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ABSTRACT 

Exploring and Describing the Spatial and Temporal Dynamics of Medusahead in the 

Channeled Scablands of Eastern Washington Using Remote Sensing Techniques 

 
by 
 
 

Timothy M. Bateman, Master of Science 
 

Utah State University, 2017 
 
 

Major Professor: Dr. Juan Villalba 
Department: Wildland Resources 
 
 
 Medusahead is an unpalatable, aggressive annual that has been invading and 

degrading western rangelands. This characteristic has negative effects on plant diversity 

and ecosystem function, promoting the creation of homogeneous landscapes. The costs to 

wildland systems, agriculture, and the public are high and land managers face resource 

constraints that can limit successful management. Management plans need to be practical, 

cost-effective, and sustainable if they are to reach specific targets. Supplementing 

management plans with remote sensing approaches provide rapid and cost-effective 

information at the landscape level that is essential for reducing weed invasion. Fast and 

accurate regional level assessments can alleviate resource constraints by quantifying 

invasion and modeling dispersal dynamics, which can then allow for more effective and 

efficient management efforts. There is a knowledge gap in providing an avenue that gets 

influential information into the hands of land managers in a relatively quick, and cost-

effective manner. This Thesis was developed to explore the practicality of using remote 
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sensing techniques as a potential avenue to ascertain influential information on 

medusahead invasion within a region of eastern Washington challenged by the presence 

of this weed. I used a multi-scaled approach to develop accurate prediction models to 

generate spatial and temporal datasets of estimated medusahead cover for an area in the 

Channeled Scablands region of eastern Washington. These datasets were validated using 

field data points and a qualitative time line constructed from historical reports of the 

invasion of medusahead in the area. I was then able to produce/identify: 1) a non-

phenological method to predict medusahead cover, 2) temporal dynamics and historical 

trends, 3) “high risk’ dispersal pathways, 4) climatic variables that influence changes in 

the time line dataset of medusahead cover, and 5) a strategy map that can be put in the 

hands of land managers to help direct management approaches to control the spread of 

medusahead. Research conducted in this Thesis shows the potential benefit of remote 

sensing techniques to detect trends of weed invasions on rangelands.  

(146 pages) 
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PUBLIC ABSTRACT 

Exploring and Describing the Spatial and Temporal Dynamics of Medusahead in the 

Channeled Scablands of Eastern Washington Using Remote Sensing Techniques 

Timothy M. Bateman 

 
 Medusahead is a harmful weed that is invading public lands in the West. The 

invasion is a serious concern to the public because it can reduce forage for livestock and 

wildlife, increase fire frequency, alter important ecosystem cycles (like water), reduce 

recreational activities, and produce landscapes that are aesthetically unpleasing. Invasions 

can drive up costs that generally require taxpayer’s dollars. Medusahead seedlings 

typically spread to new areas by attaching itself to passing objects (e.g. vehicles, animals, 

clothing) where it can quickly begin to affect plants communities. To be effective, 

management plans need to be sustainable, informed, and considerate to invasion levels 

across large landscapes. Ecological remote sensing analysis is a method that uses 

airborne imagery, taken from drones, aircrafts, or satellites, to gather information about 

ecological systems. This Thesis strived to use remote sensing techniques to identify 

medusahead in the landscape and its changes through time. This was done for an 

extensive area of rangelands in the Channel Scabland region of eastern Washington. This 

Thesis provided results that would benefit land managers that include: 1) a dispersal map 

of medusahead, 2) a time line of medusahead cover through time, 3) “high risk’ dispersal 

areas, 4) climatic factors showing an influence on the time line of medusahead, 5) a 

strategy map that can be utilized by land managers to direct management needs. This 

Thesis shows how remote sensing applications can be used to detect medusahead in the 
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landscape and understand its invasiveness through time. This information can help create 

sustainable and effective management plans so land managers can continue to protect and 

improve western public lands threatened by the invasion of medusahead. 
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CHAPTER 1 

INTRODUCTION 

 The Channel Scabland region in eastern Washington has seen many landscape 

altering events in its past. Changing climate regimes, catastrophic floods, and the large-

scale conversions of areas for agriculture have helped shape the topography and 

vegetation communities that they are today. Overgrazing in late 1800s and early-mid 

1900s weakened the rangeland plant communities which has allowed exotic annuals to 

invade. The area has seen large expansions of invasive annuals, like cheatgrass (Bromus 

tectorum) and medusahead (Taeniatherum caput-medusae). Believed to be due to a high 

silica content, livestock tend to avoid medusahead and instead focus grazing efforts 

elsewhere (Swenson et al., 1964), this in turn selects for large homogeneous landscapes 

of an annual plant of very poor nutritional quality with the concomitant negative impacts 

on plant diversity. A high abundance of a specific plant species can produce increased 

pressures on other members of the plant community, creating a vicious cycle that breeds 

monotony (Villalba et al., 2015). Additionally, the high abundance of a species like 

medusahead, can cause increased consumption of other harmful plant species that 

otherwise might have been avoided. This can cause severe consequences for livestock 

herds that regularly encounter toxic species, such as lupine (Lupinus 

leucophyllus Douglas ex Lindl. ssp. Leucophyllus). Unlike medusahead, cheatgrass is 

palatable during certain times of the year and has become an integral part of forage 

communities in western rangelands (Young et al., 1987). Medusahead shows competitive 

advantages over cheatgrass and has led to its replacement over extensive areas in 



2 
Washington. This can add additional pressures to already limited rangelands where 

carrying capacities for livestock have been reduced by 40-50% (Young & Evans, 1970). 

Medusahead has also demonstrated advantages in large and infrequent precipitation 

regimes. Due to this, the belief is that medusahead will be able to continue to expand its 

range as other species may be more susceptible to the effects of drought (Bansal et al., 

2014). Medusahead’s ability to displace other vegetation types across a landscape can 

cause detrimental effects to ecosystem functions that are difficult to reverse. Reductions 

to plant diversity can lead to changes in the water, nutrient, and fire cycles and can 

negatively affect the ecosystem services they provide (Costanza et al., 1997; Sheley et al., 

2008).  

 There is an unmet need in research to create ecological models based on dispersal 

characteristics, which can aid in improving and developing substantial efforts in 

controlling and preventing the spread of invasive species like medusahead (Davies & 

Sheley, 2007). Impacts of rangeland weeds can be financially burdensome causing an 

estimated $2 billion in losses annually (DiTomaso, 2000). Invasions by medusahead can 

produce financial hardships for ranching operations that may be forced to cut livestock 

numbers and see substantial increases in management costs (i.e. herbicides, supplemental 

hay). Costs associated with invasive species often parallel the degree of invasions 

(Brooks et al., 2004) and can impede management. Large extents of land and limited 

resources often challenge western land managers. Efforts need to be taken to identify and 

develop sustainable management practices and programs so management can continue to 

occur. Prevention has shown to be a more cost-efficient approach compared to reactive 

and rehabilitation efforts that typically follow invasions (Davies & Sheley, 2007). 



3 
Prevention programs aimed at characterizing dispersal behavior need to be developed that 

allow for early detection and rapid intervention of invaded sites. Computer-based tools, 

such as remote sensing, can complement and facilitate the development of these types of 

programs. Remote sensing offers a relatively quick and cheap method to provide 

assessments of entire landscape systems that would otherwise be difficult, and greatly 

delayed, using other methods. Remotely sensed imagery has been used to create large 

scale distribution maps of invasive weeds (Bradley & Mustard, 2005) that can be used by 

managers to shape management strategies across landscapes. This type of information 

can save management costs by allowing rapid response to invasion sites, better 

characterize dispersals traits, and direct management to areas where it would be most 

effective.  

 There is a knowledge gap regarding the development of methods for acquiring 

quick, regional scale information that can allow managers to make informed decisions on 

the management of medusahead. The present Thesis represents an effort in the direction 

of bridging such gap: Chapter 2 provides a review of literature related to utilizing remote 

sensing techniques to explore and describe the spatial and temporal distributions of 

medusahead in the Channel Scabland region of eastern Washington. Chapter 3 describes 

the methods used to create a dataset of fractional estimates of medusahead across an 

extensive area in the Channel Scabland region. This multi-scaled approach integrates 

ground data and remotely sensed imagery from two platforms to develop a prediction 

model that estimates distributions of medusahead in the region. Chapter 4 reports on the 

methods used to create a time line of medusahead distributions in the region. By applying 

a prediction model to annual Landsat images, a dataset was created that contained 
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estimates of medusahead distributions from 1985-2016. Trend analysis was used to 

determine trends and magnitudes of changes across space and time. Chapter 5 describes 

methods used to explore spatial and temporal datasets of fractional estimates of 

medusahead cover in the region. This chapter shows the practicability of using regional 

scale datasets to identify dispersal pathways (spatial) and potential climatic drivers 

(temporal) of medusahead in the Channel Scabland region of eastern Washington.  
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CHAPTER 2 

LITERATURE REVIEW 

THE CHANNELED SCABLAND REGION OF EASTERN WASHINGTON 

 The Channeled Scabland region has had many land-altering events in its long 

history. Today, the Channeled Scablands consist of a large network of channels and 

depressions that have been scoured from basalt bedrock. These occur in eastern 

Washington and are part of the Columbia River Plateau and Columbia River Basin region 

in northwestern United States. The Columbia River Plateau is an extensive area that 

covers southeastern Washington, northern Oregon, and parts of western Idaho. The area 

is confined by the Blue Mountains to the south, the Palouse hills and Rocky Mountains to 

the east, the Okanogan Highlands to the north and is drained by the Columbia River to 

the southwest. The name was derived from the large plateau of Columbia River Basalts 

which were formed during the late Miocene and early Pliocene. The basalts are 

associated with volcanic and geological activity occurring during this period and are 

believed to be related with the early stages of the Yellowstone hot-spot plume, 14-16 

million years ago (Pierce & Morgan, 1992). During this period lava poured into this area 

from cracks and fissures, eventually creating a giant saucer-shaped lava field which tilts 

to the southwest. Windblown silt deposits began to accumulate on top of the flows and a 

warm-temperate, summer-wet climate with large conifer and deciduous forests occurred 

from 18 Ma until roughly 8-4.5 Ma (Leopold & Denton, 1987). During the Miocene, the 

Cascade Range rose to an elevation that ultimately blocked the existing Pacific weather 

patterns and formed a rain shadow over the area. This transformed the climate to be 
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summer-dry and eventually altered the vegetation communities from forest to grassland 

species by the mid-Pliocene (7-8 Ma) (Leopold & Denton, 1987; Blinnikov et al., 2002). 

By the late-Pleistocene (126,000-5,000 years ago) vegetation consisted of Artemisia 

shrubs and dry adapted grass species (e.g., Poa, Stipa, Festuca spp.).   

 The term “scabland” is used in the Pacific Northwest to describe an area where 

erosive processes have prevented or removed the accumulation of soil and the underlain 

rock is exposed or covered largely with its own coarse debris (Bretz, 1923). The 

channeled scablands were carved out of the Columbia River Basalts from cataclysmic 

floods that occurred during the last Ice-Age. During this period, ice sheets from Canada 

advanced into the mountainous regions of northern Idaho and Montana. Between 14,000 

and 19,000 years ago, the Cordilleran ice sheet formed ice dams on the Clark Fork River 

which formed the glacial waters of Lake Missoula. Climatic oscillations caused the ice 

dams to fail, allowing for tumultuous floods speeding westward through the mountain 

valleys. This occurred at least six-seven times, each break caused glacial water and 

sediment to be shot-gunned on-to the Columbia River Plateau at speeds reaching 10 x 106  

m3 /s, eventually reaching the Pacific Ocean through the Columbia River drainage 

(Benito & O’Connor, 2003). These floods are what helped formed the Channeled 

Scablands region seen today. The rushing flood waters carved large channels in the pre-

flood drainages and fissures left in the in the basalt flows. Nearly 2,000 square miles of 

the basaltic bedrock lost its loessal (recently deposited silty or loamy material) soils from 

the floods (Bretz, 1969). The deposited lake sediment would continue to be washed 

down-stream by re-occurring floods until eventually, more profound spillways were 

formed that began to channel the flood waters to the Columbia River drainage and 
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eventually to the Pacific Ocean. The remnant landscape is now characterized by exposed 

basalt beds, channels and unscathed loessal island hills of remaining windblown and 

sediment deposits (Bretz, 1923; Bretz, 1969). These pockets of extremely fertile and 

productive soils were later recognized by westward settlers for their high vegetation 

yields and were converted for agriculture practices, such as growing wheat.  

 Theory suggests that the original inhabitants came down from the western 

Canadian Rockies about 10,000 years ago, becoming the ancestors of the Nez Perce 

(Josephy, 1997). The dry climate and limited amount of food sources on the plains, led to 

most populations centering around rivers. Large ungulate herds didn’t inhabit the area, as 

they did on the Great Plains (Franklin & Dyrness, 1973) and productive hunts on open 

plains were difficult and scarce. The Nez Perce didn’t practice agriculture and relied 

mostly on fishing and gathering for sources of food.  Seasonally, the rivers would fill 

with salmon from the Pacific Ocean which could be dried and stored for winter months. 

Certain times of the year would bring plentiful roots, nuts, and berries, which were 

collected and preserved for winter as well. Horses were absent from the area until 1730, 

when they made their way north from Spanish settlements in New Mexico. Acquisition of 

the horse represents the first pressures of intense grazing on the shrub-steppe and 

grasslands in eastern Washington (Harris, 1991). 

 During the mid-1800s, European-Americans began traveling through the area as 

part of the Oregon Trail migration. The rich soils of the plains were recognized for their 

production potential and permanent settlements soon began in the region. The fertile 

lands were used to cultivate mostly high quantities of wheat and peas (Franklin & 

Dyrness, 1973) which eventually found their way downstream of the Columbia River to 
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the prosperous markets of Portland, Oregon. This allowed for a new, wheat-based 

economy to begin to take form in eastern Washington and populations increased in the 

region (Schillinger & Papendick, 2008). By the 1870s most of the best farming lands had 

been converted and settlements began to push into the dryer, untested areas of the 

scablands region. Here, any fertile soils that could be found were converted to 

agriculture. The economy boomed in the 1880s when intercontinental rail lines were 

completed and connected markets across the United States (Granatstein, 1992; 

Schillinger & Papendick, 2008). The railroads brought with it new farming technologies 

and migrant settlers who were eager to claim land of their own. People saw opportunities 

in the recent beef production of English cattle breeds, which had higher quality and 

production compared to the longhorn breeds of the southwest. These breeds helped 

increase the beef market and encouraged investments; rapidly increasing cattle numbers 

in the region (Harris, 1991). With the addition of significant bands of sheep arriving from 

California, areas that were not being utilized for agriculture were now supporting large 

herds of livestock. The effects of overstocked rangelands soon took a toll on the plant 

communities that had evolved in the absence of large grazing herds. By 1904, a USDA 

employee and a graduate at Washington Agricultural College in Pullman, WA, toured the 

area and recorded the rangelands to be severely overgrazed (Cotton, 1904; Harris, 1991). 

 Into the mid-1900s, the plow-horse was traded for the tractor and individuals 

became educated on conservation and better grazing practices. This helped alleviate some 

of the grazing pressures which led to improvements on some rangelands (Cholis, 1952; 

Harris, 1991). Following World War I, wheat demand had dropped and a surplus was 

built up. This, in combination with multiple years of drought, led to a crash of the 
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agriculture economy in eastern Washington. Following a common pattern in the 

Midwest, farming became unprofitable and led to over 1 million acres (+ 400,000 ha) of 

farmlands to be abandoned in Washington (McArdle, 1936). The combination of these 

highly disturbed, deserted croplands and the weakened rangeland plant communities 

probably aided in the explosive expansion of rangeland weeds that occurred in the region 

during the early to mid-1900s (Mack, 1981; McIver & Starr, 2001) which threaten farm 

and ranching operations today. 

 Today, management practices, farming techniques and innovative research 

continues to bring improvements to the area. To better mitigate the limited precipitation, 

wheat growers in the region typically employ a rotation of tilled summer fallow followed 

by winter crop (Higginbotham et al., 2013). Wheat and cattle are both in the top 10 

commodities for state. The total agriculture production in Washington reached $10.7 

billion in 2015 of which $3 billion is from livestock production (USDA-NASS, 2016). 

The region is almost entirely rancher and farmer owned. Private producers and land 

managers have continued to evolve, innovate, and expand their knowledge on ways to 

improve their lands. The continued expansion of successional invasive species presents a 

constant challenge to farming and ranching in the region. These species continued to 

persist and threaten the area by altering functional plant communities which put livestock 

and farming operations at risk. 

 
BIOCTIC & ABIOTIC FACTORS AND THE INTRODUCTION OF INVASIVE 
GRASSES 
 
 The dominant vegetation type in the Columbia Basin during the Miocene were 

deciduous hardwoods and mixed montane conifer-deciduous forests that showed 
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similarities to the forests of today’s eastern United States (Leopold & Denton, 1987). As 

the precipitation levels dropped and temperatures rose, in response to the developing rain 

shadow, the vegetation changed to shrub-steppe and Palouse grassland communities. 

Artemisia shrubs and Poa, Stipa and Festuca grasses were better adapted to the xeric 

climate and expanded through the region (Blinnikov et al., 2002). The morphology of 

these species evolved differently compared to the heavily grazed caespitose and 

rhizomatous grasses west of the Rocky Mountains. Large herds of Bison spp. and Cervus 

spp. couldn’t survive on the plains of eastern Washington. If small herds did exist they 

would have been restricted to limited areas that supplied continuous summer waters, like 

the major rivers (Mack, 1981; Leopold & Denton, 1987). 

 The climate has been compared to the Mediterrane has played a role with the 

expansion of some exotic weeds. The region is semi-arid and is dominated by dry 

westerly winds. Winters are cool to cold and moist while summers are warm and dry. 

Average annual precipitation, for most of the region, ranges from 150mm-300mm with 

precipitation reaching 550mm in higher elevations to the east and southeast (Daubenmire, 

1970; Schillinger & Papendick, 2008). About two-thirds of the annual precipitation 

occurs from October to March with about one-third of that typically being characterized 

as snow. A third of the precipitation occurs during April-June with July through 

September being the driest months (Schillinger & Papendick, 2008). 

 Land use changes over the past century have resulted in the loss of over half of 

Washington’s shrub-steppe habitat (Dobler et al., 1996). Almost complete conversion to 

commercial agriculture during the 19th and 20th century has caused the Palouse prairie to 

be considered as one of the most endangered ecosystems in North America. As much as 
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99.9 % of the prairie has been lost, with the remaining being threatened by off-road 

vehicle use, further development, and invasive species (Hanson et al., 2008). Recently, 

the remaining vegetation communities have been described to contain shrub spp. 

(Artemisia tridentata, Purshia tridentata, Artemisia rigida, Artemisia arbuscula, and 

Atriplex confertifolia), large perennial spp. (Pseudoroegneria spicata, Festuca 

idahoensis, Leymus cinereus, and Achnatherum thurberianum), and alien invaders 

(Bromus tectorum, Poa pratensis, and Taeniatherum caput-medusae). (Franklin & 

Dyrness, 1973).    

 For the last century, invasive annual grasses have threatened agricultural 

operations, rangelands, and the remaining prairies in the region. Many of the current alien 

grasses were introduced in the late 1800s and early 1900s as potential new sources of 

forage for livestock, to supplement the highly depleted rangelands (Mack, 1981). 

Cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae) have 

been two of the most prolific invaders concerning the area and likely entered the region 

from contaminated crop seed or livestock that was being imported to the western states in 

the late 1800s. One of the earliest records of cheatgrass in the scabland area came from 

the wheat-growing district of Ritzville, WA in 1884 (Mack, 1986). The overused 

rangelands in the area offered highly disturbed sites and the reduced competition 

probably helped facilitate its expansion. In the early 1900s cheatgrass exploded through 

areas of the West, occupying many overgrazed rangelands. Due to its early spring 

palatability, cheatgrass was one of the exotic grasses welcomed by parts of the grazing 

community as an additional forage source on many of the rangelands. Today, millions of 

hectares in the West are influenced by the invasion of cheatgrass (Young & Allen, 1997).   
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 Medusahead was first reported as an “isolated plant” in eastern Washington in 

1901 at Steptoe Butte and the plant was later reported to have been “spreading rapidly” 

from 1914 to 1940 (McKell et al., 1962). By the 1960’s and 1970’s medusahead had 

increased widely and was distributed in semi-arid, steppe regions of southeastern 

Washington (Daubenmire, 1970; Franklin & Dryness, 1973). During this time 

medusahead began to replace cheatgrass in extensive areas of Washington, further 

reducing the carrying capacity of these lands (Hironaka, 1994). The invasion became 

widespread throughout the state and became a serious risk to rangelands, livestock 

production, and other agriculture practices. In 2016, the state of Washington listed 

medusahead as a Type C (highest ranking) noxious weed on the state’s Noxious Weed 

Control Board (WS, 2017). Medusahead has become the dominant vegetation type in 

large parts of eastern Washington. Extensive research been conducted into better control 

and rehabilitate methods that aid in preventing further spread through the region 

(Stonecipher et al., 2016; Stonecipher et al., 2017). 

 
MEDUSAHEAD: HISTORY, BIOLOGY, THE PROBLEM 

 Medusahead is a member of the Triticeae tribe which had likely originated in the 

Middle East. The tribe of grasses includes known grain crops, such as wheat (Triticum 

spp.) and barley (Hordeum spp.). Medusahead is native to the Mediterranean region and 

seedlings likely entered the western states of the United States through imported crop 

seed or with livestock. Genetic analysis has suggested, at least seven different 

introductions have occurred in the West with five occurring in the state of Washington 

alone (Novak & Sforza, 2008). Medusahead was first reported in the United States near 



14 
Roseburg, Oregon in 1887 (Howell, 1903). Although not as explosive as cheatgrass, the 

plant spread northwest to Washington (1901) and Idaho (1944), south to California 

(1908), and west to the Great Basin (early 1960s) during the early-mid 1900s (Young, 

1992). The plant has been successful in areas which are characterized with similar 

climates to its native region. Recent estimates have suggested medusahead has now 

invaded more than 950,000 ha (2.35 million ac) in 17 western states (Duncan et al., 2004; 

Rice, 2005). The plant has shown advantages over both cheatgrass and ventenata 

(Ventenata dubia) during large, infrequent precipitation events which are believed to 

support medusahead’s continued expanse on western rangelands into the future (Bansal et 

al., 2014).  

 Medusahead can extract moisture from extremely dry sites (Young et al., 1999) 

allowing it to be found on many different soil types, including loamy and the well-

drained sandy soils (Kyser, 2014). The plant can be found in the West at annual 

precipitation regimes from 250-1000mm (Major et al., 1960; Sheley et al., 2008). 

Medusahead is a challenge to land managers in part because it is principally self-

pollinating and can be a prolific seed producer (Young et al., 1968; Young, 1992; Kyser 

et al., 2014). Medusahead demonstrates phenotypic plasticity, that allows the plant to 

adapt and compete in many different climates and environments (Young et al., 1968; 

Young & Evans, 1970; Nafus & Davies, 2014). This helps the species by being able to 

germinate and produce growth in the fall, winter, and spring when conditions are 

facilitating. Medusahead has shown advantages in its root development over perennial 

and cheatgrass seedlings (bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) A. 

Löve); crested wheatgrass Agropyron cristatum (L.) Gaertn) during months of December 
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through June (Hironaka 1961). This gives a competitive advantage to medusahead by 

better allocating resources when they become available through much of its growth 

period. The largest growth occurs in the spring and maturation generally occurs by July, 

typically 2 to 4 weeks later than other annual grasses (Young & Evans, 1970; Young, 

1992; Nafus & Davies, 2014). Especially in dense stands, medusahead can be 

distinguished from other plants by color; light green in the spring and bright white/yellow 

in the summer and fall. The average plant produces multiple tillers and seedheads that 

help the species remain competitive at invaded sites. The number of seed (caryopses) 

containing heads per plant is density dependent, with reports stating a single plant per 

square foot can exceed the seed production of stands of 1000 plants per square foot 

(Young, 1992; Young et al., 1998; Clausnitzer et al., 1999). The seeds develop long 

barbed awns that help increase dispersal distances by adhering to passing objects 

(Monaco et al., 2005; Davies, 2008; Kyser et al., 2014). The awns also can aid in 

deterring grazing by causing injury to eyes, mouths, and noses of foraging animals 

(Young, 1992).  

 Medusahead is of major concern for western rangelands due to physical, 

chemical, and phenological properties that aid in the plant’s ability to change native-fire 

regimes and drastically reduce biodiversity and forage production on landscapes 

(Hironaka, 1961; Brooks et al., 2004; Davies & Svejcar, 2008). Medusahead ranks 

among the highest species of silica accumulating plants and is probably responsible for 

its resistance to decomposition and much of its unpalatability to animals (Swenson et al., 

1964). The slowed decompositions can allow for dense mats of thatch to accumulate 

which in turn creates an ideal habitat for new medusahead seedlings (Nafus & Davies, 
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2014).  These matted monocultures can quickly alter plant communities by displacing 

other plant species through competition and suppression of other more desirable species 

(Bovey et al., 1961; Young, 1992; Young & Mangold, 2008). The thatch layer and dry 

biomass provide unnatural fine fuels that can increase the fire interval of an ecosystem 

(Brooks et al., 2004). Increased fires can remove competition and clear and create 

additional space for reinvasions. The rapid growth and expansion of medusahead, into 

recently burned sites, can overwhelm, and suppress any re-emergence of less resilient 

species, like Artemisia spp. 

  Medusahead has replaced large extents of cheatgrass in Washington and other 

parts of the West (Hironaka 1961; Torell, 1961; Hironaka, 1994). Although cheatgrass is 

considered an invasive species, over the last century it has become an integral part of 

early year forage availability for wildlife and livestock on millions of hectares of grazed 

lands (Young et al., 1987; Young & Allen, 1997). The replacement of cheatgrass by 

medusahead removes an important source for rangeland production. This displacement of 

cheatgrass has reduced the carrying capacity of domestic livestock in some areas by 40-

50% (Young & Evans, 1970).  

 
MEDUSAHEAD: MANAGEMENT AND COSTS 

 Management of medusahead includes treatments, such as mechanical, chemical 

and burning (Kyser et al., 2014). Approaches should consist of multi-year treatments to 

reduce the viability of seedbanks to prevent regrowth. Generally, the most effective 

management approaches have come using a combination of treatments. Herbicides are 

thought to bind to thick thatch layers which can block the chemicals from reaching the 
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soil and reduce the effectiveness of the treatments (Kyser et al., 2007). Research has 

shown that the control of medusahead invasions can be improved by implementing a burn 

first, to remove thatch layers, followed by herbicide treatments (Monaco et al., 2005; 

Sheley et al., 2007). Due to the high probability in highly invaded areas, efforts should be 

made to rehabilitate treatment areas to prevent reinvasions. If possible, these areas should 

be revegetated with highly competitive species that can rapidly develop to repel dispersal 

and reestablishment of medusahead. 

 Behavior and diet manipulation of livestock has been shown to be a management 

tool which can allow for the targeting and utilization of plant communities to achieve pre-

determined objectives (Villalba et al., 2015). Although unpalatable, Stonecipher et al. 

(2016) was successful in using diet manipulation to increase consumption of annual 

grasses (including medusahead) by cattle. The authors reported that, although the effects 

may be influenced by animal type/size, diet manipulations with protein supplements can 

enhance the intake of annual species by cattle which may provide a useful tool in 

medusahead management.  

 The costs of introduced weeds to agriculture in the United States have been 

estimated to exceed $36 billion annually (Pimentel et al., 2000). The impacts on 

rangelands is estimated at $2 billion in losses (DiTomaso, 2000), with costs generally 

increasing with increased invasion levels (Brooks et al., 2004). Weeds continue to present 

challenges that can cause ecological and economical losses to land managers, farmers, 

and ranching operations by decreasing biodiversity, reducing crop yields, and increasing 

operational cost (DiTomaso, 2000; Duncan et al., 2004; Pimentel et al., 2005). Ranchers 

can see direct costs coming from reductions in the quantity and quality of livestock 
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forage, diminishing property values, added supplemental cost, and costs associated with 

weed control (i.e. herbicides). Additionally, livestock’s preference of a species may not 

depend on nutrition and secondary compounds alone, but can also be influenced by the 

quality and abundance of other species in a plant community (Villalba et al., 2015). This 

can lead to serious implications for areas like the Channeled Scablands region. This 

region has been challenged by cyclic episodes of a high abundance years of velvet lupine 

(Lupinus leucophyllus Douglas ex Lindl. ssp. Leucophyllus), which can cause crooked 

calf syndrome and devastate an operation’s financial income (Ralphs, et al., 2006; Ralphs 

et al., 2011). The high abundance of low quality medusahead may in turn influence and 

increase the palatability of the velvet lupine. This could potentially provide serious 

consequences if herds begin to seek out the toxic species as a better forage alternative. 

 Medusahead is becoming more noticed for its rapid coverage and detrimental 

characteristics to rangelands productivity and historic carrying capacities. In some cases, 

a dramatic reduction of 50-80% in grazing capacity can develop in just a few years 

(Hironaka, 1961). Increased fire frequencies would also drive up costs associated with 

fighting fires and the subsequent rehabilitation efforts (Torell et al., 1961; Duncan et al., 

2004). Reduced biodiversity due to medusahead can result in changes to the historic 

functioning of ecosystems that can be difficult to reverse. A decrease in plant diversity 

can lead to reductions in soil nutrients, change water and nutrient cycles, and decrease 

below ground carbon storage (Davie & Svejcar, 2008). These changes have consequences 

for wildlife habitat and cause damage to populations of special interest species, such as 

the greater sage grouse (Centrocercus urophasianus).  
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 The control and rehabilitation of medusahead invaded sites are both costly and 

time intensive and can often be unsuccessful if the original management practices and 

behaviors are not changed (Davies et al., 2010; Kyser et al., 2014; Nafus & Davies, 

2014). Higher costs are associated with heavier invasion levels and the probability of 

success of treatments begins to decline with the increasing invasion levels (Brooks et al., 

2004; Nafus & Davies, 2014). Because of the high costs associated with the control and 

rehabilitation efforts, prevention efforts are becoming recognized as more viable and 

cost-efficient options (DiTomaso 2000; Davies, 2008; Young & Mangold 2008). High 

cost cause management plans and objectives to become limited and unsustainable. It has 

been estimated that for every dollar management spends on preventive and control 

efforts, it saves $17 in later expenses (Davies & Sheley 2007).  

 Healthy and intact systems have been suggested to reduce the performance of 

medusahead and provide fitness support for native and more desirable species (Daehler, 

2003). Additionally, tall wheatgrass species may be able to impede seed dispersal and 

reduce establishment of medusahead seedlings (Davies & Sheley, 2007; Davies et al., 

2010). Management plans need to explore and utilize developing systems that repel 

invasions. This will help develop programs that are aimed at promoting proactive, rather 

than reactive weed management strategies. These programs in conjunction with strong 

educational campaigns should be developed and evaluated so that the remaining 

medusahead-free rangelands in the West can be conserved (DiTomaso, 2000; Davies, 

2008; Young & Mangold, 2008).  
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REMOTE SENSING APPLICATIONS AND INVASIVE WEEDS 

 There are a variety of different platforms and sensors that remotely collect 

spectral information of natural resource systems around the world. Imagery, provided by 

drones, aircrafts and satellites, can provide large amounts of information by measuring 

large areas outside of traditional sample plots, commonly assumed to be representative of 

the conditions present in heterogeneous landscapes (Hunt, et al., 2003). This large-scale 

information can be used by land managers to explore the spatial dynamics of entire 

landscape systems. Additionally, image collections repeated weekly, monthly, or 

annually can be analyzed as an avenue to detect changes and gain valuable information 

on past trends of forest and rangeland systems (Vogelmann, et al., 2012). Immediate 

information, from analyzing archived imagery, can lead to the discovery of troubled 

systems more quickly compared to traditional change detection methods which are 

typically limited by future measurements. This relatively rapid acquisition of data can 

allow managers to make timely changes to the conditions of their operations. 

 Remote sensing analysis can allow for huge advantages where research is 

financially and spatially limited. Homer et al., (2012) integrated field measurements and 

three remote sensing platforms to produce predictions of rangeland components (bare 

ground, herbaceous, litter, shrub). With an average Root Mean Square Error (RMSE) of 

8.02, the authors produced predictions at three spatial resolutions (2.4m, 30m, 54m) of 

each component across extensive areas of Wyoming in the United States. Sant et al., 

(2014) utilized millions of millimeter data points from ground-based color vertical 

photography (GBVP) to construct continuous measurements of rangeland components. 

At an average R2=0.86 the authors used Regression Tree analysis to integrate data points 
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from GBVPs and remotely sensed imagery (1m, 30m) to make spatial and temporal 

predictions. These types of applications can allow for the acquisition of information on 

every square meter of a landscape and provides access to areas that would be difficult to 

access from the ground.  

 Remote sensing applications have been used to explore and characterize both 

spatial and temporal distributions of invasive weeds. Bradley & Mustard, (2006) were 

able use an image subtraction method to create cheatgrass occurrence maps for 28,000 

km2 in northern Nevada. The authors used these datasets to predict invasion probabilities, 

identify “high risk” areas, estimate expansion rates, and identify anthropogenic features 

associated with high levels of cheatgrass (e.g., power lines, cultivation, roads, etc.). 

Rivera et al., (2011) used sampled cheatgrass and non-cheatgrass sites to identify and 

model environmental variables that were associated with cheatgrass invaded locations. 

This was used to identify current and future locations that were at a “high risk” of 

invasion from cheatgrass. This data could then be used in conjunction with habitat and 

distribution models to generate sensitive areas for threatened wildlife species. The type of 

information that can be achieved from applications like these could be handed over to 

land managers, so they can make informed decisions and direct management to protect 

areas challenged by the invasions of destructive species, so western rangelands can be 

safeguarded.  

 A key to successful management is a robust and sound understanding of a target 

species. Remote sensing applications can provide valuable information that can lead to 

improved invasion models that could benefit preventative efforts (Rocchini et al., 2015). 

Regional distribution maps can help provide risk assessments, educate the public and 
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government officials, gather support and funding, and prioritize management (Bradley & 

Marvin, 2011). Land managers are currently facing limited resources as they try to make 

management decisions on large extents of western public lands. If managers could 

become equipped with these types of maps, then large areas could be inventoried, 

monitored, and evaluated; leading to more informed decisions by land managers that 

account for entire ecosystems. Remote sensing provides an avenue for managers to 

become more effective and management to become more cost-efficient, so sustainable, 

educational, and prevention programs can be developed, allowing for additional lands to 

be rehabilitated and preserved. 

 
WHAT NEEDS TO BE DONE 

 Medusahead is a destructive and aggressive invasive species that will continue to 

degrade western lands unless effective control and prevention techniques can be 

identified and implemented. Individuals need to be concerned with the serious 

implications and consequences that come from the continued expansion of this species 

throughout the West. Management can quickly become limited by resources, allowing for 

invasions to reach detrimental levels that are difficult to reverse. Initiatives need to be 

taken to educate the public, government officials, and the ranching communities of the 

dangers of invasions and common vectors of medusahead so new invasion sites can be 

limited. Research into successful management strategies needs to continue so that land 

managers can develop sustainable and improved control and prevention methods. 

Because medusahead demonstrates phenotypic plasticity, management may require site 

specific research to achieve highest levels of success and efficiency. 
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 There is an unmet need to provide land managers with site specific ecological 

models that aid reducing costs while improving control and prevention efforts of 

medusahead management. Remote sensing techniques can provide a valuable and unique 

tool in the manager’s toolbox that can supplement and complement current medusahead 

management plans on western rangelands. Information that can be provided by remote 

sensing technologies can help with early detection of troubled systems and an ability to 

assess and direct management needs. This type of information can aid in developing more 

sustainable, effective, and efficient management programs so the protection and 

rehabilitation of western rangelands can continue. 
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CHAPTER 3 

A MULTI-SCALE APPROACH TO PREDICT THE FRACTIONAL COVER OF 

MEDUSAHEAD (Taeniatherum caput-medusae) IN THE CHANNELED  

SCABLANDS OF EASTERN WASHINGTON 

 
ABSTRACT 

 Medusahead is an aggressive, winter annual that is of dire concern for the health 

and sustainability of western rangelands. Medusahead reduces plant diversity, alters 

ecosystem function, and reduces carrying capacities for both livestock and wildlife. The 

Channeled Scablands of eastern Washington represent a typical example of a region 

being challenged by the expansion of this weed. The costs of the invasion are high and 

financial constraints can limit successful management. Managers need the ability to 

identify medusahead across entire landscape systems, so they can work towards effective 

and efficient management approaches. Remote sensing offers the ability to measure 

vegetation cover at large spatial scales, which can lead to a better understanding of the 

invasive characteristics of problematic species like medusahead. For instance, research 

has been successful in creating large-scale distribution maps of cheatgrass over western 

rangelands. Despite this advancement, many applications rely on the phenological 

characteristics of a target plant that can present problems for separating two species with 

similar phenologies (i.e. cheatgrass & medusahead). This study integrated GPS field 

points from three study sites (Sites S, C, & N) and imagery from two remote sensing 

platforms, to delineate, model, predict, and validate medusahead cover estimates over 

37,000+ hectares (91,000+ ac) of rangelands in the Channeled Scabland region of eastern 
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Washington. Using a multi-scaled approach, this research showed that regression tree 

models can identify complex spectral relationships of senesced medusahead cover using 

late summer Landsat scenes. The predictive performances resulted in a R2 of 0.80 near 

the training site (Site S) and a R2 of 0.68 away from the training site (Sites C & N). This 

research provides potential for a non-phenological approach to produce accurate large-

scale, distribution maps of medusahead. The performance results show the need to 

incorporate spatially rich training data when developing prediction models. This research 

reveals a non-phenological method that can put data rich information in the hands of land 

managers who can then make informed decisions to help improve western rangelands 

challenged by the invasion of medusahead.  

 
1. INTRODUCTION 

 Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an invasive winter 

annual grass that has invaded more than 973,000 ha (2.4 million ac) in 17 western states 

of the United States (Rice, 2005). Medusahead is of major concern for western 

rangelands due to physical, chemical, and phenological properties that enable the plant to 

alter fire regimes and drastically reduce forage production as well as plant diversity 

(Hironaka, 1961; Brooks et al., 2004; Davies & Svejcar, 2008). In addition to wind 

dispersal, long awns are adapted to adhere to passing livestock, wildlife and vehicles 

which can carry seeds great distances (Sharp et al., 1952; Monaco et al., 2005). Due to its 

rapid growth and the ability to form dense mats of thatch, medusahead can quickly alter 

plant communities by displacing other plant species through competition and suppression 

(Bovey et al., 1961; Young, 1992; Young & Mangold, 2008).  
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The impacts of invasive weeds have been recognized as a serious economic 

problem for rangelands in the United States (Duncan et al., 2004; Pimentel et al., 2005); 

with estimates of $2 billion in losses annually (DiTomaso, 2000). Alterations and 

degradation of rangelands from invasive weeds can directly impact livestock producers 

by lowering both quantity and quality of forage, decreasing property values, and 

increasing management and production costs (DiTomaso, 2000). Control, treatment, and, 

rehabilitation of medusahead invaded sites are both costly and time intensive and can 

often be unsuccessful if land use practices and behaviors are not changed (Davies, 2010; 

Kyser et al., 2014; Nafus & Davies 2014). Proactive, sustainable programs aimed at 

prevention and education need to be developed and evaluated to conserve the remaining 

medusahead-free rangelands in the West (DiTomaso 2000; Davies, 2008; Young & 

Mangold 2008). Such programs would prove to be advantageous to land managers and 

producers by prioritizing management efforts on invaded and pre-invaded land. 

Remote sensing technologies offer an economical and practical tool to model 

vegetation distribution and dispersal across large portions of rangeland that often isn’t 

achievable with traditional field-based methods (Xie et al., 2008; Rocchini et al., 2015). 

Like medusahead, Bromus tectorum (downy brome; cheatgrass) is another early growth, 

winter annual that has been invading several ecoregions in western rangelands (Hironaka, 

1961; Young et al., 1987). In recent years, remote sensing methodologies have shown 

success in estimating detecting and formulating invasion probabilities of cheatgrass over 

large portions of the western states in the United States (Bradley & Mustard, 2006; 

Clinton et al., 2010; Boyte et al., 2015). The methods generally utilized rely on the 

phenological traits of early greening/early senescence. These methods prove to be 
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problematic for researchers or land managers interested in delineating different annual 

species that share similar phenological characteristics i.e., cheatgrass and medusahead.  

New, large-scale methodologies that model, predict, and quantify invasive 

species, like medusahead, are lacking but are urgently needed (Peterson & Vieglais, 

2001; Davies & Sheley, 2007a). Success at accomplishing such a goal, using remote 

sensing, can prove to be difficult due to the variety of platforms offering different 

strengths and weaknesses. For example, High-resolution imagery (0.5-2.0 m) may be 

useful in species identification but often can be too financially constraining if a larger 

assortment of spectral bands is needed (Xie et al., 2008). Regression Trees (RTs) are rule 

based models that can be used to identify correlations between dependent and 

independent variables (Xian et al., 2013).  RTs have proven to be useful in ecological 

research for integrating strengths of various platforms to model and predict fractional 

estimates of rangeland components (Homer et al., 2012; Sant et al., 2014; Xian et al., 

2015). Fractional estimates provide continuous datasets that can allow for an ability to 

better detect gradual temporal and spatial distribution shifts while representing a more 

realistic and robust description of dispersal characteristics of specific components 

(Fernandes et al., 2004; Wegmann et al., 2016). An ability to analyze fractional estimates 

can aid in gaining timely information while management can still be influential. 

Additionally, continuous datasets can help prioritize management areas which can 

provide avenues for reducing costs while improving control and prevention strategies for 

medusahead spread.  

The objective of this study was to use remote sensing techniques to develop a 

method that delineates, models, and predicts fractional estimates of medusahead in the 
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Channeled Scabland area of eastern Washington. Using strengths of two imagery types, 

this study’s hypothesis was that medusahead patches could be classified during its 

senescent form, allowing for a multi-scaled approach to be used to identify and model the 

spectral characteristics of medusahead so fractional estimates can be predicted over a 

relatively large portion of rangeland.  

 
2. STUDY AREA 

The study was conducted within the Channeled Scabland region of eastern 

Washington and consisted of 37,178 hectares (91,868 ac) of rangelands southeast of 

Ritzville, WA (46°48.23’N, 118° 16.98’W; 434 m). The vegetation community was once 

categorized as steppe and shrub-steppe with climax communities being dominated by 

Artemisia tripartita, Agropyron spicatum and Festuca idahoensis (Daubenmire, 1970; 

Franklin & Dyrness, 1973) but it is now dominated by annual grasses, such as cheatgrass 

and medusahead; and weedy forbs fiddleneck (Amsinckia intermedia Fisch. & Mey), 

tansy mustard [Descurainia pinnata (Walt.) Britt.], rush skeletonweed (Chondrilla juncea 

L.), black mustard [Brassica nigra (L.) Koch in Roehl], and filaree [Erodium cicutarium 

(L.) L’Hér.] (Ralphs et al., 2011). Areas with wheatgrass species ([Pseudoroegneria 

spicata (Pursh) A. Löve], [Agropyron cristatum (L.) Gaertn], [Thinopryum ponticum 

(Podp.) Z.-W. Liu & R.-C. Wang]) and basin wildrye [Leymus cinereus (Scribner & 

Merrill) A. Löve] are present in the region but are scarce.  

The climate is semiarid with a 50-year average annual precipitation of 272 mm 

(NOAA, 2017). The elevation slopes from the north to south and ranges from 600m to 

323m. Large elevated areas, which are generally 45-75m above the surrounding 
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rangelands, tend to increase in frequency moving further south. The tops of these areas 

have deep, high-quality soils and are typically used for agricultural production, while the 

surrounding areas are generally used for grazing livestock and are scattered with 

agriculture and urban developments. 

Extensive grazing and repeated fires have led to many areas becoming dominated 

by annual species (Daubenmire, 1970; West & Young, 2000). Today, the competitive 

ability of medusahead has displaced many areas once dominated by cheatgrass which has 

led to medusahead becoming the dominant player in large portions of eastern Washington 

(Hironaka, 1994). Since the 2000s, herd sizes in the area have been reduced in some 

cases by 50% and producers have had to change historic practices to mitigate losses from 

the invasion. These changes include: adding additional farming operations, altering 

historic grazing practices, modifying calving strategies, and increasing supplemental 

forage (Information gathered by interactions with producers from the region). 

 
2.1. Site Descriptions 

The analysis was conducted at three sites spanning over a 33 km transect. This 

was done to take advantage of any variations in rangeland conditions and environmental 

factors while providing independent test sites for the prediction model. Site S was located 

about 26 km southeast of Ritzville, WA (47°03.16’N, 118°02.79’W, 553 m). The site 

consisted of approximately 3,209 ha (7,930 ac) of grazed rangelands with roughly 187 ha 

(462 ac) being a part of the United States Department of Agriculture (USDA) 

Conservation Reserve Program (CRP). The soil taxonomy falls into Benge gravelly silt 

loam and Loamy to Coarse-loamy, mixed, superactive, mesic typic and lithic haploxerolls 
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(Anders-Kuhl extremely rocky silt loams). Site C was located about 26 km south of Site 

S (46°50.29’N, 118°09.99’W, 469 m) and consisted of approximately 60 ha (148 ac) of 

grazed rangeland. The soil classification is the same as Site S (Benge gravelly silt loam). 

Site N was located 33 km south southwest of Site S (46°48.23’N, 118° 16.98’W, 434 m) 

and consisted of approximately 73 ha (181 ac). The soil taxonomic class is a coarse-

loamy over sandy or sandy skeletal, mixed, superactive, mesic calcidic haploxeroll 

(Stratford silt loam).  

Loessal mounds are scattered throughout the area (Daubenmire, 1970) and were 

present at all three sites. The mounds were heavily dominated by medusahead, and in 

some cases cheatgrass. The mounds were noticed in both circular and linear forms 

ranging from 1-80m2 and sometimes running 500m in length.  They were about a meter 

higher than the surrounding area and would be generally spaced 7-15m apart.  

 
3. MATERIALS AND METHODS 

A non-phenological method was developed that integrated: field collected data, 1-

meter National Imagery Program (NAIP) and 30-meter Landsat Operational Land Imager 

(OLI). This allowed for senescent medusahead to be identified using High-resolution 

imagery and then modeled using a larger assortment of spectral bands of the coarser 

imagery to produce fractional estimates of the plant for every 30 m2 pixel throughout the 

study area. Site S was used as the training site for the model because it showed the most 

variation in rangeland components and supplied a sufficiently larger dataset compared to 

the two other sites. Sites C and N were used to measure the model’s predictive 

performance away from the training area.  
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3.1. Field Sampling  

Field data was collected in the fall of 2015 when most of the rangeland vegetation 

was dormant or senesced. Land cover and vegetation types were categorized into six 

component classes: bare ground; tall perennials; medusahead; cheatgrass; upland (shrubs, 

herbaceous); and other (e.g., riparian vegetation or basalt outcrops). A data collection 

platform was developed to link a handheld GPS to a smartphone, so the user could record 

locations, photographs, and field observations (ESRI, 2017). The platform allowed the 

user to record continuous real-time locations in addition to discrete locations. Continuous 

data collection allowed the user to walk around outer extents of components, creating 

bounding polygons that were used to help identify component types on an image. The 

discrete locations were used to validate the post-classification outputs at each site.  All 

locations were recorded within 1.3 km of improved roads.  

Locations which were dominated by different rangeland components were geo-

located using a high precision GPS Trimble R1 GNSS receiver using the satellite-based 

augmentation system (SBAS), so that optimal performance would be achieved. Locations 

were identified by strategically walking through different portions of the sites, identifying 

uniform rangeland components greater than 1m2. This was done to assure a wide range of 

landscape forms and vegetation types were used to train and test the classification model 

(Peterson, 2005; Jiapaer et al., 2011). At each location, the user would: (1) verify the GPS 

receiver was receiving optimal precision (generally 55-80cm); (2) record the position at 

the center of the uniform patch; (3) document the dominant vegetation or land cover 

component; (4) attach a photograph of the patch and surrounding area; (5) document any 

beneficial observational standards or anomalies present. At some locations, instead of 
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recording a discrete point, the spatial extents of homogeneous components were outlined 

by recording continuous positions as the user walked around the patch. This provided a 

bounded polygon that was used to later help identify components on the NAIP image. All 

geo-reference data were projected into the UTM zone 11 NAD83 coordinate system. 

3.2. Supervised Classification 

 Supervised classifications were done independently for each site using a NAIP 

image that was acquisitioned on July 02, 2015. The image was comprised of four spectral 

bands consisting of red, blue, green, and near-infrared. The Digital Ortho Quarter Quads 

(DOQQs) were mosaiced, projected to the UTM zone 11 NAD83 and clipped to the study 

area. Agricultural developments, areas with urban structures, and large elevated areas and 

their associated drainages, were masked by digitizing excluding polygons on the NAIP 

image. 

One-meter NAIP pixels were classified into either a present or absent class of 

medusahead monoculture (binary response) using the Visual Learning Systems Feature 

Analyst Software TM 5.2.0.0 classification software (2015).  The continuously recorded 

field polygons along with knowledge gained of occurring spatial distributions from field 

sampling, aided in identifying, to the user, specific spectral and textural characteristics of 

medusahead and other components on the NAIP image. This essentially trained the user 

to the appearance of the binary classes on the NAIP image. The user scanned the NAIP 

image and identified sample areas for each of the binary classes to extract “training” pixel 

values for the classification software. The values of these areas were extracted by 

digitizing polygons around the extent of an identified class. A minimum of 20 digitized 

polygons, generally 5m2, were created for each of the two classes at each of the three 
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sites. The software automatically created a classification model from the extracted, 

“training”, pixels. The model correlated unique spectral and spatial signatures for each of 

the binary classes which was then used to extrapolate classifications to the remaining 

pixels of that site (Blundell & Opitz, 2006). This was done using the "Land Cover 

Feature" and "Manhattan Input Representation" options in the Feature Analyst Software 

(2015).  

 
3.3. Fractional Cover  

 Fractional cover (fCover) analysis was used to integrate the 1-meter post-

classifications and a 30m Landsat image independently at each site. A vector shapefile 

was created from the extents of Landsat pixels of each site. This formed 30m x 30m 

bounded boxes which were then used to calculate proportional data of the present 

medusahead binary class from the classification output. Proportions of medusahead were 

calculated for each Landsat pixel by dividing the number of 1-meter present class pixels 

by the total number of pixels that were available (n=900).  

𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑂𝑂𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝 =
# 𝑓𝑓𝑓𝑓 𝑚𝑚ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝

900
 

This created a continuous dataset of fCover values for medusahead at 30m resolution that 

would be then used to train and test the prediction model. 

 
3.4. Predicting Fractional Cover 

A prediction model was developed characterizing relationships between the 

fCover pixel values and their associated Landsat reflectance values. The Path43/Row27 

image, acquisitioned from the Landsat 8 satellite on August 05, 2015, was downloaded 
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from the United States Geological Survey, Earth Explorer website (USDI-USGS, 2016). 

The image was projected to the UTM zone 11 NAD83 coordinate system, clipped, 

rescaled to TOA percent reflectance (Landsat, 2016) and normalized for sun angle. There 

were 36 predictor variables used which were derived from the Landsat image and 

consisted of: six Landsat bands (band 2, Blue, 0.450-0.515µm; band 3, Red, 0.525-

0.600µm; band 4, NIR, 0.630-0.680µm; band 5, SWIR1, 0.845-0.885µm; band 6, SWIR2, 

1.560-1.660µm; band 7, 2.100-2.300µm), six tasseled-cap outputs (Baiga et al., 2014) 

and 23 different ratio indices and spectral combinations (See Table 3.1). All the ratio 

indices and spectral combinations were created using reflectance values from Landsat 

bands: 2, 3, 4, 5, 6, 7. 

Modeling was done using a sampled dataset consisting of fCover pixels that were 

randomly stratified into 11 bins from the overall population at Site S. The bin thresholds 

were 0, 1, 11, 21, 31, 41, 51, 61, 71, 81, 91 and 100 percent. From this dataset, a sub-

sample was subset for an independent test, using the same 11 bins. The remaining data 

was used to train the prediction model. Stratified sampling was chosen to assure all 

extreme values would be represented and to ensure the model was robust enough over the 

entire range of fCover values (0-100%) (Homer et al., 2013; Sant et al., 2014; Boyte et 

al., 2015). The training dataset, of fCover pixel values, was used as the dependent 

variable and their associated input variables as the independent variable. Four types of 

machine learning, RT algorithms (Classification and Regression Tree CART; Random 

Forest; Stochastic Gradient Boosting; Cubist), were evaluated for their predictive 

performance. RTs were used to “mine” the training data to discover complex 
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relationships between the dependent and independent variables. These relationships were 

modeled and used to generate predictions outside of the training dataset  

Modeling was done using R (R Development Core Team, 2016) and the rpart 

(Therneau et al., 2013), randomForest (Liaw & Wiener, 2002), gbm (Ridgeway, 2015), 

Cubist (Kuhn et al., 2016) and caret (Kuhn, 2017) R packages. Multiple trials were 

performed to identify the proportion of sampling data (Homer et al., 2013), the RT 

algorithm, and RT tuning parameters (Kuhn & Johnson, 2013) that optimized prediction 

performance. To save on computational time, initial trails were assessed using 5-fold 

cross-validations (CVs) while later trails were assessed with more computational 

intensive 10-fold (CVs). Independent tests, and visual inspection of outputs were later 

used to assess performances. Because negative or estimates greater than 100 percent 

cannot be possible, any post-prediction that produced a value below zero or above 100 

percent were converted to zero or 100 percent, respectively.  

 
3.5. Model Evaluations 

The supervised classifications and prediction estimates were evaluated using 

different approaches. Geo-located field points, visual comparisons of field photos and 

visual assessments were used to evaluate the classification outputs while prediction 

estimates were evaluated using a 10-fold CV, independent tests, and visual inspection of 

the final prediction map.  

 
3.5.1. Supervised Classification  

The accuracies of the 1-meter classification outputs were validated using the geo-

located points, which were collected following the field sampling protocol. This was done 
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by visually assessing whether each recorded discrete location was successful or 

unsuccessful in predicting the class of the underlying pixel. In addition, a location was 

reported to be successful if the underlying pixel was misclassified but an adjacent pixel 

was correctly classified. This was believed to be an acceptable action due to occurring 

issues of locations falling relatively close to the bounding extent of neighboring pixels, 

the inherent errors of the GPS receiver and the true alignment of the NAIP image. The 

overall accuracies as well as the user accuracies and the producer accuracies of the 

outputs were calculated and reported for each site using a confusion matrix. Final 

classifications were assessed visually by referencing field photos and knowledge of 

spatial distributions in the area. 

 
3.5.2. Regression Tree Predictions 

The metrics used to evaluate prediction performances were Root Mean Squared 

Error (RMSE) and the correlation determination (R2). The RMSE is a measurement of the 

variance between the predicted and observed values and it is reported in the same units as 

the modeled variable. The R2 is a number representing a measurement of the amount of 

total variation that can be explained by the model (0, no variation explained; 1, all 

variation explained). Both metrics have been used in ecological research using remote 

sensing, as a measurement of prediction performance (Boyte et al., 2015; Homer et al., 

2013; Xian et al., 2013). To assure repeatability the final model was assessed using a 10-

fold CV repeated 10 times. Independent tests at each site (n=3) were then used to 

evaluate the final model and were reported as a characterization of the prediction 

performance. The independent tests were evaluated by regressing the observed and 
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predicted values using the R environment (R Development Core Team, 2016). 

Identifying an appropriate accuracy threshold was done by assessing R2 values from past 

research predicting similar rangeland components (Peterson, 2005; Sant et al., 2014; Xian 

et al., 2015). The threshold of a R2 > 0.75, for the independent test at Site S, was used to 

characterize an acceptable predicting performance. 

 
4. RESULTS 

4.1. Supervised Classification 

 The results from the supervised classification accuracy assessments are reported 

in Table 3.2. Site S produced the highest overall accuracy of 97.0%, showed the highest 

producer’s accuracy of 96.0% and produced a user’s accuracy of 92.3%. The 

classification showed that 1,053 ha (2,602 ac) were dominated by medusahead. Site C 

produced an overall accuracy of 92.9%, a producer’s accuracy of 85.7% and the highest 

user’s accuracy of 100.0%. The classification of site C showed 28 ha (148 ac) which 

were dominated by medusahead. The Site N classification showed the least performance, 

showing the lowest overall accuracy of 88.9%, and the lowest producer’s accuracy of 

75.0% and user’s accuracy of 85.7%. Results from the classification showed 13 ha (33 

ac) were dominated by medusahead. 

 
4.2. Predicting Fractional Cover 

4.2.1. Site S 

Results from initial trials showed Random Forest, Cubist and Stochastic Gradient 

Boosting producing models of similar accuracies, all of which outperformed any of the 
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CART models (Fig. 3.1a). The final model was analyzed using 9,475 fCover pixels that 

were subset from 35,678 pixels that were available at Site S. From this dataset, 5% 

(n=475) were set aside for an independent test leaving 9,000 pixels to train the model. 

Using CVs, the final tuning parameters that produced the optimal performance were 400 

trees, a shrinkage value of 0.05, and an interaction depth of 11 (Fig. 3.1b). The 10-fold 

CV of the final model produced an average RMSE of 13.9 and R2 of 0.802 (n=9,000). 

The model was applied to all non-training pixels to produce fCover predictions for the 

entire site. This allowed for an independent validation which showed a RMSE 13.9 and a 

R2 of 0.801 at p < 0.01 (n=475) (Fig. 3.2). 

 
4.2.2. Sites C and N 

To measure the predictive performance away from the training site, the observed 

and predicted fCover values at Sites C and N were evaluated using linear regression. 

Every observed fCover pixel available was used to evaluate the model at both sites. The 

performances at these sites were lower than Site S. Results for Site C showed a RMSE of 

15.6 and a R2 of 0.625; p < 0.01 (n=1,003) (Fig. 3.2). Site N resulted in a RMSE of 14.3 

and a R2 of 0.727; p < 0.01 (n=739) (Fig. 3.2).  Based on these results, the two sites away 

of the training area averaged a RMSE of 14.95 and a R2 0.676. 

 
4.3. Visual Inspection of Outputs 

 This research was successful in integrating field collected data, high-resolution 

imagery and a coarser-resolution imagery for mapping medusahead distributions. Both 

the classification and prediction outputs provided good representations of what was 

observed in the field. Fractional cover analysis and RT modeling was successful at 
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translating High-resolution classifications to Course-resolution prediction estimates and 

then used to develop a model that could delineate medusahead from cheatgrass (Fig. 3.3; 

Fig. 3.4).  

The final model produced an output that characterized the 37,178 hectares (91,868 ac) 

within the study area into fCover values from 0-100% which allowed for a visual 

representation of highly impacted areas (Fig. 3.5).  

 
5. DISCUSSION 

5.1. Field Sampling 

The protocol used in the field sampling strived to incorporate variations in 

rangeland components. Efforts need to be made to geo-reference only areas of 

homogeneous components, to minimize model confusion, but also need to include as 

much variation of different rangeland components as possible. The continuously 

collected field polygons proved to be a useful way to identify how different components 

were visually represented on the NAIP image. 

 
5.2. Supervised Classification 

The 1-meter resolution offered a reasonable resolution for reliable identification 

of medusahead monocultures. It became apparent that densely-populated medusahead 

produced a particularly unique visual representation on the NAIP imagery throughout the 

study area. In its senesced form, medusahead tended to reflect a bright yellow/white 

signature that aided in its identification on the NAIP image. This signature along with a 
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unique matted texture were characteristics that led to the identification of areas of values 

to be extracted for the classification software. 

 One caveat of classifications is that it is unknown what gradient or threshold is the 

divergent point of the software classifying into either one class or the other. This can 

result in underpredictions for areas that do not meet the threshold to be classified as 

medusahead. For example, if the threshold of medusahead in the field was 50% for a 

pixel to be classified as present. Then a value of 49% would classify that pixel in the 

absent class and would cause an underprediction of medusahead.  

 Although accuracies for all sites fell within what is generally reported for 

classifications (60-90%) (Peterson, 2005), Site N showed a high Type II error by failing 

to detect medusahead at 25.0% of the locations. One hypothesis for this outcome is that 

the spectral characteristics were not as predominant in some of the recorded locations. 

During the field sampling stage at site N, it was observed that although medusahead was 

still a dominant vegetation type, most medusahead plants occurred shorter and in 

relatively sparser distributions compared to the other two sites. Jiapaer et al. (2011) found 

that sparsely distributed vegetation tends to exhibit weak spectral reflectance due to 

background interference. It would be fair to state that Site N would have had the highest 

probability, of the three sites, that the user recorded sparsely distributed patches as 

monocultures; this would have led to a weak signature of medusahead of that associated 

pixel and thus prevented the correct acquisition by the classification software.  
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5.3. Predicting Fractional Cover  

The multi-scaled approach in this study provides a method to incorporate High-

resolution classifications and Coarser-resolution spectral bands to be used to model and 

generate predictions of fractional estimates of medusahead. Translating the classification 

output to the Landsat image allowed for a greater number of spectral bands to be used to 

create predictor variables. The predictor variables for this study provided ample data to 

be “mined” by RT algorithms to successfully identify relationships with fCover values. 

Ultimately, the Stochastic Gradient Boosting algorithm was chosen over the other three 

RTs (CART, Random Forest, Cubist) to continue the modeling analysis with. This 

decision was influenced by characteristics of improved performance, robustness, and 

flexibility from the tuning parameters (Friedman, 2002; Elith et al., 2008; Kuhn & 

Johnson, 2013).  

A challenge of modeling rangeland components, such as medusahead, is to 

incorporate training data that is robust enough to make accurate predictions across the 

landscape (Homer et al., 2012). The initial models were developed using varying number 

of training pixels. The optimum number of pixels were evaluated by 1) prediction 

accuracies and 2) computational intensities. This study found that a training set of 

roughly 10,000 training pixels provided prediction models that best minimized errors. 

Having a large population of data allowed for the ability to incorporate additional training 

data along the continuous gradient (0-100%) that show weak prediction performance. 

This proved to be beneficial in increasing the predictive performance throughout the 

range of continuous values. Incorporating additional training data to “boost” the 

performance of a specific range of predictions would have an impact on the internal 10-
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fold CVs but it would not affect the results of the independent validations that were 

ultimately reported and used to validate the performance of the model.  

Site S has approximately 187 ha (462 ac) of CRP land. The CRP is a voluntary 

USDA program that makes rental payments to owners in exchange for removing sensitive 

areas from agricultural practices. These areas can be used to enhance wildlife habitat, 

protect drinking water, and prevent soil erosion. The CRP land was observed to be 

heavily dominated by tall perennial and wheatgrass species [Agropyron cristatum (L.) 

Gaertn], [Thinopryum ponticum (Podp.) Z.-W. Liu & R.-C. Wang]) [Leymus cinereus 

(Scribner & Merrill) A. Löve]. Medusahead was noticed to be almost none existent in 

most of this area (see Fig. 3.5). Although there is a change in soil type from Benge gravel 

silt loam to Benge silt loam, Walla Walla silt loam, and Beckley coarse sandy loam 

(USDA-Soil Survey Geographic Database (SSURGO)) for large portions of the CRP, the 

distinct change in medusahead cover, seen in Fig. 3.5, generally follows the CRP’s outer 

extent fence line. A potential reason for the medusahead not being dominant in this area 

was described in Davies & Sheley (2007b) and Sheley et al. (2008) in which the authors 

discuss that healthy perennial systems can resist and provide protection from invasion by 

medusahead. In addition, increased competition from perennial grasses reduces the 

spread of weedy and invasive species like medusahead (Blumenthal et al., 2003; Baker & 

Wilson, 2004; James, 2008).   

The model at Sites C and N performed slightly below the training site at Site S. 

Although all the sites had respectable accuracies, one potential solution to increase the 

performance at these sites would have been the incorporation of training data from each 

of the other two sites. This would potentially increase the robustness of the model and 
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result in better predictive performance at these sites. This was not done because this study 

was interested in evaluating the predictive performance away from the training site. 

During extrapolation, when the model encounters unfamiliar values, potential prediction 

errors could occur. This is believed to be what caused a potential overestimation of a 61 

ha (150 ac) treated plot in the study area. During the 3.1. Field Sampling protocol, the 

plot was observed to be heavily dominated by mustard (Brassicaceae) skeletons that 

formed a canopy over medusahead plants and recently established species ([Agropyron 

cristatum (L.) Gaertn]; [Bassia prostrata (L.) A.J. Scott]) which were drilled for 

revegetation. During the time of analysis, the plot was in the middle stage of a two-year 

USDA reclamation project, which was being treated due to the medusahead invasion (C. 

Stonecipher & K. Panter, personal communication, October 29, 2015). The plot was not 

within any of the three study sites, so no field data was collected within the plot. The 

potential error became apparent during a visual inspection of a prediction output. The plot 

“stands out” due to its anthropogenic shape and dissimilarity which is pointed out in Fig. 

3.5. Although this is believed to be a minor component on heterogenous rangelands, it is 

important to point out an error of the model in miss-predicting mustard skeletons where 

they are abundant. Areas of agriculture and urban developments would represent spectral 

values that would not have been input into the model via the training data and can cause 

false predictions. Efforts were made to remove these areas from analysis, but another 

potential source of error would be any area that should have been removed but was 

missed.  
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5.4. Other Considerations 

 This study was successful at modeling and predicting medusahead which was 

discriminated from cheatgrass. Fig. 3.4 shows an area next to an agricultural field that 

was observed to be densely dominated by cheatgrass (dark brown) with the road, pockets 

and surrounding areas being dominated by medusahead. The prediction output shows 

relatively low amounts of medusahead estimated in most of the area dominated by 

cheatgrass. For this delineation to be possible, it is imperative that the classifications 

make this distinction, so they can be used to train the model. Separation of these two 

species at the landscape level should prove to be valuable to land managers tasked with 

controlling and abating weed invasions and allocating necessary treatments. Although not 

tested, it is believed that other rangeland components, derived from the classifications, 

show promise in similar mapping methods. One component of interest would be 

cheatgrass.  

Prediction errors are inevitable but one way to limit the amount of error would be 

to limit the output of analysis to areas that have been or have a high probability of 

invasion from medusahead. One way to implement such approach would be to use the 

phenology-driven method in conjunction with the multi-scaled approach described in this 

research. This would potentially limit the predictions to areas dominated by annuals.  

This research showed an ability to quantify, model, and predict medusahead using 

dense populations as training data. It appears that sparsely distributed medusahead plants 

could be overshadowed by background spectral signatures. Thus, a limitation of this 

method would be detecting areas of single or loosely populated plants. Although it has 

some limitations, an ability to map dense populations should prove to be useful for land 
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managers interested in exploring and better understanding both the spatial and temporal 

dynamics of medusahead so novel or improve management plans can be produced. 

Continued research in exploring the spatial and temporal dynamics are ongoing and will 

be reported in ensuing chapters.   

 
6. CONCLUSION 

This research offers an advancement for predicting fractional estimates of 

invasive annual grasses across western rangelands. Using spectral characteristics, this 

study demonstrates an ability to delineate senesced medusahead monocultures from other 

rangeland components and accurately predict their distributions.  

Without successful management, education, and changes in behavior, 

medusahead will continue to invade United States western rangelands. The results from 

this study demonstrate the predictive ability of RT algorithms for rangeland components 

including medusahead. Large-scale mapping of medusahead may allow managers to gain 

a better understanding of the dispersal characteristics of the species that should aid in 

protecting and rehabilitating rangelands. This research should offer opportunities and 

progression in the development of novel or improved management approaches, leading to 

more adaptable and sustainable programs aimed at managing rangelands challenged by 

medusahead invasion.  
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TABLES AND FIGURES 

 
Table 3.1 
Ratio and combination indices that were used to make relationships and develop the 
prediction model. 

Name Equation Reference 

NDVI 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅

 
Rouse et 
al. (1973) 

DVI 𝑵𝑵𝑵𝑵𝑵𝑵 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅 
Tucker 
(1980) 

GNDVI 𝑮𝑮𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁

 
Gitelson et 
al. (1996) 

GDVI G𝑵𝑵𝑵𝑵𝑵𝑵 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁 

Sripada et 
al. (2006) 

Tucker 
(1979) 

RDVI 𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
√𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅

 
Rougean 
& Breon 
(1995) 

RVI 𝑹𝑹𝑵𝑵𝑵𝑵 =
𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑅𝑅𝑅𝑅

 
Huete and 
Jackson 
(1987) 

Norm G 𝑵𝑵𝑮𝑮 =
𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁

(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅)
 Sripada et 

al. (2006) 

Norm R 𝑵𝑵𝑹𝑹 =
𝑁𝑁𝑅𝑅𝑅𝑅

(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅)
 

Sripada et 
al. (2006) 

Norm 
NIR 𝑵𝑵𝑵𝑵𝑵𝑵𝑹𝑹 =

𝑁𝑁𝑁𝑁𝑁𝑁
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅)

 
Sripada et 
al. (2006) 

SLAVI 𝑺𝑺𝑺𝑺𝑺𝑺𝑵𝑵𝑵𝑵 =
𝑁𝑁𝑁𝑁𝑁𝑁

𝑁𝑁𝑅𝑅𝑅𝑅 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁7
 

Lymburner 
et al. 

(2000) 

GIPVI 𝑮𝑮𝑵𝑵𝑮𝑮𝑵𝑵𝑵𝑵 =
𝑁𝑁𝑁𝑁𝑁𝑁

𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁
 

Maseola er 
al. (2016) 

NDII5 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁5
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁5

 Wilson et 
al. (2016) 

NDII7 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁7
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁7

 
Wilson et 
al. (2016) 

NDSVI 𝑵𝑵𝑵𝑵𝑺𝑺𝑵𝑵𝑵𝑵 =
𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁5 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁5 + 𝑁𝑁𝑅𝑅𝑅𝑅

 Qi et al. 
(2002) 
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  NDTI 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 =
𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁5 − 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁7
𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁5 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁7

 

van 
Deventer 

et al. 
(1997) 

MSI 𝑴𝑴𝑺𝑺𝑵𝑵 =
𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁5
𝑁𝑁𝑅𝑅𝑅𝑅

 
Harris et 
al. (2005) 

MSAVI2 
𝑴𝑴𝑺𝑺𝑺𝑺𝑵𝑵𝑵𝑵𝟐𝟐

=
2𝑁𝑁𝑁𝑁𝑁𝑁 + 1 −�(2𝑁𝑁𝑁𝑁𝑁𝑁 + 1)1 − 8(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)

2
 

Qi et al. 
(1994) 

OSAVI 
𝑶𝑶𝑺𝑺𝑺𝑺𝑵𝑵𝑵𝑵 = { (𝑵𝑵𝑵𝑵𝑹𝑹𝑹𝑹𝑹𝑹𝑵𝑵)

(𝑵𝑵𝑵𝑵𝑹𝑹+𝑹𝑹𝑹𝑹𝑵𝑵+𝑺𝑺)} ∗ (1 + 𝐿𝐿) Where 

L=0.16 

Rondeaux 
et al. 

(1996) 

SAVI 𝑺𝑺𝑺𝑺𝑵𝑵𝑵𝑵 = (𝑵𝑵𝑵𝑵𝑹𝑹𝑹𝑹𝑹𝑹𝑵𝑵)∗(𝟏𝟏+𝑺𝑺)
(𝑵𝑵𝑵𝑵𝑹𝑹+𝑹𝑹𝑹𝑹𝑵𝑵+𝑺𝑺)    Where L=0.5 Huete 

(1988) 

NDSI 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 =
𝑁𝑁𝑅𝑅𝑅𝑅 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑅𝑅𝑅𝑅 + 𝑁𝑁𝑁𝑁𝑁𝑁

 
Allbed & 
Kumar 
(2013) 

SI 𝑺𝑺𝑵𝑵 = √𝐵𝐵𝐿𝐿𝐵𝐵𝑅𝑅 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅 
Allbed & 
Kumar 
(2013) 

RVI1 𝑹𝑹𝑵𝑵𝑵𝑵𝟏𝟏 =
𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁

 
ERDAS 

IMAGINE 
16.00 

VIS 𝑵𝑵𝑵𝑵𝑺𝑺 = 𝐵𝐵𝐿𝐿𝐵𝐵𝑅𝑅 + 𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅 - 
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Table 3.2  
Confusion Matrix for the classification outputs for each site of the three sites. 

 
  

       OBSERVED 

P
R
E
D
I
C
T
E
D 

SITE S    

CLASS 
Medusahea

d 

Non-
Medusahea

d Total Accuracy 
Medusahead 24 2 26 92.3% 

Non-
Medusahead 1 73 74 98.6% 

Total 25 75 100  
Accuracy 96.0% 97.3%  97.0% 

     
SITE C     

Medusahead 6 0 6 100.0% 
Non-

Medusahead 1 7 8 87.5% 
Total 7 7 14  

Accuracy 85.7% 100.0%  92.9% 
     

SITE N     
Medusahead 6 1 7 85.7% 

Non-
Medusahead 2 18 20 90.0% 

Total 8 19 27  
Accuracy 75.0% 94.7%  88.9% 
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Fig. 3.1. Performance of the regression tree algorithms and the performance of the 
Stochastic Gradient Boosting tuning parameter. 
 
 
 
 
 

 
Fig. 3.2. Results of the independent tests used to measure the predictive performance of 
the 2015 model near (Site S) and away (Sites N and C) from the training location. 
 
  

a b 
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Fig. 3.3. Images of the classification output (A), the created fCover (B), and the predicted 
fCover at Site S (C). 

 
Fig. 3.4. Collected field points, classification output, and prediction output. Shows the 
models ability to delineate cheatgrass (dark brown) from medusahead. 



68 

 
Fig. 3.5. Prediction output of fCover for the study area for 2015. Circled area represents 
possible over-prediction due to mustard skeletons. 
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CHAPTER 4 

TIME SERIES ANALYSIS OF MEDUSHEAD (Taeniatherum caput-medusae) 

DISTIBUTIONS IN THE CHANNELED SCABLANDS OF EASTERN 

WASHINGTON USING PREDICTIVE MODELING OF  

REMOTELY SENSED IMAGERY 

 
ABSTRACT 

 Measuring ecological changes and detecting trends through time can aid managers 

in making informed decisions about controlling invasive species in threatened 

landscapes. Traditional, ground-based methods that detect changes through time may 

present delayed results that miss important variables outside of a sample plot. Time series 

analysis, using remote sensing techniques and archived imagery, can produce significant 

landscape-level results in a relatively quick and cost-efficient manner. This study was 

conducted to explore the practicality of remote sensing time series analysis by 

ascertaining information on the historic temporal dynamics and trends of medusahead 

(Taeniatherum caput-medusae [L.] Nevski) cover within the Channeled Scablands region 

of eastern Washington. Using a multi-scaled approach, a 30+ year historic time line of 

medusahead cover was estimated by developing a Regression Tree model that made 

predictions based on unique spectral relationships of standardized Landsat scenes. The 

validity of the time line was supported from qualitative time line reports near the study 

area. The time line was analyzed to estimate a trend of mean cover and per-pixel trends 

with their associated magnitude of changes, from 1985 to 2016. Results showed a highly 

dynamic time line with fluctuations from “high” to “low medusahead cover” years with 
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peak “high” years increasing in magnitude with time. Although a significant trend of 

mean cover was not detected, the results of the per-pixel assessment characterized the 

landscape into areas of significant increasing/decreasing trends. This technique has the 

potential to help managers make quicker and regionally informed decisions aimed at 

improving the health of western rangelands challenged by medusahead invasion. 

 
1. INTRODUCTION 

 Knowledge of temporal changes in ecological systems is an important endeavor in 

ecological research (Magurran et al., 2010). Traditional, ground-based methods typically 

include initial measurement collections compared to additional sequential measurements 

of the same location for a specified amount of time (Olsen et al., 1999; Magurran et al., 

2010). These methods can have financial, spatial, and temporal limitations for researchers 

especially when measurements are needed at larger scale extents (Hunt et al., 2003; Kerr 

& Ostrovsky, 2003; Xian et al., 2015). Archived imagery and remote sensing techniques 

allows for rapid assessment of temporal changes that can provide immediate information 

of entire populations (Shuman & Ambrose, 2003; White et al., 2014; Yip et al., 2015). 

Providing more timely information to managers allow for quicker applications that can 

yield greater influences and benefits to rangeland systems. In the case of some 

measurement objectives, remote sensing can be a more efficient method or potentially 

provide the only means of measurements when compared to ground-based techniques 

(Kerr & Ostrovsky, 2003; Shuman & Ambrose, 2003 

 The Landsat satellite series offers more than 40 years of near-continuous, 

systematically collected imagery that make it valuable for time series and change 
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detection analysis (Chander et al., 2009). Publicly available, multi-temporal Landsat 

scenes have been used to detect and predict land cover changes in both forest and 

rangeland systems (Rivera et al., 2011; Vogelmann et al., 2012; Zhu & Woodcock, 

2014). The ability to examine past land cover changes can allow managers to be 

proactive while assessing future changes and identifing vital clues into troubled systems. 

Compared to the time limitations of traditional - future-based - change detection methods, 

assessment of past changes can provide immediate information to decision makers 

regarding the ecological health of a certain area in a natural or productive landscape. This 

in turn can provide valuable additional time so new polices and management actions can 

be implemented with the greatest influences and benefits to the ecosystems under study. 

Nevertheless, remote sensing-based time series analysis may not be as straightforward as 

many researchers may hope. Individual images may differ greatly due to changes in 

vegetation and land cover and may be influenced differently by atmospheric and sensor 

effects which tend to change with time (Yang & Lo, 2000; Chander et al., 2009). To 

maximize the benefit of change detection being related to actual on the ground changes, 

researchers need to take steps to account for unwanted variations and use standardization 

methods to account for phenological and land cover changes, atmospheric noise and 

sensor deterioration over time (Chávez, 1996; Homer et al., 2012; Carvalho et al., 2013). 

  Time series analysis of invasive species, using remote sensing methodologies, can 

lead to a better understanding of dispersal characteristics, and improve distribution 

models (Rocchini et al., 2015). Researchers have used, sometimes through interpolation, 

continuous time-series datasets to map and estimate the changing abundance of 

cheatgrass (Bromus tectorum) over large extents of the western United States (Clinton et 
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al., 2010; Boyte et al., 2015). Research like this, has the potential to play vital roles in the 

management of detrimental weedy species in arid rangelands by allowing managers to 

prioritize and direct management resources in more efficient and effective ways.   

 Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an aggressive annual 

that has become a pressing problem in western rangelands and areas of agriculture. 

Medusahead has invaded almost 1 million ha of rangeland in the western United States 

(Duncan et al., 2004; Rice, 2005). Medusahead is degrading rangelands through 

significant reductions in biodiversity and has reduced primary productivity by as much as 

90% (Hironaka, 1961; Davies & Svejcar, 2008). Like many annuals, medusahead is a 

prolific seed producer that displays phenological traits of early green-up in the spring and 

senescence early into the growing season (Young, 1992; Kyser et al., 2014; Nafus & 

Davies, 2014). Conducting temporal analysis of invasive species, like medusahead, at a 

landscape level could provide information that would aid in developing and improving 

preventative efforts that would prove to be more cost-effective than eradication and 

rehabilitation efforts of sites that are already invaded (DiTomaso, 2000; Davies, 2008). 

This information could be directly translated into effective and efficient methodologies 

that would assist land managers struggling with the invasion. 

 In Chapter 2 it was reported that Regression Tree (RT) algorithms, used to model 

spectral relationships, can accurately predict continuous cover estimates of medusahead 

across large portions of rangelands. The purpose of this Chapter is to explore the 

possibility of acquiring information about the temporal dynamics of medusahead in the 

Channeled Scabland region of eastern Washington. A hypothesis was developed that if 

Landsat scenes could be standardized for effects outside of on ground medusahead 
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distributional shifts, then spectral signatures of medusahead from a time series dataset 

would be similar enough for annual predictions to be made from a single year’s 

prediction model. Thus, the objectives for this study are to: 1) create and standardize a 

continuous time series of annual Landsat scenes (1985-2016); 2) develop a single scene 

prediction model; 3) reapply the model to individual scenes to create a time series dataset 

of annual predictions; and finally, 4) estimate trends and magnitude of changes for the 

study area.  

 
2. STUDY AREA  

 The study was conducted within the Channeled Scabland region of eastern 

Washington and consisted of 37,178 hectares (91,868 ac) of rangelands southeast of 

Ritzville, WA (46°48.23’N, 118° 16.98’W; 434 m). The vegetation community was once 

categorized as steppe and shrub-steppe with climax communities being dominated by 

Artemisia tripartita, Agropyron spicatum and Festuca idahoensis (Daubenmire, 1970; 

Franklin & Dyrness, 1973) but is now dominated by annual grasses, such as cheatgrass; 

medusahead; and weedy forbs fiddleneck (Amsinckia intermedia Fisch. & Mey), tansy 

mustard [Descurainia pinnata (Walt.) Britt.], rush skeletonweed (Chondrilla juncea L.), 

black mustard [Brassica nigra (L.) Koch in Roehl], and filaree [Erodium cicutarium (L.) 

L’Hér.]  (Ralphs et al., 2011b). Areas with wheatgrass species ([Pseudoroegneria spicata 

(Pursh) A. Löve], [Agropyron cristatum (L.) Gaertn], [Thinopryum ponticum (Podp.) Z.-

W. Liu & R.-C. Wang]) and basin wildrye [Leymus cinereus (Scribner & Merrill) A. 

Löve] were present but were scarce.  
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The climate is semiarid with a 50-year average annual precipitation of 272 mm 

(NOAA, 2017). The elevation slopes from the north to south and ranges from 600m to 

323m. Large elevated areas, which are generally 45-75m above the surrounding 

rangelands, tend to increase in frequency moving further south. The tops of these areas 

have deep, high-quality soils and are typically used for agricultural production, while the 

surrounding areas are generally used for grazing livestock and are scattered with 

agriculture and urban developments. 

 Extensive grazing and repeated fires have led to many areas becoming dominated 

by annual invasive species (Daubenmire, 1970; West & Young, 2000). Today, the 

competitive ability of medusahead has displaced many areas once dominated by 

cheatgrass which has led to medusahead becoming the dominant player in large portions 

of eastern Washington (Hironaka, 1994). Since the 2000s, herd sizes in the area have 

been reduced in some cases by 50% and producers have had to change practices to 

mitigate losses from the invasion of medusahead. These changes include: adding 

additional farming operations, altering historic grazing practices, modifying calving 

strategies, and increasing supplemental forage (Information gathered by interactions with 

producers from the region). 

 
2.1. Site Descriptions  

The model development process took place at three sites spanning over a 33 km 

transect. This was done to take advantage of any variations in rangeland conditions and 

environmental factors while providing independent test sites for the prediction model. 

Site S, located about 26 km southeast of Ritzville, WA (47°03.16’N, 118°02.79’W, 553 



75 
m), consisted of approximately 3,209 ha (7,930 ac) of grazed rangelands with roughly 

187 ha (462 ac) being used in the United States Department of Agriculture (USDA) 

Conservation Reserve Program (CRP). The CRP portion of the site was heavily 

dominated by tall perennial and wheatgrass species [Agropyron cristatum (L.) Gaertn], 

[Thinopryum ponticum (Podp.) Z.-W. Liu & R.-C. Wang]) [Leymus cinereus (Scribner & 

Merrill) A. Löve]. The soil taxonomy falls into the categories of Benge gravelly silt loam 

and Loamy to Coarse-loamy, mixed, superactive, mesic typic and lithic haploxerolls 

(Anders-Kuhl extremely rocky silt loams). Site C, located about 26 km south of Site S 

(46°50.29’N, 118°09.99’W, 469 m, consisted of approximately 60 ha (148 ac) of grazed 

rangeland. The soil classification is the same as Site S (Benge gravelly silt loam). Site N, 

located 33 km south southwest of Site S (46°48.23’N, 118° 16.98’W, 434 m), consisted 

of approximately 73 ha (181 ac). The soil taxonomic class is a coarse-loamy over sandy 

or sandy skeletal, mixed, superactive, mesic calcidic haploxeroll (Stratford silt loam).  

 
3. MATERIALS AND METHODS 

This research was interested in estimating a 30+ year time line of annual 

medusahead cover from which any trends and magnitude of changes in the area could be 

identified. This was done by developing a single scene validated prediction model and 

then reapplying the model to individual scenes of a standardized Landsat time series. The 

time series predictions were restricted to areas outside of agricultural areas, urban 

developments and steep elevation changes.  
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3.1. Model and Time Series Development  

 Annual Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) 

scenes were used to generate the time series from years 1985-2016. Scenes from 

Path43;44/Row27 were downloaded from the United States Geological Survey-Earth 

Explorer website (USDI-USGS, 2016). Each scene must have been acquisitioned within 

± 3 weeks of August 05 to be used in the time series. This limitation aided in minimizing 

phenological differences between individual images. The images were projected to the 

UTM zone 11 NAD83 coordinate system, clipped, rescaled to TOA percent reflectance 

(Chander et al., 2009; Landsat, 2016), normalized for sun angle, and normalized to a 

single reference scene, using Pseudo-invariant Features (PIF) (Schott et al., 1988). The 

reference scene was identified by assessing the dynamic range of digital numbers from 

scenes closest to the median of the time sequence (Yang & Lo, 2000). The reference 

scene was chosen by selecting the scene with the largest range of digital number values 

within ± 3 scenes from the median scene of the time sequence. This was done to help 

minimize false land cover changes between the subject and reference image while 

maintaining as much pixel information as possible (Yang & Lo, 2000). 

Once the Landsat scenes were normalized and standardized, a prediction model 

was developed using the 2015 image. This was done using the same methods, dependent 

dataset (fCover), and predictor variables (derived from TM bands 1,2,3,4,5,7 & OLI 

bands 2,3,4,5,6,7) outlined in Chapter 2. Identifying an appropriate accuracy threshold 

was done by assessing R2 values from past research predicting similar rangeland 

components (Peterson, 2005; Sant et al., 2014; Xian et al., 2015). The threshold of a R2 > 

0.75 for the independent test at Site S was used to characterize an acceptable prediction 
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performance. Once a model’s performance was deemed acceptable, it was applied to the 

predictor (independent) variables of each year. This created a dataset of annual fCover 

estimates for each year of the time series. 

 
3.2. Time Series Analysis of the Study Area 

 This study wanted to identify any potential trends in medusahead cover and, if 

present, the magnitude of change of medusahead cover in the time series. The mean 

fCover values of the study area were used for the time series analysis. Mean values were 

chosen because of the skewed distribution of values caused by the large amount of zero 

and near-zero predictions. It was found that median values would have failed to detect 

most annual estimates due to the high amount of zero medusahead cover estimates. 

 Interpolation was used to account for missing values due to Landsat years that 

were either unavailable or did not meet the above-mentioned stipulations. Cubic hermites 

(splines) were applied on a per pixel basis to create raster layers representing missing 

years. These layers were added to the time series to create a continuous dataset from 

years 1985-2016. Splines were selected because they have shown to be an adequate way 

to interpolate non-smoothed data (Fritsch & Carlson, 1980; Martinez & Gilabert, 2009) 

and have been used to estimate missing remote sensing data (Clinton et al., 2010). 

 The mean fCover values for the study area were assessed to identify potential 

trends and magnitude of change. The Mann-Kendall test was used to test the significance 

of any trend while the magnitude of change was characterized by a slope estimate found 

using ordinary least squares (OLS). The Mann-Kendall is a non-parametric test that has 

become popular in remote sensing, time series applications because it’s less sensitive to 
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outliers and it has relaxed assumptions compared to parametric tests (Martinez & 

Gilabert, 2009; Jong et al., 2011; Forkel et al., 2013). The test identifies monotonic trends 

that are statistically different from zero, under the assumptions of an identically 

distributed and non-serially correlated dataset (Mann, 1945; Kendall, 1975, Hamed, 

2008). To assure the assumptions were met, the data was tested for serial correlation by 

using an autocorrelation test (Venables & Ripley, 2002). 

 
3.3. Time Series Analysis Per Pixel  

 This study wanted to identify any location (pixel time series) showing an 

increasing/decreasing trend in medusahead cover and then estimate the rate of change. 

This was done by applying the Mann-Kendall test and OLS to annual fCover values for 

each pixel in the study area going through time. Serially-correlated data can be common 

in natural systems and can cause an increase chance of false detection of trends (Type I 

error) (Bayazit & Önöz, 2007). To account for this in the dataset, the Zhang pre-

whitening method was used which validates series by detrending any series suggesting a 

trend until correlation is minimal (Zhang et al., 2000). Although pre-whitening a dataset 

does present a risk of not detecting trends when trends due exists (Type II error), it has 

been suggested that pre-whitening short series (n ≤ 50) outweighs this potential cost and 

should be conducted (Yue & Wang, 2002; Bayazit & Önöz, 2004; Bayazit & Önöz, 

2007). The magnitude of change and direction (increasing/decreasing) of a trend was 

characterized by an estimation of slope from OLS. 
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3.4. Accuracy Assessment 

3.4.1. Prediction Model Assessment 

 The metrics used to evaluate prediction performances were Root Mean Squared 

Error (RMSE) and the correlation determination (R2). The RMSE is a measurement of the 

variance between the predicted and observed values and is reported in the same unit as 

the modeled variable. The R2 is a number representing a measurement of the amount of 

total variation that can be explained by the model (0, no variation explained; 1, all 

variation explained). Both metrics have been used in ecological remote sensing research 

as a measurement of prediction performance (Homer et al., 2013; Xian et al., 2013; Boyte 

et al., 2015). The model was evaluated using independent tests at the three sites following 

methods outlined in Chapter 2. The prediction metrics were found by regressing 

predicted and withheld fCover values using the R environment (R Development Core 

Team, 2016). For an accuracy assessment, 5% of the sample pixels from Site S were 

withheld and all the pixels available from Sites C & N were withheld for these tests. The 

test at Site S was used to assess the model’s performance near the training site while the 

tests at Sites C & N were used to evaluate the performance away from the training site 

(26km; 33km, respectively). 

 
3.4.2. Temporal Assessment 

 Assessing the accuracy of the predicted time series dataset was difficult because 

we did not have any collected data to reference prior to year 2015. To overcome this, we 

gathered qualitative reports and accounts from the area for the purpose of gaining an 

understanding of the time line of the medusahead invasion in the area. This research 



80 
reached out to federal and state agencies, conducted literature reviews, and developed a 

questionnaire requesting information from individuals who were familiar with the area 

through the targeted period. The questionnaire strived to identify 1) when the participant 

first noticed medusahead, 2) if there was a time medusahead was noticed to be increasing, 

and 3) when did medusahead become dominate in area. The questionnaire requested 

either a specific year or a period of years from the participant (1985-1990; late 90’s etc.).  

 
4. RESULTS 

4.1. Model and Time Series Development 

 After assessing the Landsat scenes for the area, 29 of the 32 years were available 

and met the stipulations mentioned in the Model and Time Series Development section. 

The missing values of years 1987,1993 and 2012 were estimated from per pixel 

interpolation. The August 5th, 2001 TM scene showed the highest dynamic range in 

digital numbers and was selected as the master scene for the PIF process.  

 The model development process utilized 9750 randomly stratified fCover pixels 

from Site S and all available pixels at Sites C & N (1,003, 739, respectively). The 

independent test resulted in a RMSE 13.5 and a R2 of 0.81 at Site S (n=489, p < 0.01), 

RMSE 17.0 and a R2 of 0.68 at Site C (n=1,003, p < 0.01), and RMSE 14.7 and a R2 of 

0.72 at Site N (n=739, p < 0.01) (Fig. 4.1). 

 
4.2. Time Series Analysis of the Study Area 

 Annual mean fCover values, for the study area, resulted in a dynamic time series 

with five major peaks that increased in magnitude with time (Fig. 4.2a). The Mann-
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Kendall test failed to detect a significant trend (α ≤ 0.05) with a p-value of 0.355. The 

estimated slope from OLS was 0.146 but is viewed as irrelevant due to the failed Mann-

Kendall test (Fig. 4.2b). 

 
4.3. Time Series Analysis Per-Pixel 

 The Mann-Kendall test, at a significance level of (α ≤ 0.05), estimated 4,612 ha 

(11,397 ac) that showed an increasing trend and 164 ha (405 ac) that showed a decreasing 

trend for years 1985-2016 (Fig. 4.3).  The slope estimates, from OLS, ranged from -1.74 

to 2.05%. 

 
4.4. Temporal Assessment 

 Results from the literature review reported medusahead was present in eastern 

Washington as early as year 1901 at Steptoe Butte, 54 km east of the study area (McKell 

et al., 1962). By the 1960’s and 1970’s authors had characterized medusahead as being 

“widely distributed” in semi-arid regions of southeastern Washington and entering steppe 

regions near the study area. Although, most of the emphasis was on other invasive 

species like cheatgrass (Bromus tectorum) and Kentucky bluegrass (Poa pratensis) 

(McKell et al., 1962; Daubenmire, 1970; Franklin & Dryness, 1973). Medusahead was 

listed as a Class B (distribution is limited to portions of Washington) noxious weed on 

Washington State’s Noxious Weed Control Board in years 1988 and 1989 (WS, 2017). 

Ralphs et al. (2006) conducted research in the area on velvet lupine (Lupinus 

leucophyllus) in years 2001, 2002, and 2003 in which the authors list a number annual 

species degrading the area but there is no specific reference of medusahead. Two similar 

studies were conducted in the same area from years 2002-2009 and 2007-2008 in which 
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the authors stated medusahead was co-dominating the area with cheatgrass (Ralphs et al., 

2011a; Ralphs et al., 2011b). From years 2011-2014 two studies aimed at mitigation and 

revegetation of medusahead invaded areas, were conducted within the study area, in 

which medusahead is stated to have been a major vegetation component to area 

(Stonecipher et al., 2016; Stonecipher et al., 2017). Finally, in 2016 Medusahead was 

listed as a Class C (distribution is widespread in Washington and of special interest to the 

agricultural industry) noxious weed on Washington States Noxious Weed Board (WS, 

2017). 

 Four individuals responded to the questionnaire and provided their accounts of the 

time line of the medusahead invasion in the area. The participants included, two livestock 

producers that lived within the study area and two Washington State weed specialists 

who were familiar with eastern Adams County, WA. The response from one of the weed 

specialist was removed due to the limited period that the individual had worked in the 

area. The responses from the questionnaire seemingly show a strong agreement among 

the three participants; medusahead was first noticed in the early-mid 1990’s and 

medusahead became dominant by the early-mid 2000’s (Table 4.1).  

 
5. DISCUSSION 

5.1. Model and Time Series Development 

 As discussed in Chapter 2, a challenge of modeling rangeland components is to 

incorporate training data that is robust enough to make accurate predictions across the 

landscape (Homer et al., 2012). The decrease in prediction performance away from the 

training area is believed to be due to variations of land cover signatures that were not 
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included as training data. Although it is beyond the scope of this research, efforts could 

be made to include training data from areas outside of Site S which could potentially 

increase the prediction performance at Sites C and N.  

 
5.2. Time Series Analysis of the Study Area 

Results from the time series analysis, of the study area, showed steep fluctuations 

of mean fCover estimates through the time. This included peak years that recurred from 

four to eight years which tended to increase in magnitude. The year predicting the largest 

mean fCover value (2015) does coincide with the 2015 NAIP & 2015 Landsat used to 

develop the prediction model. It is possible that developing the prediction model from 

these images may be an underlying cause of estimating the highest annual value seen in 

Fig. 4.2a. Although, the general behavior of the peaks increasing in magnitude through 

the time series can be viewed as support for this large peak.  

A potential explanation for the fluctuating behavior, seen in in Fig. 4.2a, might 

have to do with typical temporal dynamics of annual species. The fluctuations of mean 

fCover values would be consistent behavior of what would be expect of an annual species 

which begin from seed each year. As an annual, seedling performance and the 

competitive advantage of medusahead can be dependent on year-to-year resource 

availability and environmental conditions whereas the more resilient perennial plants can 

rely on stored resources and access to large volumes of soil (James et al., 2011; Leffler et 

al., 2011). Also, medusahead seeds can remain dormant for up to three years which can 

then germinate when conditions are more favorable leading to single year flushes of the 

plant (Young & Evans, 1970; Young et al., 1998; Nafus & Davies, 2014). Certain 
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conditions allowing for dominant and less dominant years of medusahead, may be 

influencing the temporal dynamics seen in the time series dataset. Some of these potential 

conditions are explored in the final chapter of this thesis. 

A second potential explanation for the varying behavior came upon re-visiting the 

study area, for an unrelated project, in fall of 2016 and summer of 2017. The increases 

and decreases in mean fCover may be explained by the spectral signatures, used by the 

prediction model, being “drowned out” by stronger background or foreground signatures. 

The large dense patches, noted in 2015, were less frequent with majority of the 

medusahead plants occurring in relatively sparser distributions compared to 2015. Jiapaer 

et al. (2011) discussed that low densities of target vegetation can produce weaker 

signatures that could be drowned out by background signatures, allowing for a species to 

go undetected. In addition to the lower density of medusahead, the vegetation community 

was different compared to 2015. While investigating the dramatic drop in fCover from 

2015 to 2106, large portions of the study area were found to produce high Infrared Red 

(IR) values on the August 2016 Landsat 8 image. The reason for this was explained by a 

large abundance of green Rush Skeleton weed (Chondrilla juncea L.) that grew above 

much of the medusahead in the area. Rush Skeleton weed can remain in a photosynthetic 

state well into the fall (Sheley et al., 1999; Whitson et al., 2012), which produced the 

high IR readings on the August image. This type of situation, like what was discussed in 

Jiapaer et al. (2011), probably produced foreground signatures that allowed medusahead 

to go undetected and probably produced underpredictions for the year 2016. The potential 

of this type of error occurring throughout the time series was acknowledged during the 

design of this study. This study’s attempt to minimize year to year phenological 
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differences was to use near August imagery, when majority of the vegetation had 

senesced or gone dormant. The use of even later imagery was assessed but was decided 

against due to the decrease in the number of cloud-free images. These types of situations 

(strong background and foreground signatures) may be contributing factors causing the 

sharp inclines and declines seen in Fig. 4.2a. Although steps were taken to delineate and 

describe actual temporal changes in medusahead cover, it is impossible to account for 

every anomaly.  

 The Mann Kendall test failed to detect any significant trend of mean fCover 

values from 1985-2016 Fig. 4.2b. From literature and reported accounts, it is known that 

medusahead has been increasing in the area for the last 100+ years. This would suggest 

that an increasing trend of medusahead should have been detected. A hypothesis of why 

there was a failure to detect a significant trend might be related to three factors: 1) Using 

a mean value for the entire study area may have “diluted” many of the year-to-year 

changes; 2) Situations that caused weak signatures may have caused lower or missed 

predictions; 3) The small sample size (n=32) does not allow for enough observations for 

the changes to be significant. 

 
5.3. Temporal Assessment 

 Although post hoc time series results can be difficult to validate, the steps taken to 

assemble past information has allowed for a reliable time line of the medusahead 

invasion in the area. This time line is characterized from the results of the qualitative 

assessment and suggest: 1) medusahead probably had been in the area earlier than the 

initial year of the time series (1985), 2) the plant seems to have spread enough through 
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the state of Washington to cause it to be listed as a noxious weed in 1988-1989, 3) 

individuals familiar with the study area only began to notice medusahead by the early-

mid 1990s, 4) medusahead continues to spread until it is a dominant or codominant 

species through the 2000’s, and 5) by early-mid 2010s medusahead in the area is 

widespread and of major concern for the agricultural industry. 

 Findings from the qualitative assessment seem to show some support for the 

results from the temporal assessment of the time series data. The first peak in Fig. 4.2a 

corresponds around the period when medusahead was initially listed as a noxious weed 

(1988-1989) as well as a period when individuals from the questionnaire began noticing 

medusahead in the area (early to mid-1990s) (Table 4.1). Although a more defendable 

correspondence might had been available had Landsat TM imagery been available prior 

to 1985. Additionally, there is a more noticeable increase in the magnitude of the peak at 

year 2003, compared to the two prior peaks at 1989 and 1996. The 2003 peak of mean 

fCover is consistent with literature (2000s) and the individual reports in Table 1 (early-

mid 2000s) being the period when medusahead become a dominant or codominant 

species. From personal accounts, the 2000s were a period when producers in the area had 

to reduce herd sizes and take on additional or alternative activities (grazing and calving 

changes, farming, additional supplemental feed) to help mitigate costs of forage 

reduction. (Information gathered by interactions with producers from the region). 

Although beforehand data collection or a larger sample size would have produced a more 

defendable validation, results obtained from the time series analysis seem to agree with 

the time line that was identified from the literature and personal accounts from the study 

area. 
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5.4. Time Series Analysis Per-Pixel 

 The decision to pre-whiten the time series data was felt to be necessary due to the 

small sample size of years in the time series. Applying the Mann-Kendall test on a per 

pixel basis, classified the study area into areas of increasing, decreasing, non-significant 

trends. The per-pixel analysis displayed areas throughout the study area that showed 

different variations of increasing fCover estimates from 1985-2016. It is interesting to 

note that nearly the entire CRP portion of Site S has shown no trend of medusahead (see 

Fig. 4.3). The CRP was described in Chapter 2 as an area that may be able to resist 

invasion due to the different vegetative component present. The estimates of increasing, 

decreasing, and without trends, throughout the study area, may provide critical 

information to land managers about dispersal characteristics of medusahead in the area.  

 
5.5. Other Considerations 

Sources of errors for this research will be like those discussed in Chapter 2. Areas 

of agriculture and urban developments that were outside of the masked areas would 

present a potential source of error. As discussed in Chapter 2, efforts were made, using 

high resolution imagery, to remove these areas, so potential errors would be minimized. 

Thus, any area that should have been removed but was not would be a potential source of 

error. Additionally, it was reported in Chapter 2 that high densities of mustard skeletons 

are believed to cause overpredictions. Where abundant, mustard skeletons would be 

another potential source of error in the analysis.  

A major assumption of this study, is that the land cover within the study area 

remained relatively unchanged of any major land altering events. There was no attempt to 
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mask out any agriculture or urbans developments for any year other than 2015. Thus, 

changes that occurred through the period of the time series (1985-2016) that caused any 

of the above-mentioned sources or errors to become present within the study area could 

potentially cause prediction errors. Major changes within the study area are believed to be 

minimal because most of the area analyzed was grazed rangeland that is not expected to 

experience any significant land cover alterations. 

 
6. CONCLUSION 

 Time series analysis is an important asset in a manager’s toolbox that can lead to 

a better understanding of the dynamics of rangeland components. This research was 

effective in utilizing archived, publicly available, imagery to achieve landscape scale 

information of year-to-year changes of medusahead in an area of the Channeled 

Scablands of eastern Washington. This research provided an estimation of a remotely 

sensed time line of the medusahead invasion which shows support from documented and 

personal accounts of the area. The temporal dataset allowed the characterization of the 

study area into areas that may provide vital clues that could improve management 

approaches that mitigate medusahead invasion. To acquire similar information/results 

would have been expensive and would have taken years with traditional ground-based 

approaches. This research seems to present an option for land managers that need a quick, 

cost-effective method for gaining information that can lead to better preventing, 

controlling, and rehabilitating western rangelands invaded by medusahead. 
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Table 4.1  
The results from the questionnaire that was sent to individuals familiar with the study 
area from 1985-2016. 
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Fig. 4.1. Results of the independent tests used to measure the predictive performance of 
the temporal model near (Site S) and away (Sites N and C) from the training location. 
 

 
Fig. 4.2. a) Time line of the annual mean fCover from 1985-2016. Red stars represent 
years that were interpolated due to missing data. b) Trend assessment from the Mann-
Kendall test. 
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Fig. 4.3. Per-pixel medusahead trends and magnitude of change from 1985-2016. 
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CHAPTER 5 

SPATIAL AND TEMPORAL ANALYSIS OF REMOTLEY SENSED RASTERS 

CONTAINING ESTIMATED MEDUSHEAD COVER IN THE CHANNELED  

SCABLANDS OF EASTERN WASHINGTON  

 
ABSTRACT 

 Computer-based tools such as Geographic Information System (GIS) and remote 

sensing have aided invasive weed management by creating landscape scale distribution 

maps that benefit land managers. These maps can supplement management plans by 

directing management, identifying dispersal pathways, and providing a better 

understanding of the invasiveness of certain target weedy species. Medusahead is an 

aggressive, invasive annual that has been harming rangeland plant communities and 

increasing costs of ranching operations. This study explored spatial and temporal datasets 

containing estimates of medusahead cover in the Channeled Scablands region of eastern 

Washington. The objectives of this study were to understand some of the drivers for the 

temporal and spatial patterns of medusahead cover emerging from these datasets by 

identifying “high-risk” dispersal sites and climatic influences medusahead changes 

through time. The practicality of remote sensing on weed control was explored by 

creating a map that categorized the landscape into management strategies areas. This 

research identified watering points, corrals, and anthropogenic structures to be “high-

risk” dispersal pathways that should receive high priority in controlling the additional 

spread of medusahead. Additionally, this study identified climate variables and periods of 

the year which could represent constraints for the expansion of the weed across the 
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landscape. Precipitation during January-March, June (t-0), as well as temperatures in May 

(t-2) represent key periods and events which affected medusahead cover on the temporal 

dataset of this research. This approach can aid land managers in making quick and 

informed decisions about grazing, mechanical and/or chemical applications for maximum 

efficiency in controlling invasive species like medusahead.  

 
1. INTRODUCTION 

 Medusahead (Taeniatherum caput-medusae [L.] Nevski) is a non-native winter 

annual that has been proliferating through rangelands in the western United States since 

the late 1800’s (Howell, 1903). Dispersal vectors such as vehicles, livestock, and wildlife 

have aided in the plant expanding its range by up to 12% annually (Rice, 2005; Davies et 

al., 2013). Recent estimates have suggested medusahead has invaded 950,000 ha (2.35 

million ac) in 17 western states, including nearly 49,000 ha (121,000 ac) in eastern 

Washington (Duncan et al., 2004; Rice, 2005). The invasion is a serious economic and 

ecological concern, resulting in severe consequences that are often difficult to reverse 

(Young & Mangold, 2008; Kyser et al., 2014). Competitive characteristics have allowed 

medusahead to: drastically reduce forage capacity by nearly 90% (Davies & Svejcar, 

2008), displace native plant communities, and alter the functionality of ecosystem by 

disrupting nutrient, water, and fire cycles (Young & Mangold, 2008; Kyser et al., 2014).  

 Germination of medusahead seedlings generally occurs in the fall but can also 

occur during the winter and spring months, which can lead to sequential flushes of new 

plant growth (Sharp et at., 1952; Young, 1992; Kyser et al., 2014). Following 

germination, growth will continue until medusahead reaches maturation in early summer, 
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typically two to four weeks later than other annual grasses (Hironaka, 1961; Young, 

1992). Medusahead can thrive under different precipitation and temperature regimes 

(Young et al., 1968; Dahl & Tisdale, 1975; Leffler et al., 2013) while other species 

remain dormant or have difficulties developing under the same conditions (Clausnitzer, et 

al., 1999; Leffler et al., 2011). This jump-start in development gives medusahead 

advantages to inhibit the growth of rival species through resource allocation (e.g., water, 

nitrogen etc.) (Hironaka, 1961; Nafus & Davies, 2014).  

 Medusahead phenology can differ greatly from different locations (Young et al., 

1970). High phenotypic plasticity has been suggested as a key factor that contributes to 

the success of invasive species, like medusahead (Richards et al., 2006; Leffler et al., 

2011). This allows adaptations to characteristics such as germination, 

growth/development, and seed production so the plant can remain competitive in a 

variety of different environments (Young et al., 1970; Leffler et al., 2011; Leffler et al., 

2013). This suggests that management approaches found to be successful in the 

prevention and control of medusahead may not be universal but instead site-specific. 

Instead, Nafus & Davies (2014) suggest that to be successful, management practices may 

need to be tailored to specific sites, with considerations to environmental conditions and 

the management objectives. This type of detailed site-specific assessment may allow for 

the detection of sensitive characteristics that could be utilized for improved preventative 

and rehabilitation management (Leger, 2013; Uselman et al., 2014).  

 Davies et al. (2013) reported that the invasion of medusahead is not random and 

thus GIS and remote sensing technologies may help land managers discover and/or build 

upon management approaches. Remote sensing can help enhance invasive species 
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management programs by improving the understandings of spatial and temporal 

dynamics (Bradley & Mustard, 2006; Bradley & Marvin, 2011; Boyte et al., 2015). This 

study seeks to derive information, from remotely sensed raster datasets, that would be 

valuable in improving the understanding and management of medusahead in an area of 

eastern Washington that has been challenged by the invasion of this weed. By analyzing 

fractional cover (fCover) estimates, the objective of this study was to explore the 

practicability of utilizing remotely sensed datasets by identifying high-risk dispersal sites, 

climatic influences and providing a product that can aid in directing management 

strategies. A hypothesis is that if remote sensing techniques can produce landscape 

estimates that are representative of medusahead cover and its changes through time, then 

influential information can be obtained about the spatial and temporal dynamics of 

medusahead in the area.   

 
2. STUDY AREA  

 The study was conducted within the Channeled Scabland region of eastern 

Washington and consisted of 37,178 hectares (91,868 ac) of rangelands southeast of 

Ritzville, WA (46°48.23’N, 118° 16.98’W; 434 m). The vegetation community was once 

categorized as steppe and shrub-steppe with climax communities being dominated by 

Artemisia tripartita, Agropyron spicatum and Festuca idahoensis (Daubenmire, 1970; 

Franklin & Dyrness, 1973) but is now dominated by annual grasses, such as cheatgrass; 

medusahead; and weedy forbs fiddleneck (Amsinckia intermedia Fisch. & Mey), tansy 

mustard [Descurainia pinnata (Walt.) Britt.], rush skeletonweed (Chondrilla juncea L.), 

black mustard [Brassica nigra (L.) Koch in Roehl], and filaree [Erodium cicutarium (L.) 
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L’Hér.] (Ralphs et al., 2011). Areas with wheatgrass species ([Pseudoroegneria spicata 

(Pursh) A. Löve], [Agropyron cristatum (L.) Gaertn], [Thinopryum ponticum (Podp.) Z.-

W. Liu & R.-C. Wang]) and basin wildrye [Leymus cinereus (Scribner & Merrill) A. 

Löve] were present but were scarce.  

The climate is semiarid with a 50-year average annual precipitation of 272 mm 

(NOAA, 2017). The elevation slopes from the north to south and ranges from 600m to 

323m. Large elevated areas, which are generally 45-75m above the surrounding 

rangelands, tend to increase in frequency moving further south. The tops of these areas 

have deep, high-quality soils and are typically used for agricultural production, while the 

surrounding areas are generally used for grazing livestock and are scattered with 

agriculture and urban developments. 

Extensive grazing and repeated fires have led to many areas becoming dominated 

by annual species (Daubenmire, 1970; West & Young, 2000). Today, the competitive 

ability of medusahead has displaced many areas once dominated by cheatgrass which has 

led to medusahead becoming the dominant player in large portions of eastern Washington 

(Hironaka, 1994). Since the 2000s, herd sizes in the area have been reduced in some 

cases by 50% and producers have had to change practices to mitigate losses from the 

invasion of medusahead. These changes include: adding additional farming operations, 

altering historic grazing practices, modifying calving strategies, and increasing 

supplemental forage (Information gathered by interactions with producers from the 

region). 
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2.1. Site Descriptions 

The model development process took place at three sites spanning over a 33 km 

transect. This was done to take advantage of any variations in rangeland conditions and 

environmental factors while providing independent test sites for the prediction model. 

Site S, located about 26 km southeast of Ritzville, WA (47°03.16’N, 118°02.79’W, 553 

m), consisted of approximately 3,209 ha (7,930 ac) of grazed rangelands, with roughly 

187 ha (462 ac) being used in the United States Department of Agriculture (USDA) 

Conservation Reserve Program (CRP). The CRP portion of the site was heavily 

dominated by tall perennial and wheatgrass species [Agropyron cristatum (L.) Gaertn], 

[Thinopryum ponticum (Podp.) Z.-W. Liu & R.-C. Wang]) [Leymus cinereus (Scribner & 

Merrill) A. Löve]. The soil taxonomy falls into the categories of Benge gravelly silt loam 

and Loamy to Coarse-loamy, mixed, superactive, mesic typic and lithic haploxerolls 

(Anders-Kuhl extremely rocky silt loams). Site C, located about 26 km south of Site S 

(46°50.29’N, 118°09.99’W, 469 m, consisted of approximately 60 ha (148 ac) of grazed 

rangeland. The soil classification is the same as Site S (Benge gravelly silt loam). Site N, 

located 33 km south southwest of Site S (46°48.23’N, 118° 16.98’W, 434 m), consisted 

of approximately 73 ha (181 ac). The soil taxonomic class is a coarse-loamy over sandy 

or sandy skeletal, mixed, superactive, mesic calcidic haploxeroll (Stratford silt loam).  

3. MATERIALS AND METHODS 

Validated fCover datasets, created from prediction models, were used to explore 

spatial and temporal dynamics of medusahead within the study area. Predictions for each 

dataset were restricted to areas outside of agricultural and urban developments and steep 

elevation changes.  Spatial analysis consisted of identifying potential high-risk dispersal 
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sites and characterizing the study area into management strategies which are based on 

invasion level. The temporal analysis consisted of identifying any potential climatic 

drivers of the annual mean estimates of the study site. The climate data was downloaded 

from the National Centers for Environmental Information (NCEI) National Oceanic and 

Atmospheric Administration (NOAA) website. The data was downloaded from two 

ground stations near the study area and averaged between the two (47°11.39’N, 

118°37.72’W; 46°99.83’N, 118°57.10’W) before analysis took place.  

 
3.1. Model Development and Prediction Datasets 

For this study, spatial and temporal analysis was conducted on 30m raster datasets 

that were created in Chapters 2 and 3, respectively. The datasets represent fractional 

cover (fCover) values which were estimated using prediction models that were created 

using the same methods, dependent dataset (fCover), and predictor variables outlined in 

Chapter 2. Using R (R Development Core Team, 2016), the prediction performance was 

validated by linear regression of non-training pixels and their associated fCover estimates 

at all three sites. Identifying an appropriate accuracy threshold was done by assessing R2 

values from research predicting similar rangeland components in western states of the 

U.S. (Peterson, 2005; Sant et al., 2014; Xian et al., 2015). The threshold of a R2 > 0.75 

from the independent test at Site S was used to characterize an acceptable predicting 

performance. Once a model’s performance was deemed acceptable, it was then applied to 

the predictor variables of each year to create the spatial (2015) and temporal (1985-2016) 

datasets.  
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3.2. Spatial Analysis 

  The spatial analysis portion of this research was done using the 2015 dataset 

created in Chapter 2. This study was interested in identifying potential high-risk dispersal 

sites and demonstrating the utility of the dataset by creating a strategy map that could aid 

in directing management actions. The map was based upon a management framework 

founded on invasion levels of medusahead and is described in Nafus & Davies (2014). It 

was expected that results from this spatial analysis could be used to show how a remotely 

sensed dataset may aid in creating more effective and cost-efficient management plans.  

 
3.2.1 Dispersal Sites 

 This study was interested in exploring the hypothesis that medusahead fCover 

estimates would be higher around areas related with high activity of dispersal vectors. 

One-meter 2015 National Agriculture Imagery Program (NAIP) imagery was used to 

identify four features that would be associated with high human or animal activity. 

Locations of watering points, corrals, gravel pits, and anthropogenic structures were 

identified by methodically scanning the NAIP image. An anthropogenic structure 

included any human built object and any associated objects (i.e. barns, houses, 

driveways, farm equipment). When identified, a marker was placed in the center of that 

feature. Upon the occurrence of additional feature types within the anthropogenic 

structure feature’s boundary (i.e. corrals, water points), the additional features were 

ignored, and one marker was placed in the center all associated objects. In addition to the 

four feature types, 200 markers were generated and randomly dispersed throughout the 

study area using ArcGIS software (ESRI, 2017). One hundred-meter buffers were created 
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around each marker to form a defined extent to measure differences in mean fCover 

values. In situations where a 30m pixel fell both within and outside of the study area and 

buffer extents, the software made the decision whether to include or remove that specific 

pixel from analysis. Mean values were calculated from fCover values within each buffer 

using ArcGIS software. These values were used to characterize the differences in fCover 

estimates in relation to each feature type.  

 
3.2.2. Management Strategy Map 

 The objective of this portion of the study was to show the practicability of the 

2015 spatial dataset by creating a map that would aid in directing and creating more cost-

efficient management plans in the area. A management framework, based on invasion 

level, was used to characterize the landscape into strategy areas. The framework included 

three management strategies (prevention, early detection, and rehabilitation) and 

suggested associated management actions. Each pixel of the study area was classified 

into three bins based on user defined thresholds. Each pixel was categorized into either 

prevention (0-5%), early detection (5-25%), or rehabilitation (25-100%) areas.  

  
3.3. Temporal Analysis of Climatic Variables 

The time series dataset, created in Chapter 3, was used to conduct the temporal 

analysis using the stats package of R (R Development Core Team, 2016). The dataset 

consisted of 32 mean fCover estimates for the study area corresponding to each year of 

the time series. Monthly precipitation (mm) and minimum, maximum, and average 

temperature (◦C) data were downloaded and used to create exploratory variables for each 

year of the time series (1985-2016). Each year consisted of 53 variable which were: (1) 
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averaged 12-month (July-June(mm)), (48) monthly (e.g. July (mm), July Maximum(◦C), 

July Minimum(◦C), July Average(◦C)), and (4) averaged quarterly periods (July-

September (mm); October-December (mm); etc.). Medusahead plants complete their life 

cycles in the early summer months (Kyser et al., 2014; Nafus & Davies, 2014). Following 

maturation, climate conditions would have no effect on the current year’s estimate of 

medusahead cover. These conditions would rather show potential influences on the 

following years populations. Because of this, this study defines a “medusahead year” 

beginning on July 1st and ending on June 30th. This means that climate conditions 

recorded in months July-December of 2014 and January-June of 2105 were analyzed as 

to have influence on the annual fCover estimate of the year 2015.  

Cross-correlation (Venables & Ripley, 2002) was used to measure the strength of 

relationships between the annual fCover estimates and the climate variables at both time 

(t), and lag times (t-1 and t-2). Randomness and the strength of each relationship was 

evaluated by assessing cross-correlograms and the correlation coefficient (r = -1, perfect 

anticorrelation; r = 0, no correlation; r = 1, perfect correlation). Before analysis, the 

fCover variable (dependent) was log-transformed and both the fCover (dependent) and 

climate variables (independent) were linearly detrended to meet the assumptions of the 

test (constant variance, non-linearity). (Silvertown et al., 1994; Weimerskirch et al., 

2003; Horvatic et al., 2011). Influential observations were evaluated using Cook’s 

distance assessment (Cook, 1977).  
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3.4. Accuracy Assessments of Prediction Models 

 As described in Chapter 2, accuracy for both the spatial (Chapter 2) and time 

series (Chapter 3) datasets were assessed by regressing withheld (observed) non-training 

fCover pixels against their associated predicted fCover pixels using the R environment (R 

Development Core Team, 2016) The metrics used to evaluate prediction performances 

were Root Mean Squared Error (RMSE) and the correlation determination (R2). The 

RMSE is a measurement of the variance between the predicted and observed values and 

is reported in the same unit as the modeled variable. The R2 is a number representing a 

measurement of the amount of total variation that can be explained by the model. Both 

metrics have been used in ecological remote sensing research as a measurement of 

prediction performance (Homer et al., 2013; Xian et al., 2013 Boyte et al., 2015). 

 
4. RESULTS 

4.1. Accuracy Assessments of Prediction Models 

 Because this research used datasets created in prior chapters, the results from the 

accuracy assessment of the spatial (Chapter 2) and temporal (Chapter 3) datasets are 

identical to what was reported in Chapters 2 and 3, respectively, but are still listed below. 

 
4.1.1. Spatial Dataset 

 From Chapter 2, there were 9,000 pixels, from Site S, utilized to train the 

prediction model. There were 475 pixels from Site S, 1,003 from Site C, and 739 from 

Site N used for accuracy assessment tests. This resulted in a RMSE 13.9 and a R2 of 
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0.801 at Site S, a RMSE of 15.6 and a R2 of 0.625 at Site C, and a RMSE of 14.3 and a 

R2 of 0.727 at Site N. All tests resulted in a p-value < 0.01. 

 
4.1.2. Temporal Dataset 

 From Chapter 3, there were 9,261 pixels, from Site S, utilized to train the 

prediction model. There were 489 pixels from Site S, 1,003 from Site C and 739 from 

Site N utilized for independent tests of the for the dataset This resulted in a RMSE 13.5 

and a R2 of 0.81 at Site, a RMSE 17.0 and a R2 of 0.68 at Site C, and a RMSE 14.7 and a 

R2 of 0.72 at Site N. All tests resulted in a p-value < 0.01. 

 
4.2. Spatial Analysis 

4.2.1. Dispersal Sites 

 In addition to the 200 randomly distributed markers, there were 122 locations, 

identified on the 2015 NAIP image, categorized into one of the four feature types 

(watering points, corrals, gravel pits, anthropogenic structure). The 122 locations 

consisted of: 7 corrals, 70 water points, 33 anthropogenic structures, and 12 gravel pits. 

The 100m buffer around each of the 122 locations was used to calculate the mean of 

estimated fCover values. The results are characterized using a boxplot shown in Fig. 5.1. 

The corral feature type resulted in the highest median value of mean fCover at 47.5 %. 

This was followed in succession by water points and anthropogenic structures of 37.5% 

and 32.4% median values, respectively. The gravel pit feature type showed the lowest 

median value of fCover at 12.9% while random points showed the second lowest median 

value of 14.3%.  
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4.2.2. Identification of Management Strategy Areas 

 The results from the management area classification resulted in a map that 

categorized the 2015 fCover dataset into areas that may benefit from preventive (< 5%), 

early detection (5-25%), and rehabilitation (> 25%) management strategies (Fig. 5.2). 

This resulted in 4,554 ha (11,254 ac) classified as preventive, 21,768 ha (53,790 ac) as 

early detection, and 10,855 ha (26,824 ac) as rehabilitation areas. 

 
4.3. Temporal Analysis of Climatic Variables 

 Relationships between annual fCover estimates and 53 climate variables at t-0, t-

1, and t-2 were analyzed in this study. From evaluating the cross-correlograms, six 

variables showed non-randomness and resulted in significant correlations, at the 5% level 

(Fig. 5.3). At t-0, precipitation (mm) in March (r = 0.39), June, (r = 0.38), and the 

quarterly period of January-March (r = 0.45) showed to have a moderate positive 

influence on the temporal dynamics of the dataset. At t-2, maximum (r = 0.38), average 

(r = 0.42), and minimum (r = 0.41) temperatures (◦C) in the month of May also showed 

moderate positive influences on the dataset (Fig. 5.4). A locally weighted smoother line 

(lowess) was fitted to the six graphs to help show direction of relationships. From Cook’s 

distance analysis of influential points, only one relationship that showed a change > ± 

0.05 of the correlation coefficients was identified. Upon removal of the influential 

observation from this relationship, the correlation coefficient of precipitation (mm) in 

June, at t-0, increased from, r = 0.38 to r = 0.44. Real-world data, that is associated with 

climate conditions, can sometimes be unpredictable and produce outlier records. 

However, the influence on the correlations was minimal (all but one < ± 0.05 change on 
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r) and thus removal of outlier observations was not necessary. Thus, no data was 

removed to create the results depicted in Fig. 5.4. 

 
5. DISCUSSION 

5.1. Spatial Analysis 

 Alone, medusahead disperses to relatively short distances, thus relying on vectors 

such as humans or livestock to get distributed across larger spatial scales (Monaco et al., 

2005; Davies, 2008). Davies et al. (2013) reported greater readings of medusahead near 

areas of unimproved roads and near livestock trails; these were compared to randomly 

placed transects. The results from the dispersal site analysis displayed similar findings, as 

the median value for the random features was lower than all but one (gravel pits) of the 

feature categories. The outliers, in Fig. 5.1, suggest that random points can still be found 

near areas of heavier fCover estimates but are generally uncommon above 40%. The 

results from this analysis seem to support findings of Davies et al., (2013) from the 

standpoint that distributions of the medusahead invasion are not random.  

 From a species that is highly dependent on dispersal vectors, caution should be 

given to areas associated with high densities of potential vectors. Greater amounts of 

medusahead in these areas can lead to increased dispersal across a landscape. These areas 

should be deemed as “high priority” when considering management plans designed to 

eradicate and prevent reinvasion, so medusahead dispersal can be reduced. Information 

from this analysis should be used to educate land managers, livestock producers, and 

recreationalists about the dangers of transporting medusahead and help direct monitoring 

and management efforts towards higher-risk areas. 
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 Continuous datasets can provide a more realistic and robust representation of a 

landscape. These datasets can provide more telling information about detecting gradual 

shifts in population dynamics compared to discrete datasets (Fernandes et al., 2004; 

Wegmann et al., 2016). The 2015 fCover dataset allowed for the determination of 

thresholds to best meet the management framework discussed in Nafus & Davies (2014). 

A 5% threshold, for the upper bound of the preventive category, was defined to account 

for the potential of over-predictions or Type I errors (discussed in Chapter 2 and Chapter 

3). This also produced a more visual and discrete representation of the three management 

strategies. The 25% threshold was chosen because it represented a fair threshold in which 

areas < 25% medusahead cover would still be responsive to site eradications treatments 

rather than complete rehabilitation treatments. Fig. 5.2 is an output produced from 

classifying each 30m pixel of the 2015 fCover dataset into one of the three management 

strategies based on fractional thresholds (Prevention 0-5%, Early Detection 5-25%, 

Rehabilitation 25-100%). This type of output can be put in the hands of land managers 

for prioritizing and directing management efforts towards sites where they would be most 

effective. An example of this would be the large prevention area in the center of Fig. 5.2; 

land managers could consolidate and focus efforts to prevent medusahead invasion in this 

area. Such actions may entail the creation of “strong hold” areas in which improvements 

could be expanded from those locations. 

 Remote sensing technologies should not be look at as a way to replace traditional 

ground-based methods. Instead, these technologies need to be viewed as an additional 

tool in the manager’s toolbox to complement or supplement other management methods. 

Fig. 5.2 depicts how remote sensing technologies can work with current research to 
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formulate management plans that can be more effective and thus more cost-efficient to 

land managers.  

 As discussed in Chapter 2, the methods in this study may not detect lightly 

dispersed areas of medusahead. Because of this, it should not be assumed that 

medusahead is not present in areas characterized by preventative management. Thus, it 

may prove beneficial for managers to use the Management Strategy map, in Fig. 5.2, in a 

relative versus an absolute sense. The map could provide more value in directing ground 

assessments crews to investigate why certain areas are showing relatively higher cover 

estimates than others. Ground assessments may also help calibrate the classification 

thresholds and improve the overall map.   

 
5.2. Temporal Analysis    

 Temperatures in the month of May, at t-2 had a moderate influence on the annual 

mean estimates of medusahead fCover (Fig. 5.4). This is characterized by warmer 

temperatures being generally associated with years of greater medusahead cover. Leffler 

et al. (2013) reported that adult medusahead plants showed a considerable increase in the 

absorption rate of nitrogen at 25 ◦C, compared to colder temperatures (5 ◦C, 10 ◦C, 15 ◦C). 

Additionally, this increase represented a large advantage in relation to perennial species 

(i.e. bluebunch wheatgrass ([Pseudoroegneria spicata (Pursh) A. Löve], crested 

wheatgrass [Agropyron cristatum (L.) Gaertn]) and cheatgrass, grown under the same 

conditions. In contrast, colder temperatures have been reported to benefit germination 

rates, root development, and growth of medusahead, especially during the early stages of 

development (Harris & Wilson, 1970; Clausnitzer et al., 1999; Leffler et al., 2011). 
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Medusahead’s ability to optimize its performance across different temperatures regimes 

may aid in its invasibility and provide advantages as habitats become altered by climate 

change. This temporal analysis suggests how temperatures might influence medusahead 

populations in future years and help explain the findings of this research. As colder 

temperatures during the winter and spring months suppress perennial species, 

medusahead may be able to develop with lower competition for essential resources. This 

likely benefits medusahead later in its life cycle, when a relatively large root system 

could allocate more resources, such as nitrogen. An increase in nitrogen allocation as 

temperatures increase before maturation may produce a last-minute pulse of vigor. If this 

pulse enhances seed production on a current year, it could act as a catalyst for future 

generations by creating a cascading effect of additional individuals. The influx of new 

seedlings may produce additional individuals and thus additional seedlings leading to 

higher populations of medusahead in subsequent years, as observed in the temporal 

analysis.  

 Precipitation for the quarterly period of January-March, the month of March, and 

the month of June of a current year (t-0) showed to have an influence on the annual mean 

estimates of medusahead fCover (Fig. 5.4). This is characterized by increasing 

precipitation during these periods being generally associated with years of greater 

medusahead fCover. This may be explained by a more competitive root system that 

allows medusahead to better allocate resources when they become available. When 

grown under similar conditions, medusahead has shown advantageous root development 

over cheatgrass and perennial seedlings (bluebunch wheatgrass; crested wheatgrass) 

during the months of December to June (Hironaka, 1961). Increased precipitation in the 
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early months of the year (January-March, March) would provide a resource that would be 

available to medusahead with minimal competition. This resource may relate to increases 

in additional germinations and fitness of individuals for that year. The higher 

precipitation in June found to be benefiting medusahead was unexpected as medusahead 

typically is close to reaching maturation during this period. This situation may be 

explained by medusahead maturing typically two-three weeks after cheatgrass and thus 

requiring moisture for a longer period of time (Dahl & Tisdale, 1975). A hypothesis for 

why medusahead years increase with precipitation in June would be that an influx of 

additional resources that may produce increases in last minute growth and maturation 

before senescence of the plant. This may produce an increase in biomass within the 

population that helps fill space and thus produces higher medusahead estimates.  

 Scientists have been interested in identifying more desirable species that can 

better resist invasion and reinvasion of medusahead that will aid in prevention and 

revegetation efforts (Sheley et al., 2008; Davies, 2010; Stonecipher et al., 2016). The 

results from the temporal analysis identified potential critical periods when temperature 

and precipitation events seem to influence on the population dynamics of medusahead in 

the area. This information could potentially lead to the creation or improvement of 

management approaches aimed at identifying better competitive species to be used in 

prevention and revegetation of medusahead invaded sites. This may lead to the 

development of more competitive seed mixes that could be used in the area. This could 

help reduce costs by increasing the effectiveness and efficiency of management plans 

which can then lead to additional lands being treated. 
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5.3. Other Considerations  

 Further analysis of the precipitation records for the last 50 years revealed a recent 

increase in the amount of drought years (Fig. 5.5). There were 22 years, out of the 32 

years used in the time series dataset (1985-2016), that were at or below the 50-year 

precipitation average (1967-2016). Research has shown that invasive annual grasses are 

more competitive than perennial species, even when resources are limited (Monaco et al., 

2003; James, 2008; Nafus & Davies, 2014). Although severe drought may reduce the 

competitiveness of medusahead, dormant seedbanks can quickly replenish landscapes 

during a single wet year, allowing for continued dominance of the landscape (Young et 

al. 1998; Kyser et al., 2014). Fig. 5.5 shows that since the early 2000s non-drought years 

(above the 50-year average) are occurring in a larger and less frequent pattern compared 

to prior years. This pattern has been reported to benefit the spread of medusahead over 

other invasive annuals (cheatgrass; ventenata (Ventenata dubia (Leers) Cos.)) and may be 

enhancing the spread of the species ensuring future dominance in the presence of climate 

change (Bansal et al., 2014).     

 
6. CONCLUSION 

 This research has provided examples of valuable information that can be 

delineated from remotely sensed datasets. This analysis provided a relatively quick and 

cost-effective approach to gain information on the dynamics of medusahead that would 

be difficult and expensive to ascertain using other methods. The results of this analysis 

should prove useful to land managers and producers challenged with medusahead in the 

region. Due to the phenotypic variations of medusahead, these findings may be site 
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specific and tailored research may be required. Remotely sensed data can provide 

landscape scale information that may not be available by other means. Landscape scale 

assessments may provide keys to unlock innovative ideas and applications that will aid 

developing and improving the management of rangelands threatened by medusahead. 
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FIGURES 

 

 
  

Fig. 5.6. Results of the dispersal site analysis that is showing the differences in mean 
fCover estimates associated with different features. 
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Fig. 5.7. Management Strategies map. Derived by classifying the 2015 continuous fCover 
dataset using thresholds based on invasion level. 
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Fig. 5.8. Cross-correlograms of the six variables that showed non-
randomness and resulted in significant correlations, at the 5% level. 

Fig. 5.9. Graphs showing the strength of correlation and relationship of 
the six significant climate variables. Each graph is fitted with a lowess line 
to help show relationships. 
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Fig. 5.10. Graph show the 50-year average annual precipitation from two 
NOAA ground stations near the study area. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

There is an unmet need to create ecological models which can help identify 

spatial and temporal characteristics leading to the improvement and development of 

influential management efforts that are aimed at the prevention and control of invasive 

species (Davies & Sheley, 2007). Remote sensing applications can help fulfill these needs 

by providing broad scale assessments of entire landscape systems. Although aerial 

assessments may lack an ability to ascertain fine scale measurements, ground-based 

research misses important and influential variables that occur outside of a sample plot. 

Remote sensing allows land managers to quantify and provide landscape-scale 

assessments to make more informed decisions on how to manage rangelands challenged 

by different factors such as weed invasion. Integration of remote sensing can help meet 

this objective by supplementing and developing sustainable successful programs that can 

aid with the continuation of improving and protecting western rangelands.   

Western rangelands continue to be threatened by the vast expansion of 

medusahead. In the presence of a changing climate, the future of these threats may be 

exacerbated (Bansal et al., 2014). Medusahead has occurred in eastern Washington since 

the early 1900s but there has been a rise in the abundance and severity of the invasiveness 

of the plant in the region during more recent decades. Fifty-year ground-based station 

data shows signs of change regarding the precipitation regime in the region for the last 30 

years, as above-average precipitation years have been occurring less frequently in recent 

decades. In the past, plant communities may have had access to the resources needed to 
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repel large expansions of medusahead. As precipitation levels declined during drought 

years, this may have weakened perennial rangeland communities and acted as a catalyst 

to trigger the large expansions of annual grasses observed in the last three decades.  

The continued persistence of the invasion is presenting growing challenges to 

producers in the Channeled Scabland region. Effective control and prevention techniques 

need to be identified so managers can improve eradication and rehabilitation efforts that 

are being used in the region. Individuals should be concerned with the serious 

implications and consequences that are associated with medusahead invasion.  

Results from this research have shown that it is possible through specific spectral 

characteristics to delineate senesced medusahead monocultures from other rangeland 

components and accurately predict medusahead distribution in the landscape (Chapter 2). 

This research also shows that through a time-series analysis is it possible to use archived 

imagery to gain landscape-scale information about year-to-year changes of medusahead 

cover in rangelands (Chapter 3). Such analysis showed a cyclic nature of “high” and 

“low” years of medusahead cover. Results have identified potentially sensitive periods 

that may alleviate “high” medusahead years and that can be targeted to develop 

competitive seed mixes in prevention and rehabilitation efforts. This research also 

identified “high risk” dispersal sites that should be a priority in medusahead management 

to limit the expansion of the weed into new or rehabilitated areas (Chapter 4). 

Management priorities should remain determined to remove medusahead and replace this 

annual weed with more desirable species. Management programs need to be sustainable, 

effective, and constant. The public and government officials need to be educated on the 

dangers of medusahead invasion and what needs to be done to stop its expansion. Support 
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should be given to the land managers trying to improve rangelands under the challenge of 

weed invasion. Archived imagery can help on this regard, as it would provide a quicker 

and cheaper means to understand the pattern of medusahead invasion and to build 

scenarios for potential expansions of the weed across the landscape into the future.     

In summary, this research has applied remote sensing techniques to generate 

temporal and spatial predictions of medusahead in the Channeled Scablands region of 

eastern Washington. These predictions are supported by collected ground data (spatial) 

and qualitative reports (temporal). Results from this research show the potential for the 

use of remote sensing techniques to achieve key spatial and temporal information about 

medusahead cover quicker and more affordably compared to ground-based methods. This 

type of information is valuable and needs to be in the hands of land managers, so they can 

make influential and informed decisions on invasive species management. Integrating 

remote sensing into management plans can aid in directing and advancing management 

strategies so rangelands in the West can be improved and the invasion of medusahead can 

be prevented, controlled, and eradicated. Individuals need to be educated on the risks and 

consequences of the continued expanse of this plant so additional support can be given to 

those that can make positive impacts on improving and protecting western rangelands 

threatened by medusahead. 
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