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ABSTRACT

Aerodynamic Centers of Arbitrary Airfoils
by
Orrin Dean Pope, Master of Science

Utah State University, 2017

Major Professor: Douglas Hunsaker, Ph.D.
Department: Mechanical and Aerospace Engineering

A method for accurately predicting the aerodynamic center of an airfoil is
presented based on a general form for the nonlinear lift and pitching-moment of an airfoil
as a function of angle of attack. This method does not suffer from small-angle, small-
camber, and thin-airfoil approximations, and is shown to match inviscid results to much
higher accuracy than the traditional methods. It is shown that the aerodynamic center of
an airfoil with arbitrary amounts of thickness and camber in an inviscid flow does not, in
general, lie at the quarter-chord. Rather, it is a single, deterministic point, independent of
angle of attack, which lies at the quarter chord only in the limit as the airfoil thickness
and camber approach zero. Furthermore, it is shown that once viscous effects are
included, the aerodynamic center is not in general a single point as predicted by
traditional thin airfoil theory, but is a function of angle of attack. Differences between
nonlinear predictions and those based on thin airfoil theory are on the order of 1-5%,

which can be significant when predicting aircraft stability.

(135 pages)
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PUBLIC ABSTRACT

Aerodynamic Centers of Arbitrary Airfoils

Orrin Dean Pope

The study of designing stable aircraft has been widespread and ongoing since the
early days of Orville and Wilbur Wright and their famous Wright Flyer airplane. All
aircraft as they fly through the air are subject to minor changes in the forces acting on
them. The field of aircraft stability seeks to understand and predict how aircraft will
respond to these changes in forces and to design aircraft such that when these forces
change the aircraft remains stable. The mathematical equations used to predict aircraft
stability rely on knowledge of the location of the aerodynamic center, the point through
which aerodynamic forces act on an aircraft. The aerodynamic center of an aircraft is a
function of the aerodynamic centers of each individual wing, and the aerodynamic center
of each wing is a function of the aerodynamic centers of the individual airfoils from
which the wing is made. The ability to more accurately predict the location of the airfoil
aerodynamic center corresponds directly to an increase in the accuracy of aircraft stability

calculations.

The Aerolab at Utah State University has develop new analytic mathematical
expressions to describe the location of the airfoil aecrodynamic center. These new
expressions do not suffer from any of the restrictions, or approximations found in
traditional methods, and therefore result in more accurate predictions of airfoil

aerodynamic centers and by extension, more accurate aircraft stability predictions.
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NOTATION

coefficients in the expansion given in Eq. (47)
section axial-force coefficient

first derivative of ¢, with respect to o

second derivative of ¢, with respect to a

section drag coefficient

section drag coefficient at zero lift, Eq. (67)

coefficient of C, in the parabolic relation for ¢, Eq. (67)
coefficient of ¢? in the parabolic relation for ¢,, Eq. (67)
section lift coefficient

first derivative of C, with respect to «

first derivative of ¢, with respect to «, at =0

section moment coefficient about the point (x, y)

section moment coefficient about the aerodynamic center
section moment coefficient about the quarter-chord
section moment coefficient about the leading-edge

section moment coefficient about the origin

first derivative of 5,,10 with respect to «

= second derivative of 5% with respect to o



wi

w2

x’y

X0

xac’ yac

X1
constant coefficient used in Egs. (55) and (68)

constant coefficient used in Egs. (55) and (68)

constant coefficient used in Egs. (55) and (68)
section normal-force coefficient

first derivative of ¢, with respect to o

second derivative of ¢, with respect to o

complex constants in the Laurent series expansion

section chord length

Laurent series expansions used in Egs. (44) and (45)

constants defined in Eq. (78)

section lift

pitching moment about the origin

term in the Laurent series expansion

radius of the circular cylinder used for the conformal transformation
freestream airspeed

complex velocity field

complex velocity in the plane of the circular cylinder

complex velocity in the plane of the airfoil

axial and upward-normal coordinates relative to the leading edge
real coordinate of the center of the circular cylinder in the complex plane

x and y coordinates of the aerodynamic center



X1l

V. = y coordinate of the camber line
Yo = imaginary coordinate of the center of the circular cylinder in the complex plane
z = coordinate in the complex plane

z = leading edge of the airfoil in the z-plane

= trailing edge of the airfoil in the z-plane

N
|

Z, = center of the circular cylinder in the complex plane, z, = x, +iy,
a = angle of attack

a, = zero-lift angle of attack

r = circulation strength

< = analytic transformation function

¢ = point in the complex plane that maps to the airfoil leading edge

Canace = coordinates of the cylinder surface

¢, = point in the complex plane that maps to the airfoil trailing edge
e = change of variables for the axial coordinate of an airfoil

0 = angle relative to the horizontal axis in the complex plane

o = value of @ at the airfoil trailing edge

P = fluid density

O] = complex potential in the plane of the circular cylinder

O} = complex potential in the plane of the airfoil

) = local camber angle



CHAPTER 1
INTRODUCTION

1.1 Research Motivation

Correctly identifying the location of the aerodynamic center of a lifting surface is
extremely important in aircraft design and analysis. For example, the location of the
aerodynamic center of a complete aircraft relative to the center of gravity is an important
measure of longitudinal pitch stability [1-2]. This location, often referred to as the neutral
point, is a function of the aerodynamic center of each lifting surface or wing. In addition
to longitudinal pitch stability, accurate knowledge of the location of the aerodynamic
center of a lifting surface or wing has been shown to be a fundamental parameter in
aeroelastic analysis as well as flutter and divergence speed calculations [3]. The
importance of correctly identifying the location of the aerodynamic center of a lifting
surface is also apparent in supersonic aircraft design. Efforts to minimize trim drag,
maximize load factor capability, and to provide acceptable handling qualities, rely on
accurate knowledge of the location of the aerodynamic center of a supersonic lifting
surface [4]. The aerodynamic center of a wing is a function of the aerodynamic center of
the individual airfoils from which the wing is made, as well as wing sweep, dihedral, and
planform. Thus, correctly predicting the aerodynamic center or neutral point of a
complete airframe during preliminary design depends on the accuracy to which we can

predict the aerodynamic centers of airfoils and finite wings.



1.2 Literature Review

1.2.1 Traditional Thin Airfoil Theory Relations for the Aerodynamic Center
The aerodynamic center is traditionally defined to be the point about which the

pitching moment is invariant to small changes in angle of attack, i.e.

oC,

=0 (1.1)

The pitching moment about any point in the airfoil plane can be found from a simple

transformation of forces and moments about the origin to the point of interest, i.e.,

¢, =C, +

m

o | =

c,-2C, (1.2)
C

where 5% is the pitching moment about the origin, C , is the axial force coefficient, and

~

C is the normal force coefficient. The axial and normal force coefficients are related to

the lift and drag coefficients through a transformation in angle of attack, as shown in Fig.

1

5A=CDcosa—5Lsina (1.3)

~

CNz(NTL cosa+(N7D sin & (1.4)

Using Egs. (1.3) and (1.4) in Eq. (1.2), the pitching moment about the aerodynamic

center is

yac

(50 cosa—GL sin &) (1.5)

M mo

C =C 4« (5L cosa+50 sina) —
c



For a typical airfoil, the vertical offset of the aerodynamic center from the airfoil chord
line is small, and the drag is much less than the lift. Additionally, the angle of attack is

small for normal flight conditions. Therefore, applying the traditional approximations,
C, cosa>>Cpsina, y, sina=0,y, C, =0, cosa =1, gives

~

-C, +2«C, (1.6)

C

My

Taking the derivative of Eq. (1.6) with respect to angle of attack, applying the constraint
given by Eq. (1.1), and rearranging gives the traditional approximation for the

aerodynamic center

o ter - Y (1.7)

Note that the y-coordinate is traditionally assumed to be zero due to the approximations

applied in the development of Eq. (1.6).

_ AN
L
y a ~ D
Leading Edge — my
Trailing Edge
o -
N 7
< »> - oo
(X(‘ Chord Line
Voo Chord Length, ¢ |

Figure 1. Forces and pitching moment on an airfoil.



Equation (1.7) gives the traditional approximation for the location of the
aerodynamic center of an airfoil. These relations require knowledge of the lift and
pitching moment slopes of a given airfoil. This prediction for the location of the
aerodynamic center of an airfoil is widely used today across the aerospace industry and
academia. Furthermore, these relations are traditionally used to approximate the location
of the neutral point of an aircraft, and are used to evaluate aircraft static stability. The
traditional thin airfoil theory approach as developed by Max Munk [5-9] predicts
solutions to Eq. (1.7) as lying at the airfoil quarter chord, or 25% aft of the airfoil leading
edge, and directly on the chord line. However, solutions to Eq. (1.7) suffer from small-
angle, small-camber, and thin-airfoil approximations. What’s more, the assumptions
leading to the result given by Eq. (1.7) include a linear lift slope and a moment slope
below stall, and therefore neglect nonlinearities in lift, pitching moment, and drag.
Furthermore, this traditional approach reduces the nonlinear trigonometric relations in
Eq. (1.5) to linear functions of angle of attack. These linearizing approximations
significantly hinder our understanding of the effects of nonlinearities associated with
pitch stability of airfoils and aircraft. Attempts have been made to develop less restrictive
definitions for the location of the airfoil aerodynamic center, however do not account for
all of the trigonometric and aerodynamic nonlinearities, nor remove all small-angle,
small-camber, and thin-airfoil approximations [10-11].

In order to provide a more accurate solution for the location of the aerodynamic
center, we shall now relax the linearizing assumptions in a more general development of

the aerodynamic center.



1.2.2 General Relations for the Aerodynamic Center

Phillips, Alley, and Niewoehner [12] presented general relations for the
aerodynamic center, which do not include the linearizing approximations used in the
traditional approach. From Eq. (1.2) or (1.5), the pitching moment about the aerodynamic

center can be written

C =C qleg _Jeg (1.8)

mm m
o c c

Taking the derivative of Eq. (1.8) with respect to angle of attack and applying the

traditional constraints given in Eq. (1.1) gives

Xac EN,a _ yac 514’0[ =_Cm0’a (1.9)
C C

Note that application of the constraint given in Eq. (1.1) produces an equation for a line,
not a point. The line given in Eq. (1.9) is the neutral axis of the airfoil [12]. All points
along this line satisfy the constraint given in Eq. (1.1). Therefore, the single constraint
given in Eq. (1.1) is not sufficient to specify a single point as the aerodynamic center.
Phillips, Alley, and Niewoehner [12] suggest a second constraint to isolate the location of
the aerodynamic center, namely, that the location of the aerodynamic center must be
invariant to small changes in angle of attack, i.e.,

o 0
xac EO’ yac

=0 1.10
oa oa ( )

Differentiating Eq. (1.9) with respect to angle of attack, and applying Eq. (1.10) gives



X ~

a O
C

R (1.11)

N,o,a c A,a,a my,a,a

The intersection of the two lines specified by Egs. (1.9) and (1.11) defines a
unique point where both of the constraints are simultaneously satisfied, and therefore
defines the location of the aerodynamic center. Solving Egs. (1.9) and (1.11) for x4 and
Vac, and using the result in Eq. (1.8) gives the location of the aerodynamic center and the

pitching moment coefficient about the aerodynamic center

c, ,.,—-C C
xac — ;4,(1 ’\nfo a,a Nmo aN A,a,a (112)
¢ CN,a CA,a,a - CA,a CN,ma
c,,C, ,.,-C _C
yi _ i/,a Lno,a,a Nmo,aN N,a,a (113)
¢ CN,a CA,a,a - CA,a CN.a,a
~ ~ X o~ o~
C =C 4leg Jug (1.14)
ac o c c

Equations (1.12) and (1.13) offer a more accurate description of the location of
the aerodynamic center for any lifting surface. They allow both the x and y coordinates of
the aerodynamic center to be evaluated, unlike the traditional approximations given in
Eq. (1.7), which always predicts a y-coordinate for the aerodynamic center that lies on the
chord line. Furthermore, Egs. (1.12) and (1.13) correctly include the effects of vertical
offsets as well as trigonometric nonlinearities and aerodynamic nonlinearities such as
drag.

Note that Eqs. (1.12) and (1.13) are dependent on first and second aerodynamic

derivatives with respect to angle of attack, while the traditional approximation given in



Eq. (1.7) depends only on first derivatives of aerodynamic properties. Therefore, this
general solution for the aerodynamic center depends on accurately predicting any second-
order aerodynamic nonlinearities, even below stall. To estimate the aerodynamic center
of airfoils, thin airfoil theory is often applied, which, as will be shown in Chapter 3,
neglects these second-order nonlinearities.

Two unique alternative forms of Egs. (1.12) and (1.13) can be developed which
do not rely on first and second aerodynamic derivatives with respect to angle of attack,
but rather rely on first and second derivatives with respect to coefficient of lift and the
normal-force coefficient respectively. These alternative forms may be useful when
comparing the aecrodynamic centers of two different lifting surfaces where one desires to
fix the design for a given value of lift or normal-force while allowing variation in angle

of attack.



CHAPTER 2

ALTERNATIVE APPROACH TO FINDING THE LOCATION OF THE

AERODYNAMIC CENTER

2.1 The Aerodynamic Center as a Function of Coefficient of Lift

The relations developed for the location of the aerodynamic center using
traditional thin airfoil theory and the more general approach as developed by Phillips [12]
both are functions of angle of attack as can be seen in Eq. (1.7) and Egs. (1.12-1.13)
respectively. The value of these relations depend largely on wing and airfoil geometry.
Consider two wings with different geometry, both at the same angle of attack. Each of
these wings will have a unique coefficient of lift and therefore unique locations of their
respective aerodynamic centers. This is due to the fact that the lift distribution generated
over a range of angles of attack varies from wing to wing based on section and span
geometry. It is advantageous therefore to be able to describe the location of the

aerodynamic center independent of wing or airfoil geometry.

In order to accomplish this, we modify the method presented by Phillips [12]
whereby we redefine the change in pitching moment coefticient and the location of the
aerodynamic center to depend not on small changes in angle of attack, but rather on small
changes in coefficient of lift. We redefine the original two constraints given by Eq. (1.1)

and Eq. (1.10) as follows

1. The pitching moment about the aerodynamic center must be invariant to small

changes in coefficient of lift



T — 2.1)

2. The location of the aerodynamic center must be invariant to small changes in

coefficient of lift

0 0
Pac —g, D 2 (2.2)
oC, oC,

Using these two new definitions, the location of the aerodynamic center as a
function of coefficient of lift will be developed. Consider the definition of the pitching

moment and force components normalized by span and divided by dynamic pressure

z=b/2 z=b/2

1 ! = I ém“czdz— J.(CN’L cosa + 5D sina)cX,.dz —
PV o 2=-b/2 23
=b/2 B (2.3)
'[(CL sina—Cpcosa)cy, dz
z=—b/2

Applying the definition for the mean moment coefficient and the mean aerodynamic
chord length and dividing by the planform area S, we arrive at the modified definition for

the pitching moment about the origin of an arbitrary wing.

~ m ~ ~
0 —_—
C, Cqy—C X, cos

Mo c"ef =
L PV,’S (2.4)

-Cpxpsina—C, y, sin+C,y, cosa

2 b/2~ 2 b/2
< C,.c’dzandc,, EE jczdz
c

m,. z=0 z=0

where C, =
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Using the definition of the pitching moment about the aerodynamic center and dividing it

by dynamic pressure and the planform area S gives

c, c,=C, c.—x,C cosa-Cysina)-y, (C,sin-C,cosa)  (2.5)

my ref mac "~ ref
Combining Eq. (2.4) and Eq. (2.5), we obtain
)?ac(a cosa — 6D sina) + yac@ sin— 5[, cosa)— 5,” Cror =

GL()?L cos@L + ¥, sin 5L)+ GD()_CD sin 5L -y, cos@L) (2.6)

~ —_—
- lel(' c mIZL‘

Moditying the definition of the section change in pitching moment about the

aerodynamic center defined by Eq. (2.1) to be with respect to coefficient of lift is given as

e = () (2.7)

Using Egs. (2.1), (2.2) and (2.7), in the first derivatives of Egs. (2.4) and (2.6) with
respect to coefficient of lift we obtain

0  ~ ~ 0  ~ ~
X ——(C,cosa+C,sina)+y ——(C,sin—C,cosa) =
ac CL( L D ) yacaCL( L D )

%[Q(EL coséL +y, sinéL)+ éD()_CD sinéL -¥p cos&L)] (2.8)

L

As previously stated, the location of the aerodynamic center is not defined by a

single point but rather by the intersection of two lines. The first line is defined by Eq.



11
(2.8). This equation describes a line in the plane of symmetry along which every point
satisfies the first constraint on the location of the aerodynamic center (Eq. (2.1)). To
uniquely define a point along this line a second equation is need that satisfies the second
constraint given by Eq. (2.2). To obtain this additional equation we first rewrite Egs. (2.5)

and (2.8) in terms of axial and normal coefficients

~ ~ ~

C,=C,cosa—C,sina (2.9)
GN:GLcosa—C’Dsina (2.10)
which yields
Cp, €y =C, €y —X,.Cy +3,.C, (2.11)
%.Cre =¥uCoro ==C, = Coy (2.12)

Equation. (2.12) is equivalent to Eq. (2.8) and defines a line which satisfies the first
constraint for given coefficients of lift. To obtain the second line, which is necessary to
define the location of the aerodynamic center, we differentiate Eq. (2.12) with respect to
coefficient of lift and apply the second constraint. This gives

- c (2.13)

Xac CN,GL Cr N yaCCA»EL Gy - Cmo CCy, e

As is the case for the line defined by Eq. (2.12), where every point along the line
satisfies the first constraint, every point along the line defined by Eq. (2.13) satisfies the
second constraint on the location of the aecrodynamic center. The intersection of these two

lines uniquely defines a point where both of the constraints are simultaneously satisfied,
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and therefore defines the location of the aerodynamic center. Solving Egs. (2.12) and

(2.13) for x,, / candy,, / ¢, and using the results in Eq. (2.11) we obtain

l

C.C ..-C .C, -~
X4 _ 4,C; " my,C.,C my,Cp — A,C.,Cy (2 14)
¢ N,EL CA,&,_,GL - CA,EL CN,GL’EL
C.C ..-C -C..-
Ve _ NG Tme.C.G my,C, ~N,C,,C, (2 15)
¢ Cve Cace, ~Cug Creg
~ ~ x ~ y Lo~
—_— ac ac
Cmac — ~my + c CN - c CA (216)

Thus we see that the location of the aerodynamic center can be written as a function of
coefficient of lift. Egs. (2.14-2.16) are functions of coefficient of lift and are analogous to
Egs. (1.12-1.14), which as previously stated define the location of the aerodynamic center

as a function of angle of attack.

2.2 The Aerodynamic Center as a Function of Normal-force Coefficient

Another alternative approach to finding the location of the aerodynamic center
involves calculating its location as a function of the normal-force coefficient instead of
the traditional approach, which depends on changes in angle of attack (Eq. (1.7) and Egs.
(1.12-1.13) respectively). As stated previously in Section 2.1, the traditional relations
depend largely on wing and airfoil geometry and are therefore limited when attempting to

compare multiple airfoils or wings at a given angle of attack.
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In order to determine the location of the aerodynamic center and the associated
pitching moment independent of wing or airfoil geometry, we modify the method
presented by Phillips [12]. We redefine the original two constraints for the change in
pitching moment coefficient and the location of the aerodynamic center given by Egs.
(1.1) and (1.10) to depend not on small changes in angle of attack but rather on small

changes in the normal-force coefficient as follows.

1. The pitching moment about the aerodynamic center must be invariant to small

changes in coefficient of lift
— =0 (2.17)

2. The location of the aerodynamic center must be invariant to small changes in

coefficient of lift

ox,, _0. 6)210 o

i 2.18
aC, aC, 19

Using these two new definitions, the location of the aerodynamic center as a
function of normal-force coefficient is developed. Consider the following equation which

describes the pitching moment coefficient about the aerodynamic center given in terms of

the axial and normal-force coefficients C, and C N

C, ¢y =Crolry +%,.Cy—7..C, (2.19)
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Differentiating Eq. (2.19) with respect to C v and applying the constraints given by Eqgs.

(2.17) and (2.18) yields

~ ~

0=C +x,-5.C

m [ >5N cref A,EN

(2.20)

Equation (2.20) describes the neutral axis of the wing along which every point satisfies
the first constraint as given by Eq. (2.17). To be able to apply the second constraint

required to describe the location of the aerodynamic center we differentiate Eq. (2.20)

again with respect to C ~ and apply the constraints given by Eq. (2.18). This gives

~

0=C, & ¢ Co— yﬂCCAfN,EN (2.21)
Rearranging to solve for y,. we obtain
yac — ’Ln():é]\/ 5\ (2'22)
Crer CA,EN .Cy

X m,.Cy.Cy
ac_ _ 0:Cn-Cy C 5 _C ’~" (223)

Here we have obtained the location of the aerodynamic center as a function of the
normal-force coefficient as given by Eqgs. (2.22) and (2.23). Using the results of these two

equations in Eq. (2.19) we obtain the pitching moment about the aerodynamic center

~

~ —_— ~ O’EA”EN ~
o
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While Egs. (2.23) and (2.22) are analogous to Eqs.(1.12) and (1.13) they appear to
be of a different form. In order to verify the correctness of Egs. (2.23) and (2.22), an
equivalence proof is given here to show that the location of the aerodynamic center as a
function of the normal-force coefficient is equivalent to the location of the aerodynamic
center as a function of angle attack. This is important as sample results comparing these

two methods will be presented in Section 2.3.

2.2.1 Equivalence Proof

In the alternative approach presented in Section 2.2 the location of the
aerodynamic center was derived using constraints which enforce invariance of the

pitching moment about the aerodynamic center and the location (x, y) of the

aerodynamic center with respect to the normal force coefficient.

ac _ Mo Cy.Cy ~ _
P CA,GN CmOaCN (2.25)
ref 4,Cy.Cy
Yo = el (226)
€ “uie,

These equations appear to be of a significantly different form compared to the analogous
relations given by Eqgs. (1.12) and (1.13) which are functions of angle of attack. Here an
equivalence proof is given to show that the location of the aerodynamic center as a
function of normal-force coefficient is indeed equivalent to the location of the

aerodynamic center as a function of angle attack.
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First, we define the numerator of the fraction in the first term of Eq. (2.25) as
“#*” and its denominator as “*3*.” Notice that the numerator and denominator of this

term are the same as in the case of Eq. (2.26). Starting with * and expanding its partial

derivatives with respect to angle of attack, a gives

aC, acC, oC, oC . &
o0 oC,, o [ 080{} o 0o 0C,, O'a 0

oC, oC, oC,| oa oC,| aoC, oC, oa oC,’

By expanding the partial derivate on the right hand side of Eq. (2.27) again with respect

to angle of attack, o we obtain

C, oa 1 =~ [0 éa
= —— = — +Cm —
aC, oC, (ac J o«{ 8C,, 0C,

oa
— amo,a,a + ~ 0 1 (2 28)
. F eefec, (ac, |
oa

Applying the same procedure to ** yields

~

*k = (:A’a’“z -2 (2.29)
€] (€

Dividing * by **results in the following relation
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(2.30)

Notice that the relation given by Eq. (2.30) is equal to Eq. (1.13) which is the vertical
component of the aerodynamic center as obtained by Phillips. Therefore, we see that Eq.
(2.26) which describes the vertical location of the aerodynamic center as a function of the
normal-force coefficient is indeed equivalent to Eq. (1.13). We can use the result

obtained in Eq. (2.30) in Eq. (2.25) to obtain

X a Cm a,a _Cm a CNa a |~ -~
ac_ __ 5 0,2, 0> X _
( N _ Cic, =G, (2.31)

_da _ (2.32)

xac N,a Cmo,a,a - Cmo,a CN,a,a CA,a C’"o,a
C CN,a CN,a

We manipulate this relation further by performing all multiplicative distributions,
combining each term by the lowest common denominator, and cancelling common

factors to obtain

(2.33)

Notice that we have recovered exactly Eq. (1.12) as derived by Phillips. Therefore, we
see that Eq. (2.25) is equivalent to Eq. (1.12). We see furthermore that the location of the

aerodynamic center can indeed be described as purely a function of the normal-force

coefficient. This equivalence can further be shown by calculating values for x,, and y,.
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using Egs. (1.12) and (1.13) as functions of angle of attack and Eqgs. (2.25) and (2.26) as

functions of the normal-force coefficient.

2.3 Sample Results

Using the relations describing the location of the aerodynamic center as a function
of angle of attack and those which describe it as a function of the normal-force
coefficient respectively, values can be obtained which show the equivalence of the two
methods. In both cases neither of these sets of relations make restrictions about the type
of flow, whether inviscid or viscous, for which they calculate the location of the
aerodynamic center. The sample results presented here reflect purely inviscid flow for
which the effects of drag are ignored. Inviscid flow data can be obtained by a number of
different methods, both analytical and numerical. One such numerical method, the Vortex
Panel Method [Appendix B] provides accurate and fast results for inviscid flow over

airfoils.

2.3.1 Vortex Panel Method

The vortex panel method uses a synthesis of straight-line segments and control
points along the top and bottom surface of an airfoil. By using a sufficiently high number
of straight line segments and control points this method can accurately predict the
coefficient of lift and the pitching moment of a given airfoil as functions of angle of
attack. Values for coefficient of lift can be related to the axial and normal force

coefficients via the inviscid transformations
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=C, cosa
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(2.34)

(2.35)

The following data was generated for a NACA 8415 airfoil using a vortex panel method

with 400 nodes, cosine clustering, and a non-closed trailing edge.

Table 1 Vortex Panel Method data for a NACA 8415 airfoil

Angle of Attack ~

~

~

(degrees) C, Cv C C,
10 2.2845 2.2498 -0.39607 0.81502
9 2.1655 2.1388 -0.33875 0.78408
8 2.0457  2.0258 -0.28471 0.75269
7 1.9254 19110 -0.23464 0.72091
6 1.8044 1.7945 -0.18861 0.68876
5 1.6830 1.6765 -0.14668 0.65629
4 1.5609 1.5571 -0.10888 0.62353
3 1.4384 1.4364 -0.07528 0.59052
2 1.3155 1.3147 -0.04591 0.55731
1 1.1922  1.1920 -0.02081 0.52393
0 1.0685 1.0685 0.000000 0.49043
-1 0.94447 0.94433 0.01648 0.45684
-2 0.82017 0.81967 0.02862 0.42321
-3 0.69562 0.69467 0.03641 0.38958
-4 0.57086 0.56947 0.03982 0.35599
-5 0.44592 0.44423 0.03887 0.32248
-6 0.32085 0.31909 0.03354 0.28909
-7 0.19568 0.19423 0.02385 0.25586

Using this data, the first and second derivatives in Egs. (1.12) and (1.13) and Eqgs. (2.25)

and (2.26) can be approximated numerically in order to find solutions to the location of

the aerodynamic center. This numerical approximation can be achieved by means of a

second order finite differencing method.
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2.3.2 Finite Difference Method

In order to approximate the first and second derivatives required to compute
values of the location of the aerodynamic center in Egs. (1.12) and (1.13) and Egs. (2.25)
and (2.26) discrete approximations using the Taylor series expansion about a point may

be employed. The Taylor series expansion of a function ¢(y) about a point y for the

value y + Ay can be written as

0+ Ay) = $(0) {%lAy +[

82¢ Ay2
oy’ . 2

3 3 (2.36)
+(M] AZ +O(AY* )+

3

The second order approximation of the first derivative of ¢(y)at a point j is given by

(@] _ 8, ~4Av. — ¢, (A, Ay (2.37)

oy (Av; Ay, —AViAY,)

Where aand b represent the points before and after j respectively.

The second order approximation of the second derivative of ¢(y)at a point j is given by

(@J _ 2y, Ay Ay 24y, +4y,)

), Ay Ay, Ay, Ay (A, — Ay (D, —Ay,)
2(Ay, +4y,)

Ay, (Ay, — Ay Ay, — Ayy)

2(Ay + A
Bt M) 4 4oy
Ayc(Ayb _Ayc)(Ayc _Aya)

é, (2.38)
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Where a represents the point before j and 4 and ¢ represent the first and second point
after j respectively.

Using the data from Table 1 in Eq. (2.37) and Eq. (2.38) we can generate
approximations of the first and second derivatives of 5," ,C ,»and C v as functions of the

traditionally used angle of attack, as well as the normal-force coefficient as discussed in
Section 2.2. Using these derivatives in their corresponding equations for the location of

the aerodynamic center results in Fig 2.

2.75 A
2.50 A
§~ 2.25 A
2
b5 2.00 4
°
> 3
G
s 1.75 A
()
5
=
>
~ 1.50 A
1.25 1
1.00 -

58 59 60 61 62 63

X
(values of order le-13)

Figure 2. The (x, y) location of the aerodynamic center of a NACA 8415 airfoil using

the traditional method as a function of angle of attack, Eqs. (1.12) and (1.13) and the
modified method as a function of the normal-force coefficient, Eqs. (2.25) and (2.26).

From the figure we see that both methods give identical results to machine

precision. Noting the scale on the axes, for all practical usages the x and y coordinates of
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the aerodynamic center given in this figure describe a single point. The scatter in the data
can be attributed to the numerical method used. The results of this figure further verify
the conclusion given in Section 2.2.1, that the location of the aerodynamic center as a
function of angle of attack can be equivalently described as a function of the normal-
force coefficient. However, the true significance of this figure is not that the two
methods are equivalent. The true significance of this figure is that the aerodynamic

center of an airfoil in an inviscid flow is described by a single point.

Recall that both the general method for finding the location of the aerodynamic
center, given by Egs. (1.12) and (1.13), and the modified method, given by Egs. (2.25)
and (2.26), allow for evaluation of both the x and y coordinates and include the effects of
vertical offsets as well as trigonometric and aerodynamic nonlinearities. Therefore, the
fact that in the case of an airfoil in a purely inviscid flow the location of the aerodynamic
center collapse to a single point is rather remarkable. This cannot readily be seen by
examining Egs. (1.12) and (1.13) or Egs. (2.25) and (2.26) as in both cases the relations
appear to be highly dependent on changes in angle of attack. However, as has been
shown in Fig. 2 the location of the aerodynamic center in purely inviscid flow is in
fact a single point, independent of angle of attack.

We desire to be able to describe the location of this point for any inviscid airfoil
analytically with new, more simple relations, without the need for numerical
approximations such as the finite differencing method in order to determine values of
unknown derivatives. Additionally, we desire that these new relations analytically

demonstrate the angle of attack independence observed in the sample results, while still
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including the effects of vertical offsets as well as any trigonometric and or aerodynamic

nonlinearities.
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CHAPTER 3
THE AERODYNAMIC CENTER OF INVISCID AIRFOILS

As shown in Section 1.2.2, Egs. (1.12) and (1.13) offer a more accurate
description of the location of the aerodynamic center for any lifting surface. They allow
for evaluation of both the x and y coordinates of the aerodynamic center, unlike the
traditional approximations given in Eq. (1.7), which always predicts a y-coordinate for
the aerodynamic center that lies on the chord line. Furthermore, Egs. (1.12) and (1.13)
correctly include the effects of vertical offsets as well as trigonometric and aerodynamic
nonlinearities such as drag. These two equations are dependent on first and second
aerodynamic derivatives with respect to angle of attack, while the traditional
approximation given in Eq. (1.7) depends only on first derivatives of aerodynamic
properties. Therefore, the general solution for the aerodynamic center depends on
accurately predicting any second-order aerodynamic nonlinearities, even below stall. To
estimate the aerodynamic center of airfoils, thin airfoil theory is often applied, which

neglects these second-order nonlinearities.

3.1 Classical Thin Airfoil Theory

Thin airfoil theory was developed by Max Munk during the period between 1914
and 1922 [5-9]. In this classical theory, an airfoil is synthesized as the superposition of a
uniform flow and a vortex sheet placed along the camber line of the airfoil as shown in

Fig. 3. Small camber and small angle-of-attack approximations are applied such that
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higher-order terms can be neglected. This results in the classical thin-airfoil lift and

pitching-moment relations

C,=C, (a—a,) (3.1)
~ =~ GL
Cop =Co e (3.2)

where C L.« 18 the lift slope, & , is the zero-lift angle of attack, and 5%/4 is the pitching

moment about the quarter chord. The coefficients &, , and C, ,, are constants that can be

obtained from the camber line distribution,

.
a,, = | %(l—cosé’)dﬁ (3.3)
72.6:0 X

~

My

T d
= %gj:()%[cosﬂﬁ) —cos0]do (3.4)

where @ represents the change of variables for the axial coordinate given by
x(0) = (c/2)(1- cos ). The coefficient C ..« 18 a constant, which from thin-airfoil theory

is predicted to be
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Figure 3. Synthesis of a thin airfoil section from superposition of a uniform flow and
a curved vortex sheet distributed along the camber line.

C,. =2 (3.5)

,a

The development of thin airfoil theory can be found in most engineering text books on
aerodynamics [13-18]. Using Eq. (3.1) in Eq. (3.2) and applying the result to the
traditional relation for the aerodynamic center given in Eq. (1.7) gives the aerodynamic

center as predicted by thin airfoil theory,

Toe 2 e g (3.6)

Notice from Egs. (3.1) and (3.2) that the lift and pitching moment are predicted by
this theory to be linear functions of angle of attack. All higher-order nonlinearities in
angle of attack were neglected in the development of this theory. Strictly speaking, Egs.
(3.1)—(3.5) are only accurate in the limit as the airfoil geometry and operating conditions
approach those of the approximations applied in the development of classical thin airfoil

theory. These assumptions include an infinitely thin airfoil, small camber, and small
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angles of attack. However, it is commonly assumed that the form of Egs. (3.1) and (3.2)

are correct for arbitrary airfoils at angles of attack below stall. Therefore, C, ,, & L0 and

L,a>

(Nimw are often used as coefficients to fit Eqs. (3.1) and (3.2) to airfoil data obtained from

experimental measurements or numerical simulations. This results in predictions for lift
and pitching moment that are linear functions of angle of attack, and do not contain any
higher-order dependence on angle of attack below stall. However, as was discussed
above, the location of the aerodynamic center is dependent on second-order aerodynamic
effects with respect to angle of attack. Thus, in order to better understand the influence of
nonlinear aerodynamics on the location of the aerodynamic center, we now consider a
more general airfoil theory that does not include any approximations for thickness,

camber, or angle of attack.

3.2 General Airfoil Theory

A general airfoil theory that does not include the approximations of small camber,
small thickness, and small angles of attack can be developed from the method of
conformal mapping [19, 20]. The theory presented here can be used to map flow about a
circular cylinder to flow about any arbitrary two-dimensional surface. Pressure
distributions can then be integrated to evaluate the resulting lift and pitching moment, as

shown in the following development.



28

3.2.1 Theory Development

Flow about a circular cylinder of radius R centered at the point zo,including the

effects of angle of attack, «, and finite circulation, I", can be described by

dd . ,
w(z)=—2L=V e +i r ! —R*e™ ;2 (3.7)
dz 27V, (z—z,) (z—1z,)

where @, is the complex potential and wy is the complex velocity in the plane of the

circular cylinder. Using the method of conformal mapping, we can apply an arbitrary
transformation of this flow from the plane of the cylinder to the plane of an airfoil of the

form
®,(z)=,[£(2)] (3.8)

where ¢ (z) is an analytic transformation function. The complex velocity in the airfoil

plane corresponding to this complex potential is

AV, _ddE o de e
w,(z) = r —dgq)l[?( )] 7 w[¢(2)] % w; [S( )]/déy (3.9)

Thus, the complex velocity for the transformed flow field can be expressed as

wz(z):&Z e +i r ! —Rze"“¥ dz (3.10)
dz 27V, (¢ —z,) (-2 )] d¢

The potential-flow solution about a circular cylinder can be transformed to obtain the

potential-flow solution about a cylinder with any arbitrary cross section. In general, an
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arbitrary transformation requires an infinite number of degrees of freedom, and can be

expressed in terms of the Laurent series expansion [20],

“ C
2()=¢+) — (.11)

where the coefficients, C,, are complex constants. The first derivative of this general

transformation is

ﬂzl_‘”nCn

s 3.12
dg g G2

The equation for the surface of the circular cylinder in the { -plane can be written as
é/stu'face =R eie + ZO (313)

Using Eq. (3.13) in Eq. (3.11), the transformed surface of the cylinder in the z-plane is

given by the relation

. > C
2. )=Re+z,+Y — 1 3.14
(é’su}fm ) 0 — (R e,g +Z0)” ( )

The derivative of the conformal transformation given in Eq. (3.12) can be zero at
multiple points, depending on the values of the complex coefficients, C,. These values of
¢ are often referred to as the critical points of the transformation, at which the
transformed velocity field given by Eq. (3.10) is singular. In order to map the flow of a
circular cylinder to that over an airfoil, one of the critical points must lie on the circular

cylinder in the ¢ -plane at the point that maps to the airfoil’s trailing edge in the ¢ -plane.



30

All remaining critical points must lie inside the circular cylinder in the ¢ -plane in order

for the flow external to the cylinder to remain conformal. Here we denote the critical

point in the ¢ -plane that maps to the airfoil’s trailing edge in the ¢ -plane as ¢, . Itis

convenient to choose ¢, to be on the positive real axis, as shown in Fig. 4. This requires

& =R =y, +x, =Re” +z, (3.15)

where 9, is the value of 6 at £ =, 1.e,

0, =sin” (—yO/R):—tan_l(yo/\/Rz —yoz) (3.16)
Similarly, the left-hand real-axis intercept of the parent circular cylinder is

£ =—R* =y, +x, (3.17)
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A Imaginary

Figure 4. Circular cylinder in the complex ¢ -plane, centered at { =z, = x, +iy,.

Note that for a symmetric airfoil, y, = 0. The Kutta condition must be satisfied at the
trailing edge of the airfoil, and requires that £, be a stagnation point for the flow in the
¢ -plane. The complex velocity field is given in Eq. (3.10) and will have a stagnation

point at the point on the parent circular cylinder that maps to the airfoil trailing edge if

ey it L SO S (3.18)

27[V00 (gt _ZO) (é/z _ZO)2

Solving this relation for 7-gives the circulation that will satisfy the Kutta condition at the

trailing edge,
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I = Zﬂ?LJ{Rzehlzgi———————(é}-—20)64“ (3.19)

Using Eq. (3.15) we can evaluate

g — 2 :'\/R2 _y02 +x, — (X, +iyy) :\/Rz _y02 -y, (3.20)

Using Eq. (3.20) in Eq. (3.19) gives an alternate form for the circulation

F:4ﬂVw(w/R2 —y,” sina + y, cosa] (3.21)

From the Kutta-Joukowski law [21,22], the section lift can be computed from the section

circulation, i.e.,

~

L=pV, I (3.22)

Using the circulation from Eq. (3.21) in Eq. (3.22) gives
L= 47rpr2(11R2 — yo2 sina + y, cos a] (3.23)

Notice that the predicted section lift given in Eq. (3.23) is independent of any
particular transformation, and is a function only of the radius and vertical offset of the
circular cylinder. On the other hand, the leading and trailing edges of the airfoil in the z-
plane are dependent on the transformation, and are needed in order to compute the chord
length and lift coefficient. For any given transformation, the section lift coefficient can be

obtained from Eq. (3.23)
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5 Z _87z-\jR2_y02 . Yo
L= 5 = Sina + ==
3PV, (z,—z)  (z,-2) JR* =y,

cosa (3.24)

where ¢ = z, — z, is the airfoil chord length. Thus, regardless of the transformation, the lift

coefficient will be of the form

€’L = GLO,Q (sina —tanea,, cosa) (3.25)

where GLO’,Z is the lift slope at zero angle of attack and «/, is the zero-lift angle of attack.

From Eq. (3.24),

~ 874 R* — 2
Crow :—yo’ ap =90, =_tan_l(yo/VR2 _yoz) (3.26)

(Zt _Zl)

Notice that from Egs. (3.23) and (3.26) that the lift and zero-lift angle of attack do not
depend on either the transformation or the real part of the cylinder offset, xo. On the other
hand, the lift coefficient and lift slope at zero angle of attack depend on the
transformation, which in turn depends on xo. In any case, Eq. (3.25) is a general form for
the lift coefficient of an arbitrary airfoil. No assumptions of camber, thickness, or small
angle of attack were made in the development of Eq. (3.25). Therefore, we would expect
this form of equation to fit the inviscid lift properties of any airfoil at arbitrary angles of

attack.

From the Blasius relations [23-24], the pitching moment about the origin for an

arbitrary geometry is
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iy ="1p rea1{§c [w(2)F zdz| (3.27)

Using Eq. (3.12) in Eq. (3.10), the square of the complex velocity of the transformed flow

field is

2 _ 12| -ia L 1 _ p2 ia 1 ’ _Ooncnz
@ =v2 e i C-z) € <¢—z0)2}/(1 Zaj

(3.28)
Using Eq. (3.28) in Eq. (3.27) and expanding in a Laurent series of 1/ gives
iy = p2 reall§ [F(OT F () d¢ | (3.29)
where
[F(Of =e™ +i I;:V;a é{i Fj;’;j - 47;;03 _2R2]L2+..
(3.30)
Fz(§)=(§+ 2 CZ]/(I—infﬁ}“ 2C, +3c22 L4, +3ch2 N
= =ls ¢ ¢ ¢
(3.31)
and

A Te @ Iz, I’ o1
FOIF @) =e™¢ +i Hi—— —2R* +2C, e | =+
[F(OFF () Cri— [ T 1 ;

0

o0
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(3.32)

Therefore, the pitching moment about the origin can be written in terms of the series

- > B
iy =L pV}? real{ﬂz:ﬁd;} (3.33)
n=0 A
where
. ]—v —ia F —ia 2 )
By=e™, B =il p=itC L oRrioce ..
v, v,  Ar*V;
(3.34)

Using Eq. (3.34) in Eq. (3.33) and integrating shows that the pitching moment is only a

function of the first constant in the Laurent series,
m, = real(i27szofCle"i2“ — prFZOe"i“) (3.35)

After applying the Kutta-Joukowski law given in Eq. (3.22), the pitching moment about

the origin can be written as
fi, = real(i27pV2Cie > — Lz,e ™ (3.36)
Using the identity ¢'® = cosa +isina as well as the definition z, = x, +iy, in Eq. (3.36) gives
My = 2mpV2C, sin(2a) - L(x, cosa + y, sina) (3.37)

Because the constant C depends on the transformation, we see that unlike the section lift,

the section pitching moment does depend on the transformation. Dividing Eq. (3.37) by
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the dynamic pressure and chord length squared, the section pitching moment coefficient

relative to the origin used in the transformation can be expressed as

~ %o _
my — 1 2 2
oV (z,—z
24/7)ZCOO (t l) . (3_38)
L sin(2a)—C, X, cosa + y, sina
(Zt_Zl) Z—Z

The moment coefficient about an arbitrary point in the z-plane can be found from the

moment coefficient relative to the origin and the lift coefficient,

5 =5 +6’L xXcosa+ysmaoa (3.39)

m mey
Z; =2

Using Eq. (3.38) in Eq. (3.39) gives

~ 4 - - _ :
_ 7C, _in(2a) + L(x xX,)cosa+(y—y,)sina (3.40)

(z,—z)) Z; =z

m

In order to compute the pitching-moment coefficient, we need to know Ci, z;, and z,
which must be found from the transformation. However, regardless of the transformation,
the pitching-moment coefficient for an airfoil in inviscid flow about any point in the

domain is a function of angle of attack of the form
5,,, = émo,a sin(2a) + C“m,NGL cosa — (me,AGL sina (3.41)

where 5,,10,(1, 5,,,’,\,, and 5,”’ , are constant coefficients. As can be seen from Eq. (3.40), the

values for the coefficients C,, y, and C,, , are a function of the x, and y location of the

pitching moment relative to the origin used in the transformation. Since the origin of the



37

transformation has little physical meaning in the traditional airfoil coordinate system, we

will define 5,,1, v, and 5,,1, , to be the coefficients with the pitching moment evaluated at the
airfoil leading edge, i.e. x = z,, and y = O, which is the origin of the traditional airfoil

coordinate system. For any given transformation, the pitching moment of an airfoil in an
inviscid flowfield about the airfoil leading edge can be evaluated from Eq. (3.41) with the

coefficients

~ 4nC ~ zZ, — X, ~
C,o=—t ¢ =275 ¢ - Yo (3.42)

m0,a 2 m,N m,
(Zt_Zl) Zi—Z Z;— 2

The form of Egs. (3.25) and (3.41) hold for any airfoil transformation, and therefore, for
any arbitrary airfoil shape. These relations were developed without any approximations
for airfoil thickness, camber, or angle of attack, and are therefore not constrained under
the same limitations that were used in the development of the traditional small-camber

and small-angle relations given in Egs. (3.1) and (3.2).

The coefficients GLO,Q, Ao (NT,,,O,a, Gm,N, and 5,,!, 4 required in Egs. (3.25) and (3.41)

can be evaluated analytically from a known parent cylinder offset and transformation by
using Egs. (3.26) and (3.42). For example, the Joukowski transformation is defined as a

special case of Eq. (3.11) where

2
(w/Rz —yé +x0j

¢

2($)=¢+ (3.43)

Using Eq. (3.43) as well as a given parent circular cylinder offset of zo, the method

described above gives the coefficients for a Joukowski airfoil
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2

R =y +x?
S /N S e | ma e
— Vo =X

~ 2z _ —1( [p2 2)
C,, = , =
L0, 1+x0/(\/R2 —yé —xo) a5, tan yo/ R =y

(3.44)
m0,a 4 Rz_ 2 >
Yo
G :(x—xo)(w/Rz—yé —xo) & :_(y—yo)(\/Rz—yé —xo)
m,N 4(R2 _yg) H m,A 4(R2 _yg)

The analytical solution for the coefficients given in Eq. (3.44) for a Joukowski airfoil
sheds significant insight on an important aspect of the coefficients required in Egs. (3.25)

and (3.41). Note that for a Joukowski airfoil, the entire airfoil and transformation can be
defined by only three variables, R, X, and y,. All coefficients in Eq. (3.44) are
functions of these three variables. Hence, the aerodynamic coefficients are not entirely

independent. For example, after some algebraic manipulation, 5,,,’ y can alternatively be

expressed as C,, v = Croq/(87)+(Cpo, /7)""? /2~ 1. Although the number of variables

required to define an airfoil may vary depending on the transformation, the aerodynamic

coefficients of Eqs (3.25) and (3.41) will in general not be entirely independent.

3.2.2 Comparison to Inviscid Computational Results

For airfoil geometries that were not generated from conformal mapping

~

techniques, the coefficients C, ,, a;,, C

m0,0°

Gm’N, and Gm,A required for Egs. (3.25) and

(3.41) can be evaluated numerically. This can be accomplished by fitting Egs. (3.25) and

(3.41) to a set of airfoil data obtained from experimental or numerical results. A vertical



39
least squares regression method for fitting these coefficients to a set of data is outlined in
Section 3.3. This method can be used to evaluate appropriate coefficients for Egs. (3.1)
and (3.2) or Egs. (3.25) and (3.41) for cambered airfoils. Because the general airfoil
theory relations given in Eqgs. (3.25) and (3.41) were developed without any assumptions
for airfoil geometry other than that of a single trailing edge, we should expect the form of
these equations to match inviscid airfoil acrodynamic data more accurately than Egs.
(3.1) and (3.2), which were obtained from thin airfoil theory. Here we consider the
accuracy of each of these equations for the NACA 4-digit series over a range of camber

and thickness magnitudes.

Inviscid incompressible aerodynamic lift and pitching moment coefficient data for
250 NACA 4-digit series airfoils were generated over a wide range of camber and
thickness using a numerical vortex panel method [ Appendix B] employing linear vortex
sheets along the airfoil surface [25]. The airfoil surfaces were discretized using 400
panels, which produced grid-resolved solutions. The panels were clustered near the
leading and trailing edges of the airfoil using standard cosine clustering. Results were
computed for each airfoil at angles of attack ranging from -10 to +15 degrees in
increments of 1 degree. At each angle of attack, the lift and pitching moment coefficient
about the airfoil leading edge were recorded. Table 2 shows a sample data set for the

NACA 8415 airfoil.



Table 2. Inviscid lift and pitching-moment data generated from a vortex panel

method for a NACA 8415 airfoil.

Angle of Attack ~ ~
(degrees) CL Con
15 2.86876 -0.96179
14 2.75352  -0.93361
13 2.63744 -0.90481
12 2.52056 -0.87542
11 240291 -0.84548
10 2.28453 -0.81502
9 2.16545 -0.78408
8 2.04571 -0.75269
7 1.92535  -0.72091
6 1.80441 -0.68876
5 1.68291 -0.65629
4 1.56090 -0.62353
3 1.43842 -0.59052
2 1.31549 -0.55731
1 1.19217 -0.52393
0 1.06848 -0.49043
-1 0.94447 -0.45684
-2 0.82017 -0.42321
-3 0.69562 -0.38958
-4 0.57086 -0.35599
-5 0.44592  -0.32248
-6 0.32085 -0.28909
-7 0.19568 -0.25586
-8 0.07045 -0.22284
-9 -0.05480 -0.19005
-10 -0.18003 -0.15755

40

The least-squares regression method was used to fit the aerodynamic data for each

airfoil to the thin-airfoil equations given in Egs. (3.1) and (3.2), and the RMS value for

each case was recorded. Similarly, the least-squares regression method was used to fit the

aerodynamic data for each airfoil to the general airfoil theory equations given in Egs.

(3.25) and (3.41), and the RMS value for each case was recorded. Table 3 shows sample

resulting coefficients for the NACA 8415 airfoil, along with the associated RMS error

from both thin airfoil theory and general airfoil theory. Figures 5 and 6 show the RMS
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values for all 250 airfoils as a function of airfoil thickness and varying camber. It should
be noted that Eq (3.55) which can be used for fitting data from symmetric airfoils to Eq.
(3.41) produces a system of equations that has an infinite number of solutions. The

anomaly for symmetric airfoils will be investigated in future work.

Table 3. Least-squares regression coefficients for a NACA 8415 airfoil using relations
from thin and general airfoil theory respectively. Root-mean-square error values are
also given for each theory compared against results from the vortex panel method.

Coefficient  Thin Airfoil Theory Coefficient General Airfoil Theory

Cra 7.00698 Cron 7.09641
Ao -0.15121 o -0.14944
Con. -0.22746 Coo 0.69403
C -0.45900
Co.s 0.04973
Room Mean Thin Airfoil Theory General Airfoil Theory
Squared Error
C, 0.01069 machine zero

' 0.01495 machine zero
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Figure 5. RMS error for lift predictions from thin airfoil theory and general airfoil
theory for 250 NACA 4-digit airfoils.
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Figure 6. RMS error for pitching-moment predictions from thin airfoil theory and
general airfoil theory for 250 NACA 4-digit airfoils.
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Note that the RMS error from the general airfoil theory is several orders of
magnitude smaller than that of the traditional relations based on thin airfoil theory. In
fact, the RMS error from the general airfoil theory is on the order of machine precision.
This indicates that the general airfoil theory equations can be fit exactly to the inviscid
solutions, and therefore, are of the correct form. The error associated with the least-
squares regression fits to the thin airfoil theory equations indicate that the form of the thin
airfoil theory equations are not exactly correct. With current measurement technology for
experimental setups, the accuracy gained from the general airfoil theory equations for lift
and pitching moment predictions is clearly unwarranted. Experimental data is generally
only known to 2 or 3 significant figures, which is the same order of accuracy as that
obtained from thin airfoil theory. Therefore, the significance of the general airfoil
theory is not that it can more accurately fit experimental data or CFD simulations.
Indeed, the error in experimental data or CFD simulations often falls outside the range of
accuracy to be found in either the general airfoil theory or thin airfoil theory. Thus, using
one theory over the other will not give significantly improved results if we wish only
to predict lift or pitching moment over a range of angles of attack below stall.
Rather, the significance of the general airfoil theory becomes apparent when second
derivatives for lift or pitching moment as a function of angle of attack are needed.

Such is the case in the estimation of the location of the aecrodynamic center.
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3.3 Least-Squares Regression Fit Coefficients — Inviscid Flow

The method of least-squares regression was used to fit the aerodynamic data for
each airfoil to the thin-airfoil equations given in Egs. (3.1) and (3.2), and the general
airfoil theory equations given in Egs. (3.25) and (3.41). The least-squares regression
method is commonly used in regression analysis, most importantly in data fitting. In
general, the sum of the squares, S, of the vertical deviations between the best-fit equation

and a set of n data points is given by

n

S=) [y _f(xiaa)]z (3.45)

i=1

where (X;,y,) are discrete data points, a is a vector of the unknown coefficients to be

determined, and f'(x,,a) is the analytical expression to which the data is to be fitted. The
vertical least-squares method seeks to minimize S for a given data set and expression

f(x;,a). The RMS error for a given solution can be computed from

RMS = \E (3.46)
n

3.3.1 Fit to Thin Airfoil Theory Equations

Applying the traditional lift relation given in Eq. (3.1) to Eq. (3.45) yields

SGL = z [(NjL, - GL,a (o, —ay, )]2 (3.47)

i=1
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Best-fit values for C ...and &, can be determined by setting the partial derivatives of Eq.

(3.47) with respect to C Loand &, equal to zero. Expressions for the partial derivatives

arc

5T _ZZH“ { [C;L‘ - GL’“ (@, —ay, )](ai —a,,) } =0 (3.48)
6CL,0: i=1
0S. . .
ai?o =2 2 {le.,-C..@-a]c.. =0 (3.49)

Solving Egs. (3.48) and (3.49) simultaneously for C 1. and @ yield the best-fit values

for these two coefficients for the traditional lift equation given in Eq. (3.1),

_ Z(EL,O',[) _aLOZGL,
Cro=—" = (3.50)

o, =" - (3.51)

Using the results from Eqgs. (3.50) and (3.51) in Eq. (3.1), an estimate for the lift
coefficient as a function of angle of attack can be obtained. This vertical least-squares
fitting process can also be used to evaluate the best-fit quarter-chord pitching moment for

the traditional equation given in Eq. (3.2), i.e.,

~ o~ Cy
C, . zzl(cmm+ ) J /1 (3.52)
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3.3.2 Fit to General Airfoil Theory Equations

The best-fit coefficients required to fit Eq. (3.25) to a data set can be solved using

the process described above, which yields the following expressions for C,,  and

n ~ 1n n ~ n
Z(CL’ cosaci)-Z:sin2 a, _Z(CL,- sinai)-Z(sinal. cosa;)
i=1 i=l1 i=l1

1 =1

n ~ n n ~ n
Z(CL,- cosai)-Z(sinal. COS%)—Z(CL,. sinozi)-z‘cos2 a,
i=1 i=1 i=1 i=1

a,, =tan

(3.53)

n
z C,, (sing; —tana; cose;)

~ _ =l
CLO,a ~

: 2
z (sine; —tan;, cos ;)
i=1

(3.54)

Using the results from Eqgs. (3.53) and (3.54) in Eq. (3.25) an estimate for the lift
coefficient as a function of angle of attack can be obtained. The least-squares process can
then be repeated to evaluate the best-fit coefficients for Eq. (3.41) as a function of angle

of attack and lift coefficient. After some algebraic manipulation, this yields the following

linear system of equations, which can be solved to evaluate 5,,,0,,1, ém, v, and (ij y
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Zn: sin’(2a,) Zn: ((NTL cosq; sin(2¢; )) - zn: (54 sing, sin(2¢, ))
i=1

i=l i=1

l

n ~ n ~ n ~
Z(CL,» cosq; sin(2a[)) Z (CL,. ? cos? 05,-) - Z(CL' ? cosa, sin 051.)
i=1 i=1 )

n

z;ﬁz
4
Il

n

i=1
((N?L, sing, sin(2ai)) (N?L, *cosa, sina, ) — i ((N?L *sin’ g, )
= i=1 i=l : (3.55)

n

Z (5m0 sin(2a[))
3(C,, €, cosar)

For symmetric airfoils, Eq. (3.55) becomes singular. The reason for this singularity is at
this time not fully understood, but could be related to the fact that 5,,10,,1, 5,,,, v, and ém’ 4
are not linearly independent, as discussed in Section 3.2.1. From general airfoil theory, it
can be shown that C,, , =0 for symmetric airfoils. However, there potentially exists an

unknown number of solutions for Emo,a, and 5,,,, v that satisfy Eq. (3.55). Therefore while

C , is known in the case of symmetric airfoils, the relation between EmO,aa and 5,,1, v 18 not

m,A

presently known and we conclude

¢,,=0, C,.=rC.) (3.56)

A method for uniquely evaluating these two coefficients for symmetric airfoils will be the

topic of future research.
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3.4 The Aerodynamic Center of Airfoils in Inviscid Flow

In general, the location of the aerodynamic center can be correctly predicted using
Egs. (1.12) and (1.13). Recall that this definition for the location of the aerodynamic
center is a general definition, in that it does not include any linearizing or small-angle
approximations. We shall now consider the location of the aerodynamic center of inviscid
airfoils as predicted by the relations developed from classical thin airfoil theory, given in
Egs. (3.1) and (3.2), compared with the relations developed from general airfoil theory,
given in Egs. (3.25) and (3.41). First we consider only the case of inviscid flow, i.e.,

C, =0. From Egs. (1.3) and (1.4), this gives

~

C,= —5L sina (3.57)

~

Cy :EL cosa (3.58)

3.4.1 Thin Airfoil Theory with Trigonometric Nonlinearities

Predictions for the aerodynamic center from thin airfoil theory are traditionally
obtained by applying aerodynamic and trigonometric linearizing approximations to Egs.
(1.12) and (1.13). This method was outlined previously, and results in an aerodynamic
center location given in Eq. (1.7). After the discussion surrounding the general definition
of the aerodynamic center given by Egs. (1.12)-(1.14), one may be inclined to apply the
linear aerodynamic equations from thin airfoil theory while retaining the geometric
nonlinearities of Egs. (3.57) and (3.58). Here we examine the results of such an approach.
Using Eq. (3.1) in Egs. (3.57) and (3.58), differentiating the result twice along with Eq.

(3.2), and applying the resulting derivatives to Egs. (1.12)—(1.14) gives



49

X, (a,—a)sina+2cosa

3.59
c Ma—a,,)’ +8 -9
Ve _ (a—aLO)cosa2+2sina (3.60)
c da-a,,) +8
—C, (a—a,)’ +C, [(@a—a,,)*+2]
_ L, L0 " L0 3.61)

e 4(a—ay )2 +2]

Note that the aerodynamic center and associated pitching moment given by Eqgs. (3.59)—
(3.61) is a nonlinear function of angle of attack. We now compare this result to that from

general airfoil theory.

3.4.2 General Airfoil Theory

The aerodynamic center of an arbitrary inviscid airfoil can be more accurately
found by using the lift and pitching-moment relations from general airfoil theory. Using
Egs. (3.25) and (3.41) in Egs. (3.57) and (3.58), differentiating twice, and applying the

resulting derivatives to Egs. (1.12)—(1.14) gives

CmO,a -~

o - 90 o052 g,y —C (3.62)
¢ L0,
Yac _ CmO,a . ~
< =—=—"-sin(2a,))+C, , (3.63)
C
L0,
C,. = Cro sin(2ay,) (3.64)
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Notice that Egs. (3.62)—(3.64) are independent of angle of attack. Therefore, the
location of the aerodynamic center for an arbitrary airfoil in inviscid flow is a single
point, independent of angle of attack. This point does not in general lie at the airfoil
quarter chord, but is a single point dependent on airfoil thickness and camber. This
solution was developed from general airfoil theory, which does not make any
assumptions for small angles of attack, small camber, or small thickness. It is rather
remarkable that when all geometric and aerodynamic nonlinearities are retained in the lift
and pitching moment equations, along with those in the definition of the aerodynamic
center, the relations for the aerodynamic center reduce to such a simple expression,
independent of angle of attack, for inviscid flow.

Figure 7 shows the aecrodynamic center for the NACA 8415 airfoil as predicted by the
traditional thin airfoil theory given in Eq. (1.7), thin airfoil theory with trigonometric
nonlinearities given in Egs. (3.59) and (3.60), and the general airfoil theory given in Egs.
(3.62) and (3.63). Figure 8 shows the pitching moment about the aerodynamic center
predicted by each theory as a function of angle of attack. Figures 7 and 8 also include
results from second-order finite difference approximations obtained from inviscid
numerical solutions for the NACA 8415 airfoil and Eqgs. (1.12)—(1.14).

Equations (3.59)-(3.61) represent a mix of using linear aerodynamics from thin airfoil
theory while retaining the trigonometric nonlinearities given in Eqgs. (3.57) and (3.58).
This produces non-physical results and should never be used to approximate the
aerodynamic center and the associated pitching moment. Note that the acrodynamic

center predicted by Egs. (3.62) and (3.63) does not lie at the quarter-chord, but is a single
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point 1.8% chord aft and 2.1% chord above the quarter-chord point. Equations (3.62)-

(3.64) match the finite-difference computational results exactly.

0.401 —— Airfoil Geometry

035} <+ Egs.(3.59) and (3.60)

O  Thin Airfoil Theory, Eq.(1.7)

e Finite Difference, Eqs.(1.12-1.13)
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0.20

0.30f

a=15°

0.15}

0.10

0.05f

y/c

0.00

—0.05}|

-0.10}

—0.15}

—0.20

—0.25}

—0.30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 7. The location of the aerodynamic center for a NACA 8415 airfoil as predicted
by thin airfoil theory, Egs. (3.59)-(3.60), general airfoil theory, and finite differencing.
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Figure 8. Pitching moment about the aerodynamic center as predicted by thin airfoil
theory, Eq. (3.61), general airfoil theory, and finite differencing.
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Figure 9. The aerodynamic center location as predicted from Eqs. (3.62) and (3.63)
for 250 NACA 4-digit airfoils as a function of camber and thickness. Filled markers
represent airfoil thickness increments of 10%.

Figure 9 shows the aerodynamic center as predicted from Egs. (3.62) and (3.63)
for 250 NACA 4-digit-series airfoils as a function of camber and thickness [Appendix D].
These results show that increasing thicknesses tends to shift the aerodynamic center aft,
while camber tends to shift the aerodynamic center normal to the chord line. Notice that
airfoils of 10% thickness can have up to 1% deviation in both axial and normal directions
relative to the quarter-chord. Because the static margin is often on the order of 5% for a
stable aircraft, the difference in these approximations for the location of the aerodynamic

center can be somewhat significant. We have thus far considered characteristics of
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airfoils only in inviscid flow. As will be shown, viscosity also significantly impacts the

location of the aerodynamic center.
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CHAPTER 4
THE AERODYNAMIC CENTER OF VISCOUS AIRFOILS

4.1 The Aerodynamic Center of Airfoils in Viscous Airflows

Up to this point, we have neglected the influence of viscosity on the aerodynamic
forces and moments created by an airfoil. The largest effect of viscosity on airfoils at
angles of attack below stall is the production of friction along the surface of the airfoil.
Below stall, this skin friction generally does not significantly impact the lift but does
produce drag and alters the pitching moment relative to the inviscid scenario. The section
drag coefficient is traditionally related to the section lift coefficient using a quadratic
equation. Here we use the traditional relation

C,=C, +C,,C, +C, .C} (4.1)

where C Dy > C p,.1» and C p,» are constant coefficients for a given airfoil drag polar. Note

that the second term on the right-hand side is required to adequately model drag polars

that do not have a minimum at zero lift. Such is the case for most non-symmetric airfoils.

Viscosity also affects the pitching moment produced by the airfoil. Recall that Eq.
(3.41) was developed from airfoil theory based on conformal mapping, which is built on
the assumption of an inviscid flow. This equation for the pitching moment can be
extended to account for viscous effects by including the drag-component acting in the

normal and axial directions,

C, =C,,sina)+C, ,Cy+C, ,C, (4.2)

m
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or, in light of Egs. (1.3) and (1.4),

Gm = (Ni'mo,a sin(2a) + CN’m’N (5L cosa + 5[) sin )

o ~ (4.3)
+C, ,(Cycosa—C,sina)

Differentiating Eq. (4.2) and applying the result to Eqgs. (1.12) and (1.13) gives the exact

solution for the location of the aerodynamic center including viscous effects

~ 2sin2a)C,  +cos(2a)C
‘xi_ 2C N( )N A, — (N)

A,a,a
m0,a

. 4.4)
c CN,aCA,a,a - CA,aC "

N.,a,a

~

N,o,a
- m0,a

¢ CN,aCA,a,a - CA,aC

N,a,a

~ 2sin(2a)C,, . +cos(2a)C
Yu _ ¢ (20)C +COS(2a) C,, (4.5)

Applying Egs. (4.2), (4.4), and (4.5) to Eq. (1.14) gives the associated pitching moment

~

C,. =C,.|sin2a)+2

a ) + COS(20£)(5A 5N,oz,uz - GN 6;A,oz,az )

~ ~

o, - CA,a C

N,a,a

2sin(2a)(C N.a C 4= C N
(NjN,a

C,
C,

(4.6)
Equations. (4.4), (4.5), and (4.6) can be used to find the exact location of the

aerodynamic center and the associated pitching moment for any airfoil including viscous

effects.

In order to be able to compute solutions to Egs. (4.4-4.6) we need expressions for

the normal and axial forces and their respective first and second derivatives with respect
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to angle of attack. These can be found analytically by using Egs. (3.25) and (4.1) in Egs.

(1.3) and (1.4) and differentiating to give

6/1 = cosoc[5D0 + EDO,L(N?LO,C{ (sina —cosatana,)
4.7)

~ ~ 2, . 2
+ CDO’L2 Cp, (sina—cosatana, )]

—Cpy, Sina(sina —cosatana,)

GN = sina[EDO + GDO,LGLM (sina —cosatana,)
-|-GDO’LZGLO’az(sina—cosatanaw)z] (4.8)

+Cpy, cOsa(sina —cosatana, )

~ ~ . . ~ 2
C,, =cos a[ZCDU,LZ (cosa +sinatane,, )(sina —cosatana, )C,, ,

+Cp, (cosa+sinatana,,)Cp,, ]
—sin 05[5[,0 + GDO’LGLM (sina —cosatane,)
4.9)

=~ =~ 2, . 2
+ CDO’LZ Cp, (sina—cosatana )]

—Cpy, COsa(sina —cosatana )

~

—C . sina(cosa +sinatana, )

~ ‘ ~ , . ~ 2
Cy, =sin 05[2CD0’LZ (cosa +sinatana,,)(sina —cosatana,,)C,,

+Cp, (cosa +sinatana,,)C, ]
+cos 05[5,)0 + GDO,LGLO,Q (sina —cosatane,,)
(4.10)

=~ =~ 2, . 2
+ CDO’L2 Cpo, (sSina—cosatana,,)”]

+C,,,cosa(cosa +sinatana,,)

~

—C . Sina(sina —cosatana,)
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Choa =2C,,sina(sina —cosatana,,) —2C,, , cosa(cosa +sina tana )

A,o,a

—Cos a[@DU,LELO’a (sina —cosatana,)

~ ~ ' X
- 2CDO,L2 CLO,a (cosa +sinatane, )

~ =~ 2, . 5
+2CDO,L2CLo,a (sina —cosatana,, )]

- . (4.11)
—cosalCp +C)p ,C,,(sina —cosatana, )

=~ =~ 2, . 2
+ CDO,L2 Cpo, (sina—cosatana, )]

. ~ ~ 2 . . -~ 2
—2sinaf2C, ,C,,, (cosa +sinatana, )(sina —cosatana,,)C,,

Dy, I*

+ GDO’L (cosa +sinatan aLO)GLO,a]

Cyua =—2Cp, cosa(sina —cosatana,,) - 2C, , sina(cosa +sina tana )
—Sin a[CDU,L CLO,a (sina —cosatana, )

~ ~ _ 2
- 2CD0,LZ CLO,a (cosa +sinatan aw)

~ =~ 2, 5
+2C, .Cy, (sina —cosatana,,)’]

L L o ' (4.12)
-sina[C,, +C,, ;Cp,, (sina—cosatana,,)

~ ~ 2, ,
+CDO,L2CLo,a (sina —cosatana, )’ ]

-~ -~ 2 . . -~ 2
+2cos a[2CD0,L2 Cl, (cosa+sinatana,)(sina —cosatana,,)C,,

+ GDO,L (cosa +sinatan aLO)GLO,a]

Using Egs. (4.7-4.12) in Eqgs. (4.4), (4.5), and (4.6) yields solutions for the exact location
of the aerodynamic center and the associated pitching moment including viscous effects
for any airfoil. As can be seen from Egs. (4.4) and (4.5), the x and y locations of the
aerodynamic center are both functions of angle of attack. This differs from the inviscid
solution given in Egs. (3.62) and (3.63), which yield a single point independent of angle

of attack.
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These analytical expressions are quite cumbersome, and can be difficult to use in
practical applications. However, they can be obtained symbolically using an analytical
solver [Appendix C], which can be very useful if applied in a computational framework.
The use of a third order approximation is much simpler, while remaining quite accurate

as compared to the full higher-order analytical solutions.

4.2 Third Order Approximation
A third-order approximation for the exact location of the aerodynamic center and
the associated pitching moment can be obtained using a series of higher order reductions.
This is accomplished first by using small-angle-of-attack approximations
sinaza—-a’/6, sina)=2a-4a’/3, sin(Ga)=3a-9a°/2,
cosa=l-a’/2, cosQa)=1-2a’, (4.13)
cos(3a) =1-9a*/2, tana,, =a,, +azo/3
in Egs. (4.7)-(4.12) and applying the results to Egs. (4.4)-(4.6). This yields an
intermediate result for the now reduced location of the aerodynamic center and the

associated pitching moment. Because the angle of attack, &, zero-lift angle of attack, o,

and drag are small compared to the section lift slope, C Lo.» W€ apply the second reduction
which is to neglect any terms that include fourth-order and higher combinations of &,

~

,Cp C ,and C_ ,. For airfoils at angles of attack below stall, values for these
Dy Dy ,L Dy, I

coefficients generally fall in the ranges — 0.2 <« <0.3,-0.1< «,, < 0.1,
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0.004< Cp, <0.010,-0.003<C,, , <0,0.003<C, . <0.015. Therefore, we also
apply the following simplifying approximations

) NCDO,LaLO <<i, CDO’La <~<1, “.14)
CpC, »<<1, Cp <<1, Cp, 6 <<1

Dy ™ Dy, 12

This process produces what will be referred to here as the third-order
approximation for the aerodynamic center and associated pitching moment, and can be

written as

X, 5,”0,{ K [3(aa, —a’ —a}y/2)+1]-K,(1+3a’/2) -1 }_5

¢ G, | K430k, /2)+ 3K, (@ 2—aa,, — 2K, [3-1) —aZ, — 1

(4.15)
Yae _ 5 arnO,a K,(Ba-2a,,)+ GDO,L +3aK, + o, (1+ aio/?’) +C
c o | K143, /2) +3K, (a2 - aa, - 2K, 3-1) -}, —1 A
(4.16)
E —of a, (K, +K,—a},/3-1)+6aK,(K, +K,)
e TEm0) K (14302, /2) + 3K, (@22 —aa,, — 2K, [3—1)—aZ, —1
4.17)
where K1 = 5L0,0!5D0,L2 > Kz = 5D0 /(26L0,a)
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Notice that Egs. (4.15-4.17) are of the same form of Egs. (3.62-3.64), however, they

remain functions of angle of attack and drag. This can further be seen by setting all drag

term in Eqs. (4.15-4.17) to zero and applying the approximation aLOZ <<1 to obtain

~

X Cm o ~
Yo o g me G (4.18)
c L0,
C -
Foe _ Zmva (0g V4 C (4.19)
¢ CLO,a )
C, =C,.a,) (4.20)

My

Here we have recovered exactly the small angle approximation of Egs. (3.62-3.64). This
result at first glance seems somewhat remarkable; however, it is to be expected as the
results obtained in Egs. (4.18-4.20) include the small-angle-of-attack approximations
given by Eq. (4.13) and upon removal of all remaining viscous drag terms should result
in the small angle approximation of the inviscid solution obtained in Chapter 3. Solutions

for Egs. (4.15-4.17) were obtained symbolically using an analytical solver [Appendix C].

4.3 Sample Results

Equations (4.15)—(4.17) can be used as a rather accurate estimate for the
aerodynamic center and associated pitching moment for any airfoil. Of course, the
accuracy of any estimate for the aerodynamic center is also dependent on the accuracy to
which the coefficients in Egs. (3.25), (4.1), and (4.3) are known. These coefficients can

be obtained from a set of data using the least-squares regression method outlined in
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Section 4.4. For example, data for several NACA 4-digit airfoils were digitized from
plots of lift, drag, and pitching moment published by Abbott and von Doenhoff [26].
These data were fit to Egs. (3.25), (4.1), and (4.3) using the least-squares regression
method outlined in Section 4.4. The resulting acrodynamic coefficients for these airfoils

are shown in Table 4.

Table 4. Coefficients for several NACA airfoils as computed from the least-squares algorithm outlined
in Section 4.4 using data from Abbott and von Doenhoff [26].

NACA 1408 1412 2412 2424 4415 4418 4424
a5 -0.01457  -0.02160  -0.04556 -0.03540 -0.07343  -0.06851 -0.06285
GL,U, 6.18977  6.02468 5.75810  5.18830  5.68654  5.71103 5.38038
NDO 0.00515  0.00587  0.00640  0.00845  0.00751 0.00790  0.00879
GDO,L -0.00176  -0.00135  -0.00208 -0.00076  -0.00254  -0.00256 -0.00178
GDOVLZ 0.00802  0.00537  0.00619  0.00636  0.00419  0.00401 0.00533

Cino.a 0.86774  0.54239  0.49412  0.56386  0.64057  0.66330  0.68051
Ch 4 -0.03221  -0.01838  -0.02634  0.02839  -0.02452  -0.02351  -0.00591

Cu.N -0.53493 042972  -0.41442 -0.43311 -0.46852 -0.47075 -0.47971

Figure 10 shows the aerodynamic center location for each of these airfoils over
the range — 15 < a < 15 as computed from the exact solution obtained from analytical
derivatives applied to Egs. (4.4) and (4.5), as well as the estimated aecrodynamic center
predicted by Egs. (4.15) and (4.16). As can be seen from these results, Egs. (4.15) and
(4.16) quite accurately match the exact solutions for each of the airfoils considered. Note
that for the airfoils shown in Fig. 10 at positive angles of attack, the aerodynamic center
is positioned higher than at negative angles of attack. This vertical deviation can be as

large as 2% of the chord. The aerodynamic center predicted by thin airfoil theory is the
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quarter-chord location for all airfoils, and is also included in the plot for reference. Notice
that the aerodynamic center predictions including viscous effects deviate from the quarter
chord by as much as 3.5% in the axial direction and 4.5% in the normal direction as a

percentage of chord.

0.03 A
2424 O Thin Airfoil Theory Eq. (3.6)
/ o  Full Higher Order Solution
0.02 - -=-=- Egs. (4.15) and (4.16)
0.01 A
0.00 A u]
o i
3, ool e 4424
a_]5\ 1412
/ /
-0.021 1408
2412 w S
—0.03 1 / 4418 ’ / ¥
a=-15° \ 3
—0.04 A )
-0.05 1 4415

0.215 0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255
x/c

Figure 10. The aerodynamic center location as predicted by the full viscous higher
order solution and the third order viscous approximation given by Eqs. (4.15) and
(4.16) over a range of angles of attack below stall.

Table 5 gives results for the root-mean-square error between solutions for the
location of the aerodynamic center and the associated pitching moment obtained using
the full higher order relations and the third order approximation respectively for the

selection of NACA 4-digit airfoils. This table also gives the root-mean-square error
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between the (x,y) . pairs using the full higher order relations and the third order

approximation. It can be seen from this table that indeed the third order approximation is
quite accurate when compared to the much more complicated and cumbersome higher

order solution with the largest RMS error on the order of 1E-03.

Table 5. Root-mean-square error between the full higher order exact location of the
aerodynamic center and the associated pitching moment, and the third order
approximations given by Eqs. (4.15-4.17) respectively using data obtained from
Abbott and Von Doenhoff [26]. Root-mean-square error between the high order and

third order (x,y), pairs for a selection of NACA 4 digit airfoils. Percent deviation

between the average high order (x, ), pair and the traditional quarter chord location
of the aerodynamic center for a selection of NACA 4 digit airfoils.

Root Mean Squared Error %
~ Deviation
Airfoil xac /C yac /C Cmm, (X, y)ac cl/4d

1408 2.02E-04 5.20E-04 1.04E-03  5.58E-04 3.68%

1412 7.51E-05 2.15E-04 4.21E-04 2.27E-04 2.24%

2412 9.18E-05 2.32E-04 4.43E-04 2.50E-04 3.50%

2424  930E-05 2.69E-04 4.59E-04  2.84E-04 4.00%

4415 1.02E-04 2.12E-04 3.99E-04 2.35E-04 4.16%

4418 9.81E-05 2.08E-04 3.90E-04 2.30E-04 4.10%

4424  1.14E-04 2.82E-04 5.07E-04 3.04E-04 3.12%
The rightmost column in Table 5 shows the deviation of the solution in percent chord for
the location of the aerodynamic center as obtained from the full higher order relations
compared to the quarter chord location predicted by thin airfoil theory. Notice that the
percent deviation varies for the selection of NACA airfoils, with the majority between

approximately 2-4%. While the deviation of the aerodynamic center from the

commonly used approximation of the quarter chord may seem insignificant for most
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airfoils, results have strong implications for the pitch stability of complete aircraft,
which generally have a static margin on the order of 5%.

Results shown in Fig. 9 for the numerically obtained location of the aerodynamic
center in inviscid flow show definite trends for the location of the aerodynamic center as
a function of airfoil camber and thickness. It can be seen from Fig. 9 as camber increases

the location of the aerodynamic center increases in the y direction. As thickness

increases the aerodynamic center location shifts rearward of the quarter chord location.
With the addition of viscous effects as shown in Fig. 10, it is difficult to exactly discern a
trend as a function of camber and airfoil thickness. However, the addition of camber or
thickness appear to move the location of the aerodynamic center forward and down
below the quarter chord location predicted by thin airfoil theory. Given that the results
in Fig. 10 were predicted using experimental viscous data, we can expect that correctly
predicting the location of the aerodynamic center for any airfoil depends greatly on the
method used and accuracy to which we can obtain data.

Viscous aerodynamic data can also be predicted numerical through the utilization
of an integral boundary layer method such as is done in the MIT airfoil development code
XFOIL [27]. This widely available tool is used for preliminary airfoil analysis and
design. More detail on the methods employed within XFOIL can be found from a number
of sources [28-30]. Numerical data for the same selection of NACA 4-digit airfoils as
discussed above was independently obtained using XFOIL. These data were fit to Egs.
(3.25), (4.1), and (4.3) using the least-squares regression method outlined in Section 4.4.

Figure 11 shows results for the acrodynamic center location for each of the airfoils over
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the range — 15 < o < 15 as computed from the exact solution obtained from analytical
derivatives applied to Egs. (4.4) and (4.5), as well as the estimated aerodynamic center
predicted by Eqgs. (4.15) and (4.16). In both the case of the full higher order analytical
solution and the third order approximation, the location of the aerodynamic center in
general remains a function of angle of attack. As can be seen from these results, Eqs.
(4.15) and (4.16) quite accurately match the exact solutions for each of the airfoils
considered. Note that for the airfoils shown in Fig. 11 at positive angles of attack, the

aerodynamic center is positioned higher than at negative angles of attack.

O Thin Airfoil Theory Eq. (3.6) 1412
O  Full Higher Order Solution
0.0241°"" Egs. (4.15) and (4.16)
0.01
0.00 A
a=15°___
—0.01 A
B
a=-15°"
—-0.02 A
4424
—0.03 Qt>
—0.04 ?
2424
—0.05 A
0.236 0.238 0.240 0.242 0.244 0.246 0.248 0.250

x/c

Figure 11. The aerodynamic center location as predicted by the full viscous higher
order solution and the third order viscous approximation given by Eqs. (4.15) and
(4.16) over a range of angle of attack below stall.
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Table 6 shows results for the root-mean-square errors and percent deviations

described for Table 5, however, using data obtained from XFOIL.

Table 6. Root-mean-square error between the full higher order exact location of the
aerodynamic center and the associated pitching moment, and the second order
approximations given by Eqs. (4.15-4.17) respectively using data obtained from

XFOIL [27]. Root-mean-square error between the high order and third order (x,y),,

pairs for a selection of NACA 4 digit airfoils. Percent deviation between the average
high order (x, ), pair and the traditional quarter chord location of the aerodynamic

center for a selection of NACA 4 digit airfoils.

Root Mean Squared Error %
~ Deviation
Airfoil Xoe /C Vac /C Cmac ()C, y)ac cl4

1408 1.53E-04 4.01E-04 8.21E-04 4.29E-04 2.12%

1412 8.61E-05 2.50E-04 5.18E-04  2.65E-04 2.05%

2412 1.06E-04 2.79E-04 5.80E-04 2.99E-04 1.10%

2424  6.01E-05 1.77E-04 3.43E-04 1.87E-04 3.85%

4415 1.16E-04 2.24E-04 4.71E-04  2.52E-04 4.64%

4418 8.98E-05 1.73E-04 3.54E-04 1.95E-04 4.62%

4424  8.27E-05 1.79E-04 3.48E-04 1.97E-04 3.58%
Notice that the percent deviation across all of the airfoils examined varies between
approximately 1-5%. As was stated before, while the deviation of the aerodynamic
center from the commonly used approximation of the quarter chord may seem
insignificant for most airfoils, results have strong implications for the pitch stability
of complete aircraft, which generally have a static margin on the order of 5%.

As was the case in Fig. 10, it is difficult from Fig. 11 to determine exactly a

definite trend to the location of the aerodynamic center as a function of airfoil camber

and thickness. However, while the results in both Fig.10 and Fig. 11 follow the same

general trend, it is apparent that their results are different. From this observation we
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conclude that the ability to correctly predict the location of the aerodynamic center
for any airfoil using the full higher order analytical solution or the third order
approximations depends greatly on the method used and accuracy to which we can
obtain data.

To understand how large the deviation of the aerodynamic center as a function of
angle of attack can be in comparison to the airfoil geometry, results for the NACA 1408
airfoil are shown in Fig. 12. Predictions for the aerodynamic center from three methods are
included. These are thin airfoil theory, the inviscid prediction from Egs. (3.62) and (3.63)
using data from the vortex panel method [Appendix B], and full viscous results from Eqgs.
(4.4) and (4.5) using data from Abbott and von Doenhoff [26]. Included is the estimate
given in Egs. (4.15) and (4.16), which overlap the exact solution from Egs. (4.4) and (4.5).
Note that while thin airfoil theory and the inviscid solution predict an aerodynamic center
that is independent of angle of attack, the full viscous solution predicts that the
aerodynamic center is a function of angle of attack. For this airfoil, experimental results
show that the aerodynamic center falls below the geometry of the airfoil at angles of attack
within normal operating conditions.

Figure 13 shows the pitching moment for the same airfoil as a function of angle of
attack predicted from thin airfoil theory, the inviscid prediction from Eq. (3.64) using data
from the vortex panel method [Appendix B], and full viscous results from Eq. (4.6)
compared to the estimate given in Eq. (4.17) using data from Abbott and von Doenhoff
[26]. In this case, thin airfoil theory matches the full viscous solution surprisingly well,

partially due to the fact that viscosity tends to cancel thickness effects [31].
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Figure 12. Aerodynamic center locations for the NACA 1408 airfoil as predicted by

thin airfoil theory, inviscid computations, and experimental data.
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Figure 13. Pitching moment about the aerodynamic center of the NACA 1408 airfoil

as predicted by thin airfoil theory, inviscid computations, and experimental data.

The process of finding values for the location of the aerodynamic center and the
associated pitching moment from the full higher order solution, or the third order

approximation given by Egs. (4.15-4.17) can be done in general for any airfoil. This

~

requires knowledge of the coefficients C ,, @;, C

m0,a°

~ ~

C'm,Nﬂ Cm,A’ CDO’ CDO,L’ and

~

C to be used in Egs. (3.25), (4.1), and (4.3). Values for these coefficients must be

D,.I*
evaluated numerically. This can be done using the method of Least Squares Regression in
a manner similar to that which was done in Section 3.3, however for airfoils in viscous

flow.
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4.4 Least Squares Regression Fit Coefficients — Viscous Flow

A vertical least squares regression method was used in Section 3.3 to develop

inviscid fit equations for C, ,, @,,, and Gm_m to be used in the classical thin-airfoil

relations for C , and 6,,,0 , given by Eqgs. (3.1) and (3.2). These inviscid fit equations,

given by Egs. (3.50)-(3.52) can also be used for a thin-airfoil approximation of airfoils in

viscous flow as Egs. (3.1) and (3.2) are not functions of drag and therefore are not altered

by the inclusion of viscous effects. Inviscid fit equations for C,, ,, and &, used in the

general airfoil theory relation for C ; (Eq. (3.25)) were also developed in Section 3.3.

These general airfoil theory inviscid fit equations, given by Egs. (3.54) and (3.53) can be
used for airfoils in viscous flow as Eq. (3.25) is not a function of drag and therefore is not

altered by the inclusion of viscous effects. However, the pitching moment fit coefficients

~ ~

C C, ~>and C, , given in Section 3.3 cannot be used for airfoils in viscous flow.

m0,a
Equation (3.55) provides solutions for these pitching moment coefficients and can only
be applied to Eq. (3.41), which is the pitching moment of an airfoil in an inviscid
flowtfield, but does not include the effects of drag.

The pitching moment of an airfoil in a viscous flowfield including the effects of

drag is defined by Eq. (4.3). Applying the least squares regression process to Eq. (4.3)

yields the following linear system of equations, which can be solved to evaluate C

m0,a?

Cm,N, and C,.
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4.21)

In order to evaluate Eq. (4.21), which includes the effects of drag, the three

unknown coefficients from Eq. (4.1) must first be obtained from the least squares

process. This yields the following linear system of equations, which can be solved to

evaluate C, , C), ;, and CDO 7

n ~

n 26
i=l

n ~ n ~ 2

26, 26,
i=l i=l

n_o o P n ~ 3

L 2

=

-

s |l

(4.22)

For the special case of a symmetric airfoil in viscous flow, several modifications

to the least squares regression fit coefficient relations must be made. The thin airfoil
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theory fit coefficient relations given by Egs. (3.50)-(3.52) for C La» @, and Cw’m(_w reduce

to

M(C,a)
— i=1
Z a
i=1

C =a,, =0, C

L,

(4.23)

Similarly the general airfoil theory fit coefficient relations for C L0.«» and @, given by

Egs. (3.54) and (3.53), reduce to

Zn: (GL[ sina,)

a, =0, C,, =" (4.24)

n

. 2
S sing,
i=1

Additionally, the linear system of equations given by Eq. (4.22) for a symmetric airfoil

reduces to

(4.25)

As was the case for Eq. (3.55) in Section 3.3.2 for symmetric airfoils, the linear system of
equations given by Eq. (4.21) becomes singular for symmetric airfoils. The reason for
this singularity is at this time not fully understood, but could be related to the fact that
C

Gm,N, and ém’ , are not linearly independent, as discussed in Section 3.2.1. From

m0,a°

general airfoil theory, it can be shown that C,, , = 0 for symmetric airfoils. However, there



73

potentially exists an unknown number of solutions for 5,,,0,&, and 5,,1, v that satisfy Eq.
(4.21). Therefore while ém  1s known in the case of symmetric airfoils, the relation

between 5,,,0,0,, and 5,,1, v 18 not presently known and we conclude
Cm,A = O’ CmO,a = f(Cm,N) (426)

A method for uniquely evaluating these two coefficients for symmetric airfoils will be the

topic of future research.

Appendix A contains results for the thin airfoil theory and general airfoil
theory least squares regression fit coefficients for a wide range of NACA 4, 5, and 6
digit airfoils in viscous flow. These coefficients can be used in order to evaluate the
location of the aerodynamic center and the associated pitching moment from the full
higher order analytical solution or the third order approximations given by Eqs.

(4.15)-(4.17).
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CHAPTER 5
CONCLUSION

Although thin airfoil theory predicts that the aerodynamic center of an airfoil lies
at the quarter chord, it is widely acknowledged that this is, in general, not correct. Rather,
the aerodynamic center lies at the quarter chord only in the limit as the airfoil thickness
and camber both approach zero. Traditional linear methods of predicting the lift and
pitching moment coefficients of airfoils as a function of angle of attack neglect
trigonometric and aerodynamic nonlinearities associated with the aerodynamics of
airfoils. Hence, traditional approximations do not accurately predict the location of the
aerodynamic center, even below stall.

General nonlinear relations for the lift and pitching moment of arbitrary airfoils as
a function of angle of attack have been developed here, which include the trigonometric
and aerodynamic nonlinearities of airfoils with arbitrary thickness and camber at arbitrary
angles of attack. These general relations are given in Egs. (3.25) and (3.41). These have
been shown to match airfoil data for arbitrary airfoils to much higher accuracy than the
traditional lift and pitching-moment equations based on thin-airfoil theory, as
demonstrated in Figs. 5 and 6. However, the significance of general airfoil formulation
is not that it more accurately fits experimental data or CFD simulations. Indeed, the
accuracy of the traditional equations based on thin airfoil theory is well within the
accuracy of experimental or CFD results. Rather the significance of the general airfoil

formulation becomes apparent when second derivatives for lift or pitching moment
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as a function of angle of attack are needed, which is the case in the estimation of the
location of the aerodynamic center.

Using the general airfoil theory formulation, it has been shown that the
aerodynamic center of any arbitrary airfoil in inviscid flow is a single point, independent
of angle of attack, given by Egs. (3.62) and (3.63). The corresponding pitching moment
about the aerodynamic center is given in Eq. (3.64). This matches results predicted by
second order finite difference approximations from numerical vortex panel data to
machine precision and differs from estimations based on thin airfoil theory, as shown in
Fig. 7.

Estimates for the aerodynamic center based on thin airfoil theory also neglect any
effects due to viscosity. It has been shown that, once viscous effects are included, the
aerodynamic center is no longer a single point, but is in general a function of angle
of attack. The degree to which we can accurately calculate the location of the
aerodynamic center depends greatly on the method used and accuracy to which we
can obtain viscous aerodynamic data, whether experimentally or numerically.

A database of least squares regression fit coefficients has been obtained for a wide
range of NACA 4, 5, and 6 digit airfoils in viscous flow. These fit coefficients for both
thin airfoil theory and general airfoil theory can be used in order to predict the location of
the aerodynamic center and the associated pitching moment.

While the difference in the location of the aerodynamic center predicted using
thin airfoil theory and general airfoil theory is typically only on the order of one to four

percent, this becomes significant when predicting important aircraft static stability



76
parameters, such as the static margin, which is generally less than 10 percent of the mean

chord.
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APPENDIX A

Coefficients obtained from Experimental Data, Abbott and von Doenhoff [26]

S 'E Thin Airfoil Theory General Airfoil Theory Drag

< .5

“<| Re Cra aro Concra Croa aro Cono,a Con,a Cun Cpo Cpo. Cpo.s? a
o | 3E+6  6.181421  0.000000  0.000000 6.189582  0.000000 = 0.000000 = 0.004605  0.000000  0.010322 6107°
8 | 6E+6  6.100116  0.000000  0.000000 6.112849  0.000000 = 0.000000 = 0.004932  0.000000  0.006375 710 9°
< | 9E+6  6.205852  0.000000  0.000000  6.216357  0.000000 = 0.000000 = 0.005218  0.000000  0.004296 | -7t7°
o | 3E+6  6.089632  0.000000  0.000000 6.103080  0.000000 = 0.000000 = 0.005508  0.000000  0.005776 | -8t08°
S | 6E+6  6.344274  0.000000  0.000000  6.357797  0.000000 = 0.000000 = 0.005672  0.000000  0.003633 8108
S | 9E+6 6.289587  0.000000  0.000000  6.305649  0.000000 = 0.000000 = 0.005724  0.000000  0.002693 8108
~ | 3E+6  6.118259  0.000000  0.000000 6.149872  0.000000 = 0.000000 = 0.005790  0.000000  0.005896 | -12to12°
S | 6E+6  6.183314  0.000000  0.000000 6.214021  0.000000 = 0.000000 = 0.005765  0.000000  0.004433 | -ll1tol12°
S | 9E+6  6.177693  0.000000  0.000000  6.206802  0.000000 = 0.000000 = 0.005741  0.000000  0.003659 | -12to12°
o | 3E+6  6.168086 -0.014590 -0.023982 6.189772 -0.014568 0.867737 -0.032207 -0.534927 0.005151 -0.001759  0.008015 | -8to10°
S | 6E+6  6.301070 -0.015595 -0.020854 6.314351 -0.015616 0.657319  0.016932  -0.457367 0.005628 -0.001324  0.004731 [ -8t 10°
— | 9E+6  6.261541 -0.014387  -0.022490 6.276694 -0.014417 0.786238  0.006101  -0.499470 0.005452 -0.000871 0.003754 [ -9tol0°
o | 3E+6  6.090839 -0.019132 -0.013013 6.111727 -0.019172 0.380982 -0.015116 -0.372816 0.005596 -0.001388 0.006575 | -10to10°
S | 6E+6  6.170836 -0.015147 -0.016562 6.194926 -0.015158 0.613587 -0.010143  -0.446676 0.005586 -0.000938  0.004934 | -l1l1to12°
~ | 9E+6  6.118072 -0.015833 -0.014208 6.138984 -0.015888 0.557532 -0.004581 -0.429428 0.005466 -0.001177  0.004469 [ -10to13°
~ | 3Et6  6.001755 -0.021536 -0.021405 6.024677 -0.021601 0.542386 -0.018384  -0.429724 0.005874 -0.001349 0.005367 | -10to 11
S | 6E+6  6.091784 -0.016802 -0.024162 6.119747 -0.016853 0.752251  0.011942  -0.493578 0.005647 -0.000234 0.003854 | -10to12°
~ | 9E+6  6.133597 -0.015878 -0.025978 6.155697 -0.015923 0.823418  0.001949  -0.518380 0.005612 -0.000413  0.003618 [ -10to10°
w | 3E+6  6.091846 -0.032610 -0.041816 6.110525 -0.032682 0.702485 -0.030144 -0.475019 0.005342 -0.001752 0.006456 [ -8t09"
S | 6E+6  6.073660 -0.030098 -0.047586 6.095314 -0.030130 0.849237 -0.017421 -0.525911 0.005410 -0.001553 0.004769 | -8t0o10°
| 9E+6  6.095589 -0.028866 -0.048982 6.117383 -0.028918 0.878380 -0.007438 -0.534153  0.005266 -0.001212 0.004401 | -8to10°
o | 3E+6  6.221635 -0.034988 -0.045486 6.235686 -0.035010 0.696673 -0.012175 -0.471751 0.005809 -0.002028 0.006576 | -9to12°
S | 6E+6 6251356 -0.034312  -0.044758  6.265188 -0.034359 0.703542 -0.010119 -0.472714 0.005564 -0.001365 0.004977 [ -9tol12°
| 9E+6  6.239127  -0.034324  -0.045221  6.252557 -0.034349  0.704642 -0.014919 -0.475254  0.005516 -0.001074 0.004153 | -8t012°

o]
—_




o | 3E¥6 5735879 -0.045493 -0.038841 5758102 -0.045558 0.494124 -0.026337 -0.414420 0.006400 -0.002082 0.006188 | -8t012°
T | 6E+6 5726450 -0.042593 -0.039865 5748630 -0.042669 0.503643 -0.002176 -0.419038 0.006127 -0.001044 0.004288 | -8t010°
| 9E+6  5.942871 -0.036513 -0.040618 5965259 -0.036666 0.583567 0.010841  -0.439381 0.005789 -0.000889 0.004053 | -8t010°
w | 3E+6  5.673667 -0.032895 -0.049724 5.688055 -0.032973 0.825610 -0.007745 -0.528454 0.006668 -0.001301 0.004762 | -8t 10°
S | 6E+6 5776581 -0.030134 -0.047428 5.802051 -0.030312 0.824218 0.003879  -0.528124 0.005967 -0.000648 0.004677 | -12t012°
| 9E+6  6.060433 -0.028849 -0.047768 6.084060 -0.028982 0.893157  0.001861  -0.536979 0.006032 -0.000497 0.003724 | -10t012°
w | 3E+6  5.690563 -0.041339 -0.040239 5705331 -0.041378 0.535882 -0.002243 -0.426241 0.007403 -0.001636 0.004916 | -8Bto8®

S | 6E+6 5747011 -0.039935 -0.040612 5773990 -0.039976 0.580398 -0.008685 -0.436021 0.006735 -0.000788 0.004581 | -13t012°
| 9E+6  5.853511 -0.037723 -0.038116 5.868849 -0.037785 0.607039 -0.004419 -0.445511 0.006768 -0.000695 0.003672 | -10t012°
_ | 3E+6 5482827 -0.028982 -0.042323 5.498960 -0.028997 0.815568 -0.037512 -0.525707 0.007632 -0.000838 0.004986 | -10t08°
S | 6E+6 5713580 -0.030407 -0.040514 5727586 -0.030463 0.726069 -0.021705 -0.489988 0.007334 -0.000569 0.003890 | -8to8®

| 9E+6 5785282 -0.029825 -0.040106 5.800076 -0.029873 0.685713  0.009042  -0.477229 0.007079 -0.000464 0.003418 | -8to8®

+ | 3E+6 5175580 -0.035389 -0.037437 5.188299 -0.035403 0.563858  0.028392  -0.433109 0.008448 -0.000758 0.006356 | -8to8®

S | 6E+6 5350890 -0.032789 -0.045521 5373682 -0.032961 0.633593 -0.019616 -0.460110 0.007809  0.000012  0.004896 | -12t010°
| 9E+6  5.610325 -0.033106 -0.037235 5.626174 -0.033163 0.594102  0.022710  -0.440452 0.007935 -0.000054 0.004354 | -10t010°
o | 3E+6  5.843108 -0.066762 -0.090013 5.859192 -0.066813 0.688557 -0.110713 -0.491349 0.006453 -0.003365 0.007242 | Bto8®

3 | 6E+6  6.057261 -0.067199 -0.089448 6.051318 -0.067214 0.702923  0.012215 -0.472179 0.006145 -0.002666 0.004725 | -8t010°
Y | 9E+6  6.012884 -0.067075 -0.092156 6.037428 -0.067063 0.713035 -0.009479 -0.483424 0.005847 -0.002491 0.004867 | 9t 10°
w | 3E+6  5.673553 -0.073398 -0.090258 5.686539 -0.073430 0.640571 -0.024522 -0.468523 0.007506 -0.002540 0.004190 | -10t08°
S | 6E06 5.716730 -0.075196 -0.086808 5720777 -0.075246 0.626418 -0.016697 -0.459590 0.006401 -0.002415 0.005108 | -10t010°
Y | 9E+6 5796120 -0.071852 -0.090048 5.811326 -0.071862 0.662697 -0.004711 -0.470227 0.006122 -0.001896 0.004183 | -10t010°
w | 3E+6 5706191 -0.068478 -0.084508 5711032 -0.068508 0.663301 -0.023506 -0.470753 0.007900 -0.002560 0.004011 | -10t08°
S | 6E+6 5718503 -0.064300 -0.083977 5733114 -0.064363 0.693895  0.008571  -0.479265 0.007046 -0.002218 0.004647 | -8to8®

Y | 6E+6  5.798059 -0.064913 -0.082845 5.810737 -0.064985 0.682779  0.001780  -0.476071 0.006525 -0.001724 0.004529 | -8to8®

_ | 3E+6  5.534859 -0.065228 -0.078026 5545927 -0.065266 0.667796 0.012813  -0.467814 0.008336 -0.001958 0.004871 | -12t012°
S | 6E+6  5.693683 -0.065589 -0.077986 5705878 -0.065621 0.629405 0.014778  -0.453952 0.007577 -0.001511 0.003834 | -12to10°
Y | 9E+6  5.852726  -0.065733 -0.081660 5.862931 -0.065732 0.631135 0.033698  -0.450134 0.007321 -0.001302 0.003362 | -12t08°
+ | 3E+6 5375882 -0.062803 -0.076719 5380375 -0.062847 0.680507 -0.005914 -0.479714 0.008792 -0.001781 0.005330 | -10t08°
S | 6E+6  5.572906 -0.060265 -0.079361 5578377 -0.060305 0.673568 0.030947  -0.470261 0.007901 -0.000985 0.004075 | -12t08°
Y | 9E+6  5.700749 -0.060103 -0.077360 5706967 -0.060148 0.672613  0.042659  -0.469273 0.007456 _-0.000936 0.003755 | -10t08°
« | 3B+6 5979710 -0.019216 -0.012753 6.000759 -0.019264 0336826 0.015158 -0.358299 0.006988 -0.002303 0.005238 | 10t 12"
S | 6E+6  6.017477 -0.020185 -0.012110 6.052772 -0.020274 0319013  0.014421  -0.350984 0.006204 -0.001394 0.004294 | -12t012°
™ | 9E+6  6.045419 -0.020622 -0.008444 6.075906 -0.020749 0.262420  0.000879  -0.336407 0.006018 -0.001191 0.003785 | -10t0 14"

(2]
[\




v 3E+6  5.938874 -0.018845 -0.005843 5.957677 -0.018911 0.179111 0.019991 -0.296773 0.007177 -0.002109 0.005745 | -10to12°
§ 6E+6 5955494 -0.018042 -0.006619 5.989454 -0.018160 0.206994 0.023113  -0.310226 0.006277 -0.000981 0.004422 | -10to12°
- 9E+6  6.051603 -0.016673 -0.006509 6.081734 -0.016773 0.236275 0.030306  -0.318413  0.006209 -0.000690 0.003684 [ -10to14°
0 3E+6  5.666324 -0.028672 -0.012240 5.686134 -0.028728 0.134011 0.021702 -0.284113 0.007502 -0.001445 0.004915 | -13to10°
§ 6E+6  5.901569 -0.024154 -0.005806 5.922443 -0.024202 0.145350 0.017164 -0.288819 0.006939 -0.000901 0.003773 | -lltol2°
- 9E+6  5.972945 -0.024113 -0.006768 6.001261 -0.024236 0.153323  0.017369 -0.294219 0.006868 -0.000667 0.003080 | -11tol12°
= 3E+6  5.292591 -0.013700 -0.007753 5.307409 -0.013725 0.162467 0.043692 -0.290738 0.007698 -0.001933 0.006848 | -12to10°
S 6E+6  5.581320 -0.017372 -0.008857 5.602794 -0.017395 0.200770 0.036733  -0.302184 0.007136 -0.000854 0.005001 | -12to12°
- 9E+6 5.812017 -0.018011 -0.005844 5.832891 -0.018016 0.260178 0.023671  -0.321054 0.007064 -0.000776 0.003765 | -10to13°
3 3E+6  5.145307 -0.019800 0.003153 5.163103 -0.019864 0.060366 0.032572 -0.237427 0.008119  0.000464 0.006599 | -8tol0°
5 6E+6  5.336206 -0.019260 -0.005488 5.351846 -0.019281 0.027999 0.031523  -0.233952 0.007721 0.000156  0.004959 | -10to8°
9E+6  5.600812 -0.021085 -0.001784 5.620946 -0.021129 0.052746  0.025534  -0.250493 0.007429  0.000219  0.003576 | -10to10°
3E+6 6.610284  0.000000  0.000000 6.624243  0.000000 - 0.000000 - 0.005444  0.000000 0.005917 | *0to4.2°
- 0.006812  0.000000  0.006056 | *+42to10°
S 6E+6  6.522596  0.000000  0.000000 6.544813  0.000000 - 0.000000 - 0.005117  0.000000 0.005335 | *0t03.8°
@' 0.006412  0.000000 0.004515 | *3.8to11°
9E+6 6.591281  0.000000  0.000000 6.613621  0.000000 - 0.000000 - 0.004827  0.000000 0.009516 | *0to4.3°
0.006123  0.000000  0.004327 | +43t012°
3E+6 6.432701  0.000000  0.000000 6.446674  0.000000 - 0.000000 - 0.004955  0.000000  0.006401 | +0t02.9°
o 0.006733  0.000000 0.006217 | £2.9to11°
1= 6E+6 6.409336 0.000000  0.000000 6.423554  0.000000 - 0.000000 - 0.004461  0.000000 0.020149 | +0to3.0°
g 0.006252  0.000000  0.004444 | £3.0to 11°
9E+6 6.386475 0.000000  0.000000 6.400883  0.000000 - 0.000000 - 0.004168  0.000000  0.026835 | +0t02.2°
0.005457  0.000000  0.004516 | +2.2to11°

€8




3E+6 6.284688  0.000000  0.000000  6.299905  0.000000 - 0.000000 - 0.005420  0.000000  0.003999 | +o0to4.1°

- 0.006465  0.000000  0.007108 | +4.1to010°
3. 6E+6 6.307967  0.000000  0.000000 6.322507  0.000000 - 0.000000 - 0.004557  0.000000  0.007069 | +0to03.1°
g? 0.005900  0.000000  0.005261 [ +3.1to012°
9E+6 6.351646  0.000000  0.000000 6.365895  0.000000 - 0.000000 - 0.004242  0.000000 0.014563 | +0t03.7°
0.005982  0.000000  0.004563 | +3.7to012°

3E+6 6.088551 0.000000  0.000000 6.103873  0.000000 - 0.000000 - 0.005902  0.000000  0.001455 | +0t03.7°

- 0.004802  0.000000  0.010974 | +3.7to0 10°
3. 6E+6 6.147039  0.000000  0.000000 6.162439  0.000000 - 0.000000 - 0.004929  0.000000  0.002372 | £0t03.7°
g? 0.005968  0.000000  0.005974 | +3.7t0 11°
9E+6 6.357993  0.000000  0.000000 6.373660  0.000000 - 0.000000 - 0.004598  0.000000  0.003845 [ +0to03.6°
0.006077  0.000000  0.005080 | +3.6to012°

3E+6 6.240483  0.000000  0.000000 6.254937  0.000000 - 0.000000 - 0.003914  0.000000  0.007907 | +0to3.0°

o 0.006444  0.000000  0.005926 | +3.0to0 10°
3. 6E+6 6.252728  0.000000  0.000000 6.266979  0.000000 - 0.000000 - 0.003771  0.000000  0.023150 [ +0to2.5°
é 0.005755  0.000000  0.005422 | +2.5t0 11°
9E+6 6.264319  0.000000  0.000000 6.278622  0.000000 - 0.000000 - 0.003705  0.000000 0.014162 | +0to1.7°
0.005495  0.000000  0.004594 | +1.7to 11°

0.006072  -0.001970  0.006479 | -10to-1.6°

3E+6 6.198918 -0.014102 -0.038737 6.214146 -0.014118 1.335019 0.038239  -0.680002 0.004664 -0.002224  0.009535 | -1.6t03.8°
0.010585 -0.010807 0.012718 | 3.8t010°

o 0.005999 -0.001015 0.005052 | -10to-1.1°
:'; 6E+6 6.278492 -0.015401 -0.035940 6.293619 -0.015419 1.162492  0.002331  -0.628835 0.004205 -0.005527 0.019424 | -1.1t03.2°
© 0.007369  -0.004373  0.006767 | 3.2t010°
0.005747 -0.000762  0.004336 | -10to-1.4°

9E+6 6.286199 -0.013423 -0.038645 6.301603 -0.013440 1.349683 -0.015975 -0.688873 0.005151 -0.015126 0.037611 | -1.4t03.5°
0.007075  -0.004410  0.006538 | 3.5t01l1°

° ]
AN




3E+6 6.199212  0.000000  0.000000 6.213161  0.000000 0.000000 0.004937  0.000000  0.001957 | +0t03.6°

- 0.006322  0.000000  0.007255 | +3.6to0 10°
3. 6E+6 6.290727  0.000000  0.000000 6.305509  0.000000 0.000000 0.004100  0.000000 0.003314 [ +0t03.0°
@ 0.005826  0.000000  0.005518 | +3.0t0 11°
9E+6 6.342150  0.000000  0.000000 6.355733  0.000000 0.000000 0.003948  0.000000  0.002935 | +0to02.6°
0.005655  0.000000  0.004866 | +2.6to011°

3E+6 6.017035 0.000000  0.000000 6.030681  0.000000 0.000000 0.004033  0.000000 0.010373 | +0t02.7°

o 0.006497  0.000000  0.007556 | +2.7to 10°
3. 6E+6 6.131810 0.000000  0.000000 6.146134  0.000000 0.000000 0.003564  0.000000 0.012201 [ +0to1.8°
g 0.005791  0.000000  0.005753 | +1.8to0 10°
9E+6 6.166211  0.000000  0.000000 6.173896  0.000000 0.000000 0.003164  0.000000  0.044701 [ +0to1.6°
0.005544  0.000000  0.005136 | +1.6to0 10°

3E+6 5.783112  0.000000  0.000000 5.791156  0.000000 0.000000 0.004582  0.000000  0.001936 | +0t03.3°

- 0.007468  0.000000 0.008278 | +£33to8°
3. 6E+6 6.001973  0.000000  0.000000 6.015151  0.000000 0.000000 0.003626  0.000000 0.010872 | +0to02.6°
g 0.006057  0.000000 0.007059 | +£2.6t09°
9E+6 6.031154  0.000000  0.000000 6.044237  0.000000 0.000000 0.003362  0.000000  0.024016 [ +0to2.2°
0.006045  0.000000  0.005356 | +2.2t010°

3E+6 5.552828 0.000000  0.000000 5.565584  0.000000 0.000000 0.004781  0.000000 0.003304 | *0to4.4°

w 0.003118  0.000000 0.024523 | *44t08°
S 6E+6 5.917977  0.000000  0.000000 5.931538  0.000000 0.000000 0.003795  0.000000 0.005105 | *0t03.5°
g 0.005225  0.000000 0.011594 | *35t08°
9E+6 5.971148 0.000000  0.000000 5.984244  0.000000 0.000000 0.003099  0.000000 0.021320 | *0to4.I°
0.006318  0.000000  0.004715 | *4.1t09°

¢8
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APPENDIX B

VORTEX PANEL METHOD

The following program is a numerical vortex panel method designed to predict lift and
pitching moment coefficients for any 4-digit NACA airfoil in inviscid flow. Additionally,
the results for coefficient of lift are compared against those from thin airfoil theory.

%% Freestream Conditions
v00=1; % m/s, incoming freestream velocity
prompt = 'Enter the desired free stream velocity [m/s] ';

o)

v00 = input (prompt); % incoming freestream velocity

[o)

% Airfoil Properties

prompt = 'Enter an even number of nodes you would like to use for the
4-Digit NACA airfoil ';
N = input (prompt); % Total number of nodes to be used

prompt = 'Enter the lowest angle of attack value (deg) to be examined

]
’

AOA low = input (prompt);

prompt = 'Enter the highest angle of attack value (deg) to be
examined ';
AOA high = input (prompt) ;

prompt = 'Do you want to use cosine clustering? (y) yes, (n) no ';
flag = input (prompt, 's'):;

prompt = 'Do you want to close the airfoil trailing edge? (y/n) ';
tailFlag = input (prompt,'s'); % Total number of nodes to be used

AOA Range = AOA low:1:AOA high;

% Series of user prompts for the specific NACA airfoil

prompt = 'What is the first digit of the 4-Digit NACA airfoil? ';

m = input (prompt); % al

m=m/100;

prompt = 'What is the second digit of the 4-Digit NACA airfoil? ';

p = input (prompt); % a2

P=p/10;

prompt = 'What are the last two digits of the 4-Digit NACA airfoil? ';
t = input (prompt); % a3

t=t/100;

prompt = 'Input the desired chord length ';

c = input (prompt); % % Total chord length

foilNameNum = [m*100,p*10,t*100];
al = num2str (foilNameNum(1l,1));
a2 = num2str (foilNameNum(l,2));
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a3 = num2str (foilNameNum(1l,3));
foilNameStr = strcat(al,a2,a3l3);

% Airfoil geometry generation
[ X,Y,xC,yC] = airFoilGeometry( N,c,p,m,t,foilNameStr, flag, tailFlag
);

% Thin Airfoil Theory
[ cl thinAirfoil ] = thinAirfoilTheory( m,p,c,AOA Range );

Vortex Strength Distribution
gamma, V, L ] = vortexStrength( X,Y,xC,yC,AO0A Range,N,v00 );

— o°

Calculated Coefficient of 1lift from vortex panels
cL, cMLE,] = aeroCoefficient( X,Y,c,L,v00,gamma,AOCA Range,N);

— o°

o\

Plots and Tables

figure (2) %Coefficient of Lift

pl = plot (AOCA Range,cL,'-or'); % calculated CL

hold on

p2 = plot (AOA Range,cl thinAirfoil,'-.d'"'); %alpha in degrees plotted
against coefficient of 1lift for the thinairfoil theory

xlabel ('Angle of Attack, Alpha')

ylabel ('Coefficient of Lift, cL')

$title('Coefficient of Lift vs Angle of Attack')

legend ([pl,p2], ['cL NACA ' foilNameStr ' (calculated)'],'cL Thin
Airfoil Theory', 'Location', 'northwest')

figure (3) %Coefficient of Moment

p3 = plot (AOA Range,cMLE, '-ob');

xlabel ('Angle of Attack, Alpha')

ylabel ('Coefficient of Moment leading edge, cM')
title('Coefficient of Moment vs Angle of Attack')
legend ([p3],['cM (Leading Edge) NACA ' foilNameStr '
Calculated'], 'Location', "northeast')

function [ X,Y,xC,yC,x1lpull,ylpull] = airFoilGeometry (
N,c,p,m,t,foilNameStr, flag, tailFlag )
SAIRFOILGEOMETRY Summary of this function goes here

o)

% Detailed explanation goes here
dtheta = pi/ ((N/2)-0.5); %designation of delta theta values
for i=1:N/2

if flag == 'y'

Q

% Cosine Clustering for x values along the chord line
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x(1) = ( c*(0.5)*(l-cos(i*dtheta-0. 5*dtheta)))
distribution = ' (cosine clustered)'
elseif flag == 'n'
x(1i) = (2 /N) 17
distribution = ' (uniform distribution)';
end

%$half thickness of the airfoil

if tailFlag == "y'
%Yt(') = (5*t*c* (0. 2969*sqrt )/c)+(-0. 1260) (x (i)/c)+(—
0.3516)* (x(1)/c)"24+40.2843* ( )/c) A3+ -0. 1036) y/c)™4));
Yt (i ) = (5*t*c* (0. 2969*sqrt )/c)+(-0. 1260) ( (1) /c)+ (-
0.3523)* )y/c)”24+0.2836% ( )/c) A3+( 0. 1022) y/c)™4));
elself tallFlag == 'n'
Yt(') = (5*t*c* (0. 2969*sqrt )/c)+(-0.1260) * (x(1)/c)+ (-
0.3516) * )/c)”24+0.2843%* ( )/c) A3+ O.lOl5)*(x(i)/c)A4));
end
if x(1) <= (p*c)
dYc (i) = 2*m* (p-(x(1)/c))/(p"2);
else
dyc (i) = ((2*m)/ (1-p)"2)* (p-(x(1)/c))
end
theta (i) = atan(d¥Yc(i)); % angle distribution around the airfoil
if x (i) <= p*c
Yc (i) = (m*(x(1)/p"2)*(2*p- y/c))); %Smean chamber line
else
Yc (i) = (m* ((c-x(1))/(1-p)"2)*(1+(x(1)/c)-2*p)); S%Smean chamber
line
end
%$physical structure of the airfoil
XL (1) = (x(1)+Yt(i)*sin(theta(i))); % x position along the lower
surface
YL (i) = (Yc(i)-Yt(i)*cos(theta(i))); % y position along the lower
surface
XU (1) = (x(1)-Yt(i)*sin(theta(i))); % x position along the upper
surface
YU (i) = (Yc(i)+Yt(i)*cos(theta(i))); % y position along the upper
surface

%Normal points along the panels, normalized by chord length

xN(N/2+1) = XU (i) /c;
N(N/2+i) = i)/c;
N(N/2+1-1i) = i)/c;
N(N/2+1-1) = YL (i) /c;

end
J=1;

for i=N/2:-1: 1
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XLt (j) = XL(i);
YLt () = YL(1i);
J=3+1;

end

X=[XLt,XU]/c; % x along the foil, normalized by chord length
Y=[YLt,YU]/c; % y along the foil, normalized by chord length

for i=1:N-1
xC (i) = (X(i)+X(i+1))/2; Scontrol points
yC (1) = (Y(1)+Y(i+1l))/2; %control points

end

figure (1) ;
plot(X,Y,'--b'") % airfoil profile
hold on
plot (x/c,Yc/c,'k") % mean camber line
) panel intersection points
)

% mid-panel control points

)

plot (xN, yN, 'ok'
plot (xC,yC, '*r'
xlabel ('x")
ylabel('y")
title(['NACA ' foilNameStr ' Airfoil ' distribution])

legend ('Airfoil Profile', 'Mean Camber Line', 'Panel Intersection
Point', 'Control Point')

axis equal

ch = get(gca, 'children');
x1lpull = get(ch(l), 'xdata');
ylpull = get(ch(l), 'ydata');

hold off

end

function [ c¢clT ] = thinAirfoilTheory( m,p,c,AOA Range )
$THINAIRFOILTHEORY Summary of this function goes here
% Detailed explanation goes here

syms cT xT T

z1l = ((m*xT)/p"2) * (2*p-(xT/cT)); %eq for mean camber line
z2 m* ((cT-xT)/ (1-p) "2) * (1+ (XT/cT)-2*p); %eq for mean camber line

dz1l diff(z1l,xT); %dz/dx
dz2 = diff(z2,xT); %dz/dx

xT = (cT/2)*(1l-cos(T));

dzl = 1/5 - ((cT/2)*(l-cos(T)))/ (2*cT);
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dz2 = (cT/9 - ((cT/2)*(1l-cos(T)))/9)/cT - ((cT/2)*(1l-cos(T)))/(9*cT) -
1/45;

cT=1;

testl = eval (dZ1l);

test2 = eval (dZ2);

%dz/dt integrated between bounds given in wiki handout

partl = eval( int(dZzl1*(cos(T)-1),T,0,1.36944) ); %eq 4.61 Anderson
Aerodynamics

part2 = eval( int (dZ2* (cos(T)-1),T,1.36944,pi)); %eq 4.61 Anderson
Aerodynamics

alphazZero = (-1/pi) * partl -(1/pi)* part2; %eq 4.61 % Anderson
Aerodynamics

for i=1:length (AOA Range)

alphaT (i) =AOA Range (i); %alpha values in degrees

alpharT(i)= alphaT (i) *(pi/180); %alpha values in radians

clT (i)=2*pi* (alpharT (i) -alphaZero); %coefficent of 1lift for each
values of alpha eqg 4.60

end

end

function [ gamma, V, L ] = vortexStrength( X,Y,xC,yC,AOA Range,N,v00 )
SVORTEXSTRENGTH Summary of this function goes here

% Detailed explanation goes here

for j=1:N-1
L(j) = sgrt ((X(J+1)-X(3))"2 + (Y (3+1)-Y(3))"2); %length of each panel
end

A=zeros (N);% set all elements to zero
for i=1:N-1

for j=1:N-1

k1 = (1/L(3)) * ((X(J+1)-X(J))*(xC(1)-X(]J)) + (Y (J+1)-
Y(3))* (yC(1)-Y(J)));
eta = (= (Y(J+1)-Y(3))*(xC(1)-X(J)) + (X(J+1)-X(3))*(yC(1)~-

Y(3)))/L(3)

phi = atan2(eta*L(j),eta”2+xi"2-xi*L(]j));
psi = (1/2)*log((xi"2+eta™2)/ ((xi-L(J))"2+eta”2));

all = (X(3+1)-X(3));



al2 = (=Y (3+1)+Y (7))

a2l = (Y(J+1)-Y(3));

a2z = (X(J+1)-X(3));

bll = ((L(j)-x1i)*phiteta*psi);

bl2 = (xi*phi-eta* pSl)

b21 = (eta*phi-(L(Jj)-x1i)*psi-L(J));

b22 = (-eta*phi- x1*p31+L(j));

pll = (1/(2 * pi * L(j)"2)) * (all*bll + al2*b21);
pl2 = (1/(2 * pi * L(3)"2)) * (all*bl2 + al2*b22);
p2l = (1/(2 * pi * L(j)"2)) * (a2l*bll + a22*b2l);
p22 = (1/(2 * pi * L(3)"2)) * (a2l*bl2 + a22*b22);
A(i,3) = A(i,3) + ((X(i+1)-X(1))/L(1))*p21 - ((Y(i+l

) /L (1)) *pll;

A(L,J+1) = A(i,3+1) + ((X(i+1)-X(1))/L(1))*p22 - ((Y

Y(i))/L(1))*pl2;
end

% Application of the kutta condition
(N,1)=1;

%$Formation of the Right Hand Side

count=1;
for k = 1:1:1length (AOA Range)

alphar=AOA Range (1,k)*pi/180;

for i=1:N-1

)_

(

B(i) = v00 * (((Y(i+1l)-Y(i))*cos(alphar)—-(X(i+1l)-
X (1))*sin(alphar))/L(i)); %solution matrix
end
B(N)=0;
if count ==
B = B';
end
gamma (:,count) = A\B; %solving for vortex panel strenght,

each panel control point
V(:,count)=abs (gamma (:,count) ) ;

count=count+1;
end

end

i+1) -

gamma,

at

91
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function [ cL, cMLE] = aeroCoefficient( X,Y,c,L,v00,gamma,AOA Range,N)
SAEROCOEFFICIENT Summary of this function goes here
% Detailed explanation goes here

[o)

% 1lift coefficient

for j=1:length (AOA Range);
sumL=0;
alphar=A0OA Range (j) *pi/180;

for 1i=1:N-1
temp = (L(i)/c)*((gamma (i,j) + gamma (i+1,7))/v00);
sumL sumL + temp;

end
cL(j) = sumL;
end

o)

% moment coefficient

for j=1:length (AOA Range);

sumM=0;

alphar=A0OA Range (j) *pi/180;
for i=1:N-1

argl =
((2*X (i) *gamma (i, J) )+ (X (1) *gamma (i+1, 7)) +(X(i+1) *gamma (i, ) )+ (2*X (i+1)*
gamma (i+1,3)))/ (c*v00) *cos (alphar) ;
arg2 =
(2*Y (i) *gamma (1, J) + (Y (1) *gamma (i+1, 7))+ (Y (i+1l) *gamma (i,]) )+ (2*Y (i+1) *ga
mma (i+1,3)))/ (c*v00) *sin (alphar) ;
temp2 = (L(i)/c) * (argl + arg2);
sumM = sumM + temp2;
end
cMLE (j) = -(1/3) * sumM;

end

end
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APPENDIX C

The following program is a symbolic solver designed to analytically solve the full high
order location of the aerodynamic center and the associated pitching moment in viscous
flow using the general airfoil theory equations. This solver also solves for the second
order approximation of the acrodynamic center and the associated pitching moment.

syms a alo cloa cmo cma CDO CDOL CDOL2 CMLEa CMLEN CMLEA CMc4 K1 K2
syms cl (a)
syms CM(cl) CD(cl)

% prompt = ('Inviscid (i) or Viscous (v) 2?2 ");

% flag = input (prompt,'s');
prompt = ('Small angle approximation (s), General Airfoil Theory?
)

, Thin Airfoil w/o small angle (t) ');
flagAngle = input (prompt, 's"');

% prompt = ('Run Test? (y/n)"');
% testFlag = input (prompt, 's'):;

flag = 'v'
flagAngle = 'g'
testFlag = 'y'
if flag == '"i' $ inviscid flow
if flagAngle == 's'
cl(a) = cloa*(a-alo); % small angle approximation
CA = -cl*a; % inviscid axial force coeff w/small angle approx

CN = cl; % inviscid normal force coeff w/small angle approx

[o) Q

%3CM = cma*atcmo; $ traditional pitching moment equation
CM = CMc4-cl/4;

elseif flagAngle == 't'
cl(a) = cloa*(a-alo); % small angle approximation
CA = -cl*sin(a); % inviscid axial force coeff w/o small angle
approx
CN = cl*cos(a); % inviscid normal force coeff w/o small angle
approx
$CM = cma*at+cmo;
CM = CMc4-cl/4; % traditional pitching moment equation
elseif flagAngle == 'g'

cl(a) = cloa*(sin(a)-tan(alo)*cos(a)); % non-small angle
approximation
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[o)

CA = -cl*sin(a); % inviscid axial force coefficient (Phillips
4.8.24)

CN cl*cos(a); % inviscid normal force coefficient (Phillips
4.8.25)

CM = CMLEa*sin(2*a)+cl*CMLEN*cos (a) -cl*CMLEA*sin(a); % pitching
moment equation modified in paper

$CM = CMLEa*sin(2*a)-cl*CMLEN*cos (a)+cl*CMLEA*tan (alo) *sin(a) ;

% joukowski pitching moment equation

end
cla(a) = diff(cl,a);
claa(a) = diff(cla,a);
CAa = diff(CA,a);
CAaa = diff (CAa,a);
CNa = diff (CN,a);
CNaa = diff (CNa, a);
CMa = diff(CM, a);
CMaa = diff (CMa,a);
elseif flag == 'v' % viscous flow
if flagAngle == 's'
cl(a) = cloa*(a-alo); % small angle approximation
CD = CDO + CDOL*cl + CDOL2*cl*cl; % parabolic drag model
CA = -cl*a+CD; % viscous axial force coeff w/small angle approx
CN = cl+CD*a; % viscous normal force coeff w/small angle approx
%CM = cma*atcmo; % traditional pitching moment equation
CM = CMc4-cl/4; % traditional pitching moment equation
elseif flagAngle == 't'
cl(a) = cloa*(a-alo); % small angle approximation
CD = CDO + CDOL*cl + CDOL2*cl*cl; % parabolic drag model
CA = -cl*sin(a)+CD*cos(a); % viscous axial force coeff w/o
small angle approx
CN = cl*cos(a)+CD*sin(a); % viscous normal force coeff w/o
small angle approx
%CM = cma*atcmo;
CM = CMc4-cl/4; % traditional pitching moment equation
elseif flagAngle == 'g'
cl(a) = cloa*(sin(a)-tan(alo)*cos(a)); % non-small angle
approximation
CD = CDO + CDOL*cl + CDOL2*cl*cl; % parabolic drag model
CA = -cl*sin(a) + CD*cos(a); % viscous axial force coefficient
(Phillips 4.8.24)
CN = cl*cos(a) + CD*sin(a); % viscous normal force coefficient

(Phillips 4.8.25)
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CM =

CMLEa*sin (2*a) +CMLEN* (cl*cos (a)+CD*sin (a) ) +CMLEA* (CD*cos (a)-cl*sin(a)) ;

o)

°

(corrected) joukowski pitching moment equation

end

cla(a) = diff(cl,a);:

claa(a) = diff(cla,a);
$claa(a) = -cl(a)

CAa = diff (CA,a);

CRhAaa = diff (CAa,a);
CNa = diff (CN,a);

CNaa = diff (CNa,a);
CMa = diff(CM,a);

CMaa = diff (CMa,a);

[o)

end % inviscid vs viscous

Xac = (CRa*CMaa-CMa*CAaa)/ (CNa*CARaa-CAa*CNaa); % aerodynamic center
(Phillips 4.8.29)
XacO = Xac;

[o)

°

Yac = (CNa*CMaa-CMa*CNaa)/ (CNa*CARaa-CAa*CNaa); % aerodynamic center
(Phillips 4.8.30)
YacO = Yac;

o

°

cmAC = CM + Xac*CN - Yac*CA; % moment coefficient (Phillips 4.8.31)
cmACO = cmAC;

2002222220222 222222°22°22°2°

% Xac = -2*CMLEa* ((2*sin(2*a) *CAa+cos (2*a) *CAaa) / (CNa*CAaa—-CAa*CNaa) ) -
CMLEN;
% Xac simplify (Xac)

Yac -2*CMLEa* ((2*sin (2*a) *CNa+cos (2*a) *CNaa) / (CNa*CRAaa-

CAa*CNaa) ) +CMLEA;

Yac = simplify(Yac)

cmAC = CM + Xac*CN - Yac*CA; % moment coefficient (Phillips 4.8.31)
cmAC = simplify (cmAC)
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sdisp (' ')

o\°

disp('Xac_ original')
pretty (Xac) ;
disp('Yac original')
pretty (Yac);
disp ('cMAC original')
pretty (cmAC) ;

o° o° oe

o° oo

%% Full high order solution

if testFlag == 'y'
cpass = 'k'; % color
mpass = '.'; % marker
[ xsave,ysave,cmsave ] = plotting( Xac,Yac,cmAC, cpass, mpass);
dataSave (:,1) = xsave(:);
dataSave(:,2) = ysave(:);
dataSave(:,3) = cmsave(:);
end
%% Order Reduction
if flag == 'v'
% EgOrderReduction (

CAa,CAaa,CNa,CNaa,CMa,CMaa,CN,CA,CM,a,alo0,CD0,CDOL,CD0OL2,cl, testFlag
)

[CAa,CAaa,CNa,CNaa,CMa,CMaa,CN,CA,CM,a,alo,CD0,CDOL,CD0L2,cl, Xac,
Yac, cmAC,dataSave] = EgOrderReduction4 (
CAa,CAaa,CNa,CNaa,CMa,CMaa,CN,CA,CM,a,alo,CD0,CDOL,CD0L2,cl,dataSave,
testFlag );
end

disp('post reduction equations-——-——-——————————-—- - - ————————————————————
__')

% Xac = subs(Xac,cloa*CDO0L2,K1) ;

% Xac = subs (Xac,CD0/ (2*cloa),K2);
Xac = simplify(Xac);

% Yac = subs (Yac,cloa*CDOL2,K1);

% Yac = subs(Yac,CDO/ (2*cloa),K2);
Yac = simplify(Yac);

% cmAC = subs (cmAC,cloa*CDO0L2,K1);
% cmAC = subs (cmAC,CD0/ (2*cloa),K2)
cmAC = simplify (cmAC) ;

[Xac,Yac,cmAC] = OrderReduction Post( Xac,Yac,cmAC );

]

cpass = 'k'; color
mpass = '*'; % marker
[ xsave,ysave,cmsave ] = plotting( Xac,Yac,cmAC, cpass, mpass );

dataSave(:,10) = xsave(:);
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dataSave(:,11) = ysave(:);
dataSave(:,12) = cmsave(:);

% Check on final paper versions of 3rd order reduction

1 = cloa*CDOL2 ;

k2 = CD0/ (2*cloa) ;

xknum = kl1* (3* (a*alo-a”2-alo”2/2)+1)-k2* (1+3*a"2/2)-1;

kden = kl*(1+3*alo”2/2)+3*k2* (a”2/2-a*alo-2*k2/3-1)-alo™2-1;

P

XacK = -2*CMLEa/cloa* (xknum/kden)-CMLEN;

yknum = kl* (3*a-2*alo)+CDOL+3*a*k2+alo* (1+alo™2/3);
YacK = -2*CMLEa/cloa* (yknum/kden) +CMLEA;

cmacknum = alo* (kl+k2-alo”2/3-1)+6*a*k2* (kl1l+k2);
cmACK = 2*CMLEa* (cmacknum/kden) ;

[o)

% final reduced equations after hand simplification

[o)

cpass = 'c'; % color

mpass = '*'; % marker

[ xsave,ysave,cmsave ] = plotting( XacK, YacK, cmACK, cpass, mpass );
dataSave(:,7) = xsave(:);

dataSave (:,8) = ysave(:);

dataSave(:,9) = cmsave(:);

% Comparison to Dr.Hunsaker code

XU = =-3.0*cloa*CDOL2*a"2 + 3*cloa*CDOL2*a*alo -
3*cloa*CD0L2*alo”2/2 + cloa*CDOL2 + CDOL*alo - 1 - 3*CD0*a"2/(4*cloa) -
CDO/ (2*cloa) ;

yu = 3*cloa*CD0L2*a - 2*cloa*CDOL2*alo + CDOL + alo”3/3 + alo +
3*CD0*a/ (2*cloa) ;
denom = - 3*cloa*CDOL*CDOL2*a + 3*cloa*CDOL*CDOL2*alo +

3*cloa*CD0L2*alo”2/2 + cloa*CDOL2 + CDO*CDOL2 - CDOL"2 - alo”2 - 1 -
3*CDO0*CDOL*a/ (2*cloa) + 3*CDO*CDOL*alo/ (2*cloa) + 3*CD0*a"2/(4*cloa) -
3*CD0*a*alo/ (2*cloa) - 3*CDO/ (2*cloa) - CD0"2/ (2*cloa”2);

Xu = xu*2*cloa;
yu = yu*2*cloa;
denom = denom*2*cloa*cloa;

XacTest = -2*CMLEa* xu/denom - CMLEN;
YacTest = -2*CMLEa* yu/denom + CMLEA;
%cmCATest =

% NACA 1408 data from Airfoil Appendix
foilName = '1408';
a = 5% (pi/180);



alo = -0.0145678;
cloa = 6.1897717;
CDO = 0.0051515;
CDOL = -0.0017593;
CDOL2 = 0.0080154;
CMLEa = 0.8677365;
CMLEA = -0.0322065;
CMLEN = -0.5349267;

% Third Order + manual reduction Hunsaker code
format long

XacDk = eval (subs (XacK))

YacDk = eval (subs(YacK));

cmACDk = eval (subs (cmACK)) ;

% Third Order Reduction Final of Pope code
format long

XacP = eval (subs(Xac));

YacP eval (subs (Yac));

cmACP = eval (subs (cmAC)) ;

format long

XacTest = eval (subs (XacTest));
YacTest = eval (subs(YacTest));
$cmACTest = eval (subs (cmACTest))
figure (2)

plot (dataSave(:,1),dataSave(:,2),'.-b',dataSave(:,7),dataSave(:,8),"'.

r')

xlabel ('Xac')

ylabel ('Yac")

title(['AC (alpha) for NACA ',foilName])
legend ('Original', "Reduced")

axis equal

figure (3)

plot ((-15:1:15),dataSave(:,3),"'.-b")

hold on

plot((-15:1:15),dataSave(:,6),"'.-g")

plot ((-15:1:15),dataSave(:,12),"'.-k")

plot((-15:1:15),dataSave(:,9),"'.-r")
)

xlabel ("alpha'
ylabel ('cmAC")
title(['cmAC (alpha) for NACA ', foilName])

legend ('full', 'matlab', 'matlab R', 'paper')

XacP-XacTest
YacP-YacTest
XacP-XacDk
YacP-YacDk
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function [ CAa,CAaa,CNa,CNaa,CMa,CMaa,CN,CA,CM,a,alo,CD0,CDOL,CDOL2,cl,

Xac, Yac, cmAC,dataSave] = EgOrderReductioni (
CAa,CAaa,CNa,CNaa,CMa,CMaa,CN,CA,CM,a,alo0,CD0,CDOL,CD0L2,cl,dataSave,
testFlag )

$EQORDERREDUCTION4

disp ('RUN EQUATION REDUCTION FUNCTION ———————————————m oo ")
disp(' ")

%disp ('Expanded Equations')

Sdisp(" ")

CA = expand (CA) ;
CAa = expand(CAa);
CAaa = expand (CAaa);
CN = expand (CN) ;
CNa = expand(CNa) ;
CNaa = expand (CNaa) ;
CM = expand (CM) ;
CMa = expand(CMa) ;

(

CMaa = expand (CMaa) ;

[

% Using Reduced Equations in Aerodynamic Center Equations (12,13)
disp('lst Reduction —————-———-———-——————————————————————
_')

disp(' ")

CA = subs(CA, sin(a),a-a"3/6)

CA = subs (CA, sin(2*a),2*a-4*a"3/3)
CA = subs (CA, sin(3*a),3*a-9*a"3/2)
CA = subs (CA, cos(a),1-a"2/2)

CA = subs(CA, cos(2*a),1-2*a"2);

CA = subs(CA, cos(3*a),1-9*%a"2/2)

CA = subs (CA, tan(alo),alo+alo”3/3)
CAa = subs(CAa, sin(a),a-a"3/6)

CAa = subs(CRAa, sin(2*a),2*a-4*a”3/3)
CAa = subs(CRAa, sin(3*a),3*a-9*a"3/2)
CAa = subs(CRAa, cos(a),l-a"2/2)

CAa = subs(CRa, cos(2*a),1-2*a"2);
CAa = subs(CRAa, cos(3*a),1-9*%a"2/2)
CAa = subs (CAa, tan(alo),alo+alo”3/3)

CAaa = subs (CRAaa, sin(a),a-a"3/6)



CAaa =

CAaa
CAaa
CAaa
CAaa
CAaa

CN =
CN =
CN =
CN =
CN =
CN =
CN =

CNa
CNa
CNa
CNa
CNa
CNa
CNa

CNaa
CNaa
CNaa
CNaa
CNaa
CNaa
CNaa

CM =
CM =
CM =
CM =
CM =
CM =
CM =

CMa
CMa
CMa
CMa
CMa
CMa
CMa

CMaa
CMaa
CMaa
CMaa
CMaa
CMaa

subs (CRaa, sin(2*a),2*a-4*a~3/3);
= subs (CRAaa, sin(3*a),3*a-9*a"3/2);
= subs (CRaa, cos(a),1-a"2/2);
= subs (CRAaa, cos(2*a),1-2*a"2);
= subs (CRAaa, cos(3*a),1-9*a"2/2);
= subs (CRAaa, tan(alo),alo+alo”3/3);
subs (CN, sin(a),a-a”3/6);
subs (CN, sin(2*a),2*a-4*a~3/3);
subs (CN, sin(3*a),3*a-9*a”3/2);
subs (CN, cos(a),1-a"2/2);
subs (CN, cos(2*a),1-2*a"2);
subs (CN, cos(3*a),1-9*a”2/2);
subs (CN, tan(alo),alo+alo”3/3);
subs (CNa, sin(a),a-a”3/6);
subs (CNa, sin(2*a),2*a-4*a~3/3);
subs (CNa, sin(3*a),3*a-9*a"3/2);
subs (CNa, cos(a),1-a"2/2);
subs (CNa, cos(2*a),1-2*a"2);
subs (CNa, cos(3*a),1-9*a”2/2);
subs (CNa, tan(alo),alo+alo”3/3);
= subs (CNaa, sin(a),a-a"3/6);
= subs (CNaa, sin(2*a),2*a-4*a~3/3);
= subs (CNaa, sin(3*a),3*a-9*a"3/2);
= subs (CNaa, cos(a),1-a"2/2);
= subs (CNaa, cos(2*a),1-2*a"2);
= subs (CNaa, cos(3*a),1-9*a"2/2);
= subs (CNaa, tan(alo),alo+alo”3/3);
subs (CM, sin(a),a-a”3/6);
subs (CM, sin(2*a),2*a-4*a~3/3);
subs (CM, sin(3*a),3*a-9*a~3/2);
subs (CM, cos(a),1-a"2/2);
subs (CM, cos(2*a),1-2*a"2);
subs (CM, cos(3*a),1-9*a”2/2);
subs (CM, tan(alo),alo+alo”3/3);
subs (CMa, sin(a),a-a”3/6);
subs (CMa, sin(2*a),2*a-4*a~3/3);
subs (CMa, sin(3*a),3*a-9*a"3/2);
subs (CMa, cos(a),1-a"2/2);
subs (CMa, cos(2*a),1-2*a"2);
subs (CMa, cos(3*a),1-9*a”2/2);
subs (CMa, tan(alo),alo+alo”3/3);
= subs(CMaa, sin(a),a-a"3/6);
= subs (CMaa, sin(2*a),2*a-4*a~3/3);
= subs(CMaa, sin(3*a),3*a-9*a"3/2);
= subs (CMaa, cos(a),1-a"2/2);
= subs (CMaa, cos(2*a),1-2*a"2);
= subs(CMaa, cos(3*a),1-9*a"2/2);
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CMaa

xDL =

xDR
xNL
xNR

yDL
yDR
yNL
yNR

Xac
Yac
cmAC

cpas
mpas

S
S

subs (CMaa, tan(alo),alo+alo”3/3);

’

(CAa*CMaa) ;
(CMa*CAaa) ;
( )
( )

’

CNa*CAaa
CAa*CNaa

’

(CNa*CMaa)

(CMa*CNaa) ;
(CNa*CAaa) ;
( )

’

CAa*CNaa) ;
(xDL-xDR) / (XNL-xNR) ; % aerodynamic center (Phillips 4.8.29)

(yDL-yDR )/ (yNL-yNR ); % aerodynamic center (Phillips 4.8.30)
CM + Xac*CN - Yac*CA; % moment coefficient (Phillips 4.8.31)

= 'g'; % color

; % marker

plotting( Xac,Yac,cmAC, cpass, mpass );

disp('Second Reduction (alpha)---—--——-——-——-————————————————~——~—~—~—~—~——~———

Xac
Xac
Xac
Xac
Xac
Xac
Xac
Xac
Xac
Xac
Xac
Xac
Xac

Xac
Xac
Xac
Xac
Xac
Xac

= expand (Xac

)
)
= expand (cmAC) ;

simplify (Xac);
= simplify(Yac);
= simplify (cmAC) ;

’

expand (Yac

subs (Xac, a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 1loa
subs (Xac, a*a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 15a
subs (Xac, a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); $ l4da
subs (Xac, a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 13a
subs (Xac, a*a*a*a*a*a*a*a*a*a*a*a, 0); % 12a

subs (Xac, a*a*a*a*a*a*a*a*a*a*a, 0); % 1lla

subs (Xac, a*a*a*a*a*a*a*a*a*a, 0); % 10a

subs (Xac, a*a*a*a*a*a*a*a*a, 0); % 9a

subs (Xac, a*a*a*a*a*a*a*a, 0); % 8a

subs (Xac, a*a*a*a*a*a*a, 0); % 7a

subs (Xac, a*a*a*a*a*a, 0); % 6a

subs (Xac, a*a*a*a*a, 0); % ba

subs (Xac, a*a*a*a, 0); % 4a

subs (Xac, alo*alo*alo*alo*alo*alo*alo*alo*alo, 0); % 9alo

(
subs (Xac, alo*alo*alo*alo*alo*alo*alo*alo, 0); % 8alo
subs (Xac, alo*alo*alo*alo*alo*alo*alo, 0); % 7alo
subs (Xac, alo*alo*alo*alo*alo*alo, 0); % 6alo
subs (Xac, alo*alo*alo*alo*alo, 0); % 5alo

(

subs (Xac, alo*alo*alo*alo, 0); % 4alo
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Yac =
Yac =
Yac =
Yac =
Yac =
Yac =
Yac =
Yac =
Yac =
Yac =
Yac =
Yac =
Yac =

Yac =
Yac =
Yac =
Yac =
Yac =
Yac =

CcmAC =
cmAC =
cmAC =
cmAC =
cmAC =
cmAC =
cmAC =
cmAC =
CcmAC =
CcmAC =
CcmAC =
cmAC =
cmAC =
cmAC =
cmAC =

CcmAC =
cmAC =
cmAC =
cmAC =
cmAC =
cmAC =

cpass
mpass

subs (Yac, a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); $ 1lo6a
subs (Yac, a*a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 15a
subs (Yac, a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 1l4da
subs (Yac, a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 13a
subs (Yac, a*a*a*a*a*a*a*a*a*a*a*a, 0); $ 12a
subs (Yac, a*a*a*a*a*a*a*a*a*a*a, 0); % 1lla
subs (Yac, a*a*a*a*a*a*a*a*a*a, 0); % 10a
subs (Yac, a*a*a*a*a*a*a*a*a, 0); % 9a
subs (Yac, a*a*a*a*a*a*a*a, 0); % 8a
subs (Yac, a*a*a*a*a*a*a, 0); % 7a
subs (Yac, a*a*a*a*a*a, 0); % 6a
subs (Yac, a*a*a*a*a, 0); % ba
subs (Yac, a*a*a*a, 0); % 4a
subs (Yac, alo*alo*alo*alo*alo*alo*alo*alo*alo, 0); % 9alo
subs (Yac, alo*alo*alo*alo*alo*alo*alo*alo, 0); % 8alo
subs (Yac, alo*alo*alo*alo*alo*alo*alo, 0); % 7alo
subs (Yac, alo*alo*alo*alo*alo*alo, 0); % 6alo
subs (Yac, alo*alo*alo*alo*alo, 0); % 5alo
subs (Yac, alo*alo*alo*alo, 0); % 4alo
subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 18a
subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 17a
subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 1loa
subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 1b5a
subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % l4a
subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 13a
subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a, 0); % 12a
subs (cmAC, a*a*a*a*a*a*a*a*a*a*a, 0); % 1lla
subs (cmAC, a*a*a*a*a*a*a*a*a*a, 0); % 10a
subs (cmAC, a*a*a*a*a*a*a*a*a, 0); % 9a
subs (cmAC, a*a*a*a*a*a*a*a, 0); % 8a
subs (cmAC, a*a*a*a*a*a*a, 0); % Ta
subs (cmAC, a*a*a*a*a*a, 0); % 6a
subs (cmAC, a*a*a*a*a, 0); % 5a
subs (cmAC, a*a*a*a, 0); % 4a
subs (cmAC, alo*alo*alo*alo*alo*alo*alo*alo*alo, 0); % 9alo
subs (cmAC, alo*alo*alo*alo*alo*alo*alo*alo, 0); % 8alo
subs (cmAC, alo*alo*alo*alo*alo*alo*alo, 0); % 7alo
subs (cmAC, alo*alo*alo*alo*alo*alo, 0); % 6alo
subs (cmAC, alo*alo*alo*alo*alo, 0); % 5alo
subs (cmAC, alo*alo*alo*alo, 0); % 4alo
'm'; % color
= ! ; % marker
plotting( Xac,Yac,cmAC, cpass, mpass);
disp('3rd Reduction (alphatalo)--—-—-—--"""""""""""""—"—"—-"——————————————
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% Xac = simplify(Xac);

% Yac = simplify(Yac);

% cmAC = simplify(cmAC) ;

Xac = subs(Xac, a*a*a*alo, 0);

Xac = subs(Xac, a*a*alo*alo, 0);
Xac = subs(Xac, a*alo*alo*alo, 0);
Yac = subs(Yac, a*a*a*alo, 0);

Yac = subs(Yac, a*a*alo*alo, 0);
Yac = subs(Yac, a*alo*alo*alo, 0);
cmAC = subs(cmAC, a*a*a*alo, 0);
cmAC = subs(cmAC, a*a*alo*alo, 0);
cmAC = subs (cmAC, a*alo*alo*alo, 0);
cpass = 'r'; % color

mpass = '.'; % marker

plotting( Xac,Yac,cmAC, cpass, mpass);

disp('4th Reduction (drag combos)-——————————————————————————————————————

disp(' ")

Xac = expand (Xac);

Yac = expand(Yac);
cmAC = expand (cmAC) ;

% Xac = simplify(Xac);
% Yac = simplify(Yac

) 7
cmAC = simplify (cmAC) ;

o

Xac = subs (Xac, CDOL*CDOL2*alo*alo, 0);
Xac = subs (Xac, CDO*CDOL2*alo*alo, 0);

Xac = subs (Xac, CDOL2*CDOL2*alo*alo, 0);
Xac = subs (Xac, CDOL*CDOL*alo*alo, 0);
$Xac = subs (Xac, CDO*CDOL2*alo, 0);

Xac = subs (Xac, CDO*CDOL2*alo*alo*alo, 0);

Xac = subs (Xac, CDO*CDOL*alo*alo*alo, 0);
Xac = subs (Xac, CDOL*alo*alo*alo, 0);
Xac = subs (Xac, CDOL*CDOL2*a*alo, 0);
Xac = subs (Xac, CDO*CDOL2*a*alo, O0);

Xac = subs (Xac, CDO*CDOL2*a*a*a, O0);

Xac = subs (Xac, CDO*CDOL2*a*a, O0);

Xac = subs (Xac, CDO*CDOL*a*a*a, 0);

Xac = subs (Xac, CDO*CDOL*a*a, O0);

Xac = subs (Xac, CDOL2*CDOL2*alo*alo, O0);
Xac = subs (Xac, CDOL2*CDOL2*a*a, O0);

Xac = subs (Xac, CDOL2*CDOL2*a*alo, 0);
Xac = subs (Xac, CDO*a*a*a, 0);

Xac = subs (Xac, CDOL*a*a*a, 0);

Xac = subs (Xac, CDOL2*a*a*a, 0);

Xac = subs (Xac, CDOL2*alo*alo*alo, 0);
Xac = subs (Xac, CDOL2*alo*alo*a, 0);



Xac

Yac =

Yac
Yac
Yac
$Yac

Yac =

Yac
Yac
Yac
Yac
Yac
Yac
Yac
Yac
Yac
Yac
Yac
Yac
Yac
Yac
Yac
Yac
Yac

cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC
cmAC

cmAC

subs (Xac,

subs
subs
subs

(
(
(

Yac,
Yac,
Yac,

subs (Yac,

subs (Yac,

subs (Yac,

subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs

subs

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

Yac,
Yac,
Yac,
Yac,
Yac,
Yac,
Yac,
Yac,
Yac,
Yac,
Yac,
Yac,
Yac,
Yac,
Yac,
Yac,
Yac,

cmAC,

subs
subs
subs
subs
subs

cmAC,
cmAC,
cmAC,
cmAC,

subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs

subs (cmAC,

(

(

(

(

(

(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,

CDOL2*alo*a*a,

0);

CDOL*CDOL2*alo*alo, 0);
CDO*CDOL2*alo*alo, 0);
CDOL2*CDOL2*alo*alo, 0);
CDOL*CDOL*alo*alo, 0);
CDO*CDOL2*alo,

CDO*CDOL2*alo*alo*alo,
CDO*CDOL*alo*alo*alo, 0);

0);

CDOL*alo*alo*alo, 0);
CDOL*CDOL2*a*alo, O0);
CDO*CDOL2*a*alo, 0);
CDO*CDOL2*a*a*a, O0);
CDO*CDO0L2*a*a,
CDO*CDOL*a*a*a,

CDO*CDOL*a*a,

0);
0);

0);

CDOL2*CDOL2*alo*alo, O0);
CDOL2*CDOL2*a*a, O0);
CDOL2*CDOL2*a*alo, 0);

CDO*a*a*a,

CDOL*a*a*a,
CDO0L2*a*a*a, O0);

0);
0);

Iz

CDOL2*alo*alo*alo, 0);
CDOL2*alo*alo*a, 0);
CDO0L2*alo*a*a,

0);

CDOL*CDOL2*alo*alo, 0);

0);

’

’

CDO*CDOL2*alo*alo, 0);
CDOL2*CDOL2*alo*alo, 0);
CDOL*CDOL*alo*alo, 0);
CDO*CDOL2*alo, 0)

’

0);

’

0);

0);

CDO*alo*alo*alo, 0);

CDO*CDOL2*alo*alo*alo, 0);
CDO*CDOL*alo*alo*alo,
CDOL*alo*alo*alo, 0);
CDOL*CDOL2*a*alo, O0);
CDO*CDOL2*a*alo, 0);
CDO*CDOL2*a*a*a, 0);
CDO*CDOL2*a*a, 0);
CDO*CDOL*a*a*a, 0);
CDO*CDOL*a*a,
CDOL2*CDOL2*alo*alo,
CDOL2*CDOL2*a*a, 0);
CDOL2*CDOL2*a*alo, 0);
CDO*a*a*a, 0)
CDOL*a*a*a,
CDO0L2*a*a*a,
CDOL2*alo*alo*alo, 0);
CDOL2*alo*alo*a, 0);
CDOL2*alo*a*a, 0);

0);

0);
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cpass =
mpass =

end

= subs

= subs

cmAC,
cmAC,
cCmAC,
cmAC,
cmAC,
cmAC,
cmAC,
cmAC,
CmAC,
cmAC,
cmAC,
cmAC,
cmAC,
cmAC,
cmAC,
cmAC,
cmAC,
cmAC,
cmAC,
cmAC,
cmAC,
cmAC,
CmAC,
cmAC,
cmAC,
cmAC,
cmAC,
cCmAC,
cCmAC,
cmAC,

subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

v v o)

= xsave(:);
= ysave (:);
cmsave (:);

CDO*CDOL*alo*alo,

0);

CDO*CDOL*a*alo, 0);

CDO*CDOL*CDOL2*a,

CDO*CDOL*CDOL*a*alo, 0);

0);

CDO*CDOL*a*alo*alo, 0);

CDO*a*alo*alo, 0)
CDO*a*a*alo, 0);
CDO*CDO*a*a, O0);
CDO*CDO*a*alo, 0)

’

Iz

CDO*CDO*CDOL*a, 0);
CDO*CDO*CDOL*a*alo, 0);

CDO*CDO*CDOL*alo,
CDO*CDO*CDO*a, 0)
CDO*CDO*CDO0*a*a,
CDO*CDO*a*a*alo,
CDO*CDO*CDOL2*a,

CDO*CDO*alo*alo*alo, 0);

CDOL*a*a*alo, 0);

0);
0);
0);
0);

CDOL*a*alo*alo, 0);
CDOL*CDOL2*a*a, 0);

CDOL*CDOL*a*a, 0)

’

CDOL*CDOL*a*a*alo, 0);

CDOL*CDOL*a*alo,
CDOL*CDOL*CDO*a,

CDOL*CDOL*CDOL2*a*a, 0);

CDOL*CDOL*CDOL*a,

0);
0);

0);

CDOL*CDOL*CDOL*alo, 0);
CDOL*CDOL*CDOL*a*a, 0);

CDOL*CDOL*CDOL*a*alo, 0);

CDOL*CDOL*CDOL*a*a*alo,

c'; % color
'; % marker
[ xsave, ysave,cmsave ]
dataSave(:,4)
dataSave(:,5)
dataSave (:, 6)

% Reduced model after equation reduction

’

0);

plotting( Xac, Yac,cmAC,
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mpass

cpass,

plotting( Xac,Yac,cmAC,

-15:1:15

1;
for i

disp('test case-———————————-——---- -

Detailed explanation goes here

SPLOTTING Summary of this function goes here
J

function [ xsave,ysave,cmsave ]

)
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'0006"';
0.004604558646014009;

= 0;
-0.250178140301351;

6.18958236335962;

0;

= 0.010321990400509;
0;

NACA 0006 data from Airfoil Appendix

foilName
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'0012';
0.00578980686984839;

0;
0.00589558911360464;

CMLEa = O0;
-0.248792267683901;

6.14987213746803;

% NACA 0012 data from Airfoil Appendix
foilName

alo

cloa
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CMLEA = O0;
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'1408';

6.1897717;

= 0.0051515;
-0.0017593;
0.0080154;
0.8677365;

CMLEA = -0.0322065;

= 1*(pi/180);
CMLEN = -0.5349267;

= -0.0145678;

NACA 1408 data from Airfoil Appendix
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°

alo
cloa
CDO
CDOL
CDOL2
CMLEa

o
oe
o
o
o
o
o
o
o
o
o
o
o
o
o
oo
oo
oo
oe
oo
oo
oo
oo
oo
oo
oo
oo
oo
oe
oo
oo
oo
oo
oo
oe
oe
oe
oe
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
oo

o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\©

o\©
o\©

o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o
o©
o©
oe
o©
oe
o©
oe
oe
oe



107

NACA 1412 data from Airfoil Appendix

foilName

o
°

'1412°';

o\

= i*(pi/180);

oe

= -0.0216014394282236;

alo

oe

6.02467660173922;
= 0.00587402293302405;

= -0.00134903274883071;
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CDOL

o\

0.00536741319382652;

0.542385993671305;
CMLEA = -0.0183836491952911;
CMLEN = -0.429724431443849;
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NACA 2410 data from Airfoil Appendix

foilName

°

o
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'2410";

i*(pi/180);
= -0.0350101171310758;

o\

o\°

alo

o\

6.23568559320461;

cloa
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oe

0.00580887637682987;
= -0.00202820935139267;

oe
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o\

0.00657649746862038;

CDOL2
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CMLEa = 0.696673178623474;
CMLEA = -0.0121747099302256;
CMLEN = -0.471751212453014;
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NACA 2412 data from Airfoil Appendix

foilName

o
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'2412";

oe

= i*(pi/180);

oe

= -0.0455580244243206;

alo
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5.75810202691551;
= 0.00640032868295237;

= -0.00208181252700775;
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NACA 2424 data from Airfoil Appendix

foilName

o
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124247 ;
i*(pi/180);
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-0.0354033949938163;

5.18829911765801;
= 0.00844763624697131;
= -0.00075778327782238;
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NACA 4412 data from Airfoil Appendix

foilName

°

o
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44127 ;

oe
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= -0.066813366237402;

= 1*(pi/180);
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= 11.392192346341583;
= 0.02056918358643251;

cloa
CDO

o\

-0.026492229858322114;
0.11743008498986997;

CDOL
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CMLEa = 0.7257122234947719;
CMLEA = -1.2715452269152567;
CMLEN = -0.5147128651813082;
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XNACA 0006 data from Airfoil Appendix

foilName

%
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o\

6.24725277916935;
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0;
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CDOL
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xNACA 0012 data from Airfoil Appendix

foilName

o
°

o\

'0012";
i* (pi/180);

o\
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oe

6.4126395802572;
= 0.00520318347755638;

:O;
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0;
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xNACA 1408 data from Airfoil Appendix

foilName

%

oe

'1408"';

oe

= 1*(pi/180);

o\

= -0.0180652358272032;

alo

o\

6.32226645998854;

cloa
CDO

oe

0.00461237846328006;
= -0.00136642750620477;
= 0.00717274422939727;

oe

CDOL
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CDOL2

o\
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XNACA 1412 data from Airfoil Appendix

foilName

o
°

o\

'1412";

oe

= i*(pi/180);

oe
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= -0.0178982511770066;
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CDO = 0.00703366550835054;
CDOL = -0.00259656735970565;
CDOL2 = 0.0031449907696781;
CMLEa = 0.699822363875463;
CMLEA = -0.029676210380603;

CMLEN = -0.469847771314208;
©9900900900990990909009009009900909099009009000900
OO0O0OO0OO0OODOOOOOOOOOOOOOOO0OOOOODOOOOOOOOOOOOOOOOOOOO™O
0.0 0 00 o 0000000 [ee) Q 0. 0 O 0. 0 O

foilName = '4424"

a = 1i*(pi/180);

alo = -0.0709059112140821;
cloa = 5.9874308077726;

CDO 0.00786583384450818;
CDOL = -0.00205551523231613;
CDOL2 = 0.00336950600880986;
CMLEa = 0.678651851542374;

CMLEA = -0.0178801645616264;

$%5%%%%%%%% SYMMETRIC ISSUE TEST %$%%%%%%%%%%%%%
% NACA 0012S data from Airfoil Appendix
foilName = '0012';
a = 1i*(pi/180);
alo = 0;
cloa = 6.14987213746803;
CDO = 0.00578980686984839;
CDOL = 0y
CDOL2 = 0.00589558911360464;
CMLEa = 0;
CMLEA = 0;
CMLEN = -0.248792267683901;

% substitute symbolic variables for double
% expressions and evaluate to decimals

numbers into

XacT = eval (subs (Xac));
YacT = eval (subs(Yac));
cmACT = eval (subs (cmAC)) ;
xsave (j) = XacT;

ysave (j) = YacT;

cmsave (j) = cmACT;

j=3+1;
end

figure (

1)

symbolic
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plot (xsave, ysave, 'color',cpass, 'marker',mpass)

xlabel ('Xac')

ylabel ('Yac")

', foilName])

for NACA

title(['AC (alpha)
axis equal

hold on

'3rd

'2nd Reduction',

legend ('Original', "lst Reduction',
Reduction', '"4th Reduction', '5th Reduction')

end

)

Xac, Yac, cmAC

OrderReduction Post(

[Xac,Yac, cmAC]

function

syms a alo cloa CDO CDOL CDOL2 CMLEa CMLEN CMLEA

’

= expand (Xac)
expand (Yac)

Xac
Yac

expand (cmAC) ;

cmAC
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16a
15a
1l4a
13a
12a
11la

10a

0); %

0);

a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a,
a*a*a*a*a*a*a*a*a*a*a*a*a*a*a,

subs (Xac,
Xac = subs (Xac,
Xac = subs (Xac,
Xac = subs (Xac,

Xac

S
°

0)y; %
0);

0);

a*a*a*a*a*a*a*a*a*a*a*a*a*a,
a*a*a*a*a*a*a*a*a*a*a*a*a,
a*a*a*a*a*a*a*a*a*a*a*a,

S
°

S
°

subs (Xac,
Xac = subs (Xac,
Xac = subs (Xac,
Xac = subs (Xac,

Xac

. 2
’ o

0)

’

a*a*a*a*a*a*a*a*a*a*a,

o
°

a*a*a*a*a*a*a*a*a*a, 0)
a*a*a*a*a*a*a*a*a, 0);
a*a*a*a*a*a*a*a, 0);
a*a*a*a*a*a*a, 0);
a*a*a*a*a*a, 0);
a*a*a*a*a, 0);

a*a*a*a, 0);

9a

o\°

8a

o
°

= subs (Xac,
Xac = subs (Xac,
Xac = subs (Xac,

Xac

Ta

o
°

6a

o
°

S5a

o
°

subs (Xac,

Xac = subs (Xac,

Xac

da

o
°

9alo

. 2
7 °

0)

alo*alo*alo*alo*alo*alo*alo*alo*alo,

subs (Xac,

Xac = subs (Xac,

Xac

8alo

’

0)

alo*alo*alo*alo*alo*alo*alo*alo,

0)

alo*alo*alo*alo*alo*alo*alo,

= subs (Xac,
Xac = subs (Xac,
Xac = subs (Xac,

Xac

0)

alo*alo*alo*alo*alo*alo,

5alo

r

0)

alo*alo*alo*alo*alo,

H 4dalo

0)

alo*alo*alo*alo,

subs (Xac,

Xac

16a
15a
14a
13a
12a
1la

10a

S
°

0);

a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a,

= subs (Yac,
Yac = subs (Yac,
Yac = subs (Yac,

Yac

0); %
0);

0);

a*a*a*a*a*a*a*a*a*a*a*a*a*a*a,
a*a*a*a*a*a*a*a*a*a*a*a*a*a,
a*a*a*a*a*a*a*a*a*a*a*a*a,

o
°

S
°

subs (Yac,
Yac = subs(Yac,
Yac = subs (Yac,
Yac = subs (Yac,
Yac = subs (Yac,

Yac

. o
’ °

0)

’

a*a*a*a*a*a*a*a*a*a*a*a,

o
°

0)
0);

0);

a*a*a*a*a*a*a*a*a*a*a,
a*a*a*a*a*a*a*a*a*a,
a*a*a*a*a*a*a*a*a,

o
°

9a

o\°



Yac =
Yac
Yac
Yac =
Yac =

Yac =
Yac
Yac =
Yac
Yac
Yac =

cmAC =

cmAC
cmAC

cmAC =
cmAC =

cmAC
cmAC

cmAC =

cmAC
cmAC
cmAC

cmAC =

cmAC
cmAC
cmAC

Xac
Xac
Xac

Yac
Yac
Yac

subs (Yac, a*a*a*a*a*a*a*a, 0); % 8a

subs (Yac, a*a*a*a*a*a*a, 0); % 7a

subs (Yac, a*a*a*a*a*a, 0); % 6a

subs (Yac, a*a*a*a*a, 0); % ba

subs (Yac, a*a*a*a, 0); % 4a

subs (Yac, alo*alo*alo*alo*alo*alo*alo*alo*alo, 0); % 9alo
subs (Yac, alo*alo*alo*alo*alo*alo*alo*alo, 0); % 8alo
subs (Yac, alo*alo*alo*alo*alo*alo*alo, 0); % 7alo

subs (Yac, alo*alo*alo*alo*alo*alo, 0); % 6alo

subs (Yac, alo*alo*alo*alo*alo, 0); % 5alo

subs (Yac, alo*alo*alo*alo, 0); % 4alo

subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 18a
subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 17a
subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % loa
subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 15a
subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % l4a

subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a*a, 0); % 13a

subs (cmAC, a*a*a*a*a*a*a*a*a*a*a*a, 0); % 12a

subs (cmAC, a*a*a*a*a*a*a*a*a*a*a, 0); % 1lla

subs (cmAC, a*a*a*a*a*a*a*a*a*a, 0); % 10a

subs (cmAC, a*a*a*a*a*a*a*a*a, 0); % 9a

subs (cmAC, a*a*a*a*a*a*a*a, 0); % 8a

subs (cmAC, a*a*a*a*a*a*a, 0); % 7a

subs (cmAC, a*a*a*a*a*a, 0); % 6a

subs (cmAC, a*a*a*a*a, 0); % 5a

subs (cmAC, a*a*a*a, 0); % 4a

subs (cmAC, alo*alo*alo*alo*alo*alo*alo*alo*alo, 0); % 9alo
subs (cmAC, alo*alo*alo*alo*alo*alo*alo*alo, 0); % 8alo
subs (cmAC, alo*alo*alo*alo*alo*alo*alo, 0); % 7alo

subs (cmAC, alo*alo*alo*alo*alo*alo, 0); % 6alo

subs (cmAC, alo*alo*alo*alo*alo, 0); % 5alo

subs (cmAC, alo*alo*alo*alo, 0); % 4alo
55555555 %%%%%5%5%%5%5%%5%5%5%5%5%55%5%%%5%5%%5%55%5%5%5%%5%5%%5%5%%5%5%5%5%%5%%%%%%
expand (Xac) ;

= expand(Yac) ;

expand (cmAC) ;

subs (Xac, a*a*a*alo, 0);

subs (Xac, a*a*alo*alo, 0);

subs (Xac, a*alo*alo*alo, 0);

subs (Yac, a*a*a*alo, 0);

subs (Yac, a*a*alo*alo, 0);

subs (Yac, a*alo*alo*alo, 0);

subs (cmAC, a*a*a*alo, 0);

cmAC =

cmAC

subs (cmAC,

a*a*alo*alo,

0);
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cmAC = subs (cmAC, a*alo*alo*alo, 0);
©90000000000000000000000000000000000000000000000000000000000000000000O00
OO0OO0OO0OO0OO0OO0OOO0OOODOOOODOOODODOOODODOODODODODODODODODODODODODODODOODODODOODODOODODOOODODOODODOOODODOOODOOOODOOODO™©O
S 9000
0000
Xac = expand (Xac);
Yac = expand(Yac);

expand (cmAC) ;

:

Xac = subs (Xac, CDOL*CDOL2*alo*alo, 0);

Xac = subs (Xac, CDO*CDOL2*alo*alo, 0);
Xac = subs (Xac, CDOL2*CDOL2*alo*alo, 0);
Xac = subs (Xac, CDOL*CDOL*alo*alo, 0);

Xac = subs (Xac, CDO*CDOL2*alo*alo*alo, 0);
Xac = subs (Xac, CDO*CDOL*alo*alo*alo, 0);

Xac = subs (Xac, CDOL*alo*alo*alo, 0);
Xac = subs (Xac, CDOL*CDOL2*a*alo, 0);
Xac = subs (Xac, CDO*CDOL2*a*alo, O0);

(
(
(
(
(
(
(
(
(
Xac = subs (Xac, CDO*CDOL2*a*a*a, 0);
Xac = subs (Xac, CDO*CDOL2*a*a, O0);
(
(
(
(
(
(
(
(
(
(
(

Xac = subs (Xac, CDO*CDOL*a*a*a, 0);
Xac = subs (Xac, CDO*CDOL*a*a, 0);
Xac = subs (Xac, CDOL2*CDOL2*alo*alo, 0);

Xac = subs (Xac, CDOL2*CDOL2*a*a, 0);
Xac = subs (Xac, CDOL2*CDOL2*a*alo, 0);

Xac = subs (Xac, CDO*a*a*a, 0);
Xac = subs (Xac, CDOL*a*a*a, 0);
Xac = subs (Xac, CDOL2*a*a*a, O0);

Xac = subs (Xac, CDOL2*alo*alo*alo, 0);
Xac = subs (Xac, CDOL2*alo*alo*a, 0);

Xac = subs (Xac, CDOL2*alo*a*a, 0);

Yac = subs(Yac, CDOL*CDOL2*alo*alo, 0);
Yac = subs(Yac, CDO*CDOL2*alo*alo, 0);
Yac = subs(Yac, CDOL2*CDOL2*alo*alo, 0);
Yac = subs(Yac, CDOL*CDOL*alo*alo, 0);
Yac = subs(Yac, CDO*CDOL2*alo*alo*alo, 0);
Yac = subs(Yac, CDO*CDOL*alo*alo*alo, 0);
Yac = subs(Yac, CDOL*alo*alo*alo, 0);

Yac = subs(Yac, CDOL*CDOL2*a*alo, 0);

Yac = subs(Yac, CDO*CDOL2*a*alo, O0);

Yac = subs(Yac, CDO*CDOL2*a*a*a, 0);

(
(
(
(
(
(
(
(
(
(
Yac = subs(Yac, CDO*CDOL2*a*a, O0);
(
(
(
(
(
(
(
(
(
(

Yac = subs(Yac, CDO*CDOL*a*a*a, 0);

Yac = subs(Yac, CDO*CDOL*a*a, 0);

Yac = subs(Yac, CDOL2*CDOL2*alo*alo, O0);
Yac = subs(Yac, CDOL2*CDOL2*a*a, O0);

Yac = subs(Yac, CDOL2*CDOL2*a*alo, 0);
Yac = subs(Yac, CDO*a*a*a, O0);

Yac = subs(Yac, CDOL*a*a*a, 0);

Yac = subs(Yac, CDOL2*a*a*a, 0);

Yac = subs(Yac, CDOL2*alo*alo*alo, 0);
Yac = subs(Yac, CDOL2*alo*alo*a, 0);
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cmAC =

subs (Yac,

subs
subs
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subs
subs
subs
subs
subs
subs

(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,

subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs
subs

(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
(cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,
subs (cmAC,

CDOL2*alo*a*a,

0);

CDOL*CDOL2*alo*alo,
CDO*CDOL2*alo*alo,
CDOL2*CDOL2*alo*alo,
CDOL*CDOL*alo*alo,
CDO*CDOL2*alo, O0);
CDO*CDOL2*alo*alo*alo,
CDO*CDOL*alo*alo*alo,
CDOL*alo*alo*alo,
CDOL*CDOL2*a*alo,
CDO*CDOL2*a*alo, 0);
CDO*CDOL2*a*a*a, 0);
CDO*CDOL2*a*a, 0);

CDO*CDOL*a*a*a, 0);
CDO*CDOL*a*a,
CDOL2*CDOL2*alo*alo,
CDOL2*CDOL2*a*a, 0);
CDOL2*CDOL2*a*alo,
CDO*a*a*a,
CDOL*a*a*a,
CDO0L2*a*a*a,
CDO0L2*alo*alo*alo,

0);
0);

CDO*alo*alo*alo, 0);
CDO*CDOL*alo*alo,
CDO*CDOL*a*alo, 0);
CDO*CDOL*CDOL2*a,
CDO*CDOL*CDOL*a*alo,
CDO*CDOL*a*alo*alo,

CDhO0*a*alo*alo, 0);

CDhO0*a*a*alo,
CDO*CDO*a*a,
CDO*CDO*a*alo, 0);

CDO*CDO*CDOL*a, 0);
CDO*CDO*CDOL*a*alo,
CDO*CDO*CDOL*alo,

CDO*CDO*CDO*a, O0);
CDO*CDO*CDO*a*a, 0);
CDO*CDO*a*a*alo, 0);
CDO*CDO*CDOL2*a, O0);
CDO*CDO*alo*alo*alo,
CDOL*a*a*alo,
CDOL*a*alo*alo, 0);
CDOL*CDOL2*a*a, 0);
CDOL*CDOL*a*a, 0);

CDOL*CDOL*a*a*alo,

CDOL*CDOL*a*alo, 0);
CDOL*CDOL*CDO*a, O0);
CDOL*CDOL*CDOL2*a*a,
CDOL*CDOL*CDOL*a,
CDOL*CDOL*CDOL*alo,

0);
0);
0);
0);
0);
0);

0);

0);

0);

0);
0);

0);

0);
CDOL2*alo*alo*a, 0);
CDOL2*alo*a*a, 0);

0);

0);

0);
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0);

CDOL*CDOL*CDOL*a*a,

= subs (cmAC,
cmAC = subs (cmAC,
cmAC = subs (cmAC,

cmAC

0);

CDOL*CDOL*CDOL*a*alo,

0);

CDOL*CDOL*CDOL*a*a*alo,
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APPENDIX D

The following program was used to calculate the location of the aerodynamic center for
250 NACA 4-digit airfoils as a function of airfoil camber and thickness in inviscid flow.
This program uses the numerical vortex panel method from Appendix B.

[o)

% The purpose of this script is to sweep through a range of NACA 4-
digit airfoils and solve for coefficient of 1lift and moment over a
range of angles of attack using the vortex panel method. After
collecting the RMS error is computed to compare the VPM data results
against the traditional and alternative line fitting equations both
using a least squares regression technique.

o\

suffix "hunsaker" refers to relations developed from general airfoil
theory and conformal mapping techniques

o\

o\

suffix "traditional" refers to relations developed from thin airfoil
theory

o\

o\

suffix "traditional mod" refers to relations developed from thin
airfoiltheory, however, removes the small angle approximations

msweep = [0:2:8]; % first digit [2:2:8]

psweep = [0]; % second digit [4]

tsweep = [1:1:50]; % last two digits

c = 1; % chord length

v00 =1; % free stream velocity

N = 400; % number of panels to be used (even)
tailFlag = 'y'; % close the trailing edge? (y/n)

ACA low = =-5; % low angle of attack (degrees)

AOA high = 5; % high angle of attack (degrees)
AQAincrement = 5; % increment of the angles of attack
flag = 'y'; % use cosine clustering? (y/n)

k =1;

for i=l:length (msweep) % first digit loop
for j=l:1:length(tsweep) % last two digit loop

% import raw data

[ cLVortex, cMVortex, AOARangeVortex, cl thinAirfoil] =
vortexPanelMethodFunction (v00,N, tailFlag,AOA low,AOA high, flag,msweep (1
) ypsweep (1), tsweep(j),c,A0Aincrement) ;

% filename = 'JjoukowskiAirfoilData.csv';
% data = csvread(filename, 2,0);

CAvortex = -cLVortex.*sind (AOARangeVortex) ;
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CNvortex = cLVortex.*cosd (AOARangeVortex) ;
data = vertcat (AOARangeVortex,CNvortex,CAvortex,cMVortex, cLVortex) ';

[}

datasweep(:,:,k) = data; % records vortex panel method data for each
airfoil

k = k+1;

Q

end % last 2 digit loops

psweep = [4];

Q

end % first digit loop

disp('Data Collection Complete')

%% Coefficient Solver
disp ('running solver...'")

limit = (k-1);

coll = linspace(1,50,50);
col2 = linspace(51,100,50);
col3 = linspace(101,150,50);
cold4d = linspace(151,200,50);

col5 = linspace(201,250,50);
guide [coll;co0l2;co0l3;cold;col5]"';

for k=1:1imit

alpha = datasweep(:,1,k);
alphaRad = alpha* (pi/180);

CL = datasweep(:,5,k);
Cm = datasweep(:,4,k);

Q

% CL Coefficient Solver Traditional

alphal0SolvedTRAD (k) = (sum(CL) *sum (alphaRad. *alphaRad) -

sum (alphaRad) *sum (CL.*alphaRad) ) / (sum (CL) *sum (alphaRad) -

length (alphaRad) *sum (CL.*alphaRad) ) ;

CLalphaSolvedTRAD (k) = sum(CL) / (sum (alphaRad) -

length (alphaRad) *alphalL0OSolvedTRAD (k) ) ;

% CL Coefficient Solver Hunsaker

alphalOSolved (k) =
atan((sum(CL.*cos (alphaRad) ) *sum(sin (alphaRad) .*sin (alphaRad)) -

sum (CL.*sin (alphaRad) ) *sum(sin (alphaRad) . *cos (alphaRad) ) )/ (sum(sin (alph
aRad) . *cos (alphaRad) ) *sum (CL. *cos (alphaRad) ) -
sum (CL.*sin (alphaRad) ) *sum(cos (alphaRad) . *cos (alphaRad)))) ;

CLalphaSolved (k) =
sum (CL.*cos (alphaRad) ) / (sum(sin (alphaRad) . *cos (alphaRad) ) -
tan (alphalL0Solved (k) ) *sum (cos (alphaRad) . *cos (alphaRad))) ;

% CM Coefficient Solver Hunsaker
if k>50
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A = [sum(sin(2*alphaRad).*sin (2*alphaRad)),
sum (CL. *cos (alphaRad) . *sin (2*alphaRad) ), sum(-
CL.*sin (alphaRad) .*sin (2*alphaRad)) ;

sum(sin (2*alphaRad) .*CL.*cos (alphaRad) ), sum(CL.*CL. *cos (alphaRad) . *cos (
alphaRad) ), sum(-CL.*CL.*sin (alphaRad) . *cos (alphaRad)) ;

sum(sin (2*alphaRad) .*CL.*sin (alphaRad)),sum(CL.*CL. *cos (alphaRad) .*sin (
alphaRad) ), sum(-CL.*CL.*sin (alphaRad) .*sin (alphaRad)); 1;

B = [sum(Cm.*sin(2*alphaRad))
sum (Cm.*CL.*cos (alphaRad)) ;
sum (Cm.*CL.*sin (alphaRad)) 1;

CMCoeffSolved = A" (-1) *B;

CmLEAlpha (k) CMCoeffSolved (1) ;

CmLENormal (k) = CMCoeffSolved(2) ;

CmLEAxial (k) CMCoeffSolved(3) ;

else

CmLEAlpha (k) = 0;
CmLENormal (k) =

sum (Cm.*CL. *cos (alphaRad) ) /sum (CL.*CL. *cos (alphaRad) . *cos (alphaRad) ) ;
CmLEAxial (k) = 0;

end

o)

% CM Coefficient Solver Traditional
cmC4 (k) = sum(Cm+CL./4)/length (alphaRad) ;

for i=l:length (alphaRad)
CL Hunsaker (1) CLalphaSolved (k) * (sin(alphaRad (1)) -

tan (alphalL0OSolved (k)) *cos (alphaRad(1i)));

CL Traditional (i) = CLalphaSolvedTRAD (k) * (alphaRad (i) -
alphal0SolvedTRAD (k)) ;

Cm_Hunsaker (i) = CmLEAlpha (k)*sin(2*alphaRad(i)) +

CmLENormal (k) *CL_Hunsaker (i) *cos (alphaRad(i)) -
CmLEAxial (k) *CL Hunsaker (i) *sin (alphaRad(i));
Cm0 Traditional (i) = cmC4 (k)-CL(1)/4;

end

% save data for the NACA 8415 case

if k == 215
cL8415Hunsaker = CL Hunsaker;
cL8415Traditional = CL Traditional;

cm8415Hunsaker = Cm_Hunsaker;
cm8415Traditional = CmO_Traditional;
end



% Calculate RMS
CL_RMSE Hunsake
CM RMSE Traditi

CL RMSE Traditi
CM_RMSE Hunsake

Q

% Calculate aer
configuration
XAC hunsaker (k)
2*CmLEAlpha (k) /CLal
YAC hunsaker (k)
CmLEAlpha (k) /CLalph

end

%% Plotting
disp('Plotting...")

figure (1) %$%%%%%%%%
pll = semilogy (tswe
hold on
semilogy (tswe
semilogy (tswe
semilogy (tswe
semilogy (tswe

pl2 = semilogy (tswe

semilogy (tsweep,CL_ ) )
~RMSE Hunsaker (101: 150), ')
) )
) )

semilogy (tsweep,CL
semilogy (tsweep,CL
semilogy (tsweep,CL
hold off

set (gca, 'FontName',
xlabel ('airfoil thi
ylabel ('RMS Error'
title('CL")

legend ([pll,pl2],'t

figure (2) %$%%%%%%%%
P21 = semilogy (tswe
hold on
semilogy (tswe
semilogy (tswe
semilogy (tswe
semilogy (tswe

P22 = semilogy (tswe
semilogy (tswe

:RMSE_Hunsaker 201:250

Error values for each airfoil configuration

r (k) = RMSE( CL, CL Hunsaker, length(CL));
onal (k) = RMSE( Cm, CmO_Traditional, length(Cm));
onal (k) = RMSE( CL, CL Traditional, length(CL));
r (k) = RMSE( Cm, Cm Hunsaker, length(Cm));

odynamic center location for each airfoil
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phaSolved (k) *cos (alphaL0Solved (k) ) *"2-CmLENormal (k) ;

aSolved (k) *sin(2*alphalOSolved (k) )+CmLEAxial (k) ;

ep,CL RMSE Traditional ( ) )
ep,CL RMSE Traditional ( ) )
ep,CL_RMSE Traditional (151: 200),'—r')
ep,CL_RMSE Traditional (201:250) )

ep,CL_RMSE Hunsaker (1: 50),' -b');
RMSE Hunsaker( 51:100

4

4

(
RMSE Hunsaker (151:200
(

4

'Times New Roman', 'FontSize',10)
ckness', 'Fontname', 'Times New Roman')

, 'Fontname', 'Times New Roman')

raditional', "hunsaker', 'location', "southeast"')

ep,CM _RMSE Traditional ( ) )
ep,CM _RMSE Traditional ( ) )
ep,CM RMSE Traditional(151:200),'-r")
ep,CM RMSE Traditional (201:250) )

ep,CM RMSE Hunsaker( 1:50 ),'-b'");
ep,CM RMSE Hunsaker( 51:100),'-b")



semilogy (tsweep,CM RMSE Hunsaker (101:150),'-b'")
semilogy (tsweep,CM RMSE Hunsaker (151:200), '-b")
semilogy (tsweep,CM_RMSE Hunsaker (201:250),'-b")

set (gca, 'FontName', 'Times New Roman', 'FontSize',10)
xlabel ('airfoil thickness', 'Fontname', 'Times New Roman')
ylabel ('RMS Error', 'Fontname', 'Times New Roman')
title('CM', 'Fontname', 'Times New Roman')

legend ([p21,p22], 'Thin Airfoil Theory', 'General Airfoil
Theory', 'location', 'southeast')

hold off
figure (3) %%%%%%%%%%5%%5%%5%%5%%5%%5%%5%%5%%5%%5%5%5%5%5%5%%%%5%%5%%5%%5%%5%%%
semilogy (tsweep,CL RMSE Traditional( 1:50),'-");
hold on
semilogy (tsweep,CL RMSE Traditional( 51:100),'-")
semilogy (tsweep,CL RMSE Traditional (101:150),'-")
) )

( (

( (
semilogy (tsweep,CL RMSE Traditional (151:200
semilogy (tsweep,CL RMSE Traditional (201:250),'-")
set (gca, 'FontName', 'Times New Roman', 'FontSize',10)
xlabel ('airfoil thickness', 'Fontname', 'Times New Roman')
ylabel ('"RMS Error', 'Fontname', 'Times New Roman')

title('CL Thin Airfoil Theory', 'Fontname', 'Times New Roman')

legend ('00XX"', '24XX"', '44XX"', '64XX"', '84XX")

hold off

figure (4) $%%%%%%5%5%5%5%5%5%5%%%%%%5%%%%%5%%%%%%%%5%5%5%5%55%5%5%5%5%5%5%5%5%5%%
semilogy (tsweep, CL_RMSE Hunsaker( 1:50),'-")

hold on

semilogy (tsweep,CL_RMSE Hunsaker( 51:100) )
semilogy (tsweep, CL_RMSE Hunsaker (101:150),'-")
semilogy (tsweep, CL _RMSE Hunsaker (151:200) )
semilogy (tsweep, CL_RMSE Hunsaker (201:250),'-")

set (gca, 'FontName', 'Times New Roman', 'FontSize',10)
xlabel ('airfoil thickness', 'Fontname', 'Times New Roman')
ylabel ('"RMS Error', 'Fontname', 'Times New Roman')

title('CL General Airfoil Theory', 'Fontname', 'Times New Roman')

legend ('00XX"', '24XX"', '44XX"', '64XX"', '84XX")

hold off

figure (5) $%5%%%%5%%5%5%5%%%%%5%5%5%5%%%%%5%5%5%%%%%5%5%5%%5%%%5%5%5%%5%%%%5%%%
semilogy (tsweep,CM RMSE Traditional( 1:50),'-");

hold on

semilogy (tsweep,CM_RMSE Traditional ( ) )
semilogy (tsweep,CM RMSE Traditional (101:150),'-")
semilogy (tsweep,CM RMSE Traditional (151:200) )
semilogy (tsweep,CM RMSE Traditional (201:250),'-")

set (gca, 'FontName', 'Times New Roman', 'FontSize',10)
xlabel ('airfoil thickness', 'Fontname', 'Times New Roman')
ylabel ('"RMS Error', 'Fontname', 'Times New Roman')

title('CM Thin Airfoil Theory', 'Fontname', 'Times New Roman')

legend ('00XX"', "24XX", "44XX", '64XX", '84XX")
hold off
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figure (6) $%%5%5%%5%5%5%5%5%5%5%5%5%5%55%5%%5%%5%5%%5%5%%5%5%%5%5%%5%5%%5%5%%5%5%%%
semilogy (tsweep, CM

hold on
semilogy

semilogy

tsweep,CM _RMSE Hunsaker( 51:100) )
tsweep,CM RMSE Hunsaker (101:150),'-")
semilogy (tsweep,CM_RMSE Hunsaker (151:200) )
semilogy (tsweep,CM RMSE Hunsaker (201:250),'-")

set (gca, 'FontName', 'Times New Roman', 'FontSize',10)

xlabel ('airfoil thickness', 'Fontname', 'Times New Roman')

ylabel ('RMS Error', 'Fontname', 'Times New Roman')

title('CM General Airfoil Theory', 'Fontname', 'Times New Roman')
legend ('00XX', "24XX", "44XX", '64XX", '84XX")

—_~ e~~~

hold off

figure (7) $%%%%%5%%5%5%5%%%%%5%5%5%5%%%%5%5%5%5%%%%%5%5%5%%5%%%5%5%5%%5%%%%%%%
cL8415Vortex = datasweep(:,5,215);

plot (alpha ,cL8415Vortex, '*k")

hold on

plot (alpha ,cL8415Traditional, 'or')

plot (alpha ,cL8415Hunsaker, 'sb')

xlabel ('angle of attack (degrees)', 'Fontname', 'Times New Roman')
ylabel ('Coefficient of Lift', 'Fontname', 'Times New Roman')

title ('NACA 8415', 'Fontname', 'Times New Roman')

legend ('Vortex Panel Method', 'Thin Airfoil Theory', 'General Airfoil
Theory', 'location', 'southeast')

hold off

figure (8) $%%%%%5%%5%5%5%%%%%5%5%5%5%%%%5%5%5%%%%%5%5%5%%5%%%5%5%5%%5%%%%%%%
cm8415Vortex = datasweep(:,4
plot (alpha ,cm8415Vortex, '"k
hold on

plot (alpha ,cm8415Traditional, 'or')

plot (alpha ,cm8415Hunsaker, 'sb')

xlabel ('angle of attack (degrees)', 'Fontname', 'Times New Roman')
ylabel ('Pitching Moment Coefficient', 'Fontname', 'Times New Roman')
title ('NACA 8415', 'Fontname', 'Times New Roman')

legend ('Vortex Panel Code', 'Thin Airfoil Theory', 'General Airfoil
Theory', 'location', "'northeast')

hold off

figure (9)

plot (XAC hunsaker (1:50),YAC hunsaker (1:50), 'bo")

hold on

plot (XAC hunsaker (51:100),YAC hunsaker (51:100), 'r+")

plot (XAC hunsaker (101:150),YAC hunsaker (101:150), 'k"")

plot (XAC hunsaker (151:200),YAC hunsaker (151:200), 'ms"')

plot (XAC hunsaker (151:200),YAC hunsaker (201:250), 'g>")

xlabel ('x Position')

ylabel ('y Position')

legend ('00XX"', "24XX", "44XX"', '64XX"', '84XX"', 'location', "northwest"')

hold off



% General airfoil theory for NACA 8415
format long

datasweep (:,:,62)

alphalLOSolved (62)

CLalphaSolved(62)

CmLEAlpha (62)

CmLENormal (62)

CmLEAxial (62)

o\
o\

for i=l:length (XAC hunsaker)

extract(:,1i) = datasweep(:,5,1);

end

5%%%%%5%5%%%%5%5%%%%%5%5%%%%%% SUPPORTING FUNCTIONS
function [ RMSE ] = RMSE( A, B, bound)
SRMSE Summary of this function goes here
% Detailed explanation goes here

sum = 0;

for i=1l:bound

diffsg(i) = (A(i) - B(i))"2;

sum = sum + diffsqg(i);

end

RMSE = sgrt (sum/bound) ;

end
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