —€6 0 0 0 —€14
€14 0 0 €12 €14 €8 0 0 €2 —€15 €4 0 —€6 0 0 €13
€15 0 0 0 0 0 0 €g —er €10 —€9 €12 —e11 €14 —€13 0

A Cartan subalgebra of so(4,2) is h = [e15, €1 + €4, e2 — e3].

The root space decomposition for this Cartan subalgebra is g = b @121 g3 where
91,—1,—17 = {en1 + lera — Teiz +e1),  gy—1,—pr = (e11 — Leiz — Teiz — ea),
9[0,0,—217 = (€1 — Tea — ez — eq), 9[0,—2,07 = (€6),

gpr,—1,17 = (en1 — lerz + Ieiz + e1s), 911,17 = (er + les + Ieg — eip),
9ir,1,—nr = (er — Ies — Ieg — exp), 91,—1,17 = (€11 + Leiz + Te1z — ea),
g0.2,07 = (€5), 9—1,1,—17 = (€7 + les — Ieg + e1),

911,07 = (er — Ieg + Ieg + e1p), 90,0217 = (e1 + Ieg + Ieg — ey).
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Then from this root space decomposition we choose the positive roots to be

as: _1 ) 2 ] 0

The root space decomposition and therefore the positive and simple roots are deter-
mined based on the choice of Cartan subalgebra. So as the Cartan subalgebra changes,
these will also change. However, the Cartan decomposition and involution are not de-

pendent on the choice of Cartan subalgebra.

The Cartan Decomposition of so(4,2) is determined to be

t = (e — e3,e5 + deg, e7 + 2eq1, eg + 2e12, €9 + 2e13, €10 + 2e14, €15),

which is the compact part, and

p = (e1,e2+ e3,eq,e5 — deg, e7 — 2e11, e85 — 2e12, €9 — 2e13, €10 — 2€14),

which is the positive part.

Visually inspecting the Cartan subalgebra tells us that the intersection of h and t
is two dimensional, h Nt = (e — e3, e15). Also, we can see that the intersection of h and

p is one dimension, h Np = (e + ey).

There are three simple roots. For this Cartan subalgebra, one is real, one is complex,
and one is imaginary. If the imaginary root is noncompact, we can use it to construct a

new Cartan subalgebra whose intersection with p goes up by one dimension.
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We call the imaginary root 8 = [0,0,2I]7. To make sure that § is noncompact,

we use the root space decomposition g = b @gl gg to check that the root space gg =
(e1 + Ieg + Ie3 — eq) is completely contained in p. By inspection, we can see that Rg

lies entirely in p. Then gg = (e1 — Iea — Ieg — e4). We use the structure equations

[Hp, Eg| = 2Ep, [Hp, Eg| = —2E3, [Eg, Eg] = Hp

to scale the given basis for Eg and Efg to get gg to Ejg and BTg to Eg as well as

uniquely determine Hg. Then after scaling,
Eﬁ = 1/261 —|—I/2€2 + 1/263 — 1/264
Eg=1/2e1 — I/2eq — I/2e5 — 1/2e4.

We find the vector Hg € b, where b is the Cartan subalgebra, such that, for
Eg,fg € Rg and Hg € b the structure equations above are satisfied. Thus, in this
example our Hg = —Iez + Ie3.

Then the new Cartan subalgebra element is Eg + Eg = 1/2e1 + I/2ey + 1 /2e3 —
1/2e4 + 1/2e; — I/2e9 — I/2e3 — 1/2e4 = e; — eq. The other elements of the new

0
Cartan subalgebra are found using the nullspace of 5. In this case, because 5 = | 0 |,
21
0 1
then the null space NS = 1|, (0| p- The original Cartan subalgebra was §h =
0 0

(e15,€1 + eq,e2 — e3). Therefore, the other elements of the new Cartan subalgebra are,
e1 +e4 and ej5. Thus, the new Cartan subalgebra is 6 = (e1 +e4,€15,€1 —eq). The final

result is h = (€1, €4, €15).

Following the formula in 5.2 we find the homomorphism e; — cg(e;) is given by

Slas! +a syl ]
€1 261 262 265 264, €2 261 262 263 2€4a

e3 — —— +71 +716 + = —>71 — sex+ = +71 es — e
e e (& (& e (& (& (& e (&
3 g1t oeatgestoes, e oe—getoest el €5 e € 6,
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oo sV V2 V2 v o o V2 V2
7 2 7 2 95 8 2 8 9 10, 9 2 7 2 9
12 f V2 IV2 V2 V2
€10 — — €g + —-€10, €11 = —5€11 T ——€13, €12 — — €12+ — €14,
2 2 2 2 2
1?2 V2 1?2 2
e13 — 5 —eq1 + 5 ——€13, €14 — 7612 + 76147 €15 — €15.

Let’s use this map to verify the equations from above 5.4 as

cg(—lea + Iez) = e — ey, (5.14)
cg(leg + Ies) = Teg + Ies, (5.15)
cgler —eq) = Ieg — Ies. (5.16)

Then we can also see that cg sends the original Cartan subalgebra b = (e5,e1 +

eq,e3 — e3) to h = (e15,€1 + eq, [eg — Tey).

Visually inspecting the new Cartan subalgebra tells us that the intersection of b
and t is one dimension, h Nt = (e15). Also, we can see that the intersection of h and p

is two dimensions, h Np = (e1,€4).

The root space decomposition for the new Cartan subalgebra is g = f]EB 1Ra, where

901,0,—1T = (er + Ieg), 9-1,-1,017 = (e6),
9p0,1,nT = (€9 — Ieio), 911,07 = (€3),
91,007 = (€11 — Te1z), gjo,—1,7 = (€13 + le1a),
g0 = (es), 9j0,1,—17 = (€9 + Lewo),
91,007 = (en1 — Leiz), 9,107 = (€2),

90,117 = (e7 — Ies), 90,117 = (€13 + Tewa).

Then from this root space decomposition we choose the positive roots to be

From the positive roots the simple roots are determined to be
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I 0 0
ag:op = |—=1|,a00= 1] ,a3= |1
0 I -1

These simple roots are in the correct order. If there are not any imaginary noncom-
pact simple roots, then the Cartan subalgebra is in it’s maximally noncompact form.
Because none of these roots are imaginary, then there are not any noncompact imaginary

roots, and we can say that our Cartan subalgebra is maximally noncompact.

The next step is to identify the simple roots which are imaginary and the roots
which are Satake associates. In this case the second and third simple roots are complex
conjugates, and because there aren’t any compact roots, are therefore Satake associates.
Any pure imaginary roots are colored black. A red arrow is added connecting the Satake
associates. We can decorate the Dynkin diagram by coloring the dots and adding red
arrows. We call this decorated Dynkin diagram a Satake diagram. The classification
theorem for real simple Lie algebras states that there is a one to one correspondence

between a real simple Lie algebra and its Satake diagram.

Because this Cartan subalgebra does not have any noncompact imaginary roots
associated with it, this Cartan subalgebra is maximally noncompact, and can be used
to classify the algebra as described above. Since all of the simple roots are complex and
none are purely imaginary, all of our dots will remain white. as = a3, so a red arrow

will connect the two. So the Satake diagram for so(4,2) will look like this:

a2

a1

a3

In this chapter, we have detailed the theory behind the Cayley transform. We have
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shown how this process allows us to classify real simple Lie algebras. Then, we showed
two examples giving the details of the classification using the Cayley transform. This

completes the discussion of the theory for this thesis.
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Chapter 6

Low Dimensional Isomorphisms

In Chapter 10 of Helgason [4] the following low dimensional isomorphisms of real
simple Lie algebras are stated as:
sl(4) ~ so(3,3)
sl(2) ~ so(2,1) ~ sp(2,R)

I confirmed all of these low dimensional isomorphisms with my program. The fol-
lowing trivial isomorphism of so*(2) was also found to be

su*(2) ~ su(2) ~ so(3) ~ sp(2).
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Chapter 7

Programs Explanation and Maple Demonstrations

The programs that I wrote are:
RootSort(PR,T,P,RSD),
NewCSAImRoot(CSA,T0,root),
NewCSARealRoot(CSA,T0,root),
MaximalCartanSubalgebra(CSA,T,Pnoncompact),
CalculateSatakeDataForRealSimpleLieAlgebra(LA,CSA0,RSD0,PR0,SR0),
SatakeArrows(DotsSRTypeDimCartan),
PossibleSemiSimpleLieAlgebraGivenComplexClassAndDimCartan(AlgType, DimCartan),
SatakeInfo(alg),
ClassifyRealSemiSimpleLieAlgebra(alg, CSA0,RSDO0),

sln(n),

sup(n),

supq(n,m),

supp(n),

slm(n),

sop(n,m),

so2l(n,m),

sop(n),

sopq(n,m),

soleo(n,m),

soll(n,m),

sopq2(n,m),

so2le(n),

so2lo(n),

spl(n),
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sppp(n),
sppq(n,m),
spp(n,m).

We will give a description of these with a running example. Before we start, we
need to get some information about the Lie algebra we will be considering through this

example, so(4,2).

>LD1 := SimpleLieAlgebraData( “so(4,2)” ,s042):
>DGsetup(LD1);

Liealgebra : so4?2

This Maple command initializes the Lie algebra so(4,2). Now we find the matrices that
represent the standard representation.

> M := StandardRepresentation(so42);

0 -1 00 0 0 00 100000 1000
1 0 0000 00 0 000 |00 0 000
o |0 0 0000 10 0 000100000
0 0 0000 00 0 000 |00 0 000
0 0 0000 00 0 000 |00 0 000
(00 0000|000 000][00 0 00 0]
(00 0 o000l Jooo o oo0olflooo 0o 0o0]
00 -1 00 0 000 100|000 0 00
01 0 00 0 000 0 00| |000 100
00 0 000|010 000|001 0 00]
00 0 00 0 000 0 00| |000 0 00
(00 0 000/ 000 0 00][000 0 00 ]
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foooo010] [oooo0o0 1] (00000 0]
000000 000000 000010
000000 000000 000000
000000| |000O0COTO] 000000]|
10000 0 000000 010000
(000000] [1T00000] [000000,
fo0oo0000|] Jooo0o0o0 0] (00000 0]
000001 000000 00000

000000 000010 000001
000000 ]00DO0OO0ODO0OO]| |0oo000O0DO]
000000 001000 000000
(010000 [000000] |001000)
fooo0000] Joooooo] [ooooo o]
000000 000000 00000 0
000000 000000 00000 0
000010000001 00000 0
000100 000000 00000 -1
000000 [O00OOTO0OO0] |[00001 0

The Cartan decomposition is not based on the choice of Cartan subalgebra. It is given
here by the Maple command.
>T P := CartanDecomposition(M,so042):
T,P:=[e2—e3,eb+eb,e7 + ell,e8 + el2,e9 + el3,el0 + el4, el5],
[el,e2 + e3,ed,e5 — €6,e7 — ell, e8 — el2,e9 — €13, el0 — el4]

This is our choice of Cartan subalgebra.

>CSA = evalDG([el5,el+-e4, e2-e3));

CSA :=lelb, el + ed,e2 — e3]

From the Cartan subalgebra we calculate the root space decomposition. It is a table

where the indices are a list of the roots and the corresponding root spaces.
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>RSD := RootSpaceDecomposition(CSA):

RSD :=table([[I,—1,—I] = ell — Iel2 — Iel3 —el4,[I,—1,I] = ell — Iel2 + Iel3 +
eld,[-I,1,—I| = eT+1e8—1e9+¢€l0,[—1,—1,—1I] = ell+Tel2—Tel3+el4,[0,0,2]] =
el +1Ie2+Ie3 —ed,[—1,—1,I] =ell + Iel2+ Iel3 —eld,[I,1,—1] =
e7 —Ie8 —Ie9 —€10,[0,2,0] = eb,[I,1,1] = e7 —Ie8 + 19+ €10,[—1,1,I] =
€T+ Ie8 + Ie9 — €10,[0,0, —21] = el — Ie2 — Ie3 — e4, [0, —2,0] = e6])

We calculate the positive roots as outlined in Chapter 3 (3.2.2) using the Maple com-
mand.

>PR := PositiveRoots(RSD);

This is all the information we need to run the first program.

RootSort(PR, T, P, RSD)

Inputs:

PR- This is a list of vectors specifying a choice of positive roots for the root space
decomposition.

T - This is a list of vectors in a Lie algebra defining a subalgebra on which the Killing
form is negative-definite.

P - This is a list of vectors in a Lie algebra defining a subspace on which the Killing
form is positive-definite.

RSD - This is a table specifying the root space decomposition of the Lie algebra with
respect to the Cartan subalgebra.

Outputs:

Real Roots- This is a list of vectors in a Lie algebra defining the real roots for the root
space decomposition.

Imaginary Roots- This is a list of vectors in a Lie algebra defining the imaginary roots
for the root space decomposition.

Description:

This program sorts the list of positive roots into two lists. The first is a list of real roots

and the second is a list of the imaginary roots. The complex roots are discarded. We
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need the imaginary roots to complete the Cayley transform and increase the intersection
of the Cartan subalgebra with the p part of the Cartan decomposition by one. We need
the real roots to complete the Cayley transform to increase the intersection of the Cartan
subalgebra with the t part of the Cartan decomposition by one.

Example:

>Real,Imag := RootSort(PR,T,P,RSD);

0 0
Real, Imag := 2 , 0
0 21

NewCSAImRoot(CSA,T,P,ImRoot)

Inputs:

CSA - This is a list of vectors defining a Cartan subalgebra of a Lie algebra.

T - This is a list of vectors in a Lie algebra defining a subalgebra on which the Killing
form is negative-definite.

P - This is a list of vectors in a Lie algebra defining a subspace on which the Killing
form is positive-definite.

ImRoot - This is a vector in a Lie algebra from the list of imaginary roots for the root
space decomposition.

Output:

CSA- This is a Cartan subalgebra that has an increase in the intersection with p by 1
dimension.

B - This is the root 8 used to complete the Cayley transform.

Description:

This program completes the Cayley transform using a noncompact imaginary root 5.
If 8 is a noncompact imaginary root, then the Cayley transform is completed to find
the new Cartan subalgebra. This is done by finding the root space Ejg and the complex
conjugate of this FB and the root to Cartan subalgebra element Hg. The program checks

to make sure these have the appropriate coefficients to satisfy the structure equations
[Hg, Eg] = 2E3, [Hﬂ,fg] = —QFB, [Eg,fg] = Hp.

The program then uses the null space of the noncompact imaginary root 8 to get the
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portion of the given Cartan subalgebra that will be in the new Cartan subalgebra. The
output of the program is a Cartan subalgebra that has an increase in the intersection
with p by 1 along with the root 5 used to get there.

Example:

>NewCSAImRoot(CSA,T,P,Imag|[1]);

0
lel,ed,el5], | 0
21

NewCSARealRoot(CSA,T,P,RealRoot)

Inputs:

CSA - This is a list of vectors defining a Cartan subalgebra of a Lie algebra.

T - This is a list of vectors in a Lie algebra defining a subalgebra on which the Killing
form is negative-definite.

P - This is a list of vectors in a Lie algebra defining a subspace on which the Killing
form is positive-definite.

RealRoot - This is a vector in a Lie algebra from the list of real roots for the root space
decomposition.

Output:

CSA- This is a Cartan subalgebra that has an increase in the intersection with p by 1.
[ - This is the root 8 used to complete the Cayley transform.

Description:

This program completes the Cayley transform using a real root «. This is done by
finding the root space E,. Then we use the Cartan involution © to find O(E,) and H,
is the root to Cartan subalgebra element H. The program checks to make sure these

have the appropriate coefficients to satisfy the structure equations

[Hy, Eo] = 2Eq, [Ha, ©O(E,)] = —20(E,), [Ea, O(Es)] = —H,,.

The program then uses the null space of the noncompact imaginary root « to get the
portion of the given Cartan subalgebra that will be in the new Cartan subalgebra. The
output of the program is a Cartan subalgebra that has an increase in the intersection
with t by 1 dimension along with the root o used to get there.

Example:
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>NewCSARealRoot(CSA,T,P,Real[1]);
0
[e2 — e3,eb + €6, el5], |2
0

MaximalCartanSubalgebra(CSA,T,P,Type)

Inputs:

CSA - This is a list of vectors defining a Cartan subalgebra of a Lie algebra.

T - This is a list of vectors in a Lie algebra defining a subalgebra on which the Killing
form is negative-definite.

P - This is a list of vectors in a Lie algebra defining a subspace on which the Killing
form is positive-definite.

Type - This is a string giving the type of maximal Cartan subalgebra the user desires,
either compact or noncompact.

Output:

CSA- This is a maximally compact or noncompact Cartan subalgebra.

B - This is the last root 5 used to complete the Cayley transform.

Description:

The program runs either one of the previous two programs as many times as is necessary
to obtain either a maximally compact or maximally noncompact Cartan subalgebra
along with the last root used to get there.

Example:

>MaximalCartanSubalgebra(CSA,T,P, “compact”);

0
[e2 — e3,eb + €6, el5], |2
0

>MaximalCartanSubalgebra(CSA,T,P, “noncompact” );

0
[el,ed,el5], | 0
21
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CalculateSatakeDataForRealSimpleLieAlgebra(alg,CSA,RSD,PR,SR)
Inputs:

alg - This is a string that is the name of an initialized Lie algebra.

CSA - This is a list of vectors defining a Cartan subalgebra of a Lie algebra.

RSD - This is a table, specifying the root space decomposition of the Lie algebra with
respect to the Cartan subalgebra.

PR - This is a list of vectors, specifying a choice of positive roots for the root space
decomposition.

Output:

ColorArray- This is an array of the colors of the simple roots in the proper order.

SR~ This is a list of vectors, specifying the simple roots for the root space decomposition.
(B - This is the last root 8 used to complete the Cayley transform.

Type- This is a string representing the class of the given simple Lie algebra, either A,
B, C or D.

DimCartan - This is the dimension of the Cartan subalgebra for the given Lie algebra.
Description:

This program finds the simple roots for the given simple Lie algebra using the maximally
noncompact Cartan subalgebra. The correct order of the simple roots is determined.
Then the simple roots are assigned colors. A black dot is assigned for imaginary roots,
and a white dot for a real or complex root. The program returns an array of these colors
in the proper order as well as the simple roots, the Lie algebra type and the dimension
of the Cartan subalgebra.

Example:

>A =

CalculateSatakeDataForRealSimpleLieAlgebra(so42,CSA,RSD,PR,SR);

0 1 0
A = [“white”, “white”, “white”], | [1], -1, ]| 1 A3
I 0 -1

SatakeArrows(ColorSRRootTypeDimCartan)

Inputs:

A[1 ]|= ColorArray - This is an array of the colors of the simple roots in the proper
order.

A[2] = SR - This is a list of vectors, specifying the simple roots for the root space
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decomposition. A[3] = Root - This is the last root 5 used to complete the Cayley
transform.

A[4] = Type - This is a string representing the class of the given simple Lie algebra,
either A, B, C or D.

A[5] = DimCartan - This is the dimension of the Cartan subalgebra for the given Lie
algebra.

Output:

SatakeAssociates- This is a list of the form [[a,b] .. [c,d]], where a is the Satake associate
of b, and c is the Satake associate of d.

Description:

The Satake arrows program takes as it’s input all of the data from the previous program.
The program goes through the list of simple roots and determines if these roots have a
Satake associate. The program returns a list of these associates.

Example:

>SatakeArrows(A);
[[1, 3]

PossibleSemiSimpleLieAlgebraGivenComplexClassAndDimCartan(Type,DimCartan)
Inputs:

Type- This is a string representing the class of the given simple Lie algebra, either A,
B, C or D.

DimCartan - This is the dimension of the Cartan subalgebra for the given Lie algebra.
Output:

Algebras- This is a list of the form [“alg(1)” .. “alg(3)”], where each alg is a possible
Lie algebra given the type and the dimension of the Cartan subalgebra.

Description:

Given the Lie algebra type, A, B, C or D, and the dimension of the Cartan subalgebra,
this program gives a list of all possible real simple Lie algebras that fit these restrictions.
Example:

>PossibleSemiSimpleLieAlgebraGivenComplexClassAndDimCartan(A[3],A[4]);

[77 Sl(4)77 778u(4)77 b Su*(4)77 ” Su(:))7 1)77 77371,(2, 2)77]

SatakeInfo(“alg”)
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Inputs:

alg- This is a string representing a Lie algebra.

Output:

Dots -This is a list of the form [“white” .. “black”], where each color is the color of the
simple root for the given Lie algebra.

Arrows - This is a list of the form [[a,b] .. [c,d]], where a is the Satake associate of b,
and c is the Satake associate of d, etc. for the given Lie algebra.

Description:

This program calls one of a series of small programs that get the color list of the dots
and the list of Satake associates for a given real simple Lie algebras.

Example:

>Satakelnfo(“s1(4)");

[“White” ’ “white” 7 “white” ]’ H

>Satakelnfo(“su(4)”);

[“black”, “black”, “black”], []

>Satakelnfo(“su*(4)”);

[“black”, “White”, “black”], []

>Satakelnfo(“su(3,1)”);

[“white”, “black”, “white”], [[1, 3]]

>Satakelnfo(“su(2,2)”);

[“white”, “white”, “white”], [[L, 3]

>Satakelnfo(“so(4,2)”);

[“white”, “white”, “white”], [[2, 3]]
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ClassifyRealSemiSimpleLieAlgebra(alg,CSA)

Inputs:

alg - This is a string giving the name of an initialized Lie algebra.

CSA - This an optional input of a list of vectors, defining a Cartan subalgebra of a Lie
algebra.

Output:

ClassifiedLieAlgebra - A list of isomorphic Lie algebras fitting the structure of the input
Lie algebra.

Description:

The program ClassifyRealSemiSimpleLieAlgebra takes a given initialized Lie algebra as
it’s input with the option to give a Cartan subalgebra as the second input. The program
then matches up the given algebras dot colors and the Satake associates with the list of
possibles using all the other programs described above. The output is a list of isomorphic
Lie algebras fitting the structure of the input Lie algebra.

Example:

>ClassifyRealSemiSimpleLieAlgebra(so42,evalDG([el5,e1+e4, e2-e3]));

[77 80(47 2)77 , ” SU(Q, 2)77]

This has two simple Lie algebras as an output because there exists an isomorphism
between them. To show this we give the Satake diagrams for both of these Lie algebras
using the Maple command.

>SatakeDiagram(“so(4,2)”);

o

|

/|

2 |

r:"":\|
o [I}
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>SatakeDiagram(“su(2,2)”);

This completes the Maple demonstration and explanation of the programs that I

wrote to classify real simple Lie algebras using the Cayley transform.
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Maple Demonstration

The following four worksheets give low dimensional examples of the classification

program for the seventeen (17) types from among the four (4) real simple classical Lie

algebras. The classification program takes an initialized real simple Lie algebra as an

input with a Cartan subalgebras as an optional input. The output will display a list of

real simple Lie algebras which are isomorphic to the input real simple Lie algebra.

71 A

In this worksheet we give the low dimensional examples of the classification program

for the real simple classical Lie algebras of type A.

Each of the examples are organized as follows:

1. First we demonstrate that the classification program works for the standard library.

This will give us a controlled result to compare against.

. Next, we find a basis for an isomorphic Lie algebra. We test the program to confirm

that the classification remains the same.

. To properly classify any real simple Lie algebra using a Satake diagram, a maxi-
mally noncompact Cartan subalgebra must be used. Because of this, a third test
was performed to check the functionality of all the crucial parts of the classification
program. To make sure this testing occurs, I used the MaximalCartanSubalgebra
program to find a maximally compact Cartan subalgebra for the given Lie alge-
bra. Using this maximally compact Cartan subalgebra forces the classification
program to execute a Cayley transform the maximum number of times that would

be possible for each real simple Lie algebra.
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V Introduction

[ (1.1)
|:> with (DifferentialGeometry) :
|:> with (LieAlgebras) :
|:> with (LinearAlgebra) :
| [> read "/Users/Desktop/research files/Hannah.txt";

We start by loading the structure constants for Lie algebra sl(5) from
the standard Maple library.
[> LD1 := SimpleLieAlgebraData("sl(5)",sl15):
[> DGsetup (LD1) :

First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (s15) ;

"s1(5)" (2.1.1.1)

Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.
> ChangeFrame (sl15) :
> B := evalDG([e2, el, e3, ed, e5, e6, e7, eS8,
e9, el5, ell, el2, el0, el4d, el3, el6, el7,
el8, el9, e20, e21, e22, e23, e24]):
> LD2 := LieAlgebraData (B,sl5n):
> DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra(sl5n) ;
"s1(5)" 2.1.1.2)

[ The output is the expected result, namely that it matches the control.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (s15n) :

> csa := CartanSubalgebra (sl15) ;

CS4 = [el, e2, e3, e4] (2.1.1.3)
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|> M := StandardRepresentation (sl5) :
> T,P := CartanDecomposition (M, sl5) :
T;
P;
[e5 —e9,e6 —el3,e7 —el7,e8 —e2l,el0 — el4,ell — el8,
el2 —e22,el5 —el9,el6 —e23,e20 — e24]
[el,e2,e3,ed4,e5 + e9,e6 + el3, e7 +el7,e8 + e2l, el 2.1.1.4)
+eld,ell +el8,el2 +e22,el5 + el9,el6 + e23,e20
+ e24]

[> NewCSA, V := MaximalCartanSubalgebra (CSA,T,P,
"compact") ;
NewCSA, V= [el + ed,e2 +e3,e7 —el7,el0 —el4],[ ] (2.1.1.5)
[> ClassifyRealSemiSimpleLieAlgebra(sl5, evalDG
(NewCSAa)) ;

"sl(5)" (2.1.1.6)

> SatakeDiagram("s1l(5)") ;

o o o o
OCI 062 OLS o 4

sl(4) = so(3,3)

We load the structure constants for Lie algebra sl(4) from the
standard Maple library. Because there is an isomorphism between sl
(4) and so(3,3), we expect the program
ClassifyRealSemiSimpleLieAlgebras to display both of these as the
output.

| We begin by initializing sl(4) using the standard library.
:> LDl := SimplelLieAlgebraData("sl(4)",sl4):
[> DGsetup (LD1) :
First we check that the program works for the known initialized Lie
| algebra to establish our controlled test.
[> ClassifyRealSemiSimpleLieAlgebra (sl4) ;
["sl(4)", "so(3,3)"] (2.1.2.1)

Now we create a Lie algebra which is isomorphic to the algebra we just
| tested.

[> ChangeFrame (s14) :

[> B := evalDG([e3, el, e2, e4, e5, e6, e, e8,

| e9, el5, ell, el2, el0, el4, el3]):

:> LD2 := LieAlgebraData (B,sl4n):
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| > DGsetup (LD2) :
We check the program on the new Lie algebra and confirm that the
| classification returns the same results as the control.
[> ClassifyRealSemiSimpleLieAlgebra (sl4n) ;
["sl(4)", "so(3,3)"] (2.1.2.2)

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (sl14n) :

> csa := CartanSubalgebra (sl4) ;

CS4 = [el, e2, e3] (2.1.2.3)
;> M := StandardRepresentation(sl4) :
> T,P := CartanDecomposition(M,sl4):
T;
P;

[ed —e7,e5 —ell,e6 —el3,e8 —ell,e9 —eld,el2 —el5]
lel,e2,e3,ed + e7,e5 + ell,e6 + el3,e8 + ell,e9 + el4,el2(2.1.2.4)
+el5]

[> NewCSA, V := MaximalCartanSubalgebra (CSA,T,P,
"compact") ;

NewCSA4, V:=[el —e2 —e3,e6 —el3,e8 —ell], [ ] (2.1.2.5)
> ClassifyRealSemiSimpleLieAlgebra (sl4, evalDG
(NewCSA)) ;

["sl(4)", "so(3,3)"] (2.1.2.6)

[ Here are the Satake diagrams that illustrate the isomorphism between
| s1(4) and so(3,3).
> SatakeDiagram("sl(4)"):

=> SatakeDiagram("so(3,3)");
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[+]
0(1\
[+]
oy

Vsi3)
We load the structure constants for Lie algebra sl(3) from the standard
Maple library.
|:> LDl := SimplelieAlgebraData("sl(3)",sl3):
|:> DGsetup (LD1) :
First we check that the program works for the known initialzed Lie
algebra.
> ClassifyRealSemiSimpleLieAlgebra (sl3) ;
"sl(3)" (2.1.3.1)

Now we create a Lie algebra which is isomorphic

to the algebra we just tested.
:> ChangeFrame (s13) :
:> B := evalDG([e3, el, e2, e4, e5, e6, e8, e7]):
[> LD2 := LieAlgebraData (B,sl3n):
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (s13n) ;

"sl(3)" (2.1.3.2)

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (s13n) :

> csa := CartanSubalgebra (sl13) ;

CS4 = [el, e?] (2.1.3.3)
:> M := StandardRepresentation(sl3):
> T,P := CartanDecomposition(M,sl3):
T;
P;

[e3 —e5,ed —e7,e6 — e8]
[el,e2,e3 + e5,ed + e7,e6 + e8] (2.1.3.4)

> NewCSA, V := MaximalCartanSubalgebra (CSA,T,P,
"compact") ;

NewCSA, V = 11 (2.1.3.5)

1
el —[2]62,66—68
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[> ClassifyRealSemiSimpleLieAlgebra(sl3, evalDG
(NewCSA4) ) ;

"s1(3)" (2.1.3.6)
> SatakeDiagram("sl(3)");

YV si2) = so(2,1) = sp(2,R)
We load the structure constants for Lie algebra sl(2) from the standard
Maple library. There is an isomorphism between sl(2), so(2,1), and sp
(2,R), so all three of these Lie algebras will be the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
:> LDl := SimplelLieAlgebraData("sl(2)",sl2):
;> DGsetup (LD1) :
First we check that the program works for the known initialzed Lie
| algebra.
> ClassifyRealSemiSimpleLieAlgebra (s12);
["sl(2)", "so(2,1)", "sp(2,R)" ] (2.14.1)
Now we change the basis of the Lie algebra and run the program again.
:> ChangeFrame (s12) :
:> B := evalDG([e3-e2, el+e2, e2]):
:> LD2 := LieAlgebraData (B,sl2n):
:> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (sl2n) ;
["sl(2)", "so(2,1)", "sp(2,R)" ] (2.14.2)

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the
| Cayley transform process.

:> ChangeFrame (s12n) :
[> csa := CartanSubalgebra (sl2) ;

CS4 = [el] (2.14.3)
;> M := StandardRepresentation(sl2):
> T,P := CartanDecomposition(M,sl2):
T;
P;
[e2 — €3]

[el, 2 + e3] (2.1.4.4)
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[> NewCSA, V := MaximalCartanSubalgebra (CSA,T,P,
"compact") ;

NewCSA, V= [e2 — 3], [ 0 ] (2.1.4.5)
> ClassifyRealSemiSimplelLieAlgebra(sl2, evalDG
(NewCS3) ) ;
["sl(2)", "so(2,1)", "sp(2,R)" ] (2.1.4.6)

Here are the Satake diagrams that show the isomorphisms between sl
[ (2), so(2,1), and sp(2,R).
> SatakeDiagram("sl(2)");

> SatakeDiagram("so(2,1)") ;

> SatakeDiagram("sp(2,R)") ;
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sl(m,H)
su*(4) = so(5,1)

We load the structure constants for Lie algebra su*(4) from the
standard Maple library. There is an isomorphism between su*(4) and
so(5,1) so these two Lie algebras will display as the output of
ClassifyRealSemiSimpleLieAlgebras.
:> LDl := SimplelLieAlgebraData("su* (4)",6sud):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra su*(4).
[> ClassifyRealSemiSimpleLieAlgebra (su4) ;

["so(5,1)", "su*(4)"] (2.2.1.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.
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| > ChangeFrame (su4) :
[> B := evalDG([e3, el, e2, e4, e5, e6, e7, e8,
| €9, el5, ell, el2, el0, el4, el3]):
:> LD2 := LieAlgebraData (B,su4n):
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (su4n) ;
["so(5,1)", "su*(4)"] (2.2.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (su4n) :

[> csA = CartanSubalgebra (su4) ;

CSA = [el, e2, e3] (2.2.1.3)
:> M := StandardRepresentation (su4):
> T,P := CartanDecomposition (M, su4) :
T;
P;
[el,e2,ed —e5,e6 + e7,e8,e9 + ell,ell,el2,el3 + el4,
el5]
[e3,e4 + e5,e6 —e7,e9 —ell,el3 — eld] 2.2.14)

> NewCSA, V := MaximalCartanSubalgebra(CSA,T,P,
"compact") ;

NewCSA, V= [el,e2,e3], [ ] (2.2.1.5)

> ClassifyRealSemiSimpleLieAlgebra (su4, evalDG
(NewCSA4) ) ;

["so(5,1)", "su*(4)"] (2.2.1.6)

Here are the Satake diagrams that illustrate the isomorphism between
| su*(4) and so(5,1).
> SatakeDiagram("so(5,1)");

» O

2
0(1\
L] (x3

> SatakeDiagram("su* (4)") ;
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YV su*(2) = su(2) = so(3) = sp(2)
We load the structure constants for Lie algebra su*(2) from the
standard Maple library. There is an isomorphism between su*(2), su)
2), so(3), and sp(2) so we have these two Lie algebras as the output of
the classifying program, ClassifyRealSemiSimpleLieAlgebras.
:> LD1 := SimplelLieAlgebraData ("su* (2)",6su2):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra to establish the control.
> ClassifyRealSemiSimpleLieAlgebra (su2) ;
["su(2)", "so(3)", "sp(2)", "su*(2)"] (2.2.2.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

:> ChangeFrame (su2) :
:> B := evalDG([e3, el, e2]):
:> LD2 := LieAlgebraData (B,su2n):
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (su2n) ;
["su(2)", "so(3)", "sp(2)", "su*(2)"] (2.2.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

[> ChangeFrame (su2n) :

[> csa := CartanSubalgebra (su2) ;

CSA = [el ] (2.2.2.3)

:> M := StandardRepresentation (su2):
> T,P := CartanDecomposition (M, su2):
T
P

~Ne N~

~

[el,e2,e3]
[ ] (2.2.2.4)
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[> NewCSA, V := MaximalCartanSubalgebra (CSA,T,P,
"compact") ;
NewCSA, V= [el], [ ] (2.2.2.5)

> ClassifyRealSemiSimplelLieAlgebra (su2, evalDG
(NewCS3)) ;

["su(2)", "so(3)", "sp(2)", "su*(2)" ] (2.2.2.6)

[ Here are the Satake diagrams that illustrate the isomorphisms
=between su(2), so(3), sp(2), and su*(2).
> SatakeDiagram("su(2)");

> SatakeDiagram("so(3)") ;

B SatakeDiagram("sp(2)") ;
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> SatakeDiagram("su* (2)") ;

¥V su(p,L +1-p)
YV su(3,1) = so*(6)

We load the structure constants for Lie algebra su(3,1) from the
standard Maple library. There is an isomorphism between su(3,1) and
s0*(6) so we have these two Lie algebras as the output of the classifying
program, ClassifyRealSemiSimpleLieAlgebras.

|_> LD1 := SimpleLieAlgebraData("su(3,1)",su3l,
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|  'version=2'):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra to establish the control.
[> ClassifyRealSemiSimpleLieAlgebra (su3l) ;
["su(3,1)", "so*(6)" ] (2.3.1.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

:> ChangeFrame (su3l) :
[> B := evalDG([eld, el, e2, e4, e5, e6, e7, e8,
| e9, el5, ell, el2, el0, e3, el3]):
:> LD2 := LieAlgebraData (B,su3ln):
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (su3ln) ;
["su(3,1)", "so*(6)" ] (2.3.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (su3ln) :

[> csa := CartanSubalgebra (su3l) ;

CS4:=[el,e9,el3 +2eld+ el5] (2.3.1.3)
;> M := StandardRepresentation (su3l) :
> T,P := CartanDecomposition (M, su3l):
T;
P -

~

[el,e2,e3,e4,e5, e6,el3,eld, el5]
[e7,e8,e9,el0,ell,el] (2.3.1.4)
> NewCSA, V := MaximalCartanSubalgebra (CSA,T,P,
"compact") ;
NewCSA4, V= [el,el3 +2el4,el5], [ ] (2.3.1.5)
> ClassifyRealSemiSimpleLieAlgebra (su3l, evalDG
(NewCSA3) ) ;
["su(3,1)", "so*(6)"] (2.3.1.6)

[ Here are the Satake diagrams that illustrate the isomorphisms
| between so*(6) and su(3,1).
> SatakeDiagram("so*(6)") ;
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N
[+]
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> SatakeDiagram("su(3,1)");

(04

1

| )

I

%
Vo su(3,2)

We load the structure constants for Lie algebra su(3,2) from the
standard Maple library.
| > LD1 := SimpleLieAlgebraData("su(3,2)",su32):

;> DGsetup (LD1) :

First we check that the program works for the well known initialzed

| Lie algebra.

[> ClassifyRealSemiSimpleLieAlgebra (su32) ;

"su(3, 2)" (2.3.2.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

> ChangeFrame (su32) :

> B := evalDG([e3, el, e2, e4, e5, e6, e7, eS8,

e9, el5, ell, el2, el0, el4d, el3, el6, el7,

el8, el9, e20, e2l1l, e22, e23, e24]):

> LD2 := LieAlgebraData (B,su32n):

> DGsetup (LD2) :

> ClassifyRealSemiSimpleLieAlgebra (su32n) ;

"su(3, 2)" (2.3.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
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using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (su32n) :

> csa := CartanSubalgebra (su32) ;

CSA = [el, e2, e3, e4] (2.3.2.3)
:> M := StandardRepresentation (su32):
> T,P := CartanDecomposition (M, su32) :
T;
P;

[el,e2,e5 —e7,e6 + el0,e8 +ell,e9 + el2,el3 + el9,eld
+e20,el5 +el7,el6 + e22,el8 + e23,e2] + e24]

[e3,e4,e5 + e7,e6 —el0,e8 —ell,e9 —el2,el3 —el9,el4 (2.3.2.4)
—e20,el5 —el7,el6 —e22,el8 —e23,e2] — e24]

=> NewCSA, V := MaximalCartanSubalgebra (CSA,T,P,
"compact") ;

NewCSA, V= [el,e2,el3 + el9,el4 + e20], [ ] (2.3.2.5)
[> ClassifyRealSemiSimpleLieAlgebra (su32, evalDG
(NewCSA3) ) ;
"su(3, 2)" (2.3.2.6)

> SatakeDiagram("su(3,2)") ;

% %)
| |
o 4 (X3
YV su(4,1)
We load the structure constants for Lie algebra su(4,1) from the
standard Maple library.

:> LDl := SimplelieAlgebraData("su(4,1)",su4dl):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (su4l) ;

(2.3.3.1)



"su(4, 1)" (2.3.3.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic

> ChangeFrame (su4l) :

> B := evalDG([eld, el, e2, e4, e5, e6, e7, e8,

e9, el5, ell, el2, el0, e3, el3, el6, el7, el8,
el9, e2l1, e20, e22, e23, e24]):

> LD2 := LieAlgebraData (B,su4ln):

> DGsetup (LD2) :

> ClassifyRealSemiSimpleLieAlgebra (su4ln) ;

"su(4, 1)" (2.3.3.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (su4ln) :

[> csa := CartanSubalgebra (su4l) ;

CS4 = [el,e2, e3, e4] (2.3.3.3)
:> M := StandardRepresentation (su4dl) :
> T,P := CartanDecomposition (M, su4l):
T;
P;

[el,e2,e3,e5 + e8,eb,e7,e9 + ell,ell,el2 + el3, el4
+el5,el6 + el9,el7,el8,e20+ e22,e2l,e23 + e24]

[e4,e5 —e8,e9 —ell,el2 —el3,el4 —el5,el6 —el9,e20 (2.3.3.4)
—e22,e23 — e24]

[> NewCSA, V := MaximalCartanSubalgebra (CSA,T,P,
"compact") ;

NewCSA, V= [el,e2,e3,el4 +el5], [ | (2.3.3.5)
> ClassifyRealSemiSimplelLieAlgebra (sud4l, evalDG
(NewCS3)) ;

"su(4, 1)" (2.3.3.6)

> SatakeDiagram("su(4,1)");

Lie algebra and run the program again to compare against the control.
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% %
|
o 4 063
YV su(4,2)
We load the structure constants for Lie algebra su(4,2) from the
standard Maple library.
| > LD1 := SimpleLieAlgebraData("su(4,2)",su42):

:> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (su4d2) ;
"su(4, 2)" (2.34.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

> ChangeFrame (su42) :

> B := evalDG([eld, el, e2, ed, e5, e6, e7, e8,

e9, el5, ell, el2, el0, e3, el3, el6, el7, el8,
el9, e2l1, e20, e22, e23, e24, e25, e26, e27,

e28, e29, e30, e31, e32, e33, e34, e35]):

> LD2 := LieAlgebraData (B,su42n) :

> DGsetup (LD2) :

> ClassifyRealSemiSimpleLieAlgebra (su42n) ;

"su(4, 2)" (2.34.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (su42n) :

[> csa := CartanSubalgebra (su42) ;

CS4 = [el,e2,e3,e4,e5] (2.34.3)




Y

;> M := StandardRepresentation (su4d2):
> T,P := CartanDecomposition (M, su4d2):
)
[el,e2,e3,e6 —e8,e7 + el3,e9 + el4,ell,ell + el6, el
+el7,el5 + el8, el9 + e26,e20 + e27,e2l + e23,e22
+ e30,e24 + e31, e25, e28 + e33, e29 + e34,e32 + e35 ]
[e4,e5,e6 + e8,e7 —el3,e9 —eld,ell —el6,el2 —el7,el5 (2.3.4.4)
—el8,el9 — e26,e20 —e27,e2]l — e23,e22 — e30, e24
—e3l,e28 —e33,e29 — e34,e32 — e35 ]

=> NewCSA, V := MaximalCartanSubalgebra (CSA,T,P,
"compact") ;

NewCSA, V= [el, e2,e3,el9 + e26,e20 + e27], | | (2.34.5)

> ClassifyRealSemiSimpleLieAlgebra (su42, evalDG
(NewCSA3) ) ;

"su(4, 2)" (2.3.4.6)
[> SatakeDiagram("su(4,2)");

T
L

Q n———n Q

5 4

Y su(p,p)

su(2,2) = so(4,2)

We load the structure constants for Lie algebra su(2,2) from the
standard Maple library. There is an isomorphism between su(2,2) and
s0(4,2) so we have these two Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.

> 1D1 := SimplelLieAlgebraData("su(2,2)",su22,

|  'version=2"'):

;> DGsetup (LD1) :

First we check that the program works for the well known initialzed

| Lie algebra.

[> ClassifyRealSemiSimpleLieAlgebra (su22) ;

["so(4,2)", "su(2,2)" ] 24.1.1)
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| Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

j> ChangeFrame (su22) :

[> B := evalDG([e3, e2, e4, el, e5, e6, e, e8,
| €9, el0, ell, el2, el3, el4, el5]):
| > LD2 := LieAlgebraData (B,su22n):

;> DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra (su22n) ;
["so(4,2)", "su(2,2)" ] (2.4.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (su22n) :

[> csa := CartanSubalgebra (su22) ;

CS4:=[el,ell,el3 +2el4+ el5] (2.4.1.3)
:> M := StandardRepresentation (su22):
> T,P := CartanDecomposition (M,su22):
T;
P;

[el,e2,ell,el2,el3,eld,el5]
[e3, e4, e), eb, e7, eS8, e9,el0] 24.14)
> NewCSA, V := MaximalCartanSubalgebra (CSA,T,P,

"compact") ;
NewCSA, V= [el,ell,el3 +2el4+el5] [ ] (24.1.5)

> ClassifyRealSemiSimplelLieAlgebra (su22, evalDG
(NewCSA3) ) ;

["s0(4,2)", "su(2,2)"] (2.4.1.6)

[ Here are the Satake diagrams that illustrate the isomorphisms
| between so(4,2) and su(2,2).
> SatakeDiagram("so(4,2)");

° |
oc1\|
L] a3
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[> SatakeDiagram("su(2,2)");

o)

3

|
|
o

YV su(3,3)
We load the structure constants for Lie algebra su(3,3) from the
standard Maple library.
:> LDl := SimplelLieAlgebraData("su(3,3)",su33):
;> DGsetup (LD1) :

First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (su33) ;

"su(3, 3)" 24.2.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

> ChangeFrame (su33) :

> B := evalDG([e3, e2, e6, el, e5, e4d, e7, e8,

e9, el0, ell, el2, el3, eld, el5, el6, el7,

el8, el9, e20, e2l1, e22, e23, e24, e25, e26,

e27, e28, e29, e30, e3l, e32, e33, e34, e35]):

> LD2 := LieAlgebraData (B,su33n):

> DGsetup (LD2) :

> ClassifyRealSemiSimpleLieAlgebra (su33n) ;

"su(3, 3)" (2.4.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (su33n) :

[> csa := CartanSubalgebra (su33) ;

(24.2.3)
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CS4 = [el,e2,e3,e4,e5] (2.4.2.3)
:> M := StandardRepresentation (su33):
> T,P := CartanDecomposition (M, su33):
T;
P;

[el,e2,e6 —el4,e7 +el5,e8 + el6,e9 —el2,el0) —el3,ell
+el7,el8 + e30,el9 + e31,e20 4 e32, e2] + e29, e22
+ e33,e23 + e34,e24 + e27,e25 + e28, e26 + e35 |

[e3,e4,e5,e6 + eld,e7 —el5,e8 —el6,e9 + el2,el0 + el3, (2.4.2.4)
ell —el7,el8 —e30,el9 — e3l,e20 — e32,e2] — e29, e22
—e33,e23 —e34,e24 — e27,e25 — e28,e26 — e35 |

> NewCSA, V := MaximalCartanSubalgebra (CSA,T,P,
"compact") ;
NewCSA, V= [el,e2,el8 + e30,el9 + e31,e20 + e32],[ ] (2.4.2.5)
> ClassifyRealSemiSimpleLieAlgebra (su33, evalDG
(NewCSA4) ) ;
"su(3, 3)" (2.4.2.6)
> SatakeDiagram("su(3,3)");

o o,

[+] [+]

| NG

| | @ Oy
D e—

oL o,

Vsu(L +1)

su(2) = so(3) = sp(2) = su*(2)

We load the structure constants for Lie algebra su(2) from the
standard Maple library. There is an isomorphism between su*(2), su
(2), so(3), and sp(2) so we have these two Lie algebras as the output of
the classifying program, ClassifyRealSemiSimpleLieAlgebras.

[> LD1 := SimpleLieAlgebraData("su(2)",hsu2):

[> DGsetup (LD1) :

First we check that the program works for the well known initialzed

| Lie algebra.

> ClassifyRealSemiSimpleLieAlgebra (su2) ;

(2.5.1.1)
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["su(2)", "so(3)", "sp(2)", "su*(2)"] (2.5.1.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

:> ChangeFrame (su2) :
[> B := evalDG([el-e2, e2+el, e3]):
:> LD2 := LieAlgebraData (B,su2n) :
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (su2n) ;
["su(2)", "so(3)", "sp(2)", "su*(2)"] (2.5.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (su2n) :

> csa := CartanSubalgebra (su2) ;

CS4 = [el] (2.5.1.3)
;> M := StandardRepresentation (su2):
> T,P := CartanDecomposition (M, su2):
T;
P;
[el,e2,e3]
[] (2.5.1.4)

> NewCSA, V := MaximalCartanSubalgebra (CSA,T,P,
"compact") ;
NewCS4, V= [el], [ ] (2.5.1.5)
> ClassifyRealSemiSimpleLieAlgebra(su2, evalDG
(NewCSA3) ) ;
["su(2)", "so(3)", "sp(2)", "su*(2)"] (2.5.1.6)

[ Here are the Satake diagrams that illustrate the isomorphisms
| between su(2), so(3), sp(2), and su*(2).
> SatakeDiagram("su(2)");

> SatakeDiagram("so(3)") ;
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> SatakeDiagram("sp(2)") ;

> SatakeDiagram("su* (2)") ;

Y su3)
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We load the structure constants for Lie algebra su(3,3) from the
standard Maple library.
:> LDl := SimplelLieAlgebraData("su(3)",su3):
;> DGsetup (LD1) :

First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (su3);

"su(3)" (2.5.2.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

[> ChangeFrame (su3) :
:> B := evalDG([e3, e2, el, e4, e8, e6, e7, e5]):
:> LD2 := LieAlgebraData (B,su3n):
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (su3n) ;
"su(3)" (2.5.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (su3n) :

[> csa := CartanSubalgebra (su3) ;

CS4 = [el, e2] (2.5.2.3)
;> M := StandardRepresentation (su3):
> T,P := CartanDecomposition (M, su3):
T;
P -

~

[el,e2,e3,ed,e5,eb,e7, eS|
[] (2.5.2.4)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA4, V= [el,e2], [ ] (2.5.2.5)
> ClassifyRealSemiSimpleLieAlgebra (su3, evalDG
(NewCS3) ) ;
"su(3)" (2.5.2.6)

> SatakeDiagram("su(3)");
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Y su(4) = so(6)
We load the structure constants for Lie algebra su(4) from the
standard Maple library. There is an isomorphism between su(4) and so
(6) so we have these two Lie algebras as the output of the classifying
program, ClassifyRealSemiSimpleLieAlgebras.
[> 1LD1 := SimplelLieAlgebraData("su(4)",6su4,
|  'version=2'):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (sud) ;
["su(4)", "so(6)" ] (2.5.3.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

:> ChangeFrame (su4) :
[> B := evalDG([e3, e5, el, e4, e2, e6, e, e8,
| €9, el0, ell, el2, el3, el5, eld]):
[> LD2 := LieAlgebraData (B,sudn):
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (su4n) ;
["su(4)", "so(6)"] (2.5.3.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (su4n) :

[> csa := CartanSubalgebra (su4) ;

CS4 = [el, e2, e3] (2.5.3.3)
j> M := StandardRepresentation (su4) :
> T,P := CartanDecomposition (M, su4) :
T;
P;

[el,e2,e3,e4,e5,eb6,e7,e8,e9,el0,ell,el2, el3, eld, el5]



[] (2.5.3.4)

[> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA, V= [el,e2,e3], [ | (2.5.3.5)
[> ClassifyRealSemiSimpleLieAlgebra (su4, evalDG
(NewCSA4) ) ;
["su(4)", "so(6)" ] (2.5.3.6)

Here are the Satake diagrams that illustrate the isomorphisms
| between su(4) and so(6).
> SatakeDiagram("su(4)");
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72 B
In this worksheet we give the low dimensional examples of the classification program

for the real simple classical Lie algebras of type B.

Each of the examples are organized as follows:

1. First we demonstrate that the classification program works for the standard li-

brary. This will give us a controlled result to compare against.

2. Next, we find a basis for an isomorphic Lie algebra. We test the program to con-

firm that the classification remains the same.

3. To properly classify any real simple Lie algebra using a Satake diagram, a maxi-
mally noncompact Cartan subalgebra must be used. Because of this, a third test
was performed to check the functionality of all the crucial parts of the classification
program. To make sure this testing occurs, I used the MaximalCartanSubalgebra
program to find a maximally compact Cartan subalgebra for the given Lie alge-
bra. Using this maximally compact Cartan subalgebra forces the classification
program to execute a Cayley transform the maximum number of times that would

be possible for each real simple Lie algebra.



YB

¥V so(p,2L +1-p)
V so(2,1) = sl(2) = sp(2,R)

We load the structure constants for Lie algebra so(2,1) from the
standard Maple library. There is an isomorphism between sl(2), so(2,1),
and sp(2,R), so we have all three of these Lie algebras as the output of
the classifying program, ClassifyRealSemiSimpleLieAlgebras.
> 1D1 := SimpleLieAlgebraData("so(2,1)",so021,
|  'version=2'):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (so2l) ;
["sl(2)", "so(2,1)", "sp(2,R)" ] (1.1.1.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

:> ChangeFrame (so21) :

[> B := evalDG([e2, el, e3]):

:> 1LD2 := LieAlgebraData (B,so2ln):

[> DGsetup (LD2) :

[> ClassifyRealSemiSimpleLieAlgebra (so21ln) ;

["sl(2)", "so(2,1)", "sp(2,R)" ] (1.1.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

[> ChangeFrame (so21n) :

[> csA = CartanSubalgebra (so2l) ;

CSA = [el ] (1.1.1.3)

:> M := StandardRepresentation (so2l) :
> T,P := CartanDecomposition (M, so2l):
T;
P;
[el]
[e2, e3] (1.1.1.4)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
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"compact") ;
NewCSA, V= [el], [ ] (1.1.1.5)
[> ClassifyRealSemiSimpleLieAlgebra(so2l, evalDG
(NewCSA) ) ;
["sl(2)", "so(2,1)", "sp(2,R)" ] (1.1.1.6)

Here are the Satake diagrams that illustrate the isomorphisms
| between sl(2), so(2,1), and sp(2,R).
> SatakeDiagram("sl(2)");

> SatakeDiagram("so(2,1)") ;

> SatakeDiagram("sp(2,R)") ;
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V's0(3,2) = sp(4,R)
We load the structure constants for Lie algebra so(3,2) from the
standard Maple library. There is an isomorphism between so(3,2) and
sp(4,R), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
> LD1 := SimpleLieAlgebraData("so(3,2)",so032,
|  'version=2'):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (so032) ;

["so(3,2)", "sp(4,R)" ] (1.1.2.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

f> ChangeFrame (s032) :
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[> B := evalDG([e2, el, e3, e4, e6, e5, e7, e8,
| €9, el0]):
:> LD2 := LieAlgebraData (B,so32n):
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (so32n) ;
["s0(3,2)", "sp(4,R)" ] (1.1.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

[> ChangeFrame (so32n) :

> csa := CartanSubalgebra (so32) ;

CSA4 = [el, e8] (1.1.2.3)

:= StandardRepresentation (so32):
P := CartanDecomposition (M,so032):

~

~

M
>T
T
P

~

[el,e2,e3,el0]
[e4, e5, eb, e, e8, ed] (1.1.2.4)
> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,

"compact") ;
NewCSA, V= [el,el0], | ] (1.1.2.5)

> ClassifyRealSemiSimpleLieAlgebra (so32, evalDG
(NewCSA) ) ;

["s0(3,2)", "sp(4,R)" ] (1.1.2.6)

Here are the Satake diagrams that illustrate the isomorphisms
=between s0(3,2), and sp(4,R).
> SatakeDiagram("so(3,2)");

> SatakeDiagram("sp(4,R)") ;
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Vso(4,1) = sp(2,2)
We load the structure constants for Lie algebra so(4,1) from the
standard Maple library. There is an isomorphism between so(4,1) and
sp(2,2), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
> LD1 := SimpleLieAlgebraData("so(4,1)",so4l,
|  'version=2'):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (so4l) ;

["so(4,1)", "sp(2,2)" ] (1.1.3.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

f> ChangeFrame (so4l) :
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[> B := evalDG([e2, el, e3, e5, e4, e6, e7, e8,
| €9, el0]):
:> LD2 := LieAlgebraData (B,so4ln):
[> DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra (so4ln) ;
["so(4,1)", "sp(2,2)" ] (1.1.3.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

[> ChangeFrame (so41n) :

> csa := CartanSubalgebra (so4l) ;

CSA = [el, eb] (1.1.3.3)

:= StandardRepresentation (so4l):
P := CartanDecomposition (M, so4l):

~

~

M
>T
T
P

~

[el,e2,e3,e4,e5,eb]
[e7, €8, e9,ell] (1.1.3.4)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA, V= [el,e6], [ ] (1.1.3.5)
> ClassifyRealSemiSimpleLieAlgebra (so4l, evalDG
(NewCSA4) ) ;
["so(4,1)", "sp(2,2)" ] (1.1.3.6)

Here are the Satake diagrams that illustrate the isomorphisms
=between so(4,1), and sp(2,2).
> SatakeDiagram("so(4,1)");

> SatakeDiagram("sp(2,2)") ;
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V so(4,3)
We load the structure constants for Lie algebra so(4,3) from the
standard Maple library.
[> LD1 := SimplelLieAlgebraData("so(4,3)",so043):
[> DGsetup (LD1) :

First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (so43) ;

"so(4, 3)" (1.14.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

[> ChangeFrame (so43) :

[> B := evalDG([e3, e2, el, e4, e5, e6, e8, e7,
e9, el0, ell, el2, el3, eld, el5, el6, el7,

| el8, el9, e21, e20]):

:> 1LD2 := LieAlgebraData (B,so43n):
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| > DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra (so43n) ;
"so(4, 3)" (1.14.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so43n) :

[> csa := CartanSubalgebra (so43) ;

CS4 = [el, e5,e9] (1.14.3)
:> M := StandardRepresentation (so43):
> T,P := CartanDecomposition (M, so43):
T;
P;

[e2 —ed,e3 —e7,e6 —e8,el0+ el3,ell + el4,el2 + el),
el6 +el9,el7 + e20,el8 + e2l]

[el,e2 + e4,e3 + e7,e5,e6 + e8,e9,el0 — el3,ell — el4,el2(1.1.4.4)
—el5,el6 —el9,el7 —e20,el8 — e2l]

[> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA, V:=1[e6 —e8,el2 + el5,el6 +el9], [ ] (1.14.5)
[> ClassifyRealSemiSimpleLieAlgebra (so43, evalDG
(NewCSA4) ) ;
"so(4, 3)" (1.14.6)

> SatakeDiagram("so(4,3)");

¥ s0(5,0) = sp(4)

We load the structure constants for Lie algebra so(5,0) from the
standard Maple library. There is an isomorphism between so(5,0) and
sp(4), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.

|:> LDl := SimplelLieAlgebraData("so(5,0)",so050):

|:> DGsetup (LD1) :




First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (so50) ;
["so(5)", "sp(4)" ] (1.15.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic

:> ChangeFrame (so50) :

[> B := evalDG([e3, e2, el, ed4, e5, e6, e8, e7,

| e9, el0]):

[> LD2 := LieAlgebraData (B,so50n) :

[> DGsetup (LD2) :

[> ClassifyRealSemiSimpleLieAlgebra (so50n) ;

["so(5)", "sp(4)" ] (1.1.5.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so50n) :

[> csa := CartanSubalgebra (so50) ;

CSA4 = [el, e8] (1.1.5.3)

:= StandardRepresentation (so50) :

>
> P := CartanDecomposition (M, so50) :

~

~

M
T
T
P

~

[el,e2,e3,e4,e5,eb,e7, e, e9,ell]
[ ] (1.1.54)
> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA4, V= [el, e8], [ ] (1.1.5.5)
> ClassifyRealSemiSimpleLieAlgebra (so50, evalDG
(NewCSA4) ) ;
["so(5)", "sp(4)" ] (1.1.5.6)
[ Here are the Satake diagrams that illustrate the isomorphisms
| between so0(5,0), and sp(4).
> SatakeDiagram("so(5)");

Lie algebra and run the program again to compare against the control.

152



153

% o,

> SatakeDiagram("sp(4)") ;

% %
V s0(5,2)
We load the structure constants for Lie algebra so(5,2) from the
standard Maple library.

:> LDl := SimplelieAlgebraData("so(5,2)",s052):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (so52) ;
"so(5, 2)" (1.1.6.1)




| Now we change the basis of the Lie algebra to produce an isomorphic

> ChangeFrame (so052) :

> B := evalDG([e3, e2, el, ed, e5, e6, e8, e7,

e9, el0, ell, el2, el3, el4d, el5, el6, el7,

el8, el9, e2l1l, e20]):

> LD2 := LieAlgebraData (B,so52n):

> DGsetup (LD2) :

> ClassifyRealSemiSimpleLieAlgebra (so52n) ;

"so(5, 2)" (1.1.6.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so52n) :

[> csa := CartanSubalgebra (so52) ;

CS4 = [el, e4,el9] (1.1.6.3)
;> M := StandardRepresentation (so052) :
> T,P := CartanDecomposition (M, so52):
T;
P;

[e2 —e3,e5 + eb,e7 + el3,e8 + el4,e9 + el5, el0 + el6, ell
+el7,el2 + el8, el9, e20, e2l |

[el,e2 + e3,ed,e5 — eb,e7 —el3,e8 — el4,e9 — el5, el (1.1.6.4)
—elb,ell —el7,el2 —el8]

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;

NewCSA4, V:=[e2 —e3 +e5+ eb,e9 + el5, el9], [ ] (1.1.6.5)
[> ClassifyRealSemiSimpleLieAlgebra (so52, evalDG
(NewCSA3) ) ;

"so(5, 2)" (1.1.6.6)

> SatakeDiagram("so(5,2)") ;

Lie algebra and run the program again to compare against the control.
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YV so(3) = su(2) = sp(2) = su*(2)

We load the structure constants for Lie algebra so(3) from the standard
Maple library. There is an isomorphism between su*(2), su)2), so(3),
and sp(2) so we have these two Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
[> LD1 := SimpleLieAlgebraData("so(3)",s03):
[> DGsetup (LD1) :

First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (so3) ;

["su(2)", "so(3)", "sp(2)", "su*(2)"] (1.2.1.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

:> ChangeFrame (so3) :
:> B := evalDG([e3, e2, el]):
:> LD2 := LieAlgebraData (B,so3n):
:> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (so3n) ;
["su(2)", "so(3)", "sp(2)", "su*(2)"] (1.2.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so3n) :

> csa := CartanSubalgebra (so3) ;

CS4 = [el] (1.2.1.3)
:> M := StandardRepresentation (so3):
> T,P := CartanDecomposition (M,so3):
T;
P;
[el,e2,e3]
[] (1.2.14)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA, V= [el], [ ] (1.2.1.5)

> ClassifyRealSemiSimpleLieAlgebra(so3, evalDG
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(NewCSA) ) ;
["su(2)", "so(3)", "sp(2)", "su*(2)" ] (1.2.1.6)

[ Here are the Satake diagrams that illustrate the isomorphisms
between so(3), su(2), sp(2), and su*(2).

> SatakeDiagram("so(3)");

> SatakeDiagram("su(2)") ;

> SatakeDiagram("sp(2)") ;
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> SatakeDiagram("su* (2)") ;

Y so(5) = sp(4)

We load the structure constants for Lie algebra so(5) from the standard

Maple library. There is an isomorphism between so(5) and sp(4), so we

have all three of these Lie algebras as the output of the classifying

program, ClassifyRealSemiSimpleLieAlgebras.

|:> LDl := SimplelLieAlgebraData("so(5)", so5):

[> DGsetup (LD1) :

[First we check that the program works for the well known initialzed
Lie algebra.
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[> ClassifyRealSemiSimpleLieAlgebra (so5) ;
["so(5)", "sp(4)"] 1.2.2.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

:> ChangeFrame (so5) :

> B := evalDG([e2, el, e3, ed, e6, e5, e7, eS8,
L e9, el0]):
| > LD2 := LieAlgebraData (B, sobn):

;> DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra (so5n) ;
["so(5)", "sp(4)"] 1.2.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

[> ChangeFrame (so5n) :

> CSA := CartanSubalgebra (so5) ;

CS4 = [el, e8] (1.2.2.3)
:> M := StandardRepresentation (so5):
> T,P := CartanDecomposition (M, so5):
T;
P;

[el,e2,e3,e4,e5,eb,e7, e, e9,ell]
[] (1.2.2.4)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;

NewCSA, V= [el, e8], [ ] (1.2.2.5)
[> ClassifyRealSemiSimpleLieAlgebra (so5, evalDG
(NewCSA) ) ;
["so(5)", "sp(4)" ] (1.2.2.6)

Here are the Satake diagrams that illustrate the isomorphisms
| between so(5) and sp(4).
> SatakeDiagram("so(5)") ;
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% o,

> SatakeDiagram("sp(4)") ;

% %
Y so(7)
We load the structure constants for Lie algebra so(5) from the standard
Maple library.

:> LDl := SimplelLieAlgebraData("so(7)",so7):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (so7) ;
"so(7)" (1.2.3.1)
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Now we change the basis of the Lie algebra to produce an isomorphic
| Lie algebra and run the program again to compare against the control.
> ChangeFrame (so7) :
> B := evalDG([e2, el, e3, ed, e6, e5, e7, eS8,
e9, el0, el3, el2, ell, el4d, el5, el6, el7,
el8, el9, e20, e21]):
> LD2 := LieAlgebraData (B,so7n):
> DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra (so7n) ;

"so(7)" (1.2.3.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so7n) :

[> csa := CartanSubalgebra (so7) ;

CS4 = [el,el2,el9] (1.2.3.3)
:> M := StandardRepresentation (so7) :
> T,P := CartanDecomposition (M, so7):
T;
P;

[el, e2,e3,e4,e5,eb,e7,e8,e9,el0,ell,el2, el3, eld, el5,
el6,el7,el8,el9,e20,e2l]
[ ] (1.2.3.4)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;

NewCSA4, V= [el,el2,el9], [ ] (1.2.3.5)
> ClassifyRealSemiSimpleLieAlgebra (so7, evalDG
(NewCSA) ) ;

"so(7)" (1.2.3.6)

> SatakeDiagram("so(7)") ;
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73 C
In this next worksheet we give the low dimensional examples of the classification

program for the real simple classical Lie algebras of type C.

Each of the examples are organized as follows:

1. First we demonstrate that the classification program works for the standard li-

brary. This will give us a controlled result to compare against.

2. Next, we find a basis for an isomorphic Lie algebra. We test the program to con-

firm that the classification remains the same.

3. To properly classify any real simple Lie algebra using a Satake diagram, a maxi-
mally noncompact Cartan subalgebra must be used. Because of this, a third test
was performed to check the functionality of all the crucial parts of the classification
program. To make sure this testing occurs, I used the MaximalCartanSubalgebra
program to find a maximally compact Cartan subalgebra for the given Lie alge-
bra. Using this maximally compact Cartan subalgebra forces the classification
program to execute a Cayley transform the maximum number of times that would

be possible for each real simple Lie algebra.
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¥V sp2L, R)

YV sp(2,R) = sl(2) = so(2,1)
We load the structure constants for Lie algebra sp(2,R) from the
standard Maple library. There is an isomorphism between sl(2), so(2,1),
and sp(2,R), so we have all three of these Lie algebras as the output of
the classifying program, ClassifyRealSemiSimpleLieAlgebras.
:> LDl := SimplelieAlgebraData("sp(2,R)",sp2R):
;> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (sp2R) ;
["sl(2)", "so(2,1)", "sp(2,R)" ] (1.1.1.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

[> ChangeFrame (sp2R) :
[> B := evalDG([e2, el, e3]):
:> LD2 := LieAlgebraData (B,sp2Rn) :
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (sp2Rn) ;
["sl(2)", "so(2,1)", "sp(2,R)" ] (1.1.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (sp2Rn) :

[> CSA := CartanSubalgebra (sp2R) ;

CS4 = [el] (1.1.1.3)
;> M := StandardRepresentation (sp2R) :
> T,P := CartanDecomposition (M, sp2R) :
T;
P;
[e2 — €3]
[el,e2 + €3] (1.1.1.4)

=> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;




NewCSA, V= [e2 — 3], ] 0 | (1.1.1.5)

> ClassifyRealSemiSimplelLieAlgebra (sp2R, evalDG
(NewCSA3) ) ;

["s1(2)", "so(2,1)", "sp(2,R)" ] (1.1.1.6)

[ Here are the Satake diagrams that illustrate the isomorphisms
=between sp(2,R), sl(2), and so(2,1).
> SatakeDiagram("sl(2)");

B SatakeDiagram("so(2,1)");

B SatakeDiagram("sp(2,R)") ;
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Y sp(4,R) = 50(3,2)
We load the structure constants for Lie algebra sp(4,R) from the
standard Maple library. There is an isomorphism between sp(4,R) and
s0(3,2), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
:> LDl := SimplelieAlgebraData("sp(4,R)",sp4R):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (sp4R) ;
["so(3,2)", "sp(4,R)" ] (1.1.2.1)
Now we change the basis of the Lie algebra to produce an isomorphic

Lie algebra and run the program again to compare against the control.

:> ChangeFrame (sp4R) :
> B := evalDG([e2, el, e3, ed4d, e6, e5, e7, eS8,
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| e9, el0]):

[> LD2 := LieAlgebraData (B, sp4Rn) :

[> DGsetup (LD2) :

[> ClassifyRealSemiSimpleLieAlgebra (sp4Rn) ;

["s0(3,2)", "sp(4,R)" ] (1.1.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (sp4Rn) :

[> CSA := CartanSubalgebra (sp4R) ;

CS4 = [el, e4] (1.1.2.3)
;> M := StandardRepresentation (sp4R) :
> T,P := CartanDecomposition (M, sp4R) :
T;
P .

~

[e2 —e3,e5 — e8,e6 — e9,e7 — ell]
[el,e2 + e3,e4,e5 + e8,e6 + e9,e7 + el0] (1.1.2.4)
> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,

"compact") ;
NewCS4, V:=[e5 —e8,e7 —ell], [ ] (1.1.2.5)

> ClassifyRealSemiSimplelLieAlgebra (sp4R, evalDG
(NewCSA4) ) ;
["so0(3,2)", "sp(4,R)" ] (1.1.2.6)
Here are the Satake diagrams that illustrate the isomorphism between
| sp(2,R) and so(3,2).
[> SatakeDiagram("sp(4,R)");
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> SatakeDiagram("so(3,2)") ;

1 2
V sp(6,R)
We load the structure constants for Lie algebra sp(6,R) from the
standard Maple library.

:> LDl := SimplelieAlgebraData("sp(6,R)",sp6R):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (Sp6R) ;
"sp(6, R)" (1.1.3.1)
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| Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

> ChangeFrame (sp6R) :

> B := evalDG([e2, el, e3, ed, e5, e6, e7, e9,

e8, el0, ell, el2, el3, el4d, el5, el6, el7,

el8, el9, e20, e21]):

> LD2 := LieAlgebraData (B,sp6Rn) :

> DGsetup (LD2) :

> ClassifyRealSemiSimpleLieAlgebra (sp6Rn) ;

"sp(6, R)" (1.1.3.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (sp6Rn) :

[> CSA := CartanSubalgebra (spéR) ;

CS4 = [el, e, e9] (1.1.3.3)
;> M := StandardRepresentation (sp6R) :
> T,P := CartanDecomposition (M, sp6R) :
T;
P;

[e2 —ed,e3 —e7,e6 —e8,el0) —elb,el]l —el7,el2 — elé,
el3 —el9,el4d —e20,el5 —e2l]

[el,e2 + e4,e3 + e7,e5,e6 + e8,e9,el0 + el6,ell + el7,el2(1.1.3.4)
+el8,el3 + el9,el4d + e20,el5 + e21 |

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;

NewCSA4, V= [el0 —el6,el3 —el9,el5 —e2l], [ ] (1.1.3.5)
[> ClassifyRealSemiSimpleLieAlgebra (sp6R, evalDG
(NewCSA3) ) ;

"sp(6, R)" (1.1.3.6)

> SatakeDiagram("sp(6,R)") ;
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V sp(8,R)
We load the structure constants for Lie algebra sp(8,R) from the
standard Maple library.
[> LD1 := SimplelLieAlgebraData("sp(8,R)",sp8R) :
[> DGsetup (LD1) :

First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (Sp8R) ;

"sp(8, R)" (1.14.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

| > ChangeFrame (sp8R) :

> B := evalDG([e2, el, e3, e4, e5, e6, e7, €9,
e8, el0, ell, el2, el3, el4d, el5, el6, el7,
el8, el9, e20, e2l1l, e22, e23, e24, e25, e26,
e27, e28, e29, e30, e3l1l, e32, e33, e34, e35,
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| e36]):
:> LD2 := LieAlgebraData (B,sp8Rn):
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (sp8Rn) ;
"sp(8, R)" (1.14.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

[> ChangeFrame (sp8Rn) :

[> CSA := CartanSubalgebra (sp8R) ;

CS4 = [el,eb,ell, el6] (1.1.4.3)
:> M := StandardRepresentation (sp8R) :
> T,P := CartanDecomposition (M, sp8R) :
T;
P;

[e2 —e5,e3 —e9,e4d —el3,e7 —el0,e8 —eld,el2 —el5,el7
—e27,el8 —e28,el9 — e29,e20 — e30,e2] — e31,e22
—e32,e23 —e33,e24 — e34,e25 — e35,e26 — e36]

[el,e2 + e5,e3 + e9,ed + el3, eb,e7 + el0, eS8 + el4,ell, el2(1.1.4.4)
+el5,el6,el7 + e27,el8 + e28, el9 + e29, e20 + €30,
e2] +e3l,e22 + e32,e23 + e33, e24 + e34,e25 + e35, e26
+ e36]

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA, V= [e8 —el4,el7 —e27,e2]l + e26 — e3] — e36, (1.1.4.5)

€24 — e34], [ ]

> ClassifyRealSemiSimplelLieAlgebra (sp8R, evalDG
(NewCSA) ) ;

"sp(8, R)" (1.1.4.6)
> SatakeDiagram("sp(8,R)");




170

o o u:(:u
OCI 062 OC3 OC4

Sp(p, L - p)
$p(2,2) = so(4,1)

We load the structure constants for Lie algebra sp(2,2) from the
standard Maple library. There is an isomorphism between sp(2,2) and
so(4,1), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
:> LDl := SimplelieAlgebraData("sp(2,2)",sp22):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (sp22) ;

["so(4,1)", "sp(2,2)" ] (1.2.1.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.




| > ChangeFrame (sp22) :
[> B := evalDG([e2, el, e3, ed4, e5, e6, e7, e9,
| e8, el0]):
:> 1LD2 := LieAlgebraData (B,sp22n):
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (sp22n) ;
["so(4,1)", "sp(2,2)" ] (1.2.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (sp22n) :

[> CSA := CartanSubalgebra (sp22) ;

CSA = [el, e8] (1.2.1.3)

:= StandardRepresentation (sp22) :

> M
> T,P := CartanDecomposition (M, sp22) :
T
P

~Ne N

~

[el, e4,e5,e8, e9,ell]
[e2, e3, eb, e7 ] (1.2.1.4)
> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,

"compact") ;
NewCSA, V= [el, e8], [ ] (1.2.1.5)
> ClassifyRealSemiSimpleLieAlgebra (sp22, evalDG
(NewCSA) ) ;
["so(4,1)", "sp(2,2)" ] (1.2.1.6)
[ Here are the Satake diagrams that illustrate the isomorphism between
=sp(2,2) and so(4,1).
> SatakeDiagram("sp(2,2)");
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> SatakeDiagram("so(4,1)");

1 2
YV sp4,2)
We load the structure constants for Lie algebra sp(4,2) from the
standard Maple library.

:> LDl := SimplelieAlgebraData("sp(4,2)",sp42):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (sp42) ;
"sp(4, 2)" (1.2.2.1)
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| Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

> ChangeFrame (sp42) :

> B := evalDG([e2, el, e3, ed, e5, e6, e7, e9,

e8, el0, ell, el2, el3, el4d, el5, el6, el7,

el8, el9, e20, e21]):

> LD2 := LieAlgebraData (B,sp42n):

> DGsetup (LD2) :

> ClassifyRealSemiSimpleLieAlgebra (sp42n) ;

"sp(4, 2)" (1.2.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

[> ChangeFrame (sp42n) :

> CSA := CartanSubalgebra (sp42) ;

CS4 = [el,e2 + e4,el9] (1.2.2.3)
;> M := StandardRepresentation (sp42) :
> T,P := CartanDecomposition (M, sp42):
T;
P;
[

el,e2,e3,e4,e9,ell,ell,el2,el3,el4,el9, e20,e2l]
[e5, eb,e7,e8,el5,el6,el7,el8] (1.2.2.4)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA4, V= [el,e2 + ed,el9], [ ] (1.2.2.5)
> ClassifyRealSemiSimplelLieAlgebra (sp42, evalDG
(NewCSA) ) ;
"sp(4, 2)" (1.2.2.6)

> SatakeDiagram("sp(4,2)");
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sp(p,p)
sp(2,2) = so(4,1)

We load the structure constants for Lie algebra sp(2,2) from the
standard Maple library. There is an isomorphism between sp(2,2) and
so(4,1), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
> 1D1 := SimplelLieAlgebraData("sp(2,2)",sp22,
|  'version=2'):
;> DGsetup (LD1) :

First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (sp22) ;

["so(4,1)", "sp(2,2)" ] (1.3.1.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.
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:> ChangeFrame (sp22) :

[> B := evalDG([e2, el, e3, e4, e5, e6, e, €9,

| e8, el0]):

:> LD2 := LieAlgebraData (B,sp22n):

:> DGsetup (LD2) :

[> ClassifyRealSemiSimpleLieAlgebra (sp22n) ;

["so(4,1)", "sp(2,2)" ] (1.3.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (sp22n) :

[> CSA := CartanSubalgebra (sp22) ;

CS4 = [el, e8] (1.3.1.3)
;> M := StandardRepresentation (sp22) :
> T,P := CartanDecomposition (M, sp22) :
T;
P .

~

[el, ed,e5,e8, e9,ell]
[e2, €3, eb, e7 ] (1.3.1.4)
> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,

"compact") ;
NewCSA4, V= [el, e8], [ ] (1.3.1.5)
> ClassifyRealSemiSimplelieAlgebra (sp22, evalDG
(NewCSA) ) ;
["so(4,1)", "sp(2,2)" ] (1.3.1.6)

[ Here are the Satake diagrams that illustrate the isomorphism between
| sp(2,2) and so(4,1).
> SatakeDiagram("sp(2,2)");
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> SatakeDiagram("so(4,1)");

1 2
V sp(4,4)
We load the structure constants for Lie algebra sp(4,4) from the
standard Maple library.

:> LDl := SimplelieAlgebraData("sp(4,4)",sp44):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (sp44) ;
"sp(4, 4)" (1.3.2.1)
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| Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

> ChangeFrame (sp44) :

> B := evalDG([e2, el, e3, ed, e5, e6, e7, e9,

e8, el0, ell, el2, el3, el4d, el5, el6, el7,

el8, el9, e20, e21, e22, e23, e24, e25, e26,

e27, e28, e29, e30, e3l, e32, e33, e34, e35,
e36]):

> LD2 := LieAlgebraData (B,sp44n) :

> DGsetup (LD2) :

> ClassifyRealSemiSimpleLieAlgebra (sp44n) ;

"sp(4, 4)" 1.3.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (sp44n) :

[> csA := CartanSubalgebra (sp44) ;

CS4 = [el,e2 + e4,e27,e28 + e30] (1.3.2.3)
;> M := StandardRepresentation (sp44):
> T,P := CartanDecomposition (M, sp44):
T;
P;

[el,e2,e3,e4,el3,eld,el5, el6,el7,el8, e27,e28, e29, e30,
e3l,e32,e33,e34,e35,e36]

[e5, eb,¢e7,e8,e9,el0,ell,el2, el9,e20,e2l,e22, e23, e24, (1.3.2.4)
e25,e26]

[> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA4, V= [el,e2 + e4,e27,e28 + e30], [ ] (1.3.2.5)
[> ClassifyRealSemiSimpleLieAlgebra (sp44, evalDG
(NewCS3)) ;
"sp(4, 4)" (1.3.2.6)

> SatakeDiagram("sp(4,4)");
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sp(L)
sp(2) = su(2) = so(3) = su*(2)

We load the structure constants for Lie algebra su*(2) from the
standard Maple library. There is an isomorphism between su*(2), su)
2), so(3), and sp(2) so we have these two Lie algebras as the output of
the classifying program, ClassifyRealSemiSimpleLieAlgebras.
:> ILD1 := SimplelieAlgebraData("sp(2)",sp2):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (sp2) ;

["su(2)", "so(3)", "sp(2)", "su*(2)" ] (1.4.1.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.
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| > ChangeFrame (sp2) :
[> B := evalDG([e2, el, e3]):
:> LD2 := LieAlgebraData (B,sp2n):
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (sp2n) ;
["su(2)", "so(3)", "sp(2)", "su*(2)" ] (14.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (sp2n) :

[> csa := CartanSubalgebra (sp2) ;

CS4 = [el] (1.4.1.3)
;> M := StandardRepresentation (sp2) :
> T,P := CartanDecomposition (M, sp2) :
T;
P;
[el, e2,e3]
[] (14.14)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCS4, V= [el], [ ] (1.4.1.5)
> ClassifyRealSemiSimplelLieAlgebra (sp2, evalDG
(NewCSA3) ) ;
["su(2)", "so(3)", "sp(2)", "su*(2)"] (14.1.6)
[ Here are the Satake diagrams that illustrate the isomorphisms
| between sp(2), su(2), so(3), and su*(2).
> SatakeDiagram("sp(2)");
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> SatakeDiagram("su(2)") ;

> SatakeDiagram("so(3)") ;

> SatakeDiagram("su* (2)") ;
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Y sp(4) = so(5)
We load the structure constants for Lie algebra sp(4) from the
standard Maple library. There is an isomorphism between sp(4) and so
(5), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
> LD1 := SimpleLieAlgebraData("sp(4)",sp4,
|  "version=2"):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (sp4) ;
["so(5)", "sp(4)"] (1.4.2.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

:> ChangeFrame (sp4) :
[> B := evalDG([e2, el, e3, e4, e5, e6, e, e9,
| e8, el0]):
[> LD2 := LieAlgebraData (B,sp4n) :
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (sp4n) ;
["so(5)", "sp(4)" ] (14.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (sp4n) :

[> CcsA := CartanSubalgebra (sp4) ;

CS4 = [el,e2 + e4] (1.4.2.3)
j> M := StandardRepresentation (sp4) :
> T,P := CartanDecomposition (M, sp4) :
T;
P;

[el,e2,e3,e4,e5,eb,e7, e, e9,ell]



[] (1.4.2.4)

[> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA, V= [el,e2 +e4], [ ] (1.4.2.5)
[> ClassifyRealSemiSimpleLieAlgebra (sp4, evalDG
(NewCSA4) ) ;
["so(5)", "sp(4)" ] (1.4.2.6)

[ Here are the Satake diagrams that illustrate the isomorphism between
| sp(4) and so(5).
> SatakeDiagram("sp(4)");

> SatakeDiagram("so(5)") ;
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% %
¥ sp(6)
We load the structure constants for Lie algebra sp(6) from the
standard Maple library.
| > LD1 := SimpleLieAlgebraData("sp(6)",sp6):

:> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (sp6) ;
"sp(6)" (1.4.3.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
Lie algebra and run the program again to compare against the control.

> ChangeFrame (sp6) :
> B := evalDG([e2, el, e3, ed4d, e5, e6, e7, e9,
e8, el0, ell, el2, el3, eld, el5, el6, el7,
el8, el9, e20, e21]):
> LD2 := LieAlgebraData (B,sp6n) :
> DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra (spé6n) ;
"sp(6)" (1.4.3.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (spén) :

[> CSA := CartanSubalgebra (sp6) ;

CS4 = [el,ed + e7,e9] (1.4.3.3)
:> M := StandardRepresentation (sp6) :
> T,P := CartanDecomposition (M, sp6) :
T;
P;

[el,e2,e3,e4,e5,eb,e7,e8,e9,el0,ell, el2, el3, eld, el5,
elb6,el7,el8, el9,e20,e2l]

/1 AN AN
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[] (1.4.3.4)

[> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA, V= [el,ed +e7,e9], | | (1.4.3.5)
[> ClassifyRealSemiSimpleLieAlgebra (sp6, evalDG
(NewCSA4) ) ;
"sp(6)" (1.4.3.6)

> SatakeDiagram("sp(6)") ;

. X
0(1 0(2 063
Vsp(®)
We load the structure constants for Lie algebra sp(8) from the
standard Maple library.

[> LD1 := SimpleLieAlgebraData ("sp(8)",sp8):
[> DGsetup (LD1) :

First we check that the program works for the well known initialzed
Lie algebra.

|_> ClassifyRealSemiSimpleLieAlgebra (sp8) ;

M AAN



"sp(8)" (1.4.4.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic

> ChangeFrame (sp8) :

> B := evalDG([e2, el, e3, e4, e5, el0, e7, e9,

e8, e6, ell, el2, el3, eld, el5, el8, el7, el6,
el9, e20, e2l, e22, e23, e24, e25, e26, e27,

e28, e29, e30, e31, e32, e33, e34, e35, e36]):

> LD2 := LieAlgebraData (B,sp8n):

> DGsetup (LD2) :

> ClassifyRealSemiSimpleLieAlgebra (sp8n) ;

"sp(8)" (1.4.4.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (sp8n) :

[> CSA := CartanSubalgebra (sp8) ;

CS4 = [el,eb,e7 +ell,el4 + el6] (1.44.3)
;> M := StandardRepresentation (sp8) :
> T,P := CartanDecomposition (M, sp8) :
T;
P;

[el,e2,e3,e4,e5,eb,e7,e8,e9,el0,ell,el2, el3, eld, el5,
el6,el7,el8, el9,e20,e2l,e22,e23, e24, e25, e26, e27,
e28,e29,e30,e31,e32, e33, e34, e35, e36]

[] (14.4.4)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA4, V= [el,eb,e7 +ell,eld + el6], [ ] (1.4.4.5)
[> ClassifyRealSemiSimpleLieAlgebra (sp8, evalDG
(NewCSA) ) ;
"sp(8)" (1.4.4.6)

B SatakeDiagram("sp(8)") ;

Lie algebra and run the program again to compare against the control.
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74 D
In the following worksheet we give the low dimensional examples of the classification

program for the real simple classical Lie algebras of type D.

Each of the examples are organized as follows:

1. First we demonstrate that the classification program works for the standard li-

brary. This will give us a controlled result to compare against.

2. Next, we find a basis for an isomorphic Lie algebra. We test the program to con-

firm that the classification remains the same.

3. To properly classify any real simple Lie algebra using a Satake diagram, a maxi-
mally noncompact Cartan subalgebra must be used. Because of this, a third test
was performed to check the functionality of all the crucial parts of the classification
program. To make sure this testing occurs, I used the MaximalCartanSubalgebra
program to find a maximally compact Cartan subalgebra for the given Lie alge-
bra. Using this maximally compact Cartan subalgebra forces the classification
program to execute a Cayley transform the maximum number of times that would

be possible for each real simple Lie algebra.
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¥ so(L,L)
V so(3,3) = sl(4)

We load the structure constants for Lie algebra so(3,3) from the
standard Maple library. There is an isomorphism between so(3,3) and
sl(4), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
> 1D1 := SimpleLieAlgebraData("so(3,3)",s033,
|  'version=2'):
[> DGsetup (LD1) :

First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (so33) ;

["sl(4)", "so(3,3)"] (1.1.1.1)

[Now we change the basis of the Lie algebra to produce an isomorphic
| Lie algebra and run the program again to compare against the control.
[ > ChangeFrame (s033) :

> B := evalDG([e2, el, e3, ed, e5, e6, e7, eS8,
| e9, el0, ell, el2, el4, el3, el5]):
| > LD2 := LieAlgebraData (B,so33n):

;> DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra (so33n) ;
["sl(4)", "so(3,3)"] (1.1.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so33n) :

> csa := CartanSubalgebra (so33) ;

CS4 = [el,el0,el5] (1.1.1.3)

:= StandardRepresentation (so33):
P := CartanDecomposition (M, so33):

>
>

~e N

M
T
T
P

~

[el,e2,e3,el3,eld,el5]
[e4, €5, eb,¢e7,e8,e9,el0,ell,el?] (1.1.1.4)
[> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
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"compact") ;

NewCSA, V= [el,el0,el5], [ ] (1.1.1.5)
[> ClassifyRealSemiSimpleLieAlgebra (so33, evalDG
(NewCSA4) ) ;
["sl(4)", "so(3,3)"] (1.1.1.6)
Here are the Satake diagrams that illustrate the isomorphism between
=so(3,3) and sl(4).
> SatakeDiagram("so(3,3)");
/ a
[+
0(1\
[+]
%

1 2 3
V so(4,4)
We load the structure constants for Lie algebra so(4,4) from the
standard Maple library.

[> LD1 := SimpleLieAlgebraData("so(4,4)",so44):

[> DGsetup (LD1) :

First we check that the program works for the well known initialzed

| Lie algebra.

[> ClassifyRealSemiSimpleLieAlgebra (so44) ;

"so(4, 4)" (1.1.2.1)

Now we change the basis of the Lie algebra to produce an isomorphic
| Lie algebra and run the program again to compare against the control.
[> ChangeFrame (so44) :
> B := evalDG([e2, el, e3, ed, e5, e6, e7, e8,

e9, el0, ell, el2, el4d, el3, el5, el6, el7,
el8, el9, e20, e21, e22, e23, e24, e25, e26,
e27, e28]):
> LD2 := LieAlgebraData (B,so44n):
> DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra (so44n) ;
"so(4, 4)" (1.1.2.2)
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| The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so44n) :

[> csa := CartanSubalgebra (so44) ;

CS4 = [el,eb,ell, el6] (1.1.2.3)
:> M := StandardRepresentation (so44):
> T,P := CartanDecomposition (M, so44):
T;
P;

[e2 —e5,e3 —e9,ed —el3,e7 —ell,e8 — eld,el2 —el5,el7
+ e23,el8 + e24, el9 + e25, e20 + e26, e2l + e27, e22
+ e28]
[el,e2 + e5,e3 + e9,e4d + el3,e6,e7 + ell,e8 + el4,ell, el2(1.1.2.4)
+el5,el6,el7 —e23,el8 —e24,el9 — e25, e20 — e26,
e2l —e27,e22 — e28]

=> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA, V= [e3 — e9,e8 —el4,el8 + e24,e2] +e27],[ | (1.1.2.5)

> ClassifyRealSemiSimplelLieAlgebra (so44, evalDG
(NewCSA4) ) ;

"so(4, 4)" (1.1.2.6)

¥ so(p,2L - p)

so(5,1) = su*(4)
We load the structure constants for Lie algebra so(5,1) from the
standard Maple library. There is an isomorphism between so(5,1) and
su*(4), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
> 1D1 := SimplelLieAlgebraData("so(5,1)",so51,
| 'version=2"'):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (so51) ;
["so(5,1)", "su*(4)"] (1.2.1.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
| Lie algebra and run the program again to compare against the control.




| > ChangeFrame (so51) :
[> B := evalDG([e2, el, e3, e4, e5, e6, e7, e9,
| e8, el0, ell, el2, el3, el4, el5]):
:> LD2 := LieAlgebraData (B,so51ln):
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (so51n) ;
["so(5,1)", "su*(4)"] (1.2.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so51n) :

[> csA = CartanSubalgebra (so51) ;

CSA4 = [el,e8,el5] (1.2.1.3)

:= StandardRepresentation (so51):

> M
> T,P := CartanDecomposition (M, so51) :
T
P

~Ne N

~

[el,e2,e3,e4,e5,eb,e7, e, e9,ell]
[ell,el2,el3, el4,el5] (1.2.14)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA4, V= [el,e8,el5], [ ] (1.2.1.5)
> ClassifyRealSemiSimpleLieAlgebra (so51, evalDG
(NewCSA) ) ;
["so(5,1)", "su*(4)"] (1.2.1.6)

[ Here are the Satake diagrams that illustrate the isomorphism between
| s0(5,1) and su*(4).
> SatakeDiagram("so(5,1)");

« O

> SatakeDiagram("su* (4)") ;
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V 50(6,0) = su(4)
We load the structure constants for Lie algebra so(6,0) from the
standard Maple library. There is an isomorphism between so0(6,0) and
su(4), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
:> LD1 := SimplelieAlgebraData("so(6,0)",s060):
[> DGsetup (LD1) :

First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (so60) ;
["su(4)", "so(6)"] (1.2.2.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic
| Lie algebra and run the program again to compare against the control.
| > ChangeFrame (s060) :

[> B := evalDG([e2, el, e3, e4, e5, e6, e, e9,
| e8, el0, ell, el2, el3, el4, el5]):
| > LD2 := LieAlgebraData (B,so60n):

;> DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra (so60n) ;
["su(4)", "so(6)" ] (1.2.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so60n) :

[> csa := CartanSubalgebra (so60) ;

CS4 = [el,el0,el5] (1.2.2.3)
;> M := StandardRepresentation (so060) :
> T,P := CartanDecomposition (M,so60) :
T;
P;

[el,e2,e3,e4,e5,eb6,e7,e8,e9,ell,ell, el2, el3, eld, el5]

1IN
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[ ] (1.2.2.4)

=> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;

NewCSA, V= [el,el0,el5], [ ] (1.2.2.5)
[> ClassifyRealSemiSimpleLieAlgebra (so60, evalDG
(NewCSA4) ) ;
["su(4)", "so(6)" ] (1.2.2.6)
Here are the Satake diagrams that illustrate the isomorphism between
[ 50(6,0) and su(4).
> SatakeDiagram("so(6,0)") ;
/. O€2
(xf\\\
[ a3
=> SatakeDiagram("su(4)");
% % %

V 50(6,2) = so*(8)
We load the structure constants for Lie algebra so(6,2) from the
standard Maple library. There is an isomorphism between so0(6,2) and
s0*(8), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
> 1D1 := SimpleLieAlgebraData("so(6,2)",s062,
|  'version=2'):
[> DGsetup (LD1) :

First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (s062) ;

["s0*(8)", "s0(6,2)"] (1.2.3.1)

Now we change the basis of the Lie algebra to produce an isomorphic
| Lie algebra and run the program again to compare against the control.
:> ChangeFrame (s062) :

[> B := evalDG([e2, el, e3, e4, e8, e6, e, €9,
e5, el0, ell, el2, el3, el4d, el5, el6, el7,
el8, el9, e20, e21, e22, e23, e24, e25, e26,




| e27, e28]):

[> LD2 := LieAlgebraData (B,s062n):

[> DGsetup (LD2) :

[> ClassifyRealSemiSimpleLieAlgebra (so62n) ;

["s0o*(8)", "s0(6,2)"] (1.2.3.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so62n) :

[> csa := CartanSubalgebra (so62) ;

CSA = [el, el0,el5, e28] (1.2.3.3)

:> M := StandardRepresentation (so062) :
> T,P := CartanDecomposition (M, so062) :
T;
P;
[el, e2,e3,e4,e5,eb6,e7,e8,e9,el0,ell,el2, el3, eld, el5,
e28]
[el6,el7,el8,el9,e20,e2l,e22,e23,e24,e25, e26, e27 ] (1.2.3.4)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA4, V= [el,el0,el5,e28], [ ] (1.2.3.5)
[> ClassifyRealSemiSimpleLieAlgebra (so62, evalDG
(NewCSA) ) ;
["s0o*(8)", "s0(6,2)"] (1.2.3.6)

[ Here are the Satake diagrams that illustrate the isomorphism between
=so(6,2) and so*(8).
> SatakeDiagram("so(6,2)");

B SatakeDiagram("so* (8)") ;
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so(4,2) = su(2,2)
We load the structure constants for Lie algebra so(4,2) from the
standard Maple library. There is an isomorphism between so(4,2) and
su(2,2), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
> 1D1 := SimplelLieAlgebraData("so(4,2)",so042,
|  'version=2'):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (so42) ;
["so(4,2)", "su(2,2)" ] (1.3.1.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic

:> ChangeFrame (so042) :
[> B := evalDG([e2, el, e3, ed4, e5, e6, e7, e9,
| e8, el0, ell, el2, el3, el4, el5]):
[> LD2 := LieAlgebraData (B,so42n):
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (so42n) ;
["so(4,2)", "su(2,2)" ] (1.3.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the
| Cayley transform process.
:> ChangeFrame (so42n) :
[> csa := CartanSubalgebra (so42) ;

CSA = [el, eb,el5] (1.3.1.3)

:> M := StandardRepresentation (so42) :

| Lie algebra and run the program again to compare against the control.
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> P := CartanDecomposition (M, so42):

T
T
P

Ne Ne N

[el,e2,e3,e4,e5,eb,el5]
[e7,e8,¢e9,el0,ell, el2, el3, eld] (1.3.14)

=> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCS4, V= [el,eb,el5], [ | (1.3.1.5)

> ClassifyRealSemiSimpleLieAlgebra (so42, evalDG
(NewCS3) ) ;
["so(4,2)", "su(2,2)" ] (1.3.1.6)

Here are the Satake diagrams that illustrate the isomorphism between
| s0(4,2) and su(2,2).
> SatakeDiagram("su(2,2)");

%

3

|
|
o

B SatakeDiagram("so(4,2)");

<
ocl\l
[+] a3
V s0(5,3)

We load the structure constants for Lie algebra so(5,3) from the
standard Maple library
:> LD1 := SimplelieAlgebraData("so(5,3)",s053):
;> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
[> ClassifyRealSemiSimpleLieAlgebra (so53) ;
"so0(5,3)" (1.3.2.1)
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Now we change the basis of the Lie algebra to produce an isomorphic
| Lie algebra and run the program again to compare against the control.
> ChangeFrame (so053) :
> B := evalDG([e2, el, e3, e5, e6, ed, e7, eS8,

e9, el0, ell, el2, el3, el4d, el5, el6, el7,
el8, el9, e20, e2l1l, e22, e23, e24, e25, e26,
e27, e28]):
> LD2 := LieAlgebraData(B,so53n):
> DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra (so53n) ;
"so0(5,3)" (1.3.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

[> ChangeFrame (so53n) :

[> csA := CartanSubalgebra (so53) ;

CSA = [el, e5, €9, e28 ] (1.3.2.3)
:> M := StandardRepresentation (so53):
> T,P := CartanDecomposition (M,so53):
T;
P;

[e2 —ed,e3 —e7,e6 —e8,el0+ el3,ell + el4,el2 + el),
el6 +e22,el7 + e23,el8 + e24,el9 + e25, e20 + e26, e2l
+ e27,e28]
[el,e2 + ed,e3 + e/, e5,e6 + e8,e9,el0) —el3, ell —el4,el2(1.3.2.4)
—el5,el6 —e22,el7 —e23,el8 — e24,el9 — e25, e20
—e26,e2] —e27]

[> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;

NewCSA, V= [e2 — e4,e9,el0 + el3,e28], | | (1.3.2.5)
> ClassifyRealSemiSimplelLieAlgebra (so53, evalDG
(NewCSA3) ) ;

"so(5,3)" (1.3.2.6)

> SatakeDiagram("so(5,3)") ;
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D e—— |
o 06\\\\|
o 0(4

I came up with two potential arrows [1,3] and [3,4]. This shows that either

is fine. Switching al and a4 changes the arrow from the above satake

| diagram from [a3,a4] to [al,a3]

[> M := Matrix(4, 4, {(1, 1) =2, (1, 2) =0, (1,
3) =-1, (1, 4) =0, (2, 1) =0, (2, 2) = 2,
(21 3) = _11 (21 4) = OI (3I 1) = _11 (31 2) =
_11 (31 3) = 2/ (31 4) = _11 (41 1) = 0/ (41 2)
=0, (4, 3) = -1, (4, 4) = 2});

2 0 -1 0
0 2 -1 0

M= (1.3.2.7)
-1 -1 2 -1
0 0 -1 2

> Pl4 := Matrix(4,4,{(1,4)=1,(2,2)=1,(3,3)=1, (4,
1)=1});

0001
0100
Pl4 = (1.3.2.8)
0010
1 000
> P14.M.P14-M;
0000
0000
(1.3.2.9)
0000
0000
¥ so2L)
VY so(2) Abelian
> LD1 := SimplelieAlgebraData("so(2)",6so2);
LDI = [el,el]=0 (14.1.1)

> SatakeDiagram("so(2)") ;
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S
AN

L] al

V s0(6) = su(4)
We load the structure constants for Lie algebra so(6) from the standard
Maple library. There is an isomorphism between so(6) and su(4), so we
have all three of these Lie algebras as the output of the classifying
program, ClassifyRealSemiSimpleLieAlgebras.
:> LDl := SimplelLieAlgebraData("so(6)",so06):
;> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (so6) ;
["su(4)", "so(6)"] (14.2.1)

Now we change the basis of the Lie algebra to produce an isomorphic
| Lie algebra and run the program again to compare against the control.
[> ChangeFrame (s06) :

[> B := evalDG([e2, el, e3, e4, e5, e6, e7, e9,
| e8, el0, ell, el2, el3, el4, el5]):
:> LD2 := LieAlgebraData (B,so6n) :
[> DGsetup (LD2) :
[> ClassifyRealSemiSimpleLieAlgebra (so6n) ;
["su(4)", "so(6)" ] (14.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

[> ChangeFrame (so6n) :

[> csA := CartanSubalgebra (so6) ;

CSA4 = [el,el0,el5] (1.4.2.3)
:> M := StandardRepresentation (so6) :
> T,P := CartanDecomposition (M, so6) :
T;
P;

[el,e2,e3,e4,e5,eb,e7,e8,e9,ell,ell, el2, el3, eld, el
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[] (1.4.2.4)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;

NewCSA, V= [el,el0,el5], [ ] (1.4.2.5)
[> ClassifyRealSemiSimpleLieAlgebra (so6, evalDG
(NewCSA4) ) ;
["su(4)", "so(6)" ] (1.4.2.6)
Here are the Satake diagrams that illustrate the isomorphism between
=so(6) and su(4).

> SatakeDiagram("so(6)") ;

3
=> SatakeDiagram("su(4)");
% %) %
V so(8)
We load the structure constants for Lie algebra so(8) from the standard
Maple library

| > LD1 := SimpleLlieAlgebraData("so(8)",6so8):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (so8) ;
"so(8)" (14.3.1)

Now we change the basis of the Lie algebra to produce an isomorphic
| Lie algebra and run the program again to compare against the control.
[> ChangeFrame (so8) :
> B := evalDG([e2, el, e3, ed4, e5, e6, e7, e9,
e8, el0, ell, el2, el3, el4d, el5, el6, el7,
el8, el9, e20, e21, e22, e23, e24, e25, e26,
e27, e28]):

> LD2 := LieAlgebraData (B,so8n):

> DGsetup (LD2) :
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> ClassifyRealSemiSimpleLieAlgebra (so8n) ;
"so(8)" (1.4.3.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so8n) :

> csa := CartanSubalgebra (so8) ;

CS4 = [el, el4,e23,e28] (1.4.3.3)
:> M := StandardRepresentation (so8) :
> T,P := CartanDecomposition (M, so8):
T;
P;

[el,e2,e3,e4,e5,eb,e7,e8,e9,ell,ell, el2, el3, eld, el5,
el6,el7,el8,el9,e20,e2l,e22,e23,e24,e25, e26, e27, e28 ]
[] (1.4.3.4)

[> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA, V= [el, el4,e23,e28], [ ] (14.3.5)
[> ClassifyRealSemiSimpleLieAlgebra (so8, evalDG
(NewCSA) ) ;
"so(8)" (1.4.3.6)

> SatakeDiagram("so(8)") ;

¥ so*(2L) where L is even

so*(2)Abelian
> LD1 := SimplelieAlgebraData("so* (2)",so2) ;
LDI = [el,el]=0 (1.5.1.1)

> SatakeDiagram("so* (2)") ;
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% i
N

%
V so*(4)
We load the structure constants for Lie algebra so*(4) from the
standard Maple library
| > LD1 := SimpleLieAlgebraData("so* (4)",6so4):

;> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (so4) ;
"so*(4)" (1.5.2.1)

Now we change the basis of the Lie algebra to produce an isomorphic
| Lie algebra and run the program again to compare against the control.
:> ChangeFrame (so4) :

[> B := evalDG([e2, el, e3, e4, e5, e6]):

[> LD2 := LieAlgebraData (B,so4n) :

[> DGsetup (LD2) :

[> ClassifyRealSemiSimpleLieAlgebra (so4n) ;

"so*(4)" (1.5.2.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

[> ChangeFrame (so4n) :

> csa := CartanSubalgebra (so4) ;

CSA = [el, e2] (1.5.2.3)

M := StandardRepresentation (so4):
> T,P := CartanDecomposition (M, so4):
T
P

[el,e3,e4,e5]
[e2, eb] (1.5.2.4)
> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
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"compact") ;
NewCSA, V= [el,e3 +e5], [ ] (1.5.2.5)
[> ClassifyRealSemiSimpleLieAlgebra(so4, evalDG
(NewCSA)) ;
"so*(4)" (1.5.2.6)

[s053 > SatakeDiagram("so* (4)") ;

. OCI

-] a2
The following shows that using either the dot comination of [white, black] or
[black ,white] is the same algebra by switching al with a2.

[s062 > M := Matrix(2, 2, {(1, 1) = 2, (1, 2)
=0, (2, 1) =0, (2, 2) = 2});

20
M=\ (1.5.2.7)
> P12 := Matrix(2,2,{(1,2)=1, (2,1)=1});
01
PI2=| (1.5.2.8)
> P12.M.P12-M;
00
00 (1.5.2.9)

YV s0*(8) = s0(6,2)
We load the structure constants for Lie algebra so*(8) from the
standard Maple library. There is an isomorphism between so*(8) and
$0(6,2), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
[> LD1 := SimpleLieAlgebraData ("so* (8)",so8):
[> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (so8) ;
["so*(8)", "s0(6,2)"] (1.5.3.1)

Now we change the basis of the Lie algebra to produce an isomorphic
| Lie algebra and run the program again to compare against the control.
:> ChangeFrame (so8) :

[> B := evalDG([e2, el, e3, ed4, e5, e6, e7, e9,




e8, el0, ell, el2, el3, el4d, el5, el6, el7,
el8, el9, e20, e21, e22, e23, e24, e25, e26,
e27, e28]):
> LD2 := LieAlgebraData (B,so8n):
> DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra (so8n) ;
["so*(8)", "s0(6,2)"] (1.5.3.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so8n) :

> csa := CartanSubalgebra (so8) ;

CS4 = [el, eb,e7,el?] (1.5.3.3)
;> M := StandardRepresentation(so8) :
> T,P := CartanDecomposition (M, so8):
T;
P;
[el,e2,e3,e4,e5,e6,el3,eld,el5, el6,el7,el8, el9, e20,e2l,
e22]
[e7,€8,e9,el0,ell,el2,e23,e24,e25,e26,e27,e28 | (1.5.34)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;

NewCSA4, V= [el,eb,el3 + el7,e20 + e22], [ ] (1.5.3.5)
> ClassifyRealSemiSimpleLieAlgebra (so8, evalDG
(NewCSA3) ) ;

["s0*(8)", "s0(6,2)"] (1.5.3.6)
[ Here are the Satake diagrams that illustrate the isomorphism between
| s0*(8) and s0(6,2).
> SatakeDiagram("so(6,2)") ;

/ -
[+] [+]
o az\
. a4

> SatakeDiagram("so* (8)") ;
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¥ so*(2L) where L is odd

s0*(6) = su(3,1)
We load the structure constants for Lie algebra so*(6) from the
standard Maple library. There is an isomorphism between so*(6) and
su(3,1), so we have all three of these Lie algebras as the output of the
classifying program, ClassifyRealSemiSimpleLieAlgebras.
:> LD1 := SimplelLieAlgebraData("so* (6)",so06):
:> DGsetup (LD1) :
First we check that the program works for the well known initialzed
| Lie algebra.
> ClassifyRealSemiSimpleLieAlgebra (so6) ;
["su(3,1)", "so*(6)" ] (1.6.1.1)

[ Now we change the basis of the Lie algebra to produce an isomorphic

;> ChangeFrame (so06) :

> B := evalDG([e2, el, e3, ed, e5, e6, e7, e9,
| e8, el0, ell, el2, el3, el4, el5]):
| > LD2 := LieAlgebraData (B,so6n) :

;> DGsetup (LD2) :
> ClassifyRealSemiSimpleLieAlgebra (soén) ;
["su(3,1)", "so*(6)"] (1.6.1.2)

[ The output matches the control, as expected.

We find a maximally compact Cartan subalgebra for this Lie algebra
using my program MaximalCartanSubalgebra. For our classification
using a Satake diagram, we need a maximally noncompact Cartan
subalgebra. By giving the classification program this maximally
compact Cartan subalgebra, the program is forced to complete the

| Cayley transform process.

:> ChangeFrame (so6n) :

[> csa := CartanSubalgebra (so6) ;

CS4 = [el, e4,el?] (1.6.1.3)

j> M := StandardRepresentation (so6) :
> T,P := CartanDecomposition (M, so6):

| Lie algebra and run the program again to compare against the control.
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[el,e2,e3,e7,e8,e9,ell,ell,el?]
[e4, e5,eb,el3,eld, el (1.6.1.4)

> NewCSA, V := MaximalCartanSubalgebra(CSA, T, P,
"compact") ;
NewCSA, V= [el,e7 + el0,el2], [ ] (1.6.1.5)

> ClassifyRealSemiSimpleLieAlgebra (so6, evalDG
(NewCSA) ) ;

["Su(3,1)", ”SO*(6)"] (1.6.1.6)

[ Here are the Satake diagrams that illustrate the isomorphism between
=so*(6) and su(3,1).
> SatakeDiagram("so* (6)") ;

N |
[+]
Oy
B SatakeDiagram("su(3,1)");

o

/ 2

3

I
I
o
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Computer Programs

RootSort:=proc(proots, T, P, RSD)

description ¢ This program checks the elements of each root to determine if the
root is real, complex or imaginary. A list of the real and a list of imaginary
roots.

The complex roots are discarded. °;

local dim, Relist, Imlist, Reindex, Imindex, testvector, Rebool, Imbool,

ind, dims, Colist, Coindex, tvector, ImList;

#Relist is list of the real roots.

#Imlist is a list of the imaginary roots.

dim := ArrayNumElems (proots[1]);
Relist := Array(1 .. nops(proots));
Imlist := Array(l1 .. nops(proots));
Reindex := 0;

Imindex := 0;

for testvector in proots do

ind := 1;
Rebool := false;
Imbool := false;

while (ind <= dim) and not (Rebool and Imbool) do
if testvector[ind] <> O then
if evalb(Re(testvector[ind])=testvector [ind]) then
Rebool := true;
else

Imbool := true;

fi:
ind:=ind + 1;
od:
if Rebool and not Imbool then
Reindex := Reindex + 1;
Relist [Reindex] := testvector;
elif not Rebool and Imbool then
Imindex := Imindex + 1;

Imlist [Imindex] := testvector;
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od:

ImList := convert(Imlist[1 .. Imindex],list);

dims := nops(ImList);
Colist := Array (1 .. dims);

Coindex := 0;

for tvector in ImList do
if nops(GetComponents (RSD[convert(tvector, list)], T)) = 0

and not nops(GetComponents (RSD[convert(tvector, list)], P)) = 0

then
Coindex := Coindex + 1;
Colist[Coindex] := tvector;
fi;
od;
return convert (Relist[1 .. Reindex], list), convert(Imlist[1 .. Imindex], list);

end proc:

NewCSAImRoot :=proc (CSA,TO,{root:=[1})
description ¢ Using a noncompact imaginary root, this program completes
the Cayley transform and returns a new Cartan subalgebra which has its
intersection with the p part of the Cartan subalgebra up by one ¢;
local RSD, PR, Re, Im, beta, Ebeta, Fbeta, Hbeta, NewCSAelement,
NS, NewCSA, V, EQ, Sol, dim, CSAlist, CSAindex, i, C, ind, T, P,

Theta, Ebetal, Fbetal, Hbetal, x, y, c, ImNonCompact;

if TO :: list then
T := TO;

P args [3];
Theta := CartanInvolution(T,P);
else Theta := TO;

T, P := CartanDecomposition(Theta);

fi;
RSD := RootSpaceDecomposition(CSA);

PR := PositiveRoots (RSD);

if root <> [] then
beta := root;
else

Re,Im := RootSort(PR, T, P, RSD);

if Im=[] then
return CSA,[];
fi;
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ImNonCompact := Arrayl[];
userinfo(3,ClassifyRealSemiSimpleLieAlgebra,’NoName’,"1.41 Finding a
noncompact root ");
i = 1;

for x in Im do

y := RSD[convert(x, list)];

if P = [] then
C := [1;

else

Q
[

GetComponents (y, P);
fi;
if C <> [] then
#this means that y is contained in P so y is noncompact

ImNonCompact [i] := x;

od;
fi;
if nops(ImNonCompact) = O then
return CSA, [];
fi;
userinfo(3,ClassifyRealSemiSimplelLieAlgebra,’NoName’," 1.42 Using the
root to complete the Cayley transform ");
#Here we are scaling E_beta and the conjugate of E_beta to satisfy the

structure equations for sl1(2)

beta := ImNonCompact[1];

Ebetal := evalDG((lambda) *RSD[convert(beta, list)]);
Hbetal := evalDG(RootToCartanSubalgebraElementH(beta, RSD));
Fbetal := evalDG((lambda)*RSD[convert(-beta, list)]);

V := evalDG(LieBracket (Ebetal, Fbetal) - evalDG(Hbetal));

EQ := DGinformation(evalDG(V), "CoefficientSet");

Sol := solve(EQ, lambda, explicit = true);

Ebeta := subs(Sol[1], Ebetal);

Fbeta := subs(Sol[1], Fbetal);

Hbeta := subs(Sol[1], Hbetal);

#CSAlist is a list of the elements in the new Cartan subalgebra that are

coming from the given Cartan subalgebra.

if
DGequal ( LieBracket (Hbeta, Ebeta), evalDG(2 * Ebeta) ) and
DGequal ( LieBracket (Hbeta, Fbeta), evalDG(-2 * Fbeta) ) and
LieBracket (Ebeta,Fbeta) - evalDG(Hbeta) = 0O then
# matching page 333 knapp
NewCSAelement := evalDG(Ebeta &plus DGconjugate (Ebeta));
NS := LinearAlgebra :- NullSpace(beta“"+);
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dim := 1 + nops(NS);
CSAlist := Array (1 .. dim);

CSAindex := 0;

for i from 1 to nops(NS) do

CSAindex := CSAindex + 1;
CSAlist [CSAindex] := DGzip(NS[i]l, CSA, "plus");
od;
CSAindex := CSAindex + 1;
CSAlist[CSAindex] := NewCSAelement;
return CanonicalBasis(convert(CSAlist[1 .. CSAindex], list)), beta;

else return "error";

fi:

end proc:

NewCSARealRoot :=proc (CSA,TO, PO, {root:=[11})

description ¢

Using a real root, this program completes the Cayley transform
and returns a new Cartan subalgebra which has its intersection with the t

part of the Cartan subalgebra up by one °;
local RSD, PR, Re, Im, alpha, Ealpha, Falpha, Halpha, NewCSAelement,
NS, NewCSA, V, EQ, Sol, dim, CSAlist, CSAindex, i, ind, T, P, Theta,

Ealphal, Falphal, Halphal, RSD1, PR1, Rel, Imil;

if TO :: 1list then
T := TO;
P := PO;
Theta := CartanlInvolution(T, P);
else Theta := TO;
T,P := CartanDecomposition(Theta);
fi;
RSD := RootSpaceDecomposition(CSA);
PR := PositiveRoots (RSD);
if root = [] then
Re, Im := RootSort(PR, T, P, RSD);

if Re = [] then



return CSA, [1,[];

fi;

alpha := Rel[1];
else

alpha := root;
fi;

#Here we are scaling E_beta and the conjugate of E_beta to satisfy

the structure equations below

Ealphal := evalDG((lambda) * (RSD[convert(alpha, 1list)]));
Halphal := evalDG(RootToCartanSubalgebraElementH (alpha, RSD));
Falphal := evalDG((ApplylLinearTransformation(Theta, Ealphal)));
V := evalDG(LieBracket (Ealphal, Falphal) + Halphal);
EQ := DGinformation(evalDG(V), "CoefficientSet");
Sol := solve(EQ, lambda, explicit = true);
Ealpha := evalDG(subs(Sol[1], Ealphal));
Falpha := evalDG(subs(Sol[1], Falphal));
Halpha := evalDG(subs(Sol[1], Halphal));
if
DGequal ( LieBracket (Halpha, Ealpha), evalDG(2 * Ealpha) ) and
DGequal( LieBracket (Halpha, Falpha), evalDG(-2 * Falpha) ) and
LieBracket (Ealpha, Falpha) - evalDG(-Halpha) = 0 then
NewCSAelement := evalDG(Ealpha &plus Falpha);
NS := LinearAlgebra :- NullSpace(alpha”+);
dim := 1 + nops(NS);
CSAlist := Array(1 .. dim);
CSAindex := 0;
for i from 1 to nops(NS) do
CSAindex := CSAindex + 1;
CSAlist [CSAindex] := DGzip(NS[i], CSA, "plus");
od;
CSAindex:= CSAindex + 1;
CSAlist [CSAindex] := NewCSAelement;
NewCSA := CanonicalBasis(convert(CSAlist[1 .. CSAindex], list));
RSD1 := RootSpaceDecomposition(NewCSA);
PR1 := PositiveRoots (RSD1);
Rel, Iml := RootSort(PR1, T, P, RSD1);

return NewCSA , alpha, Rel;

211
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else return [-1],[1,[];

fi:

end proc:

MaximalCartanSubalgebra := proc(CSA,TO,PO,kind,{output:=
"CartanSubalgebra",root:=[]})

description ¢

This program runs the NewCSARealRoot program
or the NewCSAImRoot program as many times as is necessary
to achieve either a maximally noncompact Cartan subalgebra or
a maximally compact Cartan subalgebra respectively ¢;
local dim, boolcom, CompactIndex, MaxCompactCSA,
MaxRootArray , NONCOMPACTCSA, ROOT, REALLIST ;
if mnot type(kind, string) then
error "Fourth arguement must be a string"
fi;
dim := nops(CSA);
MaxCompactCSA := Array(1 .. dim);
MaxRootArray:= Array(1 .. dim);
CompactIndex := 1;
boolcom := True;
NONCOMPACTCSA := CSA;
ROOT := root;
while boolcom = True and CompactIndex <= dim do;
if _params[’P0’] = NULL then
if kind[1] = "c¢" or kind[1] = "C" then
NONCOMPACTCSA, ROOT, REALLIST :=
NewCSARealRoot (NONCOMPACTCSA, TO,
PO, root = ROOT);
while REALLIST <> [] do;
NONCOMPACTCSA, ROOT, REALLIST :=
NewCSARealRoot (NONCOMPACTCSA,
TO, PO, root = ROOT);
od;
if ROOT = [] then
return NONCOMPACTCSA, ROOT;
fi;
elif kind[1] = "n" or kind[1] = "N" then
NONCOMPACTCSA, ROOT :=
NewCSAImRoot (NONCOMPACTCSA, TO, root = ROOT);
if ROOT = [] then
return NONCOMPACTCSA ,ROOQOT;
fi;
else
error "Kind must be either compact or noncompact";
fi;
else

if kind[1]="c" or kind[1]="C" then
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NONCOMPACTCSA, ROOT, REALLIST :=
NewCSARealRoot (NONCOMPACTCSA, TO, PO);
while REALLIST <> [] do;
NONCOMPACTCSA ,
ROOT, REALLIST :=
NewCSARealRoot (NONCOMPACTCSA ,
TO, PO);
od;
if ROOT = [] then
return NONCOMPACTCSA ,ROOQ0T;
fi;

elif kind[1]="n" or kind[1]="N" then
NONCOMPACTCSA, ROOT :=
NewCSAImRoot (NONCOMPACTCSA, TO, PO);
if ROOT = [] then
return NONCOMPACTCSA ,R0O0T;
fi;
else

error "Kind must be either compact or noncompact";

fi;

if ROOT = [] then

boolcom := false;
else
MaxCompactCSA (CompactIndex) := NONCOMPACTCSA;
MaxRootArray (CompactIndex) := ROOT;
ROOT:=[];
CompactIndex := CompactIndex +1;
£i;

od;

if output="A1l1l" then

return MaxCompactCSA(1 .. CompactIndex - 1) ,
MaxRootArray (1 .. CompactIndex - 1);
else
return MaxCompactCSA(CompactIndex - 1),Array(1..1);
fi
end proc:
CalculateSatakeDataForRealSimpleLieAlgebra := proc(LA,CSAO, RSDO, PRO, SRO)

description ‘This program uses the maximally noncompact Cartan subalgebra to find
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the root space decomposition and then the simple roots for this Cartan subalgebra.

Then the colors white and black are assigned to the real/complex and imaginary

roots respectively.‘;

local CSAN, RSD, PR, T, P, CSA1, SR, CM, CMS, SRM, colorArray, indx,
testvector, ind, Rebool, x, y, newcsa, SRM1, x1, y1, CSAlist, i;
if nargs>1 then
CSAN := CSAOQ;
else
CSAN := CartanSubalgebra(LA);
fi;
if nargs > 2 then
RSD := RSDO;
else
userinfo (2, ClassifyRealSemiSimpleLieAlgebra, ’NoName’, "1.1 Calulating root

space decomposition for the initial cartan subalgebra");

RSD RootSpaceDecomposition (CSAN);
fi;
userinfo (2,

ClassifyRealSemiSimplelLieAlgebra, ’NoName’,

and simple roots for the initial cartan subalgebra");

if nargs > 3 then

PR := PRO;
else

PR := PositiveRoots (RSD);
fi;
if nargs > 4 then

SR := SRO;
else

SR := SimpleRoots(PR);
fi;

userinfo (2, ClassifyRealSemiSimplelLieAlgebra, ’NoName’,

decomposition for the initial cartan subalgebra");

T, P := CartanDecomposition(CSAN, RSD, PR);

userinfo (2, ClassifyRealSemiSimplelLieAlgebra, ’NoName’,

cartan subalgebra");

x1 := IntersectSubspaces ([CSAN, P]);

yl := IntersectSubspaces ([CSAN, T]);

CSA1 := MaximalCartanSubalgebra(CSAN, T, P,

x := IntersectSubspaces ([CSA1[1], P1);

y := IntersectSubspaces ([CSA1[1], TI1);
CSAlist := arrayl[1 nops (CSAN)T;
CSAlist[1] := CsA1[1];

"1.2 Calulating positive

"1.3 Calulating cartan

"1.4 Calulating new

"noncompact");
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while nops(x1l) <> nops(x) do;

x1 := IntersectSubspaces ([CSAlist[i - 1], P]l);
yl := IntersectSubspaces ([CSAlist[i - 11, T1);
CSAlist[i] := MaximalCartanSubalgebra(CSAlist[i - 1],

T, P, "noncompact")[1];

x := IntersectSubspaces ([CSAlist[i], P]1);
y := IntersectSubspaces ([CSAlist[i], TI1);
i =i + 1;
od;
newcsa := [op(x), op(y)l;

userinfo(2,ClassifyRealSemiSimpleLieAlgebra,’NoName’,"1.5 Calulating root

space decomposition for the new Cartan subalgebra');

RSD := RootSpaceDecomposition(newcsa);
PR := PositiveRoots (RSD);

SR := SimpleRoots (PR);

CM := CartanMatrix (SR,RSD);

CMS := CartanMatrixToStandardForm (CM);
SRM := convert (SR,Matrix);
userinfo (2, ClassifyRealSemiSimpleLieAlgebra, ’NoName’, "1.6 Assigning the

colors white or black to the corresponding simple roots ");

SRM1 := (SRM.CMS[2]);

SR := [LinearAlgebra :- Column(SRM1, 1 .. nops(SR))];
colorArray := [seq("black", k = 1 .. nops(SR))];

indx := O0;

for indx from 1 to nops(SR) do

testvector := SR[indx];
ind := 1;
Rebool := false;

while (ind <= nops(SR)) and not(Rebool) do
if testvector[ind] <> O then
if evalb(Re(testvector[ind]) = testvector[ind])
then
Rebool := true;
colorArray [indx] := "white";
# Color the dot white in the case of a nonimmigrant root. This means the root
is either complex or real.

fi:

ind := ind + 1;
od:
od:
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return colorArray, SR, CMS[3][1], nops(newcsa);

end proc:

SatakeArrows:= proc (CRS1,CRS2)
description ‘Given the dot colors and simple roots, find the Satake associates
of a real simple Lie algebra‘;
#CRS1 is a list of the simple root dot colors [white , , black].
#CRS2 is a list of the simple roots.
local i, H, A, SA, 1st, k, dim;
dim := ceil ((nops(CRS1)/2)) + 1;
#SA will be a 1list [ [a,b] ] where a and b are the Satake associates.
SA := Array(1 .. dim);
i = 1;
if dim = 2 then
1st := [];
return 1lst;
fi;

while (i <= dim) do;

if CRS1[i] = "white" then;
H := SatakeAssociate (CRS2[i], CRS2);
A := GetComponents (H, CRS2);

member (1, A, ’k’);

if i < k then;

SA[il := [i, k];
fi;
£i;
i:=i + 1;
od;
1st := []:
for k from 1 to dim do
if is(SA[k] <> 0) then
1st := [op(lst), SA[k]]:
fi;
od;
return lst;
return SA(1 .. i);
end proc:
PossibleSemiSimpleLieAlgebraGivenComplexClassAndDimCartan := module ()

local ModuleApply, ClassifyRealSemiSimpleLieAlegbraProc,
SatakeDataProc;
ModuleApply := proc(ComplexClass, DimCartan)
description ‘gives a list of the possible real simple Lie algebras given the
complex class and the dimension of the Cartan subalgebra ¢;

local algType, alg,ind,p,q,i,alist, arraysize;

#alist is a list of the potential Lie algebras.

convert (ComplexClass ,string);
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SatakeDataProc [ComplexClass] (DimCartan);

end;
SatakeDataProc ["A"] := proc(DimCartan)
local algType, alg,ind,p,q,i,alist, arraysize, Dim;
Dim := DimCartan + 1;
arraysize := trunc(Dim / 2) + 3;
alist := Array(1 arraysize);
alist [1] := cat("sl(", Dim, ")");
alist[2] := cat("su(", Dim, ")");
alist [3] := cat("sux(", Dim, ")");
p := Dim;
q = 1;
for i from 1 to Dim do
ind := 4;
while (p > q + 1) do
P Dim - ind + 3;
q ind - 3;
alist[ind] := cat("su(", p, ", ", q, ")");
ind := ind + 1;
od;
od:
alist;
end;
SatakeDataProc ["B"] := proc(DimCartan)
local algType, alg, ind, p, q, i, alist, arraysize, Dim;

Dim :=

arraysize

2 * DimCartan + 1;

ceil(Dim / 2);

alist := Array(1 arraysize);
alist[1] := cat("so(", Dim, ")");
p := Dim;
= 1;
for i from 1 to Dim do
ind := 2;
while (p > q + 2) do
P Dim - ind + 1;
q ind - 1;
alist[ind] := cat("so(", p, ", ", q, ")");
ind := ind + 1;
od;
od:
alist;
end;

SatakeDataProc ["C"]

proc(DimCartan)



local algType, alg, ind, p, q, i, alist, arraysize,
Dim := DimCartan * 2;

arraysize := trunc(Dim / 2) + 2;

alist := Array(1 arraysize);

alist[1] := cat("sp(", Dim, ", R", ")");

alist [2] cat ("sp(", Dim, ")");
p := Dim;
= 1;
for i from 1 to Dim do

ind := 3;

while (p > q + 1) do
p := Dim - ind + 2;
q := ind - 2;

if type(p, even) then

alist[ind] := cat("sp(", p, ", ", q,
fi;
ind := ind + 1;
od;
od:
blist := Array (1 ArrayNumElems (alist, NonZero));
ind := 1;

for i from 1 to numelems(alist) do

if alist[i] <> O then

blist[ind] := alist[i];
ind := ind + 1;
£i;
od;
blist;
end ;
SatakeDataProc["D"] := proc(DimCartan)

local algType, alg,ind,p,q,i,alist, arraysize, Dim;

Dim := 2*DimCartan ;

if Dim = 8 then

arraysize := trunc(Dim / 2) + 3;
alist := Array(1 arraysize);
alist[1] := cat("so(", Dim, ")");

alist [2] := cat("so*(", Dim, ")");

Dim, blist;

n)u);

218



ind := 3;

while (p
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alist [3] = cat ("hannah (", Dim, ")");
p := Dim;
q = 1;
for i from 1 to Dim do
ind := 4;
while (p > q + 1) do
p := Dim - ind + 3;
q := ind - 3;
alist[ind] := cat("so(", p, ", ", q, ")");
ind := ind + 1;
od;
od:
elif type(Dim, even) then
arraysize := trunc(Dim / 2) + 3;
alist := Array (1 arraysize);
alist[1] := cat("so(", Dim, ")");
alist [2] = cat("so*(", Dim, ")");
alist[3] := cat("so(", Dim - 1, ", ", Dim - 1, ")");
= Dim;
q = 1;
for i from 1 to Dim do
ind := 4;
while (p > q + 1) do
p := Dim - ind + 3;
q := ind 3;
alist[ind] := cat("so(", p, ", ", q, ")");
ind := ind + 1;
od;
od:
else;
arraysize := trunc(Dim / 2) + 2;
alist := Array (1 arraysize);
alist[1] := cat("so(", Dim, ")");
alist[2] := cat("so(",Dim - 1, ", ", Dim - 1, ")");
p := Dim;
q = 1;
for i from 1 to Dim - 1 do

> q + 1) do
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:= Dim - ind + 2;

= ind - 2;
alist[ind] := cat("so(", p, ", ", q, ")");
ind := ind + 1;

od;

od:
fi;

return alist;

end ;

end module:

SatakeInfo := module ()

local ModuleApply;

ModuleApply := proc(alg)
description ‘give the color of the dots and the Satake associates of a real simple
Lie algebra ¢;
#option trace;
local a, b, ¢, n, m, algType, A, B, ans, ColorsSRTypeDimCartan, X, Arrow, Dot, d,
i, ind, Arr;
if alg = 0 then
return alg
fi;
#This program pulls all the important pieces from a given Lie algebra and then
uses that to find the right program to give the dots and arrows for the given

Lie algebra.

m := StringTools:-FirstFromLeft ("(", alg);
algType := algll .. m-1];

a := StringTools:-FirstFromLeft ("(", alg);
b := StringTools:-FirstFromLeft (",", alg);

c StringTools:-FirstFromLeft (")", alg);

if b = 0 then

A := StringTools:-SubString(alg, a + 1 .. c - 1);
n := sscanf (A, "%d")[1];

else
A := StringTools:-SubString(alg, a + 1 .. b - 1);
B := StringTools:-SubString(alg, b + 1 .. c - 1);
n := sscanf (A, "%d")I[1];
m := sscanf (B, "%d");

if m = [] then

m := sscanf (B, "%s");



if m = [] then

error ("invalid
fi;
m := m[1];

fi;

HARHHARHH AR A B AR B HBRAHBARHBAB R B AR H B AR R B AR H BB R B AR B H AR R R B R R H B AR B R AR HBRS

# A sl(n), sl(n, R)

HAERBRBHARABHBHARABRRAARARBRAARARBHARRRRBHARARRBHARA BB BARR AR B R AR SRR

if algType = "sl" then
if b = 0 then

Dot := sln["sln
Arrow := sln["s
else
if m = "R" then
Dot :=
Arrow
fi;
fi;

HAERBRBHARAARBHARABRBHARA R BB ABRARBHARRARBHBRRRBBHAR BB BARR AR BRAR SRR

first argument");

"1(n) [1];
In"](n)[2];

sln["s1ln"](n) [1];

:= sln["s1ln"](n)[2];

# A su(n), su(p, q), su(n, *)

HARHBARHBAAHBEARHBRABBARHBRAHBARHBABHBARHBARRBRAARHAARBBARHBRABBARHBRS

"

elif algType = "su" then
if b = 0 then

Dot := sup["sun

", 11(n) [1];

Arrow := sup["sun", 1](n)[2];

else

if m::integer then

if n -

elif n

elif n

elif n

fi;

m > 2 then
Dot := supql["supq", 11(n, m)[1];
Arrow := supql"supq", 1](n, m)[2];

- m = 2 then

Dot := supql"supq", 11(n, m)[1];
Arrow := supq["supq", 1]1(n, m)[2];
#ans := supql["supq", 2](n, m)

- m =1 then

Dot := supql["supq", 11(n, m)[1];
Arrow := supql["supq", 1]1(n, m)[2];
#ans := supql["supq", 3]1(n, m)

- m = 0 then

Dot := suppl["supq", 11(n, m)[1];
Arrow := suppl["supq", 11(n, m)[2];
#ans := suppl["supq", 4]1(n, m)
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fi;
HARHHBHARARABRARARRRAARHABHRARARBHARARRBHBRARBBABRARBRARR AR BRARA SRR
# A sux(n)
HARHABHARRHARRARARARRARAABRRARH AR R AR RHABHBRARBBHB BB B R AR R AR B R AR AR R RS
elif algType = "su*x" and n:: even then
if not n :: even then
error ("expected n to be an even integer for for algebra

type \"sux(n)\". Received %1", n)

fi;

Dot := slm["spn", 1]1(n)I[1];
Arrow := slm["spn", 11(mn)[2];
#ans := slm["su*n"](n)

HRHBHRARFRABARARARABARARARARABARARABARARARARRRAR AR AR AR AR AR A RARA R R RS
# B,D so(n, R), so(p, q)
HAHBHBHBHBHBHBHRHRFRRBHBHBHBRBHBFRRBRBRBFBRBRBRRFRFRRBRBHRRRRBH BB RH
elif algType = "so" then

if b = 0 then

if n :: odd then
Dot := sopl["sopgB", 1]1(n, m)[1];
Arrow := sop["sopgB", 1]1(n, m)[2];
#ans := sop["sopgB", 1]1(n);

else
Dot := so02l["sopqgD", 1](n, m)[1];
Arrow := so2l["sopgD", 1](m, m)[2];
#ans := so2l["sopgD", 1]1(m);

fij;

else

if m :: integer then

if (n + m) :: odd then

if m = 0 then

Dot := sopl["sopgB", 11(n)[1];
Arrow := sop["sopgB", 1]l(n)[2];
#ans := sop["sopgB", 1]1(n)

else
Dot := sopql["sopgB", 1](n, m)[1];
Arrow := sopql["sopqB", 1]1(n, m)[2];
#ans := sopql["sopgB", 2](n, m)

fi;

elif n - m = 2 then

Dot := soleo["sopgqD", 1]1(n, m)[1];
Arrow := soleo["sopgD", 1](n, m)[2];
#ans := soleo["sopgqD", 3]1(n, m)

elif n = m then
Dot := soll["sopgD", 1]1(mn, m)[1];
Arrow := soll["sopgD", 1](n, m)[2];
#ans := soll["sopqD", 4](n)

else
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Dot := sopqg2["sopqD", 1]1(n, m)[1];
Arrow := sopq2["sopgD", 1](n, m)[2];
#ans := sopq2["sopgD", 2](n, m)

fi;

elif m = "R" then

if n :: odd then
#ans := SDiagram["sopgB", 1](n);

else
#ans := SDiagram["sopgD", 1](n);

fi;

fi;
HAERAABHARAAABHAHAR AR HARARBRARRARBRARRARBHBRARRBHARA BB RARR SRR R AR SRR
# D sox(n)
HARHABHARAHARRARARBRBARABBRARRARBHBRRHRBHAR AR B BHBRAR BB AR AR BB R AR AR R RS
elif algType = "so*" then
if not n :: even then
error ("expected n to be an even integer for algebra

type \"so*(n)\". Received %1", n)

fi;

if (n/2) :: even then
Dot := so2le["spn", 1]1(n)I[1];
Arrow := so2le["spn", 1](n)[2];
#ans := so2le["so*n", 1]1(n)

else
Dot := so2lo["spn", 1]1(n)[1];
Arrow := so2lo["spn", 1](n)[2];
#ans := so2lo["sox*n", 2](n)

fi;

HARHBARH B AR A B AR B H AR A B BARHBRBHBARHBABHBAR A BB R B AR AR BRAHBARHBRA BB AR H RIS
# hannah (8) triality isomorphism
HAERAHBHARHARBHARAR AR HARA R BB ARRARBHARR AR BHARARRBHARA R BB ARR SRR R AR RS R RS
elif algType = "hannah" then

if n = 8 then
Dot := ["black","white","white","black"];

Arrow := [];

fi;

HUBHAHHH BB AHHH BB R BB H BB B R B H RSB HHH RS SRBH AR S SR HH BB S BB BB SR BB BB S R R B RS S
# C sp(n), sp(n, R), sp(p, q)
HEBHAHHH BB AHHH BB H BB H BB SRR B HBSHBHHH RS R B H BB SR B H AR S BB BB RSB H BB RRHHH S
elif algType = "sp" then
if b = 0 then
if not n :: even then

error ("expected n to be an even integer for algebra



224

type \"sp(n)\". Received %1", n)

fij;
Dot := spl["spn", 11(n)[1];
Arrow := spl["spn", 1](n)[2];
#ans := spl["spn"l(n);
else
if m::integer then
if not n :: even then
error ("expected n to be an even integer for
the algebra type \"sp(n, m)\". Received %1", n)
elif not m :: even then
error ("expected n to be an even integer for
the algebra type \"sp(n, m)\". Received %1", n)
fi;
if m = 0 then
Dot := spll["spn", 11(n)I[1];
Arrow := spl["spn", 1]1(n)[2];
#ans := spl["spn"]l(n);
elif m = n then
Dot := spppl["sppq", 11(n)[1];
Arrow := spppl["sppq", 11(n)[2];
#ans := spppl["sppq", 2]1(n);
else
Dot := sppql["sppq", 11(n, m)[1];
Arrow := sppql"sppq", 1]1(n, m)[2];
#ans := sppql"sppq", 1]1(n, m);
fi;
elif m = "R" then
if not n :: even then
error ("expected n to be an even integer for
algebra type \"sp(n, R)\". Received %1", n)
fi;
Dot := spp["spnR", 1](n, m)[1];
Arrow := spp["spnR", 1](n, m)[2];
#ans := spp["spnR"](n);
fi;
fi;
fi;
Dot, Arrow;
end:
end:
ClassifierUserInfo := proc(m,n, message)

local tab0O, tab;
tab0 := " ";

if n=0 then
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tab := "";
else
tab := cat(tab0$n);
£i;
end:
ClassifyRealSemiSimpleLieAlgebra := proc(alg,CSAO, RSDO)

local DotsSRTypeDimCartan, PossibleAlg, MyArrows, MyDots,bA,

Dots, Arrows,finalanswer;

userinfo(1,ClassifyRealSemiSimpleLieAlgebra,’NoName’,"1. Calulating the
Satake Data");
DotsSRTypeDimCartan :=

CalculateSatakeDataForRealSimpleLieAlgebra(args);

userinfo(l,ClassifyRealSemiSimpleLieAlgebra,’NoName’,"2. Calulating the
Possible Algebras given the complex class and the dimension of the Cartan
subalgebra");
PossibleAlg := PossibleSemiSimpleLieAlgebraGivenComplexClass -
AndDimCartan (DotsSRTypeDimCartan [3], DotsSRTypeDimCartan [4]);

userinfo(1,ClassifyRealSemiSimpleLieAlgebra,’NoName’ ,"3. Calulating the given
algebras arrows");

MyArrows := SatakeArrows(DotsSRTypeDimCartan);

MyDots := DotsSRTypeDimCartan[1];

userinfo(l,ClassifyRealSemiSimpleLieAlgebra,’NoName’ ,"4. Matching the
given algebras dots and arrows to the list of possible algebras");
for A in PossibleAlg do;

Dots ,Arrows := SatakeInfo(A);

if MyDots = Dots and MyArrows = Arrows then

finalanswer := A;
if finalanswer = "sl1(2)" or finalanswer = "so(2,1)" or
finalanswer = "sp(2,R)" then
finalanswer := ["s1(2)", "so(2,1)", "sp(2,R)"];
fi;
if finalanswer = "sl(4)" or finalanswer = "s0(3,3)" then
finalanswer := ["s1(4)", "so0(3,3)"];
fi;
if finalanswer = "su(2)" or finalanswer = "so(3)" or
finalanswer = "sp(2)" or finalanswer = "sux(2)" then
finalanswer := ["su(2)", "so(3)", "sp(2)","sux*x(2)"];
fi;
if finalanswer = "su(3, 1)" or finalanswer = "so*x(6,0)" or

finalanswer = "so*(6)" then



finalanswer ["su(3,1)",

fi;

"su(4)"
"so(6)"

if finalanswer or finalanswer

then

[||su(4)ll s

finalanswer

finalanswer "so(6)"]

fi;

"sox(6)"
["sox(6)",

if finalanswer or finalanswer

finalanswer
fi;

if finalanswer = "so*(8)" or finalanswer

"hannah (8)"
["sox(8)",

finalanswer= then

finalanswer
fi;

"so(3, 2)"

["so(3,2)",

if finalanswer

finalanswer
fi;

"50(4, DR

["so(4,1)",

if finalanswer

finalanswer
fi;

or finalanswer

"Sp(4)"]

if finalanswer "so(5)"

["50(5)",

finalanswer
fi;

"50(5, DR

["so(5,1)",

if finalanswer

finalanswer
fi;

"so(4, 2)"

["so(4,2)",

if finalanswer

finalanswer

fi;

return finalanswer;

od;

if DotsSRTypeDimCartan [4] 4 and DotsSRTypeDimCartan [3]

["white", "white", "white", "white"] then

finalanswer := "so(5,3)";

fi;
if DotsSRTypeDimCartan [4] 2 and DotsSRTypeDimCartan [3]

["white", "black"] or MyDots =["black", "white"]then

finalanswer "sox*x(4)";

fi;

return finalanswer;

end:

>

"su(3,1)"

"so(6,2)"

or finalanswer

"sp(4,R)

or finalanswer

"sp(2,2)

3

or finalanswer

"Su*(4)"] ;

or finalanswer

"su(2,2)"];
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"SO*(S)"];

"so(6, 0)" or

"su (3,

1;

1)" then

"so(6, 2)" or

1;

= "sp(4, R)" then

1;

n

= "sp(2, 2)" then

n] .
B

sp(4)" then

"sux(4)" then

"su(2, 2)" then

npn

and MyDots

"A" and MyDots

sln proc(n)



local rank, BlackWhite, i, SatakeAssociates;

description ‘This gives the Satake diagram data for sl1(l1 + 1,R)°‘;

#see Cap Slovak page 612 entry 1

rank := n - 1;

BlackWhite := Array(l .. rank);

for i from 1 to ramnk do
BlackWhite[i] := "white"

od;

BlackWhite := convert(BlackWhite, list);

BlackWhite, [];
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end:
sup := proc(p)
local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for su(l + 1) ¢;
#see Cap Slovak page 612 entry 5
rank := p - 1;
BlackWhite := Array(l .. rank);
for i from 1 to p - 1 do
BlackWhite [i] := "black"
od;
BlackWhite := convert(BlackWhite, list);
BlackWhite , [];
end:
supq := proc(q, p)

local rank, BlackWhite, i, SatakeAssociates;

description ‘This gives the Satake diagram data for sl(p,l1 + 1 - p)°;

#see Cap Slovak page 612 entry 3
rank := p + q - 1;
BlackWhite := Array(1 .. rank);

for i from 1 to p do

BlackWhite[i] := "white"

od;

for i from p + 1 to rank - p do
BlackWhite[i] := "black"

od;

for i from rank - p + 1 to rank do
BlackWhite[i] := "white"

od;

BlackWhite := convert(BlackWhite, list);

SatakeAssociates := [seq([i, q + p - il, i =1



228

BlackWhite ,SatakeAssociates;

end:
supp proc (p)
local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for su(p,p)‘;
#see Cap Slovak page 612 entry 4
rank := 2 *x p - 1;
BlackWhite := Array(1 .. rank);
for i from 1 to rank do
BlackWhite[i] := "white"
od;
BlackWhite := convert(BlackWhite, list);
SatakeAssociates := [seq([i, 2 *x p - i1 ], i =1 .. p - 1)];
BlackWhite ,SatakeAssociates;
end:
slm proc (p)
local rank, BlackWhite, i, SatakeAssociates,m;
description ‘This gives the Satake diagram data for sl(m,H) ‘;
#see Cap Slovak page 612 entry 2
m := p/2;
rank := 2*m - 1;
BlackWhite := Array(l .. rank);
for i from 1 to rank do
if type(i,’odd’) then
BlackWhite[i] := "black"
else
BlackWhite[i] := "white"
fi;
od;
BlackWhite := convert(BlackWhite, list);
BlackWhite , [];
end:
sop proc(p)

local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for so(21 + 1)°¢;

#see Cap Slovak page 612 entry 7

rank := (p - 1)/2;



BlackWhite := Array(l .. rank);
for i from 1 to ramnk do

BlackWhite[i] := "black"
od;

BlackWhite := convert(BlackWhite, list);

BlackWhite , [];
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end:
so2l proc (p)
local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for s1(1 - 1,1 + 1)°¢;
#see Cap Slovak page 613 entry 3
rank := (p)/2;
BlackWhite := Array (1l .. rank);
for i from 1 to rank do
BlackWhite[i] := "black"
od;
BlackWhite := convert(BlackWhite, list);
BlackWhite , [];
end:
sop proc(p)
local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for so(21 + 1)°¢;
#see Cap Slovak page 612 entry 7
rank := (p - 1)/2;
BlackWhite := Array(l .. rank);
for i from 1 to rank do
BlackWhite[i] := "black"
od;
BlackWhite := convert(BlackWhite, list);
BlackWhite , [];
end:
sopq proc(q, p)

local rank, BlackWhite, i, SatakeAssociates;
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description ‘This gives the Satake diagram data for sl(p,21 + 1 - p)°¢;
#see Cap Slovak page 612 entry 6
rank := (q + p - 1)/2;
BlackWhite := Array(1 .. rank);
for i from 1 to p do
BlackWhite[i] := "white"
od;
for i from p + 1 to rank do
BlackWhite [i] := "black"

od;

BlackWhite := convert(BlackWhite, list);

BlackWhite , [];

end:

soleo := proc(q,p)
local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for so(l - 1,1 + 1)°¢;
#see Cap Slovak page 613 entry 3
if p+q=8 then

rank := p + 1;

BlackWhite := Array(1 .. rank);

for i from 1 to rank do

BlackWhite[i] := "white"
od;
BlackWhite := convert(BlackWhite, list);
SatakeAssociates := [[3, 4],[1,41,[1,3]1];
else
rank := p + 1;
BlackWhite := Array (1 .. rank);

for i from 1 to rank do

BlackWhite[i] := "white"
od;
BlackWhite := convert(BlackWhite, list);
SatakeAssociates := [rank - 1, rank ];
fi;

BlackWhite ,SatakeAssociates;

end:
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soll := proc(l)
local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for s1(1,1)°¢;

#see Cap Slovak page 613 entry 1

rank := 1 ;
BlackWhite := Array(l1 .. rank);

for i from 1 to rank do

BlackWhite [i] := "white"
od;

BlackWhite := convert(BlackWhite, list);

BlackWhite , [];

end:
sopq2 := proc(q, p)
local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for so(p,21 - p)°¢;
#see Cap Slovak page 613 entry 2
rank := (q + p)/2;
BlackWhite := Array(l .. rank);
for i from 1 to p do
BlackWhite[i] := "white"
od;
for i from p+1 to ramnk do
BlackWhite[i] := "black"
od;
BlackWhite := convert(BlackWhite, list);
BlackWhite , [];
end:
so2le := proc(p)

local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for so*(21), 1 is even‘;

#see Cap Slovak page 613 entry 5

rank := p/2 ;
BlackWhite := Array(l .. rank);
for i from 1 to rank do

if type(i,odd) then
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BlackWhite[i] := "black"
else
BlackWhite[i] := "white"
fi;
od;
BlackWhite := convert(BlackWhite, list);

BlackWhite , [];

end:
so2lo := proc(p)
local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for so*(21), 1 is odd‘;
#see Cap Slovak page 613 entry 6
rank := p/2;
BlackWhite := Array(1 .. rank);
for i from 1 to rank - 2 do
if type(i,odd) then
BlackWhite[i] := "black"
else
BlackWhite[i] := "white"
fi;
od;
for i from rank -1 to rank do
BlackWhite[i] := "white"
od;
BlackWhite := convert(BlackWhite, list);
SatakeAssociates := [rank - 1, rank ];
BlackWhite ,SatakeAssociates;
end:
spl := proc(l)

local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for so(l,1)¢;

#see Cap Slovak page 612 entry 11
rank := 1/2 ;
BlackWhite := Array(l1 .. rank);

for i from 1 to rank do

BlackWhite[i] := "black"
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od;

BlackWhite := convert(BlackWhite, list);

BlackWhite, [];

end:
sppp := proc(p)
local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for sp(p,p)‘;
#see Cap Slovak page 612 entry 10
rank := p ;
BlackWhite := Array(l .. rank);
for i from 1 to p do
if type(i,odd) then
BlackWhite[i] := "black"
else
BlackWhite[i] := "white"
fi;
od;
BlackWhite := convert(BlackWhite, list);
BlackWhite , [];
end:
sppq := proc(q, p)

local rank, BlackWhite, i, SatakeAssociates,ql,pl;
description ‘This gives the Satake diagram data for sl(p,l1 - p)°*;

#see Cap Slovak page 612 entry 9

ql := q/2;

pl := p/2;

rank := pl + ql ;

BlackWhite := Array(l .. rank);

for i from 1 to 2%pl do
if type(i,odd) then

BlackWhite[i] := "black"
else

BlackWhite[i] := "white"
fi;

od;
for i from 2*pl + 1 to ramnk do
BlackWhite[i] := "black"

od;

BlackWhite := convert(BlackWhite, list);



234

BlackWhite , [];

end:

spp := proc(p)
local rank, BlackWhite, i, SatakeAssociates;
description ‘This gives the Satake diagram data for sp(21,R)‘;

#see Cap Slovak page 612 entry 8
rank := p/2;
BlackWhite := Array(1 .. rank);
for i from 1 to ramnk do
BlackWhite[i] := "white"
od;
BlackWhite := convert(BlackWhite, list);

BlackWhite, [];

end:
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